New Analysis of Ground Penetrating Radar Testing of a Mixed Railway Trackbed

R De Bold, G O’Connor, JP Morrissey & Professor MC Forde
University of Edinburgh
School of Engineering
AGB Building
The Kings Buildings
Edinburgh EH9 3JL, UK

r.de-bold@ed.ac.uk m.forde@ed.ac.uk

WORD COUNT
Actual text: 4,210 words.
Figures and tables: 13 (at 250 “words” each = 3,250 “words”).
Effective paper length: 7,460 “words”.

KEYWORDS
Railway Maintenance, GPR, ballast, testing, spent, analysis.
ABSTRACT

The overall aim of this project was to relate Ground Penetrating Radar (GPR) to ballast fouling.

The 10-year old University of Edinburgh full-scale trackbed was re-visited and the fouling of the ballast was re-calibrated following environmental changes, using the Ionescu fouling index. A series of GPR experiments were undertaken on the trackbed using a range of bowtie antennas from 500MHz to 2.6GHz. Scatter analyses of the GPR waveforms included area analyses, axis crossing analyses and inflexion point analyses. When predicting Fouling Index, a correlation coefficient greater than 0.9 was obtained by using a 500 MHz bowtie antenna in the parallel orientation in conjunction with a scan area analysis.

This paper will outline the recent work of other researchers and the detailed experimental programme at the University of Edinburgh.
INTRODUCTION

The “green agenda” combined with highway congestion has accelerated the demand for increased freight and passenger travel on the world’s railways. For example, according to a recent UK Department of Statistics publication (1) the distance travelled by UK national rail passengers has increased significantly and continuously since 1994/5 to 2006/7, from 28.7 to 46.5 billion passenger kilometres. This amount of traffic is greater than the “high forecast” predicted at the time of rail privatisation in the UK in 1997 of approximately 42 billion passenger miles by 2007 (2).

The principle objectives of this paper are to:

(a) revisit the status of the University of Edinburgh full-scale railway trackbed after ten years.

(b) relate Ground Penetrating Radar (GPR) to ballast fouling

Current State of Practice

A key component of the permanent way structure worldwide is the ballast, which supports stresses imposed upon the rails and in conjunction with the ties or sleepers, maintains their correct position. The ballast structure, featuring large voids, provides for necessary drainage of water and fouling material. Over time ballast deteriorates through a process of degradation, where the particles mechanically interact, or weather, and change shape; or, through fouling, where fine particles accumulate in the void structure. Subsoil intrusion is a major source of fouling, as are wind and waterborne sources that vary with localised environmental conditions. Such deteriorated ballast is defined as “spent” and fails to provide the drainage and mechanical functions required.

GPR scanning of ballast is starting to take over from traditional visual methods of inspection (3). This change in the maintenance regime is altering the response to ballast deterioration from a reactive one, and, consequently, cost-inefficient – to planned maintenance. This paper will look at further innovation in the interpretation of radargrams related to ballast fouling.

Principles of GPR

Ground Penetrating Radar (GPR) is a geophysical imaging method based on measuring reflected electromagnetic waves transmitted in the form of radar pulses in the microwave band of the radio spectrum (UHF/VHF frequencies). A transmitting antenna radiates pulses into the ground and a receiving antenna measures variations in the reflected signal time profile. Reflections occur as the signal moves through material interfaces between two media of differing dielectric properties.
These interface reflections give responses from which the underground structural profile can be inferred. This can be seen in Figure 1, where a diagram of a railway profile (left of diagram) is matched against a typical scan response profile (middle), and the combination of several scans produce an underground radar profile (right).

![Figure 1 Generation of a GPR profile](image)

Due to its layered nature, GPR is ideally suited for railway applications; with data being collected at high speeds (3).

GPR in Railways

Much of the work in the field of using GPR in railways has concentrated on monitoring the subsurface.

