This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use:

- This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated.
- A copy can be downloaded for personal non-commercial research or study, without prior permission or charge.
- This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author.
- The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author.
- When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given.
The Role of C-Terminal Phosphorylation in the Regulation of the Tumour Suppressor IRF-1

Fiona M. M. Russell

Thesis submitted for the degree of Doctor of Philosophy of the University of Edinburgh

August 2012
Declaration

I hereby certify that this thesis has been written by me, is the record of original research carried out by me and has not been submitted (in part or in whole) in application for any other degree or qualification.

Fiona Russell

Date:
Acknowledgements

This thesis would not have been possible without a number of people. First, many thanks to Kathryn for being an excellent supervisor who gave much guidance and support while still allowing me to choose the path the project took.

Thanks also to all members of the Hupp and Ball labs - past and current - for creating such a friendly place to work, and for the tradition of cakes. Particular thanks are due to Vikram for always knowing the answer to technical questions, and for his meticulous proof-reading of this thesis.

Finally, thanks to my family and friends, and especially Alex, for being there with constant encouragement, cups of tea and occasional escapes to the lochs and mountains.
Abstract

The transcription factor Interferon Regulatory Factor-1 (IRF-1) has been demonstrated to suppress tumour growth through the regulation of many anti-oncogenic genes. Pro- and anti-apoptotic factors, cell cycle control genes, DNA damage response genes and pro-metastatic factors are all under the control of IRF-1, which effects both transcriptional activation and repression. In addition to these cell autonomous tumour suppressor activities, IRF-1 is also a key regulator of the immune system and, as such, mediates immune surveillance of tumours. Numerous studies have confirmed that loss or mis-regulation of IRF-1 is a key factor in several different types of cancer.

Despite strong evidence for the crucial role of IRF-1 in cancer, and frequent assertions that this protein warrants further investigation as a drug target, very little is known about its regulation. Furthermore, since recent studies have linked upregulation of IRF-1 to the development of autoimmune diseases, it is particularly important that drugs be able to decouple autoimmune and anti-cancer functions of IRF-1 to avoid harmful side effects.

This thesis describes how phosphorylation of IRF-1 in its regulatory C-terminal Mf1 domain modulates transactivatory and tumour suppressor activity. Phosphospecific antibodies were developed as tools to study the C-terminal phosphorylation. Using these, it was shown that treatment of cells with Interferon-γ (IFN-γ) not only causes accumulation of IRF-1 protein, but also results in phosphorylation of IRF-1 at two sites in the C-terminal Mf1 domain.

Phosphomimetic mutants demonstrated that these phosphorylations enhanced the transactivatory activity of IRF-1 at various promoters, but did not affect repressor activity. Gel shift assays revealed that dual phosphorylation of IRF-1 (IRF-1 D/D) promoted DNA-binding and suggested this was through increased interaction with the cofactor/histone acetylase p300 which induces a conformational change in IRF-1, favouring DNA-binding. Acetylation by p300 appears to be important although it is not yet clear whether this directly or indirectly affects IRF-1 activity.

Since the tumour suppressor activity of IRF-1 is of particular interest, the effect of phosphorylation was examined in clonogenic and invasion assays. IRF-1 D/D more efficiently suppressed colony formation in both anchorage dependent and independent assays, and may improve inhibition of invasion in Transwell assays. Thus, cell treatment with the therapeutic agent IFN-γ induces phosphorylation of IRF-1, resulting in enhanced DNA binding of IRF-1 through improved p300 binding. In cells the outcome is more effective tumour suppression and inhibition of metastasis.
Abbreviations

aa Amino acids
APS Ammonium Persulphate
ATP Adenosine Triphosphate
BSA Bovine Serum Antigen
dNTPs deoxyribonucleotide triphosphates
DMSO Dimethyl sulphoxide
DNA Deoxyribonucleic acid
DTT Dithiothreitol
ECL Enhanced chemiluminescence
EDTA Ethylenediaminetetraacetic acid
ELISA Enzyme-linked immunosorbant assay
EMSA Electromobility shift assay
FBS Foetal bovine serum
GST Glutathione S-transferase
HEPES 4-(2-hydrorxyethyl)-1-piperazineethanesulphonic acid
IEF Isoelectric Focusing
IPG Immobilised pH gradient
IRF Interferon Regulatory Factor
LB Luria Bertani
MOPS 3-(N-morpholino)propanesulfonic acid
OD$_{600}$ Optical Density (Absorbance) at 600nm
PBS Phosphate Buffered Saline
PCR Polymerase Chain Reaction
P/S Penicillin/Streptomycin
RCF Relative centrifugal force
rpm Revolutions per minute
SDS-PAGE Sodium dodecyl sulphate-polyacrylamide gel electrophoresis
TBE Tris-borate-EDTA buffer
Tris 2-amino-2-hydroxymethyl-propane-1,3-diol
Contents

Declaration i
Acknowledgements ii
Abstract iii
Abbreviations iv
Contents v
List of Figures x

1 Introduction 1
 1.1 IRF-1 .. 1
 1.2 IRF-1 in cancer .. 2
 1.3 IRF-1 as a tumour suppressor 2
 1.4 Mechanisms of tumour suppression by IRF-1 3
 1.4.1 Apoptosis and Autophagy 3
 1.4.2 Cell Cycle Arrest 9
 1.4.3 DNA Damage Response 11
 1.4.4 Inhibition of Metastasis 12
 1.4.5 Immune Surveillance 13
 1.5 Regulation of IRF-1 14
 1.5.1 Regulation at the Promoter Level 14
1.5.2 Post-translational regulation 16
1.5.3 Co-factor Binding ... 19
1.5.4 Regulation by Other Factors 20
1.6 IRF-1 Structure and Function 21

2 Materials and Methods .. 26
2.1 Chemicals and Reagents 26
2.2 Antibodies .. 26
2.3 DNA constructs ... 27
2.4 Cloning .. 28
2.4.1 Site Directed Mutagenesis 28
2.4.2 Heatshock Transformation 30
2.4.3 Generation of Competent Cells: Heatshock Method 30
2.4.4 DNA preparation .. 31
2.4.5 Sequencing Reaction 31
2.5 Protein Expression and Purification 34
2.5.1 In vitro Protein Expression using TNT-coupled lysate systems 34
2.5.2 In vitro Protein Expression and Purification using the E. Coli-based PURExpress in vitro protein synthesis kit (NEB) 34
2.5.3 E. Coli Protein Expression and Purification 34
2.6 Protein Quantification .. 39
2.7 SDS-PAGE ... 40
2.8 Visualisation of Proteins 41
2.8.1 Coomassie staining 41
2.8.2 Western Blotting .. 42
2.9 Cell lines and cell culture 43
2.9.1 Sub-culturing .. 43
2.9.2 Long-term storage 43
2.9.3 Transient Transfection 44
2.10 Cell Treatments ... 44
 2.10.1 Cell Lysis ... 44
2.11 Kinase Assay .. 45
 2.11.1 Kinase assays using cell lysate 45
 2.11.2 Kinase assays using purified kinase 46
2.12 Ammonium Sulphate Precipitation 47
2.13 Anion Exchange Chromatography 48
2.14 Acetone Precipitation 49
2.15 2D Gel Electrophoresis 49
 2.15.1 Sample Preparation 49
 2.15.2 First dimension: Isoelectric Focusing (IEF) 49
 2.15.3 Second dimension: SDS-PAGE 50
2.16 Phosphatase Treatment 51
2.17 Dual Luciferase Reporter Assays 52
2.18 Geneticin Dose-Response Curves 53
2.19 Clonogenic Assays .. 53
 2.19.1 Anchorage-dependent Colony Formation Assay 53
 2.19.2 Anchorage-independent Colony Formation Assay 53
2.20 Protein Half Life Determination 54
2.21 Inverse Invasion Assays 54
 2.21.1 Setting up Transwells 54
 2.21.2 Staining Cells ... 54
 2.21.3 Visualising and Quantifying Invasion 55
2.22 Cell Cycle Analysis .. 55
2.23 Senescence Assay ... 55
2.24 Adhesion Assay .. 56
2.25 Polyclonal Antibody Production and Purification 56
 2.25.1 Purification against non-phosphorylated peptide 56
 2.25.2 Purification against phosphorylated peptide 57
2.26 ELISA (Enzyme-linked immunosorbant assay) 58
2.27 EMSA (electrophoretic mobility shift assay) 58
 2.27.1 Probe Sequences ... 58
 2.27.2 Probe Labelling ... 59
 2.27.3 Binding and Visualisation 59
 2.27.4 Acetylation Reaction 60
 2.27.5 Statistical Analysis 61

3 Development of Tools to Study the C-terminal Phosphorylation of IRF-1 62
 3.1 Introduction ... 62
 3.1.1 Purification of recombinant IRF-1 63
 3.2 IRF-1 as a Kinase Substrate 64
 3.2.1 Cellular Kinases .. 64
 3.2.2 Purified Kinases ... 67
 3.3 Phosphospecific Antibodies 70
 3.3.1 Antibody design ... 70
 3.3.2 Antibody production and purification 70
 3.3.3 Validation of Antibodies 72
 3.3.4 Discovery of Stimulus-Specific Phosphorylation of IRF-1 Using Antibodies ... 77
 3.4 Creation and Expression of Phosphomimetic and Non-Phosphorylatable Mutants ... 80
 3.4.1 Half Lives of Phosphomutants 82
 3.5 Discussion .. 84

4 Effects of C-terminal phosphorylation of IRF-1 on transcriptional activity 91
 4.1 Activity of Phosphomimetic Mutants in Reporter Assays 91
 4.1.1 Introduction ... 91
 4.1.2 Comparison of Transactivatory Potential of Phosphomimetic Mutants ... 92
4.1.3 Activity at naturally occurring promoters 94
4.1.4 Repression of IRF-1 WT and T311D/S317D by IRF-2 101
4.2 Effect of phosphomimetic mutations on the DNA-binding capacity of IRF-1 ... 101
 4.2.1 Introduction .. 101
 4.2.2 Relative binding affinities .. 103
 4.2.3 Mechanism of DNA Binding ... 105
 4.2.4 Effect of p300 on IRF-1 DNA binding 113
 4.2.5 Comparison of IRF-1 Binding at Naturally Occurring Promoters 113
 4.2.6 Insights into IRF-1 DNA Binding from Antibody Supershift ... 115
4.3 Discussion ... 118

5 Effects of C-terminal phosphorylation of IRF-1 on tumour suppressor activity 125
 5.1 Anchorage-dependent Colony Formation Assays and Cell Adhesion Assays 125
 5.2 Anchorage-independent Colony Formation Assays 130
 5.3 Proliferation, Cell Cycle Arrest and Senescence 135
 5.3.1 Proliferation ... 135
 5.3.2 Cell Cycle Arrest .. 135
 5.3.3 Senescence ... 137
 5.4 Inverse Invasion Assays ... 137
 5.5 Discussion .. 142

6 Discussion and Future Directions .. 145

Bibliography .. 159
List of Figures

1.1 IRF-1 regulates gene expression of proteins involved in all aspects of anti-oncogenesis. .. 4
1.2 IRF-1 regulates the intrinsic and extrinsic pathways of apoptosis. 5
1.3 IRF-1 is transcriptionally upregulated by a wide variety of stimuli. 15
1.4 IRF-1 is a phosphoprotein. .. 18
1.5 Various mechanisms exist to regulate promoter selection of IRF-1. 20
1.6 Domain organisation of IRF-1. 21
1.7 A single point mutation of the last residue (P325) of IRF-1 increases both turnover and activity of the protein. 23
1.8 Intracellular nanobodies to IRF-1 C-terminus can activate IRF-1 without altering protein levels. 25

3.1 Purification scheme for His-IRF-1 65
3.2 IRF-1 is phosphorylated by cellular kinases in vitro. 66
3.3 IRF-1 is a substrate for purified kinases Chk1 and AMPK. 69
3.4 Modular structure of IRF-1 .. 71
3.5 Phosphospecific antibody preparation. 73
3.6 Antibody purification technique produces highly pure antibody and greatly enhances substrate specificity. 74
3.7 Anti-p311T and anti-p317S are specific for their cognate phosphopeptide. 76
3.8 Recognition of Chk1 phosphorylated protein by phosphospecific antibodies. 78
3.9 Signal specific phosphorylation of IRF-1. 79
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.10</td>
<td>2D gel analysis of IRF-1: Effect of IFN-γ treatment.</td>
<td>81</td>
</tr>
<tr>
<td>3.11</td>
<td>Phosphomimetic and non-phosphorylatable mutants of IRF-1.</td>
<td>83</td>
</tr>
<tr>
<td>3.12</td>
<td>Effects of mutations on half life of IRF-1.</td>
<td>85</td>
</tr>
<tr>
<td>3.13</td>
<td>Predicted phosphorylation sites of IRF-1.</td>
<td>86</td>
</tr>
<tr>
<td>3.14</td>
<td>IFN-γ activates IRF-1 and protein kinases.</td>
<td>88</td>
</tr>
<tr>
<td>4.1</td>
<td>Verification of IRF-E promoter.</td>
<td>93</td>
</tr>
<tr>
<td>4.2</td>
<td>Phosphomimetic mutations of IRF-1 enhance transcriptional activity at the IRF-E promoter in a DNA-binding-dependent manner.</td>
<td>95</td>
</tr>
<tr>
<td>4.3</td>
<td>Activity of phosphomimetic and non-phosphorylatable mutants may be cell line dependent.</td>
<td>96</td>
</tr>
<tr>
<td>4.4</td>
<td>Activity at naturally occurring IRF-1 activated promoters.</td>
<td>98</td>
</tr>
<tr>
<td>4.5</td>
<td>Activity at naturally occurring IRF-1 repressed promoters.</td>
<td>100</td>
</tr>
<tr>
<td>4.6</td>
<td>Inhibition of IRF-1 WT and T311D/S317D by IRF-2.</td>
<td>102</td>
</tr>
<tr>
<td>4.7</td>
<td>Comparison of IRF-1 mutants binding to C1 promoter.</td>
<td>104</td>
</tr>
<tr>
<td>4.8</td>
<td>Four potential mechanisms of enhanced IRF-1 T311D/S317D DNA binding compared to IRF-1 WT.</td>
<td>106</td>
</tr>
<tr>
<td>4.9</td>
<td>Mechanism of IRF-1 T311D/S317D enhanced DNA binding: Peptide competition EMSA.</td>
<td>110</td>
</tr>
<tr>
<td>4.10</td>
<td>Mechanism of IRF-1 T311D/S317D enhanced DNA binding: Direct or indirect conformational change.</td>
<td>112</td>
</tr>
<tr>
<td>4.11</td>
<td>Effect of p300 on IRF-1 DNA binding.</td>
<td>114</td>
</tr>
<tr>
<td>4.12</td>
<td>Comparison of IRF-1 binding at naturally occurring promoters.</td>
<td>116</td>
</tr>
<tr>
<td>4.13</td>
<td>Investigating the doublet of DNA-bound IRF-1 appearing after supershift.</td>
<td>117</td>
</tr>
<tr>
<td>4.14</td>
<td>C-terminal phosphorylation of IRF-1 enhances p300 binding in vitro.</td>
<td>121</td>
</tr>
<tr>
<td>5.1</td>
<td>Kill curves to determine optimum geneticin concentration for H1299 and A375 cell colony formation assays.</td>
<td>127</td>
</tr>
<tr>
<td>5.2</td>
<td>Effect of IRF-1 on anchorage dependent colony formation for H1299 cells.</td>
<td>128</td>
</tr>
<tr>
<td>5.3</td>
<td>Effect of IRF-1 on anchorage dependent colony formation for A375 cells.</td>
<td>129</td>
</tr>
</tbody>
</table>
5.4 Effect of IRF-1 on cell-substrate adhesion 131
5.5 Effect of IRF-1 on anchorage independent colony formation in HeLa cells. 133
5.6 Effect of IRF-1 on anchorage independent colony formation in A375 cells. 134
5.7 Effect of IRF-1 WT and T311D/S317D on cell proliferation. 136
5.8 Effect of IRF-1 WT and T311D/S317D on cell cycle arrest. 138
5.9 Effect of IRF-1 WT and T311D/S317D on senescence. 139
5.10 Effect of IRF-1 on invasion through matrigel 141

6.1 Predicted phosphorylation of IRF-1 in response to TLR9 activation. ... 147
6.2 IRF-1 phosphorylation inhibits Hsp70, Hsc70 and Hsp90 binding. 151
6.3 Experimental design for determining if Hsp90 recruits a kinase to IRF-1. 153
6.4 Model for mechanism of enhanced transcriptional activity of IRF-1 after IFN-γ treatment. .. 155
Chapter 1

Introduction

1.1 IRF-1

Interferon Regulatory Factor-1 (IRF-1) is a transcription factor that acts as a tumour suppressor through the regulation of genes in many anti-oncogenic pathways. Although much is known about the function of IRF-1, very little is known about its post-translational regulation. This thesis describes how phosphorylation of IRF-1 regulates its transactivatory activity and presents evidence that phosphorylation enhances IRF-1’s tumour suppressor function.

IRF-1 was first identified as an inducer of the interferon-β (IFN-β) gene [1]. Subsequent investigation revealed that the DNA recognition sequence of IRF-1 is found not only in the IFN-α and IFN-β promoters, but also in interferon-inducible genes such as the MHC class I gene [2]. Comparison of the consensus IRF-1 recognition sequence, the IRF-E, with the IFN stimulated response element (ISRE) indicated that the IRF-E matched all ISREs studied; thus, IFN-activated genes are also IRF-1 inducible [3].

Subsequently, IRF-1 has been shown to activate or repress genes involved in many anti-viral, immunomodulatory and anti-oncogenic pathways and has been recognised as a tumour suppressor. This introduction will outline the role of IRF-1 in tumour suppression, the mechanisms of its induction, the current understanding of its regulation by
post-translational modification and co-factor interaction.

1.2 IRF-1 in cancer

The role of IRF-1 in cancer was first recognised in 1993 when it was mapped to a chromosomal locus commonly deleted in leukaemia or myelodysplasia [4]. At the same time, the overexpression of IRF-2 (an antagonist of IRF-1) was shown to transform cells, while concomitant overexpression of IRF-1 was able to suppress the transformation [5]. This provided context for previous observations of growth suppression/terminal differentiation by IRF-1 in myeloid [6] and lymphoid cells [7].

Since then, loss of heterozygosity at the IRF-1 locus has been reported in gastric [8], oesophageal [9], non-small cell lung [10], pulmonary large cell neuroendocrine [11] and breast [12] [13] carcinomas.

In addition to deletion of the chromosomal locus, IRF-1 activity can be inhibited in cancers by point mutation [14], expression of an inhibitor NPM [15] and expression of the HPV oncoprotein E7 [16]. Aberrant splicing and exon skipping can produce attenuated or inactive forms of IRF-1 [17] [18] and even dominant negative forms of IRF-1 [19].

1.3 IRF-1 as a tumour suppressor

Since loss or inactivation of IRF-1 is critical to so many different types of cancer, its tumour suppressor capabilities were studied in some detail. As mentioned above, IRF-1 was shown to reverse the transformation of cells overexpressing IRF-2 [5]. Following this, it was demonstrated that IRF-1 can suppress the transformation induced by other, unrelated, oncogenes, namely c-myc and fos-B [20]. In addition, in IRF-1−/− cells, expression of a single oncogene, for example, c-Ha-ras is sufficient to transform cells, and the transformation can be reversed by expression of IRF-1 [21]. Normally at least two oncogenes are required for transformation. Thus, IRF-1 was firmly established as a tumour suppressor.
Interestingly, however, it was later observed that in mice, loss of IRF-1 alone had very little impact on the frequency of spontaneous tumour development. In contrast, in the background of c-Ha-ras expression or p53 knock-out, IRF-1 deficiency resulted in increased frequency of tumour development. Furthermore, in p53\(^{-/-}\)IRF-1\(^{-/-}\) mice, death due to tumour occurred much earlier, multiple tumour frequency increased and the spectrum of tumours was altered relative to p53\(^{-/-}\) mice [22]. Thus, IRF-1 could be characterised as a tumour susceptibility gene rather than a *bona fide* tumour suppressor.

Despite this, the activity of IRF-1 in cancer is clearly important: Introduction of dominant negative (dn)IRF-1 into human breast cancer cells (which quite likely exhibit a background of other oncogenic mutations) functions to enhance proliferation. Moreover, IRF-1 expression varied with the aggressiveness of the cell line; “highly invasive and metastatic” cell lines exhibit lowest IRF-1 expression while “tumourigenic but non-metastatic” cell lines express intermediate levels of IRF-1 compared to normal cells [23].

1.4 Mechanisms of tumour suppression by IRF-1

IRF-1 has been shown to upregulate or suppress genes involved in several anti-oncogenic pathways (Fig 1.1). These will be discussed below.

1.4.1 Apoptosis and Autophagy

Apoptosis is the programmed death of a cell in a controlled manner. In the context of cancer, it enables cells with irreparably damaged DNA to be safely removed before they become neoplastic. It is also the mechanism by which immune cells trigger death of cells displaying tumour associated antigens.

Apoptosis can be induced by two pathways: the extrinsic pathway and the intrinsic pathway (Fig 1.2). This is reviewed in [47]. Briefly, the extrinsic pathway is triggered by the activation of death receptors by death ligands. This induces the recruitment of various factors to the receptor and the formation of a death-inducing signalling complex (DISC).
1.4 Mechanisms of tumour suppression by IRF-1

Immune Surveillance
- IL-12 [79]
- IL-15 [79]
- TAP1 [82]
- LMP2 [82]
- MECL1 [83]
- MHC Class I and II and CIITA [39],[81]
- NK cell development and function [78]

Anti-proliferation
- p21 [53]
- p27 [61]
- Cdk2 [59]
- hTERT [61]
- Cyclin D1 [38]

Pro-apoptosis
- Bak [31]
- iNOS [187]
- XAF1 [34]
- TRAIL [26]
- PUMA [32]
- Fas ligand [25]
- Caspase 1, 7, 8 [188],[31]
- Survivin [37]
- Bcl-2 [36]

DNA damage response
- BRIP1 [68]
- Polη [69]

Anti-metastasis
- MMP9 [71]
- NK cell recruitment [27]

Figure 1.1: IRF-1 regulates gene expression of proteins involved in all aspects of anti-oncogenesis including: immune surveillance ([24],[25],[26],[27],[28],[29]); anti-proliferation ([30],[31],[32],[33]); pro-apoptosis ([34],[35],[36],[37],[38],[39],[40],[41],[42]); DNA damage response ([43],[44]); and anti-metastasis ([45],[46]). Upregulated genes are green, downregulated genes are red.
1.4 Mechanisms of tumour suppression by IRF-1

Figure 1.2: IRF-1 regulates the intrinsic and extrinsic pathways of apoptosis. Proteins upregulated by IRF-1 are indicated by *, proteins downregulated by IRF-1 are indicated by §. The intrinsic pathway of apoptosis is initiated by intracellular signals such as ROS, DNA damage and oncogenes. These cause upregulation of Bax, Bak* [34] and PUMA* [38], which facilitates activation of Bak. Active Bax and Bak form homodimers and, after insertion into the mitochondrial membrane, induce release of apoptotic factors SMAC/DIABLO and cytochrome c. The activation of Bax and Bak is inhibited by Bcl2§ [42] and Bcl-xl. SMAC/DIABLO and also XAF-1* [36] inhibits the inhibitor of apoptosis proteins (IAPs), which inhibit caspases 3,7* [34] and 9 while cytochrome c associates with APAF-1 to form the apoptosome which catalyses cleavage of procaspase-9 to caspase-9. Survivin§ [41], an atypical IAP, is down-regulated by IRF-1. Activated caspase-9 cleaves procaspase-3 to caspase-3 at the start of the execution pathway. At this point the intrinsic and extrinsic pathways converge. The extrinsic pathway of apoptosis is initiated by binding of death ligands (Fas ligand* [39], TNF-α and TRAIL* [37],[46]) to the death receptor. Binding activates the death receptor and triggers assembly of various factors into the DISC which catalyses cleavage of procaspase-8* into active caspase-8. Caspase-8 cleaves procaspase-3 to active caspase-3 at the start of the execution pathway. In some cases, it also converts Bid to t-Bid and recruits the mitochondrial factors to amplify the apoptotic signal. The execution pathway is a cascade of caspase cleavages culminating in the activation of the factors responsible for apoptosis.
Assembly of this complex results in activation of procaspase-8 to caspase-8. Caspase-8 is an initiator caspase which catalyses the activation of effector caspases. The result is a cascade of cleavage events culminating in apoptosis through both the direct action of caspases, and the activation of other pro-apoptotic molecules.

The intrinsic pathway is triggered by events within the cell, for example, DNA damage. This results in the activation of the pro-apoptotic factors Bax and Bak, which form homodimers. PUMA (p53 Upregulated Modulator of Apoptosis) mediates the activation of Bax. The homodimers insert into the mitochondrial membrane and cause the release of cytochrome c and second mitochondria activator of caspases (SMAC). Cytochrome C interacts with apoptotic protease activating factor-1 (APAF-1) and ATP to recruit procaspase-9 and form the apoptosome. Cleavage of pro-caspase-9 to caspase-9 ensues, and caspase-9 activates caspase-3 from which point apoptosis proceeds in the same way as for the extrinsic pathway (reviewed in [47]).

Apoptosis can be inhibited by the action of various factors. Bcl2 and Bcl-xl inhibit the activation of Bak, Bax, and Bid. When the intrinsic pathway is activated, the action of Bcl2 and Bcl-xl is itself inhibited. Inhibitor of Apoptosis Proteins (IAPs) can inhibit the activity of caspases 3,7 and 9. Again, pro-apoptotic factors can inhibit these anti-apoptotic factors. SMAC is released from the mitochondria along with cytochrome c and inhibits the action of IAPs as do other proteins e.g. XAF1 (XIAP associated factor 1) [47].

IRF-1 is involved in the regulation of apoptosis at many points in both the intrinsic and extrinsic pathways. It upregulates proteins which initiate apoptosis such as Fas ligand [39] and TRAIL [37], [46], both of which can be used by cytotoxic T cells to induce apoptosis in tumour cells [48], [49] or, in the case of TRAIL, tumour cell auto/paracrine apoptosis [50]. IRF-1 also upregulates mediators of apoptosis such as caspases-7 and -8 [34]. Bak [34] is responsible for release of apoptotic factors from mitochondria [47] and PUMA [38] mediates apoptosis by recruiting Bax to the mitochondrial membrane [51]. Inhibitors of apoptosis are also modulated by IRF-1: XAF-1 [36] sensitises cells to apoptosis through antagonism of the inhibition of caspase-3 and -9 by XIAP [52] and is upregulated by IRF-1. Correspondingly, both Bcl-2 [42], which inhibits Bak activation
and survivin [41], an IAP which inhibits caspase-8 are downregulated by IRF-1. Survivin has been found to be the fourth highest upregulated transcriptome in a number of cancers [53]. The process of apoptosis and the role of IRF-1 is summarised in (Fig 1.2).

The upregulation of MHC Class I molecules by IRF-1 is also of relevance here, as it sensitises tumour cells to apoptosis induced by T cells [27].

The mechanism by which IRF-1 activates apoptosis appears to be cell type dependent, for example, TRAIL upregulation is important in bladder cancer cells [37], and paracrine death of Jurkat T cells [50] whereas in MDA-MB-468 cells, IRF-1 mediates a ligand independent apoptogenic action [54].

The ability of IRF-1 to induce apoptosis in cells was first noticed by Tanaka et. al. when investigating the function of IRF-1 as a tumour suppressor. They observed that IRF-1 WT embryonic fibroblasts undergo apoptosis after the expression of the c-Ha-ras oncogene, while IRF-1 $^{-/-}$ cells do not [21]. The relevance of IRF-1’s proapoptotic activity in cancer has since been demonstrated both in vitro and in vivo in a number of cancers [34], [55], [54], [41].

This apoptotic activity has been intensively studied in breast cancer where IRF-1 has been shown to be responsible for apoptosis in response to treatments such as antioestrogens. Antioestrogens are a highly effective treatment for breast cancer. They compete with oestrogens for oestrogen receptors and, in breast tissue, this results in reduced incidence and burden of cancer but unfortunately, resistance to these compounds is common [56]. Thus, investigating factors that mediate the antioestrogen response, such as IRF-1, is important, as they might give insights into how to reverse this resistance.

IRF-1 is induced by antioestrogens, for example, Faslodex, and mediates their apoptotic action. In Faslodex resistant cells, IRF-1 expression is downregulated and cannot be induced by antioestrogens. Expression of the IRF-1 inhibitor protein NPM is upregulated [57]. It is tempting to speculate that interventions that restore IRF-1 signalling in resistant cells might re-establish sensitivity to antioestrogens. Indeed, induction of IRF-1 by IFN-γ treatment is sufficient to restore antioestrogen sensitivity to apoptosis [58]. This suggests that combination therapy of IRF-1 activating agents with antioestrogen could be
effective against resistance.

Recently, a similar phenomenon has been observed in gastric cancers where IRF-1 overexpression sensitises cells to 5-fluorouracil (the most commonly used chemotherapeutic for this cancer) through enhanced apoptosis [59]. Likewise, in melanoma cells, IFN- induced IRF-1 results in enhanced apoptotic cell death when combined with the chemotherapeutic vinblastine [60].

In vivo studies have confirmed the efficacy of IRF-1 upregulation in tumour suppression. In a mouse xenograft model, adenoviral (Ad)-IRF-1 inhibited tumour growth and the resected tumours showed a downregulation of the antiapoptotic factor survivin [41]. Overexpression of IRF-1 in MCF7 cells significantly reduced the establishment of tumours when these cells were injected into nude mice. IRF-1 was shown to enhance apoptosis of these cells in vitro [23]. Ad-IRF-1 moderately suppressed tumour growth in a murine model of oesophageal adenocarcinoma, and again, in vitro, apoptosis was enhanced [61].

A particularly interesting aspect of the apoptotic activity of IRF-1 is that it can be selective for transformed cells. As Tanaka et. al. observed, the expression of c-Ha-ras was required for IRF-1 to initiate apoptosis [21]. Kirchhoff and Hauser confirmed this selective effect when they demonstrated that IRF-1 will not induce apoptosis in non-transformed NIH3T3 cells, but when HER2 and IRF-1 are simultaneously activated in NIH3T3 cells, apoptosis occurs [62]. Similar selectivity has been observed with leukaemic vs normal CD4+ cells although in this case, IRF-1 induced TRAIL expression in SK-BR-3 cells which was secreted and resulted in only leukaemic T cell apoptosis [50]. This selectivity makes IRF-1 an attractive anti-cancer drug target as it should result in fewer side effects.

IRF-1 has also been shown to induce autphagic cell death in human hepatocellular carcinoma cells [63]. This could be another example of its tumour suppressor capabilities, however, autophagy can also protect cells from the environmental stresses of some antineoplastic drugs [64]. In contrast, in immune cells, IRF-1 seems to negatively regulate autophagy, and promotes the apoptotic pathway. In this context, it may actually
1.4 Mechanisms of tumour suppression by IRF-1

Contribute to mortality by enhancing apoptosis in response to LPS (lipopolysaccharide, an endotoxin) thus leading to sepsis-induced immunosuppression [65].

Therefore, although IRF-1 generally activates apoptosis, this can be dependent on the environment and cell death by autophagy due to IRF-1 activity has been observed [63], as well as simply cell cycle arrest. In most cases, the activation of apoptosis is advantageous as it removes potentially/actively tumourigenic cells without providing them a potential respite from anti-cancer drugs. In the context of the immune system, however, excessive apoptosis in response to LPS stimulation can lead to sepsis-induced immunodeficiency [65]. IRF-1 KO mice are resistant to the lethal cytokinase cascade triggered by LPS injection [66]. Clearly the effects of IRF-1 expression are not all beneficial (see also its role in autoimmune responses below) and the positive (tumour suppression/immune function) functions come at the cost of a propensity to septic shock and autoimmune disorders.

