Regulation of FOXO Transcription Factors by Gonadotropin-Releasing Hormone

Emmanouil Stavrou

This thesis is presented for the degree of

Doctor of Philosophy

University of Edinburgh

2011
This thesis is dedicated to my parents,
Stavro Stavrou and Eleni Dimaki
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>ii</td>
</tr>
<tr>
<td>LIST OF PUBLICATIONS</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>xii</td>
</tr>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>LITERATURE REVIEW</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Overview</td>
<td>2</td>
</tr>
<tr>
<td>1.2 The hypothalamic-pituitary axis</td>
<td>4</td>
</tr>
<tr>
<td>1.2.1 Kisspeptin (Kiss1) and kisspeptin receptor (Kiss1r)</td>
<td>5</td>
</tr>
<tr>
<td>1.2.2 Gonadotropin-Releasing Hormone (GnRH)</td>
<td>7</td>
</tr>
<tr>
<td>1.2.3 The Gonadotropin-Releasing Hormone Receptor (GnRH-R)</td>
<td>8</td>
</tr>
<tr>
<td>1.3 GnRH-R signalling</td>
<td>10</td>
</tr>
<tr>
<td>1.3.1 Coupling to G-proteins</td>
<td>10</td>
</tr>
<tr>
<td>1.3.2 Phospholipase C</td>
<td>11</td>
</tr>
<tr>
<td>1.3.3 IP₃ and Ca²⁺</td>
<td>12</td>
</tr>
<tr>
<td>1.3.4 Diacylglycerol (DAG) and phosphatidic acid (PA)</td>
<td>13</td>
</tr>
<tr>
<td>1.3.5 Protein Kinase C</td>
<td>13</td>
</tr>
<tr>
<td>1.3.6 Mitogen-activated protein kinase (MAPK)</td>
<td>14</td>
</tr>
<tr>
<td>1.3.7 The phosphatidylinositol 3-Kinase(PI3K) /Akt signalling pathway</td>
<td>14</td>
</tr>
<tr>
<td>1.4 GnRH-induced antiproliferation and apoptosis</td>
<td>16</td>
</tr>
<tr>
<td>1.4.1 The role of FasL and GADD45 in GnRH-induced apoptosis</td>
<td>19</td>
</tr>
<tr>
<td>1.5 The Gonadotropins</td>
<td>20</td>
</tr>
<tr>
<td>1.5.1 Luteinising Hormone</td>
<td>20</td>
</tr>
<tr>
<td>1.5.2 Follicle-Stimulating Hormone</td>
<td>21</td>
</tr>
<tr>
<td>1.5.3 LHβ promoter structure</td>
<td>22</td>
</tr>
<tr>
<td>1.5.4 Regulation of LHβ expression – Transcription factors</td>
<td>23</td>
</tr>
<tr>
<td>1.5.4.1 Egr1</td>
<td>24</td>
</tr>
<tr>
<td>1.5.4.2 SF1</td>
<td>24</td>
</tr>
<tr>
<td>1.5.4.3 Pitx1</td>
<td>25</td>
</tr>
</tbody>
</table>
1.5.4.4 Sp1
1.5.4.5 Transcription factor synergism at the LHβ promoter
1.5.4.6 β-catenin
1.5.5 Regulation of Luteinising Hormone expression – signalling pathways
1.5.6 Pulsatile regulation of LH and FSH expression by GnRH
1.6 **Forkhead Transcription Factors**

1.6.1 FOXO structure and function
1.6.2 Regulation of FOXO transcription factors

1.6.2.1 Phosphorylation
1.6.2.1.1 The PI3K/Akt signalling pathway
1.6.2.1.2 The IKK signalling pathway
1.6.2.2 Acetylation
1.6.2.3 Ubiquitination
1.6.2.4 FOXO co-factors
1.6.2.5 FOXO auto-regulation
1.6.3 FOXO-target genes

1.6.3.1 BIM
1.6.3.2 FasL
1.6.3.3 p21Cip1 and p27Kip1
1.6.3.4 GADD45
1.6.4 Cell-type specific FOXO activity
1.6.5 The role of FOXOs in cancer progression
1.6.6 FOXO knock-down mice
1.6.7 FOXO transcription factors and LH

2 **MATERIALS AND METHODS**

2.1 **Mammalian cell culture**

2.1.1 Cell media
2.1.2 Sub-culturing of cells
2.1.3 Cryopreservation of cells
2.1.4 Recovery of frozen cells
2.1.5 Generation of stable FOXO3a knock-down SCL60 and PWE-1-NB26-3 lines, and LBT2 transient FOXO3a knock-down cell lines
2.1.6 DNA transfection of mammalian cells
2.1.6.1 Transfection with Superfect® reagent 63
2.1.6.2 Transfection with Fugene® reagent 64
2.1.6.3 Dual light reporter gene luciferase assay 65
2.2 Immunofluorescence confocal microscopy 66
2.3 DNA manipulation 67
2.3.1 Plasmid constructs 67
2.3.2 Transformation of competent cells 68
2.3.3 Extraction and purification of DNA 68
2.3.4 DNA quantification 69
2.3.5 Preparation of glycerol stocks of transformed bacteria 69
2.4 RNA manipulation 69
2.4.1 Total RNA extraction 69
2.4.2 Quantitative Real Time PCR (qRT-PCR) 70
2.4.2.1 Reverse Transcription for quantitative RT-PCR - cDNA synthesis 70
2.4.2.2 Designing primers for qRT-PCR 71
2.4.2.3 qRT-PCR runs 73
2.5 Protein analysis 73
2.5.1 Preparation of total protein extraction 73
2.5.2 Immunoblotting 74
2.6 Materials 75
2.6.1 Chemical inhibitors 75
2.7 Cell number assay and cell counting 76
2.7.1 Cell number assay 76
2.7.2 Cell counting 77
2.8 Pharmacological characterisation of GnRH function 77
2.8.1 GnRH binding assay 77
2.8.2 Inositol Phosphate (IP) assay 78
2.9 Chromatin Immunoprecipitation (ChIP) assay 79
2.10 Cell-cycle analysis 78
2.11 Immunohistochemistry 80
2.11.1 Tissues 80
2.11.2 Immunohistochemistry procedure 81
2.12 Statistical analysis 83
3 REGULATION OF FOXO TRANSCRIPTIONAL ACTIVITY BY GnRH 84
3.0 Abstract 85
3.1 Background and objectives 85
3.2 Results 86
3.2.1 FOXO1 and FOXO3a phosphorylation and sub-cellular localisation in response to GnRH treatment 86
3.2.1.1 GnRH treatment targets phosphorylation of FOXO3a at Ser253 in SCL60 cells 86
3.2.1.2 p-FOXO3a(Ser253), but not p-FOXO1(Ser256), is redistributed between the nucleus and cytoplasm in response to GnRH in SCL60 cells 89
3.2.1.3 Phosphorylation of FOXO3a at Ser253 in SCL60 cells is mediated by a \(G_q\)-coupled, PI3K/Akt-mediated signalling pathway 91
3.2.2 GnRH targets FOXO transcriptional activity 93
3.2.2.1 GnRH targets GADD45 transcription in SCL60 cells by regulating FOXO3a transcriptional activity 93
3.2.2.2 GnRH targets FOXO3a transcriptional activity independently of FOXO3a phosphorylation at any of its Akt phosphorylation sites 100
3.2.2.3 GnRH-induced FOXO3a transcriptional activity occurs via \(G_q\)-, Akt- and IKK-mediated signalling pathways 102
3.2.2.4 The role of β-catenin in GnRH-induced GADD45-reporter activity 105
3.2.2.5 The role of acetylation in GnRH-induced GADD45-reporter activity 106
3.2.3 GnRH targets the expression of known FOXO3a-target genes by regulating FOXO3a transcriptional activity 109
3.2.3.1 GnRH regulation of FOXO3a-target gene expression over 24 hours and 4 days 109
3.2.3.2 GnRH regulates expression of GADD45 and FasL by FOXO3a 109
3.2.3.3 FOXO1 and FOXO3a auto-regulation 114
3.2.3.4 GnRH does not regulate FOXO1 and FOXO3a gene expression and protein synthesis 116
3.2.4 Monitoring the role of FOXO3a in cell-cycle regulation in response to GnRH 120
3.3 Discussion 122

4 THE ROLE OF FOXO3a IN THE GnRH-INDUCED CELL-GROWTH INHIBITION 131
4.0 Abstract 132
4.1 Background and objectives

4.2 Results

4.2.1 Role of FOXO3a in GnRH-induced cell-growth inhibition

4.2.1.1 Generation of FOXO3a knock-down SCL60 cell lines

4.2.1.2 FOXO3a knock-down does not affect GnRH-R functionality

4.2.1.3 FOXO3a protects SCL60 cells from GnRH-induced cell-growth inhibition

4.2.1.4 The effect of FOXO3a on FasL expression in response to D-Trp^6-GnRH I treatment

4.2.1.5 Effect of Akt and IKK on GnRH-induced cell-growth inhibition in SCL60, SCL839 and SCL840 cells

4.2.1.6 Monitoring the role of FOXO3a in cell-cycle regulation in response to GnRH

4.3 Discussion

5 THE ROLE OF FOXO3a IN THE REGULATION OF LHβ EXPRESSION IN RESPONSE TO GnRH IN THE GONADOTROPES

5.0 Abstract

5.1 Background and objectives

5.2 Results

5.2.1 The role of FOXOs in GnRH-induced regulation of LHβ, FSHβ and GnRH-R expression

5.2.2 GnRH regulates LHβ-subunit expression via FOXO3a activity

5.2.3 GnRH regulation of Egr1 expression by FOXO3a

5.2.4 GnRH regulation of LHβ-subunit expression by targeting Egr1 expression by FOXO3a

5.2.5 GnRH regulation of LHβ expression via FOXO3a requires β-catenin activity

5.2.6 GnRH regulation of FOXO3a binding at Egr1 and LHβ promoters

5.2.7 Immunohistochemistry of FOXOs in pituitary tissues

5.2.7.1 Optimisation of the staining for FOXO1, FOXO3a and pFOXO3a(Ser^253) antibodies

5.2.7.2 Adult human gonadotropes express FOXO1 and FOXO3a

5.2.8 GnRH-induced FOXO3a phosphorylation

5.3 Discussion

6 GENERAL DISCUSSION

6.1 Thesis motivation
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2</td>
<td>Thesis objectives</td>
<td>186</td>
</tr>
<tr>
<td>6.3</td>
<td>Conclusions</td>
<td>187</td>
</tr>
<tr>
<td>6.4</td>
<td>Future research and perspectives</td>
<td>189</td>
</tr>
<tr>
<td>7</td>
<td>APPENDICES</td>
<td>193</td>
</tr>
<tr>
<td>7.1</td>
<td>Suppliers details</td>
<td>194</td>
</tr>
<tr>
<td>7.2</td>
<td>Supplementary data</td>
<td>195</td>
</tr>
<tr>
<td>7.3</td>
<td>Antibodies</td>
<td>205</td>
</tr>
<tr>
<td>7.4</td>
<td>Abbreviation of amino acids</td>
<td>206</td>
</tr>
<tr>
<td>7.5</td>
<td>Constructs</td>
<td>207</td>
</tr>
<tr>
<td></td>
<td>BIBLIOGRAPHY</td>
<td>215</td>
</tr>
</tbody>
</table>
DECLARATION

I hereby declare that the work presented within this thesis was carried out by myself during the course of my PhD and that it has not been submitted for any other degree or qualification. Where I have used the work of others, the sources of information have been detailed clearly in the presentation.

Emmanouil Stavrou
ACKNOWLEDGEMENTS

First, I would like to especially thank my principal supervisor Dr. Adam Pawson for giving me the opportunity to undertake a PhD in his research group. I couldn’t have done all this without his support, advice and assistance through these three years. His supervision was effective, facilitating structured yet stress-free collaboration and a friendly atmosphere. My appreciation also goes to my secondary supervisor, Professor Robert Millar for very useful discussions and helpful advice at all stages of my studies.

I am thankful to Kevin Morgan for his advice and contribution to my PhD thesis. Additionally, I acknowledge effective collaboration and friendship with Javier Tello. Many thanks to Pamela Brown, Sheila MacPhe son and Shonna Jonhston for valuable contributions to my PhD experience, and to everyone else in the Bob Millar group.

Special mention is reserved for a very good friend, Robin Coltman. Without his help in my first months here in Edinburgh in 2004, I’m not sure I could have managed to still be in Edinburgh, now completing my PhD studies. My gratitude extends to other friends I met in Edinburgh, and in particular to David, Dave, Ricardo, Andreas, Xrysa, Giannis, Dionysia, Georgios, Stelios, Valeria, Sofia, Stavros, Evia and George. I would also like to thank dear friends Ntinos, Dimitris and Antonis from home for constant support and wonderful times. I would also like to thank Ms Eleutheria and Lambros and of course Panagiotis for his encouragement and support when I had to work during the weekends in the lab...
I am forever indebted to my parents, Stavro and Eleni for their love, faith and support. I am also grateful to another special person in my life, my sister, Katerina. Her encouragement and humour was very important for me during the three years of my PhD.

Last but not least, I would like to express my gratitude to Georgia, for making these three years, just...wonderful, an unforgettable experience. Without her support and encouragement, this journey would not have been as fulfilling and meaningful. But mostly, thank you for your love.
LIST OF PUBLICATIONS

Submitted and in preparation:

Stavrou. E., Brown, P., Faccenda, E., Millar. R. P., Pawson A. J. Gonadotropin-releasing hormone regulates LHβ-subunit expression by targeting FOXO3a transcriptional activity (Submitted in Molecular Endocrinology) (Based on Chapter five)

Peer-reviewed:

Morgan K, Stavrou. E, Leighton S. P, Miller N, Seller, R., Millar R. P. 2010 Elevated GnRH receptor expression plus GnRH agonist 1 treatment inhibits the 2 growth of a subset of papillomavirus 18-immortalised human prostate cells. Prostate (accepted) (Figure 3-24 from Chapter three)

Conference Proceedings:

92nd Annual Meeting of the Endocrinology Society (ENDO 2010), San Diego, USA
Poster presentation (Title: GnRH regulates LHβ subunit expression by targeting FOXO3a activity) (Based on Chapter five)

International Congress of Endocrinology, 2010, Kyoto, Japan,
Poster presentation (Title: Role of FOXO3a in Gonadotropin-releasing hormone-induced cell-growth inhibition) (Based on Chapters three and four)

Society for Endocrinology (BES 2009), Harrogate International Center, UK
Poster presentation (Title: GnRH regulation of FOXO transcription factors) (Based on Chapters three)

Fertility, Edinburgh International Conference Center, 2009, UK
Poster presentation (Title: GnRH regulation of FOXO transcription factors) (Based on Chapter three)

Oral presentations:

MRC exchange seminar programme for PhD students, 2010, University of Dundee
Oral presentation (Title: Regulation of FOXO transcription factors by gonadotropin-releasing hormone (GnRH)) (Based on Chapters three and four)
ABSTRACT

G protein-coupled receptors (GPCRs) are a large family of trans-membrane receptors that transmit signals from extracellular stimuli to target intracellular signal transduction pathways. The gonadotropin-releasing hormone receptor (GnRH-R) is a GPCR which binds the decapetide GnRH. In the pituitary gonadotrope, GnRH stimulates gonadotropin (LH and FSH) biosynthesis and secretion to regulate reproduction. GnRH and the GnRH-Rs are also present in many extra-pituitary tissues, although their role at these sites remains largely undetermined. GnRH-Rs are known to recruit a diverse array of signalling pathway mediators in different cell-types. These include; \(G_{q/11} \)-PLC\(\beta \)-IP\(_3\)/DAG-Ca\(^{2+}\)/PKC signalling, monomeric G-proteins and integrins to mediate cell adhesion and migration, the activation of the major members of the mitogen-activated protein kinase (MAPK) super-family (extracellular signal-regulated kinase (ERK), c-Jun N-terminal Kinase (JNK) and p38MAPK), and \(\beta \)-catenin and other mediators of the canonical Wnt signalling pathway.

This thesis describes the regulation of Forkhead Box O (FOXO) transcription factors by GnRH. The mammalian FOXO transcription factors, FOXO1, FOXO3a and FOXO4, are emerging as an important family of proteins that modulate the expression of genes involved in cell-cycle regulation, induction of apoptosis, DNA damage repair and response to oxidative stress. In this thesis, emphasis is placed on delineating the novel role of FOXO transcription factors in mediating two important and widely-researched areas of GnRH biology. Firstly, the role of FOXO transcription factors in mediating cell-growth inhibition in response to GnRH
treatment is assessed in a heterologous HEK293/GnRH-R expressing cell line. Secondly, the role of transcription factors in regulating luteinising hormone-β (LHβ)-subunit expression is investigated in the LβT2 gonadotrope cell line.

Activation of the GnRH-R can inhibit cell proliferation and induce apoptosis in certain tumour-derived cell lines. Several studies have reported that these events can occur as a result of changes in the expression profiles of specific cell-cycle regulatory and apoptotic genes, many of which are FOXO-target genes, including \textit{GADD45}, \textit{FasL}, \textit{p21Cip1} and \textit{p27Kip1}. In this thesis, a role for FOXOs in targeting the expression of several of these genes in response to GnRH is assessed, highlighting a specific role for FOXO3a in mediating \textit{GADD45} and \textit{FasL} expression. The signalling mechanisms through which FOXO3a regulates \textit{GADD45} expression in response to GnRH is also described. Finally, a stable FOXO3a-knock-down cell line was generated in order to further examine FOXO3a involvement in GnRH-induced cell-growth inhibition.

\textbf{GnRH} is an essential regulator of the reproductive process by stimulating the synthesis of LH and FSH in pituitary gonadotropes, thereby regulating gametogenesis and steroidogenesis. Diverse signalling pathways have been reported to regulate LHβ-subunit expression in response to GnRH, including the ERK/JNK/p38MAPK cascades and factors such as Egr1, SF1 and β-catenin. In the second part of this thesis, the role of FOXOs in regulating LHβ-subunit expression in response to GnRH is described. The data presented suggests that GnRH can regulate LHβ-subunit expression through both indirect and direct FOXO3a-mediated mechanisms. Firstly, FOXO3a was found to regulate Egr1 expression to indirectly
target \(LH\beta \)-promoter activity. Secondly, a role for \(\beta \)-catenin as a FOXO3a co-factor to directly regulate LH\(\beta \)-subunit expression, together with Egr1 and SF1, is also proposed. FOXO3a expression and sub-cellular localisation was assessed and demonstrated in L\(\beta \)T2 cells and in adult human male pituitary sections.

The research presented in this thesis adds to the diversity of signalling pathways and mediators that GnRH can target in different cellular backgrounds in order to mediate a variety of cellular processes. The antiproliferative and apoptotic effects of GnRH on tumour-derived cell lines are well-documented, and this research highlights a novel role for FOXO3a in mediating these events. The regulation of gonadotropin synthesis remains an important topic of research, and the novel implication of FOXO3a in mediating LH\(\beta \)-subunit expression adds further complexity to gonadotrope physiology.
LIST OF FIGURES

1-1 The hypothalamic-pituitary-gonadal axis 5
1-2 Regulation of the reproductive axis by kisspeptin in mouse 7
1-3 The Human Gonadotropin-Releasing Hormone Receptor 10
1-4 Regulation of PLCβ by GPCRs 12
1-5 Structure of LHβ-subunit gene promoter 26
1-6 Model for interaction of SF1, Sp1 and Egr1 on the promoter of LHβ gene in response to GnRH 29
1-7 A possible mechanism describing an involvement of β-catenin in GnRH-induced LHβ gene expression 31
1-8 Schematic representation of the signalling pathways initiated by GnRH-R or EGFR resulting in the synthesis and secretion of the gonadotropins 34
1-9 Structure of FOXO proteins 36
1-10 Structure of FOXO3a and sequence alignment of other FOX proteins 37
1-11 Post-translational modifications of FOXOs 38
1-12 FOXO movement between nucleus and cytoplasm in response to growth signals 40
1-13 The PI3K-PDK1-IKK-FOXO and PI3K-PDK1-Akt-FOXO signalling pathways 41
1-14 FOXO-induced apoptosis by FasL and BIM 48
3-1 Phosphorylation of FOXO3a at Ser²⁵³ in response to GnRH 88
3-2 p-FOXO3a(Ser²⁵³) redistribution between nucleus and cytoplasm following GnRH stimulation in SCL60 cells 90
3-3 GnRH induces phosphorylation of FOXO3a at Ser²⁵³ via a Gq-coupled, PI3K/Akt-mediated signalling pathway 92
3-4 GnRH-induced GADD45-, FHRE- and 6×DBE-reporters 94
3-5 GnRH-induced FHRE-reporter activity 95
3-6 GnRH-induced GADD45-reporter activity in a time-course treatment 96
3-7 GnRH-induced pGL3- and GADD45-reporter activity 97
3-8 GnRH-induced GADD45-reporter activity by direct binding of FOXO3a to the GADD45 promoter 99
3-9 Effect of Akt-dependent FOXO3a phosphorylation on GnRH-induced GADD45-reporter activity 101
3-10 Role of Gq, Akt and IKK in the GnRH-induced GADD45-reporter activity 104
3-11 Immunoblots of GnRH-induced Akt phosphorylation 105
3-12 GnRH-induced transcriptional activity of FOXO3a is mediated by β-catenin 106
3-13 The role of acetylation in GnRH-induced transcriptional activity by FOXO3a
3-14 Effect of GnRH on FOXO-target genes mRNA expression in SCL60 cells over 24 hours
3-15 Effect of GnRH on FOXO-target genes mRNA expression in SCL60 cells over 4 days
3-16 Role of FOXO3a in FOXO-target genes mRNA expression following GnRH treatment
3-17 Effect of FOXO1 and FOXO3a on FOXO1 mRNA expression in response to GnRH
3-18 Effect of FOXO1 and FOXO3a on FOXO3a mRNA expression in response to GnRH
3-19 Effect of GnRH on FOXO1 and FOXO3a mRNA expression in SCL60 cells
3-20 Effect on total FOXO1 (t-FOXO1) and total FOXO3a (t-FOXO3a) protein levels following GnRH treatment
3-21 t-FOXO3a levels following GnRH stimulation in SCL60 cells
3-22 t-FOXO1 levels following GnRH stimulation in SCL60 cells
3-23 Flow cytometry analysis in PWE-1-NB26 and SCL60 cells and cells following D-Trp6-GnRH treatment
3-24 Regulation of FOXO3a by phosphorylation following GnRH treatment
3-25 Regulation of GADD45 and FasL gene expression by FOXO3a
4-1 FOXO3a protein level in the control and FOXO3a knock-down stable cell line
4-2 [125I]-GnRH receptor binding and a [3H]-inositol phosphate assays performed in SCL839 and SCL840 cells
4-3 Effect of GnRH on cell-growth rate in SCL840 and control SCL839 cell lines
4-4 Effect of GnRH on cell growth rate
4-5 Growth rate of SCL839 and SCL840 cells in the presence or absence of 0.5nM D-Trp6-GnRH I
4-6 The effect of D-Trp6-GnRH I on FasL mRNA expression in SCL839 and SCL840 cells
4-7 Effect of Akt and IKK on GnRH-induced cell-growth inhibition in SCL60 cells
4-8 Effect of Akt and IKK on GnRH-induced cell-growth inhibition in SCL839 and SCL840 cells
4-9 Flow cytometry analysis of SCL839 and SCL840 cells following D-Trp6-GnRH I treatment
5-1 LHβ, FSHβ and GnRH-R-reporter activity levels in response to GnRH
5-2 GnRH stimulates LHβ-reporter activity by FOXO3a
5-3 Time-course treatment with GnRH for Egr1-reporter activity
The role of FOXO3a in the GnRH-induced Egr1 expression
Egr1 and FOXO3a in the GnRH-induced LHβ expression
GnRH-induced LHβ-reporter activity requires the presence of FOXO3a and β-catenin
Schematic representation of the mouse LHβ and Egr1 genes, and the primers pairs that bind to the promoter of the genes, or upstream of the promoter (control primers)
GnRH regulation of FOXO3a binding to LHβ and Egr1 promoter
FOXO1 and FOXO3a expression and immuno-localisation in adult human pituitary tissue
FOXO1 and FOXO3a expression and immuno-localisation in adult human pituitary gonadotropes
p-FOXO3a(Ser253) staining in gonadotropes
FOXO3a phosphorylation in LβT2 cells
Model of LHβ and Egr1 gene regulation by FOXO3a in response to GnRH
Immunoblots of GnRH-induced FOXO3a and FOXO1 phosphorylation in SCL60 cells
Immunoblots of GnRH-induced FOXO3a phosphorylation in LNCaP prostate cancer cells
p-FOXO1(Ser256) distribution between nucleus and cytoplasm following GnRH stimulation in SCL60 cells
The effect of chemical inhibitors on GnRH-induced FOXO3a phosphorylation at Ser253
The role of FOXO1 in GnRH-induced GADD45-reporter activity
The role of PI3K, PKC and PLC in the GnRH-induced GADD45-reporter activity
The role of FOXO3a in FOXO-target genes mRNA expression following GnRH treatment
Transduction efficiency of lentivirus in SCL60 cells
LβT2 transient FOXO3a knock-down cells
qRT-PCR calculations for ChIP assay
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Effect on LHβ expression and fertility in mice by knocking-down transcription factors known to regulate the LHβ promoter activity</td>
<td>28</td>
</tr>
<tr>
<td>1-2</td>
<td>FOXO-target genes and their functions</td>
<td>46</td>
</tr>
<tr>
<td>1-3</td>
<td>FOXO3a and FOXO1 regulate the expression of BIM gene in different cellular environments</td>
<td>49</td>
</tr>
<tr>
<td>1-4</td>
<td>FOXO3a and FOXO1 regulate the expression of FasL gene in different cellular environments</td>
<td>50</td>
</tr>
<tr>
<td>1-5</td>
<td>FOXO3a and FOXO1 regulate the expression of p27Kip1 gene in different cellular environments</td>
<td>51</td>
</tr>
<tr>
<td>1-6</td>
<td>FOXO3a and FOXO1 regulate the expression of GADD45 gene in different cellular environments</td>
<td>52</td>
</tr>
<tr>
<td>1-7</td>
<td>The phenotype observed in FOXO knock-down mice</td>
<td>56</td>
</tr>
<tr>
<td>2-1</td>
<td>shRNA sequences against human and mouse FOXO3a gene</td>
<td>63</td>
</tr>
<tr>
<td>2-2</td>
<td>Mixture for Superfect® transfection</td>
<td>64</td>
</tr>
<tr>
<td>2-3</td>
<td>Mixture for Fugene® transfection</td>
<td>64</td>
</tr>
<tr>
<td>2-4</td>
<td>Plasmids used for this study</td>
<td>67</td>
</tr>
<tr>
<td>2-5</td>
<td>Mastermix for RT-PCR reaction</td>
<td>71</td>
</tr>
<tr>
<td>2-6</td>
<td>Primers and probes used for PCR amplification of DNA</td>
<td>72</td>
</tr>
<tr>
<td>2-7</td>
<td>Mastermix used for the RT-PCR reaction</td>
<td>73</td>
</tr>
<tr>
<td>2-8</td>
<td>Chemical inhibitors used in this study</td>
<td>75</td>
</tr>
<tr>
<td>2-9</td>
<td>Tissues that are used in this study</td>
<td>80</td>
</tr>
<tr>
<td>4-1</td>
<td>SCL839 and SCL840 cell doubling time in the presence or absence of 0.5nM D-Trp^6-GnRH</td>
<td>140</td>
</tr>
<tr>
<td>4-2</td>
<td>This table summarises the effect of GnRH on the expression of FasL and GADD45, and the effect of GnRH on the cell-growth inhibition in the SCL60 model cell line, with regards to FOXO3a levels</td>
<td>149</td>
</tr>
<tr>
<td>7-1</td>
<td>List of Suppliers details</td>
<td>191</td>
</tr>
<tr>
<td>7-2</td>
<td>List of antibodies</td>
<td>205</td>
</tr>
<tr>
<td>7-3</td>
<td>Amino acid abbreviations and one letter codes.</td>
<td>206</td>
</tr>
</tbody>
</table>
ABBREVIATIONS

AFX ALL1 Fused gene from chromosome X
AML Acute Myeloid Leukemia
APAFI Apoptotic Activating Factor 1
AVPV Anteroventral Periventricular Nucleus
BMK Big MAPK
BPE Bovine Pituitary Extract
BSA Bovine Serum Albumin
cAMP cyclic Adenosine Monophosphate
CArG CC(A/T)6GG
cDNA complementary DNA
CK1 Casein Kinase 1
ChIP Chromatin Immuno-Precipitation
CREB cAMP Response Element-Binding
CsA Cyclosporin A
DAB Diaminobenzidine
DAG Diacylglycerol
DBD DNA Binding Domain
DBE DAF-16 family protein-Binding Element
ΔCT Deletion of trans-activation domain
ΔDB Deletion of DNA Binding domain
DEPC Diethylpyrocarbonate
DGK DAG kinase
DMEM Dulbecco's Modified Eagle Medium
DMSO Dimethyl Sulfoxide
DNA Deoxyribonucleic acid
DPBS Dulbecco Phosphate Buffered Saline
DYRK1A Dual-specificity Regulated Kinase 1A
ECL Extracellular Loop
EDTA Ethylenediaminetetraacetic Acid
Egr1 Early Growth Response factor 1
ERK1/2 Extracellular signal-Regulated Kinases 1/2
FADD FAS-Associated Death Domain
FasL Fas Ligand
FHRE Forkhead Responsive Element
FGF Fibroblast Growth Factor
FKHR Forkhead in Rhabdomyosarcoma/FOXO1
FKHRL1 Forkhead in Rhabdomyosarcoma like 1/FOXO3a
FOX Forkhead Box
FOXO FOX the “O” sub-group
FSH Follicle Stimulating Hormone
FSHβ Follicle Stimulating Hormone beta (β)
GADD45 Growth Arrest and DNA Damage protein 45
GATA2 GATA-binding protein 2
GDP Guanosine diphosphate
GFP Green Fluorescent Protein
GnRH Gonadotropin-Releasing Hormone
GnRH-R Gonadotropin-Releasing Hormone-Receptor
GPCR G-protein Coupled Receptor
GPR54 G-protein-coupled membrane Receptor 54
GTP Guanosine-5’-trisphosphate
GSE Gonadotrope-Specific Elements
HEK293 Human Embryonic Kidney 293 cells
HEPES 4-(2-Hydroxyethyl)-1-Piperazineethanesulfonic acid
ICL Intracellular Loop
IEG Immediate Early Gene
IGF1 Insulin-like Growth Factor 1
IL-3 Interleukin 3
InsP₃ or IP₃ Inositol 1,4,5-triphosphate
IP Inositol Phosphate
IKK IkB kinase
JNK c-Jun N-terminal kinase
KDa KiloDalton
Kiss1 Kisspeptin 1
Kiss1r Kisspeptin 1 Receptor
LA Leuprolide Acetate
LB-agar Luria-Bertani Broth-agar
LH Luteinising Hormone
LHβ Luteinising Hormone beta (β)
LH-R Luteinising Hormone-Receptor
LHX3 LIM Homeobox gene 3
LiSS Ligand-Induced Selective Signalling
MAPK Mitogen-Activated Protein Kinase
MAP2K Mitogen-Activated Protein Kinase Kinase
MAP3K Mitogen-Activated Protein Kinase Kinase Kinase
MAPK8 Mitogen-Activated Protein Kinase 8
mRNA messenger RNA
NAD Nicotinamide Adenine Dinucleotide
NES Nuclear Export Sequence
NFAT Nuclear Factor of Activated T-cells
NF-κB Nuclear Factor Kappa-light-chain-enhancer of activated B cells
NF-Y Nuclear transcription Factor-Y
NGF Nerve Growth Factor
NGS Normal Goat Serum
NLS Nuclear Localisation Signal
p21Cip1 p21 CDK-Interacting Protein 1
p38MAPK p38 mitogen-Activated Protein Kinases
PA Phosphatidic Acid
PARP Poly(ADP-Ribose)Polymerase
PCR Polymerase Chain Reaction
PDGF Platelet-Derived Growth Factor
PDK1 3'-Phosphoinositide-Dependent Kinase-1
PGF\textsubscript{2α} Prostaglandin F2α
PH Pleckstrin Homology domain
PIP\textsubscript{2} Phosphatidylinositol 4,5-bisphosphate
PI3K Phosphatidylinositol 3-Kinase
Pitx1 Pituitary Homeobox 1
PKB Protein Kinase B
PKC Protein Kinase C
PLC Phospholipase C
PTK1 Protein Tyrosine Kinase 1
PVDF Polyvinylidene Fluoride
qRT-PCR quantitative Real Time PCR
rEGF Recombinant Epidermal Growth Factor
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGS</td>
<td>Regulators of G protein Signalling</td>
</tr>
<tr>
<td>RLU</td>
<td>Relative Light Units</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic Acid</td>
</tr>
<tr>
<td>RNase</td>
<td>Ribonuclease</td>
</tr>
<tr>
<td>RSB</td>
<td>RNA Storage Buffer</td>
</tr>
<tr>
<td>RTKs</td>
<td>Receptor Tyrosine Kinases</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>SDS-Polyacrylamide Gel Electrophoresis</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium Dodecyl Sulfate</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard Error of the Mean</td>
</tr>
<tr>
<td>shRNA</td>
<td>short hairpin RNA</td>
</tr>
<tr>
<td>SF1</td>
<td>Steroidogenic Factor 1</td>
</tr>
<tr>
<td>SGK</td>
<td>Serum and Glucocorticoid inducible Kinase</td>
</tr>
<tr>
<td>SIRT1</td>
<td>Sirtuin (silent mating type information regulation 2 homolog) 1</td>
</tr>
<tr>
<td>SMAD</td>
<td>Sma and Mad related proteins</td>
</tr>
<tr>
<td>S.O.C</td>
<td>Super Optimal broth with Catabolite repression</td>
</tr>
<tr>
<td>SRB</td>
<td>Sulforhodamine B</td>
</tr>
<tr>
<td>STAT5</td>
<td>Signal Transducer and Activator of Transcription 5</td>
</tr>
<tr>
<td>TBS</td>
<td>Tris Buffered Saline</td>
</tr>
<tr>
<td>TCA</td>
<td>Trichloroacetic acid</td>
</tr>
<tr>
<td>TCF</td>
<td>T cell Factor</td>
</tr>
<tr>
<td>TGFβ</td>
<td>Transforming Growth Factor β</td>
</tr>
<tr>
<td>TM</td>
<td>Transmembrane</td>
</tr>
<tr>
<td>TRIR</td>
<td>Total RNA Isolation Reagent</td>
</tr>
<tr>
<td>TSH</td>
<td>Thyroid-Stimulating Hormone</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet Light</td>
</tr>
<tr>
<td>αGSU</td>
<td>Glycoprotein hormone α-Subunit</td>
</tr>
</tbody>
</table>
CHAPTER ONE

LITERATURE REVIEW
In the first part of this Chapter, a brief description of the hypothalamic-pituitary axis, and GnRH/GnRH-R structure/function will be given. This will be followed by a review of GnRH-induced signalling pathways, among them the PI3K/Akt pathway. Next, the mechanisms through which GnRH induces cell-growth inhibition will be reviewed. In the second part of this Chapter, the signalling pathways that mediate LHβ-subunit expression in response to GnRH will be outlined. In addition, a number of transcription factors that are required to maximal LHβ promoter transcriptional activity will be discussed in some detail. Finally, the third part of this Chapter will provide an overview of FOXO transcription factors. This will be followed by a review of the FOXO-target genes and the role of FOXOs in cancers.

1.1 OVERVIEW

The G protein-coupled receptor (GPCR) super-family represents the largest group of cell-surface membrane receptors. They are seven-transmembrane domain receptors that are activated by extracellular signals, leading to the induction of intracellular signal transduction pathways. GPCRs are located within the plasma membrane and contain an extracellular N-terminus which is followed by seven transmembrane (TM) domains connected by three intracellular (ICL), and three extracellular (ECL) loops, and an intracellular C-terminal tail. While GPCRs are common drug targets, only a small proportion have been targeted for therapeutic purposes. GPCRs are classified
into five major families; the Rhodopsin-like family, the Secretin family, the Adhesion family, the Glutamate family and the Frizzled/Taste family (Millar and Newton, 2010). Gonadotropin-Releasing Hormone Receptors (GnRH-Rs) belong to the Rhodopsin-like family of the GPCRs, and are activated following the binding of Gonadotropin-Releasing Hormone (GnRH).

The hypothalamic neuropeptide GnRH is synthesised and released by GnRH neurons in the hypothalamus. GnRH stimulates pituitary gonadotrope cells to synthesise and release the gonadotropins, Luteinising Hormone (LH) and Follicle Stimulating Hormone (FSH) (Naor, 2009). Binding of GnRH to the GnRH-R on the surface of gonadotropes in the anterior pituitary initiates a variety of signalling pathways that leads to the synthesis the gonadotropins, and their release into the blood-stream (Ferris and Shupnik, 2006; Lim et al., 2009; Seeburg et al., 1987; Vale et al., 1977).

Forkhead Box O (FOXO) proteins constitute a large family of transcription factors that mediate diverse cellular responses. These proteins have a characteristic/conserved DNA-binding motif, known as the “forkhead domain”. Although, they contain this conserved DNA-binding domain, they show differences between their C-terminal and N-terminal trans-activation domains (Burgering, 2008). Over the past 15 years, a number of FOX subclasses have been identified with different biological roles. Among the FOX family is the “O” sub-group (FOXO) which consists of four members, three of which are mammalian, namely FOXO1 (FKHR), FOXO3a (FKHRL1) and FOXO4 (AFX). FOXOs share similar DNA-binding domains, and were originally thought to regulate the expression of the same set of genes (Obsil and Obsilova, 2008). However, their specificity is now known to
be determined by post-translational modification and/or the action of co-factors. FOXOs are also involved in a number of cellular processes such as cell proliferation, apoptosis and cell metabolism, and are of great interest because they play a pivotal role in cell-fate decision and in tumour suppression in a variety of cancers (Fu and Tindall, 2008).

