
Attacking the Asokan–Ginzboorg Protocol
for Key Distribution in an Ad-Hoc
Bluetooth Network Using CORAL

Graham Steel, Alan Bundy, and Monika Maidl

Division of Informatics,
University of Edinburgh,

Edinburgh, EH8 9LE, Scotland,
e-mail: g.j.steel@ed.ac.uk,bundy,monika@inf.ed.ac.uk

http://dream.dai.ed.ac.uk/graham

Abstract. We describe CORAL, a counterexample finder for incorrect inductive
conjectures. By devising a first-order version of Paulson’s formalism for cryp-
tographic protocol analysis, [10], we are able to use CORAL to attack protocols
which may have an unbounded number of principals involved in a single run. We
show two new attacks CORAL has found on the Asokan–Ginzboorg protocol for
establishing a group key in an ad-hoc network of Bluetooth devices, [1].
Keywords: Wireless and mobile communication protocols, cryptographic proto-
cols, refutation of inductive conjectures.

1 Introduction

An abundance of tools and techniques have appeared in the last few years to check
security properties of two and three party cryptographic protocols. However, very few
of these are able to analyse protocols for group key agreement, where an unbounded
number of parties may be involved in a single round, [8, 10]. The only attacks on such
protocols to have appeared in the literature have been discovered by hand, [11]. It seems
flexible sized group protocols are not easy to attack using model checking type ap-
proaches. In this paper, we show how our counterexample finder for inductive con-
jectures, CORAL, has been used to automatically discover two new attacks on such a
protocol: the Asokan–Ginzboorg protocol for key establishment in an ad-hoc Bluetooth
network, [1].

In the rest of the paper, we first describe the CORAL system and our first-order
model for the protocol problem. We describe the Asokan–Ginzboorg protocol, and then
outline how CORAL models its operation directly, without having to restrict to a small
concrete instance involving a fixed number of participants. We give the specification
for the intruder’s capabilities that we used, and explain how we found the new attacks.
Finally, we discuss related work and further work, and give some conclusions.

2 The CORAL System

The refutation of incorrect inductive conjectures is a problem of general interest in
formal methods and verification. Inductive theorem provers are frequently employed in

the verification of programs, algorithms and protocols. Programs and algorithms often
contain bugs, and protocols may be flawed, causing the proof attempt to fail. However,
it can be hard to interpret a failed proof attempt; it may be that some additional lemmas
need to be proved or a generalisation made. In this situation, a tool which can not only
detect an incorrect conjecture, but also supply a counterexample in order to allow the
user to identify the bug or flaw, is potentially very valuable.

CORAL is such a tool, and is based on a previously under-exploited feature of the
proof by consistency technique. Proof by consistency is a technique for automating
inductive proofs in first-order logic. Originally developed to prove correct theorems,
this technique has the property of being refutation complete, i.e. it is able to refute
in finite time conjectures which are inconsistent with the set of hypotheses. Recently,
Comon and Nieuwenhuis have drawn together and extended previous research to show
how it may be more generally applied, [3]. CORAL is the first full implementation of
this technique, built on the theorem prover SPASS, [14].

The Comon–Nieuwenhuis method relies on a number of theoretical results, but in-
formally, a proof attempt involves two parts. In one, we pursue a fair induction deriva-
tion. This is a restricted kind of saturation, [2], where we need only consider overlaps
between axioms and conjectures, and produce inferences from an adapted superposition
rule. In the second part, every clause in the induction derivation is checked for consis-
tency against an I-Axiomatisation. This is usually a set of clauses that are sufficient for
deciding inequality of ground terms. If any consistency check fails, then the conjecture
is incorrect. If they all succeed, and the induction derivation procedure terminates, the
theorem is proved. Comon and Nieuwenhuis have shown refutation completeness for
this system, i.e. any incorrect conjecture will be refuted in finite time, even if the search
for an induction derivation is non-terminating. More details can be found in [3].

In the case where a refutation is found, we are able to extract a counterexample
by means of a well-known method first proposed by Green, [6]. When CORAL refutes
a security conjecture of the form

���������
	��
����������
	��
, it has proved in its superposition

calculus that � ��������	�����
�����������	�� . We track the instantiations made to the
��������	

variable
using an answer literal, following Green’s method. Green has shown that this will al-
ways yield a correct constructive answer for these types of proofs. We show how new
attacks are discovered as counterexamples in section 5.