1.4.2 Cell Cycle Arrest

The role of IRF-1 in cell cycle arrest was first addressed by Tanaka et al. as a follow-up to their earlier observations that IRF-1 suppresses ras-induced transformation [30], [21]. They showed that IRF-1 is a mediator of DNA-damage-induced cell cycle arrest and upregulates the cyclin dependent kinase (Cdk) inhibitor p21 in cooperation with p53 in embryonic fibroblasts (EFs) [30]. Dornan et al. later showed that this cooperation was independent of the DNA-binding activity of IRF-1 but involved IRF-1 binding to and stabilising a DNA-p53-p300 complex. This facilitates acetylation of p53, which results in p53 being clamped to the p21 promoter DNA thus enhancing p21 expression [67]. IRF-1 can also, however, upregulate p21 independently of p53 [30], [68]. p21 arrests the cell cycle through two mechanisms: It binds and inhibits cyclin-Cdk complexes which oversee progression through the cell cycle, and inhibits DNA replication through interaction with Proliferating Cell Nuclear Antigen (PCNA), a subunit of DNA polymerase δ [69]. siRNA knockdown of p21 blocks cell cycle arrest by IRF-1 in H1299 cells [68].

In addition to upregulation of the cyclin-Cdk inhibitor (CdkI) p21, IRF-1 transcrip-
tionally regulates components of the Cyclin-Cdk complexes. The actions of Cyclin/Cdk complexes are essential for progression of cells through the cell cycle. Cyclins D and E, and Cdks 2 and 4 have been shown to be downregulated in MDA-MB-468 cells by IRF-1 [68], [70], [33]. IRF-1 represses the Cdk2 promoter by interfering with SP1 activation [32]. A specific element in the C-terminus of IRF-1 has been shown to be required for repression of the Cdk2 promoter and loss of this region has a significant impact on the ability of IRF-1 to act as a tumour suppressor [70].

The Cyclin D/Cdk4 complex phosphorylates and inactivates pRb thereby releasing a check on the cell cycle [71]. Work by Kroger et al. has indicated that in myc/ras transformed NIH3T3 cells, inhibition of cyclin D expression mediates IRF-1’s tumour-suppressive activities [33]. Interestingly, in the ras/mycNIH3T3 cells, expression of cyclin E and Cdk4 is not affected by IRF-1 expression [33] indicating that the function of IRF-1 is cell type specific.

IRF-1 also upregulates p27 which, besides its traditional role as a CdkI (similar to p21), also mediates IRF-1’s downregulation of human telomerase reverse transcriptase (hTERT) [31]. As active telomerase is thought to be necessary for tumourigenesis [72], this could play a large role in IRF-1’s tumour suppressor capabilities.

The role of IRF-1 in cell cycle control is still, however, unclear. Work by other authors has observed that IRF-1 does not affect cell cycle: In MCF7 and T47D cells, dnIRF-1 enhanced proliferation and apoptosis but had no effect on cell cycle profile [23] [57], while in Capan 1 pancreatic cells, IFN-γ upregulated IRF-1, showed antiproliferative and tumour suppressive effects but did not affect the cell cycle profile [73]. Similarly, Kirchoff et al. noticed that inhibition of proliferation of C243 cells by IRF-1 was not mediated by cell cycle arrest [74]. The effects of IRF-1 on cell cycle could be cell line dependent - requiring cofactors that are only present in certain cells/after activation by certain stimuli. Alternatively, the activating stimulus could dictate whether cell cycle arrest occurs; perhaps when IRF-1 is overexpressed without stimulus, post-translational regulatory events or activation of cooperating factors is missing. Kroger et al. also observed differences between non-transformed NIH3T3 cells and transformed cells. IRF-1 had very little effect on the cell cycle profile of the non-transformed cells. After transformation, however,
a high proportion of cells were in S phase, and expression of IRF-1 caused G1/S cell cycle arrest, resulting in a reversion of the cell cycle profile to non-transformed proportions [75].

The above suggests that IRF-1 is part of a complex regulatory network that controls cell cycle arrest. Many factors, activated as a result of transformation, or DNA damage, or IFN-\(\gamma \) etc. may cooperate to activate cell cycle arrest, and in certain cell lines, or after certain stimuli, a sufficient combination of factors (including IRF-1) will be upregulated/activated and cell cycle arrest will ensue. In some cases, where overexpression of IRF-1 results in arrest, IRF-1 is the limiting factor, in other cases, where IRF-1 does not cause arrest, other factors are limiting.

1.4.3 DNA Damage Response

As well as being involved in inducing cell cycle arrest in response to DNA damage, IRF-1 upregulates various factors involved in DNA repair. The induction of IRF-1 itself after IR (ionising radiation) or etoposide mediated DNA damage involves an ATM kinase signalling pathway resulting in enhanced IRF-1 mRNA levels and a prolonged half-life of IRF-1 protein [76].

Hepatocytes lacking IRF-1 are deficient in their ability to repair DNA [77] and in cooperation with the loss of p53, loss of IRF-1 results in increased susceptibility to mutation, implying that IRF-1 may be involved in maintaining genetic stability [22].

Recently, some of the proteins responsible for the DNA repair activity of IRF-1 have been identified. BRIP1 is a Fanconi Anaemia protein involved in Interstrand Crosslink Repair (ICR) which has been shown to be under the regulation of IRF-1. siIRF-1 treatment confers hypersensitivity to the DNA crosslinking agent mephalan to cells (a hallmark of a defective ICL repair pathway). Other DNA repair pathway genes were shown to be regulated by IRF-1 in the same ChIP-chip study that identified \textit{BRIP1}, however, these have not been studied in as much detail [43].

DNA polymerase \(\eta \) (Pol\(\eta \)) is especially important for error-free bypass of pyrimi-
dine dimers introduced by UV. As it has a low fidelity, it must be carefully regulated to minimise the introduction of mutations into the genome. IRF-1 transactivates Pol\(\eta\) in response to a chemical carcinogen MNNG [44] and, although this is perhaps an undesirable event leading to the accumulation of mutations after exposure to the carcinogen, it may indicate IRF-1 could have a genuine role in the appropriate regulation of Pol\(\eta\) for example in response to UV damage. In support of this, cells lacking IRF-1 show impaired DNA repair after UV damage [77]. Finally, IRF-1 upregulates PCNA [43], which also forms part of the UV-induced DNA damage repair machinery, along with Pol\(\eta\) [44].

1.4.4 Inhibition of Metastasis

Downregulation of IRF-1 has been linked with increased metastatic potential of tumours, for example, there was a correlation between loss of IRF-1 and lymph node metastasis in oesophageal cancer [42] and an invasive phenotype in breast cancer [23]. Furthermore, immunotherapy can result in regression of melanoma metastasis; this was linked to upregulation of IRF-1 and genes involved in antigen presentation [78].

Thus, two mechanisms are possible for IRF-1’s suppression of metastasis: The metastatic potential of the cell could be suppressed, and/or the immune recognition of metastatic cells could be enhanced. Relevant to the first mechanism, IRF-1 suppresses the Matrix Metalloprotease-9 (MMP9) promoter through competition for binding with the activator NF-\(\kappa\)B [45]. Suppression occurs in both tumour cells (Ewing’s sarcoma derived)[45] and stromal cells (monocytes) [79]. MMP9 has been shown to be secreted by tumour cells (e.g. MDA-MB-231 breast cancer cells [80]) and additionally, macrophages co-cultured with breast cancer cells released TNF-alpha-induced MMP-9, resulting in increased invasiveness of the MCF-7 and SK-BR-3 cells [81]. Elsewhere, the presence of inflammatory cells in cancer stroma has been linked to poor prognosis, despite being indicative of a defense reaction against the tumour [82].

IRF-1 is also involved in enhancing the immune recognition of metastatic cells. Immunotherapy can result in regression of melanoma metastasis [83], a property which has been linked to the activation of IRF-1 and subsequent upregulation of genes involved in
1.4 Mechanisms of tumour suppression by IRF-1

antigen presentation [78].

The role of IRF-1 in the suppression of metastasis in a mouse model has been studied in some detail by Ksienzyk et. al. They show that IRF-1 enhances Natural Killer (NK) cell recruitment to, and NK cell mediated cell death of, infiltrating tumour cells by a number of coordinately functioning receptor-ligand interactions. The expression of IRF-1 by metastatic cells has effects on both tumour and NK cell receptor/ligand gene expression [46].

1.4.5 Immune Surveillance

The immune system has a role in tumour suppression and can act to reject tumours. IRF-1 impinges on this both through its immunomodulatory function, and through its effects on gene expression.

IRF-1 is required for the development and function of the immune system (reviewed in [29]). It also regulates the recruitment of the immune system to potentially tumourigenic cells, and is involved in the apoptotic death of these cells.

The immune-mediated effects of IRF-1 tumour suppression have been observed in vivo. IRF-1 WT mice were protected from death due to lymphoid neoplasia induced by chemical carcinogen compared to IRF-1−/− mice. It was shown that IRF-1−/− mice were unable to upregulate cytokines involved in immune surveillance and that replacement of IL-12, one of the cytokines regulated by IRF-1, was able to somewhat restore the protective effects of IRF-1 [24]. IL-12 had previously been shown to inhibit tumour formation in mouse models through immune mediated rejection [84].

IRF-1 controls the expression of MHC Class I and II genes [28], and genes encoding proteins involved in antigen processing i.e. immunoproteasome subunits LMP2 [25] and MECL1 [26] and antigen transporter TAP1 [25]. CD40L (CD40 ligand) is involved in the processing and expression of tumour antigens to T cells. It is currently in clinical trials as a cancer therapeutic. IRF-1 has been shown to be responsible for the upregulation of antigen transporters and immunoproteasome subunits associated with the CD40 response.
Engagement of the CD40 ligand activates NF-κB dependent upregulation of IRF-1 [85].

In Hepatocellular Carcinoma (HCC), MHC Class I genes were upregulated by IRF-1, and T cell memory was induced. IRF-1 expressing tumour cells were subjected to specific Cytotoxic T Lymphocyte (CTL) killing in vivo resulting in suppression of a highly tumourigenic HCC cell line in vivo [86]. Similarly, expression of IRF-1 in a non-immunogenic sarcoma cell line resulted in enhanced MHC Class I expression, and reduced tumour growth. Tumour growth was more strongly impeded in immunocompetent mice than immunodeficient mice [27].

As discussed in the previous section, IRF-1 has a role in apoptosis induced by immune cell signals. It is evident from the diverse mechanisms of tumour suppression mentioned above that IRF-1 is a very powerful antioncogenic agent. Its pleiotropic functions mean that expression of IRF-1 can effect tumour suppression not merely when replacing lost IRF-1, but across a range of unrelated cancer types.

There is, however, a caveat. Enhanced expression of IRF-1 could be advantageous for the treatment of cancer but it has been linked to autoimmune disorders. It was noted that in myelodysplasia patients, low expression of IRF-1 confers some protection against autoimmune manifestations [87]. IRF-1−/− mice have reduced susceptibility to antigen-induced autoimmune diseases type II collagen-induced arthritis and experimental allergic encephalomyelitis (an animal model for multiple sclerosis [88] [89]. Thus, instead of non-specifically activating IRF-1 activity, it is important to understand the regulation of this protein in order to allow the development of therapeutics which can selectively exploit the desired attributes.

1.5 Regulation of IRF-1

1.5.1 Regulation at the Promoter Level

IRF-1 is constitutively expressed at low levels, and its half life is rapid - around 30 mins [111], [112]. Thus, upregulation of IRF-1 gene expression is an important method of
Figure 1.3: IRF-1 is transcriptionally upregulated by a wide variety of stimuli. Black arrows indicate activation of IRF-1, green arrows indicate positive feedback where IRF-1 upregulates factors involved in its positive regulation. [90],[91],[92],[93],[94],[95],[96],[97],[98],[99],[100],[101],[85],[102],[103],[104],[105],[106],[107],[108],[76],[109],[110].
1.5 Regulation of IRF-1

IRF-1 can be induced by a wide variety of stimuli. These are depicted in detail in Fig 1.3 but include interferons, other cytokines and bacterial/viral antigens through Toll Like Receptors (TLRs). The signalling pathways governing IRF-1 upregulation are not known in all cases, but the GAS (gamma activated sequence) element in the IRF-1 promoter responds to various STAT (Signal Transduction and Activator of Transcription) combinations, depending on the activating signal [113], [114], [110], [115], [31], [108], [104]. A NF-κB site can mediate the upregulation of IRF-1 in response to alternative signals such as [116], [85], [117]. The combination of response elements in the IRF-1 promoter allows cooperative upregulation of IRF-1 as a result of a combination of signals, for example, TNF-α (Tumour Necrosis Factor-α) and IFN-γ together result in higher levels of IRF-1 than is possible with individual stimuli [118].

1.5.2 Post-translational regulation

Although the accumulation of IRF-1 protein is clearly crucial, post-translational modifications are also important for the regulation of IRF-1 activity. This was first evident in a paper by Watanabe et al. who observed that induction of IRF-1 by IFN-β or TNF-α or even a combination of the two was not sufficient for activation of an IRF-E (IRF-1 response element)-dependent reporter construct in L929 cells. In the presence of a virus, IRF-1 was both induced and activated. When IRF-1 is pre-accumulated, activation of the IRF-E can occur even in the presence of cycloheximide, arguing that a post-translational modification is the missing activatory signal since protein synthesis is not required. As this activation is blocked by a broad spectrum kinase inhibitor, phosphorylation is a likely candidate [112].

Casein kinase II (CKII) is known to phosphorylate IRF-1 in the C-terminus. This phosphorylation is required for transactivation activity. The exact role for CKII phosphorylation is unknown but it is suggested that it may be important for the activation of IRF-1 by cytokines [119]. PKC might also phosphorylate IRF-1 as, in the presence of a dominant negative PKC isoform, a 2D gel shows IRF-1 with fewer acidic residues, and the presence of constitutively active (CA)-PKC enhances the IRF-1 mediated transactivation
of the *CIITA* (MHC class II Transactivator) promoter [120].

After DNA damage, the rate of proteasomal degradation of IRF-1 is reduced resulting in accumulation of protein (in combination with elevated mRNA levels). It is thought that ATM kinase might be involved in this regulation as in ATM^{−/−} cells, DNA damage does not affect IRF-1 half life [76]. Whether ATM directly phosphorylates IRF-1 is not known.

The TLR adaptor protein MyD88 may facilitate phosphorylation of IRF-1. In dendritic cells (DCs), TLR2/6/9 activation cannot induce IRF-1 but it does enhance the activity of IRF-1 induced by IFN-γ. It is suggested that the effect of MyD88 is to increase the rate of nuclear translocation of IRF-1 and, as co-expression of IRF-1 and MyD88 results in additional acidic charges on IRF-1 it is likely that phosphorylation is responsible for this [96].

Work in the Ball laboratory has demonstrated that IRF-1 is a phosphoprotein. Dr Sarah Meek has shown that IRF-1 exists as various phosphoisoforms on a 2D gel, and can be collapsed to a small number of spots by a phosphatase (Fig 1.4A). In addition, treatment with the phosphatase inhibitor okadaic acid results in hyperphosphorylation of IRF-1, visualised as a retarded migration on SDS-PAGE (Fig 1.4B).

Since the work for this PhD was started, it has been shown in the Ball laboratory that phosphorylation of the IRF-1 C-terminus regulates the binding to the chaperone Hsp70. This is particularly interesting since Hsp70 has been shown to cooperate with Hsp90 to regulate IRF-1 activity, stability and localisation (Vikram Narayan, unpublished observations, and [121]). The significance of this regulation is considered in more detail in the discussion.

Ubiquitination of a protein can target it for degradation, or modify its activity. IRF-1 is degraded by the 26S proteasome in response to its polyubiquitination. The C-terminal region of the protein is found to determine its stability [122] but is not itself ubiquitinated [123] and it has been suggested that phosphorylation in this region may signal for ubiquitination; this mechanism has been shown to operate for IRF-3 [122].
SUMOylation or covalent attachment of “Small Ubiquitin-like MOdifier” to proteins can also affect activity. PIAS3 (Protein Inhibitor of Activated STAT-3), a SUMO ligase, and Ubc9 (Ubiquitin Conjugating Enzyme-9), an E2 conjugating enzyme, were found to elevate levels of SUMOylated IRF-1 with the result of suppression of transactivational activity [124]. Elevated levels of SUMOylated IRF-1 in tumour cells result in accumulation of the protein as SUMOylation possibly competes with ubiquitination for lysine residues. Since SUMOylated IRF-1 is unable to activate apoptosis, this may contribute to the uncontrolled growth of these cells [125].

Acetylation of IRF-1 by p300 has been observed in vitro [126]. In NIH3T3 cells, PCAF (p300/CBP Associated Factor) binds IRF-1 and enhances its activity at the ISRE. The Histone Acetyl Transferase (HAT) region of PCAF is required for this increase in IRF-1 activity [127]. The acetylation of IRF-1 in the DNA binding domain by CBP in response to MNNG treatment stabilises the IRF-1 protein and leads to its accumulation in the absence of any change in mRNA levels [44].
1.5 Regulation of IRF-1

1.5.3 Co-factor Binding

As well as acetylation of transcription factors, CBP/p300 and PCAF can acetylate histone proteins to "activate" chromatin, making it accessible to transcription factors [128]. There are a number of cases where IRF-1 binds a HAT protein but direct acetylation has not been investigated or has been ruled out [129] [130], [131]. In these cases, IRF-1 could cooperate in the recruitment of the HAT to modify the chromatin, modify itself, or to modify another co-factor such as NF-κB [131] or p53 [67]. It is likely that future work will demonstrate further the importance of IRF-1 in recruitment of HATs as the HPV E7 oncoprotein functions to inactivate IRF-1 by recruiting HDACs to the IRF-1-bound promoter [16]. This implies that acetylation of substrates by IRF-1-recruited HATs is a common activatory mechanism.

IRF-1 binds a variety of other co-factors to carry out its transactivatory activity. The enhanceosome which synergistically activates the IFN-beta promoter is composed of IRF-1, NF-κB, ATF2/cJun and p300. These factors cooperate to generate much higher levels of transcription than is achieved by the sum of their individual contributions [130]. IRF-1 and NF-κ-B interact at several other promoters. For example, at the iNOS promoter in macrophages stimulated with IFN-γ and TNF-α, IRF-1 and NF-κ-B physically interact and cause bending of the promoter DNA. The combination of signals produces synergistic activation of iNOS [132].

STAT1 homodimers can activate IRF-1 expression in response to interferon and other stimuli [113], [115], [31]. However, as a monomer STAT1 can cooperate with IRF-1 at a series of promoters. At the gbp2 promoter, both IRF-1 and STAT1 are required for maximal transcription [133]. Interaction between IRF-1 and STAT1 seems to enhance binding to the LMP2 promoter [134] and again, both factors are required for transcription [25]. IRF-1 and STAT1 participate in a positive feedback loop as they cooperate to activate the STAT1 promoter [135].

In contrast to the recruitment of HATs by IRF-1 mentioned above, the chromatin remodelling enzyme BRG1 (Brahma-related gene 1) is required to recruit IRF-1 to the promoter of the antiviral E3 ligase TRIM22 [136].
Figure 1.5: Various mechanisms exist to regulate promoter selection of IRF-1. A particular stimulus, such as IFN-γ could direct IRF-1 to a particular subset of promoters through a variety of mechanisms. Any one or a combination of these mechanisms could operate in response to a particular stimulus. (A) Stimulus induces phosphorylation of IRF-1; phosphorylation directs IRF-1 to promoters by causing a specific conformational change in the protein. (B) Stimulus induces phosphorylation of IRF-1; phosphorylation creates a binding site for a cofactor which directs IRF-1 to a particular promoter and could modulate its activity. (C) Stimulus upregulates IRF-1 and a cofactor; enhanced intracellular concentrations of these factors promotes their interaction and the cofactor directs IRF-1 to a particular promoter. (D) Stimulus induces phosphorylation of a cofactor; phosphorylated cofactor binds IRF-1 and directs it to a particular promoter.

1.5.4 Regulation by Other Factors

IRF-1 can also be negatively regulated. Binding of NPM (nucleophosmin) inhibits its DNA binding and transcriptional activity [15] and LPA (Lysophosphatidic Acid) can also block the binding of IRF-1 to DNA [137]. The nuclear translocation of IRF-1 is mediated by importin-α1[138].

In summary, there is a wide repertoire of mechanisms existing in the cell to regulate IRF-1 activity. This is not surprising since so many signals converge on IRF-1 and it upregulates a diverse set genes. Complex regulation allows specific IRF-1 dependent genes to be upregulated in response to a particular stimulus. This can be achieved through post-translational modifications altering DNA and co-factor binding. Alternatively, or in addition, IRF-1 co-factors can be upregulated or modified in response to the same signal, thereby directing IRF-1 activity to particular promoters. This is illustrated in Fig 1.5.
1.6 IRF-1 Structure and Function

IRF-1 is a multi-domain protein; its domain structure is illustrated in Fig 1.6. The N terminal 120 amino acids comprise the DNA binding domain [139]. This region, which contains a tryptophan cluster, is arranged in a helix-turn-helix motif and is conserved across the IRF family [140]. The first 60 amino acids of IRF-1 also contain a repressor domain which inhibits the transactivatory activity of the protein [141].

Adjacent to the DNA binding domain, between 117-141, are two potential NLS sequences. Deletion of these sequences forces IRF-1 to remain in the cytoplasm, while expression of this region as a fusion protein with GFP localises it to the nucleus [142]. IRF-1 has also been shown to interact with importin-1α; this protein may mediate the nuclear translocation of IRF-1 [138].

Towards the centre of the primary structure are homodimerisation [143], heterodimerisation [142] and a highly disordered multifunctional protein binding (Mf2) domain [144]. A variety of positive and negative interacting factors target this region: IRF-8 [142], NPM
and YB-1 binding inhibit IRF-1 activity, while CHIP binding facilitates ubiquitination of IRF-1 after certain stresses.

A transcriptional activation domain resides between 185-256, and an enhancer domain between 257-329. Thus the C-terminus of IRF-1 is particularly important for its transcriptional activity. Work by Eckert et al. has suggested that the enhancer domain in fact comprises residues 257-300 while the final 25 residues (of the human protein) constitute another repressor domain (at least for the IFN-β promoter).

The Ball laboratory has been particularly interested in these final 25 amino acids of IRF-1, termed the Mf1 domain (Fig 1.6). It has been shown that residues 301-314 are required for repression of Cdk2, and this activity is pivotal for growth suppression, but does not impinge on the transcriptional activatory potential of IRF-1. A co-regulator binding motif (LXXLL) also resides within this region. This may indicate that assembly of a repressor complex at the Cdk2 promoter is orchestrated by IRF-1 [70]. The LXXLL motif is also recognised by the co-factor p300 and the IRF-1-p300 complex has been shown to enhance transcription of the p21 promoter through cooperation with p53 [67].

The region 301-311 has been suggested to contain a degradation motif which is recognised by components of the proteasome machinery after IRF-1 has been polyubiquitinated [123]. Hsp70 interacts with the LXXLL motif of IRF-1 and, together with Hsp90, positively regulates IRF-1. Notably, inhibition of Hsp90 results in the Hsp70-dependent degradation of IRF-1 while overexpression of Hsp90 causes nuclear accumulation of IRF-1. Interestingly, IRF-1 activity is regulated by Hsp90 independently of the effects on steady-state protein levels [121].

Trans activatory activity of IRF-1 is regulated by a number of different motifs within the Mf1 domain. A C-terminal point mutation (P325A) is sufficient to dramatically change the half life of IRF-1 from around 30mins to less than 15mins (Fig 1.7A). Interestingly, when protein levels were normalised, this mutant is also more active in a dual luciferase reporter assay at the TLR3 promoter (Fig 1.7B) [146]. Previous work by Eckert et al. has also shown that deletion of a negative regulatory domain within the Mf1 domain leads to transcriptional activation [70].
Figure 1.7: A single point mutation of the last residue (P325) of IRF-1 increases both turnover and activity of the protein. (A) IRF-1 P325A has accelerated turnover. HeLa cells were transfected with 0.5 µg IRF-1 WT or IRF-1 P325A. After 24h, they were treated with 30 µg/ml cycloheximide and harvested after the intervals indicated. Cells were lysed and lysate subjected to SDS-PAGE/immunoblot using anti-IRF-1 (BD Biosciences) (experiment performed by Emma Pion). (B) IRF-1 P325A has enhanced transactivatory activity. Left panel: HeLa cells were transfected with a titration of 0-0.25 µg IRF-1WT or 0-0.5 µg IRF-1P325A (giving normalised IRF-1 protein levels), 120ng TLR-3-luc reporter plasmid and 60ng control CMV-Renilla-luc. Reporter gene activity was measured in relative light units (RLU) and normalised to CMV-Renilla-luc activity. Results are given as mean +/- half the range. Right panel: Expressed protein levels were visualised by SDS-PAGE/immunoblot using anti-IRF-1 (BD Biosciences) and anti-GAPDH (Abcam) as a gel loading control (experiment performed by Angeli Moeller)[146].
1.6 IRF-1 Structure and Function

Finally, exogenous manipulation of the Mf1 domain can alter IRF-1 activity. Treatment of HeLa cells with an intracellular antibody which recognises an epitope spanning 310-317 results in activation of endogenous IRF-1 activity at a number of promoters without change in IRF-1 levels (Fig 1.8) [146]. It is tempting to speculate that here, the antibody may mimic the effects of a post-translational modification.

The presence of internal regulatory elements within the IRF-1 structure argues strongly that post-translational modifications will modulate the activity of IRF-1 by altering the contribution of each element to the overall activity.

Thus, given the very limited information available on the post-translational regulation of IRF-1, coupled with the growing body of evidence that post-translational events in the Mf1 domain critically regulate IRF-1 function, it is clear that there is a need for dedicated investigation into this topic. This thesis advances the current understanding of IRF-1 post-translational modifications by presenting evidence that phosphorylation at specific sites in the Mf1 domain is induced by IRF-1 activating stimuli. Such phosphorylation activates IRF-1 activity at specific promoters and enhances its capacity as a tumour suppressor, both through suppression of colony formation and inhibition of metastasis.
Figure 1.8: Intracellular nanobodies to IRF-1 C-terminus can activate IRF-1 without altering protein levels. Epitope of intracellular nanobody targeting IRF-1 Mf1 domain is indicated. HeLa cells were transfected with a titration of 0-250ng EGFP-scFv3 (Mf1 domain epitope) or EGFP-scFvN (N-terminal epitope), 120ng TLR3-Luc reporter plasmid and 60ng control CMV-Renilla-luc. Reporter gene activity was measured in relative light units (RLU) and normalised to CMV-Renilla-luc activity. Results are given as mean +/- half the range. Expressed protein levels visualised by SDS-PAGE/immunoblot using anti-GFP (Living Colours), anti-IRF-1 (BD Biosciences) and anti-GAPDH (Abcam) as a gel loading control (experiment performed by Angeli Moeller)[146].
Chapter 2

Materials and Methods

2.1 Chemicals and Reagents

All general chemicals were purchased from Sigma unless otherwise stated. Peptides were from Chiron Mimotopes and were N-terminal biotin tagged with an SGSG spacer.

2.2 Antibodies

<table>
<thead>
<tr>
<th>Protein Target</th>
<th>Source</th>
<th>Supplier (product code)</th>
<th>Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRF-1</td>
<td>mouse (monoclonal)</td>
<td>BD biosciences (20/IRF-1)</td>
<td>1:1000</td>
</tr>
<tr>
<td>IRF-1</td>
<td>rabbit (polyclonal)</td>
<td>Santa Cruz (C-20)</td>
<td>1:1000</td>
</tr>
<tr>
<td>IRF-3</td>
<td>rabbit (polyclonal)</td>
<td>NEB (43025)</td>
<td>1:1000</td>
</tr>
<tr>
<td>GAPDH</td>
<td>mouse (monoclonal)</td>
<td>Abcam (9484)</td>
<td>1:25000</td>
</tr>
<tr>
<td>GFP</td>
<td>mouse (monoclonal)</td>
<td>Living Colours (JL-8)</td>
<td>1:1000</td>
</tr>
<tr>
<td>p300</td>
<td>rabbit (polyclonal)</td>
<td>Santa-Cruz (N-15)</td>
<td>1:1000</td>
</tr>
<tr>
<td>Hsp70</td>
<td>rabbit (polyclonal)</td>
<td>Stressgen (SPA-812)</td>
<td>1:1000</td>
</tr>
<tr>
<td>Hsp90</td>
<td>rabbit (polyclonal)</td>
<td>Stressgen (SPS-771)</td>
<td>1:1000</td>
</tr>
<tr>
<td>AMPK</td>
<td>rabbit (polyclonal)</td>
<td>Millipore (07-250)</td>
<td>1:500</td>
</tr>
<tr>
<td>IRF-2</td>
<td>mouse (monoclonal)</td>
<td>Abcam</td>
<td>1:500</td>
</tr>
</tbody>
</table>

Table 2.1: Primary Antibodies

Secondary antibodies rabbit anti-mouse (260) and swine anti-rabbit (217) were pur-
2.3 DNA constructs

pcDNA3.1: IRF-1 WT\(^1\), IRF-1 S317A\(^1\), IRF-1 S317D\(^1\), IRF-1 W11R\(^4\)
pDEST14: IRF-1 WT\(^2\)
pDEST15: coIRF-1 WT\(^3\)
pTrcHis B: IRF-1 1-124\(^2\), IRF-1 118-256\(^2\)
pCold(His): coIRF-1 WT\(^3\)
px luc: pIRF-E luc\(^6\), pTLR3 luc\(^6\), pIL7 luc\(^7\), pIFN-\(\beta\) luc\(^8\), pCDK2 luc\(^9\), pMMP9 luc\(^10\)
pCMV: p300\(^11\)

\(^1\) From Dr. Mijram Eckert
\(^2\) From Dr. Angeli Moeller
\(^3\) From Dr. Vikram Narayan
\(^4\) From Dr. Emma Pion
\(^5\) From Panomics Solutions
\(^6\) [147]
\(^7\) [95]
\(^8\) Gift from Dr. T. Fujita (Kyoto University)
\(^9\) Gift from Dr. van Wijnen (University of Massachusetts)
\(^10\) Gift from Ju-Ming Wang (National Cheng Kung University, Taiwan)
\(^11\) From Mauro Giacca (ICGEB, Italy)

co - codon optimised
2.4 Cloning

2.4.1 Site Directed Mutagenesis

Mutagenesis was performed by mixing template, primers and Pfu master mix according to instructions below, then subjecting to the PCR programme described. Template DNA was then digested by DpnI, leaving only the mutated product. This was transformed into competent DH5α cells (see below) and plated on LB-Agar with ampicillin. A single colony was picked, grown in LB broth with ampicillin and plasmid DNA was purified from the bacteria using QIAGEN mini-prep kit. The mutated plasmid was sequenced by Source Biosciences (Cambridge) before use.

Reaction Mix

<table>
<thead>
<tr>
<th>Volume</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5µl</td>
<td>Pfu Master Mix</td>
</tr>
<tr>
<td>0.13µl</td>
<td>100µM forward primer</td>
</tr>
<tr>
<td>0.13µl</td>
<td>100µM reverse primer</td>
</tr>
<tr>
<td>50 ng</td>
<td>template</td>
</tr>
<tr>
<td>25µl</td>
<td></td>
</tr>
</tbody>
</table>

PCR Programme

\[
\begin{align*}
95^\circ C & \text{ 1min} \\
95^\circ C & \text{ 50s} \\
55^\circ C & \text{ 1min} \\
68^\circ C & \text{ 12mins} \\
68^\circ C & \text{ 30mins}
\end{align*}
\]

15 cycles

Mutagenic Primers

Altered codons are underlined. Sequence is 5’ to 3’.