One field study found that by making the broad assumption that the velocity of signal propagation in ballast is $1.4 \times 10^8 \text{ m/s}$, that the thickness of the ballast layer could be calculated to an accuracy of 3cm. Some determination of the extent of subsoil penetration into the ballast layer could also be identified (4).
An experiment conducted at the University of Edinburgh found that signal propagation varied with the condition of the ballast: 1.73×10^8 m/s for dry clean ballast, 1.60×10^8 m/s for wet clean ballast (5% moisture content), and 1.45×10^8 m/s for dry spent ballast (5).

TRACKBED ANALYSIS

University of Edinburgh Railway Trackbed

A section of trackbed was constructed at the University of Edinburgh as part of an earlier project (2). The track is full-scale and 10m long, Figure 2. It is of uniform construction and materials used, except that there was the deliberate addition of fines in some parts to induce its “spent” nature. The track was built to British Rail Standard BR1203.

![Figure 2 Pilot-scale trackbed facility (2)](image)

Trackbed Analysis

Since construction, the test track has undergone physical changes that can be attributed to weather conditions and experimentation. It was necessary to undertake a full analysis of the ballast condition by means of particle size distribution (PSD) analysis in order to determine the relationship between GPR data and ballast deterioration.

The purpose of analysing the PSD results was to determine the fouling index for each crib. There are two distinct methods for calculating the deterioration of ballast developed by Selig, et al, 1994 (5) and Ionescu, 2004 (6), with the latter adhering to Australian standards.
that approximately conform to the material parameters used in British trackbed construction.

Since the trackbed was constructed to BR1203 specifications, the Ionescu method was used:

\[F_I = P_{0.075} + P_{14} \]

Where:

- \(F_I \) = Fouling index
- \(P_{0.075} \) = % passing 0.075mm sieve
- \(P_{14} \) = % passing the 14mm sieve

The categories of fouling developed by Selig & Waters were used in conjunction with the derived fouling index formula to determine the condition of the test track. Applying Ionescu’s formula to the collected data returns the following results (Table 1):

<table>
<thead>
<tr>
<th>Crib No.</th>
<th>(F_I)</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.60%</td>
<td>Moderately Clean</td>
</tr>
<tr>
<td>2</td>
<td>1.74%</td>
<td>Moderately Clean</td>
</tr>
<tr>
<td>3</td>
<td>1.41%</td>
<td>Moderately Clean</td>
</tr>
<tr>
<td>4</td>
<td>1.06%</td>
<td>Moderately Clean</td>
</tr>
<tr>
<td>5</td>
<td>2.40%</td>
<td>Moderately Clean</td>
</tr>
<tr>
<td>6</td>
<td>1.36%</td>
<td>Moderately Clean</td>
</tr>
<tr>
<td>7</td>
<td>4.41%</td>
<td>Moderately Clean</td>
</tr>
<tr>
<td>8</td>
<td>10.74%</td>
<td>Moderately Fouled</td>
</tr>
<tr>
<td>9</td>
<td>14.89%</td>
<td>Moderately Fouled</td>
</tr>
<tr>
<td>10</td>
<td>11.50%</td>
<td>Moderately Fouled</td>
</tr>
<tr>
<td>11</td>
<td>1.93%</td>
<td>Moderately Clean</td>
</tr>
<tr>
<td>12</td>
<td>22.23%</td>
<td>Fouled</td>
</tr>
<tr>
<td>13</td>
<td>24.94%</td>
<td>Fouled</td>
</tr>
<tr>
<td>14</td>
<td>15.90%</td>
<td>Moderately Fouled</td>
</tr>
<tr>
<td>15</td>
<td>17.06%</td>
<td>Moderately Fouled</td>
</tr>
<tr>
<td>16</td>
<td>30.73%</td>
<td>Fouled</td>
</tr>
</tbody>
</table>

A limitation of such a fouling index is that although the degree of fouling is related to the spentness of the ballast, it is only a function of spentness. This is because fouling index is solely a description of the fines content of a particular ballast sample but spentness is a description of a collection of various other variables such as fines content, drainage efficiency, and surface texture (7).
SCATTER ANALYSIS

Principles of Radar Scatter

Scattering losses can be described as extremely frequency dependant; scattering is known to increase as the frequency increases. GPR signals are sent through many kinds of materials and encounter many heterogeneous electrical and magnetic properties. Small-scale heterogeneities generate weak or undetectable responses but their presence extracts energy as the EM field passes and it gets scattered.