2.1 Modelling Protocols

Paulson’s inductive approach has been used to verify properties of several protocols,
including group key protocols, [10]. Note however that Paulson’s approach has no au-
tomated support for finding attacks on faulty protocols. Protocols are formalised in
typed higher-order logic. However, no fundamentally higher-order concepts are used –
in particular there is no unification of functional objects. Objects have types, and sets
and lists are used. All this we model in first-order logic. Like Paulson’s, our model al-
lows an indeterminate and unbounded number of agents to participate, playing any role,
and using an arbitrary number of fresh nonces and keys.

A protocol is modelled as the set of all possible traces, i.e. all possible sequences
of messages sent by any number of honest users under the specification of the protocol
and, additionally, faked messages sent by the intruder. A trace of messages is modelled

as a list. For a specific protocol, we generally require one rule per protocol message,
each one having the informal interpretation, ‘if ��� is a trace containing message � ad-
dressed to agent ��� , then the trace may be extended by ��� responding with message
�� "! ’.

The intruder has the usual capabilities specified by the Dolev-Yao model, [4]. We
specify intruder knowledge in terms of sets. Given a trace of messages exchanged,
��� , we define �$#���% & � ��� � to be the least set including ��� closed under projection and
decryption by known keys. This is accomplished by using exactly the same rules as the
Paulson model, [10, p. 12]. Then we can define the messages the intruder may send,
given a trace ��� , as being members of the set ')($#*��+ � ��#��$% & � ��� �,� , where ')($#-��+ �/.�� is the
least set containing

.
, including agent names and closed under pairing and encryption

by known keys. The agent may send anything he can provided it matches the template
of the messages in the protocol. This last feature is an optimisation to make searching
for attacks more efficient, since the spy gains nothing from sending a message that no
honest agent will respond to.

More details of our model can be found in our earlier paper, [12]. Using this model,
CORAL has rediscovered several known attacks on two and three party security proto-
cols, including Needham-Schroeder, Neumann-Stubblebine and Otway-Rees. This lat-
ter is significant since it requires an honest agent to generate two fresh nonces and to
play the role of both the initiator and the responder, things which previous first-order
models have not allowed, [13]. CORAL has also discovered the new attacks described
below.

3 The Asokan–Ginzboorg Protocol

The Asokan–Ginzboorg protocol is an application level protocol for use with Bluetooth
devices. The scenario under consideration is this: a group of people are in a meeting
room and want to set up a secure session amongst their laptops. They know and trust
each other, but their computers have no shared prior knowledge and there is no trusted
third party or public key infrastructure available. The protocol proceeds by assuming
a short group password is chosen and displayed, e.g. on a whiteboard. The password
is assumed to be susceptible to a dictionary attack, but the participants in the meeting
then use the password to establish a secure secret key.

Asokan and Ginzboorg describe two protocols for establishing such a key in their
paper, [1]. We have analysed the first of these. Completing analysis of the second proto-
col using CORAL would require some further work (see section 8). Here is a description
of the first Asokan–Ginzboorg protocol (which we will hereafter refer to as simply ‘the
Asokan–Ginzboorg protocol’). The members of the group are written as 021 , with 043
acting as group leader.

! � 0 36587:9;9 : 0 3=<�>/?A@6B?DCE � 0 1;5 0 3 : 0 1F<
>�?AGH1�<�IJ1FB?DK LNM ! < ���
� < �PO2!Q � 0 365 0 1 : >�?�>$IDR�<SRTM ! < �
��� < � B�B?JUJV LNM ! < ���
� < �PO2!W � 0 1;5 0 3 : 0 1F<
>�?$ID1,<�X � I;YA< �
�
� <�IJ3 � B?;Z some L
Informally, what is happening is this:

1. 043 broadcasts a message containing a fresh public key, @ , encrypted under the
password,

, written on the whiteboard.

2. Each other participant 0[1 , for L\M ! < ���
� < �]O^! , sends 0[3 a contribution to the
final key, I 1 , and a fresh symmetric key, G 1 .

3. Once 0[3 has a response from everyone, she collects together the I 1 in a package
along with a contribution of her own (I 3) and sends out one message to each par-
ticipant, containing this package and encrypted under the respective symmetric key
G 1 .

