Show simple item record

dc.contributor.authorRanicki, Andrew
dc.contributor.authorPajitnov, Andrei
dc.coverage.spatial36en
dc.date.accessioned2003-12-01T15:19:50Z
dc.date.available2003-12-01T15:19:50Z
dc.date.issued2000
dc.identifier.citationK-Theory 21 (2000) 325-365en
dc.identifier.urihttp://hdl.handle.net/1842/252
dc.description.abstractThe Bass-Heller-Swan-Farrell-Hsiang-Siebenmann decomposition of the Whitehead group $K_1(A_{\rho}[z,z^{-1}])$ of a twisted Laurent polynomial extension $A_{\rho}[z,z^{-1}]$ of a ring $A$ is generalized to a decomposition of the Whitehead group $K_1(A_{\rho}((z)))$ of a twisted Novikov ring of power series $A_{\rho}((z))=A_{\rho}[[z]][z^{-1}]$. The decomposition involves a summand $W_1(A,\rho)$ which is an abelian quotient of the multiplicative group $W(A,\rho)$ of Witt vectors $1+a_1z+a_2z^2+... \in A_{\rho}[[z]]$. An example is constructed to show that in general the natural surjection $W(A,\rho)^{ab} \to W_1(A,\rho)$ is not an isomorphism.en
dc.format.extent286986 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.publisherhttp://arxiv.org/pdf/math.AT/0012031en
dc.titleTHE WHITEHEAD GROUP OF THE NOVIKOV RINGen
dc.typePreprinten


Files in this item

This item appears in the following Collection(s)

Show simple item record