University of Edinburgh Research

Previous research at the University of Edinburgh (2) found that on studying the time-amplitude plot of a single radar pulse reflection, it could be seen that where the ballast tested was “spent” the signal plot featured “scattering” between the surface reflection response and the ballast-formation layer interface reflection; where the ballast was not spent, there was no “scattering” (Figure 3).

Figure 3 Example of 500MHz antenna scan through clean (left) and spent ballast (2)

Two antennas were used, a 900MHz and a 500MHz. The 500MHz antenna demonstrated increased power and the lower centre frequency resulted in a greater depth penetration over the 900MHz. The resolution was significantly lower (approximately halved, consequent with the reduction in frequency). However, the reflection times through the same media were similar. None of the antennas managed to produce reflections through the ties.

The 500MHz and 900MHz signals through the clean ballast gave no EM scattering, and a clear formation reflection. Through the mixed ballast, there was increased EM scattering, a less clear formation reflection, and a reduced propagation velocity consequent with a greater dielectric constant. Through the spent ballast there was extreme EM scattering making the formation reflection indistinguishable, and a further reduced propagation velocity. The 900MHz signals demonstrated greater scattering than the 500MHz signals through the same material.

The differences in results were attributed to the spent ballast having a greater fines content with consequentially fewer air voids, and poorer drainage efficiency and, consequently, greater moisture content due to moisture retention from soil suction. Loss of voids (with a very low dielectric value) and replacement with moist fines (with a significantly higher dielectric value) resulted in the increased scattering and attenuation.

The experiments were repeated several times over one year in different weather conditions. It was found that the clean ballast results varied by 5% to 7%; the spent ballast results varied up to 25%. Ballast-saturation tests (7) determined that the greater variability of the spent ballast was due to its ability to hold water due to soil suction or capillarity and become saturated due to rain; the clean ballast is more free-draining and less affected by rain.
This University of Edinburgh research demonstrated that railway ballast could be fingerprinted using GPR.

Scattering Analysis and Fouling Detection

The GPR research at Edinburgh used bowtie antennas, whereas research at the Transportation Technology Center, Inc. (TTCI) in Pueblo, CO, used horn antennas (9) to detect ballast fouling. At TTCI, they found that with the use of 2GHz horn antennas that clean ballast gave a more scattered response than fouled ballast (10).

In contrast to traditional GPR data analysis, in which individual reflections are charted, the 2GHz horn antenna data from the ballast was processed to generate a representative scattering amplitude envelope, i.e., a running average between peak signal responses, that showed the average scattering amplitude versus depth.

A change in the size of the envelope was determined to indicate a change in ballast condition. A “gain restoration curve”, which was empirically derived from the amplitude correction required to achieve constant amplitude versus arrival time from data obtained over a section of thick, clean ballast, was applied to, presumably, discount the effects of attenuation.

It was determined that radar signals through the clean ballast scattered due to the void space present in clean ballast but not in spent ballast where it had been filled with fouling material. The fouled ballast was more homogenous in its structure due to the fouling material between the ballast particles, and consequently, the signal did not scatter as much.

The rationale for this was presented in subsequent research (11), which stated that because spent ballast has a “finer, well-graded particle size with fewer air voids” that “The clean ballast near the surface generates a significant scattering pattern, while the scattering pattern generated by the fouled ballast at the bottom is insignificant because the air voids in fouled ballast are much smaller than the signal wavelength”.

The results of this method of analysis can be seen in Figure 4.

