Information Services banner Edinburgh Research Archive The University of Edinburgh crest

Edinburgh Research Archive >
Biological Sciences, School of >
Biological Sciences thesis and dissertation collection >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1842/3489

This item has been viewed 11 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
Patel2008.pdfFile not available for download662.83 kBAdobe PDF
Patel2008.docFile not available for download1.63 MBMicrosoft Word
Title: Analysis of Myelin-Reactive T Lymphocyte Function in Models of Multiple Sclerosis
Authors: Patel, Sarju Dilipkumar
Supervisor(s): Anderton, Stephen
Issue Date: Nov-2008
Publisher: The University of Edinburgh
Abstract: Immune tolerance to self antigens prevents the onset of autoimmune diseases such as Multiple Sclerosis (MS). There are three branches of tolerance which allow the auto-aggressive potential of T lymphocytes to be limited; these are death, anergy-adaptation and regulation. The main body of this work attempts to clarify a role for adaptation in maintaining the sensitivity of the autoreactive T cell repertoire below a ‘threshold for harm’ in the mouse model of MS, experimental autoimmune encephalomyelitis (EAE). The well defined myelin basic protein (MBP) Ac1-9 epitope altered peptide ligand (APL) system has been used to develop a model allowing the examination of mechanisms underlying the adaptation of cells. Previous data showed immunisation with the 4Lys (wild-type) epitope mediated disease whereas a superagonist APL with a tyrosine substitution at position 4 (4Tyr) did not, despite showing potency in vitro. This was shown to be a result of both activation induced cell death and adaptation. Here an in vitro model was developed using MBP-reactive TCR transgenic cells to make predictions about the mechanisms underlying adaptation. These data lead to the conclusion that T cells can adapt (become less sensitive) either before or after encounter with the wild-type peptide, leading to a reversal of their pathogenic potential. The MBP APL system and MBP reactive transgenic cells were also used to assess the contribution of epitope spreading in a relapsing-remitting (RR) model of EAE induced with proteolipid protein. The cells were tracked and changes in phenotype and behaviour were monitored. The data show that disease induced with one antigen can be manipulated with cells relevant to a different antigen and that bystander suppression may be an effective weapon in controlling the progression to RR-EAE.
Sponsor(s): Multiple Sclerosis Society
Keywords: EAE
adaptive tolerance
byatander suppression
epitope spreading
Multiple sclerosis
URI: http://hdl.handle.net/1842/3489
Appears in Collections:Biological Sciences thesis and dissertation collection

Items in ERA are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2013, and/or the original authors. Privacy and Cookies Policy