Information Services banner Edinburgh Research Archive The University of Edinburgh crest

Edinburgh Research Archive >
Molecular, Genetic and Population Health Sciences, School of >
Molecular, Genetic and Population Health Sciences thesis and dissertation collection >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1842/4507

This item has been viewed 50 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
Wawrzynow2010.docFile not available for download1.06 MBMicrosoft Word
Wawrzynow2010.pdfFile not available for download20.27 MBAdobe PDF
Title: Allosteric regulation of MDM2 protein
Authors: Wawrzynów, Bartosz
Supervisor(s): Ball, Kathryn
Hupp, Ted
Issue Date: 2010
Publisher: The University of Edinburgh
Abstract: The diverse functions of the MDM2 oncoprotein in growth control and tumourigenesis are managed through coordinated regulation of its discrete domains induced by both extrinsic and intrinsic stimuli. A picture of MDM2 is immerging where structurally discrete but interdependent functional domains are linked through changes in conformation. However compelling insights into how this process is carried out have been hindered by inadequate information on the structure and conformation of the full-length protein. The data presented indicates that the C-terminal RING domain of MDM2, primarily responsible of the E3 ubiquitin ligase activity of the protein, has other intriguing functions. The binding of ATP within the RING domain, triggers conformational changes of MDM2 and its main interaction partner – p53. This in effect promotes efficient binding of the p53 tumour suppressor to specific DNA promoter sequences. Moreover, results presented in this thesis demonstrate a novel role for the RING domain of MDM2 in determining the conformation and activity of its N-terminal hydrophobic cleft, the key target of anticancer drugs designed to activate the function of p53 tumour suppressor protein. Specific modulations within the RING domain, affecting Zinc coordination are synonymous with increased binding affinity of the hydrophobic pocket to the transactivation domain of p53 resulting in a gain of MDM2 transrepressor function thus leading to a decrease in p53-dependant gene expression. ThermoFluor measurements and size exclusion chromatography show that changes in the RING motif lack an effect on the overall integrity of the MDM2 protein. The intrinsic fluorescence measurements manifest that these changes generate long range conformational transitions that are transmitted through the core/central acidic domain of MDM2 resulting in allosteric regulation of the N-terminal hydrophobic pocket. Such RING generated conformational changes result in the relaxation of the hydrophobic pocket. Additionally, it is shown that the cooperation between the RING and the hydrophobic cleft in MDM2 has implications in the efficiency of binding of anticancer drugs such as Nutlin by MDM2. Cooperation between the RING and hydrophobic domain of MDM2 to regulate function demonstrates an allosteric relationship and highlights the need to study MDM2 in a native conformation. In essence the presented data demonstrates that the complex relationship between different domains of MDM2 can impact on the efficacy of anticancer drugs directed towards its hydrophobic pocket.
Keywords: MDM2
P53
allostery
URI: http://hdl.handle.net/1842/4507
Appears in Collections:Molecular, Genetic and Population Health Sciences thesis and dissertation collection

Items in ERA are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2013, and/or the original authors. Privacy and Cookies Policy