![GPR data key of fouling](image)

Figure 4 Typical results from scattering amplitude envelope analysis (11)

Thus, “From the image analysis, ballast thickness, ballast fouling condition, and trapped water can be assessed” (11)

It should be noted that the above research at TTCI was all conducted on ballast composed of a clean layer of ballast, over a mixed layer of ballast, over a spent layer of ballast, all of varying thicknesses. This is in contrast to the Edinburgh experiments.
International State of Practice

The earlier research at the University of Edinburgh (12) showed that it is possible for GPR to determine the depth of a railway ballast layer and to gain an indication of whether the ballast is clean, mixed, or spent. The experiments relied on “all other things being equal” in order to determine good track from bad, or in this case, “spent” from “clean”. Recent work by practitioners has relied on the Edinburgh research and they have focused on developing high-speed data collection systems – using later Edinburgh research (3).

Given that the measurement metric used in the TTCI research is the “scattering amplitude envelope” and that, in any case, this would be expected to diminish with depth due to attenuation, the “scattering amplitude envelope” method, therefore, relies on discerning changes in the amplitude and relating that to changes in the ballast condition through empirically derived calibration with gain settings taken into consideration.

Therefore, an alternative measurement of “scattering” that is not attenuation related would be attractive to investigate.

NEW EXPERIMENTS AT THE UNIVERSITY OF EDINBURGH

Objectives

The objectives of this experimental work are to develop a method of analysing the incidents of scatter, rather than amplitude of the scatter, using a range of different frequency antennas.

Experimental Procedure

Gallagher, Figure 3, defined the increased scattering through a visual inspection of a signal plot, where the increased numbers of large peaks were a result of the EM wave being scattered by the smaller particles of the spent ballast. It has been stated that the signal from ballast can be assumed to be a random signal and that statistical analysis would be a more suitable method of analysis (11).

Data Collection

The track was scanned with a range of GSSI antennas of different frequencies: 500MHz, 900MHz, 1.0GHz, 1.6GHz, and 2.6GHz.

The higher frequency bowtie antennas may not be suitable for detecting faults or anomalies in ballast and may be more suited to tasks such as locating objects in concrete. Their inclusion was intended to reveal trends in the analysis across the range of frequencies.

All data was collected using either a trolley or with a survey wheel designed to hold the antennas and measure distances travelled.

The data was recorded without any gain settings distorting the collected data.
The scanning procedure started with the antennas moving from Tie 1 to Tie 17. Given that bowtie antennas transmit from one side of their casing and receive at the other, this was undertaken twice with the antenna in perpendicular then parallel orientation, Figure 5.

A scan rate of 200 scans/m was used, resulting in over 2000 scans for each run of the test track; although, 100 scans/m was used for the 500MHz and 900MHz. Each scan was composed of 512 samples, giving over one million data values per run.

Data Analysis

The raw numerical data for each run was imported into an individual spreadsheet and contour plots of the radar data were produced and these were used to visually isolate the “cribs” (Figure 6) – those areas between the ties where the ballast is on the surface creating Crib 1 to Crib 16.
In order to calculate the incidents of scatter for each crib, three metrics were devised:

1. **Scan area** A numerical integration of a scan response to determine its “area” – the greater the magnitude of the responses, the greater the area.

2. **Axis crossings** The number of times the scan response crosses the zero amplitude axis – the more interfaces encountered by the signal, the more axis crossings.

3. **Inflection points** The number of times the gradient of the scan response changes through zero – the more interfaces, the more inflection points.

Scan Area Analysis

For each scan, the average signal value was calculated. This was taken as the zero amplitude axis for that scan. A simple trapezoidal rule was utilised to integrate some or all the 512 sample values of each scan (Figure 7).

Axis Crossings Analysis

For each scan, the average signal value was calculated. This was taken as the zero amplitude axis for that scan and the number of times that the signal crossed the average value was counted. Extrapolating from Gallagher’s findings from signal responses through spent ballast (2), it was anticipated that the more a signal is scattered, the more it should cross the axis.
A simple algorithm counted the number of crossing points. Any sample value that was between a sample value greater than the average scan value and a sample value lower than the average scan value, an axis-crossing was counted (Figure 8).

