Information Services banner Edinburgh Research Archive The University of Edinburgh crest

Edinburgh Research Archive >
Clinical Sciences, School of >
School of Clinical Sciences thesis and dissertation collection >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1842/5911

This item has been viewed 46 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
Mackenzie figures.pptone year restriction6.93 MBMicrosoft Powerpoint
Mackenzie figures.pdfone year restriction3.61 MBAdobe PDF
Mackenzie2011.docone year restriction2.44 MBMicrosoft Word
Mackenzie2011.pdfone year restriction1.12 MBAdobe PDF
Title: Peptide immunotherapy in models of allergic airways disease
Authors: MacKenzie, Karen Joan
Supervisor(s): Schwarze, Jürgen
Anderton, Stephen
Issue Date: 25-Nov-2011
Publisher: The University of Edinburgh
Abstract: Allergen-reactive CD4+ T cells are implicated in the pathogenesis of allergic disease. Peptide immunotherapy (PIT) involves therapeutic administration of short immunodominant peptides from within the protein allergen to which CD4+ T cell responses are directed. This approach can induce tolerance of allergen-reactive CD4+ T cells, while negating the risk of severe allergic reactions associated with whole allergen specific immunotherapy. PIT therefore holds promise as a diseasemodifying treatment for allergic patients. However, further information regarding the mechanisms of action of PIT are required to aid translation to the allergy clinic. Chicken ovalbumin (OVA) is a commonly used model allergen in mouse models of allergic airways inflammation (AAI). Trackable, T cell receptor transgenic T cells recognizing the immunodominant 323-339 peptide of OVA (pOVA) allow mechanistic investigation of PIT in response to pOVA. This thesis investigated the hypothesis that strong, systemic T cell responses induced by intravenous administration of soluble pOVA will induce i) tolerance to pOVA and ii) linked suppression to any additional OVA T cell epitopes, hence improving OVA-induced AAI. Contrary to the hypothesis, intravenous pOVA PIT did not improve disease in a C57BL/6 model of OVA-induced AAI. Models of OVA-induced allergic sensitisation and AAI were therefore developed incorporating trackable CD4+ pOVA-reactive T cells (OT-II cells). pOVA PIT induced tolerance of these cells in an allergic sensitisation setting, but had limited impact on the overall OVA response. Yet, in a model of AAI driven solely by Th2 polarised CD4+ OT-II cells, pOVA PIT did improve disease. It was concluded that, in non-transgenic C57BL/6 mice, CD4+ T cells responding to additional epitope(s) within OVA were important in driving disease and that these T cells were not subject to linked suppression following pOVA PIT. Using a panel of overlapping peptides constituting the sequence of OVA, a novel CD4+ epitope within OVA was characterised. The effects of PIT using pOVA in combination with a peptide containing this additional epitope on OVA-induced AAI were then assessed. Findings from this project therefore hold importance for future mechanistic work surrounding PIT in allergic disease.
Sponsor(s): Medical Research Council (MRC)
Keywords: peptide
immunotherapy
allergic airways
allergic airways disease
asthma
URI: http://hdl.handle.net/1842/5911
Appears in Collections:School of Clinical Sciences thesis and dissertation collection

Items in ERA are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2013, and/or the original authors. Privacy and Cookies Policy