1.2 THE HYPOTHALAMIC-PITUITARY AXIS

The reproductive axis consists of three endocrine organs; the hypothalamus, pituitary and gonads. The hypothalamus is located at the base of the brain. It contains the hypothalamic areas or nuclei consisting of a relatively compact cluster of neurons (Sisk and Foster, 2004). GnRH is produced by specialised neurons (parvocellular neurons), whose cell bodies reside in the parvocellular nuclei. The axons of GnRH neurons terminate at the median eminence of the basal hypothalamus, where they secrete pulses of GnRH (Johnson, 2007). GnRH enters the hypothalamo-pituitary portal vessels, and travels to the anterior pituitary to stimulate the synthesis and secretion of LH and FSH. LH and FSH in turn regulate gonadal steroidogenesis and gametogenesis in both sexes (Fig. 1-1) (Sisk and Foster, 2004).

The pituitary gland or hypophysis is an endocrine gland that is located posterior to the hypothalamus at the base of the brain. It is composed of two main lobes, the anterior and the smaller posterior regions. Gonadotropes are located in the anterior lobe of the pituitary. The anterior pituitary contains a variety of cells types, including gonadotropes, lactotrophs, somatotrophs, thyrotropes and corticotropes (Johnson,
2007; Ooi et al., 2004). Approximately, 50% of the anterior pituitary cells are somatotropes, 10–20% are lactotropes, 10–20% are thyrotropes, 10–20% are corticotropes and 10–20% are gonadotropes (Horváth and Palkovits, 1988).

Figure 1-1: The hypothalamic-pituitary-gonadal axis.
GnRH is synthesised by specialised neurons in the hypothalamus and packaged into storage granules. GnRH is secreted from nerve terminals located at the median eminence of the basal hypothalamus. GnRH enters the hypothalmo-pituitary portal vasculature and is transported to the anterior pituitary. In the anterior pituitary, GnRH stimulates the synthesis and secretion of LH and FSH from gonadotropes, which stimulate the testis and ovaries to mediate steroidogenesis and gametogenesis. Figure reproduced from Sisk and Foster, 2004.

1.2.1 Kisspeptin (Kiss1) and kisspeptin receptor (Kiss1r)
Kisspeptin receptor (Kiss1r; also known as GPR54) is a G protein-coupled receptor which binds the peptide hormone kisspeptin. Although this thesis will focus on the signalling pathways downstream of the GnRH-R, a brief introduction on kisspeptin will be given, since Kiss1 and Kiss1r have recently been described as major
neuroendocrine regulators of reproduction through stimulation of GnRH neurons (Oakley et al., 2009).

Kiss1r is a GPCR, with three glycosylation sites at the N-terminus (Clements et al., 2001). Kisspeptin (Kiss1) is the product of the Kiss1 gene. The initial Kiss1 product is a 145-amino acid peptide, from which is cleaved a 54-amino acid protein, which can be further truncated to 14, 13 or 10 amino acid carboxyl-terminal fragments, all known as kisspeptins. These N-terminal truncated peptides belong to a large family of peptides known as RFamides which all share a common Arg–Phe–NH₂ motif at their C-terminus (Roseweir and Millar, 2009). Kiss1 and its receptor are highly involved in the regulation of the reproduction. Indeed, mutations in the Kiss1r gene are associated with the idiopathic hypothalamic hypogonadism. Moreover, Kiss1 stimulates GnRH secretion and regulates gonadotropin production (Fig. 1-2) (Oakley et al., 2009).

Neurons that express Kiss1r and Kiss1 are found in discrete nuclei in the hypothalamus, and in other brain regions in many vertebrates. Kiss1r and Kiss1 are also expressed in other tissues including pancreas, adipocytes, ovary, placenta and pituitary (Oakley et al., 2009).

As discussed above, Kiss1 regulates GnRH release from GnRH neurons in the hypothalamus. GnRH then regulates gonadotropin production, at the level of the pituitary to stimulate LH and FSH secretion (Oakley et al., 2009). Double immunofluorescence labelling for LHβ and Kiss1, or Kiss1r has been demonstrated in gonadotropes (Richard et al., 2008), as has Kiss1 secretion into the hypophysial portal circulation (Richard et al., 2009). These findings proposed the action of Kiss1
at the pituitary level. In contrast, other studies have reported that Kiss1 does not act at the pituitary level (Reviewed by Oakley et al. (2009)). The stimulatory effect of Kiss1 was blocked by a GnRH antagonist. This finding suggests that the effect of Kiss1 is restricted at the level of GnRH secretion (Reviewed by Oakley et al. (2009)).

![Figure 1-2: Regulation of the reproductive axis by kisspeptin in mouse.](figure.png)

Kisspeptin is released from Kisspeptin neurons mainly in the arcuate nucleus (ARC) and in the anteroventral periventricular nucleus (AVPV) to stimulate GnRH release from GnRH neurons, which in turn stimulates the secretion of LH and FSH from the anterior pituitary. LH and FSH stimulate steroidogenesis and gametogenesis, which feed-back to regulate the activity of Kisspeptin neurons. Figure reproduced from Gottsch et al., 2006.

1.2.2 Gonadotropin-Releasing Hormone (GnRH)

GnRH is the central regulator of the reproductive system downstream of Kiss1 and exists as 23 isoforms in vertebrates. In most vertebrates, there are three forms of GnRH; GnRH I, GnRH II and GnRH III. The mammalian hypophysiotropic form, GnRH I, is a decapeptide (pGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH$_2$) and is
Chapter One

primarily involved in the synthesis and secretion of LH and FSH from gonadotropes (discussed in Section 1.5). The second form is GnRH II. It is ubiquitously expressed, conserved in structure, and was first isolated from chicken brain (Miyamoto et al., 1984). GnRH II is widely distributed in discrete regions of the central and peripheral nervous system and in non-neural tissues (Millar, 2003). Finally, a third form of GnRH, GnRH III, has been isolated in many vertebrates species (Millar, 2003, 2005; Millar and Newton, 2010; Pawson et al., 2003).

1.2.3 The Gonadotropin-Releasing Hormone Receptor (GnRH-R)

The GnRH-R is a member of the GPCR super-family, and belongs to the Rhodopsin-like family. In mammals, there are two forms of GnRH-R, the Type I and Type II GnRH-Rs.

The Type I GnRH-R is expressed in pituitary gonadotropes and regulates gonadotropin synthesis. It is also expressed in other tissues, including prostate, breast and ovary (Dubois et al., 2002; Millar, 2005; Millar and Newton, 2010). Structurally, the mammalian GnRH-Rs differ from other GnRH-Rs in vertebrates, in that they completely lack the cytoplasmic C-terminal tail (Fig. 1-3). The cytoplasmic C-terminal tail is involved in receptor desensitisation, and the mammalian Type I GnRH-Rs which lack a cytoplasmic C-terminal tail do not undergo rapid desensitisation (Davidson et al., 1994; McArdle et al., 1999).

mRNAs of Type II GnRH-Rs are expressed in many parts of the human and marmoset brain and peripheral tissues. However, Type II GnRH-R mRNAs in human and some other mammals (e.g. chimp, sheep and bovine) are not translated to a full-
length and functional GPCR due to the presence of various mutations including a frame-shift and internal stop codon (Faurholm et al., 2001; Millar, 2003).

GnRH I binds both Type I and Type II GnRH-Rs, however, it binds the Type I GnRH-R with higher affinity. GnRH I binds to and activates Type I GnRH-R inducing a number of signalling pathways. Despite the lack of a full-length functional Type II GnRH-Rs in human, GnRH II is able to bind the Type I GnRH-R with high affinity. The ability of GnRH II to bind to the Type I GnRH-R suggests that the Type I GnRH-R is able to take over the role of the Type II GnRH-R in humans (Millar et al., 2004). GnRH I or GnRH II binding to the Type I GnRH-R recruits different intracellular signalling proteins to produce different phenotypic effects in different cells, a phenomenon called ligand-induced selective signalling (LiSS) (Millar and Newton, 2010). In particular, GnRH I binding to the Type I GnRH-R is more potent at generating G\(_q\)-coupled inositol phosphate production, which is the predominant signalling pathway in gonadotropes. In contrast, binding of GnRH II to the Type I GnRH is more potent at activating antiproliferative signalling pathways in cancer-derived cell lines (Millar and Newton, 2010).

GnRH-Rs are primarily localised within the plasma membrane, however a number of studies have demonstrated that GnRH-Rs are also localised on the nuclear membrane (Janovick et al., 2003; Millar et al., 1983; Re et al., 2010). More recently, the nuclear localisation of functional human Type I GnRH-Rs was confirmed (Re et al., 2010). The nuclear membrane localisation of GnRH-Rs suggests the potential for novel intracellular signalling pathways with important physiological roles (Re et al., 2010).
Figure 1-3: The Human Gonadotropin-Releasing Hormone Receptor.
The GnRH-R consists of seven trans-membrane domains which are connected by three intracellular and extracellular loops. Figure reproduced from Millar and Newton, 2010.

1.3 GnRH-R SIGNALLING

1.3.1 Coupling to G-proteins

Activation of the GnRH-R induces a conformational change leading to coupling and activation of heterodimeric G-proteins. G-proteins consist of α-, β- and γ-subunits, which transduce signals from GPCRs to intracellular mediators (Naor et al., 2000). The α-subunit is a 37-42KDa protein, which contains a guanine nucleotide-binding pocket with intrinsic GTPase activity. The 35KDa β-subunit and the 8-11KDa γ-subunit are tightly associated with each other (Goldsmith and Dhanasekaran, 2007). There are over 20 Ga-subunit which are divided into four major families; Gaq/11 which activates phospholipase C (PLC), Gas which activates adenylyl cyclase, Gad which inhibits adenylyl cyclase and Gai2/13 which activates small GTPases (Naor, 2009; Naor et al., 2000). Activation of GnRH-Rs catalyses the exchange of the
bound guanosine-5-diphosphate (GDP) to GTP guanosine-5-triphosphate (GTP) on the α-subunit. The GTP-bound α-subunit in turn dissociates from the receptor and βγ-subunit, and initiates distinct signalling pathways (Goldsmith and Dhanasekaran, 2007). The Gβγ-subunit is also capable of activating other effector systems (Naor, 2009). The amino acid residues of GnRH-R which are essential for G-protein activation are conserved among mammalian and non-mammalian GnRH-Rs (Naor, 2009). In particular, GnRH-R coupling to G_{α_q} occurs through the intracellular loops 2 and 3, while coupling to G_s occurs through intracellular loop 1 (Millar et al., 2004). In the remainder of this Section 1.3, only the mediators activated by GnRH-R coupling to G_q will be reviewed.

1.3.2 Phospholipase C

PLC is a soluble multi-domain protein found in eukaryotes. Four β, two γ and four δ isoforms have been described in mammals (Rebecchi and Pentyala, 2000).

The PLCβ isoforms are regulated by the coupling of G_{α_q}- and Gβγ-proteins. Following GnRH-R activation, G_{α_q} family proteins and Gβγ subunits activate PLCβ, which hydrolyses the highly phosphorylated lipid phosphatidylinositol 4,5-bisphosphate [PIP2], generating two intracellular products, inositol 1,4,5-trisphosphate (InsP₃ or IP₃), a calcium-mobilising second messenger, and diacylglycerol (DAG), an activator of protein kinase C (PKC) (Naor, 2009; Rebecchi and Pentyala, 2000) (Fig. 1-4).
Figure 1-4: Regulation of PLCβ by GPCRs.
The Gαq-subunit activates PLCβ causing hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) generates diacylglycerol (DAG) and IP₃, which in turn releases calcium from internal stores. Gβγ-subunits released from Ga/i/o also activate PLCβ (RGS: Regulators of G protein signalling). Figure reproduced from Berecchi, 2000.

1.3.3 IP₃ and Ca²⁺

When IP₃ is released into the cytosol it binds to IP₃ receptors located on the endoplasmic reticulum. The activation of IP₃ receptors stimulates rapid Ca²⁺ mobilisation from internal IP₃-sensitive stores, followed by external Ca²⁺ influx via Ca²⁺ channels (Fig. 1-4) (Berridge, 2009; Naor, 2009). The IP₃/Ca²⁺ pathway is a versatile signalling system that regulates many processes including exocytosis, cell proliferation, apoptosis and cell metabolism. The IP₃/Ca²⁺ pathway also mediates gonadotropin exocytosis in gonadotropes. The involvement of Ca²⁺ in cell proliferation is well illustrated in lymphocytes responding to antigen, where Ca²⁺ functions in conjugation with other signalling pathways such as the MAPK and PI3K pathways (Berridge et al., 2000). In general, Ca²⁺ controls cell proliferation by activating transcription factors, either in the cytoplasm (NF-κB) or within the nucleus.
(cAMP response element-binding (CREB)). These transcription factors then mediate expression of a number of genes that are involved in cell proliferation, including interleukin 2 and Fas ligand (FasL) (Reviewed by Berridge et al. (2000)).

1.3.4 Diacylglycerol (DAG) and phosphatidic acid (PA)

As previously mentioned, DAG is formed from [PIP2] by the action of PLCβ. DAG regulates a number of cellular functions through the binding to and activation of PKC. DAG is also phosphorylated by DAG kinase (DGK) to phosphatidic acid (PA). PA in turn regulates a number of signalling proteins, including the atypical PKCs, the Raf-1 kinase and the mammalian target of rapamycin (mTOR). Notably, the list of PA-dependent protein members is still growing (Sakane et al., 2007).

1.3.5 Protein Kinase C

PKC is a serine/threonine kinase lipid activated kinase, and consists of at least 10 related isoforms. PKC has a regulatory domain and a carboxyl-terminal catalytic domain. DAG binds to the regulatory domain of the PKC leading to activation. Activation of PKC by DAG leads to the activation of major members of the mitogen-activated protein kinase (MAPK) family including extracellular signal-regulated kinase (ERK), c-Jun N-terminal Kinase (JNK) and p38 mitogen-activated protein kinases (p38MAPK) (Dobkin-Bekman et al., 2006). Activation of PKC contributes to the activation of the MAPK cascade through directly phosphorylating and stimulating c-Raf. c-Raf is a member of the Raf kinase family of serine/threonine-specific protein kinases (Goldsmith and Dhanasekaran, 2007). PKC also exerts a
negative feedback on PLC\(\beta\) activity, and therefore regulates IP\(_3\) and Ca\(^{2+}\) signalling (Naor, 2009).

1.3.6 Mitogen-activated protein kinase (MAPK)

GnRH-R activation initiates diverse signalling cascades including the MAPK pathways. Four major MAPK cascades are activated by GnRH-R; ERK1/2, c-Jun N-terminal kinase, p38MAPK and the big MAPK (BMK) (Naor, 2009). The MAPK cascade consists of at least three distinct kinases, the upstream mitogen-activated protein (MAP) kinase kinase kinase (MAP3K), MAP kinase kinase (MAP2K) and a downstream MAP kinase (MAPK). Therefore, the MAPK cascade proceeds through sequential phosphorylation of the MAP3K, MAP2K and MAPK (Goldsmith and Dhanasekaran, 2007).

The main characteristic of the MAPK family is their ability to translocate to the nucleus and activate a variety of transcription factors (Dobkin-Bekman et al., 2006), including early growth response factor 1 (Egr1), c-Fos, c-Jun and STAT (Naor, 2009).

1.3.7 The phosphatidylinositol 3-Kinase (PI3K)/Akt signalling pathway

PI3K is a minor inositol lipid kinase that is involved in many cellular processes, including cell survival, proliferation and differentiation. PI3K is activated by receptor tyrosine kinases (RTKs) and by GPCRs, and transduces signals by generating phospholipids. There are three classes of PI3K, however only Class I is activated by GPCRs. PI3K is a heterodimer and consists of a p110 catalytic subunit
and a p85 regulatory subunit. Class I PI3Ks activated by RTKs and GPCRs, phosphorylate the inositol ring of inositol phospholipids (Foster et al., 2003; Liu et al., 2009; Vanhaesebroeck and Alessi, 2000). These phospholipids then bind to and activate Akt.

Akt (also known as PKB) is a 57KDa serine/threonine protein kinase which contains a pleckstrin homology (PH) domain and is activated by the PI3K. PH domains are globular protein domains which are found in over 150 proteins, and are activated by binding phospholipids with high affinity (Vanhaesebroeck and Alessi, 2000). The PH domain of Akt binds to the phospholipids which are produced by PI3K activation, and Akt is subsequently activated. Akt is primarily located in the cytoplasm in unstimulated cells and translocates to the plasma membrane following PI3K activation, where it binds phospholipids via its PH domain to become activated (Scheid and Woodgett, 2003).

Another PH domain-containing serine/threonine kinase is 3’-phosphoinositide-dependent kinase-1 (PDK1). Like Akt, PDK1 is primarily located in the cytoplasm in unstimulated cells and translocates to the plasma membrane following PI3K activation, where it binds phospholipids via its PH domain and phosphorylates Akt (Vanhaesebroeck and Alessi, 2000). Akt translocation to the plasma membrane causes a conformational change that allows PDK1 to phosphorylate it at the Thr308 and Ser473 phosphorylation sites. Phosphorylation of Akt at these sites is required for its full activation (Liu et al., 2009; Vanhaesebroeck and Alessi, 2000). A number of studies have also demonstrated PI3K-independent activation of Akt via a variety of mechanisms, including heat-shock response or increases in intracellular Ca$^{2+}$ or
cyclic adenosine monophosphate (cAMP). However, although different studies reported a heat-shock-dependent activation of Akt, their results are contradictory in relation to PI3K-dependent activation (Vanhaesebroeck and Alessi, 2000). Once Akt is phosphorylated and activated, it phosphorylates a diverse array of signalling mediators including the IκK kinase (IKK) (discussed in Section 1.6.2.1.2) and FOXO transcription factors (discussed in Section 1.6.2.1.1) (Liu et al., 2009).

1.4 GnRH-INDUCED ANTIPROLIFERATION AND APOPTOSIS

As described above, GnRH-Rs are not only expressed in gonadotropes, but also in extra-pituitary tissues, including breast, prostate, placenta, endometrium and ovary. In addition, GnRH has been found in extra-pituitary tissues such as in placenta, ovary, mammary gland and lymphoid cells (Kraus et al., 2006; Millar, 2005; Millar et al., 2004). While GnRH acts at its receptor in gonadotropes to regulate the expression of the gonadotropins (LH and FSH), numerous studies have demonstrated that GnRH-R activation in extra-pituitary cell types can mediate inhibition of cell proliferation\(^1\) or lead to a programmed cell-death (apoptosis). \textit{In vitro} and tumour xenograft studies have demonstrated that GnRH treatment causes cell-growth inhibition\(^2\) in cell lines that express the GnRH-R (Cheng and Leung, 2005; Everest \textit{et al.}, 2001; Franklin \textit{et al.}, 2003; Kraus \textit{et al.}, 2006; Limonta \textit{et al.}, 2003; Maudsley \textit{et al.}, 2004; Miles \textit{et al.}, 2004; Morgan \textit{et al.}, 2008). In addition, \textit{in vitro} and \textit{in vivo} studies have demonstrated that treatment of cancer cells with GnRH analogues results in a reduction of cell proliferation (Kraus \textit{et al.}, 2006). GnRH analogues are

\(^1\)\textbf{Cell proliferation:} refers to the increase of cells number

\(^2\)\textbf{Cell growth inhibition:} refers to the cell division/growth of cell populations
widely used for cancer treatment. They were first used to treat prostate cancer (Tolis et al., 1982) and uterine leiomyomas (Carr et al., 1993). GnRH analogues are now more widely used in the treatment of ovarian cancer (Bifulco et al., 2004), uterine cancer (Hofstra et al., 1999), breast cancer (Klijn and de Jong, 1982) and endometrial cancer (Mizutani et al., 1998).

The antiproliferative effects of GnRH have been shown to be dependent on GnRH-R expression levels and different cellular environments. GnRH initiates distinct signalling pathways in various cancer-derived cell lines depending on different cellular environments and GnRH-R expression levels (Fister et al., 2009; Kraus et al., 2006; Morgan et al., 2008). A number of signalling pathways mediate the antiproliferative effects of GnRH. Several of these will be reviewed below.

As described above, a number of studies have examined the signalling pathways via which GnRH mediates its antiproliferative or apoptotic effect in a variety of model cell lines and cancer-derived cell lines. A common feature for these signalling pathways, is that the intracellular signalling activated by the GnRH-R is mediated through coupling to the Gq protein (Emons et al., 1998; Imai et al., 1997; Limonta et al., 2001; Lopez de Maturana et al., 2008; White et al., 2008a).

A variety of downstream mediators have been implicated in the antiproliferative effects of GnRH, in different cell types. Elevated levels of cleaved poly (ADP-ribose) polymerase (PARP), a substrate of caspase 3 was observed in HEK293/rat GnRH-R expressing cells in response to GnRH (Lopez de Maturana et al., 2008). The role of PKC and caspases to completely or partially rescue the cell-growth inhibitory effect of GnRH in HEK293/rat GnRH-R expressing cells has also been
examined (Morgan et al., 2008). The involvement of JNK and PI3K/Akt in the apoptotic process in prostate cancer cell lines was examined. Inhibition of JNK rescued prostate cancer cells from the apoptotic effect of GnRH, whereas inhibition of PI3K/Akt increased the apoptotic effect of GnRH in prostate cancer cells (Kraus et al., 2004). The role of ERK in the antiproliferative effect of GnRH was also assessed in Caov-3 human ovarian cancer cells, and was suggested to be mediated by coupling to the Ga\textsubscript{i} protein (Kimura et al., 1999). GnRH also induces activation of JunD, which negatively regulates proliferation, and affects cell-cycle regulation and DNA synthesis in primary human ovarian cancer cells and EFO-21 and EFO-27 human ovarian cancer cell lines (Gunthert et al., 2002). The involvement of ERK1/2 and p38MAPK pathways in the antiproliferative effects of GnRH in ECC-1 endometrial cancer cells was also demonstrated. Cells pre-treated with MAPK inhibitors were rescued from GnRH II-mediated cell-growth inhibition (Wu et al., 2009). A reduction of PI3K/Akt activity by the GnRH analogue leuprolide acetate (LA) in uterine leiomyomas has been demonstrated to mediate the reduction of leiomyoma volume (Bifulco et al., 2004). GnRH also induced apoptosis in tissues derived from women with endometriosis, adenomyosis and uterine myoma, while activated caspase 3 was demonstrated in response to GnRH (Khan et al., 2010). Treatment of MCF-7 and triple-negative MDA-MB-231 human breast-cancer cells (triple-negative breast cancer does not express estrogen and progesterone receptors, and no overexpression/amplification of the HER2-neu gene occurs (Grundker et al., 2010)) with a GnRH II antagonist results in apoptotic cell death \textit{in vitro} via activation of stress-activated p38MAPK and loss of mitochondrial membrane potential. Interestingly, the GnRH II antagonist [Ac-D2Nal1, D-4Cpa2, D-3Pal3, 6, Leu8, D-
Ala10] also induced activation of caspase 3 in MDA-MB-231 human breast-cancer cells (Grundker et al., 2010).

The effect on cell-cycle regulation following GnRH stimulation has been examined in a number of studies (Gunthert et al., 2002; Kim et al., 1999; Miles et al., 2004). GnRH treatment of HEK293 cells expressing the rat GnRH-R induced an accumulation of cells in G2/M phase, whereas no G1 block was observed (Miles et al., 2004). GnRH also blocked cell-cycle progression in the G0/G1 phase without inducing apoptosis in OVCAR-3 and SKOV-3 human ovarian cancer cells (Kim et al., 1999). Finally, treatment of primary human ovarian cancer cells and EFO-21 and EFO-27 human ovarian-cancer cell lines with the GnRH agonist Triptorelin caused an increase in the proportion of cell found in G0/G1 phase, and a decrease of cells in G2/S phase of the cell-cycle (Gunthert et al., 2002).

1.4.1 The role of FasL and GADD45 in GnRH-induced apoptosis

GnRH-induced cell-growth inhibition is also mediated via the pro-apoptotic protein FasL and the growth arrest and DNA damage (GADD45) protein (Imai et al., 1998b; Wu et al., 2009). FasL induces apoptosis in a variety of cell types via activation of the Fas receptor (discussed in Section 1.6.3.2), while GADD45 is a regulator of cell-cycle progression, DNA repair and apoptosis (discussed in Section 1.6.3.4). The role of FasL in GnRH-induced cell-growth inhibition was first revealed in a study by Imai et al. (1998). An increase in the levels of FasL mRNA and protein, following GnRH stimulation has been demonstrated in the endometrial and ovarian carcinoma cells expressing the GnRH-R (Imai et al., 1998a). The speculation that GnRH-induced FasL expression may mediate the antiproliferative action of GnRH analogues was
confirmed in a follow-up study by the same group, where the antiproliferative effect of GnRH analogues on cells bearing Fas receptor compared with Fas receptor-negative cells was examined. Indeed, the antiproliferative effect of GnRH analogues was demonstrated only on cells expressing the Fas receptor, and not in Fas receptor-negative cells (Imai et al., 1998b). In contrast, treatment of uterine leiomyomas with a GnRH analogue failed to increase apoptosis, and moreover, lead to a decrease in FasL expression (Huang et al., 2002).

The involvement of GADD45 in GnRH-induced cell-growth inhibition was demonstrated in a recent study conducted by Wu et al. (2009). The mechanism by which GnRH II induced apoptosis of human endometrial cancer cells was examined. Binding of GnRH II to the Type I GnRH receptor was demonstrated to induce apoptosis of human endometrial cancer cells by activating the expression of GADD45a gene (Wu et al., 2009).

Although FasL and GADD45 mediate GnRH-induced cell-growth inhibition, the exact mechanisms involved has not yet been completely characterised.

1.5 THE GONADOTROPINS

1.5.1 Luteinising Hormone

Reproduction in males and females is dependent on the physiological function of the hypothalamic-pituitary-gonadal axis, and the synthesis and release of several hormones including LH and FSH. LH binds to Luteinising Hormone receptors (LH-
Rs) on Leydig cells in the testis for spermatogenesis, and on granulosa and theca cells in the ovary for follicular maturation and ovulation (Pierce and Parsons, 1981). In order to identify the role of LH in reproduction, knock-out mice lacking the \(LH\beta \) (Luteinizing hormone beta)- subunit gene have been generated. Mutations of the \(LH\beta \) gene that lead to its inactivation are very rare in nature (Kumar, 2007). LH\(\beta \)-null mice were viable with postnatal defects in gonadal growth and infertility, and LH\(\beta \)-null male mice were hypogonadal with decreased size of testis and accessory glands, and showed decreased serum and intra-testicular testosterone level. LH\(\beta \)-null female mice were also hypogonadal and had low serum of estradiol and progesterone levels (Kumar, 2007; Ma et al., 2004).

LH and FSH are heterodimer glycoproteins which are composed of common \(\alpha \)-glycoprotein (\(\alpha \)GSU) and hormone-specific \(\beta \)-subunits. The LH\(\beta \)-subunit confers LH binding specificity to LH-Rs, which are GPCRs found in the ovary, testis and extragonadal organs like the uterus (Thackray et al., 2010). Each subunit of the LH protein is produced by a separate gene, and both subunits are glycosylated and assembled non-covalently as heterodimers in secretory granules where they are stored (Jorgensen et al., 2004; Pierce and Parsons, 1981; Thackray et al., 2010).

1.5.2 Follicle-Stimulating Hormone

FSH is a heterodimer glycoprotein which is composed of a common \(\alpha \)GSU and hormone-specific \(\beta \)-subunit (Pierce and Parsons, 1981). In females, FSH stimulates ovarian follicle growth and maturation, while in males it stimulates androgen production (Johnson, 2007).
As previously mentioned, the main regulator of FSH expression is GnRH. The mechanism through which GnRH stimulates $FSH\beta$ (Follicle-Stimulating Hormone beta)-subunit transcription includes several signalling pathways and transcription factors. GnRH stimulates $FSH\beta$-subunit expression via the ERK1/2 cascade; however, the involvement of ERK1/2 is not yet well established (Bliss et al., 2009; Kanasaki et al., 2005). Several in vivo and in vitro studies have shown that although GnRH stimulates the p38MAPK and JNK cascades, a definitive role for these pathways in GnRH-induced regulation of FSH expression has not yet been established (Reviewed in Bernard et al. (2010)). A number of transcription factors, including the steroidogenic factor 1 (SF1), pituitary homeobox 1 (Pitx1), the LIM homeobox gene 3 (LHX3) and the GATA-binding protein 2 (GATA2) have also been implicated in FSHβ expression. However, their role in GnRH-induced FSHβ expression has not been definitively demonstrated (Bernard et al., 2010).

Another important regulator for FSHβ production is activin, a member of the transforming growth factor β (TGFβ) super-family (Vale et al., 1988). Activin is involved in the up-regulation of FSHβ levels via the regulatory proteins SMAD2 and SMAD3. However, the role of activin in GnRH-induced FSHβ expression is not entirely clear due to the contradictory effect of activin action on FSHβ-expression following acute and chronic administration of GnRH (Xia and Schneyer, 2009).

1.5.3 LHβ promoter structure

All the important DNA elements of the LHβ promoter essential for its transcription are located within 500bp of the LHβ promoter, which consists of the proximal and
the distal promoter domains. The proximal promoter region (140bp) is highly conserved across all mammals (Jorgensen et al., 2004), with small differences in the nucleotide sequence between species, and comprises of two DNA binding sites for Egr1 (Halvorson et al., 1998; Lee et al., 1996; Topilko et al., 1998) and SF1 (Halvorson et al., 1998; Halvorson et al., 1996; Keri and Nilson, 1996), and one binding site for Pitx1 (Quirk et al., 2001) which is flanked by the Egr1 and SF1 binding sites (Fig. 1-5A).

Regulatory elements have been also found on the distal domain of the LHβ promoter. Gonadotrope-specific elements (GSEs) that bind the transcription factor Sp1 (Kaiser et al., 1998; Weck et al., 2000), and a CC(A/T)6GG motif (CArG) (Weck et al., 2000) have been found in the distal rodent promoters, and binding sites for the nuclear transcription factor-Y (NF-Y) have been found in the distal bovine promoter (Keri et al., 2000) (Fig. 1-5B).

1.5.4 Regulation of LHβ expression – Transcription factors

In addition to gonadotropes, there are other cell types that express and secrete hormones in the anterior pituitary which also indirectly regulate the synthesis of the LH. Thus, gene regulation and the biosynthesis of LH and FSH in gonadotropes are also regulated by multiple factors that are expressed by nearby cells (Kaiser et al., 2000). In this section, the transcription factors that mediate GnRH-induced LHβ expression will be reviewed. The main transcription factors dealt with are the Egr1, SF1, Pitx1 and Sp1.
1.5.4.1 Egr1

Egr1, a member of the immediate early gene (IEG) family of proteins, is a zinc-finger transcription factor that is rapidly induced in many cell lines by growth, differentiation and apoptotic stimuli (Lee et al., 1996; Salisbury et al., 2008). GnRH treatment up-regulates the expression of Egr1 via a PKC-mediated pathway (Tremblay and Drouin, 1999; Wolfe and Call, 1999). A study by Trembley et al. (1999) reported that one hour after GnRH treatment Egr1 mRNA increased transiently to a maximal level compared to the non-stimulated αT3-1 and LβT2 gonadotrope cells. Egr1 binds to the LHβ promoter in gonadotropes at two Egr1 DNA binding sites. Over-expression of Egr1 up-regulates the expression of the LHβ-subunit through action at both Egr1 binding sites (Fortin et al., 2009; Halvorson et al., 1998; Kaiser et al., 2000; Lee et al., 1996). Several studies have shown that GnRH-induced LHβ expression is mediated by Egr1 (Kaiser et al., 2000; Tremblay and Drouin, 1999; Wolfe and Call, 1999), and mutations of the Egr1 binding sites reduced GnRH-induced LHβ gene expression (Kaiser et al., 2000).

1.5.4.2 SF1

SF1 is an orphan member of the nuclear receptor super-family, initially identified as a transcription factor that controls expression of the cytochrome P-450 steroid hydroxylase genes in gonads and adrenal cortex (Ikeda et al., 1993). SF1 also binds to and regulates the transcription of the LHβ gene. A study by Ingraham et al. (1994) first demonstrated expression of SF1 in pituitary tissues by in situ hybridisation (Ingraham et al., 1994). In vitro studies revealed that SF1 directly regulates the expression of the LHβ gene (Dorn et al., 1999; Halvorson et al., 1998; Halvorson et
Indeed, over-expression of SF1 increases LHβ expression (Halvorson et al., 1996; Kaiser et al., 2000; Keri and Nilson, 1996). However, GnRH treatment does not up-regulate SF1 gene expression (Tremblay and Drouin, 1999). While SF1/− mice exhibited decreased LHβ gene expression (Ingraham et al., 1994; Shinoda et al., 1995; Zhao et al., 2001b), GnRH treatment increased LHβ expression (Ikeda et al., 1993). In contrast, an in vivo study by Kaiser et al. (1998) demonstrated that LHβ promoter activity is not increased in response to GnRH in transgenic mice with a mutation of the SF1 binding site (Kaiser et al., 1998). Another study by the same group, demonstrated that over-expression of LHβ promoter with a mutation at the SF1 binding site reduced the LHβ promoter activity in rat pituitary adenoma GH3 cells in response to GnRH. However, over-expression of LHβ promoter with a mutation on the SF1 binding site did not reduce the LHβ promoter activity in LβT2 cells in response to GnRH (Kaiser et al., 2000). Therefore, the role of SF1 in the GnRH-induced LHβ expression is not yet completely clear.

1.5.4.3 Pitx1

Pitx1 is a transcription factor that is expressed in gonadotropes (Tremblay et al., 1998). Pitx1 activates LHβ gene expression in addition to the transcription of a large number of gonadotrope genes, including FSHβ and GnRH-R (Tremblay et al., 1998). Pitx1 regulates the LHβ gene expression via direct binding to the LHβ promoter (Quirk et al., 2001), however Pitx1 mRNA expression is not regulated by GnRH (Tremblay and Drouin, 1999). A study by Quirk et al. (2001) demonstrated that transient co-expression of the LHβ promoter bearing mutations at the Pitx1 binding
site resulted in reduced \(LH\beta \) promoter activity compared to the wild type \(LH\beta \) promoter in response to GnRH. However, following GnRH treatment, the \(LH\beta \) promoter activity was similar when either \(LH\beta \) promoter bearing mutations at the Pitx1 binding site or the wild type \(LH\beta \) promoter were over-expressed (Quirk et al., 2001), indicating that Pitx1 protein is critical for the basal but not for the GnRH-induced \(LH\beta \) expression.

A.

![Diagram A](image)

B.

![Diagram B](image)

Figure 1-5: Structure of \(LH\beta \)-subunit gene promoter.

(A) The transcription factors binding sites on the rat \(LH\beta \) promoter. Figure reproduced from Thackray et al., 2010. (B) DNA binding elements on the proximal and distal regions of the \(LH\beta \) promoter of different species. DNA binding elements of the proximal region (0/-140bp) are highly conserved among the species. Distal regions are less well characterised. (NF-Y: Nuclear transcription factor Y, Sp1: selective promoter factor 1 or specificity protein 1, CArG: CC(A/T)6GG, GSE: Gonadotropin-specific element) (Figure reproduced from Jorgensen et al., 2004.)
1.5.4.4 **Sp1**

Sp1 is a member of the zinc finger family of transcription factors (Berg, 1992). Sp1 binds to the *LHβ* promoter at two binding sites, and regulates its transcriptional activity. These two binding sites are located in positions −490/−352 and −207/−82 on the rat *LHβ* promoter. Mutations of these binding sites reduce the basal level of *LHβ* promoter activity, and also reduce GnRH-induced *LHβ* expression (Kaiser *et al.*, 2000; Kaiser *et al.*, 1998; Weck *et al.*, 2000).

A number of *in vivo* studies have been conducted in mice with targeted deletion of additional proteins which bind to and regulate *LHβ* promoter in order to determine their biological role. These are summarised in Table 1-1.

1.5.4.5 **Transcription factor synergism at the LHβ promoter**

The transcription factors described above act synergistically to regulate maximal activity of the *LHβ* promoter. Co-expression of Egr1 and SF1 results in maximal LHβ protein expression (Dorn *et al.*, 1999; Halvorson *et al.*, 1998; Kaiser *et al.*, 2000; Tremblay and Drouin, 1999; Wolfe and Call, 1999). In addition, the physical interaction of Egr1 with Ptx1 and SF1, and the resultant synergy between Egr1, SF1 and Pitx1 leads to maximal Egr1-mediated GnRH-induced LHβ expression (Halvorson *et al.*, 1998; Tremblay and Drouin, 1999).
Table 1-1: Effect on LHβ expression and fertility in mice by knocking-down transcription factors known to regulate the LHβ promoter activity.

<table>
<thead>
<tr>
<th>Gene/Species</th>
<th>Effect on LHβ expression</th>
<th>Biological effect</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGFI-A(-/-) male mice</td>
<td>Decreased</td>
<td>Fertile</td>
<td>(Lee et al., 1996)</td>
</tr>
<tr>
<td>NGFI-A(-/-) female mice</td>
<td>Undetectable</td>
<td>Unfertile</td>
<td>(Lee et al., 1996)</td>
</tr>
<tr>
<td>Krox-24(/-) male/female</td>
<td>Absence of LH</td>
<td>Sterile</td>
<td>(Topilko et al., 1998)</td>
</tr>
<tr>
<td>Ftz-F1(2) disrupted mice</td>
<td>Undetectable</td>
<td>No data</td>
<td>(Ingraham et al., 1994)</td>
</tr>
<tr>
<td>mFtz-F1(2) disrupted mouse</td>
<td>Decreased</td>
<td>No data</td>
<td>(Shinoda et al., 1995)</td>
</tr>
<tr>
<td>Pituitary-specific SF1 knockout mice</td>
<td>Markedly decreased</td>
<td>Infertile</td>
<td>(Zhao et al., 2001a)</td>
</tr>
</tbody>
</table>

(1) Egr1 (Krox-24, NGFI-A, Zif268)
(2) SF1 (Ftz-F1)

A mechanism of GnRH-induced regulation of LHβ promoter activity has been proposed by Kaiser et al. (2000) (Fig. 1-6). An interaction between the proximal and the distal domains of the rat LHβ promoter in response to GnRH was proposed. When an LHβ promoter bearing a inactivating mutation at the Sp1 binding site was over-expressed in GH3 cells, GnRH-induced LHβ expression was decreased, suggesting that Sp1 is involved in the regulation of the LHβ promoter activity (Kaiser et al., 2000). Overall, this study proposed a mechanism by which GnRH treatment increases Egr1 protein level, which together with Sp1 and SF1 binds to an unidentified transcription factor (co-factor). This complex which includes Egr1, Sp1, SF1 with the co-factor causes a conformational change in the promoter that leads to enhanced LHβ promoter activity (Fig. 1-6).