4. One participant responds to 0[3 with the package she just sent passed through a one
way hash function and encrypted under the new group key _ Ma` � I Y < �
�
� <�I 3 � ,
with ` a commonly known function.

Asokan and Ginzboorg argue that it is sufficient for each group member to receive
confirmation that one other member knows the key: everyone except 023 receives this
confirmation in step 3. 0b3 gets confirmation from a random member of the group in
step 4.

3.1 Modelling the Protocol

The advantage of our approach is that we can model flexible group protocols without
having to restrict ourselves to a small concrete instance with a fixed number of par-
ticipants. This means that we do not have to guess how many players are needed to
achieve an attack, CORAL will search for attacks involving any number of participants.
Of course, it is more likely to find attacks with small number of participants first, since
this will involve reasoning with smaller clauses.

For messages 1, 2 and 4, our model is similar to that for a two party protocol, as de-
scribed briefly above (section 2.1). The main challenge was to cope with message 3. For
a group of � participants, �\Oc! message 3s will be sent out, each encrypted under a dif-
ferent key. Moreover, the group leader for the run must check that she has received �dOe!
message 2s. In order to model this, we need to accommodate the possibility of different
numbers of messages being added to the trace in one instant. This is solved by the use of
a logic programming style approach. We define a new predicate which checks a trace to
see if all message 2s have been sent for a particular group leader and number of partici-
pants. It returns a new trace containing the response prescribed by the protocol. It works
in all modes of instantiation, allowing us to use it to construct protocol runs for vari-
ous sized groups while the refutation search is going on. For more details, see http:
//homepages.inf.ed.ac.uk/s9808756/asokan-ginzboorg-model/.

4 Modelling Spies in a Wireless Network

The Dolev-Yao model is widely agreed upon as a realistic model of a spy in a fixed-
network. However, some of their assumptions seem inappropriate in a single-hop wire-
less situation. Although an attacker may be able to totally disrupt communications by
jamming the radio signal, it seems unlikely that he would be able to selectively intercept
some messages and remove them from the airwaves, while allowing other messages to

pass. Asokan and Ginzboorg mention that they intend the protocol to be tolerant to
disruption attacks by an attacker who can add fake messages, but not block or delay
messages, so we assume these abilities for our spy.

There is also the question of whether the spy should be accepted as an honest par-
ticipant by the other players, as he generally is in fixed-network protocol models1. An
honest participant will be present in the room and able to see the password on the white-
board, whereas the protocol seems mostly intended to protect against attacks by a spy in
an adjacent room, who can interfere with communications but who does not know the
password. However, the protocol is explicitly designed to protect a participant against
conspiracy by a group of other participants trying to restrict the agreed key to a pre-
chosen range. Some possible dishonesty from participants in the room must therefore
be considered.

We decided to test the protocol against two attackers: one inside the room, and one
outside. Different outcomes are considered successful for the different spies.

Spy 1 - Outside the Room

This spy cannot see the whiteboard, so does not know the password. His objective is
to effect a disruption attack, i.e. to make honest participants accept keys which are not
mutually shared.

Spy 2 - In the Room

This spy’s capabilities differ from the first in that he knows the passwords written on
the whiteboard, and is accepted as an honest agent. His objective is to gain control of
communication in the room, i.e. by making all participants agree on different keys that
only he knows.

5 Discovering Attacks

To check for disruption attacks, we gave CORAL a conjecture stating that any complete
run of the protocol (i.e. one finished by a valid message 4) must contain a correct mes-
sage 2 for every message 3. This is because principals make their contribution to the
key in message 2, then receive the whole key under their symmetric key G 1 in message
3. So, if every message 3 corresponds to a message 2 then everyone can read the key.
If this conjecture is incorrect, and there is a trace violating this property, this will con-
stitute an attack. In clausal normal form, the conjecture says, ‘there is no valid trace
containing a message 3 with an unmatched message 2’, and looks like this:

% some honest xi has replied with a message 4
member(sent(xi,mn,pair(principal(xi),encr(pair(nonce(si),h(package)),f(package))))
,xtrace)=true f

1 In some models he is assumed not to be an honest participant, but instead to control the long
term keys of an honest participant, though this amounts to the same thing.

