Information Services banner Edinburgh Research Archive The University of Edinburgh crest

Edinburgh Research Archive >
Molecular, Genetic and Population Health Sciences, School of >
Molecular, Genetic and Population Health Sciences thesis and dissertation collection >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1842/4287

This item has been viewed 13 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
Inglis2009.docFile not available for download34.41 MBMicrosoft Word
Inglis2009.pdfFile not available for download36.97 MBAdobe PDF
Title: Development of a freehand three-dimensional radial endoscopic ultrasonography system
Authors: Inglis, Scott
Supervisor(s): McDicken, W. Norman
Brash, Harry
Plevris, John N.
Issue Date: 2009
Publisher: The University of Edinburgh
Abstract: Oesophageal cancer is an aggressive malignancy with an overall five-year survival of 5-10% and two-thirds of patients have irresectable disease at diagnosis. Accurate staging of oesophageal cancer is important as survival closely correlates with the stage of the tumour, nodal involvement and presence of metastases (TNM staging). Endoscopic ultrasonography (EUS) is currently the most reliable modality for providing accurate T and N staging. Depending on findings of the staging, various treatment options including endoscopic, oncological, and surgical treatments may be performed. It was theorised that the development of three-dimensional radial endoscopic ultrasonography would reduce the operator dependence of EUS and provide accurate dimensional and volume measurements to aid planning and monitoring of treatment. This thesis investigates the development of a three dimensional endoscopic ultrasound technique that can be used with the radial echoendoscopes. Various agar-based tissue mimicking material (TMM) recipes were characterised using a scanning acoustic macroscope to obtain the acoustic properties of attenuation, backscatter and speed of sound. Using these results, a number of endoscopic ultrasound phantoms were developed for the in-vitro investigation and evaluation of 3D-EUS techniques. To increase my understanding of EUS equipment, the imaging and acoustic properties of the EUS endoscopes were characterised using a pipe phantom and a hydrophone. The dual ‘single element’ mechanical and ‘multi-element’ electronic echoendoscopes were investigated. Measured imaging properties included dead space, low contrast penetration, and pipe length. The measured acoustic properties included transmitted beam plots, active working frequency and peak pressures. Three-dimensional ultrasound techniques were developed for specific application to EUS. This included the study of positional monitoring systems, reconstruction algorithms and measurement techniques. A 3D-EUS system was developed using a Microscribe positional arm and frame grabber card, to acquire the 3D dataset. A Matlab 3D-EUS toolbox was written to reconstruct and analyse the volumes. The 3D-EUS systems were evaluated on the EUS phantom and in clinical cases. The usefulness of the 3D-EUS systems was evaluated in a cohort of patients, who were routinely investigated by conventional EUS for a variety of upper gastrointestinal pathology. 3D-EUS accurately staged early tumours and provided the necessary anatomical information to facilitate treatment. With regards to more advanced tumours, 3D-EUS was more accurate than EUS in T and N staging. 3D-EUS gave useful anatomical details in a variety of benign conditions such as varicies and GISTs.
Keywords: three-dimensional
3D
endoscopic ultrasound
EUS
radial
phantom
hydrophone
upper GI
oesophagus
cancer staging
endosonography
diagnostic imaging
URI: http://hdl.handle.net/1842/4287
Appears in Collections:Molecular, Genetic and Population Health Sciences thesis and dissertation collection

Items in ERA are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2013, and/or the original authors. Privacy and Cookies Policy