A recent study by Walsh et al. (2009) also demonstrated a proteasome-based regulation of the LHβ gene in response to GnRH. This study reported that two of the main transcription factors acting at the LHβ promoter, Egr1 and SF1, are targets of
the ubiquitin proteasome system. Fluctuation in Egr1 and SF1 levels leads to their cyclic association with the $LH\beta$ promoter, thus allowing the $LH\beta$ gene to respond to pulsatile stimulation of GnRH in vivo (Walsh and Shupnik, 2009).

![Diagram of transcription factors and GnRH interaction](Image)

Figure 1-6: Model for interaction of SF1, SP1 and Egr1 on the promoter of $LH\beta$ gene in response to GnRH.

All three transcription factors interact with an unidentified transcription co-factor to mediate the full response to GnRH at the $LH\beta$ promoter activity (Basal indicates a possible transcription factors that is important in the transcription in this complex). Figure reproduced from Kaiser et al., 2000.

1.5.4.6 β-catenin

β-catenin is a transcription co-activator, and a member of the canonical Wnt signalling pathway. There is a well-established role for β-catenin in the formation of the active complex required for the LHβ expression (Salisbury et al., 2008). This was first demonstrated in a study by Salisbury et al. (2007) where reduction of β-catenin levels resulted in a decrease in GnRH-induced $LH\beta$ gene expression. β-catenin was demonstrated to interact with SF1, and this interaction is a requirement for the formation of an active complex between the SF1 and Egr1 following GnRH treatment, resulting in maximal GnRH-induced $LH\beta$ gene expression (Salisbury et al., 2007). Following GnRH treatment β-catenin associates with the proximal region of the $LH\beta$ promoter in a complex comprising of SF1 and Egr1 to maximise $LH\beta$ expression levels (Gardner et al., 2007; Gardner et al., 2010; Salisbury et al., 2007).
In contrast, in the absence of GnRH treatment, a complex between β-catenin, SF1 and Pitx1 maintains the LHβ gene expression at basal levels (Fig. 1-7) (Salisbury et al., 2008).

1.5.5 Regulation of Luteinising Hormone expression – signalling pathways

Induction of LHβ expression by GnRH is dependent on a number of mediators, including members of the MAPK cascade (Reviewed by Thackray et al. (2010)). The involvement of the three sub-families of the MAPKs, ERK1/2, p38MAPK and JNK in the GnRH-induced LHβ expression has been reported (Liu et al., 2002a).

Several studies have reported the involvement of ERK1/2 in GnRH-induced LHβ expression (Call and Wolfe, 1999; Harris et al., 2002; Liu et al., 2002a; Maudsley et al., 2007; Yamada et al., 2004), while others have found no role for ERK1/2 in the transcriptional regulation of the LHβ gene by GnRH (Weck et al., 1998; Yokoi et al., 2000). In GnRH-induced LHβ expression pathway, ERK1/2 activation is mediated by coupling to Gαq proteins (Liu et al., 2002b). In addition, elevated levels of LHβ protein expression has been demonstrated with over-expression of a constitutively active Gαq construct, while expression of inhibitory peptides of Gαq and Gαs, inhibited the GnRH-induced ERK1/2 activation and GnRH-stimulated LHβ production (Liu et al., 2002b). A more specific role for ERK1/2 in the GnRH-induced LHβ expression was reported in a study conducted by Maudsley et al. (2007). The formation of a proline-rich tyrosine kinase 2 (Pyk2)-dependent multiprotein complex was demonstrated following GnRH-R activation. This complex consists of c-Src, Grb2 and mSOS, which mediates ERK1/2 translocation into the
nucleus in LβT2 cells. Activated ERK1/2 regulates LHβ expression via the regulation of Egr1 expression. The Egr1 promoter is also activated by p38MAPK, but not by JNK (Maudsley et al., 2007). In addition, the involvement of JNK in the stimulation of LHβ production has also been demonstrated (Harris et al., 2002; Yokoi et al., 2000).

Figure 1-7: A potential mechanism describing an involvement of β-catenin in GnRH-induced LHβ gene expression.

In the absence of GnRH treatment, Egr1 protein levels are extremely low, and a complex comprising of β-catenin, SF1 and Pitx1 maintains LHβ gene expression at basal levels. GnRH treatment increases Egr1 levels, and Egr1 forms a complex with β-catenin, SF1 and Pitx1 increasing the transcriptional activity of LHβ promoter. Figure reproduced from Salisbury et al., 2008.

The role of PKC in LHβ production has also been examined, with conflicting results being reported. In particular, a positive role of PKC in this pathway has been demonstrated in several studies (Call and Wolfe, 1999; Harris et al., 2002; Saunders et al., 1998; Vasilyev et al., 2002), while one study has reported that PKC is not involved in this pathway (Yokoi et al., 2000).
The role of calcium (Ca\(^{2+}\)) in the GnRH-induced LH\(\beta\) expression pathway has also been reported. Weck et al. (1998) demonstrated that GnRH regulation of LH\(\beta\) expression is mediated by an elevation of Ca\(^{2+}\) levels (Weck et al., 1998), however a number of other studies have reported conflicting results (Call and Wolfe, 1999; Saunders et al., 1998; Yokoi et al., 2000) The opposing results regarding the involvement of the above mediators on GnRH-induced LH\(\beta\) expression can be explained by the use of different cell types and promoter constructs used in each study. All the above signalling pathways are summarised in Figure 1-8.

Finally, the role of other receptors in the regulation of LH\(\beta\) expression has been assessed (Naor et al., 2007). For example, reciprocal stimulation of GnRH-R and prostaglandin receptors regulate LH\(\beta\) expression. In particular, activation of prostaglandin receptors via prostaglandin F2\(\alpha\) (PGF\(_{2\alpha}\)) reduced GnRH-R-stimulated LH\(\beta\) expression in L\(\beta\)T2 cells (Naor et al., 2007). While many factors have been reported to be involved in GnRH-induced LH\(\beta\) expression in gonadotropes, the mechanisms, signalling pathways and mediators involved are not yet completely understood (Thackray et al., 2010).

1.5.6 Pulsatile regulation of LH and FSH expression by GnRH

The frequency of GnRH release influences the differential regulation of LH and FSH expression in gonadotropes of the pituitary. Low GnRH pulses (>120-240min) favour the expression of FSH, while high pulses (<1hour) favour the expression of LH (Ferris and Shupnik, 2006). However, to date it is not clear how the pulses frequency of GnRH differentially regulates the expression of LH and FSH. The
mechanism by which this occurs appears to include signalling pathways that are stimulated or suppressed, transcription factors that are bound and released from the promoter of these genes, or proteins (such as transcription factors) that are degraded (ubiquitinated) during pulsatile GnRH stimulation (Ferris and Shupnik, 2006; Tsutsumi and Webster, 2009). Two recent studies by Armstrong et al. (2009 and 2010) examined the possible mediators that could mediate the pulsatile effect of GnRH on gonadotropin expression. The involvement of ERK in FSHβ- and Egr1-promoter luciferase activity (Armstrong et al., 2010), and of Ca\(^{+2}\)/calmodulin/calcineurin/NFAT pathways on LHβ-, FSHβ- and αGSU-promoter luciferase activity (Armstrong et al., 2009) following pulsatile GnRH treatment were demonstrated.
Figure 1-8: Schematic representation of the signalling pathways initiated by GnRH-R or EGFR resulting in the synthesis and secretion of the gonadotropins. (PKA: Protein Kinase A, AA: AA, arachidonic acid, PLD, phospholipase D, iPLA2: calcium-independent phospholipase A2, COX2: Cyclooxygenase-2, SNAP25: Synaptosomal-associated protein 25, PGs: Prostaglandins, PLCβ: Phospholipase beta, MMPs: Matrix metalloproteinases, Hb-EFG: Heparin-binding EGF-like growth factor, ECM: extracellular matrix, Ras: RAt Sarcoma, Grb2: Growth factor receptor-bound protein 2, CAMK2: Calcium/calmodulin-dependent Protein Kinase II, CDC42: Cell division control protein 42 homolog, Rac1: Ras-related C3 botulinum toxin substrate 1, Elk1: Ets-like transcription factor-1, MEK1/2: MAP Kinase Kinase, MAP3Ks: MAP kinase kinase kinase, CRE: cAMP response elements
Figure reproduced from Naor., 2009.

1.6 FORKHEAD TRANSCRIPTION FACTORS

The FOXO family of transcription factors consists of four members, three of which are mammalian, namely FOXO1 (FKHR), FOXO3a (FKHRL1) and FOXO4 (AFX) (Tran et al., 2002). FOXOs are of great interest because they have been implicated in
a number of biological processes, including cell-fate decision and tumour suppression in a variety of cancers (Fu and Tindall, 2008). FOXOs are generally found in their active form in the nucleus where they bind to the promoters of genes and modulate their transcriptional activity. FOXOs also constitute an important downstream target of the PI3K/Akt and IKK signalling pathways which regulate FOXO localisation and transcriptional activity (Hu et al., 2004; van der Horst and Burgering, 2007). This regulation is mainly determined by post-translational modification such as phosphorylation, acetylation and ubiquitination. FOXO regulation is also determined by interaction with co-factors such as β-catenin (Burgering, 2008; Gardner et al., 2010; Obsil and Obsilova, 2008).

1.6.1 FOXO structure and function

Each member of the FOXO family consists of four domains; a highly conserved DNA binding domain (DBD), a nuclear localization signal (NLS) domain, a nuclear export sequence (NES) and a C-terminal trans-activation domain (Obsil and Obsilova, 2008) (Fig. 1-9). FOXO1 and FOXO3a proteins contain approximately 650 amino-acids, and FOXO4 contains about 500 amino-acids. Analysis of FOXO sequences revealed that several regions on FOXO proteins show high levels of similarity (Obsil and Obsilova, 2008).

The DNA binding domain, also called “the winged helix/forkhead domain”, contains 100 amino acids, and its structure constitutes three α-helices, three small β-strands, one wing and the C-terminal α-helix (Obsil and Obsilova, 2008). FOXOs bind via their DBDs to the 5’-GTAAACAA-3’consensus sequence. Tsai et al. (2007) have
demonstrated that the highly conserved helix H3 among the FOXO DBDs acts as the main DNA recognition site, while other regions, such as the C-terminal region, the N-terminal region and the wing W1 region are also important for DNA-DBD binding specificity and stability (Tsai et al., 2007) (Fig. 1-10).

![Figure 1-9: Structure of FOXO proteins.](image)
Conserved FOXO domains are shown. Figure reproduced from Obsil and Obsilova, 2008.

The NES, which is involved in the translocation of FOXOs from the nucleus to the cytoplasm, consists of a leucine-rich sequence. 14-3-3, a 30kDa protein with a U-shaped structure, is member of the cellular chaperones that interact with phosphorylated residues on proteins, and shuttles them out of the nucleus. 14-3-3 recognises and binds to Akt-phosphorylated serine and threonine residues of FOXOs resulting in the translocation of FOXO/14-3-3 complex into the cytoplasm (Van Der Heide et al., 2004).

The NLS domain contains another Akt phosphorylation site. Phosphorylation of this site also allows binding of 14-3-3 protein. By masking the NLS domain, 14-3-3 prevents FOXO re-import from the cytoplasm to the nucleus. The localisation and transcriptional activity of FOXOs are also affected by exposure of their domains to acetylation and ubiquitination (discussed in Sections 1.6.2.2 and 1.6.2.3) (Obsil and Obsilova, 2008).
Figure 1-10: Structure of FOXO3a and sequence alignment with other FOX proteins.
(A) Akt/PKB phosphorylation (red) and acetylation (green) sites in FOXO3a. The DBD is coloured yellow. (B) Sequence alignment of the DBDs of several FOX proteins (α-helices, black, β-strands, yellow). Figures reproduced from Tsai et al., 2007.

1.6.2 Regulation of FOXO transcription factors

1.6.2.1 Phosphorylation

FOXO transcriptional activity is regulated by phosphorylation via a variety of signalling pathways. The main regulators of FOXO phosphorylation are the PI3K/Akt and IKK signalling pathways. However, other kinases such as the protein kinase casein kinase 1 (CK1), serum and glucocorticoid inducible kinase (SGK), and dual-specificity regulated kinase 1A (DYRK1A) can also phosphorylate FOXOs (Van Der Heide et al., 2004). The phosphorylation, acetylation and ubiquitination sites on FOXO1/3a/4 are shown in Figure 1-11. In this section, the role of the PI3K/Akt and IKK signalling pathways in FOXO phosphorylation will be reviewed.
Figure 1-11: Post-translational modifications of FOXOs.

The phosphorylation (P: orange), acetylation (Ac: green) and ubiquitination (Ub: blue) sites on FOXO1/3a/4 transcription factors (see for details sections 1.3.3.1, 2 and 3). (SGK: serum- and glucocorticoid-inducible kinase, cGK1: cGMP-activated kinase, MST1: mammalian sterile 20-like kinase 1, DYRK1: Dual specificity tyrosine-phosphorylation-regulated kinase 1, CBP: (CREB)-binding protein. Figure reproduced from van der Horst et al., 2007.

1.6.2.1 The PI3K/Akt signalling pathway

FOXOs are generally found in their active form in the nucleus where they bind to promoters and modulate expression. Changes in FOXO transcriptional activity are induced by their phosphorylation status at specific sites. In particular, FOXOs constitute an important downstream target of the PI3K/Akt signalling pathway. Akt phosphorylates FOXOs at specific amino acids (Fig. 1-11), which leads to their retention in the cytoplasm, and therefore a significant reduction in their transcriptional activity (van der Horst and Burgering, 2007). The transcriptional
activity induced by a FOXO3a triple mutant, in which the three Akt-phosphorylation sites, at Ser253, Ser315 and Thr32 have been mutated to Alanine residues, was significantly higher when compared with the transcriptional activity induced by wild type FOXO3a (Brunet et al., 1999). This clearly indicates that these Akt phosphorylation sites are responsible for the translocation of FOXOs from the nucleus to the cytoplasmic, thus reducing their transcription activity (Tran et al., 2002).

Each of the Akt phosphorylation sites has a specific role in how it affects FOXO function (Obsil and Obsilova, 2008). Active Akt phosphorylates FOXOs thereby generating two consensus binding sites for the 14-3-3 chaperone protein. The binding of 14-3-3 to FOXOs results in their release from the DNA. However, binding of FOXOs to 14-3-3 is not sufficient for their translocation to cytoplasm. FOXOs also contain the NLS region which is responsible for their localisation to the nucleus. Thus, Akt phosphorylation may regulate the translocation of FOXOs to the cytoplasm by disrupting the function of the NLS region due to phosphorylation at specific sites (Fig. 1-12) (Huang and Tindall, 2007; Tran et al., 2003).

Several kinases including Akt, PKC and JNK also phosphorylate 14-3-3. Phosphorylation of 14-3-3 by JNK is able to release FOXO from 14-3-3, even when FOXO3a is phosphorylated by Akt. The translocation of FOXOs from the cytoplasm to the nucleus is mediated by their de-phosphorylation at the Akt sites, however the protein phosphatases that are responsible for this have not yet been identified (Calnan and Brunet, 2008). The localisation and consequently function of FOXOs
are therefore modulated by two different mechanisms which are opposed to each other (Obsil and Obsilova, 2008; Sunayama et al., 2005).

![Diagram of FOXO movement](image)

Figure 1-12: FOXO movement between nucleus and cytoplasm in response to growth signals.

The mechanism by which FOXOs translocate from the nucleus to the cytoplasm following Akt phosphorylation. 14-3-3 proteins have been postulated to play a direct role in nuclear export of FOXO. Following FOXO de-phosphorylation, 14-3-3 is released and FOXO translocates into the nucleus. Figure reproduced from Birkenkamp and Coffer, 2003.

1.6.2.1.2 The IKK signalling pathway

FOXO3a can also be phosphorylated by the IKK (Hu et al., 2004). IKK belongs to the IKK/NF-κB pathway which appears to be involved in the regulation of FOXO3a activity. Hu et al. (2004) demonstrated that FOXO3a was found in the cytoplasm in breast tumour cells in the absence of active Akt. This was shown to occur due to FOXO3a phosphorylation by IKKβ at Ser644, resulting its translocation to the cytoplasm, and reduction in its transcriptional activity (Hu et al., 2004).
recent study, conducted by Chapuis et al. (2010) has also demonstrated IKK-dependent FOXO3a nuclear exclusion in acute myeloid leukemia (AML) cells. FOXO3a nuclear localisation, which was also independent of Akt phosphorylation, resulted in its transcriptional inactivation (Chapuis et al., 2010).

IKK is phosphorylated by both the PI3K/Akt and PI3K/PDK1 signalling pathways (Fig. 1-13) (Salminen and Kaarniranta, 2010; Tanaka et al., 2005). In particular, Akt activates the IKKα kinase by phosphorylating it at Thr23 inducing NF-κB activity (Ozes et al., 1999), while PDK1, which is activated by Akt, phosphorylates IKKβ at Ser181, inducing the nuclear translocation of NF-κB complexes, resulting in the expression of NF-κB-dependent genes (Tanaka et al., 2005).

Figure 1-13: The PI3K-PDK1-IKK-FOXO and PI3K-PDK1-Akt-FOXO signalling pathways.

FOXO activity is inhibited by the PI3K/PDK1/Akt, or PI3K/PDK1/IKKα/β signalling pathways. FOXOs inhibit NF-κB signalling. Figure reproduced from Salminen and Kaarniranta, 2010.

1.6.2.2 Acetylation

FOXO function and translocation is also regulated by acetylation by histone acetyltransferases such as SIRT1. SIRT1 is an NAD-dependent de-acetylase that de-
acetylates a variety of proteins (Giannakou and Partridge, 2004). Acetylation of FOXOs by SIRT1 leads to their nuclear translocation. Thus, SIRT1 modulates FOXO transcriptional activity. Interestingly, the interaction of FOXO and SIRT1 appears to require the presence of 14-3-3. Indeed, a Caenorhabditis elegans (C. elegans) 14-3-3 protein mediates the interaction of SIR-2.1 (the C. elegans ortholog of SIRT1) with DAF-16/FOXO (Wang et al., 2006). There are conflicting reports with regard to whether de-acetylation of FOXO by SIRT1 increases or decreases FOXO activity (Obsil and Obsilova, 2008). The majority of published studies suggest that FOXO de-acetylation by SIRT1 enhances its transcriptional activity, and increased FOXO-mediated apoptosis or cell-cycle arrest (Daitoku et al., 2004; van der Horst et al., 2004). In contrast, de-acetylation has also been reported to suppress the transcriptional activity of the three mammalian FOXOs (FOXO1/3a/4) (Motta et al., 2004). Overall, although the majority of studies indicate that FOXO de-acetylation enhances its transcriptional activity, SIRT1 has been proposed to have a dual role in FOXO activity (Daitoku et al., 2004), and it is therefore apparent that the exact role of FOXO acetylation/de-acetylation requires further investigation (Obsil and Obsilova, 2008).

1.6.2.3 Ubiquitination

Another post-translational modification that regulates the transcription of FOXO transcription factors is ubiquitination. Ubiquitination is an enzymatic, protein post-translational modification process which leads to protein degradation by proteosomes. A polyubiquitin chain is covalently linked to the protein, and it enters the proteolytic chamber of the proteasome where it is degraded (Sorokin et al.,
2009). The level of FOXO protein in mammalian cells has been demonstrated to be regulated by PI3K/Akt-dependent poly-ubiquitylation and proteasome degradation processes (Matsuzaki et al., 2003; Plas and Thompson, 2003). For example, in cells treated with insulin, FOXO1 levels are reduced due to mono-ubiquitination via a Skp-ubiquitin ligase (Vogt et al., 2005). In addition, FOXO3a phosphorylation at Ser\(^{644}\) by IKK leads to its translocation to the cytoplasm where it is ubiquitinated and degraded (Hu et al., 2004). More recently, the MDM2, an E3 ubiquitin ligase, was demonstrated to bind to FOXO1 and FOXO3a and promotes their ubiquitination and degradation (Fu et al., 2009).

The signalling pathways that regulate FOXO movement between nucleus and cytoplasm, and FOXO ubiquitination and degradation are still not well understood. It appears that there are competitive signalling pathways that determine the activation and inactivation of FOXO transcriptional activity. Reduction of their activity via ubiquitination/proteasome-mediated degradation appears to be the mechanism that mediates their inactivation (Vogt et al., 2005).

1.6.2.4 FOXO co-factors

FOXOs interact with a variety of co-factors which are involved in regulating their transcriptional activity. For example, FOXOs interact with the Runt domain-containing transcription factor (RUNX3), SMAD3 and SMAD4, STAT5, androgen receptor, estrogen receptor (ER\(\alpha\)) and β-catenin, resulting in the regulation of FOXO trans-activation potential (Reviewed in Calnan and Brunet. 2008). In this section, only the role of β-catenin in regulating FOXO activity will be reviewed.
The first indication that FOXOs bind and interact with accessories proteins came from a study by Ramaswamy et al. (2002), which demonstrated that a mutant of FOXO1, in which the DBD was disrupted, was still able to effectively regulate expression of a specific number of the genes that wild-type FOXO could regulate (Ramaswamy et al., 2002). An active interaction between FOXO3a and FOXO4 with β-catenin that enhances the transcriptional activity of FOXO4 has been demonstrated (Essers et al., 2005). Interestingly, this interaction has a dual role (Hoogeboom et al., 2008). Binding of β-catenin to FOXOs enhance their transcriptional activity and inhibits the T cell factor (TCF) transcriptional activity, since FOXO competes with TCF for binding to β-catenin. Interaction between FOXO4 and β-catenin, and competition between FOXO4 and TCF for β-catenin binding has also been observed in a recent study in various colon cell lines (Kwon et al., 2010). To date, an interaction of β-catenin with a number of transcription factors, and among them the FOXOs, has been demonstrated, with β-catenin/FOXO interaction resulting in enhanced FOXO activity (Hoogeboom and Burgering, 2009).

1.6.2.5 FOXO auto-regulation

FOXO transcriptional activity is regulated by growth factors via the regulatory mechanisms described above. However, growth factors also regulate FOXO activity by targeting FOXO gene expression (Essaghir et al., 2009). Although the mechanism for the regulation of FOXO gene expression is still not clear, transcription factors such as E2F1 has been demonstrated to induce the expression of endogenous FOXO1 and FOXO3a (Nowak et al., 2007), while growth factors such as PDGF and FGF
decrease the expression of FOXO1, FOXO3a and FOXO4 (Essaghir et al., 2009). In addition, FOXO binding sites on the FOXO1 promoter have been identified (Essaghir et al., 2009). In particular, FOXO3a regulates the mRNA expression of FOXO1 and FOXO4, and FOXO1 is able to regulate its own expression (Essaghir et al., 2009).

1.6.3 FOXO-target genes

FOXOs bind the promoters of a variety of genes that are involved in apoptosis (FasL, BIM), cell-cycle regulation (p21Cip1, p27Kip1) and oxidative stress resistance (GADD45) (Table 1-2). The role of FOXOs in cell function, and several of the FOXO-target genes that mediate these functions will be reviewed in this section.

In mammalian cells, the apoptotic response can be mediated through caspase activation, via either an intrinsic or extrinsic pathway, depending on the origin of the stimuli. There are two types of caspases; the initiator and the effectors caspases (Riedl and Shi, 2004). Following external or internal death stimuli, initiator caspases are activated, and in turn activate the effectors caspases. The effector caspases are then responsible for the proteolytic cleavage of a broad spectrum of cellular targets, which subsequently leads to apoptosis (Riedl and Shi, 2004). FOXO activation, which leads to nuclear localisation, has been shown to promote apoptosis and cell-growth inhibition in several cell lines including cerebellar granule neurons, Jurkat T lymphocytes, CCL39 fibroblasts and mouse pre-B cell line (Brunet et al., 1999; Dijkers et al., 2002; Roy et al., 2010; Srinivasan et al., 2005; Zheng et al., 2002). In contrast, activation of FOXO3a has been demonstrated to be required for neuron
survival (Srinivasan et al., 2005). However, the majority of studies have reported that FOXOs mediates apoptosis via regulating the expression of a number of apoptotic genes, including \textit{BIM} and \textit{FasL} (Dijkers et al., 2000; Gilley et al., 2003; Kops et al., 2002a; Peng et al., 2010; Sunters et al., 2003). These studies are summarised in Tables 1.3 and 1.4.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Function</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apoptosis</td>
<td>BIM</td>
<td>Pro-apoptotic activity</td>
</tr>
<tr>
<td>Apoptosis</td>
<td>FasL</td>
<td>Triggers apoptosis via Fas receptor</td>
</tr>
<tr>
<td>G1 cell-cycle arrest</td>
<td>p21Cip1</td>
<td>Cell-cycle arrest at G1/S</td>
</tr>
<tr>
<td>G1 cell-cycle arrest</td>
<td>p27Kip1</td>
<td>Cell-cycle arrest at G1/S</td>
</tr>
<tr>
<td>G2 cell-cycle arrest</td>
<td>GADD45</td>
<td>Mediates G2/M arrest</td>
</tr>
<tr>
<td>DNA repair</td>
<td>GADD45</td>
<td>Mediates DNA repair</td>
</tr>
</tbody>
</table>

Table 1-2: FOXO-target genes and their functions. FOXOs bind to and regulate the promoters of genes that are involved in cell proliferation, either by regulating cell-cycle progression or by promoting apoptosis.

1.6.3.1 \textit{BIM}

\textit{BIM} is a pro-apoptotic member of the Bcl-2 family which includes anti- and pro-apoptotic factors (O'Connor et al., 1998). \textit{BIM} contains a BH3 domain which allows the formation of hetero-dimers with other anti-apoptotic Bcl-2 members, neutralising their function (Dijkers et al., 2000). Following activation, \textit{BIM} induces the release of apoptogenic factors (cytochrome c, Smac/Diablo homolog, Omi) from the mitochondria, which in turn, activate caspase 9. Caspase 9 then triggers a cascade of caspase activation leading to apoptosis (Fig. 1-14) (Fesik and Shi, 2001).
therefore participates in the intrinsic apoptotic pathway that is mediated by mitochondria (Riedl and Shi, 2004).

1.6.3.2 **FasL**

The pro-apoptotic *FasL* gene, which participates in the extrinsic apoptotic pathway, is a trans-membrane protein that induces apoptosis via the binding to the Fas receptor (Brunet *et al*., 1999; Fu and Tindall, 2008) (Fig. 1-14). This binding recruits further cytoplasmic factors, including the FAS-associated death domain (FADD) and caspase 8, forming a death-inducing signalling complex. Formation of this complex leads to the activation of caspase 8, which then cleaves and activates caspase 3.

1.6.3.3 **p21Cip1 and p27Kip1**

FOXOs are involved in cell-cycle regulation, since over-expression of FOXO1 and FOXO3a induce cell-cycle arrest at the G1/S and G2 phases (Dijkers *et al*., 2000; Medema *et al*., 2000; Ramaswamy *et al*., 2002; Schmidt *et al*., 2002). FOXOs mediate cell-cycle progression via the regulation of cyclin dependent kinases (Cdks). The Cdk family includes the cell-cycle activators, cyclin D1 and cyclin D2, that promote cell-cycle progress, and which inhibit the cell-cycle inhibitors, *p27Kip1* and *p21Cip1* which block cell-cycle progress (Table 1-5). FOXOs regulate cell-cycle arrest at G1/S either by repressing cell-cycle activators, cyclin D1 and cyclin D2 or by activating the cell-cycle inhibitors, p21Cip1 and p27Kip1 (Dijkers *et al*., 2000; Katayama *et al*., 2008; Medema *et al*., 2000; Nakamura *et al*., 2000).
Figure 1-14: FOXO-induced apoptosis by FasL and BIM.
FOXOs bind to the *FasL* promoter and up-regulate its expression. FasL then binds to the Fas receptor which leads to the formation of a complex which includes FADD and caspase 8. Activated caspase 8 activates caspase 3 and subsequently induces apoptosis. FOXOs also bind to the promoter of the *BIM* gene and up-regulate its expression. This leads to increased mitochondria permeability and several proteins are released into the cytoplasm, including cytochrome c. Cytochrome c binds and activates protein apoptotic protease activating factor 1 (APAF1), and forms the apoptosome which mediates the activation of caspase-9. (TRAIL: [TNF-related apoptosis inducing ligand, DR4,5: Death Receptor 4,5, Bcl-XL: B-cell lymphoma-XL, bNIP-3: BCL2/adenovirus E1B 19 kDa protein-interacting protein 3, Apaf1: Apoptotic protease activating factor 1, CARD: caspase recruitment domain) Figure reproduced from Fu and Tindall, 2008.
<table>
<thead>
<tr>
<th>FOXO</th>
<th>Cell type</th>
<th>Effect</th>
<th>In response to</th>
<th>Biological role</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOXO3a</td>
<td>Ba/F3 cells</td>
<td>Increases BIM mRNA level and protein expression</td>
<td>IL-3<sup>(1)</sup> deprivation, BIM expression increased steadily</td>
<td>In lymphocytes, BIM is the dominant transducer of death signals by controlling its expression level via cytokine-mediated regulation of forkhead transcription factors</td>
<td>(Dijkers <i>et al.</i>, 2000)</td>
</tr>
<tr>
<td>FOXO3a</td>
<td>Sympathetic neurons cells</td>
<td>FOXO3a directly activates the BIM promoter</td>
<td>NGF<sup>(2)</sup>, causes FOXO3a inactivation via the PI3K/Akt signalling pathway and therefore reduction of BIM mRNA expression</td>
<td>FOXO transcriptional activity contributes to NGF withdrawal-induced death in sympathetic neurons</td>
<td>(Gilley <i>et al.</i>, 2003)</td>
</tr>
<tr>
<td>FOXO3a</td>
<td>MCF-7 and MDA MB-231 cells</td>
<td>FOXO3a directly activates the BIM promoter in MCF-7 but has a minor effect in MDA MB-231</td>
<td>Paclitaxel, there is an up-regulation of FOXO3a activation which can result in increased levels of BIM mRNA and protein</td>
<td>Paclitaxel-induced FOXO3a transcriptional activity increases BIM expression which could result in apoptosis in MCF-7 but not in MDA-231 breast cancer cells</td>
<td>(Sunters <i>et al.</i>, 2003)</td>
</tr>
<tr>
<td>FOXO3a</td>
<td>DL23 and Ba/F3 cells</td>
<td>Activation of FOXO3a in DL23 cells does not up-regulate BIM expression, but does in Ba/F3 cells</td>
<td>No data</td>
<td>No data</td>
<td>(Kops <i>et al.</i>, 2002b)</td>
</tr>
<tr>
<td>FOXO3a</td>
<td>Cells from the neural region of zebrafish embryo</td>
<td>Loss-of-function of FOXO3a induces BIM expression</td>
<td>No data</td>
<td>Loss-of-function of FOXO3a causes an increase of apoptotic cells in the neural region of zebrafish embryo</td>
<td>(Peng <i>et al.</i>, 2010)</td>
</tr>
</tbody>
</table>

Table 1-3: FOXO3a and FOXO1 regulate the expression of BIM gene in different cellular environments.

This table summarises the effect of FOXO over-expression on BIM expression in different cell lines. The effect on FOXO transcriptional activity in response to different stimuli, and the biological significance of FOXOs in different cellular environments are also shown.
<table>
<thead>
<tr>
<th>FOXO</th>
<th>Cell type</th>
<th>Effect</th>
<th>In response to</th>
<th>Biological role</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOXO3a</td>
<td>Post-mitotic neurons and PC12 cells</td>
<td>FOXO3a induces FasL expression</td>
<td>IGF1<sup>(3)</sup>, the expression of the FasL-promoter luciferase reporter gene was significantly reduced by FOXO3a, via of PI3K/Akt signalling pathway</td>
<td>FOXO3a induces apoptosis by induction of FasL pathway in CCL39 cells (little effect on Jurkat cells)</td>
<td>(Brunet et al., 1999)</td>
</tr>
<tr>
<td>FOXO1</td>
<td>Glioma cells</td>
<td>FOXO1 induces FasL expression</td>
<td>CsA<sup>(4)</sup>, expression of FasL-promoter luciferase reporter gene may be regulated by FOXO1, via PI3K/Akt signalling pathway</td>
<td>Inhibition of Akt signaling may be critical for Forkhead-dependent up-regulation of FasL expression in glioma cells, but activation of other transcription factors is required to induce FasL expression and cell death</td>
<td>(Ciechomska et al., 2003)</td>
</tr>
<tr>
<td>FOXO3a</td>
<td>293T cells</td>
<td>FOXO3a induces FasL promoter activity</td>
<td>No data</td>
<td>IKK-dependent repression of FOXO3a can promote cell growth and tumorigenesis</td>
<td>(Hu et al., 2004)</td>
</tr>
</tbody>
</table>

⁽¹⁾ IL-3 : Interleukin 3
⁽²⁾ NGF : Nerve growth factor
⁽³⁾ IGF1 : Insulin-like growth factor 1
⁽⁴⁾ CsA : cyclosporin A

Table 1-4: FOXO3a and FOXO1 regulate the expression of FasL gene in different cellular environments.

This table summarises the effect of FOXO over-expression on FasL expression in different cell lines. The effect on FOXO transcriptional activity in response to different stimuli, and the biological significance of FOXOs in different cellular environments are also shown.
<table>
<thead>
<tr>
<th>FOXO</th>
<th>Cell type</th>
<th>Effect</th>
<th>In response to</th>
<th>Biological role</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOXO1</td>
<td>786-O cells (PTEN null tumor cell)</td>
<td>FOXO1 Increases p27Kip1 mRNA level and prolonged the half life of p27Kip1 protein</td>
<td>No data</td>
<td>Low level of p27Kip1 in PTEN-null cells may arise as a consequence of a lack of FOXO1 which may be important for tumorogenesis</td>
<td>(Nakamura et al., 2000)</td>
</tr>
<tr>
<td>FOXO3a</td>
<td>Ba/F3 cells</td>
<td>FOXO3a increases p27Kip1 promoter activity</td>
<td>IL-3, there is inhibition of p27Kip1 transcription through PI3K-induced FOXO3a phosphorylation</td>
<td>Repression of p27Kip1 levels through Akt-mediated FOXO3a phosphorylation may be necessary for cytokine-mediated survival and proliferation</td>
<td>(Dijkers et al., 2000)</td>
</tr>
<tr>
<td></td>
<td>NIH 3T3 cells</td>
<td>FOXO3a increases p27Kip1 expression</td>
<td>No data</td>
<td>No data</td>
<td>(Martinez-Gac et al., 2004)</td>
</tr>
<tr>
<td>FOXO3a</td>
<td>293T</td>
<td>FOXO3a increases p27Kip1 promoter activity</td>
<td>No data</td>
<td>No data</td>
<td>(Hu et al., 2004)</td>
</tr>
<tr>
<td></td>
<td>FRTL5 cells</td>
<td>Nuclear accumulation of FOXO3a increases p27Kip1 expression</td>
<td>Insulin, serum or growth media, the mRNA expression level of p27kip1 was significantly reduced (compared with treatment with the starving control medium) TSH<sup>5</sup>, mRNA expression of p27kip1 did not significantly alter compared with starved controls</td>
<td>No data</td>
<td>(Karger et al., 2009)</td>
</tr>
</tbody>
</table>

Table 1-5: FOXO3a and FOXO1 regulate the expression of p27Kip1 gene in different cellular environments.

This table summarises the effect of FOXO over-expression on p27Kip1 expression in different cell lines. The effect on FOXO transcriptional activity in response to different stimuli, and the biological significance of FOXOs in different cellular environments are also shown.
<table>
<thead>
<tr>
<th>FOXO</th>
<th>Cell type</th>
<th>Effect</th>
<th>In response to:</th>
<th>Biological role</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOXO3a</td>
<td>Mouse myoblasts C2C12</td>
<td>FOXO3a increases GADD45 expression</td>
<td>oxidative stress, FOXOs increases GADD45 (in HeLa cells)</td>
<td>FOXOs play a key role in the regulation of G2 checkpoint by inducing GADD45 (in HeLa cells)</td>
<td>(Furukawa-Hibi et al., 2002)</td>
</tr>
<tr>
<td>FOXO3a</td>
<td>FOXO3a increases GADD45 expression</td>
<td>No data</td>
<td></td>
<td>No data</td>
<td>(Tran et al., 2002)</td>
</tr>
<tr>
<td>FOXO3a</td>
<td>FRTL-5</td>
<td>Role of FOXO3a-induced GADD45A mRNA expression in Thyroid cancer cells</td>
<td>oxidative stress, activates FOXO3a in thyrocytes with JNK (MAPK8)-mediated nuclear accumulation of FOXO3a and increased expression of GADD45A TSH, there is nuclear accumulation of FOXO3a, together with a decrease in GADD45A mRNA expression insulin, there is a cytoplasmic accumulation of FOXO3a in line with increased expression of GADD45A</td>
<td>No data</td>
<td>(Karger et al., 2009)</td>
</tr>
</tbody>
</table>

Table 1-6: FOXO3a and FOXO1 regulate the expression of GADD45 gene in different cellular environments.

This table summarises the effect of FOXO over-expression on GADD45 expression in different cell lines. The effect on FOXO transcriptional activity in response to different stimuli, and the biological significance of FOXOs in different cellular environments are also shown.

TSH: Thyroid-stimulating hormone

52
FOXO3a also induces expression of the GADD45 gene (Furukawa-Hibi et al., 2002; Tran et al., 2002). GADD45 belongs to the family of growth arrest and DNA damage (GADD) proteins which comprises of five members, the GADD45α, GADD45β, GADD45γ, GADD34 and GADD153 (Reddy et al., 2008). However, GADD45α (also referred as GADD45) is the most well-characterised member, and its induction and subsequent effects will be reviewed in this section.

GADD45 is a 18.4KDa protein which mediates G2/M arrest, DNA repair and apoptosis. Following exposure to UV or ionising radiation, GADD45 gene expression is induced by p53-independent or p53-dependent mechanisms respectively (Yang et al., 2009). When the GADD45 promoter is activated by p53, GADD45 interacts with and activates MTK1, a MAP3K with a unique N-terminal regulatory domain, which in turn activates the JNK and p38MAPK to induce cell-growth inhibition and apoptosis (Sheikh et al., 2000; Yang et al., 2009). In addition, following cellular stress response, GADD45 gene expression is induced by FOXO3a resulting in the initiation of DNA repair pathways (Tran et al., 2002). GADD45 also binds other regulatory proteins in order to exert its function. Specifically, p21Cip1 binds to the central region of GADD45. The biological significance of this interaction remains unclear, however this interaction suggests a cross-talk between these two important cell-cycle regulators that act at different stages of the cell-cycle (Yang et al., 2009). GADD45 also binds to Cdc2, and inhibits the activity of Cdc2/Cyclin B1 complex, which results in cell-cycle arrest at G2/M (Taylor and Stark, 2001). Finally, GADD45 acts as a downstream target of NF-κB. NF-κB
activation down-regulates the expression of GADD45, via the regulation of another transcription factor, c-myc. Thus c-myc gene expression is activated by NF-κB, however the mechanism by which c-myc represses GADD45 gene expression is not yet well understood (Rosemary Siafakas and Richardson, 2009; Yang et al., 2009).