Figure 8 Axis crossings for typical clean response (left) and spent response (right)

Inflection Points Analysis

For each scan, the number of inflection points was counted. Similar to crossing points, it was anticipated that the more scattered a response, the more inflection points it should have.

The number of inflection points was calculated by using a variation of the algorithm used to count the crossing points. Any sample value that was between two greater value samples or between two lower value samples, an inflection point was counted. This method did not require the location of the zero amplitude axis (Figure 9).

Figure 9 Inflection points for typical clean response (left) and spent response (right)

Time Range

Given the different frequencies of each antenna, different depths of penetration were achieved and recorded. It was noted at which of the 512 samples that the ground surface occurred and where the response was visually considered to have become noise dominant. Therefore, for the analysis different time ranges were used: -
• **Full-time range**: All 512 samples collected were analysed.

• **Common time range**: Only 5ns of data below the initial ground reflection was analysed in order to limit analysis to ballast responses only.

Results & Discussion

By using the Scan Area Analysis, the Axis Crossings Analysis, and the Inflection Points Analysis metrics, the amount of signal scattering was identified. The data was analysed using three different approaches to determining which sample ranges to use: the full 512 samples, and a reduced common range (5ns).

FULL TIME RANGE

The results of the scattering analysis for the full range of the scan are listed in Table 2. The highest values for each section of analysis (area, crossings, and inflections) are highlighted in red and the lowest in green.

Table 2 Results of scattering analysis for full time range

<table>
<thead>
<tr>
<th>Antenna</th>
<th>Orien.</th>
<th>Range (ns)</th>
<th>Area Of Scan</th>
<th>Axis Crossings</th>
<th>Inflection Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Moderately Clean</td>
<td>Fouled</td>
<td>Moderately Clean</td>
</tr>
<tr>
<td>500 MHz</td>
<td>Perp.</td>
<td>23</td>
<td>1269272 1820730</td>
<td>2088340</td>
<td>15.57 16.02</td>
</tr>
<tr>
<td></td>
<td>Parallel</td>
<td>23</td>
<td>1179536 1568375</td>
<td>2059104</td>
<td>15.31 16.02</td>
</tr>
<tr>
<td>900 MHz</td>
<td>Perp.</td>
<td>20</td>
<td>696421 987018</td>
<td>1235757</td>
<td>27.69 23.48</td>
</tr>
<tr>
<td></td>
<td>Parallel</td>
<td>20</td>
<td>817121 1077727</td>
<td>1555518</td>
<td>26.25 23.67</td>
</tr>
<tr>
<td>1.0 GHz</td>
<td>Perp.</td>
<td>20</td>
<td>703692 952372</td>
<td>974882</td>
<td>29.58 29.06</td>
</tr>
<tr>
<td></td>
<td>Parallel</td>
<td>20</td>
<td>972730 1210584</td>
<td>1204123</td>
<td>26.67 25.77</td>
</tr>
<tr>
<td>1.6 GHz</td>
<td>Perp.</td>
<td>20</td>
<td>430589 416034</td>
<td>407551</td>
<td>21.86 19.86</td>
</tr>
<tr>
<td></td>
<td>Parallel</td>
<td>20</td>
<td>383307 42674</td>
<td>423533</td>
<td>19.63 15.95</td>
</tr>
<tr>
<td>2.6 GHz</td>
<td>Perp.</td>
<td>10</td>
<td>333581 339728</td>
<td>338602</td>
<td>20.59 20.30</td>
</tr>
<tr>
<td></td>
<td>Parallel</td>
<td>10</td>
<td>376546 394878</td>
<td>385945</td>
<td>20.27 19.98</td>
</tr>
</tbody>
</table>

Full Time Range Scan Area Analysis

It can be seen that the clean ballast has the smallest area in most cases with the spent or mixed ballast having the largest areas. This trend is more consistent at the lower frequencies under 1GHz; this appears to correlate with Gallagher et al. 1999 (12).