IRF-1 WT → IRF-1 T311A
2.4 Cloning

for mammalian expression vectors
Forward: ACAGCCTGCTGGCA
Reverse: GGACTGGTGCCAGCAGGCTGT

IRF-1 WT → IRF-1 T311D
for mammalian expression vectors
Forward: ACAGCCTGCTGGGAC
Reverse: GGACTGGGTCCAGCAGGCTGT

for codon optimised E. Coli expression vectors
Forward: ATAGCCTGCTGGAACCGAGTCC
Reverse: GCACCGGATCCAGCAGGCTAT

IRF-1 WT → IRF-1 S317D
for codon optimised E. Coli expression vectors
Forward: TGCCTCCTGCGCGATATTCCAGG
Reverse: CCTGAAATATCCGGCAGACGCA

IRF-1 WT → IRF-1 W11R
for codon optimised E. Coli expression vectors
Forward: TATGCCTCGCGGCTGGAAATG
Reverse: CATTTCAGCGCGGACGCATA

Dpn1 Digestion of Amplification Products

To digest methylated template DNA, Dpn1 was added at 0.4U/µl to amplification products (0.5µl of 20U/µl per 25µl reaction). Reaction was incubated at 37°C for 1 hour, then transformed into DH5α E. Coli cells.
2.4 Cloning

2.4.2 Heatshock Transformation

50µl of competent bacterial cells (see below for method of preparation of competent cells) was mixed gently with 1µl of DpnI-digested amplification product. Mixture was incubated on ice for 30mins then heatshocked at 42°C for 1min. Cells were returned to ice for 2mins and finally added to 0.5ml of LB broth.

Cells were grown in LB broth for 2 hours at 37°C with shaking (225rpm) then plated on LB Agar/50µg/ml ampicillin plates. Plates were incubated at 37°C overnight.

LB (Luria Bertani) Broth

- 1%(w/v) Tryptone
- 0.5%(w/v) Yeast Extract
- 1%(w/v) NaCl

Sterilised in autoclave at 121°C, 20 mins.

LB (Luria Bertani) Agar

- 1%(w/v) Tryptone
- 0.5%(w/v) Yeast Extract
- 1%(w/v) Agar

Sterilised in autoclave at 121°C, 20 mins.

2.4.3 Generation of Competent Cells: Heatshock Method

E. Coli (DH5α or BL21-AI) were inoculated into 3ml LB broth (without antibiotic) and grown overnight at 37°C with shaking (220rpm). 250µl of this starter culture was added to 50ml LB broth (without antibiotic) and incubated again until the OD_{600} reached 0.4. The bacterial cells were pelleted by centrifugation at 4000RCF (relative centrifugal force), 15mins, 4°C. The pellet was resuspended in 16ml ice cold Buffer I and incubated for 10mins on ice. Cells were pelleted as before, and pellet resuspended in 2ml ice cold Buffer II, incubated on ice for 10mins then 50µl aliquots were placed into chilled, sterile tubes. Aliquots were snap-frozen and kept at -80°C.
2.4 Cloning

Buffer I
60mM CH₃COOK
100mM RbCl
10mM CaCl₂.2H₂O
40mM MgCl₂.6H₂O
15%(v/v) Glycerol
Adjusted to pH 5.8 using CH₃COOH then sterilised by filtration

Buffer II
10mM MOPS
10mM RbCl
75mM CaCl₂
15%(v/v) Glycerol
Adjusted to pH 6.5 using NaOH then sterilised by filtration

2.4.4 DNA preparation

QIAGEN miniprep and maxiprep kits were used as directed in manufacturer’s handbook.

2.4.5 Sequencing Reaction

The sequencing reaction was performed by mixing template, a single primer and Big Dye buffer and Big Dye Mix (contains dNTPs, polymerase and terminating, dye-linked nucleotides) according to instructions below, then subjecting to the thermal cycling programme described. Dye-terminated extension products were subsequently cleaned up by ethanol/EDTA precipitation as detailed below before sending to Source Biosciences (Cambridge) for DNA Sequencing.
2.4 Cloning

Reaction Mix
0.5µl 3.2µM primer (see below for sequences)
1µl 100 ng/µl DNA
2µl Big Dye Buffer (5x)
1µl Big Dye Mix (contains dNPTs, polymerase and terminating, dye-linked nucleotides)
5.5µl nuclease-free water
10µl

Thermal Cycling Programme
96°C 1min
96°C 10s
50°C 5s
60°C 4mins
\{ \}
25 cycles

Sequencing Primers

For mammalian sequence 5' to 3'.
IRF-1 S1 (Forward, binds at base 209)
GGAGCCAGATCCCAAGACGTG
IRF-1 S2 (Forward, binds at base 499)
CAGGCTACATGCAGGACTTGGAG
IRF-1 S6 (Reverse, binds at base 891)
GGTGGCATCCATGTTCTTCAG
IRF-1 S7 (Reverse, binds at base 380)
CTCTTAGCATCTCGGCTGG
For codon coptimised E. Coli sequence 5′ to 3′.
IRF-1co S2 (Forward, binds at base 500)
CGGGCTATATGCAGGATCTGGAA
IRF-1co S6 (Reverse, binds at base 892)
GGTCGCATCCATGTTCACAG
IRF-1 S7 (Reverse, binds at base 380)
CTTTTCGACTCGCGGCTGC

For IRF-1 domains in pTrcHis vector.
Primers bind at 5′ (f) or 3′ (r) ends of multiple cloning site
Forward:GAGGTATATATTAATGTATCG
Reverse:GATTTAATCTGTATCAGG

Extension product clean-up

Extension products were centrifuged briefly to collect liquid at bottom of tube.
2.5µl 125mM EDTA was added.
30µl 100% ethanol was added.
Tube was vortexed and incubated at room temperature for 15mins.
Mixture was centrifuged at 16000RCF for 20mins to pellet precipitated DNA.
Ethanol was removed.
Tube was spun at 16000RCF for 2mins.
Residual ethanol was removed.
DNA was washed with 30µl 70% ethanol.
Mixture was spun at 16000RCF for 2 mins.
Ethanol was removed.
Tube was spun at 16000RCF for 2 mins.
Residual ethanol was removed.
DNA was allowed to air-dry before being posted to Source Biosciences (Cambridge) at ambient temprerature.
2.5 Protein Expression and Purification

2.5.1 In vitro Protein Expression using TNT-coupled lysate systems

IRF-1 WT, T311D, S317D and T311D/S317D and p300 were expressed from pcDNA3.1 plasmid in Promega TNT reticulocyte or wheatgerm lysate according to manufacturer’s instructions.

2.5.2 In vitro Protein Expression and Purification using the E. Coli-based PURExpress in vitro protein synthesis kit (NEB)

Untagged IRF-1 was expressed and purified from the PURExpress in vitro protein synthesis kit. 250ng pDEST14 IRF-1 was used as the template. Protein is expressed in the cell-free system, then the His-tagged transcription/translation machinery is removed using Ni-agarose beads leaving the purified protein. Protocol was as per manufacturer’s instructions.

2.5.3 E. Coli Protein Expression and Purification

Protein Expression

BL21-AI cells (for pDEST15 or pTrcHisB vectors) or BL21-DE3 cells (for pCold vector) were transformed (see above) with appropriate vector. The following day, a single colony was picked and used to inoculate a starter culture (50ml) in LB with ampicillin (50µg/ml). The starter culture was grown overnight at 37°C with shaking (220rpm) then inoculated into 2 litres LB with ampicillin and grown under the same conditions until the OD$_{600}$ reached 0.6. Expression of protein was induced using arabinose(0.2%(w/v)) for BL21-AI cells or 0.5nM IPTG for-DE3 cells. For expression of proteins from pDEST15 or pTrcHis vectors, cultures were incubated for 3 hours at room temperature with shaking (220rpm) before collection of bacterial cell pellet by centrifugation at 6000RCF, 20mins, 4°C. For
expression of proteins from pCold vector, cells were acclimitised at 15°C for 15mins prior to induction with IPTG. Following addition of IPTG, cells were incubated for 15mins at 15°C with shaking (220rpm) and pellet was collected as above.

Protein Purification: His-tagged proteins

IRF-1 Domain Purification

The bacterial cell pellet from 2L of culture was resuspended in 10ml lysis buffer (see below). The lysate was subjected to freeze-thaw in liquid nitrogen and sonicated followed by clarification by centrifugation at 12000RCF, 15mins, 4°C. Clarified lysate was filtered through a 0.45µm filter to remove debris, then mixed with 1ml of pre-equilibrated Ni-NTA agarose bead slurry (Qiagen). Lysate and beads were incubated at 4°C for 1 hour on a rotating table. The beads were collected by centrifugation at 400RCF, 5mins, 4°C and the flowthrough was removed. The beads were washed with 3x10ml wash buffer, 1x10ml wash buffer with detergent and 2x10ml wash buffer. 3ml of elution buffer was then added to the beads and incubated for 30mins at 4°C on a rotating table. The beads were pelleted by centrifugation as above and the eluate collected. Purified domains were stored at -80°C. The presence of purified IRF-1 domains was detected by SDS-PAGE followed by immunoblot or Coomassie Staining (see below).

| His Purification Lysis Buffer (for IRF-1-domain purification) |
|-----------------|-----------------|
| 0.5M NaCl |
| 50mM Tris pH8 |
| 1% Triton X-100 |
| 10mM Imidazole |
| 1mg/ml Lysozyme |
| 1mM DTT |
| 1X Protease Inhibitor Mix (PIM) |
| (1X PIM: 20µg/ml leupeptin, 1µg/ml aprotinin, 2µg/ml pepstatin, 1mM benzamidine, 10µg/ml soybean trypsin inhibitor, 2M pefabloc and 0.5M EDTA.) |
2.5 Protein Expression and Purification

His Purification Wash Buffer (for IRF-1-domain purification)
0.5M NaCl
50mM Tris pH8
20mM Imidazole
1mM Benzamidine

His Purification Wash Buffer (for IRF-1-domain purification) with Detergent
0.5M NaCl
50mM Tris pH8
20mM Imidazole
1mM Benzamidine
0.5%(v/v) Triton X-100
0.5%(v/v) Tween-20

His Purification Elution Buffer (for IRF-1-domain purification)
0.5M NaCl
50mM Tris pH8
250mM Imidazole
1mM Benzamidine

His-IRF-1 Purification (from pCold vector)
The bacterial cell pellet from 2L of culture was resuspended in 10ml of lysis buffer. The lysate was subjected to freeze-thaw in liquid nitrogen and sonicated followed by clarification by centrifugation at 12000RCF, 15mins, 4°C. Clarified lysate was filtered through a 0.45µm filter to remove debris, then passed over a 2ml Ni-NTA column twice at 0.4ml/min. The column was washed with 10CV Buffer I, 5CV Buffer I+ATP/MgCl₂ (to remove chaperones), 10CV Buffer I, 20CV Buffer II, 10CV Buffer III and eluted in 5CV elution buffer. Purified protein was buffer exchanged into storage buffer and stored at -80°C. The presence of purified IRF-1 was detected by SDS-PAGE followed by immunoblot or Coomassie Staining (see below).
2.5 Protein Expression and Purification

<table>
<thead>
<tr>
<th>Buffer Type</th>
<th>Component</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>His Purification Lysis Buffer (for IRF-1 purification)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50mM Tris pH8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10%(w/v) Sucrose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200mM KCl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5mg/ml Lysozyme</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5mM Benzamidine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2mM Pefabloc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1X Protease Inhibitor Mix (PIM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1X PIM: 20µg/ml leupeptin, 1µg/ml aprotinin, 2µg/ml pepstatin, 1mM benzamidine, 10µg/ml soybean trypsin inhibitor, 2M pefabloc and 0.5M EDTA.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>His Purification Wash Buffer I (for IRF-1 purification)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20mM Tris pH8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300mM NaCl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20mM Imidazole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3%(v/v) NP-40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5%(v/v) TX-100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5%(v/v) Tween</td>
<td></td>
<td></td>
</tr>
<tr>
<td>His Purification Wash Buffer I + ATP/MgCl₂ (for IRF-1 purification)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20mM Tris pH8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300mM NaCl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20mM Imidazole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3%(v/v) NP-40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5%(v/v) TX-100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5%(v/v) Tween</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10mM MgCl₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5mM ATP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
His Purification Wash Buffer II (for IRF-1 purification)
20mM Tris pH8
500mM NaCl
40mM Imidazole

His Purification Wash Buffer III (for IRF-1 purification)
20mM Tris pH8
150mM NaCl
40mM Imidazole
5% Glycerol

His Purification Elution Buffer (for IRF-1 purification)
20mM Tris pH8
150mM NaCl
200mM Imidazole
5% Glycerol

Protein Purification: GST-tagged proteins

The bacterial cell pellet from 2L of culture was resuspended in 10ml lysis buffer (see below). The lysate was subjected to freeze-thaw in liquid nitrogen and sonicated followed by clarification by centrifugation at 12000RCF, 15mins, 4°C. Clarified lysate was filtered through a 0.45μm filter to remove debris, then mixed with 1ml of pre-equilibrated glutathione-sepharose 4B bead slurry (GE Healthcare). Lysate and beads were incubated at 4°C for 1 hour on a rotating table. The beads were collected by centrifugation at 400RCF, 5mins, 4°C and the flowthrough was removed. The beads were washed with 5x10ml wash buffer then 3ml of elution buffer was then added to the beads and incubated for 30mins at 4°C on a rotating table. The beads were pelleted by centrifugation as above and the eluate collected. Purified domains were stored at -80 °C. The presence of purified IRF-1 domains was detected by SDS-PAGE followed by immunoblot or Coomassie Staining (see below).
2.6 Protein Quantification

Protein concentration was quantified using either BCA Assay Kit (Pierce) or Bradford’s Reagent (Bio-Rad) following the manufacturer’s instructions. Abosrbance was measured
using a Victor 3 plate reader (Perkin Elmer).

2.7 SDS-PAGE

Polyacrylamide gels were prepared using the MiniProtean kit from Bio-Rad, following the manufacturer’s instructions and using the reaction mixes detailed below. Acrylamide mix was from National Diagnostics. Sample concentrations were determined as described above, and the appropriate volume of sample was mixed 1:1 with 2X sample buffer then heated at 85°C for 2mins. Samples were loaded on the gel along with pre-stained protein ladder (Fermentas PageRuler) and gels were run in 1X Tris/Glycine running buffer at 120V until the dye front reached the bottom of the gel.

2X Sample Buffer

- 4% SDS
- 20% Glycerol
- 0.24M Tris pH 6.8
- 400mM DTT
- few grains bromophenol blue

10% Separating Gel

- 10%(w/v) Acrylamide mix
- 0.39M Tris pH 8.8
- 0.1%(w/v) SDS
- 0.1%(w/v) Ammonium Persulphate
- 0.04%(v/v) TEMED
2.8 Visualisation of Proteins

2.8.1 Coomassie staining

Gels were fixed and stained in Coomassie stain for 20mins at room temperature. Gels were destained in Coomassie stain until bands were visible.

Coomassie Stain

50%(v/v) Methanol
10%(v/v) Acetic Acid
0.2%(w/v) Coomassie brilliant blue R-250

Coomassie Destain

50%(v/v) Methanol
10%(v/v) Acetic Acid
2.8 Visualisation of Proteins

2.8.2 Western Blotting

Proteins in SDS-PAGE gels were transferred to nitrocellulose membrane (Protran) in 1X transfer buffer using Bio-Rad Mini TransBlot apparatus. Transfer was for 1 hour at 100V with cooling or 20mA overnight. Once the proteins had been transferred to the membrane, they were ink stained and then blocked for 0.5 hours using either 5% skimmed milk powder (Marvel) in PBS for conventional antibodies, or 3% BSA/PBS for phosphospecific antibodies. After blocking, membranes were probed with primary antibody diluted in blocking buffer for 1 hour at room temperature or overnight at 4°C. Phosphospecific antibodies were incubated for 24 hours at 4°C. The membranes were washed 3x 5mins in PBS-T (PBS with 0.1%(v/v) Tween-20) then incubated with secondary antibody for 1 hour at room temperature. Membranes were washed 3x5 mins in PBS-T before detecting peroxidase-conjugated secondary antibodies with enhanced chemiluminescence (ECL) reagent. ECL solutions I and II were mixed 1:1 and incubated with the membrane for 2mins. The solution was removed and X-Ray film (SLS) or Hyperfilm (Amersham) was exposed to the membrane. Film was developed using a Konica Medical Film Processor. For antibodies and dilutions, see Table 2.1.

1X Transfer Buffer
192mM Glycine
25mM Tris
20%(v/v) Methanol

ECL Solution I
100mM Tris pH 8.5
2.5mM Luminol
0.4mM p-Coumaric acid

ECL Solution II
100mM Tris pH 8.5
0.02% H$_2$O$_2$
2.9 Cell lines and cell culture

Cell lines and maintenance conditions used are listed below (Table 2.2):

<table>
<thead>
<tr>
<th>Cell Line</th>
<th>Source</th>
<th>Media*</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>A375</td>
<td>malignant melanoma (human, skin)</td>
<td>DMEM</td>
<td>37°C, 10% CO₂</td>
</tr>
<tr>
<td>H1299</td>
<td>non-small cell lung carcinoma (human, lung)</td>
<td>RPMI</td>
<td>37°C, 5% CO₂</td>
</tr>
<tr>
<td>HeLa</td>
<td>epithelial adenocarcinoma (human, cervix)</td>
<td>DMEM</td>
<td>37°C, 5% CO₂</td>
</tr>
<tr>
<td>MDA-MB-231</td>
<td>epithelial adenocarcinoma (human, breast)</td>
<td>DMEM</td>
<td>37°C, 5% CO₂</td>
</tr>
</tbody>
</table>

*All media were sourced from GIBCO and were supplemented with 10%(v/v) FBS (Autogen Bioclear) and 1% P/S (Invitrogen).

2.9.1 Sub-culturing

Cells were sub-cultured when they reached 100% confluence. Cells were rinsed in sterile PBS and detached using trypsin-EDTA (Invitrogen) (2ml/10cm plate). The trypsin was neutralised using complete medium and a 1:10 dilution was replated in fresh medium.

2.9.2 Long-term storage

For long-term storage, cells were frozen and kept in liquid nitrogen vapour phase. A confluent 10cm plate of cells was trypsinised and the cells collected by centrifugation at 1000RCF, 5mins, room temperature. The medium was discarded and cells were resuspended in 1ml of freezing medium. The cells were then placed in cryotubes (Nunc) and frozen slowly in a Nalgene cryo-freezing container for 1 day before being transferred to the liquid nitrogen vapour phase for long-term storage.

Freezing Medium

Complete culture medium
supplemented with 5% DMSO

2.9.3 Transient Transfection

Transient transfections of DNA were carried out using Attractene (Qiagen) according to manufacturer’s instructions.

2.10 Cell Treatments

Cells were treated with the following activators of IRF-1 (Table 2.3):

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Concentration</th>
<th>Solvent</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interferon-γ (GIBCO)</td>
<td>100U/ml</td>
<td>0.1% BSA, 40mM Tris pH 7.4</td>
<td>4 hours</td>
</tr>
<tr>
<td>Etoposide (Sigma)</td>
<td>10µM</td>
<td>50% DMSO</td>
<td>4 hours</td>
</tr>
<tr>
<td>p(I:C) (Invivogen)</td>
<td>50µg/ml</td>
<td>PBS</td>
<td>4 hours</td>
</tr>
</tbody>
</table>

Table 2.3: Concentrations and duration of IRF-1 activating treatments

Drugs were diluted in 1ml cell culture medium, then added to 9ml medium on cells.

2.10.1 Cell Lysis

0.5% Triton Mammalian Cell Lysis Buffer

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>50mM HEPES</td>
<td>pH 7.4</td>
<td>NaCl</td>
</tr>
<tr>
<td>150mM NaCl</td>
<td></td>
<td>EDTA</td>
</tr>
<tr>
<td>0.1mM EDTA</td>
<td></td>
<td>NaF</td>
</tr>
<tr>
<td>50mM NaF</td>
<td></td>
<td>β-glycerophosphate</td>
</tr>
<tr>
<td>20mM DTT</td>
<td></td>
<td>0.5%(v/v) Triton X-100</td>
</tr>
<tr>
<td>1X PIM</td>
<td></td>
<td>Protease Inhibitor Mix (PIM)</td>
</tr>
</tbody>
</table>

(1X PIM: 20µg/ml leupeptin, 1µg/ml aprotinin, 2µg/ml pepstatin, 1mM benzamidine,
2.11 Kinase Assay

In vitro phosphorylation of recombinant IRF-1 by cell lysate or purified kinases was performed by kinase assays.

2.11.1 Kinase assays using cell lysate

HeLa cells were lysed in 1% NP-40 mammalian cell lysis buffer and the protein concentration of the lysate was quantified using Bradford’s Reagent. Cell lysate or purified kinase was incubated with substrate (GST-IRF-1 or His-IRF-1-domain) and ATP in reaction buffer (see below). The final volume was 9µl to which 1µl ATP/[γ-32P]ATP mix was

10μg/ml soybean trypsin inhibitor, 2M pefabloc and 0.5M EDTA.)

Additional Phosphatase Inhibitors

120nM Okadaic Acid
2mM Sodium Orthovanadate

Additional phosphatase inhibitors were added when the phosphorylation state of IRF-1 was particularly important.

1% NP-40 Mammalian Cell Lysis Buffer

50mM HEPES pH 7.4
100mM NaCl
5mM NaF
2mM β-glycerophosphate
1mM DTT
1%(v/v) NP-40
1X Protease Inhibitor Mix (PIM)
(1X PIM: 20µg/ml leupeptin, 1µg/ml aprotinin, 2µg/ml pepstatin, 1mM benzamidine, 10µg/ml soybean trypsin inhibitor, 2M pefabloc and 0.5M EDTA.)
2.11 Kinase Assay

added to initiate the reaction. Reactions were incubated at 30°C for 30mins in a water-
bath and then terminated by addition of SDS-PAGE sample buffer. Samples were then
resolved by SDS-PAGE, gels were fixed and stained by Coomassie, dried onto filter pa-
per on a vacuum drier and the image transferred to a phosphorimager screen (Amersham
Biosciences). Incorporation of 32P labelled phosphate into IRF-1 was visualised using a
Storm 840 phosphorimager (Amersham Biosciences) and ImageQuant software.

Kinase Assay Reaction Mix

<table>
<thead>
<tr>
<th>450ng/500ng/1μg as indicated</th>
<th>Substrate (GST-IRF-1 or His-IRF-1-domain)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4μl</td>
<td>1mg/ml Cell lysate</td>
</tr>
<tr>
<td>2μl</td>
<td>5x Kinase Assay Buffer</td>
</tr>
<tr>
<td>1μl</td>
<td>ATP mix (0.2mM)*</td>
</tr>
<tr>
<td>10μl</td>
<td></td>
</tr>
</tbody>
</table>

*ATP mix: Added at end to initiate reaction

2mM ATP pH8 + 1:50 32P[ATP. As 32P[ATP decays, dilutions of up to 1:25 were used.

5x Kinase Assay Buffer

<table>
<thead>
<tr>
<th>125mM</th>
<th>HEPES</th>
</tr>
</thead>
<tbody>
<tr>
<td>500mM</td>
<td>NaCl</td>
</tr>
<tr>
<td>50mM</td>
<td>MgCl$_2$</td>
</tr>
<tr>
<td>5mM</td>
<td>DTT</td>
</tr>
</tbody>
</table>

2.11.2 Kinase assays using purified kinase

Chk1

Reaction performed as above except cell lysate replaced with 0.25μl Chk1 (Kudos Phar-
maceuticals).
2.12 Ammonium Sulphate Precipitation

AMPK

Reaction performed as above except AMPK kinase assay mix and AMPK assay buffer was used.

AMPK Kinase Assay Mix

<table>
<thead>
<tr>
<th></th>
<th>Substrate</th>
<th>AMPK (Upstate)</th>
<th>ATP mix (0.1mM)*</th>
<th>AMPK buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>µg</td>
<td>1</td>
<td>40</td>
<td>1</td>
<td>x</td>
</tr>
<tr>
<td>µl</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*ATP mix: Added at end to initiate reaction

1mM ATP pH8 + 1:50 $\gamma^{[32}P]ATP$. As $[^{32}P]ATP$ decays, dilutions of up to 1:25 were used.

AMPK Kinase Assay Buffer

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>25mM</td>
<td>HEPES</td>
<td>25mM</td>
<td>KCl</td>
<td>1mM</td>
</tr>
<tr>
<td>20µM</td>
<td>EDTA</td>
<td>0.1mM</td>
<td>DTT</td>
<td>300µM</td>
</tr>
</tbody>
</table>

2.12 Ammonium Sulphate Precipitation

Saturated ammonium sulphate solution (BDH) was added to cell lysate to a final concentration of 25% and equilibrated with stirring for 15mins. Supernatent was collected after spinning at 12000RCF, 15mins, 4°C and precipitate discarded. Saturated ammonium sulphate solution was added to supernatent to a final concentration of 40% and precipitate collected after spinning as before. Precipitate from 40% cut was resuspended in resuspension buffer and dialysed for 2h in dialysis buffer to reduce salt concentration.
2.13 Anion Exchanger Chromatography

Resuspension Buffer

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>50mM HEPES</td>
<td></td>
</tr>
<tr>
<td>100mM NaCl</td>
<td></td>
</tr>
<tr>
<td>10% Glycerol</td>
<td></td>
</tr>
<tr>
<td>1mM EDTA</td>
<td></td>
</tr>
<tr>
<td>10mM NaF</td>
<td></td>
</tr>
<tr>
<td>10mM β-glycerophosphate</td>
<td></td>
</tr>
<tr>
<td>0.1% Triton X-100</td>
<td></td>
</tr>
<tr>
<td>2mM DTT</td>
<td></td>
</tr>
<tr>
<td>1X PIM</td>
<td></td>
</tr>
</tbody>
</table>

(1X PIM: 20µg/ml leupeptin, 1µg/ml aprotinin, 2µg/ml pepstatin, 1mM benazamidine, 10µg/ml soybean trypsin inhibitor, 2M pefabloc and 0.5M EDTA.)

Resuspension Buffer

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1X PIM replaced with 1mM Benazamidine</td>
<td></td>
</tr>
</tbody>
</table>

2.13 Anion Exchanger Chromatography

A375 cells were lysed in 0.5% Triton mammalian cell lysis buffer. 23mg of lysate was filtered through a 0.4µm syringe filter and loaded onto a HiTrap Q Sepharose HP column (GE Healthcare) pre equilibrated in Buffer A. Column was washed with Buffer A and protein eluted over a 20CV gradient to Buffer B (0.05-1.2M NaCl gradient) followed by a 5CV plateau (1.2M NaCl). 1ml elution fractions were collected.

Buffer A

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>50mM Tris pH8</td>
<td></td>
</tr>
<tr>
<td>0.05mM NaCl</td>
<td></td>
</tr>
<tr>
<td>1mM DTT</td>
<td></td>
</tr>
<tr>
<td>1mM EDTA</td>
<td></td>
</tr>
<tr>
<td>1mM Benazamidine</td>
<td></td>
</tr>
</tbody>
</table>

Buffer B
As Buffer A except 1.2M NaCl

2.14 Acetone Precipitation

4X sample volume of ice cold (-20°C) acetone (300µl fraction, 1.2ml acetone) was added to the sample. Sample was vortexed and incubated for 1 hour at -20°C. After the incubation, the sample was centrifuged at 16000RCF, 10 mins, 4°C and supernatent was removed. Residual acetone was allowed to evaporate at room temperature for 30 mins, following which the sample was resuspended in 60µl 1X sample buffer.

2.15 2D Gel Electrophoresis

2.15.1 Sample Preparation

Cells were rinsed in 250mM sucrose/10mM Tris pH7.5 then lysed in 2D gel lysis buffer (500µl for a 10cm plate) with a 10min incubation on ice. DNA was sheared by passing lysate through a 0.6mm gauge needle until free flowing.

<table>
<thead>
<tr>
<th>2D Gel Lysis Buffer</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8M Urea</td>
<td></td>
</tr>
<tr>
<td>2%(v/v) Triton X-100</td>
<td></td>
</tr>
<tr>
<td>40mM Tris base</td>
<td></td>
</tr>
<tr>
<td>20mg/ml DTT</td>
<td></td>
</tr>
<tr>
<td>1x Protease Inhibitor Mix (PIM)</td>
<td></td>
</tr>
<tr>
<td>few grains bromophenol blue</td>
<td></td>
</tr>
</tbody>
</table>

2.15.2 First dimension: Isoelectric Focusing (IEF)

Sample was loaded onto 7cm pH4-7 IPG strips (GE Healthcare). 40µl of lysate was mixed with 90µl of rehydration buffer and incubated with the IPG strip overnight at room
2.15 2D Gel Electrophoresis

temperature. IEF was carried out on a Multiphor II Electrophoresis system (GE Healthcare). Conditions were:

200V 0.01h
2500V 2800Vh (200V-3500V gradient)
3500V 4200Vh

Rehydration Buffer
8M Urea
0.5%(v/v) Triton X-100
2%(v/v) IPG Buffer
10mM DTT
few grains bromophenol blue

2.15.3 Second dimension: SDS-PAGE

The IPG strip was equilibrated first in equilibration buffer + DTT, then equilibration buffer + iodoacetamide. The IPG strip was then transferred to a single well 10% Tris/glycine minigel and run, transferred and immunoblotted as previously described for SDS-PAGE gels.

2D Gel Equilibration Buffer
6M Urea
50mM Tris pH 8.4
2%(w/v) SDS
30%(v/v) Glycerol
few grains bromophenol blue
either
10mg/ml DTT
or
4mg/ml Iodoacetamide
2.16 Phosphatase Treatment

Experiment carried out by Sarah Meek.

HCT116 cells were harvested and nuclear fraction was extracted: cells were rinsed in 250 mM sucrose/10 mM Tris pH 7.5 and lysed for 10 mins on ice in hypotonic lysis buffer. Lysate was centrifuged 2500g, 5 mins, 4°C and the pellet resuspended in nuclear lysis buffer. This was incubated on ice for 30 mins then spun 13000 RCF, 10 mins, 4°C. Supernatant is the nuclear fraction.

The nuclear fraction was treated with lambda phosphatase 400U, 30 mins, 30°C then separated by 2D gel electrophoresis on a pH3-10NL IPG strip and immunoblotted using anti-IRF-1 (BD biosciences).

Hypotonic Lysis Buffer

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris pH 7.5</td>
<td>10mM</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>1.5mM</td>
</tr>
<tr>
<td>NaCl</td>
<td>10mM</td>
</tr>
<tr>
<td>NP-40</td>
<td>0.5%</td>
</tr>
<tr>
<td>DTT</td>
<td>1mM</td>
</tr>
<tr>
<td>NaF</td>
<td>5mM</td>
</tr>
<tr>
<td>β-glycerophosphate</td>
<td>2mM</td>
</tr>
<tr>
<td>Protease Inhibitor Mix (PIM)</td>
<td>1X</td>
</tr>
</tbody>
</table>

(1X PIM: 20 µg/ml leupeptin, 1 µg/ml aprotinin, 2 µg/ml pepstatin, 1 mM benzamidine, 10 µg/ml soybean trypsin inhibitor, 2 M pefabloc and 0.5 M EDTA.)
Nuclear Lysis Buffer
50mM Tris pH 7.5
10% Glycerol
1.5mM MgCl₂
0.4M NaCl
0.2M EDTA
1mM DTT
5mM NaF
2mM β-glycerophosphate
1X Protease Inhibitor Mix (PIM)
(1X PIM: 20μg/ml leupeptin, 1μg/ml aprotinin, 2μg/ml pepstatin, 1mM benzamidine, 10μg/ml soybean trypsin inhibitor, 2M pefabloc and 0.5M EDTA.)

2.17 Dual Luciferase Reporter Assays

Cells were co-transfected with pcDNA3 IRF-1 or control (pcDNA3.1 empty vector (EV)), pCMV-Renilla/Luc vector as an internal control and either pIRF-E-, pTLR3, pIFNβ-, pCDK2- or -Firefly/Luc. Various ratios of px-Firefly/Luc:pCMV-Renilla were used in order to get optimum signal to noise ratio (Table 2.4. DNA levels were normalised using empty vector. Reporter gene (luciferase) activity was measured 24 hours after transfection using the Dual Luciferase Assay system (Promega) according to manufacturer’s instructions and using a Fluoroskan Ascent F1 luminometer (Labsystems).

