Show simple item record

dc.contributor.advisorMueller, Markus
dc.contributor.advisorMacpherson, Ewen
dc.contributor.advisorShanel, Martin
dc.contributor.authorMejuto, Carlos
dc.date.accessioned2011-01-18T11:55:56Z
dc.date.available2011-01-18T11:55:56Z
dc.date.issued2010
dc.identifier.urihttp://hdl.handle.net/1842/4612
dc.description.abstractWithin the existing available mix of numerical and analytical thermal analysis options, lumped parameter thermal modelling is selected as the operational backbone to develop an improved novel synchronous generator thermal modelling package. The objective is for the creation of a user friendly quick feedback tool, which can serve as a means to make quick machine design thermal calculations and answer customer queries quickly and reliably. Furthermore, thermally improved generator designs will allow for inevitable operational losses to be channelled away from the machine more efficiently. As a result, machine component temperatures will be reduced, allowing lower generator thermal ratings. The end result will be smaller, longer lasting, more efficient generators, with the ability to be adapted with greater ease to particular applications. With the contribution of selected numerical analysis techniques, mainly finite element analysis for the distribution of iron losses, the MySolver thermal modelling package is developed and presented in this thesis. It is this combination of numerical and analytical tools that improves synchronous generator thermal modelling accuracy, but ultimately it is the lumped parameter nature of the thermal models developed that makes MySolver succeed as a reliable quick feedback electrical machine thermal design tool, validated using experimental results for a wide range of operating conditions. The initial part of the thesis analyses the electrical machine thermal modelling techniques available today, indicating advantages and disadvantages associated with each one, and providing a rationale for the selection of lumped parameter modelling to be used by MySolver. The development of the synchronous generator lumped parameter thermal models is detailed, with examples on its construction presented. Subsequently, finite element analysis is utilised to predict the distribution of machine iron losses across the rotor and stator laminations, with the findings applied to MySolver. Furthermore, a study is performed into the lumped parameter discretisation level needed to effectively represent machine windings. MySolver is experimentally verified using experimental data from a fully instrumented synchronous generator and this data is also used to obtain further insight into the temperature distribution within the generator. In the final part results are evaluated and the use of MySolver for modelling and optimising electrical machines is discussed. Finally, appropriate conclusions on the work presented are drawn.en
dc.language.isoenen
dc.publisherThe University of Edinburghen
dc.subjectsynchronous generator thermal modelling packageen
dc.subjectthermal calculationsen
dc.subjectthermally improved generator designen
dc.subjectthermal modellingen
dc.titleImproved lumped parameter thermal modelling of synchronous generatorsen
dc.typeThesis or Dissertationen
dc.type.qualificationlevelDoctoralen
dc.type.qualificationnamePhD Doctor of Philosophyen


Files in this item

This item appears in the following Collection(s)

Show simple item record