Information Services banner Edinburgh Research Archive The University of Edinburgh crest

Edinburgh Research Archive >
Molecular, Genetic and Population Health Sciences, School of >
Molecular, Genetic and Population Health Sciences thesis and dissertation collection >

Please use this identifier to cite or link to this item:

This item has been viewed 60 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
Moeller2011.docx55.47 MBMicrosoft Word
Moeller2011.pdf3.19 MBAdobe PDFView/Open
Title: Development of an intrabody capable of activating interferon regulatory factor-1 (IRF-1) and identification of IRF-1-binding peptide motifs
Authors: Möller, Angeli
Moeller, Angeli Kishor
Supervisor(s): Ball, Kathryn
Patton, Elizabeth
Wallace, Maura
Issue Date: 5-Jul-2011
Publisher: The University of Edinburgh
Abstract: Interferon regulatory factor 1 (IRF-1) is a tumour suppressor protein and transcription factor. It has been shown to modulate target gene expression in response to stimuli, which include viral infection and DNA damage, and to be down-regulated in several forms of cancer. This thesis details the development of an intrabody, an intracellular antibody, that binds specifically to endogenous IRF-1. The binding of the intrabody to IRF-1 enhanced transcription from IRF-1-responsive reporter gene constructs and endogenous promoters, thus it was shown to activate IRF-1. Intrabody binding also increased the rate at which IRF-1 was degraded, suggesting that the intrabody epitope may be regulating both IRF-1 activity and turnover. These results were supported point mutation within the intrabody epitope (P325 to A) as the resultant mutant also displayed both a higher transcriptional activity and increased rate of degradation. In an effort to understand the mechanisms which regulate IRF-1 activity a search for novel IRF-1-interacting proteins was carried out using phage peptide display. This in vitro technique enables the identification of peptides able to bind a specific target protein. The sequence of these peptides can then be used to search protein databases for homologous, full-length proteins that could also bind the target protein. This led to the identification of an IRF-1-binding peptide that held sequence similar to a region of Zinc Finger 350 (ZNF350), a transcription factor involved in regulating the DNA damage response. Subsequently, endogenous ZNF350 and IRF-1 were co-immunoprecipitated from a human cancer cell line. The extreme C-terminus of IRF-1 was shown to be sufficient for an interaction with ZNF350, although a second, more N-terminal site was also shown to be essential for a stable intracellular interaction. This data sheds new light on the role of the extreme C-terminus of IRF-1 in modulating the protein‟s activity. This study also provides new and IRF-1-specific molecular tools, in the form of intrabodies and IRF-1-binding peptides, which could be used in the future to further characterise the activity and regulation of this tumour suppressor protein.
Sponsor(s): Cancer Research UK
Keywords: IRF-1
Appears in Collections:Molecular, Genetic and Population Health Sciences thesis and dissertation collection

Items in ERA are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2013, and/or the original authors. Privacy and Cookies Policy