<table>
<thead>
<tr>
<th>px-Firefly/Luc</th>
<th>Ratio px-Firefly/Luc: pCMV- Renilla/Luc</th>
</tr>
</thead>
<tbody>
<tr>
<td>pIRF-E</td>
<td>60:1</td>
</tr>
<tr>
<td>pTLR3</td>
<td>7:3</td>
</tr>
<tr>
<td>pIL7</td>
<td>6:1</td>
</tr>
<tr>
<td>pIFNβ</td>
<td>6:1</td>
</tr>
<tr>
<td>pCDK2</td>
<td>10:1</td>
</tr>
<tr>
<td>pMMP9</td>
<td>4:1</td>
</tr>
</tbody>
</table>

Table 2.4: Ratios of px-Firefly/Luc:pCMV-Renilla used for different px-Firefly constructs.
2.18 Geneticin Dose-Response Curves

The dose-response curves for geneticin were determined for cell lines to find the optimum concentration to be used to select for transfected cells containing geneticin-resistance elements in the protein expression vector. Cells were seeded in 6 well dishes and allowed to adhere overnight. A titration of geneticin (Invitrogen) was added to successive wells and the growth of the cells monitored at 3 and 5 days after treatment.

2.19 Clonogenic Assays

2.19.1 Anchorage-dependent Colony Formation Assay

Cells were grown in 6 well plates and transfected with IRF-1 WT or mutant. After 48 hours, cells were trypsinised and seeded into 10cm dishes in appropriate complete medium supplemented with 3% geneticin (Invitrogen) for A375 cells, or 1.5% geneticin for H1299 cells. Medium was changed after 4 days to maintain geneticin selective pressure, and after 10 days, assays were developed. Colonies were washed with PBS and fixed with 100% methanol (-20°C) for 30mins at room temperature. Colonies were then stained with 10% Giemsa stain (diluted in water) for 15mins at room temperature, washed thoroughly and allowed to air-dry. Colony counting and area measurement was performed using Image J software (NIH).

2.19.2 Anchorage-independent Colony Formation Assay

Cells were grown in 6 well plates and transfected with IRF-1 WT or mutant. After 48 hours, cells were trypsinised and 1x10^4 cells were added to 2ml of methylcellulose (R&D systems) in complete MEM (GIBCO) with 3%(A375) or 1.5%(H1299) geneticin (Invitrogen). This was layered onto 2ml of 0.9% Agarose (Invitrogen) in complete MEM also with geneticin in 6 well tissue culture plates. Cells were incubated for 6-8 days to allow colonies to form. Colony counting and area measurement was performed using Image J.
software (NIH).

2.20 Protein Half Life Determination

Cells were grown in 6 well plates and transfected with 1.2µg IRF-1 or mutant. After 24 hours, cells were treated with 30µg/ml cycloheximide and harvested after 0, 15, 30, 45, 60, 75 and 90mins of treatment. Cells were lysed using 0.5% Triton X-100 mammalian cell lysis buffer and half life of IRF-1 visualised by immunoblotting of SDS-PAGE gels using anti-IRF-1 (BD Biosciences). For fractionated half lives, the cells from each time point were harvested, fractionated using Calbiochem ProteoExtract subcellular fractionation kit according to manufacturer’s instructions and visualised as above.

2.21 Inverse Invasion Assays

2.21.1 Setting up Transwells

Transwell inserts (Corning) in 24 well plates were filled with 100µl of ice cold Matrigel (BD) diluted 1:2 with ice cold PBS which was allowed to set for 30mins at 37°C. Transwells were then inverted and 5x10^4 cells in 100µl of complete medium were used to coat the bottom of the filter. Cells were left for 4 hours at 37°C to adhere to the inverted Transwell. Transwells were washed in 2x 1ml serum free medium and then a gradient was prepared by placing the transwell right way up in 1ml serum free medium and pipetting 100µl of complete medium on top of the Matrigel. Plates were incubated for 3 days to allow invasion. Experiment was performed in quadruplicate.

2.21.2 Staining Cells

Cells were stained with Calcein-AM (Invitrogen). 0.5ml of medium containing 4µM Calcein-AM was pipetted into a well, Transwells were placed in the wells and 0.5ml of
4µM Calcein-AM in medium was pipetted on top. Cells and stain were incubated for 1 hour at 37°C before being visualised using a confocal microscope.

2.21.3 Visualising and Quantifying Invasion

Z-sections were scanned at 15µM intervals from the base of the filter using a Leica TCS MP5 confocal microscope. Image J was used to quantify invasion. The total area of stained cells at the confluent monolayer on the filter was designated 100% and the area of stained cells at each z-section was normalised to this. Data was represented as percent of cells invaded through 45µm.

2.22 Cell Cycle Analysis

1x10^6 cells were resuspended in 300µl 50% FBS in PBS and fixed by adding 900µl ice cold 70% ethanol while vortexing then incubating at 4°C for 1 hour. Cells were then washed in 3ml PBS and pellet resuspended in 300µl propidium iodide staining solution and incubated in the dark for 1 hour at 4°C. Samples were then analysed on a FACS Aria II Flow Cytometer (BD Biosciences).

<table>
<thead>
<tr>
<th>Propidium Iodide Staining Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>50µg/ml Propidium Iodide</td>
</tr>
<tr>
<td>100µg/ml RNAse</td>
</tr>
<tr>
<td>diluted in PBS</td>
</tr>
</tbody>
</table>

2.23 Senescence Assay

A senescence-associated β-galactosidase staining kit (NEB) was used as per manufacturer’s instructions.
2.24 Adhesion Assay

Cells were transfected with EV or pcDNA3-IRF-1 WT or T311D/S317D. After 24h, cells were harvested and counted and 100 µl of a suspension of 8 x 10^5 cells/ml of A375 cells placed in wells of a 96 well plate. Cells were allowed to attach for 1h at 37°C, 10% CO_2 then washed twice with PBS, fixed for 15 mins with 50 µl ice cold methanol and stained with 50 µl 10% Giemsa stain for 1h. Cells were washed 5 times with PBS then lysed in 50 µl 0.2% SDS in PBS to solubilise the stain. Absorbance at 595nm was detected as a measure of attached cells.

2.25 Polyclonal Antibody Production and Purification

Antibodies to phosphorylation sites in the C-terminus of IRF-1 were raised in rabbits by Eurogentec using their classic 87-day programme. Antigens were unlabelled phosphorylated peptides (Clonestar).

 anti-p308S DATWLD(Sp)LLTPVR
 anti-p311T WLDSLL(Tp)VRLPS
 anti-p317S TPVRLP(Sp)IQAIPC

Upon receipt of final bleed, antisera was purified first against non-phosphorylated IRF-1 peptide to remove non-phosphospecific IRF-1 antibodies. The flowthrough from this step was then purified against either p308S, p311T or p317S phosphorylated IRF-1 peptide to isolate phosphospecific antibodies.

2.25.1 Purification against non-phosphorylated peptide

0.5 µl of 5mg/ml biotinylated IRF-1 C-terminal peptide (aa301-325) (Chiron Mimotopes) in 200 µl PBS was incubated with 100 µl streptavidin agarose bead slurry (GE Healthcare) for 1 hour at room temperature on a rotating table. Beads were then washed with 3 x 1ml PBS, and 2ml of serum was added to beads. Beads and serum were incubated for 1 hour.
at 4°C on a rotating table. Mix was poured into 1ml mobicol column with 90µm filter (MoBiTec) and the flowthrough was collected.

2.25.2 Purification against phosphorylated peptide

Coupling of peptide to beads

2.5mg of phosphorylated non-biotinylated IRF-1 peptide was added to 0.5ml of CDI-Agarose beads (Pierce) in 0.1M sodium borate buffer (pH9) and mixed overnight at room temperature on a rotating table. Beads were collected by centrifugation (500RCF; 5mins, room temperature), supernatant was removed and 1ml of 1M Tris pH8.8 was added to the beads for 8 hours at room temperature with mixing to quench non-reacted sites. Beads were then washed thoroughly to remove residual peptide (10x 1ml PBS+0.1% Tween-20 (PBS-T).

Sodium Borate Buffer

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1M Boric Acid</td>
<td>45mM NaOH</td>
</tr>
</tbody>
</table>

Purification of antibody

Phosphatase inhibitors (50mM NaF and 50mM β-glycerophosphate) and 50µ of phosphopeptide-coupled beads were added to 2ml of flowthrough from previous purification. Serum and beads were mixed overnight at 4°C, then beads were collected by centrifugation (500RCF, 5mins, 4°C), supernatant was removed and beads were washed 3x 0.5ml PBS-T + phosphatase inhibitors (50mM NaF and 50mM β-glycerophosphate). Phosphospecific antibody was eluted using low pH. Beads were placed in a 1ml mobicol column with 90µm filter (MoBiTec) and 6x 100µl 0.1M glycine pH2.5 was passed over the column. Antibody was collected in 6x low bind tubes (Eppendorf) containing 10µl 1.5M Tris pH8.8 to immediately neutralise the acid.
2.26 ELISA (Enzyme-linked immunosorbant assay)

ELISAs were used to test the specificity of phosphospecific antibodies. 96 well microtitre plates were coated with streptavidin (1μg/well) in 50μl PBS by overnight incubation at 37°C. Wells were washed 3x with 200μl PBS-T (PBS with 0.1%(v/v) Tween-20). Biotinylated peptides (phosphorylated or non-phosphorylated) (Chiron Mimotopes) were bound to streptavidin coated wells. Peptides (in DMSO) were diluted in 50μl PBS and incubated in the wells at the concentrations indicated in the figures for 1 hour at room temperature. Wells were washed again with 3x 200μl PBS-T and non-specific interactions blocked with 200μl 3% BSA/PBS for 1 hour. The peptides were detected with 50μl phosphospecific antibody diluted 1:2000 in 3% BSA/PBS for 1 hour at room temperature. The wells were washed again as above and incubated with 50μl HRP-conjugated secondary antibody diluted 1:1000 in 3% BSA/PBS for 1 hour at room temperature. Wells were washed once more as above and antibody binding was detected using 50μl ECL mix (for recipe see Western Blotting protocol) on a Fluoroskan Ascent FL luminometer (Lab-systems).

2.27 EMSA (electrophoretic mobility shift assay)

DNA binding to various probes was measured using EMSAs.

2.27.1 Probe Sequences

<table>
<thead>
<tr>
<th>Probe</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>GGGCATCGGTCGAAAGTGAAAGTGAAAGTGAGACTCTAGAGGATCCGCT</td>
</tr>
<tr>
<td>ISG15</td>
<td>GATCCTCGGGAAAGGGAAACCGAAACTGAAGCC</td>
</tr>
<tr>
<td>Caspase 8</td>
<td>GATCGTTTTTGTTTCTGTTTACCTTG</td>
</tr>
<tr>
<td>TLR3</td>
<td>GATCGTTTTTGTTTCTGTTTACCTTG</td>
</tr>
</tbody>
</table>
2.27 EMSA (electrophoretic mobility shift assay)

CTTAACAAGTACATTTACTAAGTTGGA

2.27.2 Probe Labelling

Probe was labelled with $[^{32}\text{P}]$ ATP by incubating in Labelling Buffer (see below) for 2 hours at 37°C, then adding 15.5µl TE buffer and 4.5µl KCl and heating to 95°C for 2min. Labelled probe was cooled slowly to room temperature, purified by passing through a Micro-Biospin 30 column (BioRad) and stored at 4°C.

Labelling Buffer

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume (µl)</th>
<th>Concentration (µg/µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6µl 1µg/µl probe (sense)</td>
<td>0.6µl</td>
<td>1µg/µl</td>
</tr>
<tr>
<td>0.6µl 1µg/µl probe (antisense)</td>
<td>0.6µl</td>
<td>1µg/µl</td>
</tr>
<tr>
<td>1µl T4 DNA kinase buffer (NEB)</td>
<td>1µl</td>
<td>T4 DNA kinase buffer (NEB)</td>
</tr>
<tr>
<td>1µl T4 DNA kinase (NEB)</td>
<td>1µl</td>
<td>T4 DNA kinase (NEB)</td>
</tr>
<tr>
<td>0.4µl 10mCi/ml $[^{32}\text{P}]$ ATP</td>
<td>0.4µl</td>
<td>10mCi/ml $[^{32}\text{P}]$ ATP</td>
</tr>
<tr>
<td>10µl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.27.3 Binding and Visualisation

Protein (4-6µl protein-expressing reticulocyte lysate) and DNA were mixed and allowed to bind for 30mins at room temperature in EMSA Reaction Buffer (see below) along with non-specific DNA (see binding mix). After 30mins, DNA loading dye (NEB) was added and complexes were resolved by running on a 6% acrylamide gel (see below) at 35mA for 2.5 hours run in EMSA running buffer (see below). When the gel had finished running, it was dried onto filter paper (80°C, 1 hour) and the locations of probe or probe/protein complexes were visualised using a Storm 840 phosphorimager (Amersham Biosciences) and ImageQuant software. In order to verify IRF-1 binding to the probe, 1µl or as indicated of anti-IRF-1 antibody (BD Biosciences) was added to the reaction mix to supershift IRF-1 containing complexes. Peptide competition EMSAs were also carried out. Here, a titration of IRF-1 C-terminal peptide (Chiron Mimotopes) was added to the reaction mix.
2.27 EMSA (electrophoretic mobility shift assay)

1X Reaction Buffer
- 20mM HEPES pH 7.5
- 50mM KCl
- 5%(v/v) Glycerol
- 4mM DTT
- 0.1mg/ml BSA
- 0.5% Triton X-100

Binding Mix
- 2µl 6x Reaction buffer
- 1µl 1µg/µl p[d(I:C)]
- 0.5µl 1µg/µl salmon sperm DNA
- xµg IRF-1
- 1µl Labelled probe
- 12µl

Acrylamide Gel Mix
- 1X TBE*
- 6%(w/v) Acrylamide Mix
- 0.1%(w/v) APS
- 0.1%(v/v) Triton X-100
- 0.1%(v/v) TEMED

* TBE: 89mM Tris Base; 89mM Boric Acid; 2mM EDTA pH 8.

EMSA Running Buffer
- 1X TBE
- 0.1%(v/v) Triton X-100

2.27.4 Acetylation Reaction

4µl IRF-1-expressing reticulocyte lysate was mixed with 3µl p300-expressing reticulocyte lysate and 2µM acetyl CoA. Mix was heated to 30°C for 10mins to allow acetylation.
to occur, then incubated for 20 mins at room temperature to allow DNA/protein interaction to continue. EMSA then continued as above.

2.27.5 **Statistical Analysis**

The tests indicated in the figure text were carried out using GraphPad or R statistical software.
Chapter 3

Development of Tools to Study the C-terminal Phosphorylation of IRF-1

3.1 Introduction

Interferon Regulatory Factor-1 (IRF-1) has many anti-oncogenic activities, targeting both tumours that are lacking IRF-1, and also non-related tumours. Thus, drugs that activate IRF-1 are clearly going to be useful, however, indiscriminately activating this protein would be illadvised since upregulation of IRF-1 has been linked to various autoimmune disorders including MS [89] and autoimmune manifestations in myelodysplasia [87]. Therefore, investigation into the selective activation of IRF-1 is important to allow development of anti-cancer drugs without auto-immune side-effects.

As a key post-translational modification, phosphorylation is likely to play a role in the regulation of IRF-1. Indeed there is some evidence that this is the case, but detailed investigations have never been pursued. In this chapter, various techniques were used to study the phosphorylation of IRF-1. Two lines of inquiry were pursued: a neutral approach and a targeted approach. The first involved setting up assays to identify IRF-1 kinases in cell lysate with the aim of determining the physiological phosphorylation sites of IRF-1 using mass spectrometry and classifying the kinases. The targeted approach
investigated candidate IRF-1 kinases, identified from binding partner screens or previous work in the laboratory, in an attempt to map phosphorylation sites and the function of such phosphorylations. In parallel, phosphospecific antibodies were raised and validated to study signal-specific, site-specific phosphorylation of IRF-1.

3.1.1 Purification of recombinant IRF-1

In order to study phosphorylation of IRF-1 \textit{in vitro}, purified GST-IRF-1 and His-tagged domains of IRF-1 were used as substrates. In later experiments in this thesis, His-IRF-1 expressed from a pCold vector is used as this system yields undegraded IRF-1 at high levels of purity. The protocols for GST-IRF-1 and His-domain purifications can be found in the materials and methods, but, as an example, the purification of His-IRF-1 from the pCold vector (optimised by Dr. Vikram Narayan) is described here in more detail.

In this system, protein expression is under the control of a cold shock protein promoter containing a lac operator. Thus, the protein is efficiently expressed at low temperatures after induction by IPTG. The use of low temperature protein expression is thought to enhance protein yield by improving solubility. It has been suggested that a reduced translation rate at lower temperatures allows more time for correct folding and also that cold shock inhibits expression of most \textit{E. Coli} proteins thus making more chaperones available for folding the recombinant protein. In addition, low temperatures reduce degradation of proteins by heat shock proteases [148].

As illustrated in Fig 3.1, the pCold-His-IRF-1 plasmid is transformed into BL21-DE3 \textit{E. Coli} cells, and these are grown at 37°C with shaking until they are in the logarithmic phase of growth. This protocol involves a very short protein induction period so the bacteria are grown until they are at a higher density than usual. Therefore there are more bacteria present to produce protein, and in the short incubation, the bacteria do not have time to reach the end of the logarithmic phase.

Once the OD_{600} has reached 0.6, the bacteria are cooled to 15°C for 30 mins. This allows acclimitisation and ensures temperature equilibration throughout the cell suspen-
3.2 IRF-1 as a Kinase Substrate

3.2.1 Cellular Kinases

There is some evidence in the literature that phosphorylation is important for IRF-1 activity and, as described in the introduction, previous work in the Ball laboratory has corroborated this.

At the start of this project, cell lysate was used to show that cellular kinases could phosphorylate IRF-1 directly. Kinase assays using \(\gamma^{[32P]} \)-ATP were set up where incorporation of the labelled phosphate into IRF-1 by phosphorylation is detected using a phosphorimager. GST-IRF-1 was used as a substrate, and phosphorylation of IRF-1 can be seen after incubation with HeLa cell lysate (Fig 3.2A). His-tagged subdomains of IRF-1 had previously been created in the laboratory and these were expected to be a useful tool in narrowing down the phosphorylation sites of specific kinases purified from cell lysate. In order to check that the domains would be substrates for phosphorylation, these were also included in the kinase assay. Interestingly, in cell lysate, the DNA binding domain (amino acids 1-124) in lane 2 is not efficiently phosphorylated whereas the central domain (118-256) in lane 3 (which contains a highly disordered, potentially regulatory, domain) is an excellent substrate (Fig 3.2A).

As a first step towards purification of kinases from cell lysate, an ammonium sulphate
3.2 IRF-1 as a Kinase Substrate

Inoculate culture with pCold-His-IRF-1 expressing bacteria

Grow bacteria at 37°C with shaking until in logarithmic phase of growth (OD$_{600}$ of 0.6)

Incubate at 15°C for 15 mins. Short incubation time allows His-IRF-1 to accumulate but ends before an IRF-1 protease activity is activated

Lyse cells and purify at 4°C on a nickel affinity column

Eluted His-IRF-1 is highly pure and undegraded

Induce protein expression with IPTG

Acclimatise at 15°C for 30 mins

Figure 3.1: Purification scheme for His-IRF-1. Scheme is discussed in detail in the text.
3.2 IRF-1 as a Kinase Substrate

Figure 3.2: IRF-1 is phosphorylated by cellular kinases in vitro. Full length GST-IRF-1 and His-IRF-1 domains 1-124 and 118-256 were purified from E.Coli, then 450 µg of each was incubated with 4 µg of HeLa lysate and γ[^32]P]ATP for 30 mins at 30°C. Phosphorylated GST-IRF-1 and His-118-256 are indicated by arrowheads. His-1-124 was not phosphorylated. (B) To concentrate kinases, an ammonium sulphate fractionation was carried out. Ammonium sulphate was added to lysate to a concentration of 25%, precipitated protein was pelleted and discarded. Additional ammonium sulphate was added to the supernatant up to a concentration of 40%. Precipitated proteins from the 40% cut were collected, resuspended and dialysed to remove salt. (C) The 40% ammonium sulphate cut was used to phosphorylate GST-IRF-1 and His-IRF-1 domains. After concentration of kinases by this method, phosphorylation of His-1-124 IRF-1 was visible in addition to phosphorylation of full length GST-IRF-1 and His-118-236. Data representative of two independent experiments.
precipitation was carried out. This removes denatured proteins and other contaminants, concentrating the native proteins. Preliminary experiments indicated that all IRF-1 kinases were concentrated in the 40% cut. A schematic of the ammonium sulphate precipitation is shown in Fig 3.2B. Briefly, ammonium sulphate is added to the lysate up to a final concentration of 25% (Step 1), after stirring to equilibrate the solution, precipitated denatured proteins/contaminants are collected by centrifugation (Step 2) and discarded (Step 3). The supernatant should contain properly folded, active proteins. These are concentrated by precipitation after addition of ammonium sulphate up to a concentration of 40% (Step 4) and collected by centrifugation (Step 5). These proteins are resuspended in buffer and, after dialysis to reduce salt concentration, are used in the kinase assay (Step 6). The concentration at which the “salting out” occurs depends on the physical characteristics of the proteins, and so no selection for particular attributes other than native conformation is taking place.

After ammonium sulphate precipitation, Fig 3.2C shows that phosphorylation of the DNA binding domain (amino acids 1-124, lane 2) occurs as well as phosphorylation of full length IRF-1 protein (lane 1) and the central domain (118-256, lane 3). Therefore, IRF-1 kinases have been enriched by the ammonium sulphate precipitation.

3.2.2 Purified Kinases

In parallel with setting up the assay to search for cellular kinases, the ability of purified kinases to phosphorylate IRF-1 was investigated. Chk1, previously identified in the laboratory as an IRF-1 kinase was used as a positive control to ensure the assay was working (Fig 3.3A). Chk1 autophosphorylation produces a strong signal which can be seen in the first lane in the absence of IRF-1, however, phosphorylation of IRF-1 by Chk1 can be seen just above the autophosphorylation band (lane 2). Chk1 preferentially phosphorylates sites in the central domain of IRF-1; N-terminal phosphorylation is very weak (lanes 4 & 5).

AMPK (AMP dependent protein kinase) was identified as a binding partner of IRF-1 in a phage display screen (Angeli Moeller, unpublished observations). In this technique,
IRF-1 domains were incubated with a peptide phage display library. The library consists of bacteriophage displaying randomly generated peptide sequences on their surfaces, fused to the N-terminus of a coat protein. After the incubation, unbound phage are then washed away and bound phage are eluted. These phage are amplified in *E. Coli* and again incubated with IRF-1 domains to select for high affinity interactions. The identity of the peptide is determined by sequencing of the peptide/coat protein fusion gene [149].

To determine if AMPK could phosphorylate IRF-1, a kinase assay was performed (Fig 3.3B). AMPK phosphorylates full length IRF-1 (lane 2), the phosphorylation site(s) appears to be in the N-terminal binding domain as there is no incorporation of 32P into the central domain (lanes 5 & 6). Since the AMPK was only partially purified (manufacturers claim 15% purity), various controls were performed to ensure AMPK was responsible for the phosphorylation. First, AMP was omitted from the assay buffer (Fig 3.3B lane 4). In the absence of AMP, without which AMPK cannot function, no phosphorylation is seen. Furthermore, the AMPK inhibitor compound C titratably inhibits the phosphorylation of IRF-1 (Fig 3.3C). Next, 20 amino acid long peptides spanning the IRF-1 DNA binding domain were used to finely map the AMPK phosphorylation sites in IRF-1. *In vitro*, residues between 21-50, 91-110 and 106-124 are phosphorylated (Fig 3.3D). Thus, AMPK appears to be a kinase for IRF-1 *in vitro*.

As a first step towards determining if AMPK was an IRF-1 kinase in cells, A375 cell lysate was fractionated on an anion exchange column, and the fractions assayed for kinase activity against purified IRF-1. The same fractions were probed with an anti-AMPK antibody. As shown in (Fig 3.3E), AMPK co-elutes with cellular IRF-1 kinase activity (fraction 7) implying that it may have a role in IRF-1 regulation in cells.

In summary, in this section, assays were set up to search for kinases that could phosphorylate IRF-1. Using these assays, it was possible to show that cellular kinases can phosphorylate IRF-1 within its N-terminal and central domains, and that AMPK, a binding partner of IRF-1, could be one of these kinases.

At this stage, a decision had to be made about whether to focus on the search for IRF-1 kinases as described above, or on the study of site-specific phosphorylation of IRF-1.
Figure 3.3: IRF-1 is a substrate for purified kinases Chk1 and AMPK. (A) Chk1 phosphorylates IRF-1. 500ng GST-IRF-1, His-IRF-1(1-124) or His-IRF-1(118-256) were incubated with Chk1 and $\gamma^{[32]}P$ATP for 30mins at 30°C. Phosphorylated substrate is indicated by arrowheads. (B) AMPK phosphorylates IRF-1. 1µg GST-IRF-1, His-IRF-1(1-124) or His-IRF-1(118-256) were incubated with 40U AMPK (Upstate) and $\gamma^{[32]}P$ATP for 30mins at 30°C. 300µM AMP (AMPK cofactor) was included in the reaction mix where indicated. Phosphorylated substrate is indicated by arrowheads. (C) Phosphorylation of IRF-1 by AMPK is inhibited by Compound C. As for (B) except that AMPK inhibitor Compound C was included at concentrations indicated. (D) Peptides spanning the IRF-1 DNA binding domain are selectively phosphorylated by AMPK. As for (B) except that 1µg peptide was used as substrate. (E) After anion exchange chromatography, AMPK co-elutes with IRF-1 kinase activity. A375 cell lysate was fractionated on an anion exchange column (HiTrap Q Sepharose HP, GE Healthcare). Alternate fractions were assayed for kinase activity against GST-IRF-1 (as in (A)) and also concentrated by acetone precipitation and probed with anti-AMPK (Millipore). Data representative of (A) one (B) one (C) two (D) two (E) one independent experiments.
described below, which was being pursued concomitantly. Both avenues would have entailed an interesting project, but it was decided that the investigation of site-specific phosphorylation was progressing more rapidly, and so this line of research was continued.

3.3 Phosphospecific Antibodies

3.3.1 Antibody design

IRF-1 is a multidomain protein with complex regulation (Fig 3.4). The Ball laboratory is particularly interested in the C-terminus of IRF-1 and, more specifically, a region within this - the Mf1 domain - which is involved in regulation of steady state levels and transcriptional activity. As described in the introduction, the Mf1 domain is vital to the regulation of IRF-1 activity and the aim of this work is to discover cellular mechanisms involving phosphorylation in the Mf1 domain that contribute to this regulation. To this end, phosphomimetic antibodies were raised to sites in the Mf1 domain. The sites chosen are highlighted in red in Fig 3.4. The LXXLL (cofactor binding) motif at residues 306-310 has been shown to be essential for IRF-1’s growth inhibitory activity [70] and is involved in p300 binding [67]. Thus, the residues Ser308 and Thr311 are likely candidates for sites of phosphorylation that could control binding of factors to this motif. In addition, Thr311 is part of a TP motif, a substrate motif phosphorylated by many kinases including those of the MAPK family. Ser317 was also chosen as it had already been shown in the laboratory that Chk1 phosphorylated this site in vitro.

3.3.2 Antibody production and purification

Phosphospecific antibodies were raised to phosphorylated peptide antigens by Eurogentec using a 3 month immunisation protocol in rabbit. At the end of the protocol, serum was received for purification (Fig 3.5A). A two-step purification scheme was optimised for these antibodies. This is summarised in Fig 3.5B. First, IRF-1 specific but non-phosphospecific antibodies were removed from the antisera by capture on immobilised IRF-1 peptide. The
Figure 3.4: Modular structure of IRF-1. The IRF-1 protein is organised into many domains including a C-terminal multifunctional, multiprotein binding interface (Mf1) which has been shown to regulate both transcriptional activity and steady state levels. Antibodies have been raised to the speculative phosphorylation sites highlighted in red.
3.3 Phosphospecific Antibodies

Flowthrough from this step was then passed over untagged phosphorylated peptide, bound phosphoantibodies were washed and the purified antibody was eluted using low pH. The second step was repeated twice to ensure selection of the correct phosphospecific antibodies.

The success of the purification was tested in a number of ways. First the serum (load - L) which had been loaded on the phosphorylated peptide purification column, and flowthrough (FT), were compared to the elutions (E1-6) on a coomassie stained SDS-PAGE gel. BSA standards were also included to allow estimation of elution concentration. As seen in Fig 3.6A, most of the antibodies in the crude serum do not bind the phosphorylated peptide. Most other contaminants also do not bind the column, and a relatively pure product is collected. The major contaminant runs at the same size as BSA and is likely to be rabbit serum albumin which should not interfere with antibody function. Antibody concentration of E1-3 is an average of 0.4mg/ml.

The progression of the purification can be followed by comparing the specificity of the crude serum to serum after the first step of purification and the fully purified antibody. Fig 3.6B reveals that the first step of purification (removal of IRF-1 specific, non-phosphospecific antibodies) has little effect on the specificity of the serum for the cognate phosphopeptide, while purification of antibody against phosphopeptide greatly enhances specificity. The experiments in Fig 3.6 are useful as a proof of concept but were carried out using phosphoantibodies from a trial immunisation. These were able to recognise the native form of the protein in ELISAs but proved to be unable to detect denatured protein by immunoblot blot. Therefore, new antibodies were produced by the method described in Fig 3.5 and the validation of these will be described next.

3.3.3 Validation of Antibodies

After purification, the antibodies were validated. Phosphospecificity was verified by ELISA: biotinylated phosphorylated (either p308S, p311T or p317S) and non-phosphorylated peptide was immobilised on the plate, and the phosphospecific antibodies were added in the mobile phase. These experiments were only carried out two times as the activity of the
Figure 3.5: Phosphospecific antibody preparation. (A) Production of phosphospecific antibodies. Purified, unlabelled, phosphorylated IRF-1 C-terminal peptides (top panel) were used to induce an antibody response in rabbit. After 3 months and four immunisations, serum containing antibodies was collected. Upon receipt of serum, it was purified as in (B). (B) Crude anti-serum was passed over biotinylated IRF-1 WT peptide immobilised on streptavidin-agarose beads. Non-phosphospecific, IRF-1 specific antibodies were sequestered on the beads, and the flowthrough (containing non-IRF-1 specific and phosphospecific IRF-1 antibodies) was collected. Phosphatase inhibitors (50mM NaF and 50mM β-glycerophosphate) were added to the flowthrough and it was passed over phosphorylated (p308S, p311T or p317S) peptide immobilised on CDI-agarose beads. Bound phosphospecific antibody was washed thoroughly and then eluted using low pH which was immediately neutralised.
Figure 3.6: Antibody purification technique produces highly pure antibody and greatly enhances substrate specificity. (A) Commassie stained SDS-PAGE gel showing efficiency of purification of antibody from antibody serum. Crude antibody serum (L) and flowthrough from phosphorylated peptide purification column (FT) were compared to column elutions (E1-6). Most antibody proteins, and other serum proteins are removed by the purification. A contaminant suspected to be rabbit serum albumin remains. BSA standards are included to allow estimation of purified antibody concentration (B) ELISA was used to observe the progression of antibody purification. Unphosphorylated peptide, and peptides phosphorylated at the indicated site were coated in ELISA plate wells and detected by anti-p311T antibody followed by HRP-conjugated swine anti-rabbit secondary (Dako) and ECL. Detection was normalised to the recognition of the cognate phosphopeptide (p311T). Purification clearly enhances specificity for cognate phosphopeptide. These figures are included as an illustration of the efficiency of the purification process but the antibodies used were found to not be active on western blot and so subsequent figures (except fig 3.8 use a new batch of antibodies. Data representative of a single experiment. Error bars are standard deviation of three repeats.
3.3 Phosphospecific Antibodies

Antibodies became undetectable before a third experiment could be carried out. See below for a discussion on the possible reasons for this. As seen in Fig 3.7A, anti-p308S cannot differentiate between p308S and non-phosphorylated peptide, indicating that phosphospecific antibodies were not present in the antisera. However, both anti-p311T and anti-p317S recognise only the phosphorylated peptide.