% a message 3 (to someone) is in the trace
member(sent(x,xj,encr(package,nonce(rj))),xtrace)=true f
% but there’s no corresponding message 2, so the message 3 is wrong or faked
member(sent(xj,mn,pair(principal(xj),encr(pair(nonce(rj),nonce(sj)),key(e))))
,xtrace)=false 5

CORAL found the following counterexample:2

cons(sent(s(a),a,pair(principal(s(a)),encr(pair(nonce(U),
h(cons(nonce(U),cons(nonce(Y),nil)))),
f(cons(nonce(U),cons(nonce(Y)),nil)))))),

cons(sent(spy,s(a),
encr(cons(nonce(U),cons(nonce(Y),nil)),nonce(V))),

cons(sent(s(a),a,
encr(cons(nonce(U),cons(nonce(Y),nil)),nonce(V))),

cons(sent(spy,s(a)),pair(principal(a),
encr(pair(nonce(V),nonce(U)),key(W)))),

cons(sent(s(a),a,pair(principal(s(a)),
encr(pair(nonce(V),nonce(U)),key(W)))),

cons(sent(spy,all,pair(principal(a),
encr(key(W),key(X)))),

cons(sent(s(a),all,pair(principal(s(a)),
encr(key(W),key(X)))),nil))))))

this corresponds to the following disruption attack on a group of size 2:3

! � g 587d9h9 :
g <�>/?A@ Y B? C

!�i ��j�k-l�m 587d9h9 : n <�>/?A@ Y B? CE i � g 5 n :
g <�>/?AG:od<�IJopB? KJqE �\j�k-l�m 5 g

: n <�>/?AG:o:<�IDorB? KJqQ � g 5 n : >/?$I io <�IJopB? UDsQ i ��j�k-l m 5 g
: >/?$I io <�I o B?DU sW � i g 5 n :
g <�>/?$I o <�X � I io <�I o � B?ht�uwv�xs;y v s�z

At the end of the run,
g

now accepts the key ` � I io <�IJo � as a valid group key, but it
contains numbers known only to

g
. The spy could perform a mirror image of this attack

on n to make her accept another key unknown to
g

– provided n tries to initiate a run
herself as group leader when

g
’s attempt fails. Similar replay attacks could be made

on groups of a larger size – a spy can just repeat the first message 2 he sees, with the
agent identifier at the front swapped for that of one of the other agents in the group. He
would not even have to start an overlapping session, as in the attack above. To change
the protocol to protect against these attacks is quite straightforward (see section 6).

2 Note that CORAL presents the trace in reverse.
3 We have renamed the variables and the names of the participants to make the attack easier to

follow.

The attack above requires that the spy manages to send message 2 before the honest
agent n can send her reply. In a single hop network, there is a certain amount of luck
involved. It might require n to invoke the command to establish a key just after

g
does.

In a multi hop network, the intruder might be able to effect the attack quite easily.

5.1 Attack by a Spy Inside the Room

To model the spy being in the room, we made him an accepted agent and added all
whiteboard passwords to his knowledge set. We gave CORAL a conjecture stating that
at the end of a run, principals have agreed on the same key (note this is different to the
conjecture above, where we just required that principals had received a key they could
read). The conjecture looks like this:

% if trace contains two message 2s in response to the same message 1
member(sent(xi,mn,pair(principal(xi),encr(pair(nonce(ri),nonce(si)),key(e))))
,xtrace)=true f
member(sent(xj,mn,pair(principal(xj),encr(pair(nonce(rj),nonce(sj)),key(e))))
,xtrace)=true f
% and two message 3s (from someone) responding to those
member(sent(x,xi,encr(package1,nonce(ri))),xtrace)=true f
member(sent(y,xj,encr(package2,nonce(rj))),xtrace)=true f
% then the keys received must be the same
5 eq(package1,package2)=true

CORAL found the counterexample shown below. The result of this attack is that n has a
key she believes is the group key but is in fact only shared by her and the spy, and

g
has

a key he thinks is the group key but is only known to him and the spy. This means that
the spy can see everything sent, decide what to pass on and possibly doctor material as
it is passed on:

! ��j�k*l 587:9;9 :
j�k*l <
>/?�@HYAB?JCE � n 5 j�k-l

: n <�>/?AG m <�I m B?;K qE �ag 5 j�k-l
:
g <�>/?AGHop<�IDorB? KDqQ ��j�k*l 5 n : >/?$ID{S|�}�<�I m <�I i{S|�} B? UD~Q ��j�k*l 5 g

