Information Services banner Edinburgh Research Archive The University of Edinburgh crest

Edinburgh Research Archive >
Centre for Speech Technology Research >
CSTR publications >

Please use this identifier to cite or link to this item:

This item has been viewed 40 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
csl99-preprint.pdf222.78 kBAdobe PDFView/Open kBGzipped PostscriptView/Open
Title: Confidence measures from local posterior probability estimates
Authors: Williams, Gethin
Renals, Steve
Issue Date: 1999
Citation: Computer Speech and Language, 13:395-411, 1999.
Publisher: Elsevier
Abstract: In this paper we introduce a set of related confidence measures for large vocabulary continuous speech recognition (LVCSR) based on local phone posterior probability estimates output by an acceptor HMM acoustic model. In addition to their computational efficiency, these confidence measures are attractive as they may be applied at the state-, phone-, word- or utterance-levels, potentially enabling discrimination between different causes of low confidence recognizer output, such as unclear acoustics or mismatched pronunciation models. We have evaluated these confidence measures for utterance verification using a number of different metrics. Experiments reveal several trends in `profitability of rejection', as measured by the unconditional error rate of a hypothesis test. These trends suggest that crude pronunciation models can mask the relatively subtle reductions in confidence caused by out-of-vocabulary (OOV) words and disfluencies, but not the gross model mismatches elicited by non-speech sounds. The observation that a purely acoustic confidence measure can provide improved performance over a measure based upon both acoustic and language model information for data drawn from the Broadcast News corpus, but not for data drawn from the North American Business News corpus suggests that the quality of model fit offered by a trigram language model is reduced for Broadcast News data. We also argue that acoustic confidence measures may be used to inform the search for improved pronunciation models.
Appears in Collections:CSTR publications

Items in ERA are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2013, and/or the original authors. Privacy and Cookies Policy