1.6.4 Cell-type specific FOXO activity

Activation of FOXOs mediates different biological effects dependent on intracellular environment (these different biological effects are summarised in Tables 1-3, 1-4, 1-5 and 1-6). For example, although activation of FOXOs induces apoptosis in some cell lines (Brunet et al., 1999), they can induce cell-cycle arrest in others (Furukawa-Hibi et al., 2002). In addition, activation of FOXOs differentially effects the regulation of specific target genes in a variety of cell types. For example, FOXO3a activation increases BIM mRNA expression in Ba/F3, MCF-7 and MDA MB-231 cell lines (Dijkers et al., 2000; Gilley et al., 2003), whereas decreases BIM expression in cells derived from neural region of zebrafish embryo (Peng et al., 2010). A mechanism of gene regulation by FOXO transcription factors has been suggested, which could explain the differences in the effect of FOXOs at specific genes (Ramaswamy et al., 2002). In particular, utilising gene expression profile analysis, FOXOs were found to regulate two types of genes; genes that require FOXO binding, and genes that are regulated independently of FOXO binding to their promoters. In the latter case, FOXOs interact with other transcription factors to modulate their activities. Therefore, the cellular environment is important for determining the functional effect of FOXOs in different cell types (Birkenkamp and Coffer, 2003; Ramaswamy et al., 2002).
1.6.5 The role of FOXOs in cancer progression

FOXO phosphorylation by PI3K/Akt, IKK or ERK signalling pathways, leads to FOXO inactivation by their exclusion from the nucleus, and subsequently their degradation. Inactivation of FOXOs, either by chromosomal deletion of the FOXO gene or by cytoplasmic localisation, is associated with a variety of cancers, including breast cancer, prostate cancer and leukemia (Yang and Hung, 2009). Indeed, FOXO3a activation not only promotes apoptosis in vitro but also restricts tumour growth in vivo, in breast cancer cells (Yang and Hung, 2009). Furthermore, constitutively active FOXO4 reduces tumour size (Greer and Brunet, 2005).

Thus, activation of FOXOs could be a potential anticancer therapeutic strategy. An advantage for targeting FOXO activation is that FOXO3a mutations have not been found in human cancers. Therefore, activation of functional FOXO3a could be sufficient to target tumour suppression. A number of FOXO3a-activating target drugs have been developed, including paclitaxel for breast cancer treatment and KP372-1 for treating acute myeloid leukemia (Ho et al., 2008; Yang and Hung, 2009).

1.6.6 FOXO knock-down mice

Although in vitro studies have revealed many functions for FOXOs in diverse cell lines, animal studies have also been conducted in order to further understand the role of the specific FOXO sub-types. FOXO null mice, FOXO knock-down mice targeted in specific tissues, transgenic mice that over-express particular type of FOXO, or mice with disrupted FOXO genes in somatic cells have been generated. The phenotype observed in these FOXO-deficient mice are summarised in Table 1-7.
Chapter One

<table>
<thead>
<tr>
<th>FOXO knock-down</th>
<th>Phenotype</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOXO1<sup>−/−</sup> null mice</td>
<td>Embryonic lethal phenotype due to incomplete vascular development</td>
<td>(Nakae et al., 2002)</td>
</tr>
<tr>
<td>FOXO1<sup>+/−</sup> mice</td>
<td>Has a role in a negative regulator of insulin sensitivity</td>
<td>(Nakae et al., 2002)</td>
</tr>
<tr>
<td>FOXO3a-null mice</td>
<td>Show age-dependent infertility and suppressed follicular activation</td>
<td>(Castrillon et al., 2003)</td>
</tr>
<tr>
<td>FOXO3a-null mice</td>
<td>Increased lympho-proliferation and widespread organ inflammation</td>
<td>(Lin et al., 2004)</td>
</tr>
<tr>
<td>FOXO4-null mice</td>
<td>No histological abnormalities and normal in appearance</td>
<td>(Hosaka et al., 2004)</td>
</tr>
<tr>
<td>FOXO1/3/4 deletion</td>
<td>Show metastatic cancer</td>
<td>(Paik et al., 2007)</td>
</tr>
</tbody>
</table>

Table 1-7: The phenotype observed in FOXO knock-down in mice

1.6.7 FOXO transcription factors and LH

A role for FOXO3a in regulating LH levels was demonstrated in vivo in a study conducted by Castrillon et al (2003) in which female FOXO3a knock-down mice (FOXO3a^{−/−}) were generated. The FOXO3a^{−/−} mice were viable and showed age-dependent infertility with no histological abnormalities of the pituitary tissues. However, serum LH levels were lower compared to control FOXO3a^{+/+} mice. Therefore, the effect of FOXO3a knock-down with regards to mice infertility was assessed. Since FOXO3a knock-down was not specific to the pituitary, the infertility of FOXO3a^{−/−} mice could be due to the effect of FOXO3a knock-down on ovarian function. However, administration of gonadotropins induced ovulation and restored fertility, suggesting that FOXO3a is not required for gonadotropin responsiveness at the ovary (Castrillon et al., 2003).
Chapter One

Thesis aims and objectives:

In Chapter two, the regulation of FOXO transcriptional activity following GnRH-R activation is investigated. Since the transcriptional activity of FOXO is determined by post-translational modifications and the action of co-factors, such as β-catenin, the role of these post-translational modifications and the involvement of β-catenin are characterised. Finally, the role of FOXOs in targeting the expression of several FOXO-target genes is assessed. In Chapter three, the role of FOXO3a in the GnRH-induced cell-growth inhibition was examined, by targeting genes that are involved in apoptosis and cell proliferation, such as GADD45 and FasL.

In Chapter five, the role of FOXO1 and FOXO3a in GnRH-induced expression of LHβ, FSHβ and the GnRH-R in gonadotropes is examined. The expression of FOXO3a and FOXO in human pituitary gonadotropes is also examined, and a role for FOXO3a in the regulation of LHβ expression in response to GnRH treatment is highlighted. In addition, the regulation of Egr1 expression via a FOXO3a-dependent signalling pathway was demonstrated. Chromatin immunoprecipitation (ChIP) assays were used to assess FOXO3a recruitment to Egr1 and LHβ promoters. FOXO3a targets Egr1 expression to, at least in part, indirectly regulate LHβ promoter activity. These findings suggest that GnRH regulates LHβ-subunit expression through one or more FOXO3a-mediated mechanisms.
CHAPTER TWO

MATERIALS AND METHODS
2.1 MAMMALIAN CELL CULTURE

2.1.1 Cell Media

HEK293 embryonic kidney cells (originally obtained from ATCC) stably expressing the rat Type I GnRH-R (designated SCL60 (Stable Cell Lines)) were generated within our laboratory (Anderson et al., 1995). Cells were maintained in complete medium (as described in the table below) supplemented with G418 (Sigma) (unless otherwise specified, all materials utilised in this study, were supplied from Sigma) and plasmocin (all cell lines were grown at 37°C in a humidified 5% CO2 atmosphere unless otherwise indicated).

LβT2 mouse gonadotrope cells (obtained from P. Mellon, University of California) were maintained on complete medium. LβT2 cells were grown on Matrigel (BD Biosciences) coated plastic flasks.

WPE1-NB26-3 prostate cancer cells (WPE1-NB26 cell line originally obtained from ATCC and clone 3 was made by Dr. Kevin Morgan) stably expressing the rat Type I GnRH-R were generated in our laboratory. These cells were maintained in serum-free keratinocyte medium (Invitrogen) (Keratinocyte-SFM containing BPE (bovine pituitary extract) (25μg/ml), rEGF (Rat Epidermal Growth Factor) (0.1-0.2ng/ml) and G418 sulphate (500μg/ml)).
Complete Media:
- Dulbecco’s modified Eagles medium (DMEM)
- 10% fetal calf serum
- 2% glutamine
- 1% penicillin (10,000 units/ml) / streptomycin (10,000 units/ml)

Starving Media (Serum Free Media):
- Dulbecco’s modified Eagles medium (DMEM)
- 2% glutamine
- 1% penicillin (10,000 units/ml) / streptomycin (10,000 unit/ml)

2.1.2 Sub-culturing of cells

SCL60 and LβT2 cells were grown until they were 80-90% confluent. The medium was removed and cells washed twice with Dulbecco’s Phosphate Buffered Saline (PBS). 2ml of 1x trypsin was added to each 162cm² flask and the flask returned to the incubator (for 3-5 minutes at 37°C) until the cell monolayer detached. Trypsin was inactivated by adding 8ml of complete medium. The cells then were plated on a 162cm² plate at a ratio of 1:5. Cells were counted in a haemocytometer and were seeded in plates for experiments and then maintained at 37°C.

PWE-1-NB26-3 cells were grown until they were 80-90% confluent. The medium then was removed and washed twice with PBS. 2ml of 1x trypsin was added to each 162cm² flask and the flask returned to the incubator (for 10 minutes at 37°C) until the cell monolayer detached. Trypsin was inactivated by adding 8ml (0.1% in PBS) trypsin inhibitor (Invitrogen). The cell suspension was centrifuged at 500 x g for 2 minutes at room temperature. The cell pellet was gently re-suspended in 8ml of serum-free keratinocyte medium containing BPE (25μg/ml) and rEGF (0.1-0.2 ng/ml). Then cells were seeded in plates for experiments and then maintained at 37°C.
2.1.3 Cryopreservation of cells

Cells from a confluent (~80% confluent) dish were trypsinised and the trypsin inhibited as described above. Cells were then pelleted at 500 x g for 2 minutes to remove residual trypsin. The resulting pellet was re-suspended in cryoprotectant (10% dimethylsulphoxide (DMSO) (v/v) in fetal calf serum). Cells were transferred to cyrotubes and frozen at -80°C. The tubes were then transferred to liquid nitrogen after 48 hours.

2.1.4 Recovery of frozen cells

Cells were removed from liquid nitrogen storage and thawed rapidly at 37°C. They were re-suspended in complete medium, and then were pelleted at 500 x g for 2 minutes. The cell suspension was added to 9ml of complete medium and seeded into an appropriate culture vessel.

2.1.5 Generation of stable FOXO3a knock-down SCL60 and PWE-1-NB26-3 lines, and LBT2 transient FOXO3a knock-down cell lines

In order to examine the effect of FOXO3a in different cellular processes in response to GnRH, stable and transient FOXO3a knock-down cell lines were generated. A lentiviral-based delivery system was utilised. Mission shRNA Plasmid DNA (pLKO.1-pure vector system; the mission vector has a U6 promoter) (http://www.sigmaaldrich.com/etc/medialib/docs/_Sigma/_Bulletin/_shc001bul.Par.0001.File.tmp/shc001bul.pdf) was used, and were transfected into lentivirus using the Mission Packaging Mix (http://www.sigmaaldrich.com/_etc/_medialib_/docs/Sigma/Bulletin_/shp001bul.Par.0001.File.tmp/shp001bul.pdf) by Dr. Pamela
Brown (MRC HRSU Unit, Edinburgh). Using this system allowed efficient lentiviral infection and integration of the specific shRNA construct into cells mediating life-long gene specific silence. This happens because the lentivirus used was a non-replicating virus. The basic principle is that these viruses after a single round of infection ensure stable integration of the transgene with only a minimal component of viral genome, so that the transgene (in this case the shRNA) continuously expresses but the infectious virus is not generated in order to infect the cells again. This is achieved by selectively splitting the different components of the viral genome into 3-4 separate plasmid vectors which are needed in order for a new virus to be generated (Manjunath et al., 2009).

Before using the lentiviral shRNA system, pilot experiments were performed whether that lentiviral infection caused any change in cell number. Cells were seeded at density of 1x10^6 in 60mm plates with 5ml complete medium. The next day, medium was removed and cells were infected with different titres of GFP-lentivirus and were incubated for 24 hours at 37°C in a 5% CO2 humidified incubator. The next day, medium with the GFP-lentivirus was removed and was replaced with fresh complete medium. After 1,2,3,4 and 5 days of incubation cells was visualised with a Zeiss Axioskop microscope. The results showed that lentiviral infection caused no change in cell number The most effective ratio of virus:cells for maximal transduction was also assessed.

Stable and transient FOXO3a knock-downs using the shRNA lentivirus system were generated as follows:
Chapter Two

1x10⁶ cells were seeded in complete medium in a 6-well plate and were incubated for 24 hours. Complete medium was removed and 2ml of shRNA lentivirus or scrambled shRNA lentivirus in DMEM (negative control) (1:2 cells/virus) plus 3ml of complete medium was added to the cells, and cells were incubated for a further 24 hours at 37°C. Virally transduced cells were trypsinised and re-seeded into 60mm plates with fresh complete medium followed by a further 24 hour incubation at 37°C.

Transient knock-down: (LBT2 cells) Cells were harvested and were assayed for interference of the target genes over 1, 2, 4 and 5 days. Western Blot analysis was performed in order to detect clones with significant reduction of FOXO3a protein level. Cells with the higher knock-down (i.e. with the most reduced target protein level) were used for further experiments.

Stable knock-down: (SCL60 and PWE-1-NB26-3 cells) The medium was removed and replaced with fresh medium containing puromycin (3µg/ml) for selection of transduced cells. The medium was replaced with fresh, puromycin-containing medium every 3-4 days until resistant colonies could be identified. The colonies were picked using glass cloning cylinders, and these cells were seeded in a new plate with fresh puromycin containing complete medium. Generally, 10-12 days after colony selection, when plates were about 80% confluent, cells were trypsinised and split into two plates. Cells from the first plate were allowed to grow to confluency and were cryopreserved. Cells from the second plate were assessed for FOXO3a protein level by Western Blot analysis. Cells with the higher knock-down (i.e. with the most reduced target protein level) were used for further experiments. The shRNAs used to knock-down human and mouse FOXO3a are listed in Table 2-1:
Table 2-1: shRNA sequences against human and mouse FOXO3a gene

<table>
<thead>
<tr>
<th>Gene</th>
<th>shRNA target</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Forkhead 3a (FOXO3a)</td>
<td>sh1566</td>
<td>CCGGTCGTCACCTGCATAGTCGATTCATCTCGAGATGA ATCGACTATGCAGTGAATTTTTT</td>
</tr>
<tr>
<td></td>
<td>sh2208</td>
<td>CCGGCCACACAGACGTGGTCTCTCGAGAACAACCGT GCTTGAAGGAGGTTTTTG</td>
</tr>
<tr>
<td></td>
<td>sh2864</td>
<td>CCGGCCACACAGACGTGGTCTCTCGAGAACAACCGT GCTTGAAGGAGGTTTTTG</td>
</tr>
<tr>
<td></td>
<td>sh2978</td>
<td>CCGGCAGACCCCTAAACTGACACAACACTCGAGTT GTGTGCATTTTGAGGCTGGTTTTTG</td>
</tr>
<tr>
<td></td>
<td>sh1687</td>
<td>CCGGACATAGCAATAAGTATATCCCTCGAGGGTATAC TTGTGCTATTGTCCCTTTTT</td>
</tr>
<tr>
<td>Mouse Forkhead 3a (FOXO3a)</td>
<td>sh841</td>
<td>CCGGCCGCGGAAACAGGCTACCTCTCGAGAAGTT GTGCGTTTGGGCTCCCTTTTTT</td>
</tr>
<tr>
<td></td>
<td>sh1441</td>
<td>CCGGCACCTCATGAAATGACTCGGATCGTTA TTCAGATTTCATGGGCGGTTTTTG</td>
</tr>
<tr>
<td></td>
<td>sh1624</td>
<td>CCGGTGGTGGACCTTCGATCTGGAACTCGAGTT TGAGACGAGGTGCAAACCTTTTT</td>
</tr>
<tr>
<td></td>
<td>sh2195</td>
<td>CCGGGAGTCCATCATCCGTAGTGAAACTCGAGTT TGACTCGGAATGGACTCTTT</td>
</tr>
</tbody>
</table>

2.1.6 DNA transfection of mammalian cells

2.1.6.1 Transfection with Superfect® reagent

SCL60 were transfected with Superfect® Transfection reagent (Qiagen) using 6µl of Superfect® per 1µg of plasmid DNA. The day before transfection 2x10^6 cells were seeded into 100mm dishes in complete medium and were incubated overnight. Cells were transfected with the following mixture (per 100mm dish):

63
Chapter Two

Prior to transfection, medium was removed and cells washed twice with PBS. After, DNA/Superfect complexes had formed, the transfection mixture was added to the cells with complete medium in a total volume of 3ml. The transfection mix was left on the cells in the incubator for 3 hours. Subsequently, cells were washed twice with PBS, and fresh complete medium was added. Cells were then incubated at 37°C overnight before experiments were carried out.

2.1.6.2 Transfection with Fugene® reagent

LβT2 cells were transfected with Fugene® reagent (Roche) using 6µl of Fugene® reagent per 1µg of plasmid DNA. 2x10^6 cells were seeded into 100mm dishes and incubated overnight. The following day cells were transfected with the following mixture (per 100mm dish):

<table>
<thead>
<tr>
<th>Mixture for Fugene® transfection</th>
</tr>
</thead>
</table>
| Optimem serum free medium (Gibco) | 1.5ml
| Renilla | 33ng
| DNA | 10µg
| Fugene® | 60µl |

Prior to transfection, medium was removed and cells were washed twice with PBS. After DNA/Fugene complexes had formed, the transfection mixture was added to the cells with complete medium in a total volume of 3ml. The transfection mix was left...
on the cells in the incubator for 3 hours, then 7mls of complete medium was added to the cells and they were left for overnight incubation before experiments were carried out.

2.1.6.3 *Dual light reporter gene luciferase assay*

Luciferase assay is used in order to assess the transcriptional activity of a gene. In particular, cells are transfected with a construct containing the luciferase gene under the control of a promoter of interest. The detected luciferase activity is used in order to assess the transcriptional activity of the gene of interest.

Transient transfections with luciferase reporter constructs, or co-transfection with various mutant constructs or vector controls where appropriate, as well as with a renilla luciferase construct to control for transfection efficiency, was performed using Superfect® reagent for SCL60 cells and Fugene® reagent for LβT2 cells, as described above (Sections 2.1.6.1 and 2.1.6.2). Transfected cells from 100mm plates were seeded into 12-well plates and after 6 hours the complete medium was removed and replaced by starving medium with or without ligand as dictated by the length of ligand stimulation. For stimulations of 8 hours or less complete medium was replaced by starving medium and cells were serum starved overnight. The following day starving medium was replaced by starving medium containing the appropriate concentration of ligand for cell treatment.

Luciferase assays were performed with Dual-Luciferase Reporter Assay System (Promega) according to manufacturer’s instructions using a FLUOStar Optima luminometer (BMG Lab technology). Luciferase activity was expressed in arbitrary
units relative to the activity observed in the non-stimulated control cells and was normalized for Renilla luciferase activity.

2.2 IMMUNOFLUORESCENCE CONFOCAL MICROSCOPY

SCL60 cells were plated in eight-well Chamber Slides (Lab-TEK) at a density of 2×10^5 cells per well. Cells were cultured in starving medium for 24 hours before cell stimulation with 1μM of GnRH I. After stimulation, cell monolayers were washed twice with ice cold PBS (with Ca^{2+}/Mg^{2+}) and then fixed in 200μl of 100% methanol (MeOH) at –20°C for 10 minutes. Following fixing, monolayers were washed in PBS and incubated for 30 minutes in an NP-40 based cell permeabilisation buffer (PBS, 10% fetal calf serum, 1% bovine serum albumin, 0.2% NP-40) at room temperature. After permeabilisation, fixed cells were blocked in a PBS-based blocking solution (PBS, 10% fetal calf serum, 1% bovine serum albumin) for 1 hour at room temperature or 16 hours at 4°C. To visualise the proteins, 100μl of primary antibody (1:100) per well was added and slides were incubated overnight at 4°C. The next day, cells were washed twice with PBS and were visualised using an Alexafluor (Molecular Probes, Invitrogen) Goat-Anti-Rabbit (488nM) secondary antibody (1:200 dilution). After incubation for 1 hour, slides were washed twice with PBS and incubated with 4’,6-diamidino-2-phenylindole (DAPI 1:2000) for 5 min and then washed three times with PBS. Slides were mounted in Permafluor fixative (Immunotech). Confocal laser microscopy was performed on a Zeiss LSM510 laser scanning microscope (Carl Zeiss).
2.3 **DNA MANIPULATION**

2.3.1 **Plasmid constructs**

Plasmids used in this study are listed in **Table 2-4**:

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Vector</th>
<th>Reference/source</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLAG-FOXO1 (pCMV5)</td>
<td>pCMN5</td>
<td>Prof. Domenico Accili (Kitamura YI et al., 2005)</td>
</tr>
<tr>
<td>FLAG-FOXO1ADA (pCMV5)</td>
<td>pCMV5</td>
<td>Prof. Domenico Accili (Kitamura YI et al., 2005)</td>
</tr>
<tr>
<td>HA-FOXO3a-WT</td>
<td>pECE</td>
<td>Prof. Michael Greenberg (Brunet A et al., 1999)</td>
</tr>
<tr>
<td>HA-FOXO3a-TM</td>
<td>pECE</td>
<td>Prof. Michael Greenberg (Brunet A et al., 1999)</td>
</tr>
<tr>
<td>HA-FOXO3a T32A</td>
<td>pECE</td>
<td>Prof. Michael Greenberg (Brunet A et al., 1999)</td>
</tr>
<tr>
<td>HA-FOXO3a S315A</td>
<td>pECE</td>
<td>Prof. Michael Greenberg (Brunet A et al., 1999)</td>
</tr>
<tr>
<td>HA-FOXO3a-TM delta CT</td>
<td>pECE</td>
<td>Prof. Michael Greenberg (Tran H et al., 2002)</td>
</tr>
<tr>
<td>HA-FOXO3a-WT delta CT</td>
<td>pECE</td>
<td>Prof. Michael Greenberg (Tran H et al., 2002)</td>
</tr>
<tr>
<td>HA-FOXO3a-TM delta DB</td>
<td>pECE</td>
<td>Prof. Michael Greenberg (Tran H et al., 2002)</td>
</tr>
<tr>
<td>HA-FOXO3a-WT DBM</td>
<td>pECE</td>
<td>Prof. Michael Greenberg (Tran H et al., 2002)</td>
</tr>
<tr>
<td>(H212R)</td>
<td>pECE</td>
<td>Prof. Michael Greenberg (Tran H et al., 2002)</td>
</tr>
<tr>
<td>GADD45 WT-luc</td>
<td>pGL3 basic</td>
<td>Prof. Michael Greenberg (Tran H et al., 2002)</td>
</tr>
<tr>
<td>Flag-SIRT1</td>
<td>pECE</td>
<td>Prof. Michael Greenberg (Brunet A et al., 2004)</td>
</tr>
<tr>
<td>Flag-SIRT1 H363Y</td>
<td>pECE</td>
<td>Prof. Michael Greenberg (Brunet A et al., 2004)</td>
</tr>
<tr>
<td>FHRE-luc</td>
<td>pGL3 basic</td>
<td>Prof. Michael Greenberg (Brunet A et al., 1999)</td>
</tr>
<tr>
<td>6xDBE-luc</td>
<td>pGL3 basic</td>
<td>Prof. Michael Greenberg (Brunet A et al., 1999)</td>
</tr>
<tr>
<td>pcDNA3.1</td>
<td>pECE</td>
<td>Tatsuo Furuyama, University of Osaka (Furuyama et al., 2000)</td>
</tr>
<tr>
<td>LH7 sequence (~692, −136bp)</td>
<td>pcDNA3.1</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>Flag-Egr-1</td>
<td>pCRII</td>
<td>Dr. Pamela Brown, MRC HRSU Unit, Edinburgh</td>
</tr>
<tr>
<td>Egr1-luc</td>
<td>pCRII</td>
<td>Dr. Pamela Brown, MRC HRSU Unit, Edinburgh</td>
</tr>
<tr>
<td>mdEgr1-luc</td>
<td>pCRII</td>
<td>Dr. Pamela Brown, MRC HRSU Unit, Edinburgh</td>
</tr>
<tr>
<td>mpEgr1-luc</td>
<td>pCRII</td>
<td>Dr. Pamela Brown, MRC HRSU Unit, Edinburgh</td>
</tr>
<tr>
<td>mdpEgr1-luc</td>
<td>pCRII</td>
<td>Dr. Pamela Brown, MRC HRSU Unit, Edinburgh</td>
</tr>
<tr>
<td>LHβ</td>
<td>pA3</td>
<td>Dr. Pamela Brown, MRC HRSU Unit, Edinburgh (Larder et al., 2006)</td>
</tr>
<tr>
<td>FSHβ</td>
<td>pBluescript</td>
<td>W. Miller, North Carolina States University, Raleigh</td>
</tr>
<tr>
<td>II SK+</td>
<td>(Huang et al., 2001)</td>
<td></td>
</tr>
<tr>
<td>GnRHR-luc</td>
<td>pCAT</td>
<td>J.N.Laverriere, Universite Pierre et Marie Curie, Paris (Pincas et al., 2001)</td>
</tr>
</tbody>
</table>

Table 2-4: Plasmids used for this study
2.3.2 **Transformation of competent E.Coli**

10ng of DNA was mixed with OneShotTop10® E.coli for 30 minutes on ice. Then, bacteria were shocked at 42°C for 30 seconds and immediately returned to ice for 2-3 minutes. 200μl of S.O.C (Super Optimal broth with Catabolite repression) medium was added and the mix was incubated at 37°C for approximately one hour. 10μl of this medium was spread out on Luria Broth (LB)-agar plates containing the selective antibiotic (Ampicillin - stock solution 50mg/ml) and incubated over-night (maximum incubation 16 hours). If DNA plasmid has already been transformed into bacteria and stored as a glycerol stock, then recovery of bacteria from that glycerol stock is required. To recover the bacteria, a small amount of the bacteria were streaked out on a LB-agar plate containing selective antibiotic and incubated overnight at 37°C (maximum incubation 16 hours).

2.3.3 **Extraction and purification of plasmid DNA**

A single bacterial colony was picked from agar plates and incubated in 15ml of LB medium containing the appropriate selective antibiotic, at 37°C overnight with shaking (maximum incubation 16 hours). After overnight incubation 5ml of this culture was used to inoculate 250ml of fresh antibiotic containing LB medium, for overnight growth at 37°C with shaking (maximum incubation 16 hours). Plasmid DNA was purified using Quiagen maxi-preparation columns and eluted using TE (Tris-EDTA) buffer according to the manufacturer’s instruction (QIAGEN® Plasmid Maxi Kit).
2.3.4 DNA quantification

DNA concentration and quantity was determined using the Nanodrop (Nanodrop Technologies, Delaware).

2.3.5 Preparation of glycerol stocks of transformed bacteria

500μl of the bacterial culture (which had grown overnight at 37°C) was mixed with 500μl of 80% glycerol. Mix was stored at -80°C.

2.4 RNA MANIPULATION

2.4.1 Total RNA extraction

Cells were seeded at density of 2x10^6 per 60mm dish and were incubated overnight. Next day, cells were stimulated for the appropriate time with ligand (GnRH I or D-Tpr^6-GnRH I). After treatment, medium was removed and RNA was extracted with “Total RNA Isolation Reagent” (TRIR; Abgene) according to the manufacturer’s instructions. Briefly, 1ml of TRIR was added to each plate. TRIR was left on the plate on ice for 5 minutes to lyse cells completely. Lysed cells were transferred to a MaXtract™ High Density Gel tube (Qiagen) with 200μl of chloroform, vortexed and incubated on ice for 10 minutes. The MaXtract™ was centrifuged at 8000 x g for 15 minutes at 4°C allowing the gel to create a solid barrier between the lower phenol layer and the upper aqueous phase, which contains the nucleic acid. The aqueous phase was transferred to a clean tube and 0.5ml of iso-propanol was added to each tube. The tubes were vortexed and RNA allowed to precipitate in ice for up to one hour. Then, the samples were centrifuged at 8000 x g for 15 minutes at 4°C and the
supernatant was removed carefully so as not to dislodge the RNA pellet. 0.2ml of 70% ethanol was added to each tube and the samples were centrifuged at 8000 x g for 5 minutes at 4°C. Ethanol was removed and the RNA pellet, which was formed, was allowed to dry. The pellet was re-suspended in an appropriate volume of RSB (RNA Storage Buffer). RNA was stored at -80°C.

2.4.2 Quantitative Real Time PCR (qRT-PCR)

2.4.2.1 Reverse Transcription for quantitative RT-PCR - cDNA synthesis

The single strand of RNA that was isolated, was used as a template in order to produce cDNA. RNA was diluted to 50ng/µl in RNase free water. Then, 4µl of the diluted RNA was added to a 200µl thin-walled PCR tube (Adgene). 6µl of the mastermix (Table 2-5) was added to each sample and placed in the BioRad DNA Engine Thermal Cycler™ and the following thermal cycles were performed:

| Thermal cycles | Step1 10min/25°C | Step2 120min/37°C | Step3 5sec/85°C | Step4 4°C hold |

Samples were then stored long term at -20°C. For each PCR reaction two types of controls were used; one in which the reverse transcriptase was not added in order to check for genomic DNA contamination and a second in which water (H₂O) was added to the Reverse Transcriptase PCR reaction instead of RNA to check for contamination of Reverse Transcriptase reagents.
Mastermix (to give a 20µl reaction mix):

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>5X Vilo Reaction Mix (Invitrogen)</td>
<td>4µl</td>
</tr>
<tr>
<td>10X Superscript® Enz Mix (Invitrogen)</td>
<td>2µl</td>
</tr>
<tr>
<td>RNA</td>
<td>2µl (500ng/µl)</td>
</tr>
<tr>
<td>DEPC water</td>
<td>12µl</td>
</tr>
</tbody>
</table>

Table 2-5: Mastermix for RT-PCR reaction

2.4.2.2 Designing primers for qRT-PCR

The primers and probes sequences are listed in the Table 2-6 in the following page. Primer Express (ABI) program was used to design the primers/probes sets.
<table>
<thead>
<tr>
<th>Primers</th>
<th>Forward (Sequence 5'-3')</th>
<th>Reverse(Sequence 5'-3')</th>
<th>Probe (FAM-TAMRA*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>human GADD45-F</td>
<td>TCTCGGCTGGAGAGCGAGAAG</td>
<td>TGGATCTGCGAGGCCACATC</td>
<td>CCGAAAGCGACCCCCGATAACGTG</td>
</tr>
<tr>
<td>human FASL-F</td>
<td>GCATCATCTTTGGAGAAAGCAA</td>
<td>CCTGAAGTTGAATGCTCCTGCAAAACAA</td>
<td>CACCCCCAGTCCAACCCCCCTGAAAAA</td>
</tr>
<tr>
<td>human BIM-F</td>
<td>CCATGAGTTGACAAATCAAACAC</td>
<td>TGGAAGCCATTGACACTGAGA</td>
<td>AACCCCCAGTCTCCTCTGGCCAGGC</td>
</tr>
<tr>
<td>human p27kip1-F</td>
<td>CCGACGATTTCTTCTACTCAAAACA</td>
<td>GGGCGTCTGCTCAGCACAGA</td>
<td>ATGTTTCAGACGGTTCCCCAAATGCC</td>
</tr>
<tr>
<td>human p21Cip1-F</td>
<td>CGCGTGAGCGATGGAAACT</td>
<td>CGCTCCAGGCAGGAAGTC</td>
<td>CGACTTTGTCACCGAGACACCACTGGA</td>
</tr>
<tr>
<td>human FOXO3a-F</td>
<td>AAGGATAAGGGGCAGACAGCAA</td>
<td>CGCATGAATCAGACTATGCA</td>
<td>TGGAAGAACTCCATCAGGCACAACC</td>
</tr>
<tr>
<td>human FOXO1-F</td>
<td>18S-F</td>
<td>GGTCTACCACATCCAGGAA</td>
<td>TGCTGCCACAGACTTGCCCTC</td>
</tr>
<tr>
<td>18S-F</td>
<td>GGTCTACCACATCCAGGAA</td>
<td>GCTGGAATACCCGCGGCT</td>
<td>TGCTGCCACAGACTTGCCCTC</td>
</tr>
<tr>
<td>LHβ promoter (F)</td>
<td>CTTTTTCCCGTGCTTCCA</td>
<td>CCAGTGAAATTGCGCTCACACT</td>
<td>TCAAGCTAAGCCCTGACACCTGAGG</td>
</tr>
<tr>
<td>LHβ (distal upstream region of the LHβ gene) (F)</td>
<td>CCCAGTGCTCGTCACCTTCA</td>
<td>TGGCCGCCTGACCATCTTCA</td>
<td>CCGGCTACTGCTCAG</td>
</tr>
<tr>
<td>Erg1 promoter (F)</td>
<td>GAGGCTGCCACCACCTTCTT</td>
<td>TCCGCGCTGACGTACATG</td>
<td>TCTCACGCTACCTCCGCTTCCC</td>
</tr>
<tr>
<td>Erg1 (distal upstream region of the Erg1 gene) (F)</td>
<td>AGTTTCAGCTTGGTGCTTT</td>
<td>CCTCAGACATCTGGGCACTTGT</td>
<td>TGACAGGCTTTGCGGATTGCT</td>
</tr>
</tbody>
</table>

Table 2-6: Primers and probes used for PCR amplification of DNA

* FAM: 5-Carboxyfluorescein, TAMRA: Tetramethyl-6-Carboxyrhodamine
Chapter Two

2.4.2.3 \textit{qRT-PCR}

DEPC water was added to the cDNA to give 8ng/µl equivalent input starting RNA. The stock solutions of primers and probes were made up with sterile water at concentrations of 100µM and 50µM respectively. The primers and probes were then diluted in sterile water before use to 250nM and 900nM respectively. Then, a “primers and probe mix” was used in order to make the mastermix for the RT-PCR reaction:

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x master mix</td>
<td>10µl</td>
</tr>
<tr>
<td>Primers/probe mix</td>
<td>1µl</td>
</tr>
<tr>
<td>18S mix</td>
<td>0.4µl</td>
</tr>
<tr>
<td>Water</td>
<td>6.1µl</td>
</tr>
<tr>
<td>cDNA</td>
<td>2.5µl</td>
</tr>
</tbody>
</table>

\textbf{Table 2-7: Mastermix used for the RT-PCR reaction}

The samples were mixed and 19µl was added in triplicate to a 96-well plate (Applied Biosystems). The expression of each gene was normalized for RNA loading for each sample using 18S rRNA as an internal standard. Data was analysed using the ΔΔCT method.

2.5 \textbf{PROTEIN ANALYSIS}

2.5.1 \textbf{Total protein extraction}

Following ligand stimulation, cell monolayers were placed on ice, washed once with cold PBS (with Ca\(^{2+}\)/Mg\(^{2+}\)) and lysed in an NP40-based solubilisation buffer (250mM NaCl, 50mM HEPES, 0.5% Nonidet P-40, 10% glycerol, 2mM EDTA pH 8.0, supplemented with 1mM sodium orthovanadate, 1mM phenylmethylsulphonyl
fluoride and 1mg/ml leupeptin). Total proteins were extracted from solubilised lysates by centrifugation at 20,000 x g for 12 minutes.

2.5.2 Immunoblotting

Total protein extracts were mixed with an equal volume of 2x Laemmli Sample buffer (LSB) (10% (w/v) SDS, 5% (v/v) β-mercaptoethanol, 10% (v/v) glycerol, 2.5% (v/v) 1M Tris (pH 7.0), 2.5% (v/v) distilled H2O), and were resolved by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) before being transferred to PVDF membrane (NEN Life Sciences) for protein immunoblotting. The amount of proteins loaded on the gel lanes, within any single experiment were constant. However, the loading volumes of homogenized protein were varied according to what was appropriate for cell number and protein abundance in each different experiment. PVDF membranes were blocked in 4% bovine serum albumin, 50mM Tris-HCl, pH 7.0, 0.05% Tween-20 and 0.05% NP-40 blocking solution for one hour at room temperature prior to incubation with primary antibodies at the appropriate dilution, at 4°C, with gentle shaking over-night. β-actin was detected with a 1:1000 dilution of the antibody. Alkaline phosphatase-conjugated anti-rabbit, anti-goat or anti-mouse IgG were employed as secondary antibody as appropriate to the primary antibody. Anti-goat (Sigma) was employed as the secondary antibody for anti-β-actin. Visualization of alkaline phosphatase-labelled protein bands was performed using Enzyme linked Chemi-fluorescence Substrate (ECF) (GE Healthcare). The intensity of bands was quantified with ImageQuant version TL (GE Healthcare, Buckinghamshire, UK). The intensity of each band (for the protein of interest) is normalised with the intensity of the band for β-actin. In order to get the NS (Non Stimulated) value equal
to 1, the NS value that was extracted from the previous calculation (intensity of each band (for the protein of interest) is normalised with the intensity of the band for β-actin) was divided by itself. All the other values (which correspond to time points) are divided to the NS value.

