Chemical Drinking Water Quality in Ghana: Water Costs and Scope for Advanced Treatment

Helfrid M.A. Rossiter1, Peter A. Owusu2, Esi Awuah2, Alan M. MacDonald3, and Andrea I. Schäfer4*

1 School of Engineering, The University of Edinburgh, Edinburgh, EH9 3JL, United Kingdom
2 Department of Civil Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
3 British Geological Survey, Murchison House, West Mains Road, Edinburgh, EH9 3LA, United Kingdom

* Corresponding author phone: +44(0)131 650 7209, fax: +44(0)131 650 6781
Email: Andrea.Schaefer@ed.ac.uk

Published in
The Science of the Total Environment
408 (2010) 2378–2386

Abstract

To reduce child mortality and improve health in Ghana boreholes and wells are being installed across the country by the private sector, NGOs and the Ghanaian government. Water quality is not generally monitored once a water source has been improved. Water supplies were sampled across Ghana from mostly boreholes, wells and rivers as well as some piped water from the different regions and analysed for the chemical quality. Chemical water quality was found to exceed the WHO guidelines in 38% of samples, while pH varied from 3.7 to 8.9. Excess levels of nitrate (NO3-) were found in 21% of the samples, manganese (Mn) and fluoride (F-) in 11% and 6.7%, respectively. Heavy metals such as lead (Pb), arsenic (As) and uranium (U) were localised to mining areas. Elements without health based guideline values such as aluminium (Al, 95%) and chloride (Cl, 5.7%) were found above the provisional guideline value.

Economic information was gathered to identify water costs and ability to pay. Capital costs of wells and boreholes are about £1200 and £3800 respectively. The majority of installation costs are generally paid by government or NGO, while the maintenance is expected to be covered by the community. At least 58% of the communities had a water payment system in place, either an annual fee/one-off fee or “pay-as-you-fetch”. The annual fee was between £0.3-21, while the boreholes had a water collection fee of £0.07-0.7/m3, many wells were free. Interestingly, the most expensive water (£2.9-3.5/m3) was brought by truck. Many groundwater sources were not used due to poor chemical water quality. Considering the cost of unsuccessful borehole development, the potential for integrating suitable water treatment into the capital and maintenance costs of water sources is discussed. Additionally, many sources were not in use due to lack of water capacity, equipment malfunction or lack of economic resources to repair and maintain equipment. Those issues need to be addressed in combination with water quality, coordinated water supply provision and possible treatment to ensure sustainability of improved water resources.

Keywords: Ghana, drinking water, improved supply, chemical water quality, boreholes, wells, groundwater, cost
1. Introduction

Approximately 880 million people still lack access to safe drinking water, the lowest coverage found in sub-Saharan Africa. Waterborne diseases, such as diarrhoea, cause 1.5 million deaths a year, prominently to children in developing countries (JMP, 2008). It is estimated that child mortality and could be significantly reduced and general health improved by providing access to safe potable water and improving sanitation and hygiene (WHO, 2004). This is the compelling motivation for governments and aid organisations to avoid acute problems of waterborne diseases by constructing boreholes and wells to improve coverage of safe water sources. However, these new sources, if not adequately monitored, may instead be a source of chronic health problems due to high concentrations of inorganic contaminants such as arsenic (As), fluoride (F) and nitrate (NO₃⁻) (Bissen and Frimmel, 2003a; Reimann and Banks, 2004).

Ghana, in West Africa, celebrated 50 years of independence from colonial rule in 2008, and is often hailed as an African economic and political success (Naylor, 2003). Yet, Ghana is still struggling to provide safe drinking water and sanitation to all its inhabitants, especially in rural areas (UNICEF, 2007). Although Ghana is doing better than its immediate neighbours (e.g. Côte d'Ivoire and Togo), nearly 12% of Ghanaian children die before they reach the age of five compared to e.g. 6% of children in South Africa and 0.6% of children in the UK (UNICEF, 2007). Access to safe water is an important factor to reduce the number of deaths. According to JMP (2008), 29% of the rural population rely on unimproved water sources. The majority of the improved sources in rural Ghana are boreholes and protected wells.