Next, the binding of the antibodies to each phosphopeptide was compared. Again, anti-p308S binds non-specifically to each peptide while anti-p311T and anti-p317S both recognise only their cognate phosphopeptide (Fig 3.7B). This confirms that anti-p311T and anti-p317S are each specific for their site of interest and do not simply recognise any phosphorylation in the context of the C-terminus.

Using an ELISA format, the ability of phosphospecific antibodies to detect in vitro phosphorylation of IRF-1 was measured. This experiment, like Fig 3.6 used the first batch of antibodies which were found to not be active on western blot and was only carried out once. Chk1 has previously been shown in the laboratory to phosphorylate the Ser317 site of IRF-1, so IRF-1 phosphorylated by Chk1, and unphosphorylated IRF-1 were coated on an ELISA plate. Protein was detected with anti-p311T, anti-p317S and, as a control, a commercial IRF-1 antibody raised to the C-terminus (Santa Cruz, C20) (Fig 3.8). Detection of phosphorylated IRF-1 compared to unphosphorylated by the commercial antibody is inhibited. This suggests that efficient phosphorylation has taken place, and partially blocks the epitope for this antibody. Detection of phosphorylated protein by anti-p317S exceeded that of the unphosphorylated protein, although there was some background recognition of unphosphorylated protein (according to the peptide ELISAs in Fig 3.7, the new batch of anti-p317S does not recognise unphosphorylated peptide). Anti-p311T antibody has very low recognition of both unphosphorylated and Chk1 phosphorylated protein, as would be expected as neither contain its epitope. However, it does recognise Chk1 phosphorylated protein to a greater extent than unphosphorylated, and in a titratable manner. This could be due to slight non-specificity of the antibody, or to a non-specificity of Chk1 under in vitro conditions resulting in some phosphorylation at the Thr311 site. It will be interesting to see if the recognition of its phosphorylated epitope in the context of the protein is significantly greater than the binding seen here to p317S,
Figure 3.7: Anti-p311T and anti-p317S are specific for their cognate phosphopeptide. (A) To test specificity of antibodies for phosphorylated IRF-1 over non-phosphorylated, a titration of phosphorylated or unphosphorylated biotinylated peptide was bound to streptavidin coated ELISA plate wells. Binding of the phosphospecific antibody to the peptides was detected using HRP-conjugated anti-rabbit secondary antibody (Dako) and ECL. (B) To test specificity of antibodies for their cognate phosphorylation over other C-terminal phosphorylations, a titration of all three phosphopeptides were bound to streptavidin coated ELISA plate wells. Binding of phosphospecific antibody was detected as above. Data is representative of two independent experiments. Error bars are standard deviation of duplicates.
3.3 Phosphospecific Antibodies

but at present, no Thr311 kinases have been validated.

3.3.4 Discovery of Stimulus-Specific Phosphorylation of IRF-1 Using Antibodies

With confidence in the specificity of the anti-p311T and anti-p317S antibodies, they were next used to identify signal specific phosphorylation of IRF-1 by immunoblot (Fig 3.9). Signals that are known to activate IRF-1 (Interferon-gamma (IFN-γ), pIpC and etoposide) were used to treat A375 cells, and the lysates were resolved by SDS-PAGE. After western blotting with the antibodies, a striking increase in phosphorylation can be seen at both the 311T and 317S sites after IFN-γ treatment. IFN-γ treatment also causes an increase in the protein levels of IRF-1 but it is clear that the bands are due to IFN-γ-induced phosphorylation, and not a non-specific signal resulting from the increased IRF-1 levels, as treatment with pIpC induces IRF-1 to a similar extent but no phospho-specific signal is detected by either the anti-p311T or -p317S antibodies. Etoposide (a DNA damage mimetic) treatment results in much lower levels of IRF-1 induction, but it does cause significant phosphorylation at the 317S site.

To confirm that IFN-γ induces phosphorylation of IRF-1, IFN-γ and control treated lysates were separated on a 2D gel and probed with pan-IRF-1 antibody. A 2D gel separates proteins based on charge in addition to the usual separation by weight observed in a 1D SDS-PAGE gel. The sequence of events is illustrated in Fig 3.10A. A sample, for example, cell lysate is first loaded onto an immobilised pH gradient (IPG) strip. After loading, proteins are arranged randomly on the strip (Fig 3.10A, Step 1). Next, an electric field is applied. Proteins have a net positive or negative charge depending on the balance of positively and negatively charged amino acids in their primary structure. At different pH, however, this charge will vary. At acidic pH, proteins carry a more positive charge whereas at basic pH, they carry a more negative charge. Therefore, at a certain pH, each protein will have no net charge - this is known as the pI of the protein. As the current passes through the IPG strip, it moves the protein towards the point on the pH gradient matching the pI. If the protein is, for example, holding a net positive charge, it is in a
Figure 3.8: Recognition of Chk1 phosphorylated protein by phosphospecific antibodies. A titration (50-250ng) of GST-IRF-1 or P-GST-IRF-1 phosphorylated by Chk1 in a kinase assay and 250ng GST were coated onto ELISA plate wells. Protein was detected by commercial IRF-1 antibody (Santa Cruz, C20) (1:1000), anti-p311T and anti-p317S antibodies (1:50) followed by HRP-conjugated swine anti-rabbit antibody (Dako) and ECL. This data is from a single experiment. Error bars are standard deviation of three repeats.
Figure 3.9: Signal specific phosphorylation of IRF-1. A375 cells were treated with the stimuli indicated, and the lysates subjected to SDS-PAGE. Purified recombinant IRF-1 expressed in the E. Coli-based cell free PURExpress system was also included on the gel as a non-phosphorylated control. No GAPDH exists in this system, so no loading control is possible, but total IRF-1 levels were normalised to IFN-γ/pIpC- treated levels. After western blotting, membranes were incubated with either anti-p311T IRF-1, anti-p317S IRF-1 or anti-IRF-1 (BD Biosciences). Membranes were also probed with anti-GAPDH (Abcam) as a loading control. Data representative of three independent experiments.
3.4 Creation and Expression of Phosphomimetic and Non-Phosphorylatable Mutants

region more acidic than its pl, and the current carries it towards the cathode. The pH of
the IPG strip becomes more basic towards the cathode, so eventually the protein reaches
its pl and stops moving as it no longer holds a charge (Fig 3.10A, Step 2). Thus proteins
are separated on the basis of their intrinsic charge. Phosphorylation of a protein confers a
negative charge; as a result, phosphoisoforms of a protein appear nearer the acidic (an-
node) end of the IPG strip. After isoelectric focusing, proteins are denatured and the strip
is loaded directly onto an SDS-PAGE gel for further separation by molecular weight (Fig
3.10A, Step 3).

Due to the induction of IRF-1 protein by IFN-γ, the signal is not comparable, so a
much longer exposure of the control lysate, using ECL+ (Amersham) for enhanced signal
was used. In the presence of IFN-γ, many phosphoisoforms of IRF-1 are apparent. There
is a spread of spots of similar intensity across the immunoblot (Fig 3.9B). By comparison,
in the absence of IFN-γ, IRF-1 appears to exist as a single phosphoisoform. Previous 2D
gel analysis has shown around four isoforms (Fig 1.4), and perhaps if more lysate was
loaded, the additional isoforms would also be seen. It is still clear, however, that IFN-
γ treatment of IRF-1 causes a significant increase in the number of phosphoisoforms of
IRF-1.

3.4 Creation and Expression of Phosphomimetic and Non-Phosphorylatable Mutants

On the basis of the findings in the previous section, a series of mutants were created by
site directed mutagenesis to study the effects of phosphorylation at the relevant sites. The
mutants comprised: T311A, T311D, S317A, S317D, T311D/S317D (Fig 3.11A). The
S/T → D mutation constitutes a phosphomimetic mutation since the negative charge of
the Asp sidechain mimics the effect of addition of a negatively charged phosphate group
to the residue. The S/T → A mutation creates a non-phosphorylatable mutant as alanine
has no hydroxyl group and hence cannot be phosphorylated.

Changes in the Mf1 domain have been shown to affect the steady state levels of IRF-
3.4 Creation and Expression of Phosphomimetic and Non-Phosphorylatable Mutants

Figure 3.10: 2D gel analysis of IRF-1: Effect of IFN-γ treatment. (A) Schematic of 2D gel electrophoresis. Theory is described in detail in the text. Briefly, proteins are loaded onto an immobilised pH gradient (IPG) strip (Step 1) and separated by isoelectric point in the first dimension (Step 2). Phosphorylated proteins, having a more negative charge, have a more acidic pI and migrate further towards the acidic/cathode end of the IPG strip. After separation based on pI, the second dimension separates proteins by weight by conventional SDS-PAGE (Step 3). (B) HeLa cells were treated with IFN-γ or control (0.1% BSA, 40mM Tris pH 7.4). Whole cell lysate analysed by 2D gel electrophoresis followed by immunoblotting with anti-IRF-1 (BD Biosciences). IFN-γ blot exposed for 1 min with ECL, control blot exposed for 1h with ECL+ (Amersham). This data is representative of two independent experiments.
1. The Ball laboratory have previously shown that deletion of the Mf1 domain causes the half life of IRF-1 to more than double, although it is not itself ubiquitinated. It is suggested that the Mf1 domain contains binding sites for components of the ubiquitin pathway which facilitates polyubiquitination of IRF-1 elsewhere. [123]. Phosphorylation in the Mf1 domain could potentially occlude or create a binding site for components of the ubiquitin pathway and thus modulate IRF-1 degradation. For example, for IRF-3, phosphorylation in the C-terminus accelerates degradation [150]. The mutants were designed to study the effects of phosphorylation of IRF-1 on activity, however, differential rates of degradation would pose problems for comparing activity of mutants. Therefore, as a preliminary experiment, the mutants were expressed in the various expression systems expected to be used: mammalian cells, reticulocyte and wheatgerm lysates and bacterial cells, and the expression levels compared. As can be seen from (Fig 3.11B), expression levels are broadly similar.

3.4.1 Half Lives of Phosphomutants

To confirm that phosphorylation at the Thr311 and Ser317 sites does not impact on the stability of IRF-1, the half lives of the phosphomimetic mutants were determined. Initially the half life in whole cell lysate was assayed by cycloheximide chase (Fig 3.12A). As this showed only a small difference in half life between IRF-1 WT and mutants, subcellular fractionation was carried out to determine the half lives in different cellular compartments. An example of the half life of IRF-1 in the cytoplasm and nucleus is shown in Fig 3.12B left and right panels respectively. This experiment has been carried out a number of times, as it is technically challenging, and the half lives of the mutants have never been found to be reproducibly or significantly different (cytoplasm p=0.205, nucleus p=0.915 by one-way ANOVA). Therefore, it seems that although the C-terminus of IRF-1 regulates degradation, phosphorylation at the Thr311/Ser317 sites is not involved in modulation of this. This is advantageous from a practical point of view since expression levels in most systems are, as a result, comparable and minimal normalisation will be required before studying other aspects of IRF-1 activity.
3.4 Creation and Expression of Phosphomimetic and Non-Phosphorylatable Mutants

Figure 3.11: Phosphomimetic and non-phosphorylatable mutants of IRF-1. (A) Phosphomimetic (S/T → D) and non-phosphorylatable (S/T → A) mutants of IRF-1 were created by site directed mutagenesis. (B) top panel Expression of WT IRF-1 and all mutants from pcDNA3 vector in mammalian cells (H1299 cells) resulted in extremely similar expression levels. IRF-1 was detected using anti-IRF-1 (BD biosciences) and GAPDH was detected as a loading control by anti-GAPDH (Abcam). middle panels Expression of IRF-1 WT and phosphomimetic mutants in reticulocyte lysate and WT and T311D/S317D IRF-1 in wheatgerm lysate was also efficient and comparable. lower panel Expression of IRF-1 WT and T311D/S317D from pColdHis vector in E. Coli cells was efficient (as described in Fig 3.1), however, after elution of His-IRF-1 at the end of purification, levels were not so comparable. Protein concentrations were normalised before use in assays. Data representative of two (wheatgerm lysate) or more than three (mammalian cells, reticulocyte lysate and E. Coli) independent experiments.
3.5 Discussion

In summary, in this section, C-terminal phosphorylation of IRF-1 in cells has been shown using phosphospecific antibodies. In response to this, reagents have been developed for mammalian and *E. Coli* expression. These have been used to demonstrate that the C-terminal phosphorylation has no effect on the half life of IRF-1. Thus, it will now be possible to investigate the effects of phosphorylation on IRF-1 transcriptional activity and tumour suppressor functions.

3.5 Discussion

Phosphospecific antibodies have been successfully created to two sites in the C-terminus of IRF-1, namely p311T and p317S. 311T is a TP (common phosphorylation motif) site immediately adjacent to the LXXLL coactivator binding motif and 317S has previously been shown to be phosphorylated *in vitro*. Both sites are within the C-terminal MF1 domain which is a key regulator of steady-state levels and transcriptional activity. The effect of phosphorylation on these attributes is discussed below and in the following chapter.

The phosphospecific antibodies have revealed for the first time that endogenous IRF-1 is a substrate for stimulus-specific phosphorylation at 311T and 317S. Interferon-gamma (IFN-γ) treatment results in phosphorylation at both sites, while etoposide (a DNA damage agent) induces phosphorylation at Ser317 (Fig 3.9).

Although few phosphorylation sites have been experimentally verified for IRF-1, web-based prediction programs suggest IRF-1 is a substrate for many kinases. Fig 3.13 indicates the Ser/Thr/Tyr residues predicted to be substrates for known kinases. Two prediction sites (KinasePhos2.0 and PPSP) even suggest kinases for every phosphorylatable residue within IRF-1.

IFN-γ is an efficient activator of IRF-1 expression and phosphorylation (Fig 3.9). The sequence of events leading to activation of IRF-1 by IFN-γ is shown in Fig 3.14A. Binding of IFN-γ (a homodimer) to two IFNGR1 (IFN-γ receptor 1) results in their dimerisation. This creates binding sites for IFNGR2 subunits, which bind IFNGR1, along with their associated JAK (Janus kinase). The resultant proximity of the JAKs allows auto- and
3.5 Discussion

Figure 3.12: Effects of mutations on half life of IRF-1. (A) H1299 cells were transfected with pcDNA3 IRF-1 WT or mutant. After 24h, they were treated with 30µg/ml cycloheximide and harvested after the intervals indicated. Cells were lysed and lysates subjected to SDS-PAGE/immunoblot using anti-IRF-1 (BD Biosciences). Immunoblots were scanned and densitometry performed using Image J to give values for the intensity of each band which were then graphed. (B) Half life determined as for A except after harvesting, cell lysates were fractionated using Calbiochem ProteoExtract kit. Differences in half lives of mutants are not significantly different: cytoplasm p=0.205, nucleus p=0.915 by one-way ANOVA. Data representative of one experiment for whole cell half-life and three independent experiments for fractionated half-life.
3.5 Discussion

Figure 3.13: Predicted phosphorylation sites of IRF-1. Phosphorylation sites were predicted for IRF-1 using the NetPhos2.0 [151], KinasePhos2.0 [152] and PPSP [153] web-based prediction programs. KinasePhos2.0 and PPSP predicted kinases for all phosphorylatable residues of IRF-1 (red) while NetPhos2.0 predicts phosphorylation of only a subset of these (orange).
trans-phosphorylation and activation of JAK1 and JAK2. (Fig 3.14A, Step 1). Activated JAK1 and JAK2 then proceed to phosphorylate the C-terminus of IFNGR1, creating a binding site for a STAT1 monomer. (Fig 3.14A, Step 2). A STAT1 monomer associates with each IFNGR1 and is phosphorylated by JAKs (Fig 3.14A, Step 3). After phosphorylation, STAT1 monomers dissociate from IFNGR2 and form a homodimer which translocates to the nucleus and activates transcription by binding to a GAS (gamma activated sequence) element in the IRF-1 promoter (Fig 3.14A, Step 4). This is reviewed in [90].

A number of kinases are also activated after IFN-γ treatment (Fig 3.14B). The mechanism by which IFN-γ activates these kinase pathways is not known; Jak kinases could be responsible, or STAT1 activation could result in upregulation of kinase or activator expression. It would be interesting to investigate the effect of inhibition of these kinases during IFN-γ treatment in order to identify the kinases responsible for IRF-1 phosphorylation. As described in the thesis discussion, a literature search has been performed on the Thr311 and Ser317 kinases (predicted by the web-based tools) to find kinases that have been shown to be activated by IFN-γ (Table 6.1).

At this stage, the antibodies would have been used to determine if inhibition of the kinases mentioned above can inhibit IRF-1 phosphorylation at Thr311 or Ser317. Unfortunately, further experiments using the phosphospecific antibodies were not possible as specific binding was rapidly lost. Repurification from stored aliquotted crude anti-sera does not resolve the problem so it must be concluded that the phospho-specific antibodies were only a small subpopulation of the total antibodies in the serum, and that they lost their activity during storage. In keeping with this assumption, a large amount of lysate (80ug) was required to observe phosphorylation.

The antibodies were not isotyped, but it is likely that they were the fairly unstable IgM. Some antigens can only elicit an IgM response, particularly if they are highly conserved, due to lack of T-cell stimulation and so no isotype switching of B cells. Although this is a peptide antibody, the Mf1 domain is highly conserved between humans and rabbits, and as a regulatory region, it is likely to be exposed. Thus it is possible that the antigenic phosphopeptides are viewed as autoantigens and so only IgM antibodies are produced.
Figure 3.14: IFN-γ activates IRF-1 and protein kinases. (A) IFN-γ downstream signalling pathway. 1) Binding of IFN-γ to the IFNGR1 (Interferon-gamma receptor 1) causes multimerisation of receptor subunits resulting in auto- and trans-activation of JAKs (Janus kinases) as a result of their proximity. 2) Activated JAKs phosphorylate IFNGR1 creating a binding site for STAT1 monomers. 3) STAT1 monomers bind phosphorylated IFNGR1 and are phosphorylated by JAKs. 4) Phosphorylated STAT1s form homodimers, translocate the to nucleus and activate transcription by binding GAS (gamma activated sequence) elements, for example in the IRF-1 promoter [90]. (B) IFN-γ is known to activate kinase signalling pathways. IFN-γ treatment has been shown to activate PI3K and Akt [154]. PI3K has also been shown to activate PKCδ in response to IFN-γ treatment [155]. IFN-γ activates Pyk2 which initiates a MEKK4, MKK6, p38 MAPK cascade [156] and IFN-γ activated MEKK1 activates ERK1/2 via MEK1 [157]. These kinases could be involved in the phosphorylation of IRF-1 in response to IFN-γ treatment.
Antibodies can lose activity and stability during storage by a number of processes including deamidation, oxidation and fragmentation. It is possible that some or all of these mechanisms contributed to the loss of activity or stability of the phosphospecific antibodies.

It would also have been very interesting to determine if both the phosphorylation events at 311T and 317S which occur after IFN-γ treatment are to be found on one molecule of IRF-1. To do this, IRF-1 phosphorylated at one site could be extracted from cell lysate using an immobilised phosphospecific antibody, the selected IRF-1 could then be probed with the second antibody and a pan-IRF-1 antibody to see if both sites are simultaneously phosphorylated. If that were the case, a time course of IFN-γ treatment could reveal if one phosphorylation primed for another.

Despite the lack of phosphospecific antibodies, the effects of kinase inhibitors on IRF-1 activity could be assayed in future. In fact, recently, work by Khaldoon Al-Samman in the Ball laboratory using a kinase inhibitor library has found that a number of kinase inhibitors impact on IRF-1’s transactivatory activity. The top hits were a CK2 inhibitor and an EGFR kinase inhibitor. These leads are promising as CK2 has already been shown to phosphorylate IRF-1 and activation of EGFRs activate IRF-1. Furthermore, CK2 has been shown to be activated by IFN-γ, although it is not predicted to phosphorylate IRF-1 at Thr311 or Ser317. If other kinases implicated have been shown to be activated by IFN-γ treatment, kinase assays using WT protein and non-phosphorylatable mutants could be carried out to interrogate their importance at the IFN-γ induced phosphorylation sites.

Further work could then investigate the effects of the kinases/kinase inhibitors on the cellular activity of IRF-1. A little work has been done looking at the effect of inhibitors on protein levels of IRF-1 downstream targets likely to be affected by IFN-γ such as PKR and Cdk2. So far, no effects have been seen, but optimisation of inhibitor concentrations may yield results.

A more effective approach could be to use a focused microarray to look at the effects of specific kinase inhibitors on the mRNA transcript levels of a large number of genes in
IRF-1 associated pathways. It would be important in this case to be able to verify that the effects were due to altered IRF-1 activity and not effects on other transcription factors.

Although the phosphomimetic mutations at the IFN-γ-stimulated phosphorylation sites did not have any effect on half life on the protein, it may have effects on the activity of the protein, without changing steady state levels. This would agree with the nanobody data that indicates that the C-terminus of IRF-1 is rate-limiting for activity and imposes a negative regulation that can be released by interventions such as antibody binding or potentially phosphorylation. This is investigated in the following chapter.

In conclusion, this chapter has described the development of a number of tools to study the role of phosphorylation in regulating IRF-1 activity. Kinase assays were set up to allow identification of cellular kinases with activity against IRF-1, and to allow validation of kinases found as binding partners of IRF-1. Phosphospecific antibodies were produced and were used to discover stimulus-specific phosphorylation of endogenous IRF-1 at Thr311 and Ser317. IFN-γ and DNA damage response pathways were identified as physiological signalling pathways upstream of these phosphorylation sites. Following this, phosphomimetic and non-phosphorylatable mutants of IRF-1 were created by site-directed mutagenesis. Expression of the mutants has been tested in various environments, and their comparable stability confirmed. These will be used in subsequent chapters to investigate the effect of phosphorylation of IRF-1 on activity.
Chapter 4

Effects of C-terminal phosphorylation of IRF-1 on transcriptional activity

4.1 Activity of Phosphomimetic Mutants in Reporter Assays

4.1.1 Introduction

As a transcription factor, IRF-1 regulates the expression of many downstream genes involved in a wide variety of pathways such as immune response, cell cycle control and tumour suppression. To ensure these genes are only switched on/off under the appropriate conditions, IRF-1 must be strictly regulated, however, it is not known what form this regulation takes.

On the basis of the stimulus-specific phosphorylation discussed in the previous chapter, the series of mutants described were used to study the effects of phosphorylation at these sites. The results below indicate that phosphorylation could be one form of post-translational regulation affecting IRF-1 activity.
4.1.2 Comparison of Transactivatory Potential of Phosphomimetic Mutants

The transactivatory potential of IRF-1 phosphomimetic mutants was measured using the dual luciferase reporter assay system. As this system uses live cells to provide the necessary transcriptional machinery, there is the potential for other transcription factors to interact with the promoter being studied. To minimise the possibility of this happening, a very specific synthetic minimal IRF-1 promoter was used (IRF-E). To test the specificity of the minimal promoter, IRF-3, another member of the IRF family was used as a control since the IRF family all have highly conserved DNA binding domains and thus very similar recognition sequences [160]. As shown in Fig 4.1A, when H1299 cells were transfected with the IRF-E-luciferase construct, and a titration of IRF-1 or IRF-3, there is no activity at the promoter in the absence of transfected IRF-1 and IRF-3 cannot activate the promoter but IRF-1 gives a titratable response.

Having established the specificity of the promoter construct, it was initially used to check that the activity was a product of DNA binding. H1299 cells were again transfected with IRF-E-luciferase and a titration of IRF-1 WT or IRF-1 W11R. IRF-1 W11R has previously been shown to lack DNA binding ability [161]. No activity was seen with the W11R mutant, but again, IRF-1 gives a titratable response (Fig 4.1B).

Next, the IRF-E promoter was used to compare the activity of IRF-1 WT to the phosphomimetic mutants described in the previous chapter. When the three mutants were titrated into H1299 cells, IRF-1 WT and IRF-1 T311D activities were similar while all mutants showed higher activity than IRF-1 WT (Fig 4.2A), with the dual phosphomimetic mutant IRF-1 T311D/S317D having the highest activity; on average 5x greater than WT when 400ng protein is transfected. Under these conditions, it seems that the S317D mutation is dominant as this mutant’s activity is most similar to IRF-1 T311D/S317D (10x greater than WT activity at 400ng protein transfected), although the T311D mutation still contributes some activity.

Transcription factors can work both by binding directly to DNA and modulating transcription, or by affecting another transcription factor bound to the promoter. To confirm
4.1 Activity of Phosphomimetic Mutants in Reporter Assays

Figure 4.1: Verification of IRF-E promoter. (A) H1299 cells were transfected with pcDNA3 EV (200ng) or a titration of pcDNA3-IRF-3 or IRF-1 WT (as indicated). 50ng IRF-E-luc reporter plasmid and 0.833ng control CMV-Renilla-luc was co-transfected. After 24h, reporter gene activity was measured in relative light units (RLU) and normalised to CMV-Renilla-luc activity. Results are expressed as mean +/- half the range for duplicate experiments. Expressed proteins were detected by SDS-PAGE/immunoblot using anti IRF-1 (BD Biosciences), anti-IRF-3 (NEB) and anti-GAPDH (Abcam) as a loading control. (B) H1299 cells were transfected with 400ng pcDNA3 EV or a titration of pcDNA3-IRF-W11R or IRF-1 WT (as indicated). Luciferase reporter transfection, measurement of activity and detection of protein were as in (A). Black line indicates lanes run at same time but not adjacent. Data representative of (A) a single experiment (B) two independent experiments.
that this assay was looking at DNA binding to the IFR-E and therefore the direct effects of IRF-1, a reporter assay was set up using the DNA-binding-dead W11R mutant in both IRF- WT and T311D/S317D backgrounds. Fig 4.2B clearly demonstrates that the DNA binding ability of IRF-1 is absolutely required for activity of both IRF-1s at this promoter and the enhanced activity of the mutant requires DNA binding.

The activities of the phosphomimetic mutants (T311D, S317D, T311D/S317D) were compared across cell lines and with a set of non-phosphorylatable mutants where Ser or Thr was replaced with Ala (T311A, S317A) (Fig 4.3A&B). It is interesting to note that there may be a difference in relative activities between cell lines. In H1299 cells (Fig 4.3A), IRF-1 T311D/S317D has the highest activity, followed by IRF-1 S317D then IRF-1 T311D and WT which have the lowest activity. In contrast, in A375 cells (Fig 4.3B), IRF-1 WT and T311D/S317D activities appear to be more similar, while the single mutants have higher activities. The comparison has only been performed once for the single mutants and twice for IRF-1 WT and T311D/S317D but differences in relative activities between cell lines are perhaps not surprising, as different cell lines will have different co-factor expression, and will be preferentially expressing a different subset of genes.

The non-phosphorylatable mutants (T/S-A) were included to give more insight into how the phosphomimetic mutations enhance the activity of IRF-1. For example, in H1299 cells (Fig 4.3A), T311D activity is the same as T311A. An explanation for this is that phosphorylation could block a binding site for repressor proteins that requires the presence of the Thr residue, so substituting T311A has a similar blocking effect. Conversely, S317D has higher activity than S317A (S317A is similar to WT). This suggests that phosphorylation creates a binding site, or causes a conformational change specific to the phosphorylation, and S317A cannot substitute.

4.1.3 Activity at naturally occurring promoters

As the previous experiments were all performed using the minimal promoter (IRF-E), the next step was to confirm if the same effects are seen at naturally occurring IRF-
Figure 4.2: Phosphomimetic mutations of IRF-1 enhance transcriptional activity at the IRF-E promoter in a DNA-binding-dependent manner. (A) H1299 cells were transfected with pcDNA3 EV or a titration of pcDNA3-IRF-1 WT, T311D, S317D or T311D/S317D. 50ng IRF-E-luc reporter plasmid and 0.833ng control CMV-Renilla-luc was co-transfected. After 24h, reporter gene activity was measured in relative light units (RLU) and normalised to CMV-Renilla-luc activity. Results are expressed as mean +/- half the range for duplicate experiments. Expressed proteins were detected by SDS-PAGE/immunoblot using anti IRF-1 (BD Biosciences), and anti-GAPDH (Abcam) as a loading control. Significant differences between activities by randomised block ANOVA followed by Tukey’s test are indicated. (** p=<0.01, *** p=<0.001) (B) As for (A) except that pcDNA3 EV or IRF-1 W11R-WT or IRF-1 W11R D/D was transfected. Data representative of two independent experiments for (A) and (B).
4.1 Activity of Phosphomimetic Mutants in Reporter Assays

Figure 4.3: Activity of phosphomimetic and non-phosphorylatable mutants may be cell line dependent. (A) H1299 cells were transfected with pcDNA3 EV or a titration of pcDNA3-IRF-1 WT, T311A, T311D, S317A, S317D or T311D/S317D. 50 ng IRF-E-luc reporter plasmid and 0.833 ng control CMV-Renilla-luc was co-transfected. After 24 h, reporter gene activity was measured in relative light units (RLU) and normalised to CMV-Renilla-luc activity. Results are expressed as mean +/- half the range for duplicate experiments. Expressed proteins were detected by SDS-PAGE/immunoblot using anti IRF-1 (BD Biosciences), and anti-GAPDH (Abcam) as a loading control. Significant differences between activities by randomised block ANOVA followed by Tukey’s test are indicated. (**) p = <0.01, (***) p = <0.001. (B) as for (A) using A375 cells. Data are representative of (A) five independent experiments for phosphomimetic mutants and three independent experiments for non-phosphorylatable mutants (B) data from a single experiment for single mutants and representative of two independent experiments for IRF-1 WT and T311D/S317D. Black line indicates lanes run at same time but not adjacent.
1-responsive promoters. TLR3 is a well characterised target for IRF-1 with an IRF-1 responsive element located at -97 → -89, very close to the transcription start site [95]. When the hTLR3 promoter was transfected into H1299 cells, it showed a much higher background activity than the artificial promoter, possibly due to background activity of other transcription factors. The construct comprises -588 → +12 and contains potential binding sites for other transcription factors such as Sox, STAT1, Ets etc., but has been shown to be highly inducible by IRF-1 [95]. However, the general pattern of activity in H1299 cells was the same as for the IRF-E, with IRF-1 WT having the lowest, and T311D/S317D having the highest activity (Fig 4.4A). As a result of this, for simplicity, IRF-1 WT and T311D/S317D were chosen to examine the effects at other promoters.

IL7 is a cytokine functioning within the intestinal mucosa, involved in immune regulation. The IL7 promoter contains an IRF-E which is required for constitutive activity, regulated by IRF-2, and inducible activity in response to IFN-γ-induced IRF-1 [147]. IFN-β is involved in regulating immune responses to virus infection. The IFN-β promoter was, in fact, the first promoter shown to be IRF-1-responsive [1].

Titration of IRF-1 WT and T311D/S317D into H1299 cells co-expressing the IL7 and IFN-β promoter reporter constructs again reveals enhanced activity of T311D/S317D IRF-1 at these promoters, although this is less striking that at the IRF-E promoter. At the IL7 promoter, mutant IRF-1 is, on average, 1.6x more active, while at the IFN-β promoter, 1.8x more active. In both cases, this activity is dependent on DNA binding as the activity of the W11R mutants is similar to background. There is more obvious background activity at each of these promoters than at the IRF-E promoter. For the IL7 promoter, this is probably due to endogenous IRF-2 [147] and at the IFN-β promoter, NF-κB or ATF-2/c-jun whose binding sites are also within the promoter construct [130] (Fig 4.4B&C).