: >/?$I {S|�} <�I m <�I o B?;U sW � n 5 j�k-l
: n <�>/?$I m <�X � I {�|
} <�I m <�I i{�|
} � B?Dt�u�v������ y v ~ y v x����� z

This is just a standard protocol run for three participants, except that in the first message
3, the spy switches in a number of his own (I i{S|�} in the place of IDo). This means that
n accepts the key as ` � I;{�|
}�<�I m <�I i{�|
} � , whereas

g
accepts ` � I;{�|
}�<�I m <�IJo � , and both

of the keys are known to the spy.
Note that only the initiator of the run can effect this attack - the use of public key

cryptography in message 2 prevents another participant from being able to carry out a
similar deception. The attack can be easily adapted to a group of any size.

6 Protecting Against the Attacks

To protect against the disruption attack, we can include the agent identifier inside the
encrypted package in message 1. This will prevent the faked message 1’. We could also
demand an implementation that protects against replays, but this is generally frowned
upon in protocol analysis circles. The agent identifier in message 2 should also be en-
crypted, to prevent replays against groups of size 3 or more.

Protecting against the second attack is a more subtle problem: one way to do it
would be to have message 4 broadcast to all participants. This would make sense in a
normal run as it would allow other participants to see that someone had sent message
4, and that the run was finished. Other participants could open the encrypted package
and check that the hashed number matches the hash of the key they received in message
3. If anyone is unhappy, they could cry foul and get everyone to do another run. Two
conspiring agents could subvert this defence by sending a suitably doctored message 4,
but there is no advantage for them to gain by having a separate key for themselves. The
spy could fake a message 4 from one of the agents, but since the message is broadcast
to everyone, the agent concerned could recognise that he is being impersonated and call
a halt to proceedings.
Here is the revised protocol:

! � 0[3 587:9;9 : >/? 043 <�@6B? CE � 041 5 0[3 : >/? 041 <�G 1 <�I 1 B? K <,L�M ! < �
��� < ��O�!Q � 0[3 5 0[1 : >/?�>$IDR�<SR�M ! < �
��� < � B�B? U V�<�LNM ! < ���
� < �PO2!W � 041 5 n:��� : 0[1 <�>/?�I 1 <�X � I Y < ���
� <�I 3 � B? Z , some L .

7 Related Work

The closest related work is probably that of Meadows, [8]. Here, NPA, a state explo-
ration based tool for analysing cryptographic protocols, was extended to deal with the
CLIQUE group protocols. However, NPA could not rediscover the attacks found by
Pereira and Quisquater, [11], whose analysis was carried out by hand. The attacks they
found were quite subtle, involving properties of the Diffie-Hellman exponentiation op-
eration widely used in the CLIQUE suite. They also involved the spy doing some quite
imaginitive things, like joining the group, leaving, and then forcing the remaining mem-
bers to accept a compromised key, which NPA could not account for. It would be inter-
esting to see whether these kinds of attacks could be found automatically by CORAL.
We hope that the very flexible inductive model used might mean that these attacks are
within CORAL’s scope.

Recently, Millen and Shmatikov looked at Pereira and Quisquater’s attacks as part
of their work on integrating products and Diffie-Hellman exponentiation into symbolic
protocol analysis, [9]. They sketched how one of their attacks could be rediscovered in
their setting, though this has not been automated. Finding the attacks could potentially
be very efficient. However, their approach requires the user to decide how many par-
ticipants playing what role should be considered in the search for an attack, which our
approach does not.

8 Further Work

Our work with CORAL is ongoing. We intend to analyse further protocols in the future,
focusing on the kind of flexible or group protocols that are not easy to attack using a
model checking approach. We do not intend to compete for speed of attack finding on
a large corpus of standard protocols, since other approaches are better suited to this.

As CORAL is built on SPASS, a theorem prover capable of equational reasoning, we
should be able to reason about some simple algebraic properties of the cryptosystems
underlying protocols, such as Diffie-Hellman type operations. This would allow us to
analyse the second Asokan–Ginzboorg protocol, which is quite different to the first
and seems not to be susceptible to the same attacks, and also the CLIQUES protocols
mentioned above. The main task here would be to devise a way of modelling the low-
level cryptographic operations in such a way that the essential properties are captured,
but without going into too fine a degree of detail which would make automated analysis
unfeasible. Another option might be to farm out algebraic work to a connected computer
algebra package.