2.6 MATERIALS

2.6.1 Chemical inhibitors

Chemical inhibitors that are used in this study are listed in Table 2-8 below:

<table>
<thead>
<tr>
<th>Inhibitors</th>
<th>Target</th>
<th>Working concentration</th>
<th>Reference/source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gq inhibitor</td>
<td>Gq</td>
<td>100nM</td>
<td>M. Taniguchi, Astellas Pharma Inc (Takasaki et al., 2004)</td>
</tr>
<tr>
<td>Cetrorelix</td>
<td>GnRH antagonist</td>
<td>1µM</td>
<td>Calbiochem</td>
</tr>
<tr>
<td>Wortmannin</td>
<td>PI3K</td>
<td>100nM</td>
<td>Calbiochem</td>
</tr>
<tr>
<td>LY294002</td>
<td>PI3K</td>
<td>5µM/30µM</td>
<td>Calbiochem</td>
</tr>
<tr>
<td>PP2</td>
<td>c-Src kinase</td>
<td>5µM</td>
<td>Calbiochem</td>
</tr>
<tr>
<td>AG1478</td>
<td>EGFR</td>
<td>100nM</td>
<td>Calbiochem</td>
</tr>
<tr>
<td>PD98059</td>
<td>MEK</td>
<td>20µM</td>
<td>Calbiochem</td>
</tr>
<tr>
<td>U73122</td>
<td>PLC</td>
<td>20µM</td>
<td>Calbiochem</td>
</tr>
<tr>
<td>ET-18-OCH3</td>
<td>PLC</td>
<td>20µM</td>
<td>Calbiochem</td>
</tr>
<tr>
<td>Ro-31-8220</td>
<td>PKC</td>
<td>100nM</td>
<td>Calbiochem</td>
</tr>
<tr>
<td>Go6983</td>
<td>PKC</td>
<td>21µM</td>
<td>Calbiochem</td>
</tr>
<tr>
<td>H89</td>
<td>PKA</td>
<td>10µM</td>
<td>Calbiochem</td>
</tr>
<tr>
<td>JNKII</td>
<td>JNK</td>
<td>5µM</td>
<td>Calbiochem</td>
</tr>
<tr>
<td>Akt1/2</td>
<td>AKT</td>
<td>1µM</td>
<td>Sigma</td>
</tr>
<tr>
<td>BMS-345541</td>
<td>IKK</td>
<td>1,5µM</td>
<td>Sigma-Aldrich</td>
</tr>
</tbody>
</table>

Table 2-8: Chemical inhibitors used in this study
2.7 CELL NUMBER ASSAY AND CELL COUNTING

2.7.1 Cell number assay

Cell seeding and treatment

SCL60 cells were seeded in 6-well plates at density of 0.2x10^6 cells per well in complete medium. Cells were treated with doses of D-Trp6-GnRH I (1x10^{11}, 1x10^{10}, 1x10^9, 1x10^8, 1x10^7, 1x10^6M) and were incubated for 5 days.

Cell fixation

Cells attached to the plastic substratum were fixed by gentle addition of 0.5ml of 25% (v/v) trichloroacetic acid (TCA) on top of the growth medium in each well. The cultures were incubated at 4°C for 1 hour and then washed five times with tap water to remove TCA, growth medium, low-molecular-weight metabolites, and serum protein. Plates were dried in an incubator at 37°C.

Sulforhodamine B (SRB) staining

TCA-fixed cells were stained for 30 minutes with 0.4% (w/v) SRB in 1% (v/v) acetic acid. At the end of the staining period, SRB was removed and cultures were quickly rinsed five times with 1% (v/v) acetic acid to remove unbound dye. Plates were dried in an incubator at 37°C.

Protein-bound dye extraction

Protein-bound dye was solubilised and extracted in 1ml of 10mM Tris (tris (hydroxymethyl) aminomethane, pH 10.5) per well.

Optical density measurement
Chapter Two

The OD of these protein extracts was measured in 590nm using a spectrophotometer. This assay gives a direct indication of remaining number of live cells following GnRH treatment.

2.7.2 Cell counting

The growth rate of the SCL60 cells in response to D-Trp^6-GnRH I was measured by cell counting using a haemocytometer. SCL60 cells were seeded in 6-well plates at a density of 0.2×10^6 cells per well in complete medium. The next day (day 1), cells were treated with D-Trp^6-GnRH I. The cell number was counted in a similar manner every day thereafter (days 2, 3, 4, 5 and 6) after washing and trypsinisation.

2.8 PHARMACOLOGICAL CHARACTERISATION OF GnRH FUNCTION

2.8.1 GnRH binding assay

Cells were seeded in 12-well plates at a range of densities between 2×10^5 to 2×10^6 cells per well, and were incubated overnight. The next day 125I-radiolabeled (His^5,D-Tyr^6)-GnRH I analogue) was added to HEPES/DMEM/0.1%BSA so that 0.5ml contained approximately 100,000cpm, and this mixture was kept on ice (labelled media). Unlabelled native GnRH I (cold ligand) was added to the mixture at a concentration of 10^{-6}M (labelled media plus cold ligand). Cells were washed twice with cold PBS (with Ca$^{2+}$/Mg$^{2+}$). 500μl of the mixture (labelled media plus cold ligand) was added to the wells in triplicate and cells were incubated for a minimum of 4 hours at 4°C. The radiolabelled mixture was aspirated and wells washed twice
with ice cold PBS. 500μl of 0.1M NaOH was added to each well and the plates were shaken for 15-20 minutes at room temperature in order to solubilise cells. Samples were transferred (from each well) into individual 12x75mm plastic tubes and radioactivity was counted on 1470 Automatic Gamma Counter (Perkin Elmer).

2.8.2 Inositol Phosphate (IP) assay

Cells were seeded at a density of 1x10^6 per well in 12-well plates and were incubated at 37°C overnight. The next day, cells were loaded with [³H] myo-inositol in pre-warmed inositol free SPECIAL DMEM at a concentration of 0.5μCi [³H] myo-inositol/0.5ml SPECIAL DMEM/well. The cells were then incubated overnight. Media was aspirated off and the cells were washed with 0.5ml HEPES-DMEM/0.1%BSA. 0.5ml HEPES-DMEM/0.1%BSA containing a final concentration of 10mM LiCl was added to each well and plates were incubated at 37°C for 30 minutes. This buffer was removed from the wells and 0.5ml HEPES-DMEM/10mM LiCl/0.1%BSA with or without GnRH I was added at appropriate dilutions. Cells were incubated at 37°C for 60 minutes. Media was aspirated from the wells and 1ml of 10mM formic acid was added to each well followed by incubation at 4°C for 30 minutes. 0.5ml of AG-1-X8 resin (Bio-Rad) was added into plastic tubes (12x75mm) and formic acid samples were transferred from the wells to the tubes containing AG-1-X8 resin and the mixture vortexed. Resin was allowed to settle and the supernatant was aspirated. 1 ml of water was added, the mixture was vortexed and resin was allowed to settle. Then supernatant was aspirated and 1ml of 60mM ammonium formate/5mM sodium tetraborate was added, vortexed and resin was allowed to settle. Finally, the supernatant was removed and 1ml of 1M ammonium
formate/0.1M formic acid was added vortexed and resin was allowed to settle. 0.8ml of the supernatant was removed into scintillation vials and 2.5ml of scintillation fluid (Optiphase Hisafe 3, Fisher Scientific) was added and 3H was counted for 1 minute on a 1450 Microbeta Beta counter (TriLux; Perkin Elmer).

2.9 CHROMATIN IMMUNOPRECIPITATION (ChIP) ASSAY

LβT2 cells were seeded at a density of 2x10^6 in 60mm plates. 37% formaldehyde in DMEM was added directly to the cell culture and cross-linking was allowed to proceed for 10 min at room temperature. Cross-linking was stopped by the addition of glycine stop-fix solution (Active Motif). Cross-linked cells were scraped with cell scraping solution (Active Motif). Pellets were collected by micro-centrifugion, re-suspended and incubated in ice-cold lysis buffer supplemented with PIC (protease inhibitor) and PMSF (phenylmethanesulfonylfluoride) and lysed with an ice cold dounce homogenizer. Nuclei were again pelleted by centrifugation. These pellets were resuspended in Digestion Buffer (Active Motif) and incubated at 37°C for 5 minutes. Chromatin was sheared with the Enzymatic Shearing Cocktail (Active Motif). Sheared chromatin was collected by centrifugation for 10 minutes at 15,000rpm. 7µg of sheared chromatin was added to the ChIP reaction. 1-3µg of the appropriate antibody was added to the aliquots of chromatin and mixed gently on an end-to-end rotator for 16 hours at 4°C. Antibody against FOXO3a was purchased from Abcam and IgG (sc-2027) was purchased from Santa Cruz. Following extensive washing, bound DNA fragments were eluted and analyzed by qRT-PCR. Bound DNA fragments were analyzed by qRT-CR with TaqMan DNA Polymerase (Invitrogen) using primers and probes listed in the Table 2-6 above.
2.10 CELL-CYCLE ANALYSIS

LβT2 and PWE-1-NB26-3 cells were plated at a density of 0.5x10^6 cells per dish in complete medium and in serum-free keratinocyte medium respectively. After treatment with 100nM D-Trp^6-GnRH I for 96 hours, 10μg/ml Hoechst stain was added to the medium, and cells were incubated for 60 more minutes at 37°C. After trypsinisation and centrifugation, the cell pellets were resuspended in the appropriate complete medium. The cellular content of DNA was determined by flow cytometry analysis with a BD LSR Fortessa cell analyzer. Cells were gated according to physical characteristics and therefore subcellular debris and clumps were distinguished from single cells during the analysis. The data were analyzed with DIVA Software. (Data analysis (gating and computational analysis) was performed with the cooperation of Ms. Shonna Jonhston from University of Edinburgh, Centre for Inflammation Research, Flow Cytometry Facility).

2.11 IMMUNOHISTOCHEMISTRY

2.11.1 Tissues

Tissues that are used in this study are listed on Table 2-9 below:

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Species</th>
<th>Fixation Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pituitary</td>
<td>Human</td>
<td>NBF</td>
</tr>
<tr>
<td>Pituitary</td>
<td>Mouse</td>
<td>NBF</td>
</tr>
<tr>
<td>Pituitary</td>
<td>Mouse</td>
<td>Bouins</td>
</tr>
<tr>
<td>Pituitary</td>
<td>Rabbit</td>
<td>NBF</td>
</tr>
<tr>
<td>Pituitary</td>
<td>Rabbit</td>
<td>Bouins</td>
</tr>
</tbody>
</table>

Table 2-9: Tissues that are used in this study
(NBF: neutral buffered formalin, is a general purpose fixative for all tissues for surgical tissues and necropsy specimens)
2.11.2 Immunohistochemistry procedure

Fixation and Tissue processing

The tissues that were used in this study had been fixed previously (the fixation methods are listed in the table above) and processed with paraffin prior to use.

Tissue sectioning

Sections were cut on a paraffin microtome (Leica RM2125RTF) in sections of 5μm. Sections were floated onto heated water at 45°C and were lifted onto superfrost plus microscope slides. Slides were then dried in an incubator overnight at 37°C.

Staining

Paraffin wax was removed from the slides in xylene, series dilutions of ethanol (100%, 95% and 70%) and distilled water. In selective cases antigen retrieval was performed using the pressure cooking method in pre-heated 0.01M sodium citrate buffer pH 6.0 followed by cooling for a further 20 minutes under running tap water (Tissue fixation alters the three dimensional structure of the tissue proteins which results in a modification of the antigen’s epitope. The loss of an epitope results in an antigen’s inability to react with the paratope of the antibody, and this can only be corrected by the restoration (antigen retrieval process) of the epitope). Next, slides were blocked in 300mls 3% hydrogen peroxidase in methanol, on a rocker at room temperature for 30 minutes, to block endogenous peroxide. Two washes with tris buffered saline (TBS) followed. Afterwards slides were incubated in normal goat serum (NGS) diluted in TBS (1:5 v/v) containing 5% (w/v) BSA for 30 minutes at room temperature. Slides were drained, and primary antibody diluted in NGS/TBS/BSA was added. Slides were incubated overnight at 4°C. Two staining methods were used to visualise the proteins of interest:
1. **DAB detection method**

After over-night incubation, slides were washed twice in TBS for 5 minutes and biotinylated goat anti-Rabbit at 1:500 in NGS/TBS/BSA was added and incubated for 30 minutes at room temperature. Slides were washed twice with TBS for 5 minutes and streptavidin HRP at 1:1000 in TBS was added and incubated for 30 minutes at room temperature. Slides were washed twice in TBS for 5 minutes and 3,3' Diaminobenzidine (DAB substrate) was added. The colour development was monitored microscopically (the usual time for DAB exposure was 5 minutes) and the colour development was stopped by washing in water. Next nuclear counterstain was performed using haematoxylin; washed slides were rinsed in acid alcohol (ethanol/distilled water/hydrochloric acid) for 5 seconds. Then slides were washed in water and were added to Scott’s tap water (sodium hydrogen carbonate/magnesium sulphate/distilled water) for blueing up the nucleus and nuclear membrane for 30 seconds. Next, slides were washed in water for 20 seconds and were dehydrated in 70% ethanol, 95% ethanol and absolute ethanol for 20 seconds and in xylene for 5 minutes. Finally, slides were cover-slipped using Pertex (). The immunostaining sections were visualized with an Olympus Provis microscope.

2. **Tyramide detection method-double staining**

After over-night incubation, slides were washed twice with TBS for 5 minutes and goat anti-Rabbit peroxidise Fab at 1:500 in NGS/TBS/BSA was added and incubated for 30 minutes at room temperature. Slides were washed twice in TBS for 5 minutes and Tyramide-Fluorescent Green (1/50) was added and incubated for 10 minutes at
room temperature. Slides were washed twice in TBS for 5 minutes and antigen retrieval process was performed (as described above). Afterwards slides were incubated in normal goat serum (NGS) diluted in TBS (1:5 v/v) containing 5% (w/v) BSA for 30 minutes at room temperature., slides were drained, and primary antibody diluted in NGS/TBS/BSA was added. Slides were incubated overnight at 4°C. After over-night incubation, slides were washed twice in TBS for 5 minutes and goat anti-mouse peroxidise Fab at 1:500 in NGS/TBS/BSA was added and incubated for 30 minutes at room temperature. Slides were washed twice in TBS for 5 minutes and Tyramide-Fluorescent Red (1/50) was added and incubated for 10 minutes at room temperature. Slides were washed twice in TBS for 5 minutes. Nuclei were counterstained using DAPI (1:1000 in TBS) for 10 minutes. Finally slides were cover-slipped using permafluor ().

2.12 STATISTICAL ANALYSIS

All data from each experiment were combined and presented as means and standard error of the mean (±SEM). The numbers of independent experiments are denoted by the number (n) and are given in figures legends and text. Statistical analysis was performed using the student t-test with Graph Prism 5.00 software (Graph Prism Software Inc.). A p-value P<0.05 was taken as statistical significance in robust data sets.
CHAPTER THREE

REGULATION OF FOXO TRANSCRIPTIONAL ACTIVITY BY GnRH
3.0 ABSTRACT

In this Chapter, the regulation of FOXO transcriptional activity following GnRH-R activation is investigated, and a novel mechanism by which GnRH targets FOXO3a activity is described. Since the transcriptional activity of FOXO is determined by post-translational modifications and the action of co-factors, such as β-catenin, the role of these post-translational modifications and the involvement of β-catenin are characterised. Finally, the role of FOXOs in targeting the expression of several FOXO-target genes is assessed, highlighting a specific role for FOXO3a in mediating GADD45 and FasL expression in response to GnRH.

3.1 BACKGROUND AND OBJECTIVES

The mammalian FOXOs are emerging as an important family of proteins that are involved in a variety of cellular processes, including cell-cycle regulation, apoptosis, DNA damage repair and response to oxidative stress (Burgering, 2008). FOXOs modulate the expression of specific genes that mediate these processes, including the apoptotic FasL and the oxidative stress resistant GADD45 genes. The most well-characterised regulatory mechanism of FOXO transcriptional activity is through their phosphorylation by the PI3K/Akt signalling pathway. Interestingly, the PI3K/Akt signalling pathway is also regulated by GnRH-R activation (Birkenkamp and Coffer, 2003). However, to date, there are no studies describing the regulation of FOXO transcriptional activity by GnRH. Thus, the potential regulation of FOXO activity by GnRH-R activation was investigated.
Chapter Three

In this Chapter, the mechanisms and signalling pathways through which GnRH regulates FOXO transcriptional activity was examined. In particular, the main objectives of this Chapter were the following:

- to examine whether GnRH regulates FOXO transcriptional activity
- to investigate the mechanisms and signalling pathways through which GnRH regulates FOXO activity
- to examine whether GnRH targets the expression of FOXO-target genes, and whether FOXOs are involved in this expression.

In Chapters three, four and five cells were treated with GnRH I (referred to as GnRH), unless otherwise indicated. In Chapters three and four, all studies were conducted in the stable HEK293/ratGnRH-R expressing cell line (referred to as SCL60 cells), unless otherwise indicated.

3.2 RESULTS

3.2.1 FOXO1 and FOXO3a phosphorylation and sub-cellular localisation in response to GnRH treatment

3.2.1.1 GnRH treatment targets phosphorylation of FOXO3a at Ser^{253} in SCL60 cells

The primary pathway regulating FOXO function is the PI3K/Akt signalling pathway, in which FOXOs are phosphorylated at Akt phosphorylation sites, following PI3K activation by several proteins, including G-proteins (Van Der Heide et al., 2004). A short time-course treatment of cells with 1μM GnRH, demonstrated that FOXO3a was only phosphorylated at Ser^{253} reaching maximal phosphorylation after 10...
Chapter Three

minutes (Fig. 3-1A). Whether GnRH-induced phosphorylation of FOXO3a at Ser253 was specifically mediated by GnRH binding and activation of the Type I GnRH-R, was also examined. For this purpose, a GnRH antagonist (Cetrorelix) was used. Co-treatment with Cetrorelix inhibited GnRH-targeted phosphorylation at Ser253 (Fig. 3-1B). This confirmed that phosphorylation of FOXO3a at Ser253 was mediated by GnRH-R activation.

A longer time-course treatment of SCL60 cells with 1μM GnRH over 24 hours resulted in decreased phosphorylation of FOXO3a at Ser253 of up to 35% (Fig. 3-1C). A GnRH dose-response treatment for FOXO3a phosphorylation at Ser253 site was also performed, producing an EC50 of 1.2nM, which is in agreement with activation of the Type I GnRH-R (Fig. 3-1D).
Figure 3-1: Phosphorylation of FOXO3a at Ser^{253} in response to GnRH.

(A) SCL60 cells were serum-starved 24 hours before being treated with 1µM GnRH for the indicated times, or left untreated (NS). (B) SCL60 cells were serum-starved 24 hours before being treated for 10 minutes with 1µM GnRH, 1µM Cetrorelix, or both or left untreated (NS). (C) SCL60 cells were treated with 1µM GnRH for the indicated times. (D) SCL60 cells were serum-starved 24 hours before being treated with 10µM, 1µM, 1nM, 100nM, 10nM, 1nM GnRH or left untreated (NS) for 10 minutes. Levels of p-FOXO3a(Ser^{253}) were analysed using a p-FOXO3a(Ser^{253})-specific antibody. Quantification of the immunoblots were performed using β-actin as a loading control. Data are shown as mean fold change over NS±SEM from at least 3 independent experiments. (b is significantly different from a; P<0.05)
Phosphorylation at other sites on FOXOs was also examined by Western Blot analysis, and FOXO3a was not phosphorylated at the Ser318 or Ser321 phosphorylation sites following GnRH treatment (Supplementary Fig. 7-1A). Additionally, GnRH did not target phosphorylation of FOXO1 at Ser256 or Ser319 (Supplementary Fig. 7-1B and C), no did GnRH treatment lead to the phosphorylation of FOXO4 at the Ser193 Akt-phosphorylation site (Supplementary Fig. 7-1D).

GnRH-targeted phosphorylation of FOXO3a at Ser253 in the LNCaP prostate cancer cell line was also examined. In contrast to SCL60 cells, GnRH did not mediate phosphorylation of FOXO3a at the Ser253 Akt phosphorylation site in LNCaP cells (Supplementary Fig. 7-2).

3.2.1.2 \textit{p-FOXO3a(Ser253), but not p-FOXO1(Ser256), is redistributed between the nucleus and cytoplasm in response to GnRH in SCL60 cells}

In order to visualise GnRH-induced p-FOXO3a(Ser253) and p-FOXO1(Ser256) localisation, immunofluorescence confocal microscopy was performed. The presence of p-FOXO3a(Ser253) and p-FOXO1(Ser256) was low in non-stimulated cells. Following GnRH treatment, p-FOXO3a(Ser253) staining increased significantly in both the nucleus and cytoplasm. After 30 and 60 minutes of GnRH treatment p-FOXO3a(Ser253) appears to translocate from the nucleus to cytoplasm (Fig. 3-2), however since no quantification analysis has been performed, no robust conclusion can be extracted. These data are consistent with the Western Blot data showing increased p-FOXO3a(Ser253) in response to GnRH treatment. In contrast, p-FOXO1(Ser256) staining was only slightly increased following GnRH treatment. Localisation of p-FOXO1(Ser256) in the nucleus was also observed in response to
GnRH. Although these data appear to contradict the Western Blot data, it is possible that the antibody used was not specific and cross-reacted with other FOXOs, such as FOXO4 (Supplementary Fig. 7-3).

![Figure 3-2: p-FOXO3a(Ser^{253}) redistribution between nucleus and cytoplasm following GnRH stimulation in SCL60 cells.](image)

Immunofluorescence confocal microscopy was performed to visualise redistribution of p-FOXO3a(Ser^{253}) (green) between the nucleus and cytoplasm following 1µM GnRH treatment at the time intervals indicated. DAPI (red) is a marker for nucleus and co-localisation is indicated as yellow.
3.2.1.3 Phosphorylation of FOXO3a at Ser253 in SCL60 cells is mediated by a G\textsubscript{q}-coupled, PI3K/Akt-mediated signalling pathway

Having demonstrated that GnRH-targeted phosphorylation of FOXO3a at Ser253, various pharmacological inhibitors were subsequently used in order to identify the signalling pathway that mediates this phosphorylation event. Cetrorelix and the G\textsubscript{q} inhibitor YM254890 clearly inhibited phosphorylation of FOXO3a at Ser253 in response to GnRH (Fig. 3-3 (upper panel)). In addition, the PI3K/Akt signalling pathway appears to be involved in this phosphorylation, as the PI3K inhibitors Wortmannin and LY294002, and the Akt inhibitor Akt1/2 reduced FOXO3a phosphorylation at Ser253 in response to GnRH (Fig. 3-3 (lower panel)). Inhibitors of c-Src, EGFR, MEK, PLC, PKC and PKA were also tested. Results from these experiments indicated that none of these potential mediators appeared to be involved in phosphorylation of FOXO3a at Ser253 in response to GnRH (Supplementary Fig. 7-4).
Chapter Three

Figure 3-3: GnRH induces phosphorylation of FOXO3a at Ser\(^{253}\) via a \(G_{\alpha}\)-coupled, PI3K/Akt-mediated signalling pathway.

SCL60 cells were serum-starved for 24 hours before cells were pre-treated for 30 minutes with: GnRH antagonist Cetrorelix (1μM), \(G_{\alpha}\) inhibitor YM254890 (100nM), PI3K inhibitors Wortmannin (100nM) and LY294002 (30μM), Akt inhibitor Akt1/2 (1μM), and were then treated for 10 minutes with 1μM GnRH. Quantification of the immunoblots were performed using β-actin as a loading control. Blots are representative of 3 independent experiments. Data are shown as mean fold change over NS±SEM from at least 3 independent experiments. (b is significantly different from a; P<0.05)
3.2.2 GnRH targets FOXO transcriptional activity

3.2.2.1 GnRH targets GADD45 transcription in SCL60 cells by regulating FOXO3a transcriptional activity

Phosphorylation is a known post-translational modification that regulates FOXO activity. Therefore, having demonstrated that GnRH stimulation mediates phosphorylation of FOXO3a, the involvement of GnRH in regulating FOXO transcriptional activity was examined. Three known FOXO-targeted promoter luciferase reporters were utilised; GADD45-, FHRE- and 6×DBE-promoter luciferase constructs, henceforth referred to as GADD45-, FHRE- and 6×DBE-reporters. FHRE (FH-Response Element) is the consensus binding site within the promoter of the FasL gene for FOXO transcription factors (Brunet et al., 1999). DBE (Daf-16 family protein Binding Element) is a core binding sequence shared by all four FOXOs, TTGTTTAC.

Cells were treated with GnRH for 24 hours following pre-incubation in either complete or starving medium. Cells were pre-incubated in starving medium in order to examine the effect of GnRH exclusively, eliminating the effect of other potential stimulators of the pathway of interest. Alternatively, cells were pre-incubated in complete medium in order to examine whether the GnRH effect was dominant among the other factors that potentially affect FOXO activity. GADD45-, FHRE- and 6×DBE-reporter activities were increased following GnRH treatment (Fig. 3-4). To further examine whether FOXO transcriptional activity was induced by GnRH acting at the Type I GnRH-R, Cetrorelix was utilised. Co-treatment with Cetrorelix inhibited FHRE-reporter activity, previously observed in response to GnRH treatment (Fig. 3-5). However, treatment only with Cetrorelix decreases the FHRE-
reporter activity compared to non-stimulated control, which may suggest that Cetrorelix partially inhibits GnRH-independent signalling pathways, which also regulate FHRE-reporter activity. An explanation for this result could be related to the ligand-induced selective signalling (LISS) effect. Based on that, the GnRH receptor can assume a number of distinct active conformations that selectively target different intracellular signalling pathways, and therefore different GnRH analogues would impart signalling-selectivity by stabilising these distinct GnRH receptor active conformations.

Figure 3-4: GnRH-induced GADD45-, FHRE- and 6×DBE-reporters.
SCL60 cells were transiently transfected with 10µg of (A) 6×DBE-, (B) FHRE- and (C) GADD45-reporter. Cells were treated with 1µM GnRH for 24 hours or were serum-starved 16 hours before treatment with 1µM GnRH for 24 hours. Samples were then assayed for luciferase activity. In all
panels open bars denote no stimulation and close bars denote GnRH stimulation. Data are shown as RLU, from at least 3 independent experiments. (b is significantly different from a; P<0.05)

Figure 3-5: GnRH-induced FHRE-reporter activity.
SCL60 cells were transiently transfected with 10µg of FHRE-reporter. Cells were serum-starved for 16 hours and then treated with 1µM GnRH for 24 hours, or with 1µM Cetrorelix or with 1µM GnRH plus 1µM Cetrorelix. Samples were then assayed for luciferase activity. Data are shown as mean fold change over NS±SEM from at least 3 independent experiments. (b is significantly different from a and c is significantly different from a and b; P<0.05)

FOXO3a was subsequently over-expressed in order to investigate the transcriptional activity of FOXO3a above the endogenous FOXO1/3a/4 background. In particular, wild type FOXO3a (FOXO3a-WT) or a triple mutant form of FOXO3a (FOXO3a-TM) were used. FOXO3a-TM has mutations at its three Akt phosphorylation sites (Thr^{32}Ala, Ser^{315}Ala and Ser^{253}Ala; TM denotes triple mutant) (Burgering and Kops, 2002). In contrast to FOXO3a-WT, FOXO3a-TM cannot be phosphorylated by Akt, resulting in its nuclear retention. FOXO3a-TM was therefore used in order to eliminate the effect of Akt signalling on the localisation/redistribution of FOXO3a.
SCL60 cells were co-transfected with GADD45-reporter together with increasing amounts of FOXO3a-TM, followed by treatment with 1µM GnRH. The basal levels of GADD45-reporter activity and GnRH-induced GADD45-reporter activity were increased with higher levels of over-expressed FOXO3a-TM (Fig. 3-6). A pGL3 vector backbone was also used as a control to determine background luciferase activity. When FOXO3a was over-expressed, the luciferase activity of pGL3 was not significantly increased compared to the FOXO-activated GADD45-promoter-dependent reporter in response to GnRH (Fig. 3-7).

Figure 3-6: GnRH-induced GADD45-reporter activity in a time-course treatment.
SCL60 cells were transiently transfected with 5µg of GADD45-reporter and increasing amounts of FOXO3a-TM, and decreasing amounts of control vector (pcDNA3.1). Cells were treated with 1µM GnRH for the indicated time points or left untreated (NS). Samples were then assayed for luciferase activity. Data from two experiments are shown.
Figure 3-7: GnRH-induced pGL3- and GADD45-reporter activity.

SCL60 cells were transfected with 3.5μM of pGL3- or GADD45-reporter and 6.5μM of FOXO3a-WT. Cells were treated for 24 hours with 1μM GnRH in starving medium. Samples were assayed for luciferase activity. Data are shown as mean fold change over NS±SEM from at least 3 independent experiments. (b is significantly different from a, c is significantly different from a and b, and d is different from a, b and c; P<0.05)

Next, SCL60 cells were co-transfected with the GADD45-reporter and pcDNA3.1 (henceforth referred to as vector control), FOXO3a-WT or FOXO3a-TM. Treatment with GnRH enhanced the transcriptional activity of both FOXO3a-WT and FOXO3a-TM by 2-fold compared to control over 24 hours of treatment (Fig. 3-8A). Of note is that GnRH treatment induced the same fold increase in FOXO3a transcriptional activity in cells that were co-transfected with either FOXO3a-WT or FOXO3a-TM. This is interesting with regards to previous results (see Figure 3-1A and C) that GnRH targets FOXO3a phosphorylation at an Akt phosphorylation site over short time-course treatment (5-60 minutes), while targeting FOXO3a de-
phosphorylation at the same phosphorylation site over 24 hours of treatment. The role of FOXO phosphorylation in regulating its transcriptional activity is well-established. Combining the above findings, that GnRH targets FOXO3a de-phosphorylation over 24 hours of treatment, and that GnRH treatment enhanced the transcriptional activity of both FOXO3a-WT, and FOXO3a-TM that cannot be phosphorylated by Akt, by the same fold, suggests that targeting of FOXO3a phosphorylation by GnRH is not the dominant mechanism regulating its transcriptional activity.

While over-expression of FOXO3a-TM increased GnRH-induced GADD45-reporter activity compared to vector control, over-expression of FOXO3a-TMΔDB, bearing mutations at its three Akt phosphorylation sites (Thr^{32}Ala, Ser^{315}Ala and Ser^{253}Ala) in addition to a deletion of the DNA binding domain (denoted by ΔDB), reduced the GnRH-mediated GADD45-reporter activity compared to the effect of FOXO3a-TM (Fig. 3-8B). This suggests that FOXO3a binds directly to the GADD45 promoter and regulates the expression of the *GADD45* gene. A FOXO3a-TMΔCT construct that has a deletion of the trans-activation domain, and cannot bind potential co-factors that may act to regulate FOXO3a transcriptional activity (denoted by ΔCT) was also tested. Over-expression of FOXO3a-TMΔCT partially reduced the GnRH-mediated induction of GADD45-reporter activity compared with cells in which FOXO3a-TM was over-expressed (Fig. 3-8B). This indicates that FOXO3a acts in co-ordination with other co-factors in response to GnRH.
Figure 3-8: GnRH-induced GADD45-reporter activity by direct binding of FOXO3a to the GADD45 promoter.

SCL60 cells were transiently transfected with 1µg of GADD45-reporter and (A) 9µg of control vector (pcDNA3.1) or (A) FOXO3a-WT or (A and B) FOXO3a-TM or (B) FOXO3a-TMΔDB or FOXO3a-TMΔCT. Cells were serum-starved 16 hours before being treated with 1µM GnRH for 24 hours. Samples were assayed for luciferase activity. In all panels open bars denote no stimulation and close bars denote GnRH stimulation. Data are shown as mean fold change over NS±SEM from at least 3 independent experiments. (b is significantly different from a, and c is significantly different from a and b; P<0.05)

Although GnRH does not appear to target FOXO1 phosphorylation (see Section 3.2.1.1) a possible role for FOXO1 in GnRH-induced GADD45 expression was examined. For this purpose, cells were co-transfected with FOXO1-WT or FOXO1-TM constructs. Over-expression of FOXO1-TM increased GnRH-induced GADD45-reporter activity compared to vector control, however this was not significant (Supplementary Fig. 7-5).
Chapter Three

3.2.2.2 *GnRH targets FOXO3a transcriptional activity independently of FOXO3a phosphorylation at any of its Akt phosphorylation sites*

Since a clear regulation of GADD45-reporter activity by FOXO3a following GnRH treatment was demonstrated (Section 3.2.2.1), the role of Akt phosphorylation in GnRH-mediated FOXO3a transcriptional activity was examined. When raw luciferase assay data was analysed, the transcriptional activity of FOXO3a-WT was lower than the activity of FOXO3a-TM in the absence of GnRH treatment (Fig. 3-9A). In this case raw data were used in order to be able to show the effect of the over-expression of FOXO3a-TM on GADD45-promoter luciferase activity. These results were expected since the triple mutant form of FOXO3a (FOXO3a-TM) cannot be phosphorylated by Akt, resulting its nuclear retention. When the corresponding normalised data was analysed, a similar fold-increase in GADD45-reporter activity was observed when either FOXO3a-WT or FOXO3a-TM was over-expressed (Fig. 3-9B). These data support the notion that phosphorylation of FOXO3a in response to GnRH treatment does not appear to play a role in its transcriptional activity. Thus, GnRH appears to target FOXO3a transcriptional activity independently of FOXO3a phosphorylation at any of its Akt phosphorylation sites.

To further investigate the role of any of the individual Akt phosphorylation sites in regulating FOXO3a transcriptional activity, cell were co-transfected with FOXO constructs bearing individual mutations at the three Akt phosphorylation sites (HA-FOXO3a Ser253Ala, HA-FOXO3a Ser315Ala, HA-FOXO3a Thr32Ala). The fold-change in luciferase activity following GnRH treatment was similar for the three mutants (Fig. 3-9C), suggesting that although GnRH targets phosphorylation of
FOXO3a at Ser253, this modification is not the main modulator of its transcriptional activity.

Figure 3-9: Effect of Akt-dependent FOXO3a phosphorylation on GnRH-induced GADD45-reporter activity.

(A and B) SCL60 cells were transiently transfected with 1µg of GADD45-reporter and 9µg of control vector (pcDNA3.1), or FOXO3a-WT or FOXO3a-TM. (C) Cells were transiently transfected with 5µg of GADD45-reporter and 5µg of control vector (pcDNA3.1), or FOXO3a-TM, FOXO3a Thr32Ala or FOXO3a Ser253Ala or FOXO3a Ser315Ala. Cells were serum-starved 16 hours before they were treated with 1µM GnRH for 24 hours. Samples were then assayed for luciferase activity. In all panels open bars denote no stimulation and close bars denote GnRH stimulation. Data are shown as mean fold
change over NS±SEM from at least 3 independent experiments. (b is significantly different from a, and c is significantly different from a and b, d is also significantly different from a, b and c; P<0.05)

3.2.2.3 *GnRH-induced FOXO3a transcriptional activity occurs via Gq, Akt- and IKK-mediated signalling pathways*

Based on the finding that the transcriptional activity of FOXO3a was enhanced following GnRH treatment, the signalling pathways through which this occurred was examined next.

GnRH induction of GADD45-reporter activity by FOXO3a was inhibited by co-treatment with the Gq inhibitor (YM254890) (Fig. 3-10A). Next, the role of Akt phosphorylation in GnRH-induced GADD45-reporter activity via FOXO3a was examined. A specific Akt inhibitor (Akt1/2) (Fig. 3-10B) and a dominant-negative Akt construct (DN-Akt) were utilised (Fig. 3-10C). Both Akt inhibitor and DN-Akt construct inhibited GnRH-induced GADD45-reporter activity.

FOXO3a can also be phosphorylated by that IκB kinase (IKK), which can inhibit FOXO3a transcriptional activity independently of Akt phosphorylation (Hu et al., 2004). The role of IKK in GnRH-induced GADD45-reporter activity by FOXO3a was examined by utilising an IKK inhibitor (BMS-345541). Following 24 hour GnRH stimulation, GADD45-reporter activity was measured in SCL60 which had been transiently transfected FOXO3a-WT, in the presence of the IKK inhibitor. The IKK inhibitor inhibited GnRH-induced GADD45-reporter activity in cells with FOXO3a-TM over-expression (Fig. 3-10D). Subsequently, the role of IKK phosphorylation in GnRH-induced GADD45-reporter activity via FOXO3a was examined. Phosphorylation of FOXO3a at Ser^{644} has been reported to inhibit
FOXO3a transcriptional activity (Hu et al., 2004). To investigate this, a mutant FOXO3a-TM-reporter was generated by replacing Ser644 with Alanine (FOXO3a-TM Ser644Ala). Over-expression of FOXO3a-TM Ser644Ala did not inhibit GnRH-induced GADD45-reporter activity compared to over-expression of FOXO3a-TM (Fig. 3-10E), suggesting that the role of IKK in regulating FOXO3a in response to GnRH, is not mediated by phosphorylation at the Ser644 site.

Having demonstrated that GnRH regulates FOXO3a transcriptional activity via Akt, the role of PDK1 phosphorylation at Thr308 and Ser473 in GnRH-induced GADD45-reporter activity via FOXO3a, was examined. PDK1 is involved in the PI3K/Akt signalling pathway since it phosphorylates Akt at Thr308 and Ser473, resulting in full Akt activation. A time-course of GnRH treatment revealed the phosphorylation of Akt at Thr308 over 60 minutes, reaching maximal phosphorylation after 5 and 10 minutes (Fig. 3-11 (upper panel)). No phosphorylation of Ser473 was detected in response to GnRH.

The involvement of three other potential mediators (PI3K inhibitor (Wortmannin), PKC inhibitor (Ro-31-8220) and PLC inhibitor (ET-18-OCH3)) was next examined by utilising the appropriate chemical inhibitors. None of them prevented GnRH-induced GADD45-reporter activity with FOXO3a over-expression (Supplementary Fig. 7-6).
Figure 3-10: Role of Gq, Akt and IKK in the GnRH-induced GADD45-reporter activity.

(A, B, C, D and E) SCL60 cells were transiently transfections with 1µg of GADD45-reporter and (B, C and E) 9µg of control vector (pcDNA3.1) or (A and D) FOXO3a-WT or (B, C and E) FOXO3a-TM or (E) FOXO3a-TM Ser644A or (C) DN-Akt. Cells were serum-starved 16 hours before were pre-treated for 30 minutes with (D) 1.5µM BMS-345541 inhibitor or (B) 1µM Akt1/2 inhibitor or (A) 100nM YM254890 and thereafter were treated with 1µM GnRH for 24 hours. Samples were assayed for luciferase activity. In all panels open bars denote no stimulation and close bars denote GnRH stimulation. Data are shown as mean fold change over NS±SEM from at least 3 independent experiments. (b is significantly different from a, and c is significantly different from a and b; P<0.05)
3.2.2.4 The role of β-catenin in GnRH-induced GADD45-reporter activity

An interaction between β-catenin and FOXO3a has previously been reported (Essers et al., 2005). Thus, a role for β-catenin as co-factor to regulate the transcriptional activity of FOXO3a following GnRH treatment was examined. When nuclear β-catenin levels were increased by LiCl treatment, the transcriptional activity of FOXO3a increased in the absence of GnRH treatment (Fig. 3-12A). However, when cells were treated with both LiCl and GnRH GnRH-induced GADD45-reporter activity by FOXO3a-WT was decreased (Fig. 3-12B) compared with the increase observed with GnRH treatment alone (Fig. 3-12C). These data suggest the β-catenin-mediated effect of GnRH-induced FOXO3a transcriptional activity, is not a dominant regulatory mechanism of GnRH-induced FOXO3a activity.
Figure 3-12: GnRH-induced transcriptional activity of FOXO3a is mediated by β-catenin.

