Show simple item record

dc.contributor.advisorArslan, Tughrul
dc.contributor.advisorThompson, John
dc.contributor.authorAlshami, Mohamed Hassan Ahmed
dc.date.accessioned2016-09-12T10:44:30Z
dc.date.available2016-09-12T10:44:30Z
dc.date.issued2014-06-30
dc.identifier.urihttp://hdl.handle.net/1842/16465
dc.description.abstractStrong demand for wireless communications encourages academic research centres and industrial electronics and communication companies to keep improving the performance, increase the speed, extend the coverage area and enlarge the baud rate and capacity. LTE (Long Term Evolution) and WiMAX (the Worldwide Interoperability Microwave Access) are recent solutions for most wireless technologies. LTE and WiMAX coverage range are one of the important factors that affect the quality of broadband access services and mobile cellular systems in wireless communication. Predicting and evaluating the path loss is essential in planning and designing cellular mobile systems. This thesis presents a comprehensive study of path loss on LTE and mobile WiMAX to achieve large throughputs and wide coverage at the Cell-edge. The thesis introduces, analyzes and compares the path loss values, based on LTE and WiMAX standard at one carrier frequency, namely 3.5GHz and a variation of distances in the range of 1 to 50 km, in flat rural, suburban and urban environments. The thesis discusses and implements the Okumura, Hata, Cost-231, Ericsson, Erceg, Walfish, Ecc-33, Lee and the simplified free space path loss models. The objectives of path loss evaluation results are to calculate the link budget, the power outage and the base station cell coverage area for mobile cellular systems. A femtocell (FMC) is a low cost low power cellular home base station, operating in licensed spectrum. Because of the requirement for high data rates and improved coverage indoors, FMC provides a solution to these requirements. FMC is deployed mainly indoors and sometimes outdoors at the cell-edge to increase the area of coverage, capacity and in order to enhance the received signal in the user’s premises. The thesis presents the interference, SINR and the probability of connection for the downlink with different numbers of FMCs based on LTE and WiMAX OFDMA. Moreover, comparisons of interference, SINR and probability of connection for three different numbers of FMCs and for three different indoor areas are presented. In addition, a comparison for the probability of connection with various threshold values and numbers of FMCs is simulated and presented in 3-D. The probability of connection for a varied number of FMCs is a guide study to find the appropriate number of FMCs that could serve a specific indoor area and the proper number of UEs in the specified area. The thesis also presents the interference, SINR and the probability of connection at the uplink for a user equipment device (UE) to an FMC with varied number of UEs based on LTE and WiMAX OFDMA. Moreover, comparisons of the interference, SINR and probability of connection for three different areas at the uplink are presented. Therefore, analyzing probability of connection with varied number of UEs is a worthy study in order to identify the appropriate number of UEs that could be served by a specific number of FMCs at a specific indoor location. The thesis presents and investigates the capacity of MIMO with the presence of FMCs to perform cancellation of co-channel interference. The research introduces algorithms to calculate the capacity of MIMO with the presence of FMCs by two models. The simulation results show that the capacity equations of model-2 give better results than the capacity equations of model-1. Therefore, model-2 is used for the interference cancellation of MIMO in the presence of MIMO. Interference cancellation is performed at the downlink when the signal is transmitted from FMC to UE by mitigating and cancelling the interference which comes from the neighbouring FMCs to the target UE. The thesis introduces, explains and applies a novel algorithm to calculate the capacity of MIMO at the presence of FMCs with interference cancellation by these channel equalizers ZF, MMSE, VBLAST ZF, VBLAST MMSE and VBLAST OFDM MMSE.en
dc.contributor.sponsorotheren
dc.language.isoenen
dc.publisherThe University of Edinburghen
dc.relation.hasversionM. H. Alshami, T. Arslan, J. Thompson, and A. Erdogan, “Evaluation of Path Loss Models at WiMAX Celledge”, IEEE 4th IFIP International Conference on New Technologies, Mobility and Security (NTMS ‘11), pp. 1-5, Feb 2011.en
dc.relation.hasversionM. H. Alshami, T. Arslan, J. Thompson, and A. Erdogan, “Frequency Analysis of Path Loss Models on WiMAX ”, IEEE 3rd Computer science and Electronic Engineering Conference (CEEC ‘11), pp. 1-6, Jul 2011.en
dc.relation.hasversionM. H. Alshami, T. Arslan, and J. Thompson, “Femtocell Interference and Probability of Connection in different Areas and Various threshold Values at Downlink”, International Journal of Computing and Digital Systems (IJCDS), 1st Jan 2014.en
dc.relation.hasversionM. H. Alshami, T. Arslan, and J. Thompson, “Femtocell Interference, SINR and the Probability of Connection at Downlink”, International Journal of Computing and Digital Systems (IJCDS), 1st May 2014.en
dc.subjectpath lossen
dc.subjectfemtocellen
dc.subjectSINRen
dc.subjectprobability of connectionen
dc.subjectdownlinken
dc.subjectinterferenceen
dc.titleNovel techniques to enhance LTE and WiMAX throughput indoors and at the cell-edge for femtocells using MIMOen
dc.typeThesis or Dissertationen
dc.type.qualificationlevelDoctoralen
dc.type.qualificationnamePhD Doctor of Philosophyen
dc.rights.embargodate2100-12-31en
dcterms.accessRightsRestricted Accessen


Files in this item

This item appears in the following Collection(s)

Show simple item record