Ghana has 10 administrative regions: Western Region, Eastern Region, Central Region, Greater Accra, Volta Region, Ashanti Region, Brong-Ahafo, Northern Region, Upper West and Upper East. The population according to the last census (2000) was 18.9 million and with a growth rate of 2.6% is estimated at 23 million people (UNICEF, 2007). Although most of the population growth is taking part in cities, the majority of Ghana’s population still live in rural areas. Ghana’s Water Policy expresses the need to both ensure access to enough safe water to meet basic human needs and at the same time ensure the environmental and financial sustainability of the water source (Government of Ghana, 2007). In an attempt to make the water delivery in the country more effective, Ghana’s water supply has, amidst much controversy, been made parastatal (Agyeman, 2007). The Ministry of Water Resources, Works and Housing remains the government institution responsible for water resource management and drinking water supply, while the Ghana Water Company Ltd (GWCL) is in charge of urban water provision. The Community Waste and Sanitation Agency (CWSA) is in charge of facilitating safe water provision and providing technical assistance to the District Assemblies, who are responsible for planning and operation of the water supply to rural communities on a local level (Agyeman, 2007). The CWSA standard is one well or borehole per 300 people. The community are responsible for operation and maintenance. Regional progress reports (Government of Ghana, 2007), report 40-80% coverage depending on the region; however some organisations and individuals do not operate through the CWSA and thus the total number of improved sources is not accurately known (Nyarko et al., 2009). As the boreholes are constructed, the chemical water quality should be analysed for fluoride (F⁻), manganese (Mn), iron (Fe), magnesium (Mg), calcium (Ca), sulphate (SO₄²⁻), arsenic (As), lead (Pb), copper (Cu), nitrate (NO₃⁻), nitrite (NO₂⁻), chloride (Cl⁻), phosphate (PO₄³⁻), aluminium (Al), sodium (Na), zinc (Zn) and alkalinity (CaCO₃). Water quality is seldom monitored once a borehole has been established due to financial and logistical constraints.

2. Materials and methods

2.1. Sample collection in Ghana

A total of 230 samples were collected out of which 199 were from improved drinking water sources, mainly boreholes and wells but also some standpipes and trucked water during the 2007 rainy season (July/August) from different regions throughout Ghana. In this paper we analyze the samples from the improved drinking water sources. Where possible the name of the location, age of the water source and pump, funding agency, water charge, money collection system, maintenance arrangements and proximity of other water sources in the area were registered. Difficulties arose when trying to distinguish between boreholes and wells with hand pumps as information on the depth of the source was usually not available. However, the type of pump installed was used as an indication (see AmonooNeizer et al., 2007; Buamah et al., 2008, 2007; Kortatsi et al., 2006; Kortatsi et al., 2008) and left to equilibrate at for at least 3 days before ICP analysis. The other

2.2. Chemical analysis

The samples were kept at 4°C and separated into two portions. One portion was acidified to pH < 2 (concentrated Aristar HNO₃) and left to equilibrate at for at least 3 days before ICP analysis. The other portion was kept untreated at 4°C for ion chromatography (IC) analysis. Laboratory blanks were prepared by using MilliQ water and treating it in the same way as the samples. Major cations (> 0.1 mg/L) were detected by inductively coupled plasma-optical emission spectroscopy (ICP-OES) (Perkin Elmer Optima 5300 DV, USA). Cations of concentrations as low as 0.01 mg/L were analysed with inductively coupled plasma – mass spectrometry (ICP-MS) (Agilent 7500ce, Japan). Calibrations were verified by a standard
3. Results and discussion

3.3. Physico-chemical water quality

The results from the chemical analysis (mean, minimum median, lower inter-quartile range (Q1), median, higher inter-quartile range (Q3) and maximum values) are displayed in Table 1. The number of samples analysed (N), the applicable WHO drinking water guidelines and the percentage of samples with concentrations out with the guideline values are also presented. The following elements do currently not have a WHO guideline value: bromium (Br), calcium (Ca), magnesium (Mg), potassium (K), sulphur (S), vanadium (V) and cobalt (Co). The following elements did not exceed the WHO guideline value in any location: cadmium (Cd), selenium (Se), Copper (Cu), zinc (Zn), cobalt (Co) and chromium (Cr). The following elements exceeded the health-based WHO guideline value in at least one location: boron (B), manganese (Mn), iron (Fe), arsenic (As), lead (Pb), uranium (U), fluoride (F), nitrate (NO$_3^-$), sulphate (SO$_4^{2-}$) and nickel (Ni). The most widespread parameters exceeding a health based WHO guideline, were NO$_3^-$ (21%), Mn (11%) and F (6.7%). Numerous samples exceeded the recommended guidelines based on water treatment considerations or taste for Al (95%) and Cl (5.7%). Turbidity and pH were also outside the recommended range for 90% and 53% of the samples, respectively.