The promoters described above are all from immune related genes, and as IRF-1 activity is increased by the phosphomimetic mutation at all these promoters, it appears that immune related stimuli could act as a signal to upregulate IRF-1 activity by its C-terminal phosphorylation. This is particularly relevant as IFN-γ originally induced the phosphorylation at these sites, prompting further investigation using phosphomimetic mutants.
4.1 Activity of Phosphomimetic Mutants in Reporter Assays

Figure 4.4: Activity at naturally occurring IRF-1 activated promoters. (A) H1299 cells were transfected with a titration of pcDNA3-IRF-1 WT or mutant. 70ng TLR3-luc reporter plasmid and 30ng control CMV-Renilla-luc was co-transfected. Data representative of three independent experiments. (B and C) H1299 cells were transfected with a titration of pcDNA3-IRF-1-WT or -T311D/S317D. 100ng IL7-luc (B) or IFN-β-luc (C) and 50ng control CMV-Renilla-luc was co-transfected After 24h, reporter gene activity was measured in relative light units (RLU) and normalised to CMV-Renilla-luc activity. Results are expressed as mean +/- half the range for duplicate experiments. Expressed proteins were visualised by SDS-PAGE/immunoblot using anti IRF-1 (BD Biosciences) and anti-GAPDH (Abcam) as a loading control. Data representative of three independent experiments for (A), (B) and (C). Significant differences between activities by randomised block ANOVA followed by Tukey’s test are indicated. (* p=<0.05, ** p=<0.01).
To be sure that the enhanced activity at the immune related promoters is not due to a non-specific enhanced activity of the IRF-1 T311D/S317D mutant, unrelated promoters were assayed. Cdk2 and MMP9 promoter constructs were chosen as IRF-1 represses these promoters, so the effects of MF-1 domain phosphorylation on IRF-1 repressor activity could be studied. Cdk2 is a cyclin dependent kinase which has previously been shown to be repressed by IRF-1. The mechanism of repression has been shown to be through inhibition of Sp1 activation of this promoter [32]. This study implied that the inhibition of Cdk2 is not through direct promoter binding of IRF-1, however, studies from our lab have shown that repression of Cdk2 requires DNA binding of IRF-1 since a DNA-binding refractive mutant IRF-1-YLP/A cannot repress the Cdk2 promoter [70]. EMSAs using a Cdk2 promoter probe would constitute a simple experiment to directly assess the binding of IRF-1 to the Cdk2 promoter, and the effect of IRF-1 on Sp1 binding.

MMP9 is a matrix metalloprotease involved in extracellular matrix degradation; it is overexpressed in many human cancers. IRF-1 mediates interferon-induced inhibition of MMP9 expression through competition with NF-κB for promoter binding [45].

When IRF-1 was titrated into H1299 cells co-expressing the Cdk2 or MMP9 promoters, activity at these promoters is inhibited. Interestingly IRF-1 WT and T311D/S317D both inhibit the promoters to the same extent - around a 4 fold inhibition at 200ng of protein for the Cdk2 promoter, and 2 fold inhibition at 200ng for the MMP9 promoter (Fig 4.5A&B). Amino acids 301-314 of IRF-1 have been shown to be required for inhibition of Cdk2. Thus, it would be interesting to determine the effect of the T311D mutation alone on repression.

These data indicate that the effect of phosphorylation on IRF-1 activity is a promoter specific, and therefore likely regulatory effect. It seems unlikely, therefore, that the mutations could be causing a gross, non-physiological change that indiscriminately affects IRF-1 activity.
4.1 Activity of Phosphomimetic Mutants in Reporter Assays

Figure 4.5: Activity at naturally occurring IRF-1 repressed promoters. (A) H1299 cells were transfected with a titration of pcDNA3-IRF-1 WT or mutant. 100ng Cdk2-luc reporter plasmid and 10ng control CMV-Renilla-luc was co-transfected. (B) H1299 cells were transfected with a titration of pcDNA3-IRF-1-WT or mutant. 100ng MMP9-luc and 25ng control CMV-Renilla-luc was co-transfected. After 24h, reporter gene activity was measured in relative light units (RLU) and normalised to CMV-Renilla-luc activity. Results are expressed as mean +/- half the range for duplicate experiments. Expressed proteins were visualised by SDS-PAGE/immunoblot using anti IRF-1 (BD Biosciences) and anti-GAPDH (Abcam) as a loading control. No significant difference between IRF-1 WT and T311D/S317D was found at any DNA concentration for either promoter by randomised block ANOVA. Data representative of three independent experiments for (A) and (B).
4.2 Effect of phosphomimetic mutations on the DNA-binding capacity of IRF-1

4.1.4 Repression of IRF-1 WT and T311D/S317D by IRF-2

The activity of IRF-1 is repressed by IRF-2 [2]. The enhanced activity of IRF-1 T311D/S317D may be linked to an ability to escape this repression, therefore, the effect of IRF-2 co-expression on IRF-1 WT and T311D/S317D activity was investigated.

A titration of IRF-2 was co-transfected with constant (200ng) IRF-1 WT and T311D/S317D. The effect was compared in H1299 and HeLa cells and at the IRF-E and TLR3 promoters. In these cells, at these promoters, there was no significant difference between IRF-1 WT and T311D/S317D. When using the TLR3 promoter, the amount of IRF-1 T311D/S317D transfected was reduced in an attempt to normalise the IRF-1 WT and T311D/S317D activities in case the higher activity of T311D/S317D made it less susceptible to inhibition by IRF-1. Despite this, no significant difference in activity was observed. The data is shown as a bar graph of activity to represent absolute inhibition, and also as a line graph of activity normalised to -IRF-2. This more clearly visualises the inhibition (Fig 4.6A&B).

Since the activity of IRF-1 T311D/S317D is significantly higher than that of WT, the amount of IRF-1 T311D/S317D transfected was reduced in an attempt to normalise IRF-1 WT and T311D/S317D promoter activities to see if this might accentuate the effect. The TLR3 promoter was also used, as previous lab members had seen inhibition of IRF-1 activity by IRF-2 at this promoter. These changes enhance the difference between IRF-1 WT and T311D/S317D inhibition by IRF-2 in both HeLa and H1299 cells (Fig 4.6C&D).

4.2 Effect of phosphomimetic mutations on the DNA-binding capacity of IRF-1

4.2.1 Introduction

The enhanced transactivatory potential of the IRF-1 phosphomimetic mutants may be a result of improved DNA binding caused by the mutation. To determine if this is the
4.2 Effect of phosphomimetic mutations on the DNA-binding capacity of IRF-1

Figure 4.6: Inhibition of IRF-1 WT and T311D/S317D by IRF-2. H1299 (A)&(C) and HeLa (B)&(D) cells were transfected with 200ng pcDNA3-IRF-1 WT or 200 ng (A)&(B) or 100ng (C)&(D) IRF-1 T311D/S317D. (A)&(B) 50ng IRF-E-luc reporter plasmid, 0.835ng control CMV-Renilla-luc and a titration of pcDNA3-IRF-2 was co-transfected. (C)&(D) 70ng TLR3-luc, 30ng control CMV-Renilla-luc and a titration of pcDNA3-IRF-2 was co-transfected. After 24h, reporter gene activity was measured in relative light units (RLU) and normalised to CMV-Renilla-luc activity. Results are expressed as mean +/- half the range for duplicate experiments. Lower graph displays activity normalised to activity in absence of IRF-2. Expressed proteins were visualised by SDS-PAGE/immunoblot using anti IRF-1 (BD Biosciences), anti-IRF-2 (Abcam) and anti-GAPDH (Abcam) as a loading control. No significant difference between inhibition of IRF-1 WT and IRF-1 T311D/S317D was observed by randomised block ANOVA. Data representative of three independent experiments for (A), (B), (C) and (D).
4.2 Effect of phosphomimetic mutations on the DNA-binding capacity of IRF-1

In the case, gel shift assays were carried out using IRF-1 expressed in reticulocyte lysate. In a gel shift assay, protein is incubated with 32P-labelled DNA probe, and protein/DNA complexes are allowed to form. As a control, antibody can be included in the mix. The protein/DNA/(antibody) mix is then run on a native gel to maintain complexes. Separation occurs based on weight so the free probe runs furthest, then the probe with protein bound higher up the gel (it is "shifted") and finally the DNA/protein/antibody complex runs near the top of the gel (it is "supershifted"). The presence of these three complexes is detected by phosphorimager analysis of the gel allowing detection of the 32P-labelled DNA probe.

4.2.2 Relative binding affinities

Initially, binding of IRF-1 WT and phosphomimetic mutants IRF-1 T311D/S317D, T311D and S317D at the optimised C1 probe [162] (Fig 4.7A) was compared. The assays were optimised and carried out in an excess of free probe, however, only the top portion of the phosphorimage is shown. From Fig 4.7B (left panel), it appears that all the mutants bind DNA with higher affinity than IRF-1 WT, however, the difference is quite subtle, especially after supershift. Due to the presence of a non-specific band running with the non-supershifted IRF-1/DNA complex (see control, lane 1), it is easier in this instance to compare the binding of the supershifted complexes. Using densitometry, the difference in binding between IRF-1 WT and IRF-1 T311D and S317D was found to be reproducible but not significant across three experiments. The enhanced binding of IRF-1 T311D/S317D compared to IRF-1 WT, is however, significant (data from nine experiments), reflecting enhanced affinity or stability of the DNA/protein complex. Further experiments have shown a larger difference in the binding of IRF-1 WT and T311D/S317D (for example Fig 4.7B right panel) and, on average, the binding of IRF-1 T311D/S317D is 1.7x more stable than IRF-1 WT.

The difference in IRF-1 WT and T311D/S317D DNA binding is titratable (Fig 4.7B (right panel)). In this case, IRF-1 T311D/S317D binds with an average of 2.3 times more affinity/stability across the three points of the titration.
4.2 Effect of phosphomimetic mutations on the DNA-binding capacity of IRF-1

Figure 4.7: Comparison of IRF-1 mutants binding to C1 promoter. (A) Sequence of C1 promoter with the 4 tandemly arranged hexamer repeats highlighted. (B) Left panel: Binding of IRF-1 and mutants to C1 probe. IRF-1 WT, T311D/S317D, T311D and S317D were expressed in reticulocyte lysate and 32P-labelled C1 probe binding to 6µl of lysate was determined by EMSA (Lanes 3, 5, 7 and 9). IRF-1-DNA complex is supershifted by anti-IRF-1 antibody (BD Biosciences) (Lanes 4, 6, 8 and 10). Expression levels of all four IRF-1 constructs was visualised by immunoblotting using anti-IRF-1 (Santa Cruz, C20). Difference between IRF-1 WT and IRF-1 T311D/S317D binding is significant (** p<0.01 by paired t-test). Right panel: DNA binding of IRF-1 WT and T311D/S317D is titratable. 2, 6 and 12µl of reticulocyte lysate expressing indicated IRF-1 construct was incubated with 32P-labelled C1 probe. IRF-1-DNA complex is supershifted by anti-IRF-1 (Santa Cruz). Expression levels of proteins as for left panel. Data representative of: (B) left panel three experiments for all mutants and nine experiments for IRF-1 WT/IRF-1-T311D/S317D comparison and (B) right panel one experiment.
4.2 Effect of phosphomimetic mutations on the DNA-binding capacity of IRF-1

4.2.3 Mechanism of DNA Binding

To investigate the mechanism of the enhanced DNA binding of IRF-1 T311D/S317D further, an IRF-1 WT C-terminal peptide (last 20 amino acids of IRF-1) was titrated into the EMSA as a competitor. It was hoped that this would help distinguish between different mechanisms.

Four potential mechanisms of enhanced DNA binding were considered. These mechanisms are illustrated in Fig 4.8, along with the effects of addition of the peptide.

One possibility is that a negative charge in the C-terminus could enhance a conformational regulation that has a positive effect on DNA binding (Fig 4.8A). IRF-1 could exist in an equilibrium between a less favourable DNA binding conformation (for example, with the C-terminus free) (light blue), and a more favourable DNA binding conformation (for example, with the C-terminus bound to an acceptor site elsewhere in the protein) (dark blue). If this was mediated by an intramolecular interaction between the C-terminus (black line) and a C-terminus binding site (purple spot), phosphorylation could enhance this interaction by increasing its affinity. Thus the equilibrium would change such that almost all the protein is in the favourable DNA binding conformation. If this was the case, addition of WT C-terminal peptide (green line) to the mix would inhibit DNA binding of WT IRF-1. The peptide is identical to the IRF-1 WT C-terminus and thus has similar affinity for the acceptor site. Therefore, the peptide will compete with the C-terminus for binding to the acceptor site, and shift the equilibrium further to the side of the less favourable DNA binding conformation.

For IRF-1 T311D/S317D, the equilibrium is far to the side of the favourable DNA binding conformation (due to the proposed high affinity interaction between the negatively charged C-terminus and the acceptor site). When the peptide is added, little protein is in the less favourable DNA binding conformation with the acceptor site exposed for binding to the peptide, and the peptide also has a lower affinity for the acceptor site than does the phosphoprotein’s C-terminus, so will be less likely to bind. In this case, there will be some inhibition of DNA binding as a small proportion of the protein is held in the less favourable DNA binding conformation by binding of the peptide; however, it will be
4.2 Effect of phosphomimetic mutations on the DNA-binding capacity of IRF-1

Figure 4.8 (following page): Four potential mechanisms of enhanced IRF-1 T311D/S317D DNA binding compared to IRF-1 WT and effect of peptide competition with on DNA binding.

(A) **Negative charge in the C-terminus enhances a conformational positive regulation.** Favourable (dark blue) and less favourable (light blue) DNA binding conformations for IRF-1 exist in equilibrium. This is mediated by a positive regulatory intramolecular interaction between the C-terminus (black line) and a C-terminus binding site (purple spot). Negative charge in the C-terminus (phosphorylation or S/T→D mutation) increases the affinity of the interaction, stabilising the favourable DNA binding conformation (dark blue), thus enhancing DNA binding of IRF-1 T311D/S317D. *Effect of addition of IRF-1 C-terminal peptide:* For IRF-1 WT, peptide and protein C-terminus have the same affinity for the C-terminus binding site. Peptide competes for binding to this site, and more protein adopts the unbound, less favourable DNA binding (light blue), resulting in inhibition of DNA binding. For IRF-1 D/D, peptide cannot compete as effectively with the high affinity intramolecular interaction, and IRF-1 D/D DNA binding is less affected.

(B) **Negative charge in the C-terminus releases a conformational negative regulation.** Favourable (dark blue) and less favourable (light blue) DNA binding conformations for IRF-1 exist in equilibrium. This is controlled by a negative regulatory interaction between the C-terminus (black line) and a C-terminus binding site (purple spot). A negative charge in the C-terminus interferes with the negative regulatory interaction, thus enhancing the DNA binding of IRF-1 T311D/S317D. *Effect of addition of IRF-1 C-terminal peptide:* The peptide will have different effects, depending on whether the favourable DNA conformation results from the C-terminus binding site (purple spot) being free (1) or the C-terminus (black line) being free (2). For IRF-1 WT, if free C-terminus binding site induces the favourable DNA binding conformation (1), peptide occupies the C-terminus binding site and maintains the less favourable DNA binding conformation, resulting in inhibited DNA binding. In contrast, if free C-terminus is required for favourable DNA binding (2), peptide binds the C-terminus binding site, resulting in more free C-terminus and therefore enhanced DNA binding. For IRF-1 T311D/S317D, the effects are very similar except that for situation (2), since the negatively charged C-terminus already interacts less with the binding site, peptide competition results in a smaller increase in DNA binding.

(C) **Negative charge in the C-terminus enhances binding of a positive cofactor.** Binding of a positive cofactor at the C-terminus of IRF-1 enhances DNA binding. In the absence of C-terminal phosphorylation, little co-factor (navy circle) binds and IRF-1 is in a less favourable DNA binding conformation (light blue). Negative charge creates a superior co-factor binding site, and enhanced co-factor interaction results in more IRF-1 in a favourable DNA binding conformation (dark blue). *Effect of addition of IRF-1 C-terminal peptide:* For IRF-1 WT, peptide and real C-terminus have the same affinity for the cofactor so peptide competes with IRF-1 and DNA binding is inhibited. For IRF-1 T311D/S317D, the negatively charged IRF-1 C-terminus has a higher affinity for the co-factor and so peptide competes less efficiently resulting in less inhibition of DNA binding.

(D) **Negative charge in the C-terminus inhibits binding of a negative cofactor.** Binding of a negative cofactor (purple circle) at the C-terminus of IRF-1 inhibits DNA binding. In the absence of phosphorylation, co-factor binds tightly so IRF-1 maintains a less favourable DNA binding conformation (light blue). Negative charge repels the negative cofactor, resulting in more IRF-1 in a favourable DNA binding conformation (dark blue). *Effect of addition of IRF-1 C-terminal peptide:* For IRF-1 WT, peptide and IRF-1 C-terminus have the same affinity for the negative co-factor; peptide competes with IRF-1 for co-factor binding resulting in more IRF-1 in the favourable DNA binding conformation. For IRF-1 T311D/S317D, less co-factor binds already, so although the peptide competes with IRF-1 for co-factor binding, the increase in DNA binding is less obvious.
4.2 Effect of phosphomimetic mutations on the DNA-binding capacity of IRF-1

A: Negative charge enhances a conformational positive regulation

- Favourable DNA binding conformation
- Less favourable DNA binding conformation

After addition of peptide:

- Favourable DNA binding conformation
- Less favourable DNA binding conformation

B: Negative charge releases a conformational negative regulation

- Favourable DNA binding conformation
- Less favourable DNA binding conformation

After addition of peptide:

- Less favourable DNA binding conformation
- Or
- Less favourable DNA binding conformation as binding site contacted
- Or
- Favourable DNA binding conformation as C-terminus is free

C: Negative charge enhances binding of a positive co-factor

- Without co-factor bound
- Less favourable DNA binding conformation
- With co-factor bound
- Favourable DNA binding conformation

After addition of peptide:

- Without co-factor bound
- Less favourable DNA binding conformation
- With co-factor bound
- Favourable DNA binding conformation

D: Negative charge inhibits binding of a negative co-factor

- Without co-factor bound
- Favourable DNA binding conformation
- With co-factor bound
- Less favourable DNA binding conformation

After addition of peptide:

- Without co-factor bound
- Less favourable DNA binding conformation
- With co-factor bound
- Favourable DNA binding conformation

Key:

- IRF-1
- Less favourable DNA binding conformation
- Binding site for C-terminus
- Negative charge at C-terminus i.e. D/D mutation
- High affinity interaction
- Low affinity interaction
- Peptide
- Negative regulatory co-factor
- Positive regulatory co-factor

(1) IRF-1 WT DNA binding inhibited
(1) IRF-1 D/D DNA binding less affected
(2) IRF-1 WT DNA binding enhanced
(2) IRF-1 D/D DNA binding less enhanced
4.2 Effect of phosphomimetic mutations on the DNA-binding capacity of IRF-1

less than seen for the WT protein (Fig 4.8A lower panel)

Alternatively, the negative charge in the C-terminus could inhibit a conformational regulation that has a negative effect on DNA binding (Fig 4.8B). In this hypothesis, instead of the interaction between the C-terminal binding site and the C-terminus maintaining a favourable DNA binding conformation, it favours the less favourable DNA binding conformation. Addition of peptide to this system would have different effects on both types of IRF-1, depending on the exact mechanism of the negative regulation. If, for example, release of the interaction between binding site and C-terminus promotes the more favourable DNA binding conformation because the C-terminal binding site is unoccupied (Fig 4.8B(1)), addition of the peptide to IRF-1 WT will have an inhibitory effect on DNA binding since the peptide will occupy the binding site. Exactly the same inhibition will occur if the peptide is added to IRF-1 T311D/S317D since phosphorylation cannot affect peptide binding to the C-terminus binding site.

On the other hand, if release of the interaction between binding site and C-terminus promotes the more favourable DNA binding conformation because the C-terminus is free to adopt any position it choses, (Fig 4.8B(2)), addition of the peptide to WT IRF-1 will enhance DNA binding as it competes with the protein C-terminus for the binding site. For IRF-1 T311D/S317D, the same competition will occur, but since less protein exists in the less favourable DNA binding state to begin with (due to the negative charge in the C-terminus), the increase in DNA binding will be less pronounced.

The protein used in the EMSAs was prepared in reticulocyte lysate as this was found to produce the least degraded IRF-1, and will have all post-translational modifications required for DNA binding. As a result, co-factors may be present as contaminants. These were taken into consideration when suggesting mechanisms for the enhanced DNA binding of T311D/S317D IRF-1.

Phosphorylation in the C-terminus could create a high affinity binding site for a positive cofactor (Fig 4.8C). In the absence of this co-factor, IRF-1 could adopt a less favourable DNA binding conformation (light blue). As IRF-1 WT binds to the co-factor with lower affinity, it spends more time in this state. Positive co-factor (navy circle) bind-
4.2 Effect of phosphomimetic mutations on the DNA-binding capacity of IRF-1

Enhancing (enhanced by phosphorylation) could stimulate transition to, or stabilise occupation of the favourable DNA binding conformation (dark blue). Addition of peptide (green line) to IRF-1 WT would inhibit DNA binding by inhibiting the low affinity interaction between IRF-1 and co-factor. For IRF-1 T311D/S317D, however, addition of peptide would inhibit DNA binding to a lesser degree as the WT peptide is less able to compete with the high affinity phospho-C-terminus-co-factor interaction (Fig 4.8C lower panel).

Finally, phosphorylation in the C-terminus could inhibit binding site of a negative cofactor (Fig 4.8D). For IRF-1 WT, the negative co-factor (purple circle) binds tightly so IRF-1 maintains a less favourable DNA binding conformation (light blue). The negative charge in the C-terminus resulting from phosphorylation could repel the negative cofactor, allowing more IRF-1 to take the favourable DNA binding conformation (dark blue). If peptide is added to IRF-1 WT, peptide and protein C-terminus have the same affinity for the negative co-factor so peptide competes with IRF-1 for co-factor binding resulting in more IRF-1 in the favourable DNA binding conformation. For IRF-1 T311D/S317D, less co-factor binds already, so although the peptide competes with IRF-1 for co-factor binding, the increase in DNA binding is less striking.

The peptide competition EMSA was performed by including a titration of WT IRF-1 C-terminal peptide in the binding mix for IRF-1 WT and IRF-1 T311D/S317D. In the assay (repeated twice), the C-terminal WT IRF-1 peptide titratably reduced binding of both IRF-1 WT and T311D/S317D to C1 probe (Fig 4.9 upper panel), but it was a more effective inhibitor of IRF-1 WT binding. Due to the increased initial binding of IRF-1 T311D/S317D, this is most clearly seen after densitometry when the densities are normalised to “no peptide” values (Fig 4.9 lower panel). In this experiment, as one of the supershifts did not work (due to a pipetting error), the densities of the non-supershifted bands were compared, and the background non-specific intensity was assumed to be equal for all lanes.

The overall inhibitory effect of the peptide, and enhanced inhibition of IRF-1 WT binding indicate that the mutation/phosphorylation could enhance a conformational positive regulation as shown in Fig 4.8A, or create a binding site for a positive regulator whose binding subsequently causes a favourable conformational change in IRF-1 (Fig 4.8C).
4.2 Effect of phosphomimetic mutations on the DNA-binding capacity of IRF-1

Figure 4.9: Mechanism of IRF-1 T311D/S317D enhanced DNA binding: Peptide competition EMSA. *Upper panel:* 6µl of reticulocyte lysate expressed IRF-1 was pre-incubated for 10 mins at room temperature with a titration of 2.5-25µM of C-terminal IRF-1 peptide (20aa), water [-] or DMSO control [D] before EMSA was carried out to assess binding to 32P-labelled C1 probe. IRF-1-DNA complex could be supershifted with anti-IRF-1 (BD Biosciences). Normalisation of IRF-1 WT and T311D/S317D protein was visualised by immunoblot using anti-IRF-1 (Santa Cruz, C20). *Lower panel:* Intensity of IRF-1-DNA complexes was determined by densitometry using Image J, normalised to [-] control and plotted on a graph. Data representative of two independent experiments.
4.2 Effect of phosphomimetic mutations on the DNA-binding capacity of IRF-1

It should be noted that the differences in DNA binding between the IRF-1 WT and T311D/S317D proteins may be slightly less pronounced than expected as some of the T311D and S317D sites in the WT protein may have been phosphorylated in the reticulocyte lysate, causing it to act like the mutant protein. Making a non-phosphorylatable mutant might solve this problem, but these mutations could have their own effects such as destroying a binding site that required the Ser or Thr residues.

To differentiate between the two mechanisms indicated above, further EMSAs were performed: If the DNA binding ability of IRF-1 was being modulated by co-factors from the reticulocyte lysate, IRF-1 from sources other than reticulocyte lysate should not show a difference in binding. Although plants do have orthologues of the transcriptional regulatory proteins p300/PCAF [163], it was hoped that these would be different enough to their mammalian counterparts to not be able to interact with IRF-1. This seems to have been the case (see below).

IRF-1 from wheatgerm extract, and His-tagged IRF-1 purified from E.Coli were assayed. The purification of His-IRF-1 was described in Chapter 3. When His-IRF-1 is allowed to bind to DNA, similar IRF-1 WT and IRF-1 T311D/S317D DNA binding is seen. The relative density of IRF-1 WT-probe complex:IRF-1 D/D-probe complex is, on average, 1:0.98. (Fig 4.10 left panel). With untagged IRF-1 expressed in wheatgerm extract, both proteins bind DNA with very similar affinity (Fig 4.10 right panel). This time the relative densities are 1:0.9, although this comparison has only been performed once. Taken together, these results suggest that a factor in the rabbit reticulocyte lysate is contributing to the enhanced DNA binding activity of IRF-1 T311D/S317D.

The wheatgerm EMSA used 35S labelled protein rather than 32P-probe and, although this did not affect the enhanced IRF-1 T311D/S317D binding with reticulocyte lysate protein (data not shown), it would still be helpful to repeat the wheatgerm assay using 32P-probe.
4.2 Effect of phosphomimetic mutations on the DNA-binding capacity of IRF-1

Figure 4.10: Mechanism of IRF-1 T311D/S317D enhanced DNA binding: Direct or indirect conformational change. IRF-1 WT and T311D/S317D were expressed in E.Coli (left panel) and wheatgerm lysate (right panel) and binding to 32P-C1 probe observed by EMSA. IRF-1 DNA complexes could be supershifted by anti-IRF-1 (BD Biosciences) (ss= supershifted complexes). No significant difference between IRF-1 binding for E. Coli expressed protein was observed across three experiments. DNA binding of IRF-1 expressed in wheatgerm extract was only compared once; in this experiment no difference in binding was observed.
4.2 Effect of phosphomimetic mutations on the DNA-binding capacity of IRF-1

4.2.4 Effect of p300 on IRF-1 DNA binding

IRF-1 has previously been shown to interact with the co-factor p300 [67], [130] although the effect of this interaction on IRF-1 DNA binding has never been investigated. p300 is a histone acetylase, and so the effect of addition of acetyl coA to the binding mixture to allow p300 to acetylate IRF-1 was also studied.

In this experiment, p300, expressed in reticulocyte lysate, was incubated with IRF-1 WT and IRF-1 D/D and C1 probe. Acetyl CoA was also included in the mix in some tubes. The results of this experiment are shown in Fig 4.11. Addition of p300 to IRF-1 modestly enhanced its DNA binding ability. For IRF-1 WT, the increase in binding was 1.2 fold, for IRF-1 D/D, 1.4 fold. Further addition of the p300 substrate acetyl CoA resulted in another moderate increase in DNA binding. For IRF-1 WT, the binding was 1.3x binding in the absence of p300, for IRF-1 D/D, 1.5x. Enhanced DNA binding is more evident for IRF-1 T311D/S317D (illustrated in Fig 4.11 lower panel). This could argue in favour of the negative charge improving binding of positive co-factors; as described in Fig 4.8C. As addition of acetyl CoA further enhances DNA binding, it is possible that acetylation of IRF-1 stabilises the favourable DNA binding conformation. This experiment does, however, need to be repeated to confirm these findings; enhanced binding as a result of p300 addition, and the increased susceptibility of IRF-1 T311D/S317D to this effect has been observed in two independent experiments, while the effect of inclusion of acetyl CoA has only been performed once. In this experiment, no HDAC inhibitors were used. If they were included in future experiments, the results might be more obvious.

4.2.5 Comparison of IRF-1 Binding at Naturally Occurring Promoters

Next, probes using the IRF-1 binding element of other naturally occurring promoters were compared to see if the effects of IRF-1 phosphorylation are similar at all promoters. Probes comprising the ISG15, caspase 8 and TLR3 promoters had already been created in the lab and their binding of IRF-1 confirmed. Therefore, these probes were used here.
4.2 Effect of phosphomimetic mutations on the DNA-binding capacity of IRF-1

Figure 4.11: Effect of p300 on IRF-1 DNA binding. *Upper panel*: Cofactor p300 was included in EMSA. 4µl rabbit reticulocyte lysate expressing EV, IRF-1 WT or T311D/S317D was incubated with 3µl EV (lanes 3,6) or p300-expressing reticulocyte lysate (lanes 1,4,7) while binding probe (30mins, room temp). For acetylation reaction (lanes 2,5,8), EV/IRF-1 WT/IRF-1 T311D/S317D and p300 reticulocyte lysate were mixed with 2µM acetyl CoA and incubated at 30°C, 10mins for acetylation and binding then 20mins, room temp, to complete binding. *Lower panel*: Intensity of IRF-1-DNA complexes was determined by densitometry using Image J, normalised to binding in the absence of p300 and plotted on a graph. Enhanced binding of IRF-1 WT and further enhanced binding of IRF-1 T311D/S317D as a result of addition of p300 has been observed in two independent experiments. The effects of inclusion of acetyl CoA have only been analysed once.
4.2 Effect of phosphomimetic mutations on the DNA-binding capacity of IRF-1

For \textit{ISG15} and \textit{caspase 8} promoters, binding of IRF-1 T311D/S317D was significantly more stable (1.7x and 1.8x respectively). At the \textit{TLR3} promoter, it seems that IRF-1 WT binds with more stability, however this was only performed once (Fig 4.12).

More stable binding of IRF-1 WT than IRF-1 T311D/S317D at the \textit{TLR3} promoter would imply the regulation is through co-factor binding (as discussed above and in Fig 4.8C), and not simply through the negative charge causing a direct conformational change in the protein (Fig 4.8A). This is because despite IRF-1 T311D/S317D’s lower affinity for the \textit{TLR3} promoter sequence, its transactivatory activity at this promoter is higher than IRF-1 WT (Fig 4.2A). An explanation for this discrepancy would be the absence of the necessary co-factors in the reticulocyte lysate. Even if the result at the \textit{TLR3} promoter is not reproducible, earlier results where transactivatory activity at the same promoters in different cell lines is differentially affected by the mutation (Fig 4.1), also suggest the regulation is at the level of co-factor binding.

4.2.6 Insights into IRF-1 DNA Binding from Antibody Supershift

It has been very noticable in these EMSAs that after supershift with anti-IRF-1 antibody, a DNA-IRF-1 doublet appears, for example see Fig 4.7A. The simplest explanation is that IRF-1 binds DNA as a dimer, and that the lighter band is dimer with one antibody bound; the heavier band is dimer with one antibody bound to each IRF-1 molecule.

To test this theory, a titration of anti-IRF-1 antibody was added to IRF-1 and DNA. It was expected that at lower concentrations of antibody, any supershifted complexes would have one antibody bound, i.e. would be in the lower position, and as the concentration increased, more complexes would bind two antibodies until all complexes were in the upper position.

