Information Services banner Edinburgh Research Archive The University of Edinburgh crest

Edinburgh Research Archive >
Engineering, School of >
BRE Centre for Fire Safety Engineering >
BRE Research Publications >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1842/1990

This item has been viewed 37 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
Liang&Welch_geniSTELA_validation_FEH5.pdf570.5 kBAdobe PDFView/Open
Title: Development and validation of a generalised engineering methodology for thermal analysis of structural members in fire
Authors: Liang, Hong
Welch, Stephen
Stratford, Tim J
Kinsella, Emmett V
Issue Date: Apr-2007
Abstract: A novel methodology for generalising CFD-based approaches for thermal analysis of protected steelwork in fire has been developed, known as GeniSTELA. This is a quasi-3D approach with computation of a "steel temperature field" parameter in each computational cell. The methodology accommodates both uncertainties in the input parameters and possible variants to the specification by means of parallel calculations. A framework for the inclusion of temperature/time-dependent thermal properties, including the effects of moisture and intumescence, has been established. Indicative values of intumescent material properties have been obtained by means of cone calorimeter testing. These are dependent on initial thickness and exposure heat flux. GeniSTELA has been implemented as a submodel within the SOFIE RANS CFD code. The model is validated against measurements from the BRE large compartment fire tests, which involved well-instrumented post-flashover fires in a 12 x 12m compartment, including steel indicatives with and without protection. Sensitivity studies reveal the expected strong dependencies on structural member specification and properties of protection materials. The computational requirements are addressed, considering aspects such as the number of simultaneous cases and frequency of GeniSTELA call, in order to achieve a reasonable balance between fluid and solid-phase analyses. It is established that the model can be a practical tool, performing c. 10-100 simultaneous thermal calculations before becoming dominant. These steel temperature field predictions provided by GeniSTELA can provide far more flexibility in assessing the thermal response of structures to fire than is available via existing methods.
Description: Presented at 5th International Seminar on Fire & Explosion Hazards, Edinburgh 23-27 April 2007
Keywords: Fire safety engineering
Numerical Modelling
Thermal Analysis
Heat Transfer
Protected Steel
URI: http://hdl.handle.net/1842/1990
Appears in Collections:BRE Research Publications

This item is licensed under a Creative Commons License
Creative Commons

Items in ERA are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2013, and/or the original authors. Privacy and Cookies Policy