Show simple item record

dc.contributor.advisorHeal, Kate
dc.contributor.advisorVinten, Andrew
dc.contributor.authorCarr, Stephen Thomas David
dc.date.accessioned2013-08-13T10:55:08Z
dc.date.available2013-08-13T10:55:08Z
dc.date.issued2012-11-29
dc.identifier.urihttp://hdl.handle.net/1842/7663
dc.description.abstractPhosphorus (P) pollution of waterbodies is a global issue with detrimental environmental, social and economic impacts. Low-cost and sustainable P removal technologies are therefore required to tackle P pollution, whilst also offering a technique for reclaiming P. Ochre, a waste product from minewater treatment plants (MWTPs), has been proposed as a suitable material for the removal of P from enriched waters due to a high content of Fe, Al, Ca and Mg, which have high affinities for P removal. Whilst a range of studies have been conducted investigating ochre as a P adsorbent, most of these are large-scale field experiments and lack understanding of the underlying processes of P removal by ochre. There have also been very few detailed comparisons of different ochre types. The primary focus of this thesis is thus to provide a process-based understanding of P removal by various ochres, in order to investigate the optimal conditions for the use of ochres in the treatment of aquatic P pollution. Seven ochres from six MWTPs in the UK and Ireland were investigated, one of which was in a pelleted form. The ochres were largely comprised of Al, Ca, Fe and Mg (42-68 % by dry weight), had a high B.E.T. surface area, 56-243 m2 g-1, and contained mineral surfaces with a high affinity for P adsorption, such as goethite and calcite. A novel batch experiment methodology was utilised to calculate the adsorption characteristics of ochre at discrete pH conditions. The variation of these characteristics with pH indicates the importance and requirement for such a method to study adsorption by materials at the expected pH conditions of application. At the pH conditions of wastewater streams (~pH 7), the P adsorption capacities of the ochres, determined from fitting adsorption isotherms, was 11.8–43.1 mg P g-1. Results of P adsorption batch experiments were modelled in ORCHESTRA, wherein P removal by the ochres was described well by adsorption onto hydrous ferric oxides. Three of the ochres contain relatively high calcite contents and due to a poor fit of the model to the observed datasets at high pH conditions, with equilibrium P concentrations lower in the batch experiments than the modelled result, adsorption onto calcite is suggested as a P removal mechanism for these ochres at pH > 7. Environmental application of ochre filters will require P removal under flow-through transport conditions. Column experiments were therefore conducted using two ochres, coarse-grained Polkemmet ochre and Acomb pellets (column volume 1055 cm3, pore space 490-661 cm3, typical pore volumes of experiments: 220-400). P removal efficiency increased with contact time, and the presence of competing ions had only marginal effects on P removal. Resting the column substrate for 48 hours between P applications greatly increased the P removal efficiency of a packed column of Polkemmet ochre, resulting in 81 % of influent P removed over 1000 pore volumes of operation (7.68 mg P g-1). Acomb pellets had a lower P removal efficiency than Polkemmet ochre. It is suggested that the high calcium content of the pellets, as a result of the pelletisation process, has created a substrate where the dominant P removal mechanism at neutral pH conditions is adsorption to calcite, which has slower reaction kinetics than adsorption onto goethite. Therefore, this pelleted ochre requires a higher contact time for adsorption reactions to occur. It is suggested that ochre filters are most suitable for application in situations where flow rate is constant or can be controlled e.g. septic tank effluent. Ochres which dry to a coarse particle size are preferred for use as a substrate as pelletisation requires capital, expertise and can produce substrates with slower P sorption kinetics. Resting the filter substrate between P application regenerates surface sites for adsorption, and filters should be run in parallel to maximise P removal efficiency. Acomb pellets, which are a mix of iron hydroxides and alkaline materials, may have potential application as a permeable reactive barrier substrate to treat P enriched ground waters. Further research utilising fine-grained ochres as an additive to P rich fertilisers or for use in continuously stirred tank reactors is recommended.en_US
dc.contributor.sponsorNatural Environment Research Council (NERC)en_US
dc.contributor.sponsorJames Hutton Institute (formerly the Macaulay Institute)en_US
dc.language.isoenen_US
dc.publisherThe University of Edinburghen_US
dc.subjectochreen_US
dc.subjectphosphorusen_US
dc.subjectbatch experiment,en_US
dc.subjectcolumn experimenten_US
dc.subjectadsorption isothermsen_US
dc.subjectORCHESTRAen_US
dc.titleInvestigation into phosphorus removal by iron ochre for the potential treatment of aquatic phosphorus pollutionen_US
dc.typeThesis or Dissertationen_US
dc.type.qualificationlevelDoctoralen_US
dc.type.qualificationnamePhD Doctor of Philosophyen_US


Files in this item

This item appears in the following Collection(s)

Show simple item record