Information Services banner Edinburgh Research Archive The University of Edinburgh crest

Edinburgh Research Archive >
Biological Sciences, School of >
Biological Sciences thesis and dissertation collection >

Please use this identifier to cite or link to this item:

This item has been viewed 43 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
Marlow2009.pdf30.74 MBAdobe PDFView/Open
Title: Investigating bacterial factors important for the sinorhizobium meliloti-legume symbiosis
Authors: Marlow, Victoria L.
Supervisor(s): Ferguson, Gail
Issue Date: 2009
Publisher: The University of Edinburgh
Abstract: In both the legume symbiont Sinorhizobium meliloti and the mammalian pathogen Brucella abortus, the inner membrane BacA protein is essential for host persistence. In free-living S. meliloti and B. abortus loss of the BacA protein also results in an increased resistance to the glycopeptide bleomycin and a ~ 50% decrease in the lipopolysaccharide (LPS) very-long-chain-fatty-acid (VLCFA) content. Consequently, it was proposed that BacA may be involved in transport of peptides into the cell and/or that BacA may be involved in the VLCFA modification of the LPS. During this work it was determined that the increased resistance observed in an S. meliloti DbacA mutant to bleomycin and to the truncated eukaryotic peptide Bac7(1-16), is independent of the VLCFA modification. These data support a model for BacA having multiple non-overlapping functions. Using flow cytometry studies with fluorescently labelled forms of bleomycin and Bac7(1-16) it was found that the BacA protein plays a role in the uptake of bleomycin. However, BacA was shown to be essential for the uptake of Bac7(1-16). Additionally, it was determined that two symbiotically defective bacA site directed mutants with known reductions in their VLCFA could still take up Bac7, suggesting that the BacA function that leads to the VLCFA modification could also play a key role in host persistence. To investigate further the role of BacA in the VLCFA modification and where in the cell envelope the lipid A is modified with the VLCFA, the role of the putative lipid trafficking protein MsbA2 was investigated. Interestingly, it was discovered that S. meliloti lacking the MsbA2 protein, is unable to enter host cells and induces a plant defence response more characteristic of a pathogen. To investigate the importance of the VLCFA modification during the symbiosis S. meliloti mutants lacking either the AcpXL (VLCFA acyl carrier protein) or LpxXL (VLCFA acyl transferase protein) were characterized in the host. Although not essential for host persistence, loss of each of the proteins did result in distinct defects, suggesting the VLCFA modification is important during the symbiosis. Since there are hundreds of nodule specific cysteine-rich peptides produced by the host plant Medicago truncatula, the BacA mediated uptake of one of these peptides combined with the VLCFA modification may account for the essential role of the BacA protein in the legume symbiosis.
Sponsor(s): University of Edinburgh
Biotechnology and Biological Sciences Research Council (BBSRC)
Keywords: BacA protein
Appears in Collections:Biological Sciences thesis and dissertation collection

Items in ERA are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2013, and/or the original authors. Privacy and Cookies Policy