Full Time Range Axis Crossings Analysis

Similar to the area analysis, there is a difference in behaviour between high and low frequency antennas. With antennas of 900MHz or over, the clean ballast features more axis crossings than the spent ballast. Below 900MHz, the behaviour is the reverse with the spent ballast having more axis crossings than the clean.
Full Time Range Inflection Points Analysis

The results are very similar to the axis crossing points analysis with the same behaviour occurring. Again, the 900MHz antenna appears to be the point at which the behaviour changes, with almost 20% more inflection points.

COMMON TIME RANGE

The results of the scattering analysis for the common time range of the scan are listed in Table 3. The highest values for each section of analysis (area, crossings, and inflections) are highlighted in red and the lowest in green.

Table 3 Results of scattering analysis for common range

<table>
<thead>
<tr>
<th>Antenna</th>
<th>Orien.</th>
<th>Range (ns)</th>
<th>Scan Area</th>
<th>Axis Crossings</th>
<th>Inflection Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Clean</td>
<td>Fouled</td>
<td>Clean</td>
</tr>
<tr>
<td>500 MHz</td>
<td>Perp.</td>
<td>5019361</td>
<td>649110</td>
<td>493665</td>
<td>3.95</td>
</tr>
<tr>
<td></td>
<td>Parallel</td>
<td>495875</td>
<td>585394</td>
<td>531113</td>
<td>3.38</td>
</tr>
<tr>
<td>900 MHz</td>
<td>Perp.</td>
<td>222113</td>
<td>242224</td>
<td>258231</td>
<td>6.91</td>
</tr>
<tr>
<td></td>
<td>Parallel</td>
<td>201378</td>
<td>242690</td>
<td>253223</td>
<td>6.45</td>
</tr>
<tr>
<td>1.0 GHz</td>
<td>Perp.</td>
<td>149771</td>
<td>187753</td>
<td>190682</td>
<td>7.85</td>
</tr>
<tr>
<td></td>
<td>Parallel</td>
<td>179378</td>
<td>218713</td>
<td>201614</td>
<td>6.84</td>
</tr>
<tr>
<td>1.6 GHz</td>
<td>Perp.</td>
<td>382593</td>
<td>362212</td>
<td>352233</td>
<td>9.89</td>
</tr>
<tr>
<td></td>
<td>Parallel</td>
<td>353525</td>
<td>412695</td>
<td>403925</td>
<td>8.47</td>
</tr>
<tr>
<td>2.6 GHz</td>
<td>Perp.</td>
<td>329528</td>
<td>302294</td>
<td>300923</td>
<td>10.63</td>
</tr>
<tr>
<td></td>
<td>Parallel</td>
<td>331064</td>
<td>347733</td>
<td>339890</td>
<td>10.55</td>
</tr>
</tbody>
</table>

Common Time Range Scan Area Analysis

The trend in results of the area analysis are broadly unaffected by a change in the time range analysed. The clean ballast once more has the smallest areas. As with the full time range, the antenna where a change in behaviour occurs is the 1.0GHz.

Common Time Range Axis Crossings Analysis

Unlike to the full range analysis, the trend in the results is of a more random nature.

Common Time Range Inflection Points Analysis

The trend in the results is also very similar to those of the full range. The 900MHz antenna contains significantly more inflection points for clean ballast while the 500MHz antenna has more inflection points in spent ballast. All of the high frequency antennas, with the exception of the 1.6GHz perpendicular antenna, have more inflection points in clean ballast than in spent ballast.
METRIC EVALUATION FOR FULL-TIME RANGE

In order to evaluate the effectiveness of this method of measuring the scattering, the correlation between the scattering analysis and the fouling index was investigated (Table 4).