SCL60 cells were transfected with 3.5μM of (A, B and C) GADD45-reporter or (A and B) 6.5μM of FOXO3a-WT or (C) control vector. Cells were serum-starved 16 hours before (B and C) cells were treated for 24 hours with 1μM GnRH and/or (A and B) 20μM of LiCl. Samples were then assayed for luciferase activity. In all panels open bars denote no stimulation and close bars denote GnRH stimulation. Data are shown as mean fold change over NS±SEM from at least 3 independent experiments. (b is significantly different from a; P<0.05)

3.2.2.5 The role of acetylation in GnRH-induced GADD45-reporter activity

Acetylation is another post-translational modification that regulates FOXO transcriptional activity. In order to examine whether GnRH targets FOXO3a transcriptional activity by regulating FOXO3a acetylation, the acetyltransferase
SIRT1 was utilised. SIRT1 is a de-acetylase which de-acetylates FOXO3a leading to its nuclear translocation (Motta et al., 2004).

Over-expression of SIRT1 decreased basal GADD45-reporter activity by 2-fold (Fig. 3-13A). However, following a 24 hour treatment with GnRH, over-expression of SIRT1 increased GADD45-reporter activity compared with the vector control (Fig. 3-13B). In order to examine the effect of SIRT1 on the transcriptional activity of FOXO3a in response to GnRH, SCL60 cells were co-transfected with FOXO3a-WT, or with FOXO3a-WT and SIRT1. GADD45-reporter activity was increased approximately 3-fold in response to GnRH, whether SIRT1 was co-expressed or not (Fig. 3-13C). Finally, over-expression of SIRT1 decreased the basal level of GADD45-reporter activity when co-expressed with FOXO3a-WT (Fig. 3-13D). The data suggest FOXO3a acetylation is not a dominant regulatory mechanism of GnRH-induced FOXO3a transcriptional activity.
Figure 3.13: The role of acetylation in GnRH-induced transcriptional activity by FOXO3a.

SCL60 cells were transfected with 3.5μM of GADD45-reporter and 3.5μM of control vector (pcDNA3.1) or (C and D) 3.5μM of FOXO3a-WT or (A, B, C and D) 3.5μM of SIRT1. Cells were serum-starved 16 hours (B and C) before they were treated for 24 hours with 1μM GnRH. Samples were then assayed for luciferase activity. In all panels open bars denote no stimulation and close bars denote GnRH stimulation. Data are shown as mean fold change over NS±SEM from at least 3 independent experiments. (b is significantly different from a; P<0.05)
3.2.3 GnRH targets the expression of known FOXO3a-target genes by regulating FOXO3a transcriptional activity

3.2.3.1 GnRH regulation of FOXO3a-target gene expression over 24 hours and 4 days

Having demonstrated that GnRH regulates GADD45-reporter activity by targeting FOXO3a, the mRNA expression levels of several other FOXO-target genes was assessed. The expression levels of *GADD45, FasL, p27kip1* and *p21Cip1* mRNAs in response to GnRH was measured by Taqman Quantitative RT-PCR analysis. Significant up-regulation of *GADD45* mRNA expression was observed over 24 hours of GnRH treatment (Fig. 3-14A), and 4 days of D-Trp⁶-GnRH I treatment (Fig. 3-15A). D-Trp⁶-GnRH I, a GnRH agonist, is a more stable analogue of GnRH, and was therefore used for treatment beyond 24 hours. The expression of *FasL* was reduced over the first 24 hours of treatment (Fig. 3-14B), but was up-regulated after 24 hours of treatment with GnRH (Fig. 3-15B). *p27kip1* mRNA expression was reduced following treatment over 24 hours (Fig. 3-14C), or 4 days of treatment (Fig. 3-15C). *p21Cip1* mRNA expression was up-regulated after 4 and 6 hours (Fig. 3-14D), but there was no change over 4 days of treatment (Fig. 3-15D). There was no significant change in the *BIM* mRNA level in response to GnRH or D-Trp⁶-GnRH I treatment over 24 hours or 4 days (Fig. 3-14E and 3-15E).

3.2.3.2 GnRH regulates expression of GADD45 and FasL by FOXO3a

Having identified that GnRH regulates the expression of the FOXO-target genes, *GADD45, FasL, p27kip1, p21Cip1* and *BIM*, the role of FOXO3a in GnRH-regulation of the above genes was examined next. The involvement of FOXO3a in
Chapter Three

GnRH-induced GADD45 expression has been already demonstrated utilising a GADD45-reporter in Section 3.2.2.1. The involvement of FOXO3a in GnRH-induced GADD45 expression was further examined here by utilising qRT-PCR.

Cells were transfected with control vector, FOXO3a-TM or FOXO3a-TMΔDB. Following a time-course treatment with D-Trp\(^6\)-GnRH I, the mRNA expression levels of GADD45, FasL, BIM and p27Kip1 genes were measured. The pattern of mRNA expression for GADD45 and FasL was similar in cells transfected with control vector or FOXO3a-TMΔDB, (Fig. 3-16A and B). However, over-expression of FOXO3a-TM constructs followed by D-Trp\(^6\)-GnRH I treatment, up-regulated the expression of GADD45 (Fig. 3-16B). This was consistent with previous results from luciferase assays (see Section 3.2.2.1). FOXO3a-TM over-expression down-regulated the expression of FasL compared to the control vector (Fig. 3-16A).

The expression of BIM, p21Cip1 and p27Kip1 was also measured in a time-course treatment with D-Trp\(^6\)-GnRH I, in cells which had been transfected with control vector, FOXO3a-TM or FOXO3a-TMΔDB. The expression pattern of each of these genes suggested that GnRH does not regulate BIM, p27Kip1 and p21Cip1 expression by FOXO3a (Supplementary Fig. 7-7). In particular, over-expression of FOXO3a-TM showed no difference in the expression patterns of any of these genes compared to vector control or FOXO3a-TMΔDB over-expression.
Figure 3-14: Effect of GnRH on FOXO-target genes mRNA expression in SCL60 cells over 24 hours.

Relative mRNA expression of (A) GADD45, (B) Fasl, (C) p27Kip1, (D) p21Cip1 and (E) BIM in SCL60 cells treated with 1μM GnRH over 24 hours or vehicle (NS), as determined by quantitative RT-PCR analysis. Data are shown as mean fold over NS±SEM over 24 hour treatment from at least 3 independent experiments. (b is significantly different from a; P<0.05)
Figure 3-15: Effect of GnRH on FOXO-target genes mRNA expression in SCL60 cells over 4 days.

Relative mRNA expression of (A) GADD45, (B) FasL, (C) p27Kip1, (D) p21Cip1 and (E) BIM in cells treated with 1µM D-Trp⁶-GnRH I or left untreated (each value represent the mRNA expression level for treated over untreated cells at each time point (e.g. 24h, 48h)) over 4 days, was determined by quantitative RT-PCR analysis. Data are shown as mean fold over the treated/untreated±SEM over 4 days from at least 3 independent experiments. (b is significantly different from a; P<0.05)
Figure 3.16: Role of FOXO3a in FOXO-target genes mRNA expression following GnRH treatment.

SCL60 cells were transfected with 10μg of FOXO3a-TM or FOXO3a-TMΔDB. Relative mRNA expression of (A), FasL (B) and GADD45 in cells treated with 1µM D-Trp۶-GnRH over indicated time intervals or vehicle (NS) was determined by quantitative RT-PCR analysis. Data are shown as mean fold over NS±SEM over 24 hour treatment from at least 3 independent experiments.
3.2.3.3 **FOXO1 and FOXO3a auto-regulation**

A recent study has demonstrated that the FOXO1 promoter contains FOXO binding sites, suggesting that FOXOs can regulate their own expression (Essaghir et al., 2009). In order to examine whether there is an auto-regulation of FOXO gene expression in response to GnRH, FOXO1 and FOXO3a mRNA levels in SCL60 cells which have been transfected with a control vector, FOXO1-WT or FOXO3a-WT were assessed. As expected, over-expression of FOXO1-WT and FOXO3a-WT caused an increase in FOXO1 (Fig. 3-17A) and FOXO3a mRNA levels (Fig. 3-18A) respectively, compared to vector control. In contrast, over-expression of FOXO3a-WT did not increase FOXO1 mRNA levels (Fig. 3-17A), and over-expression of FOXO1-WT did not increase FOXO3a mRNA levels (Fig. 3-18A), compared to vector control.

To further investigate a possible FOXO auto-regulatory effect in response to GnRH, a time-course treatment with GnRH was performed and the mRNA level of FOXO1 and FOXO3a was measured in cells which had been transfected with FOXO3a-WT and FOXO1-WT constructs, respectively. Over-expression of FOXO3a-WT did not appear to regulate FOXO1 gene expression (Fig. 3-17B). Over-expression of FOXO1-WT displays a trend towards a reduction (this reduction did not reach statistical significance with n=3) for FOXO3a gene expression, in response to GnRH compared to the vector control (Fig. 3-18B).
Figure 3-17: Effect of FOXO1 and FOXO3a on FOXO1 mRNA expression in response to GnRH.
(A) SCL60 cells were transfected with 10μg of control vector (pcDNA3.1) or FOXO1-WT or FOXO3a-WT. Relative mRNA expression levels of FOXO1 in cells that were treated with 1µM GnRH for 24 hours was determined by quantitative RT-PCR analysis. (B) SCL60 cells were transfected with 10μg of control vector (pcDNA3.1) or FOXO3a-WT. Relative mRNA expression levels of FOXO1 in cells that were treated with 1µM GnRH over indicated time intervals or left untreated (NS), was determined by quantitative RT-PCR analysis. Data are shown as mean fold over NS±SEM from at least 3 independent experiments. (b is significantly different from a; P<0.05)
Figure 3-18: Effect of FOXO1 and FOXO3a on FOXO3a mRNA expression in response to GnRH.

(A) SCL60 cells were transfected with 10μg of control vector (pcDNA3.1) or FOXO1-WT or FOXO3a-WT. Relative mRNA expression levels of FOXO3a in cells that were treated with 1μM GnRH for 24 hours was determined by quantitative RT-PCR analysis. (B) SCL60 cells were transfected with 10μg of control vector (pcDNA3.1) or FOXO3a-WT. Relative mRNA expression levels of FOXO3a in cells that were treated with 1μM GnRH over indicated time intervals or left untreated (NS), was determined by quantitative RT-PCR analysis. Data are shown as mean fold over NS±SEM from at least 3 independent experiments. (b is significantly different from a; P<0.05)

3.2.3.4 GnRH does not regulate FOXO1 and FOXO3a gene expression and protein synthesis

In the next set of experiments, the involvement of GnRH in regulating FOXO mRNA levels and protein expression was examined. Cells were treated with GnRH over 24 hours or with D-Trp⁶-GnRH I over 5 days, and mRNA levels and protein expression of FOXO1 and FOXO3a were assessed by qRT-PCR or Western Blot analysis, respectively. The results indicated that GnRH does not regulate FOXO1 and FOXO3a gene expression (Fig. 3-19) or protein levels (Fig. 3-20). To further examine the effect of GnRH on FOXO protein levels, immunofluorescence confocal
microscopy was used to visualise FOXO1 and FOXO3a levels in cell following treatment with GnRH for 6 and 24 hours. FOXO3a was primarily located in the nucleus in untreated and treated cells, and GnRH treatment appears not to change the level of total FOXO3a (t-FOXO3a) (Fig. 3-21). FOXO1 appears to be localised both in the nucleus and cytoplasm in untreated and in 6-hour treated cells. 24 hour treatment with GnRH appears to cause FOXO1 translocation to the nucleus. (Fig. 3-22).

Figure 3-19: Effect of GnRH on FOXO1 and FOXO3a mRNA expression in SCL60 cells.
Relative mRNA expression of FOXO3a and FOXO1 in SCL60 that were treated (A and B) with 1μM GnRH for 24 hours (C and D) or with 1μM D-Trp⁶-GnRH I over 5 days, or vehicle (NS), was determined by qRT-PCR analysis. Data are shown as mean fold over NS±SEM from at least 3 independent experiments. (b is significantly different from a; P<0.05)
Figure 3-20: Effect on total FOXO1 (t-FOXO1) and total FOXO3a (t-FOXO3a) protein levels following GnRH treatment.

SCL60 cells were treated with 1µM of GnRH or left untreated (NS). Proteins level were analysed using the appropriate antibody. Quantification of the immunoblots was done by using β-actin as a loading control. Data are shown as mean fold over NS±SEM from at least 3 independent experiments.
Figure 3-21: t-FOXO3a levels following GnRH stimulation in SCL60 cells.

Immunofluorescence confocal microscopy was used to visualise the change in t-FOXO3a levels (green) following 1µM GnRH treatment at the time intervals indicated. DAPI (red) is a marker for nucleus and co-localisation is indicated in yellow.
3.2.4 Monitoring the role of FOXO3a in cell-cycle regulation in response to GnRH

Up-regulation of any of the FOXO-target genes, mediate a specific cell-growth inhibitory effect. For example, up-regulation of FasL mediates apoptosis whereas up-regulation of GADD45 mediates blocking of the cell-cycle at G2 phase. Having shown that GnRH treatment induces the expression of these genes, cell-cycle analysis was performed in response to D-Trp^6-GnRH I treatment. The reason for this
experiment was to examine whether the cell-cycle profile of SCL60 cells and PWE-1-NB26-3 prostate cancer cells followed the effect of the GnRH-induced genes, in response to D-Trp⁶-GnRH I treatment. The proportion of cells found in the sub-diploid population increased approximately by 3-fold in SCL60 cells, but did not increase in PWE-1-NB26-3. Furthermore, the proportion of SCL60 cells in G1 phase were decreased from 68.4% to 31.6%, while the proportion of cells in G2 phase were increased from 14.6% to 40.3%, (Fig. 3-23B and D). In contrast, the proportion of PWE-1-NB26-3 cells found in G2 phase was decreased from 77.9% to 66.6% and in G1 from 9% to 17.3% (Fig. 3-23A and C).

Figure 3-23: Flow cytometry analysis in PWE-1-NB26 and SCL60 cells and cells following D-Trp⁶-GnRH treatment.

Cells were treated with 100nM D-Trp⁶-GnRH I for 96 hours, fixed, permeabilised and stained with Hoechst for analysis by flow cytometry. The graphs represent a typical/single experiment. (Data analysis (gating and computational analysis) was performed with the cooperation of Ms. Shonna Jonhston from University of Edinburgh, Centre for Inflammation Research, Flow Cytometry Facility).
Scientific interest in FOXO transcription factors has increased markedly in the past eight years. Both *in vivo* and *in vitro* studies have been conducted in order to gain an understanding of the role of FOXOs in diverse cellular processes including cell proliferation, and the role of FOXO in diseases, including diabetes and cancer. However, to date, the mechanisms that regulate FOXO function are not well understood.

In the present study, the impact of GnRH on FOXO function was examined. Taken together, the results presented in this Chapter demonstrate that GnRH modulates FOXO3a function in a model HEK293 cell line (SCL60 cells). The specific mechanisms by which GnRH modulates the function of FOXOs were also examined. The dominant GnRH-initiated pathway that regulates the function of FOXOs was found to involve G_q-coupling and Akt-, IKK-dependent signalling (*Fig. 3-10*).

GnRH treatment of SCL60 cells for 24 hours resulted in increased FOXO transcriptional activity. The transcriptional activity initially measured was probably the combined transcriptional activity from all three FOXOs; FOXO1, FOXO3a and FOXO4. In order to begin to understand the mechanisms underlying GnRH-induced FOXO transcriptional activity, the effect of GnRH on FOXO1 and FOXO3a phosphorylation at their Akt phosphorylation sites was examined (*Fig. 3-1 & SFig. 7-1*). This was considered to be a reasonable approach since phosphorylation of FOXOs results in their translocation to the cytoplasm, and therefore the inhibition of their transcriptional activity (van der Horst and Burgering, 2007). Indeed, GnRH treatment initially (5-60 minutes) led to FOXO3a phosphorylation at Ser253, which is
an Akt-targeted phosphorylation site (Fig. 3-24). However, FOXO1 phosphorylation was not detected.

Figure 3-24: Regulation of FOXO3a by phosphorylation following GnRH treatment.

Treatment of SCL60 cells with GnRH leads to FOXO3a phosphorylation at Ser253 by a Gq-coupled, PI3K/Akt-dependent signalling pathway (direct activation of PI3K by GnRH via Gq has not been demonstrated in this study). Phosphorylation of FOXO3a by this pathway leads to its cytoplasmic localisation. Broken lines indicate an indirect regulation.

The targeting of FOXO3a phosphorylation at Ser253 by GnRH suggested that the change in phosphorylation status could result in its redistribution between the nucleus and cytoplasm. This redistribution could have an effect on FOXO3a transcriptional activity. Using confocal microscopy, the cellular redistribution of phosphorylated FOXO3a was visualised. Indeed, phosphorylation of FOXO3a at Ser253 following GnRH treatment for 5 to 60 minutes, resulted in p-FOXO3a(Ser253)
translocation to the cytoplasm (Fig. 3-2), in line with previous work, in which phosphorylation of FOXO3a, independent of GnRH treatment, led to its cytoplasmic translocation (van der Horst and Burgering, 2007). Phosphorylation at Ser253 promotes FOXO3a interaction with the 14-3-3 chaperone protein which sequesters FOXO3a in the cytoplasm inhibiting its transcriptional activity (Brunet \textit{et al.}, 1999). Interestingly, the confocal microscopy images revealed punctate nuclear p-FOXO3a(Ser253) staining (Fig. 3-2). These puncta could correspond to a complex of p-FOXO3a(Ser253) either with chaperones such as 14-3-3 that shuttles FOXOs to the cytoplasm, or with other co-factors, such as β-catenin which act to regulate FOXO3a transcriptional activity.

Next, the role of FOXO3a phosphorylation in regulating its transcriptional activity following GnRH treatment was assessed. Surprisingly, activation of FOXO3a transcriptional activity appeared to be independent of its phosphorylation status (Fig 3-8). The finding that the transcriptional activity of FOXO3a-TM was higher than FOXO3a-WT was probably because FOXO3a-TM was retained in the nucleus because it could not be phosphorylated by Akt. Therefore the targeting of FOXO3a phosphorylation by GnRH does not appear to be the dominant mechanism regulating FOXO3a transcriptional activity.

Having shown that GnRH up-regulates GADD45-reporter activity via FOXO3a independently of FOXO3a phosphorylation at its Akt phosphorylation sites, other potential signalling pathways that modulate FOXO transcriptional activity were investigated (Fig 3-10). GnRH-induced transcriptional activity of FOXO was found to be mediated by a G\textsubscript{q}-coupled, Akt- and IKK-dependent signalling pathway,
although it is not clear whether these three mediators belong to the same signalling pathway (Fig. 3-25). However, not all of these factors were involved in the phosphorylation of FOXO3a at Ser^{253}. This finding appears to support the above suggestion that GnRH-targeted phosphorylation does not appear to be the dominant mechanism regulating FOXO3a transcriptional activity. Furthermore, while the targeting of FOXO3a phosphorylation was mediated by PI3K, a pharmacological inhibitor of PI3K did not inhibit GnRH-induced GADD45-reporter activity (Fig 7-6). It is possible that Akt and IKK participate in two different signalling pathways following GnRH treatment. Further investigation is required to determine this. It is important to note that in this thesis only the role of known signalling mediators that are recruited in pathways targeting the regulation of FOXO3a activity have been assessed. However, these signalling pathways may recruit a variety of additional mediators which may play a pivotal role in the regulation of FOXO3a activity, and which would be important to further dissect.

The Akt inhibitor, in contrast to the PI3K inhibitor (Wortmannin) (Fig. 7-6), inhibited the FOXO3a-mediated GADD45-reporter activity. This was an unexpected result, since the activation of Akt by PI3K, via the PDK1, is a well-established signalling pathway. PDK1 phosphorylates Akt at Thr^{308} and Ser^{473} phosphorylation sites, which is required for its full Akt activation (Liu et al., 2009; Vanhaesebroeck and Alessi, 2000). The finding that GnRH targeted the phosphorylation of Akt at Thr^{308} suggested that Akt was activated by PDK1 (Fig 3-11). The inability of the PI3K inhibitor to inhibit the FOXO3a-mediated GADD45-reporter activity suggested that PDK1 was activated by a PI3K-independent pathway. The mechanism by which PDK1 was activated in response to GnRH remains to be determined.
GnRH regulates GADD45 and FasL gene expression by regulation of FOXO3a. In addition, GnRH mediates the regulation of FOXO3a transcriptional activity via a Gq-coupled, Akt- and IKK-dependent signalling pathway. Broken lines indicate an indirect regulation.

A further interesting result was the fact that IKK was found to be involved in the control of GADD45-reporter activity in response to GnRH. A role for IKK in the regulation of FOXO3a transcriptional activity has previously been demonstrated in a study conducted by Hu et al. (2004). In particular, IKK phosphorylated FOXO3a at Ser644 resulting in its translocation to the cytoplasm. However, co-transfection of a FOXO3a-TM Ser644Ala construct into SCL60 cells, did not inhibit the GnRH-induced GADD45-reporter activity (Hu et al., 2004). This suggests that in response to GnRH, either IKK phosphorylates FOXO3a at another putative IKK recognition sequence, which could have a similar effect on FOXO3a transcriptional activity, or...
that IKK does not mediate FOXO3a transcriptional activity directly, but instead as part of another signalling pathway.

In addition to phosphorylation, acetylation is also an important post-translational modification that is involved in regulating FOXO activity. Previous studies have demonstrated that FOXO de-acetylation by SIRT1 led to its cytoplasmic localisation and a reduction in FOXO transcriptional activity (Motta et al., 2004). In contrast to these results, over-expression of SIRT1 increased GADD45-reporter activity compared to vector control following GnRH stimulation in SCL60 cells (Fig. 3-13). It is possible that SIRT1 de-acetylates another transcription factor, other than FOXO3a, which could bind to and regulate GnRH-induced GADD45-reporter activity. In order to test this possibility, SCL60 cells were co-transfected with FOXO3a and SIRT1, and GADD45-reporter activity measured. Co-expression of FOXO3a with SIRT1 reduced basal FOXO3a transcriptional activity compared with over-expression of FOXO3a alone, which is in line with previous work (Motta et al., 2004). Following GnRH treatment, co-expression of FOXO3a and SIRT1 increased GADD45-reporter activity, but the increase was to the same level as observed in cells which had been transfected with FOXO3a alone. This suggested that, although SIRT1 de-acetylates FOXO3a, GnRH-R activation regulates FOXO3a transcriptional activity via an alternative pathway or post-translational modification, which is dominant compared to the pathway that led to FOXO3a acetylation.

The effect of β-catenin on the transcriptional activity of FOXO3a following GnRH stimulation was also examined. β-catenin has previously been shown to interact with FOXO3a (Essers et al., 2005), and β-catenin accumulation in the nucleus following
GnRH stimulation has also been demonstrated (Gardner et al., 2007). Based on these studies, a role of β-catenin in regulating FOXO3a transcriptional activity in response to GnRH was expected. In order to confirm this functional interaction, LiCl treatment was used in order be able to further increase β-catenin accumulation in the nucleus, above GnRH-mediated β-catenin nuclear accumulation (Fig. 3-12). Treating with LiCl increased the transcriptional activity of FOXO3a. However, following treatment with both LiCl and GnRH treatment, the transcriptional activity of FOXO3a decreased. This suggests that GnRH possibly alters the way in which FOXO3a interacts with β-catenin, and that the binding of β-catenin to FOXO3a, following GnRH treatment, down-regulates its transcriptional activity. However, the transcriptional activity of FOXO3a increased following GnRH stimulation alone, even though β-catenin accumulates in the nucleus. Thus, the inhibitory effect of β-catenin on FOXO3a may not be the dominant mechanism for regulating FOXO3a activity in response to GnRH. This may account for the observed increase in FOXO3a transcriptional activity following GnRH stimulation alone in the absence of LiCl.

It is important to note that although LiCl treatment increased β-catenin nuclear accumulation (Rao et al., 2005), it may also target other signalling pathways which could interfere with the GnRH-induced signalling pathways. Therefore, it would be important to further examine the role of β-catenin in regulating FOXO3a transcriptional activity by utilising an alternative regulator for β-catenin cellular levels (other than LiCl), for example Axin, which promotes degradation of cellular β-catenin.
Upon establishing that GnRH treatment targets FOXO3a transcriptional activity, a role for FOXO3a in GnRH-induced cell-growth inhibition and apoptosis was examined. qRT-PCR analysis demonstrated that the expression of apoptotic (FasL) and cell-cycle regulatory (GADD45, p21Cip1 and p27Kip1) FOXO-target genes were regulated following 4 days of treatment with D-Trp⁶-GnRH I (Fig. 3-15).

Additionally, the expression profiles of the FOXO-target genes over 4 days of D-Trp⁶-GnRH I treatment was analysed. Following D-Trp⁶-GnRH I stimulation, the expression of cell-cycle regulatory proteins GADD45 and p21Cip1 increased over 24 hours, reaching maximal expression after 6 hours. In contrast, expression of the pro-apoptotic protein FasL and the cell-cycle regulatory protein p27Kip1 decreased over 24 hours of treatment. Further treatment with D-Trp⁶-GnRH I over 3 days increased the expression of FasL and GADD45 proteins, whereas the expression of p27Kip1 protein was down-regulated.

Since GnRH has been shown to target cell-growth inhibition, (Kraus et al., 2006), the above result suggest that D-Trp⁶-GnRH I treatment blocks cell-cycle progress prior to inducing an apoptosis. In particular, the up-regulation of GADD45 gene expression possibly results in blockade of cell-cycle progress at G2 phase. In addition, the up-regulation of FasL gene expression possibly induces apoptosis. Finally, D-Trp⁶-GnRH I treatment could mediate a decrease of the cell population in G1 phase by the reduction of p27Kip1 gene expression.

Thus, cell-cycle analysis of SCL60 cells was performed following 4 days of treatment with D-Trp⁶-GnRH I to examine the above speculation (Fig. 3-23). Indeed, the proportion of cells found in the G2 phase was increased by 2.5-fold in response
to D-Trp6-GnRH I, which may be a consequence of the induction of GADD45 expression. Following D-Trp6-GnRH I stimulation, the proportion of apoptotic cells (sub-diploid population) was increased by 4-fold, possibly as a result of FasL expression. The cell population that was found in G1 phase was reduced, possibly due to the decrease in p27Kip1 expression. The results from cell-cycle analysis were in line with a study conducted by Miles et al. (2004) (Miles et al., 2004). However, cell-cycle analysis following a time-course treatment, would be required in order to determine how GnRH causes cell-cycle changes over time, and clarify whether these above-mentioned genes are the main mediators of this regulation.

Taken together, the research presented in this Chapter describes a novel regulatory mechanism initiated by GnRH-R activation. This involves the regulation of FOXO3a transcriptional activity, and the expression of FOXO-target genes by GnRH. In Chapters four and five, the impact of GnRH regulation of FOXO3a transcriptional activity on cell function will be assessed. Chapter four describes a role for FOXO3a in the well-documented GnRH-induced cell-growth inhibition and apoptosis. Chapter five describes a novel role for FOXO3a in GnRH-induced LHβ-subunit expression in the gonadotropes.
CHAPTER FOUR

THE ROLE OF FOXO3a IN GnRH-INDUCED CELL-GROWTH INHIBITION
Chapter Four

4.0 ABSTRACT
In this Chapter, the role of FOXO3a in the GnRH-induced cell-growth inhibition was examined. The results presented demonstrate that FOXO3a protects cells from the GnRH-induced cell-growth inhibition. In addition, GnRH recruits FOXO3a to regulate FasL expression to induce cell-growth inhibition. The role of FOXO3a in the GnRH-induced cell-growth inhibition by targeting GADD45 expression is also assessed.

4.1 BACKGROUND AND OBJECTIVES
Activation of the GnRH-R by GnRH has been shown to inhibit cell proliferation and induce apoptosis in cancer-delivered cell lines. The anti-proliferative and apoptotic effects of GnRH on tumour cells are also well-documented (Reviewed in Kraus et al. 2006). Several studies have reported that these events can occur as a result of changes in the expression profiles of specific cell-cycle regulatory and apoptotic genes (Imai et al., 1998a; Wu et al., 2009). Many of these are FOXO-target genes. FOXOs are involved in a number of biological processes, including cell-fate decision and tumour suppression in a variety of cancers (Fu and Tindall, 2008). Indeed, FOXO3a activation not only promotes apoptosis in vitro, but also restricts tumour growth in vivo in breast cancer cells (Yang and Hung, 2009), while constitutively active FOXO4 reduces tumour size (Greer and Brunet, 2005).

The regulation of FOXO3a transcriptional activity by GnRH-R activation has been demonstrated in Chapter three, and in this chapter the role of FOXO3a signalling pathway in the GnRH-induced cell-growth inhibition was examined. In particular the main objectives of this chapter were the following:
to explore the potential role for FOXO3a activity in mediating the anti-proliferative and apoptotic effect of GnRH

- to examine the role of FOXO3a in the cell-cycle regulation following GnRH stimulation.

4.2 RESULTS

4.2.1 Role of FOXO3a in GnRH-induced cell-growth inhibition

4.2.1.1 Generation of FOXO3a knock-down cell lines

To elucidate the role of FOXO3a in GnRH-induced cell-growth inhibition, FOXO3a knock-down stable cell lines were generated using lentivirus-delivered short hairpin RNA (shRNA). Firstly, the conditions for optimal transduction efficiency were determined. SCL60 cells were transduced with GFP-lentivirus at ratios (cells to lentivirus) of 1:1, 1:2 and 1:5 in the presence or absence of polybrene (0.6μg/ml) over 1, 2, 3, 4 and 5 days (Supplementary Fig. 7-8). Polybrene is a positively charged molecule that binds to cell surfaces and neutralizes the surface charge of the cell, increasing the efficiency of infection (Aubin et al., 1988). The optimal conditions for lentivirus transduction of SCL60 cells were the following: 3 days of transduction with lentivirus in the absence of polybrene at a ratio of 1:5.

Subsequently, cells were transduced with lentivirus-delivered shRNA to knock-down the expression of FOXO3a. Cells were also transduced with lentivirus-delivered scrambled shRNA to generate a control cell line. Western Blot analysis confirmed that transduction of cells with lentivirus-delivered shRNA against FOXO3a reduced the protein levels of FOXO3a, with the highest reduction obtained in a clone with a
double shRNA combination (shRNA codes: sh2978 and sh1687) (this clone will henceforth be referred to as **SCL840**). A control cell line was also generated (this clone will henceforth be referred to as **SCL839**) (**Fig. 4-1**).

The generation of a stable FOXO3a knock-down prostate cancer cell line (PWE-1-NB26-3) was also attempted in order to confirm the involvement of FOXO3a in cell-growth inhibition following GnRH treatment in another cell system. However, clones with a significant reduction of FOXO3a protein levels could not be generated.

Figure 4-1: FOXO3a protein level in the control and FOXO3a knock-down stable cell lines.

SCL60 cells were transduced for 3 days with lentivirus-delivered short hairpin RNA (shRNA) against FOXO3a or lentivirus-delivered scrambled shRNA at a ratio of 1:5 (cells:lentivirus). A single clone of control cells (SCL839) and FOXO3a knock-down cells (SCL840) was isolated, and the reduction of total FOXO3a (t-FOXO3a) protein level was measured compared to the control cells by Western Blot analysis.

**4.2.1.2 **FOXO3a knock-down does not affect GnRH-R functionality

Variations of GnRH-R expression levels differentially affect the GnRH-induced apoptotic machinery in different cell lines and contribute to cell type-specific cell-growth inhibition in response to GnRH treatment (Morgan et al., 2008). Before using
the SCL839 and SCL840 cell lines that had been generated, the effect of transduction with lentivirus on the level of GnRH-R expression, and the ability of the GnRH-R to activate intracellular signalling pathways following GnRH treatment was examined. \[^{125}\text{I}\]-GnRH receptor binding assays demonstrated that SCL840 expressed slightly lower numbers of receptors at the cell-surface compared to SCL839 cells (Fig. 4-24). In addition, a \[^{3}\text{H}\]-inositol phosphate assays were performed in order to assess the ability of the two cell lines to activate intracellular signalling. Treatment of SCL839 generated approximately an IC50 of 1nM and treatment of SCL840 generated an IC50 of 10nM (Fig. 4-2B). Nevertheless, the maximal responses were 6343 cpm for SCL839 and 2243 cpm for SCL840 (Fig. 2-4C). These results suggested that both SCL839 and SCL840 clones had the ability of functional coupling to PLC and initiating a signalling pathway to produce inositol phosphate were.
4.2.1.3 FOXO3a protects SCL60 cells from GnRH-induced cell-growth inhibition

The effect of GnRH treatment on the cell-growth rate of the SCL839 and SCL840 cell lines was compared next. Cells were treated for five days with different doses of D-Trp⁶-GnRH I (10⁻⁶-10⁻¹⁰M). Doses from 0.5nM to 1µM caused approximately
35% higher cell-growth inhibition in the SCL840, in spite of having slightly lower receptor numbers, compared to SCL839 cells (Fig. 4-3A). To further confirm the differential effect of D-Trp6-GnRH I on cell-growth inhibition in these two cell lines, a cell-growth assay, in the presence or absence of 0.5nM D-Trp6-GnRH I treatment, was performed over 5 days. Cell-growth inhibition in response to D-Trp6-GnRH I was higher for the SCL840 cells (Fig. 4-3B) compared with SCL839 cells (Fig. 4-3C), which is consistent with the cell viability assay (see Fig. 4-3A). In addition, the cell-growth rate of SCL840 cells was reduced compared to the control SCL839 cells in absence (Fig. 4-4A) or in presence of 0.5nM D-Trp6-GnRH I (Fig. 4-4B).

When the data in figure 4-3 was further analysed, the cell-growth rate was found to be reduced by approximately 23.5% for control SCL839 cells, and by 73% for SCL840 cells, followed treatment with 0.5nM D-Trp6-GnRH I (analysis was performed with Graph Prism 5.00, growth rate was calculated by taking the derivative of the curve equation describing the number of cells over time) (Fig. 4-5). Cell-doubling times for these two cell lines, measured in the presence or absence of D-Trp6-GnRH I treatment respectively, were 1.8 and 1.4 hours for SCL839, and 7.8 and 2.3 SCL840 cells (Table 4-1).

The growth rate of SCL60 cells was also examined and compared to that of SCL839 and SCL840 cells. The growth rate of SCL60 cells was similar to that of SCL839 without D-Trp6-GnRH I treatment (Fig. 4-4A), while it was comparable to the growth rate of the SCL840 cells in the presence to 0.5nM D-Trp6-GnRH I (Fig. 4-4B).
Figure 4-3: Effect of GnRH on cell-growth rate in SCL840 and control SCL839 cell lines.

(A) SCL839 and SCL840 cells in 12-well plates were treated on day 0 with the indicated doses of GnRH analogue (D-Trp\(^6\)-GnRH). Cells were fixed, stained with sulforhodamine B, and quantified spectrophotometrically following cell-growth for 5 days.

(B and C) SCL840 and SCL839 cells were plated in 100mm plates and treated at day 1 with 0.5nM D-\(\text{Trp}^6\)-GnRH I or left untreated. Cell number was counted on subsequent days using a haemocytometer. (The vertical black line indicates that cells were treated in day 1, the horizontal green line indicates the number of cells in day 0). The data are from four independent experiments performed in triplicate. Data are shown as mean±SEM from at least 4 independent experiments performed in triplicate.
Figure 4-4: Effect of GnRH on cell growth rate.

(A and B) SCL839 and SCL840 cells were plated in 100mm plates. Thereafter, (B) cells were treated at day 1 with 0.5nM D-Trp6-GnRH I (the vertical black line indicates that cells were treated in day 1) or (A) left untreated (the horizontal green line indicates the number of cells in day 0). (A and B) Cell number was counted the following days using a haemocytometer. Data are shown as mean±SEM from at least four independent experiments performed in triplicate.
Figure 4-5: Growth rate of SCL839 and SCL840 cells in the presence or absence of 0.5nM D-Trp^6-GnRH I.

These data are a re-analysis of the data presented in Figure 4-3.

<table>
<thead>
<tr>
<th>Cell line</th>
<th>D-Trp^6-GnRH I treatment</th>
<th>Doubling time (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCL839</td>
<td>No</td>
<td>1.44 (0.98-4.47)</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>1.82 (0.96-3.75)</td>
</tr>
<tr>
<td>SCL840</td>
<td>No</td>
<td>2.32 (1.92-3.24)</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>7.88 (2.69-high)</td>
</tr>
</tbody>
</table>

Table 4-1: SCL839 and SCL840 cell-doubling time in the presence or absence of 0.5nM D-Trp^6-GnRH I.

4.2.1.4 The effect of FOXO3a on FasL expression in response to D-Trp^6-GnRH I treatment

FOXO3a plays a role in GnRH-induced FasL expression as demonstrated in Section 3.2.3.2 in Chapter three. To confirm the involvement of FOXO3a in FasL gene expression in response to D-Trp^6-GnRH I, SCL839 and SCL840 cells were treated with D-Trp^6-GnRH I over 5 days, and FasL mRNA levels measured. FasL gene expression was higher in SCL840 cells compared to SCL839 cells at co-responding
intervals of D-Trp⁶-GnRH I treatment (Fig. 4-6). These data suggest that FOXO3a negatively regulates FasL expression following GnRH treatment.

FasL activates the Fas receptor to induce apoptosis through the activation of a signalling pathway which involves mediators including FADD, caspase 3 and caspase 8. To further confirm that FOXO3a mediates GnRH-induced FasL expression, Western Blot analysis was performed to examine whether the levels of FADD, caspase 3 and caspase 8 proteins were differentially regulated in SCL839 and SCL840 cells. However, no protein bands could be detected in the Western Blots performed, possibly due to poor expression levels.

![Figure 4-6](image)

Figure 4-6: The effect of D-Trp⁶-GnRH I on FasL mRNA expression in SCL839 and SCL840 cells.