As shown in Fig 4.13, this is not the case. At the lowest antibody concentrations, only the higher (heavier/larger) band is present. Then, with increasing antibody concentration, the lower (lighter/more compact) band apppears, and eventually an equilibrium of about 50:50 is reached.
4.2 Effect of phosphomimetic mutations on the DNA-binding capacity of IRF-1

<table>
<thead>
<tr>
<th>Probe</th>
<th>ISG15</th>
<th>Caspase 8</th>
<th>TLR3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IRF-1</td>
<td>IRF-1</td>
<td>IRF-1</td>
</tr>
<tr>
<td></td>
<td>WT</td>
<td>D/D</td>
<td>WT</td>
</tr>
<tr>
<td></td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IRF-1</td>
<td>IRF-1</td>
<td>IRF-1</td>
</tr>
<tr>
<td></td>
<td>D/D</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4.12: Comparison of IRF-1 binding at naturally occurring promoters. IRF-1 WT and T311D/S317D was expressed in rabbit reticulocyte lysate. Binding of IRF-1 to 32P-labelled probe based on naturally occurring ISG15, caspase 8 and TLR3 promoters was observed by EMSA. IRF-1-DNA complexes could be supershifted by anti-IRF-1 antibody (BD Biosciences) (ss = supershifted complexes). Load was detected by western blotting of reticulocyte lysate using anti-IRF-1 (Santa-Cruz, C20). Binding of IRF-1 T311D/S317D to the ISG15 and caspase 8 promoters was significantly more stable across three experiments (* $p<0.05$, ** $p<0.01$ by paired t test). The comparison of binding to the TLR3 promoter has only been performed once.
4.2 Effect of phosphomimetic mutations on the DNA-binding capacity of IRF-1

Figure 4.13: Investigating the doublet of DNA-bound IRF-1 appearing after supershift. Rabbit reticulocyte lysate-expressed IRF-1 WT or T311D/S317D was incubated with 32P-labelled C1 probe in an EMSA reaction along with a titration of anti-IRF-1 antibody (BD Biosciences). Titration was: 6.25, 12.5, 25, 62.5, 250, 500 µg of antibody per reaction. This experiment has only been performed once.
There are various explanations for these observations, depending on whether IRF-1 binds DNA as a monomer or dimer. Both are observed in the literature [3], [164], although for different lengths of promoters. For a dimer, anti-IRF-1 could initially bind to only one molecule in the complex creating the single supershifted band observed. Subsequently, when the antibody concentration is high enough (at 0.25μl per reaction in this case), it could bind to the second IRF-1 molecule. Instead of producing a slower migrating band, if the antibody caused a conformational change in the complex, a higher motility band would be formed. For example, binding of antibody to IRF-1 could cause IRF-1 to adopt a conformation that forces the DNA to bend further. As this kind of conformation is likely to be fairly unstable, the equilibrium would never reach 100%; indeed, from the EMSA, it seems that a 50:50 state is optimal.

Alternatively, if IRF-1 binds monomerically to the DNA, the doublet could be produced if two different states of IRF-1-DNA exist. One state could be more compact, but less favourable, and thus is not clearly seen before supershifting. However, the binding of antibody could stabilise this state and so, after supershift, and above a certain concentration of antibody, this higher motility DNA-IRF-1-antibody complex could appear along with the more stable complex.

4.3 Discussion

In this chapter, the effects of the C-terminal phosphorylation of IRF-1 induced by IFN-γ have been investigated using phosphomimetic mutants. Phosphomimetic mutants generally have enhanced transactivatory potential at various promoters compared to IRF-1 WT, although this is cell line dependent and promoter. Moreover, IRF-1 T311D/S317D is also more resistant to inhibition by IRF-2.

IRF-2 is a repressor of IRF-1 activity, although there is some debate about its mechanism of action. An intriguing theory, put forward by Senger et. al. (2000) ([165]), is that IRF-2 prevents recruitment of the CBP/p300 co-activator and subsequently RNA Pol II to the promoter. They propose IRF-2 is present along with IRF-1 in the IFN-β
enhanceosome and that positively charged residues in the “repression domain” of IRF-2 repulse CBP. Furthermore, they show that IRF-3(5D), a more transcriptionally active form of IRF-3 known to have higher affinity for CBP/p300, is only weakly inhibited by IRF-2. IRF-3(5D) contains 5 S→D mutations in the C-terminus and it was suggested that the increased negative charge created a favourable microenvironment for CBP/p300 binding [165]. The inhibition of IRF-2 repression for IRF-1 T311D/S317D is less obvious than for IRF-3(5D) but perhaps this is due to the presence of only two phosphomimetic mutations compared to IRF-3(5D). It would be useful to repeat the competition experiments for IRF1/2 at the IFN-β promoter rather than at the IRF-E/TLR3 promoters. It may be that in the context of the enhanceosome formed at IFN-β promoter, the relaxation of repression is most clearly seen.

The discovery that phosphorylation enhanced transcriptional activity prompted an investigation into the mechanism underlying this effect. EMSAs were used to study the DNA binding of IRF-1 WT and mutants. the dual T311D/S317D phosphomimetic mutants has enhanced DNA binding and, with repeated experiments, it may be possible to show that T311D and S317D mutations also have a positive effect on DNA binding (Fig 4.7). When naturally occuring promoters were assayed, promoter specific differences in relative affinities for IRF-1 WT and T311D/S317D were observed, although at this stage, these cannot be said to be statistically significant, despite being reproducible. ChIP studies in cells transfected with IRF-1 WT and T311D/S317D would allow comparison of relative promoter occupation. This would give some insight into the spectrum of promoters preferentially bound by IRF-1 T311D/S317D and so predictions could be made about which genes would be upregulated by this species after IFN-γ treatment. Looking to the future, this could inform us about likely side effects of activating IRF-1 by phosphorylation at this site.

It is also obvious from Fig 4.7 that IRF-1 T311D/S317D has a higher motility than IRF-1 WT. This could be an indication of a conformational change in the mutant that makes the protein more compact and allows it to move faster through the native EMSA gel. An alternative explanation would be that the two extra negative charges introduced by the mutation cause the protein to move faster towards the positive electrode. This is less
likely as a very precise jump is observed. If all phosphorylation events caused such large jumps, phosphorylated protein from reticulocyte lysate would appear as a large smear on the gel rather than as a fairly resolved band. In addition, if the charge was the major factor causing the shift, IRF-1 S317D and T311D would be expected to be the same, and intermediate, in motility. This is not the case.

There are a number of mechanisms by which phosphorylation could cause enhanced DNA binding. If purified IRF-1 were being used, these would be limited to intrinsic conformational changes (Fig 4.8A&B). However, since rabbit reticulocyte lysate was being used to make the protein, other factors were present. This opened the possibility that interaction with a positive or negative cofactor could be modulating DNA binding activity (Fig 4.8C&D). A peptide competition EMSA suggested that enhanced interaction with a positive cofactor was responsible for the enhanced DNA binding of IRF-1 T311D/S317D (Fig 4.9 and 4.8C). Consistent with this, expression of IRF-1 in two different systems, E.Coli (His-purified IRF-1) and wheatgerm lysate (untagged IRF-1, unpurified) (both lacking the factors present in reticulocyte lysate) resulted in binding of IRF-1 WT and T311D/S317D that was more similar than in reticulocyte lysate (Fig 4.10A).

Since IRF-1 T311D/S317D was less susceptible to inhibition by IRF-2, which, as described above, may involve enhanced cofactor p300/CBP interaction, p300 was included in the DNA binding reaction. Addition of p300 enhanced the binding of IRF-1 to DNA, and this was more pronounced for IRF-1 T311D/S317D. DNA binding could be further augmented by the addition of acetyl CoA to the reaction (Fig 4.10B). Thus, p300 may bind to, and acetylate IRF-1 in order to enhance its DNA binding and transcriptional activity.

In support of this, it has previously been shown that, not only does p300 bind to the IRF-1 enhancer in vitro [67], but phosphorylation of IRF-1 at 317S and 308S enhances p300 binding to peptides from the Mf1 domain (as suggested by peptide competition EMSA) (Fig 4.14). Further, IRF-1 is a substrate for p300 acetylation in vitro [126]. This is similar to the situation for p53 where phosphorylation of Thr18 and 20 (close to the LXXLLL motif) enhances p300 binding, resulting in sequence specific DNA dependent acetylation and stabilisation of the p53-DNA-p300 complex [166]. Thus, the interaction
Figure 4.14: C-terminal phosphorylation of IRF-1 enhances p300 binding *in vitro*. (A) Biotinylated IRF-1 C-terminal 20aa peptide (CT1), or phosphorylated C-terminal 20 aa peptide (CT1-Ser317-P/-Ser309-P) was bound to streptavidin coated ELISA wells. A titration of p300 protein (0-1ng) was incubated in the wells, and binding of p300 to IRF-1 peptide was detected by anti-p300 antibody (Santa-Cruz) and quantified by chemiluminescence (R.L.U. +/- SD). (Experiment performed by David Dornan). (B) Diagram of IRF-1 showing location of the three p300 interaction sites CT1, 2 and 3 determined by David Dornan [67].
of IRF-1 with p300 warrants further investigation.

Interestingly the Mf1 domain is not the highest affinity interaction site in IRF-1 for p300. Two motifs within IRF-1 (CT2 and CT3) (Fig 4.14B) were shown to have higher affinity binding to p300; these domains were shown to be required for p300 to stimulate IRF-1 activity at the IFN-β promoter. Our current hypothesis is that binding of p300 to the C-terminus (Mf1/CT1 domain) regulates its binding to the higher affinity CT2 and CT3 domains, perhaps by causing conformational change that exposes these p300-binding sites. This would allow the interaction of p300 and IRF-1 to be tightly controlled, for example, C-terminal phosphorylation of IRF-1 in response to an activatory signal (e.g. IFN-γ) could create a binding site for p300. Binding of p300 to IRF-1, and potentially acetylation of IRF-1 by p300, could cause a conformational change in IRF-1, exposing the previously occluded CT2 and CT3 sites. Binding of p300 to these sites may then enhance IRF-1 DNA binding and transactivatory activity.

CBP/p300 is a broad-spectrum transcriptional cofactor which is thought to act through a variety of mechanisms: It can bridge transcription factors and basal transcription machinery; provide a scaffold for assembly of multiprotein initiation complexes or acetylate chromatin and transcription factors to enhance transcriptional activity [167]. Such effects could be promoter specific and are not necessarily mutually exclusive. In the IFN-β enhanceosome, IRF-1, along with other factors, recruits p300 to the promoter where it bridges the enhanceosome and RNA Pol II [130]. Such a process could be responsible for the enhanced transactivatory activity of IRF-1 T311D/S317D, but since acetylation is important, and DNA-binding activity is directly affected, it is likely that p300 has additional roles here. The repressor activity of IRF-1 is not affected by T311/S317 phosphorylation suggesting that co-repressor binding to IRF-1 is regulated by different means.

In order to more clearly define the IRF-1-p300 interaction, the effects of p300 on IRF-1 DNA binding should first be repeated with purified proteins in the EMSA. Then, the interaction of p300 with IRF-1 WT, IRF-1 T311D/S317D, IRF-1 T311D and IRF-1 S317D full length proteins should be investigated by immunoprecipitation and ELISA to confirm that C-terminal phosphorylation does enhance the interaction. Next, the effect of acetylation on DNA binding should be more thoroughly defined using in vitro
acetylation assays and the location of the acetylation determined using IRF-1 peptides and domains or mass-spectrometry. The relative importance/role of p300 binding and acetylation of IRF-1 in cells could be assessed by modulation of p300 expression (transient p300 expression and siRNA knock down) and inhibition of HAT (acetyl transferase) activity (ΔHAT-p300 expression and p300 inhibitor treatment). Finally, mutants of IRF-1 that cannot bind p300 (perhaps T311A/S317A) and non-acetylatable mutants K→R should exhibit reduced DNA-binding activity.

Acetylation could cause direct conformational change in IRF-1 which stabilises it in a DNA-binding conformation, or it could modulate binding of other factors which could affect IRF-1 activity. It should be possible to use biophysical techniques such as intrinsic fluorescence or thermal denaturation to determine if conformational change in IRF-1 results from the phosphomimetic mutation/phosphorylation or acetylation. Unfortunately these techniques require substantial amounts of purified protein which is not compatible with expression in reticulocyte lysate. Purifying protein from E. Coli is the obvious solution, however, the results will need to be carefully considered as E. Coli lack the protein phosphorylation machinery of mammalian cells, and thus IRF-1 may not be in its native conformation, especially if important intramolecular interactions are missing. In addition, E. Coli contain proteases which rapidly degrade IRF-1 as quickly as 30 mins after induction (Dr. Vikram Narayan, unpublished observations) and any purified protein is a mixture of full length IRF-1 and different degradation products which may have different conformations if important interactions are lost.

It is likely that other factors apart from p300 are differentially bound to WT and phosphorylated IRF-1. In fact, Hsp70 has recently been shown to bind more strongly to the WT Mf1 peptide (Dr. Vikram Narayan, unpublished observations). This observation is considered in more detail in the discussion.

Conventionally, screening for binding partners would involve expression of exogenous tagged protein in cells and purification of protein-binding partner complexes by, for example, tandem affinity purification. For IRF-1, this technique is not possible as studies in the lab have determined that the expression levels in cells are not high enough. For this study, stable cell lines were created in an attempt to create a population of efficient IRF-1
expressing cells, but these lost IRF-1 expression very quickly, despite maintainence in selective medium. Therefore, an alternative screening technique has been developed for IRF-1 [144]. IRF-1 peptide aptamers are immobilised on a support to create an affinity purification column, and cell lysate is passed over the column to find interacting proteins. Proteins eluted from the column are identified by mass spectrometry. This technique could be used to identify phosphospecific binding partners for IRF-1. For p53, acetylation by p300 affects cofactor binding[168]. If the acetylation site of IRF-1 can be mapped, the binding partners of acetylated peptide could be identified.

In conclusion, IFN-γ-induced phosphorylation of the IRF-1 Mf1 domain has been shown to enhance its transcriptional activatory activity. This is most likely through creation of a binding site for p300 which enhances DNA binding of IRF-1, perhaps through acetylation, and might, by analogy to events in the IFN-β enhanceosome [130], recruit RNA Pol II.
Chapter 5

Effects of C-terminal phosphorylation of IRF-1 on tumour suppressor activity

Since IRF-1 is an effective tumour suppressor through its regulation of downstream genes, and phosphorylation of IRF-1 impacts on its transactivatory activity [119], [120], Chapter 4, the effect of C-terminal phosphorylation of IRF-1 on its tumour suppressor activity was investigated.

5.1 Anchorage-dependent Colony Formation Assays and Cell Adhesion Assays

Anchorage-dependent colony formation assays measure the ability of cells to establish and grow colonies in the presence of a substrate. They are effectively a measure of cell survival and long-term cell proliferation. Cells are transfected with empty vector control (EV) or IRF-1 WT or T311D/S317D and seeded at a low density in the presence of geneticin to select for cells containing the expression plasmid. The expression plasmid contains a neomycin gene which confers resistance to geneticin. The concentration of geneticin that will kill untransfected cells varies depending on cell line. Therefore, before carrying out the colony formation assays, kill curves were constructed for A375
5.1 Anchorage-dependent Colony Formation Assays and Cell Adhesion Assays

and H1299 cells to determine the optimum geneticin concentration. Untransfected cells were plated at low density and incubated in medium containing various concentrations of geneticin. At a number of time points, the survival of the cells is estimated. The optimum concentration of geneticin for colony formation assays is the lowest concentration required to kill all untransfected within 5 days. For H1299 cells, this is 600-800 µg/ml whereas for A375 cells, 1200-1500 µg/ml (Fig 5.1).

Once the optimum geneticin concentration had been established, cells were transfected for 24 hours with pcDNA3 EV, IRF-1 WT or IRF-1 T311D/S317D, then seeded at low density in the appropriate concentration of antibiotic. The medium was changed after four days and the geneticin refreshed. After 10 days, colonies were fixed and stained with Giemsa for counting. For both H1299 (Fig 5.2) and A375 (Fig 5.3) cells, IRF-1 is an efficient suppressor of anchorage-dependent colony formation. In both cases, IRF-1 T311D/S317D appears slightly more effective than IRF-1 WT, but this difference is not significant. Transfection of A375 cells with IRF-1 WT resulted in a average 3.4 fold decrease in the number of colonies and transfection with IRF-1 T311D/S317D a 5.7 fold decrease (Fig 5.3A). For H1299 cells, IRF-1 T311D/S317D was even more effective as its transfection resulted in a 14 fold decrease compared to a 3.7 fold decrease with IRF-1 WT (Fig 5.2A). However, when the sizes of the colonies are measured, in H1299 cells, both IRF-1 WT and IRF-1-T311D/S317D transfected cells show a reduction in colony sizes, although only the reduction for IRF-1 T311D/S317D is significant (Fig 5.2B), whereas in A375 cells, there is no significant difference in colony size (Fig 5.3B). Representative images of colonies obtained are shown in Fig 5.2C and 5.3C.

For H1299 cells, this implies that the ability of IRF-1 to suppress anchorage dependent-colony formation is dependent on its ability to inhibit cell proliferation (because IRF-1 treated cells produce smaller colonies). IRF-1 T311D/S317D is consistently, but not significantly, more effective at colony formation suppression in both cell lines. Further experiments using larger numbers of cells could be appropriate to clarify this since, in some cases, no colonies were established on IRF-1 T311D/S317D-transfected plates, and therefore, the difference in relative numbers of colonies may be underestimated. If the difference between IRF-1 WT and T311D/S317D colony formation suppression was sig-
Figure 5.1: Kill curves to determine optimum geneticin concentration for H1299 and A375 cell colony formation assays. (A) H1299 cells or (B) A375 cells were plated at low density and incubated with a titration of geneticin. Cells surviving were estimated after 3, 5 and 7 days.
Figure 5.2: Effect of IRF-1 on anchorage dependent colony formation for H1299 cells. Cells transfected with pCDNA3-EV, -IRF-1 WT or -IRF-1 T311D/S317D were seeded in geneticin (750µg/ml) and grown for 10 days before methanol fixation and staining with Giemsa stain. (A) Cells were counted using Image J. (B) Average size of colonies was estimated using Image J. Significant differences between colony numbers/sizes compared to EV by randomised block ANOVA followed by Tukey’s test are indicated. (* p<0.05, *** p<0.001). Results expressed as mean +/- standard deviation for duplicates. (C) Representative images of colonies from EV, IRF-1 WT and IRF-1 T311D/S317D-transfected cells. Data representative of three independent experiments.
Figure 5.3: Effect of IRF-1 on anchorage dependent colony formation for A375 cells. Cells transfected with pcDNA3-EV, -IRF-1 WT or -IRF-1 T311D/S317D were seeded in geneticin (1500 µg/ml) and grown for 10 days before methanol fixation and staining with Giemsa stain. (A) Cells were counted using Image J. (B) Average size of colonies was estimated using Image J. Significant differences between colony numbers/sizes compared to EV by randomised block ANOVA followed by Tukey’s test are indicated. (* p<0.05, ** p<0.01). Results expressed as mean +/- standard deviation for duplicates. (C) Representative images of colonies from EV, IRF-1 WT and IRF-1 T311D/S317D-transfected cells. Data representative of three independent experiments.
significant, the enhanced activity of IRF-1 T311D/S317D could be due to either its effects on cell growth (demonstrated by its effects on colony size), or due to an additional activity, for example, affecting the initial stages of establishing a colony. For A375 cells, since the colonies on IRF-1 WT and T311D/S317D-transfected plates have fewer colonies (with IRF-1 T311D/S317D-transfected cells having the fewest), but similar-to-control sized colonies, it seems that in these cells, IRF-1 affects the initial survival, and not the rate of growth, of cells. Factors influencing the establishment of colonies could include apoptosis of cells, or reduced adhesion to substrate as a result of IRF-1 expression. To address this, a time course looking at rates of apoptosis at various points after IRF-1 transfection should be carried out.

As a tumour suppressor, IRF-1 should, if anything, enhance cell-substrate contacts, but, as fewer colonies are established by IRF-1 expressing cells, an adhesion assays was carried out to assess the effects of IRF-1 on cell-substrate adhesion. Preliminary results indicated that neither IRF-1 WT nor IRF-1 T311D/S317D have any effect on cell adherence to plastic (Fig 5.4), although a positive and negative control that enhance and reduce cell adhesion need to be sourced. Sialomucin complex (SMC) which reduces A375 cell adhesion to plastic could be used as a control. Its overexpression reduces adhesion and inhibition restores adhesion[169].

5.2 Anchorage-independent Colony Formation Assays

Anchorage-independent colony formation assays measure the ability of cells to establish and grow colonies in the absence of a substrate i.e. without attachment. This is a hallmark of transformed cells. Again cells are seeded at a low density and maintained in geneticin to select transformed cells. In these assays, however, the bottom of the well is covered with a layer of agar to provide a solid support that cells cannot adhere to. Cells are seeded in a methylcellulose mixture which is layered onto the agar. The viscosity of the methylcellulose prevents the cells moving and clumping together, but cannot be used by the cells as a substrate to attach to.
Figure 5.4: Effect of IRF-1 on cell-substrate adhesion. A375 cells were transfected with pcDNA3-EV, -IRF-1 WT or -T311D/S317D. After 24h, cells were harvested and allowed to readhere to plastic for 1h then washed and stained. Cells were lysed and absorbance of solubilised stain was measured to determine the level of adherance. Data from a single experiment. Results expressed as mean +/- standard deviation for duplicates.
HeLa and A375 cells were transfected for 24 hours with pcDNA3 EV, IRF-1 WT or IRF-1 T311D/S317D, then seeded at low density in methylcellulose containing the appropriate concentration of antibiotic. After 24 hours, to allow the cells to settle, images were taken to determine the average cell size. Minimum colony size was extrapolated from these data as a colony is taken to be at least 3 cells in area. After around 6 days, the colonies were photographed and the number of colonies per number of events (cells+colonies) was calculated. In A375 cells, IRF-1 reduces the frequency of single cells growing into colonies (>3 cells) in methylcellulose, and C-terminal phosphorylation of IRF-1 (T311D/S317D) may enhance this effect (although after three repeats, the difference between IRF-1 WT and IRF-1 T311D/S317D activity is not significant (Fig 5.6A). In HeLa cells, IRF-1 WT reproducibly but not significantly reduces the formation of colonies whereas IRF-1 T311D/S317D significantly reduces the number of colonies (Fig 5.5A). (HeLa cells were selected to compare to A375 as, unlike H1299 cells, these produce good colonies, and they respond to IRF-1 T311D/S317D in the same way as H1299 cells for luciferase reporter assays.) In both cell lines, IRF-1 reduces the proliferation of the cells, resulting in smaller colonies (Fig 5.5B, Fig 5.6B), but phosphorylation seems to have no further effect on this activity. Representative images of colonies are shown in Fig 5.5C and Fig 5.6C.

The reduction in the number of colonies in methylcellulose could be due to (1) the mitigated proliferation rate reducing the number of cells that have divided sufficiently to form colonies, (2) an initial barrier to colony formation imposed by IRF-1, (3) a reinstatement of the anchorage-dependence exhibited by non-transformed cells, or indeed, a combination of all three. Since the colony size of both IRF-1 WT- and T311D/S317D-transfected cells is similar, yet IRF-1 T311D/S317D-transfected cells appear to produce fewer colonies (although for A375 cells, further experiments need to be done to confirm a difference between IRF-1 WT and T311D/S317D as discussed for the anchorage-dependent assays), it would seem that proliferation control is important but not the only mechanism by which IRF-1 inhibits colony formation, and phosphorylation of IRF-1 enhances the unknown activity. Again, apoptosis and sensecence should be investigated.
5.2 Anchorage-independent Colony Formation Assays

Figure 5.5: Effect of IRF-1 on anchorage independent colony formation in HeLa cells. (A) Anchorage independent colony formation assays were performed using pcDNA3-EV, -IRF-1 WT and -IRF-1 T311D/S317D-transfected cells seeded in 1.4% methylcellulose containing 1500 µg/ml genetin. Colonies were counted after 5-7 days using Image J. (B) Average size of colonies was estimated using Image J. Significant differences between colony numbers/sizes compared to EV by randomised block ANOVA followed by Tukey’s test are indicated. (* p<0.05, ** p<0.01, *** p<0.001). Line indicates a significant difference between IRF-1 WT and DD-transfected cell colony size. Results expressed as mean +/- standard deviation for duplicates. (C) Representative images of colonies from EV, IRF-1 WT and IRF-1 T311D/S317D-transfected cells. Data representative of three independent experiments.
5.2 Anchorage-independent Colony Formation Assays

Figure 5.6: Effect of IRF-1 on anchorage independent colony formation in A375 cells. (A) Anchorage independent colony formation assays were performed using pcDNA3-EV, -IRF-1 WT and -IRF-1 T311D/S317D-transfected cells seeded in 1.4% methylcellulose containing 1500µg/ml geneticin. Colonies were counted after 5-7 days using Image J. (B) Average size of colonies was estimated using Image J. Significant differences between colony numbers/sizes compared to EV by randomised block ANOVA followed by Tukey’s test are indicated. (*** p<0.001). Results expressed as mean +/- standard deviation for duplicates. (C) Representative images of colonies from EV, IRF-1 WT and IRF-1 T311D/S317D-transfected cells. Data representative of three independent experiments.
5.3 Proliferation, Cell Cycle Arrest and Senescence

5.3.1 Proliferation

Inhibition of proliferation of cells by IRF-1 was also examined in a proliferation assay. The colony size measured in the anchorage dependent colony formation assay suggested that the proliferation of H1299 cells was inhibited by IRF-1 WT and further inhibited by IRF-1 T311D/S317D, whereas, for A375 cells, proliferation might actually increase. To address this more directly, cells were transfected for 24 hours, then seeded at low density. After 1, 2 and 3 days growth, cells were stained, solubilised and the absorbance of stain in the solution was used as a measure of cell numbers. The experiment was only performed once once; in HeLa cells, IRF-1 may inhibit cell proliferation, but IRF-1 WT was more effective than IRF-1 T311D/S317D, suggesting that IRF-1 T311D/S317D could have an additional mechanism by which it inhibits colony formation (Fig 5.7A). For A375 cells, the proliferation of EV, IRF-1 WT and IRF-1 T311D/S317D cells was very similar, although a slight increase in proliferation caused by IRF-1 WT and T311D/S317D transfection is in agreement with the anchorage-dependent colony formation assay (Fig 5.7B). Selecting only IRF-1 expressing cells by geneticin treatment might give clearer results.

5.3.2 Cell Cycle Arrest

The inhibition of proliferation seen above could be a result of IRF-1 induced cell cycle arrest. Since IRF-1 upregulates the CDK inhibitors p21 [30] and p27[31], and down-regulates cyclins D and E and CDKs 2 and 4 [68], this seemed very plausible. To address this, HeLa and H1299 cells were transfected with pcDNA3 EV, IRF-1 WT or IRF-1 T311D/S317D. After 24 hours cells were fixed and cell cycle analysis by propidium iodide staining was carried out. However, only very subtle differences in profile between EV, IRF-1 WT and IRF-1 T311D/S317D transfections were observed. In both cell lines, IRF-1 WT causes a very modest arrest in G0/G1 phase and IRF-1 T311D/S317D a slightly more pronounced effect (Fig 5.8). It is not clear whether this effect is significant, and
Figure 5.7: Effect of IRF-1 WT and T311D/S317D on cell proliferation. (A) HeLa cells (B) A375 cells. Proliferation of pcDNA3-EV, -IRF-1 WT and T311D/S317D-transfected cells was measured by fixing and staining cells after 1, 2 and 3 days of growth, then lysing cells and measuring the absorbance of the solubilised stain. Data representative of a single experiment.
since the experiment was only carried out once, repeats are needed.

5.3.3 Senescence

A candidate for the alternative mechanism by which IRF-1 also inhibits colony formation is senescence. Senescent cells have exited the cell cycle i.e. have undergone irreversible G1 arrest and so do not proliferate, but remain as viable cells. In endothelial cells, IRF-1 has been shown to mediate IFN-α induced senescence [60]. In the anchorage-independent colony formation assays, IRF-1 caused there to be fewer colonies per total cells without affecting the total number of cells. Therefore, if IRF-1 T311D/S317D causes greater initiation of senescence compared to IRF-1 WT, this would agree with the data from the methylcellulose assay. It would not, however, be in keeping with the conflicting data from the proliferation assay, which showed that IRF-1 WT reduced proliferation rates to a greater extent than T311D/S317D (Fig 5.8A).

Senescence was measured in A375 cells using a senescence-associated β-galactosidase staining kit. When the numbers of senescent cells were counted manually, the effect of IRF-1 WT transfection was variable but IRF-1 T311D/S317D caused an increase in the number of senescent cells (Fig 5.9). This may mean that IRF-1 T311D/S317D enhances senescence but the assay is not reliably quantitative and was not repeated. Manual counting requires an arbitrary definition of a staining threshold above which a cell is considered senescent. Greater confidence could be achieved using fluorometric senescence assay where cleavage of a senescence-associated β-galactosidase substrate renders it fluorescent.

5.4 Inverse Invasion Assays

IRF-1 suppresses the MMP9 promoter [45], and inhibits metastasis in vivo [42], [23], [46], but its effects on the invasive potential of cells in in vitro assays have not yet been investigated. Here, MDA-MB-231 cells were transfected with IRF-1 WT and T311D/S317D
Figure 5.8: Effect of IRF-1 WT and T311D/S317D on cell cycle arrest. (A) HeLa and (B) H1299 cells were transfected with pcDNA3-EV, -IRF-1 WT or T311D/S317D. After 24h, cells were fixed and stained with propidium iodide then analysed by flow cytometry. Left panel displays cell cycle profile data, right panel shows a comparison of the percentage of cells at each cycle stage for EV, IRF-1 WT and IRF-1 T311D/S317D. Data representative of a single experiment.
5.4 Inverse Invasion Assays

Figure 5.9: Effect of IRF-1 WT and T311D/S317D on senescence. Senescence levels in pcDNA3-EV, -IRF-1 WT and T311D/S317D-transfected A375 cells were estimated using a senescence-associated β-galactosidase staining kit (NEB). Results expressed as mean +/- standard deviation for duplicates. Data representative of a single experiment.
and the extent of their invasion through matrigel-filled transwells was measured. MDA-
MB-231 cells are highly metastatic and so are very suitable for this assays. Lack of
IRF-1 expression has been linked to metastatic phenotype, and IRF-1 is expressed at very
low levels in MDA-MB-231 cells [23]. Therefore, transfection of IRF-1 into these cells
should give a measurable response in this assay.

In the inverse invasion assay (Fig 5.10A), a matrix (matrigel) is placed in a transwell
insert on top of a filter. The transwell is inverted and cells are seeded on the base of the
filter. Once the cells have attached, the transwell is placed right-way-up in a tissue culture
well containing medium without growth factors. Medium containing growth factors is
pipetted on top of the matrigel to create a gradient which encourages the cells to invade
upwards across the filter and into the matrix. After 3 days, the extent of invasion is
measured by staining the cells and visualising them using a confocal microscope, taking
images at 15µm intervals. Invasion of cells at each interval was expressed as a percent of
the staining at the confluent monolayer on the filter.

The preliminary results indicate that IRF-1 inhibits invasion of MDA-MB-231 cells,
and that IRF-1 T311D/S317D might be more effective than IRF-1 WT (Fig 5.10B&C).
While it is possible to be confident in the findings of each individual assay, this assay
will need repeated many times to have a statistically relevant data set. Before setting up
multiple repeats, however, the time of the assay needs to be reduced as IRF-1’s activity as
a growth suppressor makes normalisation difficult; after a few days, the number of cells
present on the monolayer is less for the IRF-1-transfected cells than the control. Since
the amount of invasion is expressed as a percentage of the monolayer, the results are still
relevant, however, it would be a more direct comparison to have confluent monolayers for
each condition.
Figure 5.10: Effect of IRF-1 on invasion through matrigel. (A) Schematic representation of inverse invasion assay. *left panel* An insert with a permeable membrane is inserted into a tissue culture dish well. The well constitutes the lower chamber and the insert the upper chamber. *centre panel* A matrix (in this case 50% matrigel) is placed in the insert to simulate the extracellular matrix. Cells are seeded on the base of the membrane, then a gradient of growth factors is created by filling the lower chamber with serum free medium, and the upper chamber with medium containing FBS. *right panel* The gradient encourages migration of the cells across the membrane and invasion into the matrigel. (B) Inverse invasion of pcDNA3-EV, -IRF-1 WT and T311D/S317D-transfected MDA-MB-231 cells. 24h after transfection, cells were seeded on matrigel-containing transwell inserts and allowed to migrate for 3 days through a FBS gradient. Cells were stained using calcein-AM and images were taken every 15µm from the base of the transwell. Staining at each level was normalised to the staining at the base of the stack. Results expressed as mean +/- standard error for four pictures from four different positions in each well. (C) Representative images of invasion of pcDNA3-EV, -IRF-1 WT and T311D/S317D-transfected MDA-MB-231 cells. Data from a single experiment.
5.5 Discussion

IFN-γ is known to elicit anti-tumoural effects by both directly affecting the tumour cell and enhancing immune recognition of tumour cells [170]. IRF-1 is involved in mediating many of these activities. More recently, however, evidence has emerged that constitutive activation of the STAT1 pathway (downstream of IFN-γ) may be oncogenic. It has been suggested that radioresistance and chemoresistance are caused by the upregulation of some Interferon Stimulated Genes (ISGs) (not including IRF-1) that promote survival. This is speculated to be the result of activity by unphosphorylated STAT1 which upregulates a different subset of promoters to phosphorylated STAT1, some of which control prosurvival genes. Upregulation of STAT1 has been observed in radioresistant and chemoresistant tumour cells [171]. Despite the anti-tumour activities of IFN-γ, its upregulation of STAT1 may limit its therapeutic value.