Table 4 Fouling index correlation factors for full-time range scattering analysis

<table>
<thead>
<tr>
<th>Antenna</th>
<th>Orien.</th>
<th>Scan Area</th>
<th>Axis Crossings</th>
<th>Inflection Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Moderate</td>
<td>Fouled</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clean</td>
<td>Fouled</td>
<td>Clean</td>
</tr>
<tr>
<td>500 MHz</td>
<td>Perp.</td>
<td>0.499</td>
<td>0.019</td>
<td>0.809</td>
</tr>
<tr>
<td></td>
<td>Parallel</td>
<td>0.816</td>
<td>0.330</td>
<td>0.924</td>
</tr>
<tr>
<td>900 MHz</td>
<td>Perp.</td>
<td>0.502</td>
<td>0.569</td>
<td>0.740</td>
</tr>
<tr>
<td></td>
<td>Parallel</td>
<td>0.648</td>
<td>0.634</td>
<td>0.756</td>
</tr>
<tr>
<td>1.0 GHz</td>
<td>Perp.</td>
<td>0.519</td>
<td>0.519</td>
<td>0.436</td>
</tr>
<tr>
<td></td>
<td>Parallel</td>
<td>0.679</td>
<td>0.314</td>
<td>0.678</td>
</tr>
<tr>
<td>1.6 GHz</td>
<td>Perp.</td>
<td>-0.257</td>
<td>-0.228</td>
<td>-0.185</td>
</tr>
<tr>
<td></td>
<td>Parallel</td>
<td>0.676</td>
<td>0.672</td>
<td>0.545</td>
</tr>
<tr>
<td>2.6 GHz</td>
<td>Perp.</td>
<td>0.722</td>
<td>0.111</td>
<td>0.282</td>
</tr>
<tr>
<td></td>
<td>Parallel</td>
<td>0.301</td>
<td>0.342</td>
<td>0.326</td>
</tr>
</tbody>
</table>

Scan Area Metric Evaluation

There was a strong correlation between the scan area metric and the fouling index for the full-time range. In order for the scan area metric to be true, the largest magnitudes of response should occur in the spent region of ballast.

The results indicate that for low frequency antennas scattering occurs more in spent ballast, which correlates to the work carried out by Gallagher et al 1999 (12). When the frequency of the antenna increases, it is almost impossible to distinguish between clean and spent ballast in terms of scattering. This appears to contradict the work of Al-Qadi et al, 2008 (10) who stated that when using high frequency antennas scattering occurs more in clean ballast. However, it should be noted that Al-Qadi et al used horn antennas.

The noticeably improved results in lower frequency antennas may be due to the increased power of the antenna itself, with the lower frequency antennas less likely to interpret minor changes in particle size and constituency as a change in material layer, which ultimately results in a better indication of ballast depth and layer interfaces.

Full-Time Range Axis Crossings & Inflection Point Analysis

The results for axis crossings and inflection points are less promising. However, there are a large number of negative correlations for both metrics and very few strong correlations in the data. The large negative values are mainly for the full-time range data and suggest that there is a possible link between the scattering analysis and fouling index. The axis crossings metric does not appear to demonstrate any correlation in the data. Therefore, both these approaches were deemed inappropriate for determining the condition of the ballast.

It had been expected that when the range of data analysed was shortened to the depth of the ballast, ie, 5ns, that any correlation with the fouling index would be improved. However, the opposite was true. It may be that the sub-ballast material gives a different
response when under clean or spent ballast, and this may be due to drainage differences between clean and spent ballast.

CONCLUSIONS

The scattering analysis on data from bow-tie antennas clearly showed that EM waves in clean ballast have a much smaller area. This applies to all antennas and all the time ranges analysed.

For low frequency antennas (below 900MHz), there are more crossing points and inflection points for clean ballast for both the full range and shortened range. However, in the individual range that relates to the skin depth of each antenna, the spent ballast has the most crossing points for most antennas.

In the full time range analysis, the clean ballast consistently has the lowest area, most crossing points and most inflection points except for the 500MHz antenna. There is a clear distinction in the response from clean ballast to that of mixed or spent. The distinction between the mixed and spent is less clear.

The results with the low frequency antennas support Gallagher’s theory that EM waves passing through spent ballast encounter more scattering.

When predicting Fouling Index, a correlation coefficient greater than 0.9 was obtained by using a 500 MHz bowtie antenna in the parallel orientation in conjunction with a scan area analysis.

REFERENCES