Relative mRNA expression of FasL in SCL839 cells and SCL840 cells that were treated with 0.5nM D-Trp⁶-GnRH I for the indicated times was determined by quantitative RT-PCR analysis. Data are shown as mean±SEM from two independent experiments performed in triplicate.
4.2.1.5 **Effect of Akt and IKK signalling on GnRH-induced cell-growth inhibition in SCL60, SCL839 and SCL840 cells**

GnRH-induced FOXO3a transcriptional activity occurs via Akt- and IKK-dependent signalling pathways as demonstrated in Section 3.2.2.3 in Chapter three. Furthermore, the involvement of FOXO3a in GnRH-induced cell-growth inhibition was also demonstrated in Section 3.2.4.3. Therefore, the role of IKK and Akt in GnRH-induced cell-growth inhibition was examined next. SCL60 cells were pre-treated with pharmacological inhibitors of IKK or Akt, and cell-growth was measured following 100nM D-Trp⁶-GnRH I treatment. Pre-treatment with IKK or Akt1/2 inhibitors reduced cell-growth rate over 5 days by approximately 20% and 30% respectively in the absence of D-Trp⁶-GnRH I treatment (Fig. 4-7A). However, Akt1/2 inhibitor shows a trend towards a reduction (19%) of GnRH-induced cell-growth inhibition, even though the reduction did not reach statistical significance (Fig. 4-7B).

Akt and IKK were found to inhibit GnRH-induced FOXO3a transcriptional activity in SCL60 cells (see Section 3.2.2.3). Furthermore, the Akt inhibitor partially rescues GnRH-induced cell-growth inhibition in SCL60 cells (Fig. 4-7B). Thus, it is possible that Akt (and possibly IKK) could be involved in the GnRH-FOXO3a inhibitory signalling pathway. If Akt and IKK are involved in this pathway, by regulating FOXO3a transcriptional activity, then Akt and IKK inhibitors would be expected to differentially effect GnRH-induced cell-growth inhibition in SCL839 and SCL840, because FOXO3a protein levels are lower in SCL840 compared to SCL839 cells. To test this hypothesis, SCL839 and SCL840 cells were pre-treated with Akt and IKK inhibitors, and cell-growth inhibition was measured following 0.5nM D-Trp⁶-GnRH
I treatment. While the IKK inhibitor had no significant effect on the cell-growth rate of both cell lines (Fig. 4-8A and C), the Akt inhibitor reduced the cell growth rate only in SCL840 cells (Fig. 4-8A). Even so, neither of these two inhibitors completely rescued GnRH-induced cell-growth inhibition (Fig. 4-8B and D). However, the Akt inhibitor reduced the level of GnRH-induced cell-growth inhibition of SCL840 to approximately the same level as for SCL839 following D-Trp⁶-GnRH I treatment alone (Fig. 4-8D compared to Fig. 4-8B, denoted by arrows). This result could implicate Akt involvement with FOXO3a in the GnRH-induced cell-growth inhibition signalling pathway.

Figure 4-7: Effect of Akt and IKK on GnRH-induced cell-growth inhibition in SCL60 cells.

(A and B) SCL60 cells were treated with 1.5μM of IKK inhibitor (BMS-345541) or 1μM of Akt inhibitor (Akt1/2) and (B) 100nM of GnRH analogue (D-Trp⁶-GnRH I). Cells were fixed, stained with sulforhodamine B, and quantified spectrophotometrically following cell growth for 5 days. Data are shown as mean±SEM from at least four independent experiments performed in triplicate. (b is significantly different from a; P<0.05)
Figure 4-8: Effect of Akt and IKK on GnRH-induced cell-growth inhibition in SCL839 and SCL840 cells.

(A, B, C and D) SCL839 and SCL840 cells were treated with 1.5µM of IKK inhibitor (BMS-345541) or 1µM of Akt inhibitor (Akt1/2) and (B and D) 0.5nM of GnRH analogue (D-Trp⁶-GnRH I). Cells were fixed, stained with sulforhodamine B, and quantified spectrophotometrically following cell growth for 5 days. Data are shown as mean±SEM from at least three independent experiments performed in triplicate. (b is significantly different from a; P<0.05)
4.2.1.6 Monitoring the role of FOXO3a in cell-cycle regulation in response to GnRH

The role of FOXO3a in GnRH-induced cell-growth inhibition was also confirmed by flow cytometry analysis. This is a simple method for detecting sub-diploid cell populations, an indication of apoptotic cells, by staining DNA. Cell-cycle analysis also allows the detection of the proportion of cells found at specific stages of the cell-cycle. In response to D-Trp6-GnRH I treatment, the sub-diploid population was increased approximately 3-fold in SCL839 cells (Fig. 4-9A and C), and approximately 7-fold in SCL840 cells (Fig. 4-9B and D). Thus, SCL840 cells are more sensitive to D-Trp6-GnRH I-induced cell-growth inhibition compared to the SCL839 cells, confirming the cell viability assay results presented earlier (see Section 4.2.3). The proportion of cells found in G1 and G2 were similar in both stable cell lines in the absence of D-Trp6-GnRH I treatment. The proportion of cells in G1 phase decreased from 60.1% to 46.4% in SCL839 cells following D-Trp6-GnRH I treatment (Fig. 4-9A and C), and from 60% to 36.5% in SCL840 cells (Fig. 4-9B and D), while no change in proportion of cells in G2 phase was observed in response to D-Trp6-GnRH I treatment in both stable cell lines.
Figure 4-9: Flow cytometry analysis of SCL839 and SCL840 cells following D-Trp⁶-GnRH I treatment.

Cells were treated with 0.5nM D-Trp⁶-GnRH I for 96 hours, fixed, permeabilised and stained with Hoechst for analysis by flow cytometry.
4.3 DISCUSSION

Although the signalling pathways that mediate GnRH-induced cell-growth inhibition in different cell systems have been examined previously (Kraus et al., 2006), there is no report implicating FOXO3a in these pathways. The results presented thus far indirectly implicate a role for FOXO3a in GnRH-induced cell-growth inhibition. GnRH has previously been demonstrated to induce the expression of the FOXO-target genes, FasL and GADD45 (Imai et al., 1998a; Wu et al., 2009). The results presented in Chapter three demonstrated that GnRH regulates the FasL and GADD45 expression by targeting FOXO3a activity.

In order to directly examine the role of FOXO3a, a stable FOXO3a knock-down cell line was generated (SCL840 cells, together with control SCL839 cells) (Fig. 4-1). Stable cell lines were generated instead of transiently knocking-down FOXO3a expression because stable knock-down cell lines ensure long-term reduction of FOXO3a protein levels, which are useful for experiments that run over days rather than hours. However, by generating a stable cell line, other parameters should be taken into account. Transduction of cells with lentivirus-delivering shRNA may cause phenotypic changes in the generated stable lines. For example, in SCL60 cells, it may alter the function and/or the expression of the GnRH-R. However, GnRH-R binding assays showed no significant differences in the number of GnRH-R expressed at the cell surface of the two stable cell lines (control and knock-down). GnRH stimulation of Inositol phosphate was also similar in both cell lines, indicating that functional G\textsubscript{q} coupling was comparable (Fig. 4-2). Nevertheless, it would be valuable to generate more than a single control and FOXO3a knock-down cell line.
Unfortunately, there was lack of significant reduction of FOXO3a protein levels in all other clones. Generation of a prostate cancer FOXO3a knock-down cell line expressing GnRH-R was also attempted, but again no clones with a significant reduction of FOXO3a expression were obtained.

In order to assess the role of FOXO3a in GnRH-induced cell growth inhibition, cells numbers were counted after treatment with D-Trp⁶-GnRH I (Fig. 4-3). The relative growth rate of SCL840 cells was slower compared to that of the SCL839 cells. A role for FOXO3a in cell proliferation, visualised by microscopy, was also confirmed in cell viability assays. Interestingly, reduction of FOXO3a levels in SCL840 cells, increased cell-growth inhibition following D-Trp⁶-GnRH I stimulation, which suggests that FOXO3a protects cells from GnRH-induced cell-growth inhibition. Cell-cycle analysis also confirmed the involvement of FOXO3a in protecting cells from GnRH-induced cell-growth inhibition via the monitoring of the sub-diploid population which represents the apoptotic cells. This result, is in contrast with most previous studies in other cell systems demonstrating that FOXO activation promoted cell-growth inhibition and apoptosis (Brunet et al., 1999; Ramaswamy et al., 2002; Roy et al., 2010). However, Srinivasan et al. (2005) demonstrated that activation of FOXO3a was required for neuron survival (Srinivasan et al., 2005), suggesting that the role of FOXO3a in cell-growth may be cell-type specific.

The role of FasL in FOXO3a-mediated GnRH-induced cell-growth inhibition was also examined (Fig. 4-6). Previous studies have also examined the role of FasL in the GnRH-induced cell-growth in different cell systems (Morgan et al., 2008). In particular, the effect of GnRH on apoptotic markers which are involved in FasL
signalling apoptotic pathway was assessed. Small elevations of phosphorylated FADD, which is involved in the FasL apoptotic pathway, were detectable in SCL60 cells in response to GnRH (Morgan et al., 2008). The involvement of FasL in the GnRH-induced cell-growth inhibition has been proposed in several other studies (Imai et al., 1997; Imai et al., 1998a). In contrast, Huang et al. (2002) demonstrated that GnRH did not up-regulate FasL expression, while it mediated cell-growth inhibition in leiomyoma cells (Huang et al., 2002), again suggesting that the mechanism of GnRH-induced cell-growth inhibition is cell-type specific.

<table>
<thead>
<tr>
<th>FOXO3a level</th>
<th>Gene</th>
<th>Effect on GnRH-induced cell-growth inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>↑</td>
<td>†† (Fig. 4-4A and B, SCL60 cells)</td>
</tr>
<tr>
<td>Over-expressed (FOXO3a-TM)</td>
<td>↓</td>
<td>(not measured)</td>
</tr>
<tr>
<td>Knock-down</td>
<td>↑↑</td>
<td>††† (Fig. 4-3A)</td>
</tr>
</tbody>
</table>

Control: | | |
| Over-expressed (FOXO3a-TM): | | |
| Knock-down (not measured): | | |

Table 4-2: This table summarises the effect of GnRH on the expression of FasL and GADD45, and the effect of GnRH on the cell-growth inhibition in the SCL60 model cell line, with regards to FOXO3a levels (Arrows denote relative increase or decrease in gene expression and cell-growth inhibition)

Based on the results presented in this Chapter, GnRH potentially recruits FOXO3a in order to regulate FasL expression to induce cell-growth inhibition. This reveals a novel role of FOXO3a in the GnRH-induced cell-growth inhibition process. A
number of other observations strengthen the above speculation. Cell-cycle analysis in SCL839 and SCL840 cells demonstrated that the sub-diploid (apoptotic) population of SCL840 cells was increased compared with that of the SCL839 cells in response to D-Trp6-GnRH I (Fig 4-9). This suggests that the different cell-growth inhibition effects of D-Trp6-GnRH I, as demonstrated in the cell-viability assays, between the two stable cell lines, was due to the induction of apoptosis and not cell-cycle blockade. This is a reasonable explanation which is further supported by the finding that GnRH-induced FasL expression was higher in SCL840 cells compared to SCL839 cells, as observed by qRT-PCR analysis (Fig. 4-6). This result was expected since over-expression of FOXO3a in SCL60 cells decreased FasL gene expression.

In summary, GnRH treatment increases FasL expression resulting in induction of apoptosis in SCL60 cells, while over-expression of FOXO3a reduced FasL expression and apoptosis in SCL60 cells. Furthermore, knocking-down FOXO3a further increased FasL expression and apoptosis in response to GnRH treatment in SCL840 cells, compared to control cells (see Table 4-2). These observations therefore appear to suggest that in response to GnRH treatment, FOXO3a acts to repress FasL expression. ChIP analysis will be helpful to further understand the activity of FOXO3a at the FasL promoter in response to GnRH stimulation.

Interestingly, IKK and Akt inhibitors, previously shown to inhibit GnRH-induced GADD45 activity, were unable to completely rescue SCL60, SCL839 and SCL840 cells from GnRH-mediated cell-growth inhibition. The Akt inhibitor did not completely rescue GnRH-mediated cell-growth inhibition in SCL60 cells, and it partially rescued GnRH-mediated growth inhibition, in SCL840 by about 20.4% and
in SCL839 cells by 4.2%. Moreover, growth inhibition for SCL840 cells was approximately 25% higher compared to inhibition of SCL839 cells. Interestingly, the Akt inhibitor reduced the GnRH-induced cell-growth inhibition of SCL840 cells by approximately the same level as for SCL839 cells after GnRH treatment alone. This suggests that, the Akt inhibitor showed a trend towards a reduction of the additive GnRH-induced cell-growth inhibition effect in SCL840 cells compared to SCL839 cells. This suggests that the Akt inhibitor may block a GnRH-induced signalling pathway that mediates the more profound anti-proliferative effect in SCL840 cells compared to SCL839 cells, and that FOXO3a is part of this pathway.

The involvement of FOXO3a and FasL, as part of the same signalling pathway, in the GnRH-induced cell-growth inhibition process has been already suggested in this Chapter. In addition, the role of GADD45, as downstream target of FOXO3a, in GnRH-induced cell-growth inhibition was also examined. However, whether GnRH induces cell-growth inhibition in SCL60 cells by activating GADD45 expression by FOXO3a, was not clear. Thus, while FOXO3a appears to be involved in the induction of apoptosis, by regulating FasL expression following GnRH treatment, the role of FOXO3a in the GnRH-induced cell-cycle blockade, by induction of GADD45 was not clear (see Table 4-2). The results from this Chapter demonstrated that Akt inhibitor partially rescues GnRH-induced cell-growth inhibition in SCL60 cells. As was mentioned above, GnRH possibly induces cell-growth inhibition by blocking cell-cycle progress at G2 phase, by up-regulating GADD45 expression. Since FOXO3a mediates GnRH-induction of GADD45 expression, a role for FOXO3a in mediating GADD45 expression in GnRH-induced cell-growth inhibition is strongly suggested. Cell-cycle analysis in SCL839 and SCL840 cells demonstrated an
increase in sub-diploid population in SCL840 cells compared to SCL839 cells, which can be explained by the increase of FasL expression. However, there is no difference in the proportion of the G2 population between the two cell lines. However, differences in GADD45 expression are expected because of different FOXO3a levels should lead to differences on the cell-cycle profile between the SCL839 and SCL840 cells. In addition, following D-Trp⁶-GnRH I treatment, the change in the proportion of SCL839 and SCL840 found in G2 phase was similar, although FOXO3a levels were lower in SCL840 cell line. This result suggests that GnRH treatment cause cell-growth inhibition by up-regulating GADD45 expression, but not exclusively by FOXO3a, and possibly involving another transcription factor.

In conclusion, a role of FOXO3a in GnRH-induced cell-growth inhibition is proposed in this Chapter. The involvement of FOXO3a regulated expression of FasL and GADD45 in response to GnRH is also suggested to play a role in this process. Although this research was conducted in a heterologous HEK293/ratGnRH-R expressing model cell line, it is likely that these findings apply to other cell systems to highlight additional novel roles for the targeting of FOXO3a activity by GnRH. Indeed, this is demonstrated in Chapter five, which describes a novel role for FOXO3a in the regulation of LHβ-subunit expression in the pituitary gonadotropes.
CHAPTER FIVE

THE ROLE OF FOXOs IN THE REGULATION OF LHβ EXPRESSION IN RESPONSE TO GnRH IN THE GONADOTROPE
5.0 ABSTRACT

In this Chapter, the role of FOXO1 and FOXO3a in GnRH-induced expression of LHβ, FSHβ and the GnRH-R in gonadotropes was examined. The data presented demonstrates that FOXO3a and FOXO1 are expressed in human pituitary gonadotropes, and a role for FOXO3a in the regulation of LHβ expression in response to GnRH treatment is highlighted. In addition, the regulation of Egr1 expression via a FOXO3a-dependent signalling pathway was demonstrated. Chromatin immunoprecipitation (ChIP) assays were used to assess FOXO3a recruitment to Egr1 and LHβ promoters. FOXO3a targets Egr1 expression to, at least in part, indirectly regulate LHβ promoter activity. β-catenin is also involved in the regulation of the LHβ expression in co-ordination with FOXO3a in response to GnRH. These findings suggest that GnRH regulates LHβ-subunit expression through one or more FOXO3a-mediated mechanisms.

5.1 BACKGROUND AND OBJECTIVES

Gonadotropin-releasing hormone (GnRH) is an essential regulator of the reproductive process, and stimulates the synthesis of the gonadotropins (LH and FSH) in pituitary gonadotropes, thereby regulating gametogenesis and steroidogenesis. GnRH is synthesised and secreted by hypothalamic GnRH neurons, and delivered to the anterior pituitary gland where it binds to the GnRH-R expressed on the surface of the gonadotrope (Naor, 2009; Seeburg et al., 1987; Vale et al., 1977).

Diverse signalling pathways have been reported to regulate LHβ-subunit expression in response to GnRH, including the ERK/p38MAPK/JNK cascades and factors such as Egr1, SF1 and β-catenin (Thackray et al., 2010). The LHβ promoter comprises of
two DNA binding sites for Egr1 and SF1, and one for Pitx1 which is flanked by the Egr1 and SF1 binding sites (Halvorson et al., 1996; Keri and Nilson, 1996; Quirk et al., 2001; Tremblay and Drouin, 1999). Although the presence of all three of these factors as a complex on the promoter of the LHβ gene is required for optimal LHβ expression (Dorn et al., 1999; Jiang et al., 2005; Tremblay and Drouin, 1999), only Egr1 levels are regulated by GnRH-R activation (Dorn et al., 1999; Tremblay and Drouin, 1999). It therefore appears that GnRH up-regulates LHβ mRNA expression levels via induction of Egr1 expression in gonadotrope cells.

Although the aforementioned mechanism has been extensively described, it is not yet been completely understood. Recent studies highlighting the co-operativity between β-catenin and FOXO3a in mediating gene expression (Essers et al., 2005; Hoogeboom et al., 2008; Kwon et al., 2010), suggested a potential role for FOXOs in regulating gonadotrope function. FOXO3a is one of four members of the “O” sub-group of Forkhead box (FOX) transcription factors, and plays an important role in a variety of cellular processes such as tumour suppression, cell-cycle regulation and metabolism (Burgering, 2008). To date, there are no studies demonstrating a role for FOXOs in GnRH-induced gonadotropin expression. Therefore, the main objectives of this Chapter were the following:

- to examine whether FOXO1 and FOXO3a are expressed in gonadotropes
- to investigate whether GnRH regulates LHβ, FSHβ or GnRH-R expression via FOXO1 or FOXO3a
- to examine the involvement of FOXO3a in GnRH-induced LHβ expression
5.2 RESULTS

5.2.1 The role of FOXOs in GnRH-induced regulation of LHβ, FSHβ and GnRH-R expression

Having identified the involvement of GnRH in FOXO3a transcriptional activity in Chapter three, the role of FOXOs in GnRH-induced regulation of LHβ, FSHβ and GnRH-R expression in gonadotropes was examined. To investigate this, LβT2 cells were used as model gonadotrope cell line. These cells were co-transfected with LHβ-promoter, FSHβ-promoter or GnRH-R-promoter reporters together with control vector, wild type FOXO1 (FOXO1-WT) or wild type FOXO3a (FOXO3a-WT). Over-expression of FOXO1 increased the basal GnRH-R- and FSHβ-reporter activity, whereas has no affect on basal transcriptional activity of the LHβ-reporter was observed compared to vector control. Over-expression of FOXO3a did not alter basal FSHβ-reporter activity but slightly decreased basal LHβ-reporter activity compared to vector control (Fig. 5-1A, C and E).

LβT2 cells were treated with 1µM GnRH, and the role of FOXO1 and FOXO3a in the GnRH-induced LHβ, FSHβ and GnRH-R expression was examined. GnRH treatment increased LHβ-, FSHβ- and GnRH-R-reporter activity in cells transfected with control vector (Fig. 5-1B, D and E). FOXO1-WT over-expression decreased GnRH-induced GnRH-R-reporter activity, but has no detectable effect on LHβ- or FSHβ-reporter activity compared to vector control. FOXO3a-WT over-expression increased GnRH-induced LHβ-reporter activity by 3-fold compared to vector control but did not affect FSHβ-reporter activity compared to vector control (Fig. 5-1B, D and F). Together, this set of data points to a role for FOXO3a in GnRH-induced
regulation of LHβ but not in FSHβ regulation. FOXO3a also appears to have a negative role in GnRH stimulation of GnRH-R expression; however this potential role for FOXO3a was not further examined in this thesis. It is also interesting that after over-expression of FOXO1 the FSHβ expression was increased significantly, while the GnRH-induced FSHβ expression was not increased. This possibly means that FOXO1 acts as a transcription factor for FSHβ, however GnRH does not regulate its transcriptional activity. The next section of work aims to delineate the role of FOXO3a in GnRH-induced LHβ expression.
Figure 5.1: LHβ, FSHβ and GnRH-R-reporter activity levels in response to GnRH.
LβT2 cells were transiently transfected (A and B) with 5µg of LHβ-, (C and D) FSHβ- and (E and F) GnRH-R-reporter and 5µg of control vector (pcDNA3.1) or FOXO1-WT or FOXO3a-WT. Cells were treated (B and F) with 1µM GnRH for 6 hours (D) or with 1µM GnRH plus activin for 8 hours. Samples were then assayed for luciferase activity. In all panels open bars denote no stimulation and close bars denote GnRH stimulation. Data are shown as mean fold change over NS±SEM from at least 3 independent experiments (in (E) and (F), assay with over-expression with FOXO3a-WT is n=2). (b is significantly different from a, and c is significantly different from a and b; P<0.05)
5.2.2 GnRH regulates LHβ-subunit expression via FOXO3a activity

To further investigate the role of FOXO3a in GnRH-induced LHβ-reporter activity, LβT2 cells were co-transfected with LHβ-reporter, together with FOXO3a-TM, bearing mutations at its three Akt phosphorylation sites (Thr^{32}Ala, Ser^{315}Ala and Ser^{253}Ala; TM denotes triple mutant) (Burgering and Kops, 2002), or with FOXO3a-TMΔDB with the same three Akt phosphorylation site mutations in addition to a deletion of the DNA binding domain (denoted by ΔDB). In contrast to FOXO3a-WT, FOXO3a-TM cannot be phosphorylated by Akt, resulting in its nuclear retention, thus eliminating the effect of Akt signalling on the localisation/redistribution of FOXO3a. While over-expression of FOXO3a-TM increased GnRH-induced LHβ-reporter activity compared to vector control, over-expression of FOXO3a-TMΔDB reduced GnRH-mediated LHβ-reporter activity compared to the effect of FOXO3a-TM (Fig. 5-2A).

To further confirm the involvement of FOXO3a in GnRH-induced LHβ expression, the effect of transiently knocking-down FOXO3a expression by lentivirus-delivered short hairpin RNA (shRNA) was examined in LHβ-reporter activity experiments. Attempts to generate stable FOXO3a knock-down LβT2 cell lines using lentivirus-delivered shRNA were unsuccessful. The cells were not viable after 8-10 days of transduction with lentivirus-delivered shRNA with or without the addition of the selective antibiotic, implying that the level of FOXO3a protein may be an important for the viability of gonadotropes. Therefore, transiently transduced cells were used in further experiments. In order to achieve the highest transient reduction of FOXO3a protein levels, LβT2 cells were transduced using lentivirus-delivery of shRNA.
targeted towards FOXO3a, and FOXO3a protein levels were measured after 1, 2, 3 and 5 days of transduction by Western Blot analysis. Maximum FOXO3a protein level reduction was achieved after 4 days of transduction with lentivirus-delivery shRNA1624 (Supplementary Fig. 7-9). Control cells were also generated by transduction with lentivirus-delivered scrambled shRNA (these cells will henceforth be referred to as control cells).

Basal LHβ-reporter activity was reduced in FOXO3a knock-down cells compared to control cells (Fig. 5-2B), and GnRH induction of LHβ expression was lower in FOXO3a knock-down LβT2 cells compared to control cell levels (Fig. 5-2C). Taken together, these data suggest that FOXO3a regulates LHβ expression, either directly by acting at the LHβ promoter, or indirectly by targeting the expression and/or co-opting the activity of one or more factors which in-turn play a role in regulating LHβ expression.
Figure 5-2: GnRH stimulates LHβ-reporter activity by FOXO3a.

(A) LβT2 cells were co-transfected with 2µg of LHβ-reporter and 8µg of control vector (pcDNA3.1), FOXO3a-TM or FOXO3a-TMΔDM. Cells were serum-starved for 24 hours followed by treatment with 1µM GnRH for 6 hours. Samples were then assayed for luciferase activity. For knock-down cells, lentivirus-delivered shRNA against FOXO3a or scrambled shRNA (control cells) was added to LβT2 cells. The following day, virus was removed and cells incubated with fresh medium (B and C). Cells were subsequently co-transfected with LHβ-reporter and serum-starved for 24 hours after transfection. (C) followed by stimulation with 1µM GnRH for 6 hours. In all panels open bars denote no stimulation and close bars denote GnRH stimulation. Data are shown as mean fold change over NS±SEM from at least 3 independent experiments. (b is significantly different from a, and c is significantly different from a and b; P<0.05)
5.2.3 GnRH regulation of Egr1 expression by FOXO3a

Egr1 is a well-known intermediate in the GnRH-induced LHβ expression pathway (Kaiser et al., 2000; Maudsley et al., 2007; Weck et al., 2000). Having identified the involvement of FOXO3a in GnRH-induced LHβ expression, the role of FOXO3a in the GnRH-induced Egr1 expression, was examined next. Given that GnRH treatment causes a maximal increase in LHβ-reporter activity after 6 hours of treatment, the effect of FOXO3a on GnRH-induced Egr1-reporter activity over 2, 3, 4 and 5 hours was examined, on the assumption that GnRH increases the Egr1 expression prior to LHβ expression reaching its maximum level. LβT2 gonadotrope cells were co-transfected with an Egr1-reporter and either the FOXO3a-WT or FOXO3a-TM constructs, and treated with 1µM GnRH. A 5 hour time-course treatment with GnRH in vector controlled LβT2 cells showed that GnRH-induced Egr1 activity was increased reaching maximal expression after 5 hours. The same trend was observed in cells with FOXO3a-WT or FOXO3a-TM over-expression, in which over-expression of FOXO3a-WT or FOXO3a-TM increased the GnRH-induced Egr1-reporter activity compared to vector control, strongly implicating FOXO3a in GnRH-induced Egr1 expression (Fig. 5-3).

The effect of FOXO3a on GnRH-induced Egr1 expression in response to GnRH over 6 hours of treatment was examined in order to compare the effect of FOXO3a on Egr1 expression at the same time point that GnRH induced maximal LHβ expression. LβT2 cells were co-transfected with Egr1-reporter and the FOXO3a-TM construct. Over-expression of FOXO3a-TM up-regulated Egr1-reporter activity in response to GnRH (Fig. 5-4A), but had no effect on basal Egr1-reporter activity (Fig. 5-4B).
Chapter Five

Notably, over-expression of FOXO3a-TMΔDB increased basal Egr1-reporter activity (Fig. 5-4B), possibly suggesting negative regulation of Egr1 expression by FOXO3a.

Figure 5-3: Time-course treatment with GnRH for Egr1-reporter activity.
LβT2 cells were co-transfected with 0.1µg Egr1-reporter and 9.9µg of control vector (pcDNA3.1), FOXO3a-WT or FOXO3a-TM. Cells were serum-starved 24 hours after transfection followed by stimulation with 1µM GnRH hours. Samples were then assayed for luciferase activity. Data are shown as mean fold change over NS±SEM from at least 2 independent experiments.
Figure 5-4: The role of FOXO3a in the GnRH-induced Egr1 expression.
LβT2 cells were co-transfected with 0.1µg Egr1-reporter and (A and B) 9.9µg of control vector (pcDNA3.1), FOXO3a-TM or (B) FOXO3A-TMΔDB. (A and B) Cells were serum-starved 24 hours after transfection followed by stimulation (B) with 1µM GnRH for 6 hours. Samples were then assayed for luciferase activity. In all panels open bars denote no stimulation and close bars denote GnRH stimulation. Data are shown as mean fold change over NS±SEM from at least 3 independent experiments. (b is significantly different from a, and c is significantly different from a and b; P<0.05)

5.2.4 GnRH regulation of LHβ-subunit expression by targeting Egr1 expression by FOXO3a

Despite the data showing that GnRH induced Egr1 and LHβ expression via FOXO3a, it was not clear whether FOXO3a regulated GnRH-induced LHβ expression via an Egr1-independent pathway. To test this possibility, the induction of LHβ-reporter activity in LβT2 cells was examined by over-expression of FOXO3a-TM or Egr1, or Egr1 together with FOXO3a-TM. Egr1 over-expression alone increased basal LHβ expression (Fig. 5-5A), but did not up-regulate LHβ expression in response to GnRH (Fig. 5-5B). Although over-expression of FOXO3a-TM up-regulated LHβ-reporter activity compared to vector control, co-expression of
FOXO3a-TM and Egr1 failed to increase LHβ-reporter activity in response to GnRH (Fig. 5-5B).

To further investigate the role of Egr1 and FOXO3a in LHβ expression in response to GnRH, LβT2 cells were transfected with either a -136 ovine LHβ-promoter reporter fragment (dLH7-luc) or a -136 ovine LHβ-promoter reporter fragment with a double deletion of the Egr1 binding sites (mutated distal and proximal mdpEgr1 (mdpLH7-luc construct)) (Fig. 5-5C). Over-expression of FOXO3a-TM up-regulated dLH7-reporter activity compared to vector control, but did not significantly up-regulate mdpLH7-reporter activity. Thus, FOXO3a was unable to up-regulate LHβ expression in the absence of the Egr1 binding sites on the LHβ promoter. Taken together, these data suggest a role for FOXO3a in GnRH-induced Egr1 expression, which is essential for maximal LHβ expression.

5.2.5 GnRH regulation of LHβ expression via FOXO3a requires β-catenin activity

In a previous study by Gardner et al. (2007), GnRH treatment promoted the stabilisation and nuclear accumulation of β-catenin in LβT2 cells (Gardner et al., 2007). β-catenin acts as a co-activator of GnRH-induced LHβ expression by forming a complex with Egr1 and SF1, which act together at the LHβ promoter to drive maximal LHβ expression (Salisbury et al., 2007). Thus, the potential role of FOXO3a in the functioning of this complex in response to GnRH was assessed. In particular, whether FOXO3a acts together with, or independently of β-catenin to regulate GnRH-induced LHβ expression in LβT2 cells was examined. LβT2 cells were co-transfected with the LHβ-reporter together with FOXO3a-TM or Axin alone,
or with FOXO3a-TM together with Axin (Fig. 5-6A). Axin is known to promote the degradation of cellular β-catenin (Salisbury et al., 2007). As expected, Axin over-expression suppressed LHβ-reporter activity in response to GnRH compared to vector control. However, co-expression of Axin together with FOXO3a-TM also suppressed LHβ-reporter activity compared to FOXO3a-TM over-expression alone (Fig. 5-6A), suggesting that FOXO3a and β-catenin co-operate to drive LHβ-reporter activity.

Additionally, a possible involvement of β-catenin, as a co-factor with FOXO3a in Egr1 activity in response to GnRH was assessed. In particular, it was examined whether FOXO3a acts together with, or independently of β-catenin to regulate GnRH-induced Egr1 expression in LβT2 cells was examined. LβT2 cells were co-transfected with the Egr1-reporter together with FOXO3a-TM or Axin alone, or with FOXO3a-TM together with Axin (Fig. 5-6B). Although over-expression of FOXO3a-TM increased Egr1-reporter activity, Axin over-expression failed to suppress Egr1-reporter activity in response to GnRH compared to vector control. In addition, co-expression of Axin together with FOXO3a-TM did not change Egr1-reporter activity compared to FOXO3a-TM over-expression alone (Fig. 5-6A). Taken together these data suggest that β-catenin does not co-operate with FOXO3a to regulate Egr1 expression.
5.2.6 GnRH regulation of FOXO3a binding at Egr1 and LHβ promoters

Since a potential role for FOXO3a in driving the expression of LHβ and Egr1 in response to GnRH has been demonstrated, whether FOXO3a acts directly at the promoters of these two genes, and whether it acts as an activator or suppressor was examined next.

In order to assess the specific role of FOXO3a at these two promoters, ChIP assays were performed (calculations for RT-PCR analysis for the ChIP assay are described in Supplementary Table 7-10). The DNA that was immuno-precipitated with FOXO3a or IgG (control) antibody in response to GnRH was amplified by Taqman qRT-PCR using primers for the promoter regions or primers that anneal to distal upstream regions of the LHβ and Egr1 genes (Fig. 5-7).

The results suggest that GnRH treatment increased the binding of FOXO3a to the LHβ promoter to regulate LHβ-subunit expression (Fig. 5-8A). In contrast, GnRH treatment appeared to result in the release of FOXO3a from the Egr1 promoter at 6 hours, which may indicate that under basal conditions FOXO3a acts to repress Egr1 expression (Fig. 5-8B), again suggesting that FOXO3a negatively regulates Egr1 under basal conditions (see Figure 5-4B).
Figure 5-5: Egr1 and FOXO3a in the GnRH-induced LHβ expression.

(A and B) LβT2 cells were co-transfected with 2µg LHβ-reporter and 4µg of control vector (pcDNA3.1), FOXO3a-TM, Egr1 or FOXO3a-TM+Egr1 as indicated. (C) LβT2 cells were co-transfected with 2µg dLH7- or mdpLH7(1)-reporter and 8µg of control vector (pcDNA3.1) or FOXO3a-TM. Cells were serum-starved 24 hours after transfection followed by stimulation with 1µM GnRH for 6 hours. Samples were then assayed for luciferase activity. In all panels open bars denote no stimulation and close bars denote GnRH stimulation. Data are shown as mean fold change over NS±SEM from at least 3 independent experiments. (b is significantly different from a, and c is significantly different from a and b; P<0.05)

(1) mdpLH7-luc: -136/-29 ovine LHβ-reporter fragment with a double deletion of the two Egr1 binding sites on the proximal promoter (PP) region.
Figure 5-6: GnRH-induced LHβ-reporter activity requires the presence of FOXO3a and β-catenin.

LβT2 cells were co-transfected with 2µg of (A) LHβ- or (B) Egr1-reporter and 4µg of control vector (pcDNA3.1), FOXO3a-TM or Axin as indicated. Cells were serum-starved 24 hours after transfection followed by stimulation with 1µM GnRH for 6 hours. In all panels open bars denote no stimulation and close bars denote GnRH stimulation. Data are shown as mean fold change over NS±SEM from at least 3 independent experiments. (b is significantly different from a, c is significantly different from a, and b and d are significantly different from a, b and c; P<0.05).
Chapter Five

Figure 5-7: Schematic representation of the mouse *LHβ* and *Egr1* genes, and the primers pairs that bind to the promoter of the genes, or upstream of the promoter (control primers).

Primers corresponding to *LHβ* and *Egr1* are located in the promoter of these genes, and the control primers located at a region upstream of the promoter.

Figure 5-8: GnRH regulation of FOXO3a binding to *LHβ* and *Egr1* promoter.

The regulation of FOXO3a binding to the promoter of *LHβ* and *Egr1* in response to GnRH was measured by ChIP and quantitative RT-PCR using primers for the *LHβ* and *Egr1* promoter and primers for distal upstream region of the *LHβ* gene and *Egr1* gene. LβT2 cells were stimulated with 1μM GnRH for 6 hours. Data are shown as mean fold change over “control primers”±SEM from 3 independent experiments. (b is significantly different from a; P<0.05).
5.2.7 Immunohistochemistry of FOXOs in pituitary tissues

5.2.7.1 Optimisation of the staining for FOXO1, FOXO3a and p-FOXO3a(Ser^{253}) antibodies

Having confirmed the involvement of FOXO3a in the regulation of GnRH-induced LHβ-reporter activity in the LβT2 cells, immunohistochemistry was utilised in order to examine whether FOXO1 and FOXO3a are expressed in the pituitary. Pituitary tissues from human, rat and mouse tissues were utilised. In order to examine whether there was expression of FOXOs in these tissues, optimisation of antibodies was required, since different dilutions will be optimal for each tissue depending on the FOXO expression level. In addition, immunohistochemistry with and without an antigen retrieval step for unmasking the epitopes through pressure cooking was performed.

Immunostaining of pituitary tissues from rat and mouse showed low staining for LHβ, but no staining for FOXO1 and FOXO3a (FOXO1 and FOXO3a antibody with and without antigen retrieval used at the following dilutions: 1:20, 1:500, 1:1,000, 1:5,000 and 1:10,000).

Immunostaining of pituitary tissues from adult human was also performed. FOXO1, FOXO3a and p-FOXO3a(Ser^{253}) antibodies in serial dilutions of 1:10, 1:50, 1:200, 1:1,000 were used showing very low staining or nonspecific background with antigen retrieval, while without antigen retrieval, specific and clear staining for all of the above serial antibody dilutions was not observed. However, immunostaining showed expression of FOXO1 and FOXO3a (and localisation of p-FOXO3a(Ser^{253})) with antibody dilutions 1:100, 1:20 and 1:100 respectively with antigen retrieval.
For the tyramide double-staining detection method, tissues were stained with a series of dilutions of 1:400, 1:600 and 1:800 for FOXO1, FOXO3a and p-FOXO3a(Ser\(^{253}\)) antibodies. The 1:800 dilution was found to be the optimal dilution for all three antibodies. Next, the tissues were double-stained with the second primary antibody (LHβ) at dilutions of 1:200, 1:500 and 1:1000. The optimal dilution for this antibody was 1:200 for double-staining with FOXO1 and p-FOXO3a(Ser\(^{253}\)), and 1:500 for double-staining with FOXO3a. Only satisfactory staining images are presented in this Chapter with optimal antibody dilutions.

5.2.7.2 Adult human gonadotropes express FOXO1 and FOXO3a

Having confirmed the involvement of FOXO3a in the regulation of LHβ promoter activity in response to GnRH in LβT2 cells, immunohistochemistry was used to examine the expression of FOXO1 and FOXO3a in the pituitary of adult human males. Immunohistochemical staining throughout the anterior pituitary revealed broad expression of FOXO1 and FOXO3a. FOXO1 was located predominantly in the cytoplasm, whereas FOXO3a was located exclusively in the nucleus (Fig 5-9). To localise FOXO1 and FOXO3a to gonadotropes, double immunofluorescent staining for LH and FOXO1 or FOXO3a was performed. In cells positive for LHβ (i.e. gonadotropes), FOXO3a was found to be expressed in the nucleus (Fig. 5-10A) whereas FOXO1 was mainly expressed in the cytoplasm (Fig. 5-10B). The control sections showed no immuno-reactivity.
Figure 5-9: FOXO1 and FOXO3a expression and immuno-localisation in adult human pituitary tissue.

