Information Services banner Edinburgh Research Archive The University of Edinburgh crest

Edinburgh Research Archive >
Biomedical Sciences, School of >
Biomedical Sciences publications >

Please use this identifier to cite or link to this item:

This item has been viewed 65 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
Ludwig.pdf362.66 kBAdobe PDFView/Open
Title: Intracellular calcium stores regulate activity-dependent neuropeptide release from dendrites
Authors: Ludwig, Mike
Sabatier, Nancy
Bull, Philip M
Landgraf, Rainer
Dayanithi, Govindan
Leng, Gareth
Issue Date: 4-Jul-2002
Citation: Nature, Vol 418 No 6893 pp85-89
Publisher: Nature Publishing Group
Abstract: Information in neurons flows from synapses, through the dendrites and cell body (soma), and, finally, along the axon as spikes of electrical activity that will ultimately release neurotransmitters from the nerve terminals. However, the dendrites of many neurons also have a secretory role, transmitting information back to afferent nerve terminals1–4. In some central nervous system neurons, spikes that originate at the soma can travel along dendrites as well as axons, and may thus elicit secretion from both compartments1. Here, we show that in hypothalamic oxytocin neurons, agents that mobilize intracellular Ca21 induce oxytocin release from dendrites without increasing the electrical activity of the cell body, and without inducing secretion from the nerve terminals. Conversely, electrical activity in the cell bodies can cause the secretion of oxytocin from nerve terminals with little or no release from the dendrites. Finally, mobilization of intracellular Ca21 can also prime the releasable pool of oxytocin in the dendrites. This priming action makes dendritic oxytocin available for release in response to subsequent spike activity. Priming persists for a prolonged period, changing the nature of interactions between oxytocin neurons and their neighbours.
Keywords: synapses
central nervous system
hypothalamic oxytocin neurons
Appears in Collections:Biomedical Sciences publications

Items in ERA are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2013, and/or the original authors. Privacy and Cookies Policy