Consequently, IRF-1 artificially activated to mimic IFN-γ-mediated activation has the potential to be a useful tool. Although not all of the promoters targeted by IFN-γ are activated by IRF-1, it is the downstream effector of many antitumour activities, and furthermore, has been shown to demonstrate antioncogenic effects in vivo [41], [23], [61], enhance the activity of chemotherapeutics [58], [59], [60] and mediate the apoptotic activity of antiestrogens [57].

As summarised below, in this chapter the effects of mutations in IRF-1 mimicking IFN-γ-induced phosphorylation have been examined in clonogenic and invasion assays.

IRF-1 has previously been shown to inhibit anchorage dependent [70] and independent colony formation [5]. The data in this chapter build on those findings and shows that C-terminal phosphorylation might enhance the activity of IRF-1 in such assays, although further experiments with more cells are required to confirm this as discussed above.

It has not been possible so far to fully elucidate the mechanism by which IRF-1 inhibits colony formation. The data presented here suggest that a dual mechanism is operating with proliferation being inhibited by IRF-1 in most cell lines for anchorage dependent and independent growth, but a further, unknown mechanism might effect the greater inhib-
bition seen with IRF-1 T311D/S317D. The effect of IRF-1 T311D/S317D on senescence and apoptosis will be studied in more detail to determine if either of these could be responsible.

It would also be interesting to try and isolate cells from large and small colonies and cells which did not produce colonies, and compare IRF-1 expression levels in each. It is tempting to suspect that the size/presence of a colony is related to the level of IRF-1 expression in each cell. Related to this, an attempt was made to create stable, IRF-1 expressing, cell lines. Over time (a few weeks), the cells downregulated the forced expression of IRF-1, even in the presence of a selection agent. Therefore the presence of IRF-1 exerts a strong negative selection pressure and the extent of IRF-1 expression could determine the rate of cell growth/colony initiation.

IRF-1 has here, for the first time, been shown to inhibit invasion in an *in vitro* metastasis assay. IRF-1 has been shown to inhibit metastasis *in vivo* through its effects on immune-mediated clearance of tumour cells [46], however, clearly in an *in vitro* assay, another activity is responsible. Matrix Metalloproteases (MMPs) are involved in the invasion and metastasis of tumour cells [172]. IRF-1 downregulates the MMP9 promoter through competition with NF-κB [45]. Therefore, it would be useful to determine if the effects of IRF-1 on invasion in the transwell invasion assays are linked to MMP9 inhibition. MMP9 activity of transfected cells could be measured using a gelatinase assay. Of note, IRF-1 WT and T311D/S317D show similar efficiency of inhibition at the MMP9 promoter in reporter assays (Fig 4.2), but IRF-1 T311D/S317D might be more effective in inhibiting invasion. Thus, inhibition of MMP9 at the promoter level may not be the only mechanism operating. Perhaps other MMPs are regulated by IRF-1 or perhaps, as discussed above, the optimisation of the *in vitro* assay will reveal that IRF-1 WT and T311D/S317D have similar effects.

In conclusion, the results in this chapter demonstrate that *in vitro* IRF-1 T311D/S317D might be a more effective tumour suppressor than IRF-1 WT. It follows that delivery of IRF-1 T311D/S317D could be an effective cancer treatment, and a logical development of this project would be to carry out *in vivo* experiments to determine the efficacy of IRF-1 T311D/S317D in inhibiting tumour growth, and augmenting the activity of pre-existing
treatments such as antiestrogens.

An alternative to directly administering IRF-1 T311D/S317D through gene therapy would be to activate the kinases responsible for phosphorylation of IRF-1 at these sites. Small molecule activation of protein kinases is still in its infancy, but drugs employing this mechanism are under investigation for diseases such as Alzheimers, (PKC activators) [173], diabetes (GK activators) [174] and neurological diseases (Akt activators) [175]. Interestingly, both PKC and Akt are IFN-γ activated kinases and have been predicted to phosphorylate IRF-1 Thr311 and Ser317 (see discussion). Kinase activators are commercially available, and could be useful tools in identifying the kinases upstream of IRF-1 and further characterising the effects of phosphorylation at these sites on IRF-1 activity.
Chapter 6

Discussion and Future Directions

The aims of this thesis have been to identify regulatory phosphorylation events for IRF-1 and to try to study the mechanisms by which these phosphorylations modulate IRF-1 activity. Using phosphospecific antibodies, phosphorylation at T311, and S317 sites was observed in response to IFN-γ treatment, and at S317 in response to the DNA damage mimetic etoposide. Phosphomimetic (S/T→D) mutants of each phosphorylation site, and a dual phosphomimetic mutant where both sites were changed, were created. Since the dual phosphomimetic mutant showed the highest activity in transcriptional reporter assays, this mutant was used to study the mechanism of the enhanced transcriptional activity and to examine the effect of IFN-γ-induced phosphorylation on IRF-1 activity in cell-based assays. Although the presence of dual phosphorylation at these sites in cells could not be confirmed due to the deterioration of the phosphospecific antibodies, multi-site phosphorylation is well-recognised and it is postulated that a requirement for multiple phosphorylations imposes a threshold for activation [176].

Phosphorylation is well recognised as a crucial post-translatory modification of transcription factors which can regulate transcription factor activity at a number of levels, namely: localisation; stability; DNA binding and protein-protein interaction [177]. The impact of phosphorylation on the regulation of IRF-1 through these mechanisms, and the contributions of the findings reported in this thesis to the understanding of such regulation, is discussed below.
Localisation

Upon IFN-γ treatment, IRF-1 translocates to the nucleus [138]. Although preliminary studies suggest that neither 311T nor 317S phosphorylation affects nuclear transport, (subcellular fractionation of cells transfected with IRF-1 containing phosphomimetic mutations at the above sites indicates no difference in localisation compared to WT-IRF-1) evidence from the literature implies that phosphorylation is important in this process, as described below.

Inhibition of PKC by minocycline reduces IRF-1 nuclear translocation after IFN-γ treatment without affecting total IRF-1 protein levels. PKC is upregulated by IFN-γ treatment, therefore, it is plausible that phosphorylation of IRF-1 by PKC is required for nuclear transport of IRF-1 [178].

After TLR9 stimulation by CpG DNA, IKKα is required for IRF-1 nuclear translocation. Moreover, IKKα coimmunoprecipitates with IRF-1 and phosphorylates it in vitro [179]. IRF-1 interacts with the TLR adaptor protein MyD88 after TLR9 stimulation, resulting in its “licensing” (probably phosphorylation), and nuclear translocation [96]. Therefore, it is likely that, by analogy with IRF-7 [180], TLR9 engagement recruits MyD88 which binds IRF-1. IRF-1 is then phosphorylated by IKKα which has been activated by IRAK1 as a result of TLR9 engagement. Phosphorylated IRF-1 then translocates to the nucleus where it can upregulate immune-related promoters. This is illustrated in Fig 6.1.

IRF-1 contains a bipartite NLS. The NLS is contacted by importin-α1, which mediates its nuclear translocation after IFN-γ treatment [138]. Since there are phosphorylation sites in and around the NLS, phosphorylation could regulate the interaction with importins. As mentioned by Whitmarsh & Davies, phosphorylation could unmask a binding site for an importin or block a binding site for another factor which occludes the importin binding site [177]. In keeping with this, it has been shown that although the NLS is critical for binding of the importin, the surrounding structure of the protein is also important for selective importin binding [181].

Stability
Figure 6.1: Predicted phosphorylation of IRF-1 in response to TLR9 activation (Adapted from[180]). Unmethylated DNA activates TLR9. By analogy to IRF-7, the adaptor protein MyD88 could contact IRF-1 and bring it into proximity with IRAK1-activated IKKα [180]. IKKα phosphorylates IRF-1 [179]. Phosphorylation of IRF-1 after Myd88 interaction results in nuclear translocation [96].
Proteins with regulatory functions often have short half lives to allow rapid regulation by changes in rates of synthesis [182]. The protein levels of IRF-1 are upregulated in response to many stimuli. This involves enhanced mRNA production and, in the case of genotoxic stress (but not viral mimetics), it has been shown that reduced degradation of the protein also contributes to the increased steady state protein levels. ATM kinase has been shown to be required for the induction of IRF-1 in response to genotoxic stress, however, it is not known if direct or indirect kinase activity is involved [76].

IRF-1 is degraded by the 26S proteasome in response to its polyubiquitination. The C-terminal portion of the protein was found to determine its stability but is not itself ubiquitinated [123]. It is suggested that, as for IRF-3 [150], a phosphorylation-dependent degradation signal could be located in the C-terminus of IRF-1 [122]. Pion et. al. have defined the region 301-311 as comprising a degradation signal which most likely recruits factors to deliver ubiquitinated IRF-1 to the proteasome [123]. Phosphorylation within this region (most likely at Ser308 since Thr311 phosphorylation has been shown not to affect stability) could regulate binding of the proteasome-delivery proteins. Interestingly, work by Dr Sarah Meek indicated that a S → D mutation at the Ser308 site stabilises IRF-1 protein (Dr Sarah Meek, unpublished observations).

Interestingly, in response to DNA damage (as a result of MNNG treatment), IRF-1 is acetylated within the DNA binding domain by CBP (a protein closely related to p300). Acetylation stabilises the IRF-1 protein, increasing its half-life without affecting mRNA synthesis [44]. The mechanism of recruitment of CBP to IRF-1 upon DNA damage is not known, however, since phosphorylation can modulate the recruitment of CBP/p300 to p53 [183], [184], and C-terminal phosphorylation of IRF-1 may enhance p300 binding (Chapter 4), it is possible that phosphorylation directs p300 to IRF-1 in response to DNA damage.

Although phosphorylation may be important for IRF-1 stability, the sites 311T and 317S do not appear to be involved in this regulation. Cycloheximide chase experiments of IRF-1 phosphomimetic mutants show that in whole cell lysate, and in nuclear and cytoplasmic compartments, the half lives of WT, T311D, S317D and T311D/S317D IRF-1 are very similar. It would, however, be interesting to perform cycloheximide chase after
IFN-γ treatment, as activated transcription factors are often targeted for rapid degradation [185]. Phosphorylation at another site in response to IFN-γ treatment may enhance degradation of IRF-1 in the nucleus. For example, phosphorylation of AML1c on specific residues controls both transcriptional activity and degradation [186]. Similarly, activated (non-RB bound) E2F-1 is phosphorylated by TFIIH (a component of the basal transcription machinery) and is subsequently degraded [187]. IRF-1 and TFIIB physically interact and cooperatively stimulate transcription in an in vitro transcription assay [188]. It would be interesting to determine if the half life of IRF-1 is affected by this interaction, and if IRF-1 can be targeted for degradation by TFIIH-mediated phosphorylation.

Protein-protein interaction

IRF-1 has previously been shown to interact with the co-activator p300 and enhance its acetylation of p53 [67]. Evidence from this thesis, and from others in the Ball lab indicates that phosphorylation of IRF-1 at 311T and 317S enhances its interaction with the co-activator p300 (Chapter 4). This appears to enhance the transcriptional activity of IRF-1 in response to IFN-γ treatment and correlates with the observations that a more transcriptionally active form of IRF-3, IRF-3(5D), has a higher affinity for CBP/ p300 [165].

Several mechanisms have been suggested for the transcription-regulatory properties of p300/CBP. One or a number of these may affect the activity of IRF-1. p300/CBP can contact both sequence-specific transcription factors, and the basal transcription machinery, thus, it can act as a bridge to couple recognition of a specific promoter to transcription of the downstream gene. The varied substrates of p300/CBP allow it to act as a scaffold for construction of a transcriptional regulatory complex. In addition, the HAT activity of p300/CBP can alter chromatin structure through histone acetylation, or transcription factor activity, for example, through altering DNA binding capacity, or modulating other protein-protein interactions [167].

So far, p300-IRF-1 interaction has been shown in preliminary experiments to enhance the DNA binding of IRF-1 (see below), however, further activities may be uncovered in the future. IRF-1-p300 complex interaction with the transcription apparatus in vivo and
with other cofactors should be investigated. A ChIP assay could be employed to discover the effect of co-transfection with p300 on IRF-1 association with components of the transcriptional machinery at promoters, and a ChIP assay coupled with mass-spectrometry could identify binding partners recruited to IRF-1 through p300 activity. The acetylation of IRF-1 after p300 binding should also be investigated.

The LXXLL motif within the IRF-1 Mf1 domain binds the Hsp70 chaperone protein, which recruits Hsp90 to IRF-1. Hsp70 and Hsp90 cooperate to regulate the stability, localisation and activity of IRF-1 [121]. It has been shown recently in the Ball laboratory that phosphorylation of an IRF-1 C-terminal peptide at Ser308 inhibits Hsp70 binding (Dr Vikram Narayan, unpublished observations). To extend this, an ELISA was performed to examine the effect of phosphorylation at Thr311 and Ser317 on Hsp70, Hsc70 and Hsp90 binding to full length IRF-1. It can be seen that endogenous Hsp70, Hsc70 and Hsp90 bind less well to immobilised IRF-1 T311D/S317D than IRF-1 WT (Fig 6.2A). Since Hsp90 increases IRF-1 transcriptional activity, and enhances its nuclear accumulation [121], and IRF-1 T311D/S317D is more transcriptionally active at IRF-1 transactivated promoters (Chapter 4), it seems counterintuitive that IRF-1 T311D/S317D does not bind as strongly to Hsp70/90. However, for IRF-3, it has been observed that Hsp90 forms a complex with IRF-3 and the kinase TBK1, bringing them into close proximity to allow phosphorylation of IRF-3 by TBK1. After phosphorylation, IRF-3 dissociates from Hsp90 and the IRF-3(5D) phosphomimetic mutant cannot bind Hsp90 [189]. Therefore, a similar pathway could regulate IRF-1 where Hsp90 recruits an activatory kinase to IRF-1, and after phosphorylation at 311T/317S sites the complex could dissociate, resulting in a low affinity of IRF-1 T311D/S317D for Hsp70 and 90. The binding site for Hsp70 on IRF-1 spans both 311T and 317S (Fig 6.2B from [121]). The residues on either side of both phosphorylation sites are all critical for the interaction [121], therefore, it is possible that phosphorylation directly blocks binding of Hsp70 and Hsp90.

A pull-down assay with Hsp90/control transfected cells (or Hsp90 inhibitor (17AAG)/control treated cells) followed by a kinase assay using eluted IRF-1 binding proteins (as depicted in Fig 6.3) would reveal if Hsp90 couples IRF-1 with a kinase. If an IRF-1 kinase is found associated with Hsp90, it could be purified from the complex and identified by
Figure 6.2: IRF-1 phosphorylation inhibits Hsp70, Hsc70 and Hsp90 binding. (A) 100ng purified His-IRF-1 WT or T311D/S317D was immobilised on an ELISA plate and incubated with 300ng A375 lysate for 1 hour. Binding of proteins from lysate was detected by anti-hsp70 (Stressgen), anti-hsc70 (Stressgen) and anti-hsp90 (Stressgen) antibodies followed by HRP-swine anti-rabbit antibody (Dako). Binding was normalised to IRF-1 WT-binding levels for each protein. Results expressed as mean +/- standard deviation for triplicates. (B) Hsp70 binding motif [121] x is any amino acid. Data representative of three independent experiments. Significant differences in cofactor binding by paired t test are indicated (* p=<0.05, ** p=<0.01).
mass-spectrometry. Then, the effect of the kinase on IRF-1 activity, localisation and DNA binding could be investigated. It is possible that a kinase is only recruited to the complex after stimulation of cells, or that different kinases are recruited after different signals, therefore, various cell stimuli should be incorporated into the experiment.

It is likely that there are other proteins differentially binding to IRF-1 WT and IRF-1 T311D/S317D, which could be identified using SILAC mass-spectrometry. An example of how this technique was successfully used to identify phospho-dependent binding partners is given in reference [190]. Briefly, phosphorylated or non-phosphorylated peptide is immobilised on a column, and incubated with cell lysate to pull out binding partners. Phosphorylated peptide is incubated with lysate labelled by growing in media supplemented with, for example, heavy (13C lysine and arginine) amino acids, and non-phosphorylated peptide is incubated with lysate labelled with, for example light (12C lysine and arginine) amino acids. The binding partners can be eluted and separated by SDS-PAGE, then identified using mass-spectrometry. The labelled amino acids allow quantification of the relative amounts of each protein bound to the phosphorylated and unphosphorylated peptides by comparing the 12C/13C isotope ratios [190].

It was interesting to note that IRF-1 T311D/S317D repressed the Cdk2 and MMP9 promoters to the same extent as IRF-1 WT. Therefore, phosphorylation at these sites appears to have no effect on the interaction of IRF-1 with co-repressors.

DNA-binding

This thesis has demonstrated that phosphomimetic IRF-1 T311D/S317D shows enhanced DNA binding compared to IRF-1 WT in EMSAs. This is likely to be mediated by enhanced binding of IRF-1 T311D/S317D to a cofactor, the histone acetylase p300, and acetylation of IRF-1 appears to further stabilise the interaction with DNA (see Fig 4.10). A model for this pathway has been suggested in Fig 6.4. This phenomenon has previously been observed for p53, where phosphorylation of p53 increases its affinity for p300 and PCAF, promoting acetylation elsewhere in p53 which, in turn, enhances DNA binding [191] [192] and coactivator recruitment [168]. RelA also shows phosphorylation-induced p300-dependent acetylation resulting in enhanced DNA binding [193] and many other
Figure 6.3: Experimental design for determining if Hsp90 recruits a kinase to IRF-1. Lysate from cells transfected with one-strep-IRF-1 +/- Hsp90 is passed over a streptactin column to isolate one-strep-IRF-1 complexes. The complexes are gently washed and eluted using biotin. The eluted complexes are used as a kinase source to phosphorylate purified, recombinant IRF-1. Phosphorylation could be visualised using a phosphorimager.
transcription factors show enhanced DNA binding activity after p300-dependent acetylation including MEF2 [194], GATA4 [195], and Nrf2 [196]. IRF-1 has previously been shown to interact with p300 and stimulate acetylation of promoter-bound p53 [67], but this is the first time p300 has been shown to directly regulate IRF-1 activity.

Phosphorylation by Protein Kinase R (PKR) or a PKR-activated kinase modulates IRF-1 DNA binding. PKR has been shown to be activated upon IFN-γ treatment [94]. In the absence of PKR, IRF-1 protein is expressed normally, but DNA binding activity in response to various stresses is lost [197]. Further, inhibition of PKR by a hepatitis C virus protein results in inhibition of DNA binding [198]. As yet, however, direct phosphorylation of IRF-1 by PKR has not been demonstrated, although, interestingly, 311T matches the PKR consensus phosphorylation site [153].

Enhanced DNA binding of IRF-1 in response to IFN-γ treatment has been shown indirectly by the large increase in the variety of promoters bound by IRF-1 after IFN-γ treatment [43].

All of the mechanisms of regulation discussed above combine to dictate the transcriptional activity of IRF-1. The reporter assays recorded in Chapter 4 show that for IRF-1-activated promoters, phosphorylation in response to IFN-γ enhances transcriptional activity, however, IRF-1-repressed promoters are not affected by phosphorylation at T311D or S317D. Since IFN-γ triggers inhibition of both of the IRF-1-repressed promoters studied - the MMP9 [45] and Cdk2 [199] promoters, it is clear that other signals modulating IRF-1 activity in response to IFN-γ treatment remain to be elucidated. Phosphorylation at other sites, or other post-translational modifications could recruit co-repressors to cooperate with IRF-1 at these promoters. It is clear that there is much work to be done to fully characterise the regulation of IRF-1, even by a single signal.

One approach to better characterising the effect of, for example, IFN-γ treatment on IRF-1 is to determine all the stimulus-specific phosphorylation sites using mass-spectrometry, and then identify the kinases responsible. Since this is a large undertaking, a first step could be the identification of kinases responsible for phosphorylation at the 311T and 317S sites. Using the online phosphorylation site prediction programmes NetPhosK2.0
Figure 6.4: Model for mechanism of enhanced transcriptional activity of IRF-1 after IFN-γ treatment. IFN-γ causes upregulation of IRF-1 protein expression through STAT1. IFN-γ signalling also activates/upregulates IRF-1 kinases. Phosphorylation of IRF-1 creates a binding site for p300. p300 binding enhances the affinity of IRF-1 for DNA, and acetylation of IRF-1 by p300 further enhances DNA binding. This could be due either to (a) acetylation causing conformational change of IRF-1 which further enhances or stabilises a favourable DNA binding conformation, or (b) acetylation creating a binding site for another cofactor whose interaction stabilises or enhances a favourable DNA binding conformation. As a result of the enhanced DNA binding, and potentially the improved recruitment of other components of the transcriptional machinery by the cofactors, there is enhanced expression of IRF-1 activated promoters.
KinasePhos2.0 [152] and PPSP [153], a list of kinases whose phosphorylation motifs matched 311T and 317S was generated. To narrow down the list, a literature search was performed to identify kinases that were known to be activated upon IFN-γ treatment. The resulting set of kinases is shown in Table 6.1. Inhibitors/siRNA studies could be used to determine if these kinases can modulate IRF-1 activity, and 2D gels and in vitro kinase assays could be used to assess if they can phosphorylate IRF-1. If S/T → A mutation at the appropriate site abrogates phosphorylation of IRF-1 by the kinase, it is likely that the kinase could be part of a signalling pathway controlling IRF-1.

<table>
<thead>
<tr>
<th>311T</th>
<th>317S</th>
</tr>
</thead>
<tbody>
<tr>
<td>p38MAPK</td>
<td>AKT1</td>
</tr>
<tr>
<td>CDK5</td>
<td>CHK1/2</td>
</tr>
<tr>
<td>GRK</td>
<td>PKB/AKT</td>
</tr>
<tr>
<td>PKB/AKT</td>
<td>ATM</td>
</tr>
<tr>
<td>CDC2</td>
<td>PKC</td>
</tr>
<tr>
<td>CK2</td>
<td>Aurora</td>
</tr>
<tr>
<td>PDK</td>
<td>PKG</td>
</tr>
<tr>
<td>CAK</td>
<td>MAPK</td>
</tr>
<tr>
<td>CDK5</td>
<td>PAK</td>
</tr>
<tr>
<td>GSK3</td>
<td>MAPKAPK2</td>
</tr>
<tr>
<td>MAPK</td>
<td>S6K</td>
</tr>
<tr>
<td>MAPKK</td>
<td>RSK</td>
</tr>
<tr>
<td>MTOR</td>
<td>AMPK</td>
</tr>
<tr>
<td>p34CDC2</td>
<td>PKA</td>
</tr>
<tr>
<td>PKR</td>
<td>CAK</td>
</tr>
<tr>
<td></td>
<td>STK4</td>
</tr>
<tr>
<td></td>
<td>CAM I/IV</td>
</tr>
<tr>
<td></td>
<td>CHK1</td>
</tr>
<tr>
<td></td>
<td>CAM II</td>
</tr>
</tbody>
</table>

Table 6.1: Kinases predicted to phosphorylate IRF-1 311T or 317S. Kinases reported to be activated by IFN-γ treatment are highlighted in bold.

An as yet unexplored aspect of IRF-1 regulation is role of dephosphorylation. No phosphatases have been reported to act on IRF-1 and the impact of negative-regulatory phosphorylations has not been studied. If a picture of the phosphorylated sites of “resting” IRF-1 was known, this could be compared to the phosphorylation of activated IRF-1, and inhibitory phosphorylation sites identified. If such phosphorylation events were identified, inhibitors of the phosphatases responsible could also be useful drug targets.
Acetylation of IRF-1 also deserves more attention. As well as the acetylation by p300 identified here, IRF-1 is known to bind PCAF and GCN5 at promoters and this interaction enhances the activity of IRF-1 [127]. Thus, acetylation is likely to be a major player in the regulation of IRF-1.

Cell based assays investigating the effect of phosphorylation on the tumour suppressor activities of IRF-1 have shown that T311D/S317D IRF-1 may be more efficient at suppressing anchorage dependent and independent colony formation, although this does not appear to be due to effects on cell cycle progression, but could be triggering of senescence. IRF-1 was also shown, for the first time, to be able to inhibit invasion in an in vitro assay of invasion. Again phosphomimetic IRF-1 appears to enhance this activity.

On the basis of this enhanced tumour suppressor activity in vitro, it would be useful to study the effects in vivo. What is the effect on tumour growth/metastasis of transfecting cells with IRF-1 T311D/S317D before xenografting? Can administration of IRF-1 T311D/S317D slow/reverse the progression of tumours?

If the identity of the kinases catalysing the activatory phosphorylations was known, it might be possible to manipulate these to enhance the effects of IRF-1 on tumours in vivo. However, this might be a treatment doomed to rapid resistance, as many tumours escape the control of IRF-1 by causing its downregulation [200], and the effects could be non-specific. Therefore, administration of artificial IRF-1 seems like a better option. Ectopic expression of IRF-1 by an adenoviral vector in mice has been shown to inhibit tumour growth [41], [34], thus expression of activated IRF-1 (T311D/S317D) could be even more effective.

As well as activating the transcriptional activity of IRF-1, ectopically expressed protein could be made more effective as a therapeutic by prolonging its half life. IRF-1 is degraded through the ubiquitin-proteasome pathway [122], [123]. Perhaps mutation of the lysine residues which accept the polyubiquitin could further enhance the activity of IRF-1. It seems that this is a mechanism used in vivo to modulate IRF-1 activity since acetylation of IRF-1 lysine residues (which protects them from ubiquitination) stabilises the protein [44].
It is important, however, to properly characterise the effects of the activatory mutations. IRF-1 upregulation has been linked with autoimmune disease [87] [88] [89] in vivo, therefore, the effect of T311D/S317D on inflammatory and immune-related promoters should be studied (for example, by ChIP-seq). MHC I, iNOS and caspase 1 overexpression have all been linked to MS [201] [88] [202] and since their promoters are all regulated by IRF-1 [28] [35] [40], they could form an initial panel of genes to monitor. In vivo studies should monitor for autoimmune side effects as well as considering tumour suppression.

In conclusion, this thesis has firmly established phosphorylation as a post-translational method of control of IRF-1. Two stimulus-specific phosphorylation sites have been identified and a model for the mechanism by which they selectively enhance the transcriptional activity of IRF-1 has been suggested. Furthermore, the activity of a mutant mimicking phosphorylation at the two sites (IRF-1 T311D/S317D) has been characterised in in vitro assays and found to be an effective tumour suppressor and metastatic inhibitor.
Bibliography

[6] Abbas Abdollahi, Kenneth A Lord, and Dan A Liebermann. Interferon Regulatory Factor 1 Is a Myeloid Differentiation Primary Response Gene Induced by Inter-

[28] Michael Hobart, Vido Ramassar, Nelson Goes, Joan Urmson, and Philip F Hallo- ran. IRF-1 plays a central role in the regulation of the expression of class I and II

[36] Jide Wang, Wenjing Zhang, Yusheng Zhang, Bing Zou, Bo Jiang, Roberta Pang, Qing Gu, Liang Qiao, Huiyao Lan, Hsiang-fu Kung, and Benjamin C Y Wong. c-Jun-terminal kinase (JNK1) upregulates XIAP-associated factor 1 (XAF1) through

[44] Hongyan Qi, Huifang Zhu, Meng Lou, Yanfeng Fan, Hong Liu, Jing Shen, Zhongjie Li, Xue Lv, Jianzhen Shan, Lijun Zhu, Y Eugene Chin, and Jimin Shao.

[53] VE Velculescu, SL Madden, L Zhang, AE Lash, J Yu, C Rago, A Lal, CJ Wang,

[60] M Upreti, N A Koonce, L Hennings, T C Chambers, and R J Griffin. Pegylated IFN-a sensitizes melanoma cells to chemotherapy and causes premature senescence in endothelial cells by IRF-1-mediated signaling. *Cell Death and Disease,

[68] Michaele J Armstrong, Michael T Stang, Ye Liu, Jinbo Gao, Baoguo Ren, Brian S

[85] Aristides Moschonas, Maria Kouraki, Pauline G Knox, Efstathia Thymiakou, Dimitris Kardassis, and Aristides G Eliopoulos. CD40 Induces Antigen Transporter

[94] Aseem Kumar, Yi-li Yang, Vincenzo Flati, Sandy Der, Suzanne Kadereit,

[110] Peter Andersen, Mikkel Wandahl Pedersen, Anders Woetmann, Mette Villingshøj,

[118] Richard Pine. Convergence of TNFα and IFNγ signalling pathways through syner-
gistic induction of IRF-1 / ISGF-2 is mediated by a composite GAS / κB promoter

[119] Rongtuan Lin and John Hiscott. A role for casein kinase II phosphorylation in the
regulation of IRF-1 transcriptional activity. Molecular and Cellular Biochemistry,

[120] Melanie Giroux, Manuel Schmidt, and Albert Descoteaux. IFN-\gamma-Induced MHC
Class II Expression: Transactivation of Class II Transactivator Promoter IV by IFN
Regulatory Factor-1 is Regulated by Protein Kinase C-\alpha. Journal of Immunology,

Cooperative Regulation of the Interferon Regulatory Factor-1 Tumor Suppressor
Protein by Core Components of the Molecular Chaperone Machinery. Journal of

[122] Koji Nakagawa and Hideyoshi Yokosawa. Degradation of transcription factor IRF-

[123] Emmanuelle Pion, Vikram Narayan, Mirjam Eckert, and Kathryn L Ball. Role
of the IRF-1 enhancer domain in signalling polyubiquitination and degradation.

[124] Koji Nakagawa and Hideyoshi Yokosawa. PIAS3 induces SUMO-1 modification

[125] Junsoo Park, Kwangsoo Kim, Eun-ju Lee, Yun-jee Seo, Si-nae Lim, Kyoung-
sook Park, Seung Bae Rho, Seung-hoon Lee, and Je-ho Lee. Elevated level
of SUMOylated IRF-1 in tumor cells interferes with IRF-1-mediated apoptosis.

[126] Atsuko Masumi and Keiko Ozato. Coactivator p300 Acetylates the Interferon Regu-
larly Factor-2 in U937 Cells following Phorbol Ester Treatment. Journal of Bi-

[127] Atsuko Masumi, I-ming Wang, Bruno Lefebvre, Xing-jiao Yang, Yoshihiro
Nakatani, and Keiko Ozato. The Histone Acetylase PCAF Is a Phorbol-Ester-
Inducible Coactivator of the IRF Family That Confers Enhanced Interferon Re-
[136] Yaxin Wang, Bo Gao, Wei Xu, and Sidong Xiong. BRG1 is indispensable for IFN-gamma -induced TRIM22 expression, which is dependent on the recruitment of IRF-1. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2011.

[163] Lorenza Bordoli, Marco Netsch, Urs Lüthi, Werner Lutz, and Richard Eck-

[181] Beate Friedrich, Christina Quensel, Thomas Sommer, Enno Hartmann, and Matthias Kohler. Nuclear Localization Signal and Protein Context both Mediate Importin α Specificity of Nuclear Import Substrates Nuclear Localization Signal and Protein Context both Mediate Importin Specificity of Nuclear Import Sub-

