Show simple item record

dc.contributor.advisorClegg, Paul S
dc.contributor.advisorPoon, Wilson
dc.contributor.authorHerzig, Eva M
dc.date.accessioned2008-11-27T15:37:52Z
dc.date.available2008-11-27T15:37:52Z
dc.date.issued2008
dc.identifier.urihttp://hdl.handle.net/1842/2580
dc.description.abstractComposite materials generally consist of different components which individually exhibit an entirely different material behaviour than within the composite. Here, two immiscible liquids are stabilised with solid particles forming liquid-liquid emulsions. Solid stabilised emulsions, also known as Pickering emulsions, have been thoroughly studied and find application in many industrial sectors. In these emulsions one liquid is generally suspended within the other in the form of droplets. Inspired by computer simulations, it should be possible to create a bicontinuous network of two immiscible liquids also stabilised with jammed particles. This will result in an attractive new material which could find possible industrial applications, for example as microreactors. This potential bicontinuous, interfacially jammed emulsion gel was dubbed bijel. Drawing together knowledge from different disciplines this thesis presents an experimental route to bijel formation. Accessing a certain type of phase separation called spinodal decomposition can be used to create a convoluted arrangement of bicontinuous interfaces. Liquid-liquid interfaces can be stabilised by exploiting the fact that solid particles can be irreversibly trapped at liquidliquid interfaces. Once trapped, the presence of the particles demands a minimum interfacial area between the two liquids. If the particles are jammed against each other this will result in the stabilisation of the liquid-liquid interfaces. To stabilise convoluted, bicontinuous interfaces in this way one type of particles must be able to concurrently stabilise two types of curvatures. Over the last three years it has been shown by several different research groups that this is possible. This thesis examines different types of temperature and pressure quenches on binary liquid systems to reach spinodal decomposition in the presence of particles. At the same time the ability of the particles to collect on the interfaces created during such phase separations is tested. It is found that temperature quenches through the critical point can lead to reproducible bijel formation resulting in the first experimental presentation of bijels. Using confocal microscopy the bijel formation process is studied in detail and properties of this new material are examined. To obtain insight into the behaviour of slowly ageing soft materials xray photon correlation spectroscopy is separately carried out on droplet emulsions.en
dc.format.extent6986720 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.subjectPhysicsen
dc.subjectBijelen
dc.subjectliquid-liquid interfaceen
dc.titleBijel - a novel composite material from colloids on liquid-liquid interfacesen
dc.typeThesis or Dissertationen
dc.type.qualificationlevelDoctoralen
dc.type.qualificationnamePhD Doctor of Philosophyen


Files in this item

This item appears in the following Collection(s)

Show simple item record