Show simple item record

dc.contributor.advisorShaver, Michael
dc.contributor.advisorThomas, Stephen
dc.contributor.advisorLove, Jason
dc.contributor.authorZhu, Kailong
dc.date.accessioned2018-02-12T14:21:14Z
dc.date.available2018-02-12T14:21:14Z
dc.date.issued2017-07-07
dc.identifier.urihttp://hdl.handle.net/1842/28732
dc.description.abstractIron-catalysed carbonyl reduction, nitro reduction, formal hydroamination, and the radical alkenylation of alkyl halides have been developed. A Simple, easy-to-make, air- and moisture-stable iron(III) amine-bis(phenolate) complex catalysed the hydrosilylation of carbonyl compounds efficiently using triethoxysilane as the reducing agent. The reaction tolerated a wide range of substrates to give the corresponding alcohol products in good to excellent yields after hydrolysis of the hydrosilylated products (Scheme A1). Scheme A1. Iron-Catalysed Hydrosilylation of Carbonyl Compounds. The same catalyst was also an active catalyst for the chemoselective reduction of nitro arenes into corresponding amines using triethoxysilane as reducing agent. The method exhibited excellent chemoselectivity as other reducible functional groups such as halogen, ester, nitrile all kept unchanged during the reaction. This catalytic system was then successfully applied to the formal hydroamination of alkene to give substituted amine in synthetic useful yields under mild condition. The reaction is hypothesised to proceed through a radical intermediate (Scheme A2). Scheme A2. Iron-Catalysed Nitro Reduction and Alkene Formal Hydroamination. Finally, FeCl2-catalysed formal Heck cross-coupling has been developed between alkyl halides and styrenes. The reaction tolerated both electron-rich and electron-neutral substrates to give the products in moderate to excellent yields. Initial studies revealed that the reaction also proceeds through a radical intermediate (Scheme A3). Scheme A3. Iron-Catalysed Formal Heck Cross-Coupling of Functionalised Alkyl Halides.en
dc.contributor.sponsorotheren
dc.language.isoenen
dc.publisherThe University of Edinburghen
dc.relation.hasversionStable and Easily Handle Fe(III) Catalysts for Hydrosilylation of Ketones and Aldehydes. Zhu, K.; Shaver, M. P.; Thomas, S. P. Eur. J. Org. Chem. 2015, 2119.en
dc.relation.hasversionChemoselective Nitro Reduction and Hydroamination Using A Single Iron Catalyst. Zhu, K.; Shaver, M. P.; Thomas, S. P. Chem. Sci. 2016, 7, 3031.en
dc.relation.hasversionAmine-bis(phenolate) Iron(III)-Catalyzed Formal Hydroaminations of Olefins. Zhu, K.; Shaver, M. P.; Thomas, S. P. Chem. Asian. J. 2016, 11, 977.en
dc.subjectiron catalysisen
dc.subjectcarbonylen
dc.subjectnitro compoundsen
dc.subjecthydrosilylationen
dc.subjectradicalen
dc.titleIron-catalysed hydride and radical transfer reactionsen
dc.typeThesis or Dissertationen
dc.type.qualificationlevelDoctoralen
dc.type.qualificationnamePhD Doctor of Philosophyen
dc.rights.embargodate2100-12-31en
dcterms.accessRightsRestricted Accessen


Files in this item

This item appears in the following Collection(s)

Show simple item record