Information Services banner Edinburgh Research Archive The University of Edinburgh crest

Edinburgh Research Archive >
Chemistry, School of >
Chemistry thesis and dissertation collection >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1842/4359

This item has been viewed 42 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
published papers.zipFile not available for download5.6 MBAdobe PDF
word.zipFile not available for download27.52 MBMicrosoft Word
McBurney2009.pdfPhD thesis10.09 MBAdobe PDFView/Open
Title: Novel metal template strategies for the construction of rotaxanes and catenanes
Authors: McBurney, Roy T.
Supervisor(s): Leigh, Dave
Lusby, Paul
Issue Date: 2009
Publisher: The University of Edinburgh
Abstract: The template synthesis of rotaxanes and catenanes has allowed a detailed study of their intrinsically novel and interesting properties. A key strategy has been the deployment of transition metal ions with their well-defined coordination geometries allowing high-yielding and facile preparation of interlocked architectures. Knowledge of how to exploit the coordination sphere of metal ions and the design of ligands for the creation of intermediates that are pre-disposed to undergo ‘stoppering’ or ‘clipping’ has been a crucial requirement for this approach. This Thesis is in three parts describing the use of three dimensional, two dimensional and one dimensional coordination geometries in the synthesis of interlocked architectures. Firstly, the octahedral coordination geometry of cobalt(III) was utilized to organize dianionic pyridine-2,6-dicarboxamido ligands in a mutually orthogonal arrangement such that ring closing metathesis macrocyclizations gave access to interlocked or entwined products. A ‘figure-of-eight’ complex was obtained from a double macrocyclizations, whereas a catenate was accessed through a single macrocyclization. The topology of the isomers was proved by X-ray crystallography. An analogous [2]rotaxane was synthesized and the interlocked nature of the rotaxane demonstrated by 1H NMR spectroscopy and mass spectrometry. Secondly, an “active” metal template strategy, in which the metal ion plays a dual role – acting to both organize ligands and catalyze mechanical bond formation – allowed rotaxanes be constructed using the square planar coordination geometry and Lewis acidic nature of a palladium(II) complex. The interlocked nature of the rotaxane was proved by X-ray crystallography, demonstrating that a nitrile group present in the thread acted as a “station” for the Pd(II)-macrocycle. This observation led to the construction of a two “station” degenerate molecular shuttle in which the dynamics of translocation were controlled by reagent addition and observed by 1H NMR techniques. Lastly, the linear coordination geometry of gold(I) was successfully used as a template for construction of rotaxanes and catenanes via a ‘clipping’ strategy. The linear coordination geometry and the interlocked nature of the gold(I)-catenate was proved by X-ray crystallography, the rotaxane architecture was proved by 1H NMR spectroscopy and mass spectrometry. Chapters Two, Three and Four are in the form of articles that have been published in peer-reviewed journals, and are reproduced, in their published format, in the Appendix. No attempt has been made to rewrite the published work; as a consequence the numbering of compounds, whilst consistent within each Chapter, is not consistent throughout this Thesis. Another consequence is that the many failed synthetic routes have been left out. I hope the reader will forgive these omissions as well as the slight repetition that occurs in the introduction and bibliography of each chapter. Additionally, preceding each Chapter is a brief synopsis that places the work in context and acknowledges the contributions of my fellow researchers.
Keywords: dimensional coordination geometries
interlocked architectures
URI: http://hdl.handle.net/1842/4359
Appears in Collections:Chemistry thesis and dissertation collection

Items in ERA are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2013, and/or the original authors. Privacy and Cookies Policy