Information Services banner Edinburgh Research Archive The University of Edinburgh crest

Edinburgh Research Archive >
Biological Sciences, School of >
Biological Sciences thesis and dissertation collection >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1842/3974

This item has been viewed 47 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
Hsin2010.pdfPhD thesis32.61 MBAdobe PDFView/Open
Hsin2010.docFile not available for download67.79 MBMicrosoft Word
Title: Development and use of databases for ligand-protein interaction studies
Authors: Hsin, Kun-Yi
Supervisor(s): Walkinshaw, Malcolm
Taylor, Paul
Issue Date: 2010
Publisher: The University of Edinburgh
Abstract: This project applies structure-activity relationship (SAR), structure-based and database mining approaches to study ligand-protein interactions. To support these studies, we have developed a relational database system called EDinburgh University Ligand Selection System (EDULISS 2.0) which stores the structure-data files of +5.5 million commercially available small molecules (+4.0 million are recognised as unique) and over 1,500 various calculated molecular properties (descriptors) for each compound. A user-friendly web-based interface for EDULISS 2.0 has been established and is available at http://eduliss.bch.ed.ac.uk/. We have utilised PubChem bioassay data from an NMR based screen assay for a human FKBP12 protein (PubChem AID: 608). A prediction model using a Logistic Regression approach was constructed to relate the assay result with a series of molecular descriptors. The model reveals 38 descriptors which are found to be good predictors. These are mainly 3D-based descriptors, however, the presence of some predictive functional groups is also found to give a positive contribution to the binding interaction. The application of a neural network technique called Self Organising Maps (SOMs) succeeded in visualising the similarity of the PubChem compounds based on the 38 descriptors and clustering the 36 % of active compounds (16 out of 44) in a cluster and discriminating them from 95 % of inactive compounds. We have developed a molecular descriptor called the Atomic Characteristic Distance (ACD) to profile the distribution of specified atom types in a compound. ACD has been implemented as a pharmacophore searching tool within EDULISS 2.0. A structure-based screen succeeded in finding inhibitors for pyruvate kinase and the ligand-protein complexes have been successfully crystallised. This study also discusses the interaction of metal-binding sites in metalloproteins. We developed a database system and web-based interface to store and apply geometrical information of these metal sites. The programme is called MEtal Sites in Proteins at Edinburgh UniverSity (MESPEUS; http://eduliss.bch.ed.ac.uk/MESPEUS/). MESPEUS is an exceptionally versatile tool for the collation and abstraction of data on a wide range of structural questions. As an example we carried out a survey using this database indicating that the most common protein types which contain Mg-OATP-phosphate site are transferases and the most common pattern is linkage through the β- and γ-phosphate groups.
Keywords: ligand-protein interaction
drug discovery
metalloprotein
URI: http://hdl.handle.net/1842/3974
Appears in Collections:Biological Sciences thesis and dissertation collection

Items in ERA are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2013, and/or the original authors. Privacy and Cookies Policy