In the longer term we intend to try to exploit the flexibility of our system as a
general tool for inductive counterexample finding, and apply it to some other security
problems. One idea is to use the system to model security problems at a higher level.
We could model a company’s computer network as a system of local networks and
servers, firewalls etc. all with formally defined behaviour, and examine how interactions
in the presence of intruders might lead to exploitable vulnerabilities. To deal with larger
problems like this, we might need to enhance SPASS to exploit domain knowledge a
little more. A user defined strategy that can vary as the proof proceeds, and a critics
mechanism, [7], to suggest pruning lemmas are two possible ideas we intend to explore.

In theory, CORAL can also show security properties of protocols to be correct when
there are no attacks to be found. However, to make this work in practice would require
some considerable work. The formulae to be proved are significantly larger than the
kinds of examples that have been proved by proof by consistency in the past. The key
factor would be the generation of relevant lemmas, which could be done in similar way
to the NPA tool.

9 Conclusions

We have presented CORAL, our system for refuting incorrect inductive conjectures, and
shown two new attacks on the Asokan–Ginzboorg protocol that it found. An advantage
of looking for attacks on group protocols with CORAL is that we can model the pro-
tocol generally and so look for attacks on any size of group. A model checking type
approach would have required us to fix the size of the group in advance. Additionally,
the flexibility of a theorem proving approach allows us to look for unconventional at-
tacks, e.g. where two members of the group share different keys with the intruder which
they both believe to be the group key.

In future we intend to attack more group protocols, particularly wireless group pro-
tocols, and then try to model other security problems inductively and look for more
vulnerabilities.

References

1. N. Asokan and P. Ginzboorg. Key-agreement in ad-hoc networks. Computer Communica-
tions, 23(17):1627–1637, 2000.

2. L. Bachmair and H. Ganzinger. Completion of First-order clauses with equality by strict
superposition (extended abstract). In Proceedings 2nd International CTRS Workshop, pages
162–180, Montreal, Canada, 1990.

3. H. Comon and R. Nieuwenhuis. Induction = I-Axiomatization + First-Order Consistency.
Information and Computation, 159(1-2):151–186, May/June 2000.

4. D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions in Infor-
mation Theory, 2(29):198–208, March 1983.

5. H. Ganzinger, editor. Automated Deduction – CADE-16, 16th International Conference on
Automated Deduction, LNAI 1632, Trento, Italy, July 1999. Springer-Verlag.

6. C. Green. Theorem proving by resolution as a basis for question-answering systems. In
B. Meltzer and D. Michie, editors, Machine Intelligence, volume 4. Edinburgh University
Press, 1969.

7. A. Ireland. Productive use of failure in inductive proof. Journal of Automated Reasoning,
16(1-2):79–111, 1996.

8. C. Meadows. Extending formal cryptographic protocol analysis techniques for group proto-
cols and low-level cryptographic primitives. In P. Degano, editor, Proceedings of the First
Workshop on Issues in the Theory of Security, pages 87–92, Geneva, Switzerland, July 2000.

9. J. Millen and V. Shmatikov. Symbolic protocol analysis with products and diffie-hellman
exponentiation. In IEEE Computer Security Foundations Workshop, 2003.

10. L.C. Paulson. The Inductive Approach to Verifying Cryptographic Protocols. Journal of
Computer Security, 6:85–128, 1998.

11. O. Pereira and J.-J. Quisquater. Security analysis of the cliques protocols suites: 1st results.
In In Proceedings of IFIP Sec’01, pages 151–166, June 2001.

12. G. Steel, A. Bundy, and E. Denney. Finding counterexamples to inductive conjectures and
discovering security protocol attacks. In Proceedings of the Foundations of Computer Se-
curity Workshop, 2002. Appeared in Proceedings of The Verify’02 Workshop as well. Also
available as Informatics Research Report EDI-INF-RR-0141.

13. C. Weidenbach. Towards an automatic analysis of security protocols in First-order logic. In
Ganzinger [5], pages 314–328.

14. C. Weidenbach et al. System description: SPASS version 1.0.0. In Ganzinger [5], pages
378–382.

