Show simple item record

dc.contributor.advisorHuxley, Andrew
dc.contributor.authorScheler, Thomas Herbert
dc.date.accessioned2013-07-30T13:17:28Z
dc.date.available2013-07-30T13:17:28Z
dc.date.issued2013-07-01
dc.identifier.urihttp://hdl.handle.net/1842/7611
dc.description.abstractThe application of extreme conditions offers a general route for the synthesis of materials under equilibrium conditions. By finely tuning the thermodynamic variables of pressure and temperature one can manipulate matter on an atomic scale, creating novel compounds or changing the properties of existing materials. In particular, the study of hydrogen and hydrogen compounds has attracted the attention of researchers in the past. Although hydrogen readily reacts with many elements at ambient conditions, there is a significant “hydride gap” covering the d-metals between the Cr-group and Cu-group elements. At elevated pressures however, the chemical potential of hydrogen rises steeply. At sufficient pressures, hydrogen overcomes the dissociation barrier at the metal surface and atomic hydrogen diffuses into the metal, usually occupying interstitial sites in the host matrix. These interstitial hydrogen alloys can exhibit interesting physical properties, such as modified crystalline structures, different compressibility, altered microstructure (nanocrystallinity), hydrogen mediated superconductivity or potential hydrogen storage capabilities. Furthermore, theory predicts that hydrogen confined in a host matrix might undergo the elusive transition to a metallic groundstate at considerably lower pressures than pure hydrogen. Most d-metals have been found to exhibit hydride phases at extended conditions of pressure and temperature. However, besides rhenium, the 6th row metals between tungsten and gold, as well as silver, have not or only very recently been found to form bulk hydrides. In the course of this PhD-thesis, several of the missing metalhydrides were successfully synthesized in the diamond anvil cell and characterized by in-situ x-ray diffraction using synchrotron radiation.en_US
dc.contributor.sponsorEngineering and Physical Sciences Research Council (EPSRC)en_US
dc.language.isoenen_US
dc.publisherThe University of Edinburghen_US
dc.relation.hasversion“Synthesis and properties of platinum hydride”, Phys. Rev. B 83, 214106 (2011) Thomas Scheler, Olga Degtyareva, Miriam Marqu´es, Christophe L. Guillaume, John E. Proctor, Shaun Evans, and Eugene Gregoryanzen_US
dc.relation.hasversion“On the effects of high temperature and high pressure on the hydrogen solubility in rhenium”, J. Chem. Phys. 135, 214501 (2011) Thomas Scheler, Olga Degtyareva, and Eugene Gregoryanzen_US
dc.relation.hasversion“Mixed Molecular and Atomic Phase of Dense Hydrogen”, Phys. Rev. Lett. 108, 125501 (2012) Ross T. Howie, Christophe L. Guillaume, Thomas Scheler, Alexander F. Goncharov, and Eugene Gregoryanzen_US
dc.relation.hasversion“Proton tunneling in phase IV of hydrogen and deuterium”, Phys. Rev. B 86, 214104 (2012) Ross T. Howie, Thomas Scheler, Christophe L. Guillaume, and Eugene Gregoryanzen_US
dc.subjecthigh pressureen_US
dc.subjecthydrogenen_US
dc.subjectmetal hybridesen_US
dc.subjectsynthesisen_US
dc.titleTransition-metal-hydrogen systems at extreme conditionsen_US
dc.typeThesis or Dissertationen_US
dc.type.qualificationlevelDoctoralen_US
dc.type.qualificationnamePhD Doctor of Philosophyen_US


Files in this item

This item appears in the following Collection(s)

Show simple item record