Show simple item record

dc.contributor.advisorMitchard, Edward
dc.contributor.advisorRyan, Casey
dc.contributor.authorNieto Quintano, Paula Adriana
dc.date.accessioned2019-08-07T12:10:20Z
dc.date.available2019-08-07T12:10:20Z
dc.date.issued2019-07-03
dc.identifier.urihttp://hdl.handle.net/1842/36002
dc.description.abstractSavannas are heterogeneous systems characterised by a high spatial and temporal variation in ecosystem structure. Savannas dominate the tropics, with important ecological functions, and play a prominent role in the global carbon cycle, in particular responsible for much of its inter-annual variability. They are shaped by resource availability, soil characteristics and disturbance events, particularly fire. Understanding and predicting the demographic structure and woody cover of savannas remains a challenge, as it is currently poorly understood due to the complex interactions and processes that determine them. A predictive understanding of savanna ecosystems is critical in the context of land use management and global change. Fire is an essential ecological disturbance in savannas, and forest-savanna mosaics are maintained by fire-mediated positive feedbacks. Over half of the world’s savannas are found in Africa, and over a quarter Africa’s surface burns every year, with fires occurring principally in the savanna biome. These have strong environmental and social impacts. Most fires in Africa are anthropogenic and occur during the late dry season, but their dynamics and effects remain understudied. The main objective of this research is to understand the floristic composition, carbon storage, woody cover and fire regime of the mesic savannas of the Bateke Plateau. The Bateke Plateau is savanna-forest mosaic ecosystem, situated mainly in the Republic of Congo, with sandy Kalahari soils and enough precipitation for potential forest establishment (1600 mm/yr). Despite occupying 89,800 km2, its ecology and ecosystem functions are poorly understood. This study combines two approaches: firstly experimental, setting up long term field experiments where the fire regime is manipulated, and then observational, using remote sensing to estimate the carbon storage and study the past history of the fire regime in the region. I established four large (25 ha) plots at two savanna sites, measured their carbon stocks, spatial structure and floristic composition, and applied different annual fire treatments (early and late dry season burns). These treatments were applied annually during 3 years (2015, 2016 and 2017), and the plots were re-measured every year to estimate tree demographic rates and the identification of the key processes that impact them, including fire and competition. Field data were combined with satellite radar data from ALOS PALSAR, and the fire products of the MODIS satellites, to estimate carbon stocks and fire regimes for the entire Bateke Plateau. I also analyse the underlying biophysical and anthropogenic processes that influence the patterns in Above-Ground Woody Biomass (AGWB) and their spatial variability in the Bateke landscape. The total plant carbon stocks (above-ground and below-ground) were low, averaging only 6.5 ± 0.3 MgC/ha, with grass representing over half the biomass. Soil organic matter dominate the ecosystem carbon stocks, with 16.7 ± 0.9 Mg/ha found in the top 20 cm alone. We identified 49 plant species (4 trees, 13 shrubs, 4 sedges, 17 forbs and 11 grass species), with a tree hyperdominance of Hymenocardia acida, and a richer herbaceous species composition. These savannas showed evidence of tree clustering, and also indications of tree-tree competition. Trees had low growth rates (averaging 1.21 mm/yr), and mortality was relatively low (3.24 %/yr) across all plots. The experiment showed that late dry season fires significantly reduced tree growth compared to early dry season fires, but also reduced stem mortality rates. Results show that these mesic savannas had very low tree biomass, with tree cover held far below its climate potential closed-canopy maximum, likely due to nutrient poor sandy soils and frequent fires. Results from the remote sensing analysis indicated that multiple explanatory variables had a significant effect on AGWB in the Bateke Plateau. Overall, the frequency of fire had the largest impact on AGWB (with higher fire frequency resulting in lower AGWB), with sand content the next most important explanatory variable (with more sand reducing AGWB). Fires in the Bateke are very frequent, and show high seasonality. The proportion of fires that occurred in the late dry season, though smaller predictor, was also more important than other factors (including soil carbon proportion, whether or not the savanna area was in a protected area, annual rainfall, or distance to the nearest town, river or road), with a larger proportion of late dry season fires associated with a small increase in AGWB. The results give pointers for management of the savannas of the Bateke Plateau, as well as improving our understanding of vegetation dynamics in this understudied ecosystem and help orient policy and conservation.en
dc.contributor.sponsorotheren
dc.language.isoenen
dc.publisherThe University of Edinburghen
dc.relation.hasversionNieto‐Quintano, P. , Mitchard, E. T., Odende, R. , Batsa Mouwembe, M. A., Rayden, T. and Ryan, C. M. (2018), The mesic savannas of the Bateke Plateau: carbon stocks and floristic composition. Biotropica, 50: 868-880. doi:10.1111/btp.12606en
dc.subjectsavanna woodlandsen
dc.subjectfireen
dc.subjectcarbon stocksen
dc.subjectBateke Plateauen
dc.titleAbove-ground carbon stocks, species diversity and fire dynamics in the Bateke Plateauen
dc.typeThesis or Dissertationen
dc.type.qualificationlevelDoctoralen
dc.type.qualificationnamePhD Doctor of Philosophyen
dc.rights.embargodate2020-07-03en
dcterms.accessRightsRestricted Accessen


Files in this item

This item appears in the following Collection(s)

Show simple item record