Immunohistochemistry in human pituitary tissue. FOXO3a (brown) expressed mainly in the nucleus (purple), and FOXO1 (brown) is expressed mainly in the cytoplasm. Negative control is used to evaluate non-specific binding.
A.

Confocal dual immunofluorescence images of adult human pituitary sections immunoreactive for (A) FOXO1 or (B) FOXO3a (Red fluorescence, TSA-Cy3) and LHβ (green fluorescence, TSA-fluorescence). Nuclei are stained in blue by DAPI. Arrows indicate the gonadotrope cells that also co-express (A) FOXO1 or (B) FOXO3a.

B.

Figure 5-10: FOXO1 and FOXO3a expression and immuno-localisation in adult human pituitary gonadotropes.
5.2.8 GnRH-induced FOXO3a phosphorylation

Having shown that FOXO3a is expressed in human pituitary tissues, phosphorylation of FOXO3a in response to GnRH was examined in LβT2 gonadotrope cells. Firstly, immunohistochemical staining revealed phosphorylated FOXO3a in human pituitary gonadotropes (Fig 5-11A). p-FOXO3a(Ser253) was localised both in the nucleus and in cytoplasm (Fig. 5-11A). In cells positive for LHβ (i.e. gonadotropes) p-FOXO3a(Ser253) was found to be similarly expressed (Fig. 5-11B).

Next, immunofluorescence confocal microscopy was used in order to determine visually whether p-FOXO3a(Ser253) was redistributed between nucleus and cytoplasm in LβT2 gonadotrope cells in response to GnRH. p-FOXO3a(Ser253) was localised in both the nucleus and the cytoplasm, and no significant translocation was observed in response to GnRH. Phosphorylation of FOXO3a at Ser253 was increased following 5 minutes treatment with 1µM GnRH. However, after 10 and 60 minutes of treatment, levels of p-FOXO3a(Ser253) returned to non-stimulated levels (Fig. 5-12A). This was consistent with the results of a Western Blot analysis, where phosphorylation of FOXO3a at Ser253 was increased following 5 minutes treatment with 1µM GnRH. Western Blot analysis demonstrated that phosphorylation of FOXO3a at Ser253 was also increased following 30 minutes treatment with 1µM GnRH (Fig. 5-12B).
Figure 5-11: p-FOXO3a(Ser^{253}) staining in gonadotropes.

(A) Immunohistochemistry in human anterior pituitary p-FOXO3a(Ser^{253}) (brown) is expressed in the nucleus (purple) and in the cytoplasm. Negative control is used to evaluate non-specific binding. (B) Co-localisation of p-FOXO3a Ser^{253} in human anterior pituitary tissue. p-FOXO3a(Ser^{253}) is indicated in red, LHβ is green and nuclei are stained in blue by DAPI. Arrows indicate gonadotropes that also express p-FOXO3a(Ser^{253}).
Figure 5-12: FOXO3a phosphorylation in LβT2 cells.

(A) LβT2 cells were seeded into eight-well chamber slides and serum-starved (24h) before stimulation with 1μM GnRH for indicated times, or left untreated (NS). Cells were fixed and immuno-cytochemistry performed. Detection of the immuno-reactive proteins was achieved using Alexafluor (488nM, green) conjugate for p-FOXO3a(Ser253). The merged image also shows DAPI staining (red) and co-localisation as yellow. (B) Western Blot analysis for p-FOXO3a(Ser253), in LβT2, which were treated with 1μM GnRH for the indicated times, or left untreated (NS). Blot is representative of 3 independent experiments.
5.3 DISCUSSION

In the present study the expression of FOXO1 and FOXO3a in LβT2 cells and in human pituitary tissue was demonstrated. A role for FOXO3a in mediating GnRH-induced LHβ and Egr1 expression was shown. ChIP assay results led to speculation that FOXO3a binds to the LHβ promoter, but it is released from the Egr1 promoter, following GnRH treatment. Overall, the results from this Chapter suggested that GnRH targets FOXO3a activity to regulate LHβ expression directly, through the binding of FOXO3a to the LHβ promoter in complex with co-factors, and indirectly through the release of FOXO3a from the Egr1 promoter, on which it probably acts as a repressor.

The expression of FOXO1 and FOXO3a in the human pituitary, as well as expression of both transcription factors in human pituitary gonadotropes was demonstrated using double immunofluorescence confocal microscopy (Fig 5-10). Of particular interest was the differential localisation patterns of the two FOXOs in human pituitary gonadotropes; FOXO3a was found exclusively in the nucleus and FOXO1 in the cytoplasm. The co-localisation of FOXO3a to the nucleus was pertinent as this was the factor that influenced LHβ and Egr1 expression, and was shown to bind to the promoters of these genes. In contrast, FOXO1 was localised to the cytoplasm and had no effect on LHβ and Egr1 expression.

Several lines of evidence that GnRH-induced LHβ expression is mediated by FOXO3a were provided. First, over-expression of FOXO3a up-regulated LHβ expression (Fig. 5-1). Second, in FOXO3a knock-down LβT2 cells, the basal level of LHβ expression was lower compared to control cell (Fig 5-2B). Third, GnRH
receptor activation in the FOXO3a knock-down LβT2 cells did not lead to an increase in LHβ expression (Fig 5-2C). On the contrary, LHβ expression was reduced compared to that of control cells. These findings support the proposal that FOXO3a is an important mediator for GnRH-induced LHβ expression.

The involvement of FOXO3a in modulating physiological LH levels was revealed in a study by Castrillon et al. (2003). In particular, FOXO3a-/- mice exhibited serum levels of LH which were higher compared to the control FOXO3a+/+ mice (Castrillon et al., 2003). Since the FOXO3a knock-down was not specific to the pituitary, and would therefore be expected to affect the biology of multiple tissues including other reproductive tissues, there are two possible explanations for this observation. Either, FOXO3a normally represses LH production in the pituitary gonadotrope, or FOXO3a is involved in some form of feedback regulation from the ovary or testis. Although over-expression or knocking-down of FOXO3a in LβT2 cells in the present study resulted in a direct effect on LHβ-subunit expression, it is unclear what the mechanistic role of FOXO3a is in regulating LH levels in vivo. Furthermore, FOXO3a regulation of LHβ expression in LβT2 cells is restricted to the GnRH effect, while in the in vivo situation, this effect is also supplemented by a number of physiological factors such as steroid and peptide hormones affecting gonadotropes (Ooi et al., 2004). It is known that gonadotrope cells only comprise 5-15% of the cells in anterior pituitary (Ooi et al., 2004), and that there are four other types of secretory cell types present in the anterior pituitary which secrete factors that may effect gonadotrope cell function (Thackray et al., 2010).
Chapter Five

The study by Castrillon et al. (2003) also demonstrated that FOXO3a−/− female mice were viable and showed age-dependent infertility without histological abnormalities of the pituitary tissue (Castrillon et al., 2003). They further reported that FOXO3a is not required for gonadotropin responsiveness in ovarian follicles (Castrillon et al., 2003). These data, in combination with the findings from this Chapter, that GnRH can regulate LHβ expression via a FOXO3a-mediated mechanism, may suggest that the infertility in the FOXO3a−/− mice could be due to the inability of GnRH, through FOXO3a regulation, to optimally increase LHβ expression or the release of mature LH from the gonadotropes leading to reduced serum LH levels.

The present data demonstrated that GnRH treatment stimulates the transcriptional activity of FOXO3a, but not of FOXO1 to regulate LHβ expression (Fig. 5-1). This is consistent with the results from Chapter three in which GnRH was shown to regulate the transcriptional activity of FOXO3a but not FOXO1 in the heterologous SCL60 cell system. Since both FOXO1 and FOXO3a share common DNA binding sites, one could argue that they could mediate expression from the same promoters (Burgering, 2008). However, GnRH-induced LHβ-subunit expression is mediated by FOXO3a, and not by FOXO1, suggesting that GnRH may regulate these two transcription factors via distinct signalling pathways. Alternatively, the exclusive localisation of FOXO1 to the cytoplasm of gonadotrope cells may not allow FOXO1 mediation of GnRH-induced LHβ expression.

Having demonstrated that GnRH regulates LHβ expression by targeting FOXO3a activity, the mechanism by which this occurs was further investigated. Following the finding that GnRH-induced Egr1 expression was regulated in part by FOXO3a, a
number of possible mechanisms related to the regulation of LHβ expression were examined. Firstly, whether FOXO3a regulates the expression of LHβ or Egr1 or both by direct binding to their promoters was examined. Secondly, whether FOXO3a could regulate the LHβ promoter independently of Egr1 in response to GnRH was investigated, and finally, whether FOXO3a regulates LHβ gene expression in co-operation with other co-factors was assessed. Results from the ChIP assay suggested that upon GnRH stimulation, FOXO3a binds to the LHβ promoter, increasing its transcriptional activity (Fig. 5-8). In contrast, FOXO3a appears to be released from the Egr1 promoter in response to GnRH. These findings suggested that FOXO3a acts as an enhancer at the LHβ promoter and as a repressor at the Egr1 promoter. The latter was further supported by over-expression of FOXO3a-TMΔDB, which led to an increase in Egr1-reporter activity compared to control cells. This may also indicate that FOXO3a acts synergistically with other co-factors on the Egr1 promoter. The reduction of Egr1-reporter activity by co-expression of FOXO3a-TMΔDB may indicate that FOXO3a-TMΔDB competes with endogenous FOXO3a for binding with its functional co-factors (Fig 5-4). Thus, FOXO3a-TMΔDM release from the LHβ promoter in response to GnRH would result in the sequestration of co-factors that are essential for maximal Egr1 gene expression.

Having demonstrated in a time-course treatment with GnRH for Egr1-reporter activity, with over-expression of FOXO3a-WT and FOXO3a-TM, that Egr1 expression increases over 4 hours but decreases thereafter (Fig. 5-3), another possible mechanism with regards to the role of FOXO3a on Egr1 gene expression could be revealed. In particular, GnRH treatment up-regulates Egr1 gene expression,
possibly by binding of FOXO3a to the Egr1 promoter over 4 hours of treatment with GnRH. Thereafter, FOXO3a is released from the Egr1 promoter, and Egr1 protein binds to the LHβ promoter inducing LHβ expression.

FOXO3a regulates the GnRH-induced LHβ expression, however this regulation is partly dependent on GnRH-induced Egr1 expression. To assess the role of Egr1 in GnRH-induced LHβ expression via FOXO3a, two LHβ-reporters, the dLH7-reporter (-136 to -29bp) and the mpdLH7-reporter (-136 to -29bp) were utilised (Fig. 5-5). Although the length of the dLH7 promoter (-136/-29) was about 550bp shorter than the full length LHβ promoter (-692 to -29bp), over-expression of FOXO3a led to an increased GnRH-induced LHβ expression compared to control. This suggests that the effect of FOXO3a on the LHβ promoter is restricted to the proximal promoter (PP) region (mapped within -320bp of the transcription start site) of the promoter (Maudsley et al., 2007). In addition, the result demonstrating that over-expression of FOXO3a does not significantly increase the mpdLH7-reporter activity compared with vector control confirms the previous results, that GnRH-induced LHβ expression is dependent on FOXO3a-regulated Egr1 expression. This suggests that FOXO3a is released from the Egr1 promoter in response to GnRH, up-regulating its expression level, since it acts as a repressor (Fig. 5-13). Egr1 protein then binds to the LHβ promoter, possibly as a complex with β-catenin and FOXO3a for maximal LHβ expression (Fig 5-13). Absence of FOXO3a, which binds to LHβ promoter in response to GnRH in this complex prevents maximal activity of LHβ expression.

Maximal activity of LHβ expression requires the presence of SF1, Egr1 and β-catenin on the LHβ promoter (Salisbury et al., 2007). Therefore, the involvement of
FOXO3a in this regulation by both direct binding on the \(LH\beta \) and \(Egr1 \) promoters, and by interaction with other co-factors was suggested. A study using a yeast two-hybrid system by Essers et al. (2005) demonstrated that \(\beta \)-catenin interacts with FOXO3a (Essers et al., 2005). Whether or not FOXO3a acts together with, or independently of \(\beta \)-catenin at the \(LH\beta \) promoter was examined. Over-expression of Axin, which promotes degradation of cellular \(\beta \)-catenin levels, reduced GnRH-induced \(LH\beta \) expression; however co-expression of Axin with FOXO3a did not restore the GnRH-induced \(LH\beta \)-reporter activity that could be obtained by over-expression of FOXO3a alone.

Overall, results presented in this Chapter implicate FOXO3a in the regulation of GnRH-induced \(LH\beta \)-subunit expression, in addition to the previously published roles of \(Egr1 \), SF1, PITX1 and \(\beta \)-catenin. In summary, GnRH treatment up-regulates \(Egr1 \) gene expression, possibly by releasing FOXO3a from the \(Egr1 \) promoter. Thereafter, \(Egr1 \) protein binds to the \(LH\beta \) promoter inducing \(LH\beta \) expression. GnRH treatment also induces FOXO3a localisation to the \(LH\beta \) promoter. FOXO3a and \(Egr1 \) act synergistically on the \(LH\beta \) promoter for maximal \(LH\beta \) gene expression. In addition, FOXO3a-mediated GnRH-induced \(LH\beta \) maximal expression appears to require \(\beta \)-catenin co-operativity (Fig. 5-13).
Figure 5-13: Model of LHβ and Egr1 gene regulation by FOXO3a in response to GnRH.

The results from this chapter suggest that in the absence of GnRH treatment, FOXO3a represses Egr1 expression. In response to GnRH treatment, FOXO3a appears to be released from the Egr1 promoter, resulting in increased Egr1 gene expression; Egr1 then binds to the LHβ promoter to drive LHβ expression. A complex of FOXO3a, Egr1 and β-catenin on the LHβ promoter is required for maximal LHβ gene expression.
CHAPTER SIX

CONCLUDING DISCUSSION
6.1 THESIS MOTIVATION

GnRH-Rs belong to the Rhodopsin-like family of the GPCRs and are activated following the binding of GnRH (Millar and Newton, 2010). GnRH-R activation targets a variety of signalling pathways that mediate important cellular processes. Among these are GnRH-induced cell-growth inhibition in cancer-derived cell lines (Cheng and Leung, 2005; Everest et al., 2001; Franklin et al., 2003; Kraus et al., 2006; Limonta et al., 2003; Maudsley et al., 2004; Miles et al., 2004; Morgan et al., 2008), and GnRH-induced LH and FSH synthesis and secretion in pituitary gonadotropes (Naor, 2009). The importance of GnRH-induced cell-growth inhibition is easily understood by the fact that GnRH analogues are currently used for cancer treatment (Bifulco et al., 2004; Carr et al., 1993; Hofstra et al., 1999; Klijn and de Jong, 1982; Mizutani et al., 1998; Tolis et al., 1982). In addition, because GnRH plays a central role in reproduction, the regulation of gonadotropin production by GnRH analogues is used for treatment of infertility (White et al., 2008b).

Although both of the aforementioned cellular processes have been extensively described, the mechanisms and signalling pathways that mediate them are not yet completely understood. When the current study was initiated, a role for FOXO transcription factors in regulating GnRH-induced cell-growth inhibition and gonadotropin synthesis had not been proposed. Nevertheless, the important role of FOXOs in cell-cycle regulation and induction of apoptosis is well-documented (Fu and Tindall, 2008). The involvement of FOXOs in cell proliferation has been shown to be mediated by the PI3K/Akt signalling pathway, a known GnRH-targeted
signalling pathway. These facts provided the basis for pursuing the research described in this thesis.

6.2 THESIS OBJECTIVES

Since no previous studies had described the regulation of FOXOs by GnRH-R activation, the initial objective in Chapter three was to examine whether GnRH regulates FOXO activity. Thereafter, the mechanisms by which FOXO regulation is mediated following GnRH-R activation were investigated. The regulation of FOXO activity by post-translational modifications and the action of co-factors is well-established. Therefore, the role of such modifications (phosphorylation and acetylation), and the effect of β-catenin on FOXO activity in response to GnRH, were also examined in Chapter three. In addition, the regulation of FOXO-target genes following GnRH-R activation was assessed, and a cell-cycle analysis of GnRH-R-expressing cells was performed.

In complementary studies presented in Chapter four, a role for FOXO3a in mediating GnRH-induced cell-growth inhibition was assessed. GnRH-induced cell-growth inhibition pathways, and the diverse factors that mediate them have previously been examined by many research groups (Cheng and Leung, 2005; Everest et al., 2001; Franklin et al., 2003; Kraus et al., 2006; Limonta et al., 2003; Maudsley et al., 2004; Miles et al., 2004; Morgan et al., 2008). By generating a FOXO3a knock-down cell line, the potential importance of FOXO3a in regulating cell-growth rate and GnRH-induced cell-growth inhibition was investigated.
Finally, the mechanisms that mediate the synthesis of LHβ and FSHβ in gonadotropes were further explored in Chapter five. The role of transcription factors and co-factors, such as Egr1, SF1, Sp1 and more recently β-catenin in regulating LHβ promoter activity are now fairly well-characterised (Thackray et al., 2010). Recent studies highlighting the co-operativity between β-catenin and FOXOs in mediating gene expression (Essers et al., 2005; Hoogeboom et al., 2008; Kwon et al., 2010), suggested a potential role for FOXOs in regulating gonadotrope function. The expression of FOXOs in gonadotropes was assessed by double immunostaining in human pituitary tissues, and the involvement of FOXOs in regulating LHβ, FSHβ and GnRH-R promoter activity in response to GnRH was examined.

6.3 Conclusions

In Chapter three, the regulation of FOXO3a activity following GnRH treatment was demonstrated. This novel regulation is described for the first time in this thesis using the SCL60 model cell line. The mechanism by which GnRH regulates FOXO activity appears to link two known signalling pathways; GnRH-activated PI3K/Akt signalling and growth factor-activated PI3K/Akt-induced regulation of FOXO activity. Further exploration of the mechanism of this regulation demonstrated FOXO3a phosphorylation at an Akt phosphorylation site (Ser253), and its subsequent translocation from nucleus to the cytoplasm. Since GnRH treatment promoted the phosphorylation and activation of Akt (phosphorylation at Thr308), it remains unclear why GnRH does not target phosphorylation of FOXO3a at the other Akt phosphorylation sites (Ser315 and Thr32), or indeed phosphorylation of FOXO1 and FOXO4 Akt sites. This could be explained by the observation that GnRH was unable
to promote the phosphorylation of Akt at both sites (Thr^{308} and Ser^{473}), which is apparently required for its full activation. By utilising a panel of pharmacological inhibitors and dominant-negative mutants, the pre-dominant signalling pathway by which GnRH regulates FOXO3a activity was identified. GnRH does not regulate FOXO transcriptional activity via a PI3K-dependent pathway, but instead via another Akt- and IKK-dependent pathway. It is not clear whether these mediators are part of the same signalling pathway, or how Akt is activated by a PI3K-independent pathway.

One of the unexpected findings in this chapter was that FOXO3a de-phosphorylation by GnRH over 24 hours of treatment was not the dominant mechanism regulating FOXO3a transcriptional activity. This arises from the observation that although GnRH targets FOXO3a de-phosphorylation over 24 hours of treatment, GnRH treatment increased FOXO3a transcriptional activity by the same fold in cells co-transfected with either FOXO3a-WT, or FOXO3a-TM that cannot be phosphorylated by Akt, clearly indicating that phosphorylation is not the dominant post-translational modification that regulates FOXO3a transcriptional activity following GnRH treatment. A further important finding presented in this chapter was the correlation of the expression profile of FOXO-target genes (*FasL, GADD45, p21Cip and p27Kip1*) in response to GnRH, with the cell-cycle profile of SCL60 cells, which was assessed by a cell-cycle analysis.

Having demonstrated that GnRH regulates FOXO3a transcriptional activity in **Chapter three**, a FOXO3a knock-down cell line was generated in order to examine the role FOXO3a in GnRH-induced cell-growth inhibition. The results in **Chapter**
three suggested that FOXO3a protects cells from GnRH-induced cell-growth inhibition. Cell-cycle analysis of FOXO3a knock-down cells revealed a negative role for FOXO3a in GnRH-induced cell-cycle arrest and apoptosis, in which FOXO3a mediates G2 phase arrest and apoptosis, probably by regulating GADD45 and FasL gene expression respectively.

The impact of GnRH regulation on FOXO3a transcriptional activity in the gonadotropes was assessed in Chapter five. In particular, a role for FOXO3a in GnRH-induced LHβ-subunit expression was investigated. Initially, expression of FOXO1 and FOXO3a was demonstrated in gonadotropes in human pituitary tissue. Although the role of FOXO1 in gonadotropes remains unclear, FOXO3a was found to regulate LHβ expression. Interestingly, in this study, the role of FOXO3a as a transcription factor on the Egr1 promoter was also demonstrated. Expression of the Egr1 gene, and binding of Egr1 to the promoter of LHβ, is required for maximal LHβ expression. Taken together, the results presented in Chapter five demonstrate the involvement of FOXO3a in LHβ expression, by both direct binding on the LHβ and Egr1 promoters, and by interaction with other co-factors such as β-catenin.

6.4 FUTURE RESEARCH AND PERSPECTIVES

Work presented in this thesis described for the first time the regulation of FOXO3a transcriptional activity by GnRH-R activation. In addition, this thesis assessed the biological significance of this regulation. By investigating the role of the FOXO3a in GnRH-induced cell-growth inhibition and GnRH-induced synthesis of the
gonadotropins, new opportunities arise for further investigation of the current findings, or for exploring novel applications of these findings.

The regulation of FOXO3a activity by GnRH was demonstrated in Chapter three. By utilising pharmacological inhibitors, the signalling pathway that mediates the GnRH-induced FOXO3a transcriptional activity was characterised. Akt and IKK have been shown to mediate this effect, whereas this regulation appears to be independent of PI3K. The results demonstrated that PDK1 targets phosphorylation and subsequent activation of Akt in response to GnRH. Although several of studies have previously demonstrated PI3K-independent activation of Akt via a variety of mechanisms (Vanhaesebroeck and Alessi, 2000), further investigation in order to determine alternative mechanisms for PDK1 or Akt activation in response to GnRH stimulation would be of great interest, and would highlight a novel signalling modality.

By generating a FOXO3a knock-down cell line, the role of FOXO3a in GnRH-induced cell-growth inhibition was examined in vitro in Chapter four. Generating other FOXO3a knock-down stable cell lines using cancer-derived cell lines from human tumours that endogenously express GnRH receptor would be important to confirm the role of FOXO3a in the GnRH-induced cell-growth inhibition. The main advantage by using cancer-derived cell lines in order to examine the role of FOXO3a in GnRH-induced cell-growth inhibition, is that these cell systems are more relevant to the pathophysiological situations that exist in vivo.

In addition to these proposed in vitro assays, tumour xenograft studies could be used to complement the in vitro analysis. The FOXO3a knock-down cell lines (either
SCL60 or other cancer-derived cell lines) could be implanted into nude mice, and the size of the tumour following GnRH treatment then measured to enable confirmation of the *in vitro* data. However, in an *in vivo* experiment other factors could impact directly or indirectly on the GnRH-induced antiproliferative effect. Nevertheless, the *in vivo* experiments would mimic the conditions that exist in an organism in contrast to an *in vitro* cell viability assay.

The role of FOXO3a in LHβ, but not in FSHβ, expression was demonstrated in Chapter five, by chronic treatment with GnRH. In contrast, FOXO1 had no effect on LHβ and FSHβ expression following chronic GnRH treatment. A potential issue that should be highlighted from this approach, is the fact that in this study gonadotropin expression is stimulated by continuous GnRH administration instead of pulsatile treatment. The frequency of GnRH release influences the differential regulation of LHβ and FSHβ expression in gonadotropes of the pituitary, since low GnRH pulses (>120-240min) favour the expression of FSH, while high pulses (<1hour) favour the expression of LH (Ferris and Shupnik, 2006). Thus, treatment with low or high GnRH pulses could reveal additional roles for FOXO1 and FOXO3a in gonadotropin synthesis. In addition, having proposed in Chapter five that FOXO3a binds to LHβ promoter, but it is released from the Egr1 promoter following continuous GnRH treatment, a possible role of FOXO3a in how different pulsatile GnRH treatments influence the expression of LHβ and FSHβ could be also examined by performing ChIP assays in time-course intervals with pulsatile GnRH treatment.

Finally, having demonstrated that GnRH-R activation regulates the transcriptional activity of FOXO3a, novel applications based on this regulation could be
investigated. Of interest are tissues and cell types that express both FOXOs and high levels of GnRH-Rs. Thus far, expression of both FOXOs and GnRH-R has been demonstrated in placenta (Lappas et al., 2010), in gonadotropes in human pituitary (see Chapter five), in prostate cancer cells (unpublished data) and in the endometrium (Rudd et al., 2007; Ward et al., 2008). In the latter case, the regulation of the transcriptional activity of progesterone and estrogen receptors via FOXO was demonstrated (Rudd et al., 2007). Thus, a possible impact of GnRH on the human endometrium by targeting FOXO activity, is interesting and worth further investigation. Taken together, studies detailed in this thesis may provide the basis for future identification of new FOXO targets and functions in different reproductive cell types.
APPENDIX 7.1: Supplier Details

<table>
<thead>
<tr>
<th>Supplier</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abgene</td>
<td>Epson, UK</td>
</tr>
<tr>
<td>Active Motif</td>
<td>Rixensart, Belgium</td>
</tr>
<tr>
<td>ATCC</td>
<td>Teddington, UK, [http://www.atcc.org/]</td>
</tr>
<tr>
<td>BD Biosciences</td>
<td>New Jersey, USA</td>
</tr>
<tr>
<td>BMG Lab technology</td>
<td>Aylesbury, UK</td>
</tr>
<tr>
<td>BioRad Laboratories</td>
<td>Hertfordshire, UK</td>
</tr>
<tr>
<td>Carl Zeiss</td>
<td>New York, USA</td>
</tr>
<tr>
<td>Cell Signalling Technologies</td>
<td>Hertfordshire, UK</td>
</tr>
<tr>
<td>GE Healthcare</td>
<td>Buckinghamshire, UK</td>
</tr>
<tr>
<td>Graph Prism Software Inc.</td>
<td>San Diego, USA</td>
</tr>
<tr>
<td>Immunotech</td>
<td>Marseilles, France</td>
</tr>
<tr>
<td>Invitrogen</td>
<td>Paisley, UK</td>
</tr>
<tr>
<td>Labsystem</td>
<td>Victoria, Australia</td>
</tr>
<tr>
<td>Novo Laboratory</td>
<td>WA, USA</td>
</tr>
<tr>
<td>Perkin Elmer</td>
<td>Cambridgeshire, UK</td>
</tr>
<tr>
<td>Promega</td>
<td>Madison, USA</td>
</tr>
<tr>
<td>Qiagen</td>
<td>Crawley, UK</td>
</tr>
<tr>
<td>Roche</td>
<td>Welwyn, Garden City, UK</td>
</tr>
<tr>
<td>Santa Cruz Biotechnology</td>
<td>Heidelberg, Germany</td>
</tr>
<tr>
<td>Sigma</td>
<td>Dorset, UK</td>
</tr>
</tbody>
</table>

Table 7-1: List of Suppliers details
Figure 7-1: Immunoblots of GnRH-induced FOXO3a and FOXO1 phosphorylation in SCL60 cells.

SCL60 cells were serum-starved 24 hours before treatment with 1µM GnRH for the indicated times, or left untreated (NS). Levels of (A) p-FOXO3a(Ser^{318/321}), (B) p-FOXO1(Ser^{256}), (C) p-FOXO4(Ser^{193}), (D) p-FOXO1(Ser^{196}) were analysed using the appropriate antibodies. Data are shown as mean fold change over NS±SEM from at least 3 independent experiments.
Figure 7-2: Immunoblots of GnRH-induced FOXO3a phosphorylation in LNCaP prostate cancer cells.

LNCaP cells were serum-starved 24 hours before treatment with 1µM GnRH for the indicated times, or left untreated (NS). Level of p-FOXO3a(Ser²⁵³) were analysed using the appropriate antibody. Data are shown as mean fold change over NS±SEM from at least 3 independent experiments. (b is significantly different from a; P<0.05)
Figure 7-3: p-FOXO1(Ser^{256}) distribution between nucleus and cytoplasm following GnRH stimulation in SCL60 cells.

Immunofluorescence confocal microscopy was performed to visualise the redistributed of p-FOXO1(Ser^{256}) (green) between the nucleus and cytoplasm following 1µM GnRH treatment at the time intervals as indicated. DAPI (red) is a marker for nucleus and co-localisation is indicated as yellow.
Figure 7-4: The effect of chemical inhibitors on GnRH-targeted FOXO3a phosphorylation at Ser^{253}.

SCL60 cells were serum-starved 24 hours before cells were pre-treated for 30 minutes with: PLC inhibitor ET-18-OCH3 (20µM), PKC inhibitors Ro-31-8220 (100nM) and Go9638 (21µM), GnRH-I antagonist Cetrorelix (1µM), c-Src inhibitor PP2 (5µM), EGFR inhibitor AG1478 (100nM), MEK inhibitor PD98059 (20µM) and PKA inhibitor H89 (10µM), followed by treatment for 10 minutes with 1µM GnRH. Blots are representative of 3 independent experiments.
Figure 7-5: The role of FOXO1 in GnRH-induced GADD45-reporter activity.
SCL60 cells were transiently transfected with 1µg of GADD45-reporter and 9µg of control vector (pcDNA3.1) or FOXO1-WT or FOXO1-TM. Cells were treatment with 1µM GnRH for 24 hours. Samples were then assayed for luciferase activity. Data are shown as mean fold change over NS±SEM from at least 3 independent experiments. (b is significantly different from a, and c is significantly different from a and b; P<0.05)

Figure 7-6: The role of PI3K, PKC and PLC in the GnRH-induced GADD45-reporter activity.
SCL60 cells were transiently transfected with 1µg of GADD45-reporter and 9µg of control vector (pcDNA3.1) or FOXO3a-TM. Cells were serum-starved 16 hours before they were pre-treated for 30 minutes with 100nM PI3K inhibitor (Wortmannin), 100nM PKC inhibitor (Ro-31-8220) or 20µM PLC inhibitor (ET-18-OCH3). Thereafter were treated with 1µM GnRH for 24 hours. Samples were then assayed for luciferase activity. Data are shown as mean fold change over NS±SEM from at least 3 independent experiments. (b is significantly different from a; P<0.05)
Figure 7-7: The role of FOXO3a in FOXO-target genes mRNA expression following GnRH treatment.

SCL60 cells were transfected with 10µM of FOXO3a-TM or FOXO3a-TMΔDB. Relative mRNA expression of (A) p21Cip1, (B) p27Kip1 and (C) BIM in cells treated with 1µM D-Trp⁶-GnRH over the indicated time intervals or vehicle (NS) was determined by quantitative RT-PCR analysis. Data are shown as mean fold over NS±SEM over 24 hour treatment from at least 3 independent experiments.
Figure 7-8: Transduction efficiency of lentivirus in SCL60 cells.
SCL60 cells were transduced with GFP-tagged lentivirus. Transduction was performed with different ratios of virus to cells (1:1, 2:1 and 5:1) and cells without transduction with lentivirus were used as control. Polybrene was also used.
Figure 7-9: LβT2 transient FOXO3a knock-down cells.

LβT2 cells were transduced with lentivirus-delivering shRNA against FOXO3a (FOXO3a knock-down cells) or with lentivirus-delivering scrambled shRNA (control cells). The following day viruses were removed and cells were incubated with fresh complete medium. Total FOXO3a protein levels were measured 1, 2, 4 and 5 days after transduction by Western Blot analysis.
Figure 7-10: qRT-PCR calculations for ChIP assay.

Column 1: Calculation was done as for the real-time PCR analysis. Column 2: Value that obtained from the division of the value obtained by using the IgG antibody to the value obtained by using the FOXO3a antibody (with or without GnRH treatment). In each case this value (obtained by using the FOXO3a antibody) is normalised with the value obtained by using the IgG antibody (IgG antibody is using as a control and its not affected by GnRH treatment). Column 3: Value that obtained from the division of the value obtained from treated cells with GnRH to the value obtained from the un-treated cells. Column 4: Value that obtained from the division of the value obtained by using primers against the LH or Egr1 promoter to the value obtained by using control primers.
APPENDIX 7.3: Antibodies

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>FoxO1 (76E10)</td>
<td>Cell Signaling</td>
</tr>
<tr>
<td>FoxO3a</td>
<td>Cell Signaling</td>
</tr>
<tr>
<td>Phospho-FoxO3a (Ser253)</td>
<td>Cell Signaling</td>
</tr>
<tr>
<td>Phospho-FoxO3a (Ser318/321)</td>
<td>Cell Signaling</td>
</tr>
<tr>
<td>Phospho-FoxO4 (Ser193)</td>
<td>Cell Signaling</td>
</tr>
<tr>
<td>FoxO4</td>
<td>Cell Signaling</td>
</tr>
<tr>
<td>Phospho-FoxO1 (Ser256)</td>
<td>Cell Signaling</td>
</tr>
<tr>
<td>Phospho-FoxO1 (Ser319)</td>
<td>Cell Signaling</td>
</tr>
<tr>
<td>Actin (I-19): sc-1616</td>
<td>Santa Cruz Biotechnology, Inc</td>
</tr>
<tr>
<td>Cleaved Caspase-9 (Asp330)</td>
<td>Cell Signaling</td>
</tr>
<tr>
<td>p-FADD (Ser191)</td>
<td>Cell Signaling</td>
</tr>
<tr>
<td>LHβ</td>
<td>Novo Laboratories</td>
</tr>
</tbody>
</table>

Table 7-2: List of antibodies
APPENDIX 7.4: Abbreviation of amino acids

<table>
<thead>
<tr>
<th>Amino acid</th>
<th>Abbreviation</th>
<th>One letter code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanine</td>
<td>Ala</td>
<td>A</td>
</tr>
<tr>
<td>Arginine</td>
<td>Arg</td>
<td>R</td>
</tr>
<tr>
<td>Asparagine</td>
<td>Asn</td>
<td>N</td>
</tr>
<tr>
<td>Aspartic acid</td>
<td>Asp</td>
<td>D</td>
</tr>
<tr>
<td>Cysteine</td>
<td>Cys</td>
<td>C</td>
</tr>
<tr>
<td>Glutamine</td>
<td>Gln</td>
<td>Q</td>
</tr>
<tr>
<td>Glutamic acid</td>
<td>Glu</td>
<td>E</td>
</tr>
<tr>
<td>Glycine</td>
<td>Gly</td>
<td>G</td>
</tr>
<tr>
<td>Histidine</td>
<td>His</td>
<td>H</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>Ile</td>
<td>I</td>
</tr>
<tr>
<td>Leucine</td>
<td>Leu</td>
<td>L</td>
</tr>
<tr>
<td>Lysine</td>
<td>Lys</td>
<td>K</td>
</tr>
<tr>
<td>Methionine</td>
<td>Met</td>
<td>M</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>Phe</td>
<td>F</td>
</tr>
<tr>
<td>Proline</td>
<td>Pro</td>
<td>P</td>
</tr>
<tr>
<td>Serine</td>
<td>Ser</td>
<td>S</td>
</tr>
<tr>
<td>Threonine</td>
<td>Thr</td>
<td>T</td>
</tr>
<tr>
<td>Tryptophan</td>
<td>Try</td>
<td>W</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>Tyr</td>
<td>Y</td>
</tr>
<tr>
<td>Valine</td>
<td>Val</td>
<td>V</td>
</tr>
</tbody>
</table>

Table 7-3: Amino acid abbreviations and one letter codes.
APPENDIX 7.5: Constructs

Insert size (bp): 2000
Species of gene(s): M. musculus (mouse)

Insert size (bp): 1700
Species of gene(s): M. musculus (mouse)
Relevant mutations/deletions: Thr^{24}Ala, Ser^{25}Ala, Ser^{316}Ala
Appendices

Insert size (bp): 2038
Species of gene(s): H. sapiens (human)

Relevant mutations/deletions: Thr32Ala, Ser253Ala, Ser315Ala
Insert size (bp): 2038
Species of gene(s): H. sapiens (human)
Relevant mutations/deletions: Thr³²Ala

Insert size (bp): 2038
Species of gene(s): H. sapiens (human)
Relevant mutations/deletions: Ser²⁵³Ala
Appendices

Insert size (bp): 2038
Species of gene(s): H. sapiens (human)
Relevant mutations/deletions: Ser^{315}Ala

Insert size (bp): Unknown
Species of gene(s): H. sapiens (human)
Relevant mutations/deletions: Thr^{32}Ala, Ser^{253}Ala, Ser^{315}Ala, delta CT
Appendices

<table>
<thead>
<tr>
<th>Insert size (bp):</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species of gene(s):</td>
<td>H. sapiens (human)</td>
</tr>
<tr>
<td>Relevant mutations/deletions:</td>
<td>delta CT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Insert size (bp):</th>
<th>1800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species of gene(s):</td>
<td>H. sapiens (human)</td>
</tr>
<tr>
<td>Relevant mutations/deletions:</td>
<td>Thr^{32}Ala, Ser^{253}Ala, Ser^{315}Ala, delta DB</td>
</tr>
</tbody>
</table>
Appendices

Insert size (bp): 2038
Species of gene(s): H. sapiens (human)
Relevant mutations/deletions: His212R

Insert size (bp): Unknown
Species of gene(s): H. sapiens (human)
Insert size (bp): Unknown
Species of gene(s): H. sapiens (human)

Relevant mutations/deletions: His363Y, deacetylase domain mutation
Insert size (bp): 96
Species of gene(s): H. sapiens (human)
Relevant mutations/deletions: 3 copies of FHRE

randomized, double blind, placebo-controlled, crossover trial. J Clin Endocrinol Metab 76, 1217-1223.

Bibliography

gonadotropin releasing hormone type I receptor is a functional intracellular GPCR expressed on the nuclear membrane. PLoS One 5, e11489.

Tremblay, J.J., Lanctot, C., and Drouin, J. (1998). The pan-pituitary activator of transcription, Ptx1 (pituitary homeobox 1), acts in synergy with SF-1 and Pit1 and is

gonadotropin-releasing hormone receptor-mediated cell growth inhibition. Mol Endocrinol 22, 2520-2530.