(Table 1)

Sampling locations which contained parameters exceeding the WHO guideline for chemical quality are shown in Figure 1. Only parameters of greatest concern are shown in this map (Fe, Mn, F, B, As, Pb, U, Cl and NO$_3^-$). It is important to note that the concentrations of the analytes are likely to be higher during the dry season (von der Heyden and New, 2004), and hence from a health aspect, the values displayed are conservative since measured during the wet season.

(Figure 1)

As can be seen in Figure 1, several water sources across the country contain concentrations of inorganic contaminants above the WHO drinking water guideline. Many of the water sources along the coast had elevated TDS, due to proximity to the sea. High concentrations of NaCl are expected to some extent due to seawater influence. Other ions such as F, Mn, Fe and NO$_3^-$ were also above the WHO guideline along the coast. Further inland, a variety of elements exceeded the guideline value, in particular in the Western, Central, Ashanti and Upper East Regions, where F and NO$_3^-$ concentrations exceeded the guideline. Overall 38% of the samples exceeded the health-based WHO drinking water guidelines for a minimum of one parameter. The graphs of pH, cumulative frequency versus concentration for TDS, conductivity, turbidity and the main inorganic parameters of interest are displayed in Figure 2 to 5. This shows the range of the concentrations found and the percentage of samples found within a certain concentration. The dotted lines mark the WHO drinking water guidelines, where applicable. A more detailed discussion of the individual contaminants found in the waters sources follows.

There is no health based guideline for pH, although a range of 6.5-8.5 is often used suggested because aquatic life is negatively affected below pH 6.0 (Mason, 1990). Additionally at low pH, the water is corrosive and can cause wear to equipment. About 50% of the samples fell outside the recommended

pH range, with the majority being too acidic (Figure 2). Acidity is more prominent in environments with granite based rocks with low buffering capacity (Mason, 1990). Of particularly high acidity (pH 3.7) was a borehole close to the mining town Obuasi in the Ashanti Region. The borehole also had high concentrations of Al, Mn, Pb and NO$_3^-$, indicating contamination from mining. Other acidic waters (pH 4.5-5.5) were found in the Ashanti, Western and Central Region. Some had high concentrations of Al, Mn or Pb, indicating contamination from mining. These regions are also subject to much mining on both small and large scale. The Western, Central and Ashanti regions would be naturally more acidic both due to their geology (British Geological Survey, 2000) and due to forest coverage (Gill, 1996). Forests are naturally expected to be somewhat acidic, both due to the organic acids from the breakdown of organic matter and the higher precipitation they receive (Spiro and Stigliani, 1996). This same area also receives the highest rainfall in the country (1500-2200 mm/yr, compared to 700-1000 mm/yr in the northern parts and east coast) (Gill, 1996).

(Figure 2)

Turbidity does not have a health based guideline, but it is recommended that it should ideally be below 0.1 NTU for effective disinfection (World Health Organisation, 2006). Ninety percent of the samples were above this guideline (Figure 3) and the turbidity was generally highest in surface waters, although high values (up to 266 NTU) were also found in boreholes. Ghana has set a guideline for a newly drilled bore holes at 5 NTU; and about 80% of the water sources sampled complied with this value.

(Figure 3)

Conductivity is an indication of the total dissolved solids (TDS), both organic and inorganic found in the water. There is no health-based guideline. The WHO guideline value of 1200 mg/L for TDS is based on taste rather than health. High TDS may cause corrosion of equipment such as hand pumps.

3.4. Parameters of health concern

The elements analysed for in this study that exceeded a WHO health based guideline value were As, Pb, U, B, F and NO$_3^-$.

The WHO guideline value for arsenic (As) is 10 µg/L. Concentrations exceeding this guideline were found in the Ashanti Region, around Obuasi, in the north of the Volta Region and the Upper East (Figure 4). The highest As concentration was in a borehole in Bolgatanga (170 µg/L). Smedley (1996) and Kinniburgh (Smedley, 1996; Smedley and Kinniburgh, 2002) give a detailed description of As geochemistry and its mobility due to weathering conditions. As can for instance be mobilised by flooding and the reduction and mobilisation of As-containing Fe oxides, or by oxidation of arsenopyrates, which is the case in the gold mining areas of Ghana (Smedley and Kinniburgh, 2002). Similarly high As concentrations were measured by Asante (2007) in the Tarkwa gold mining region (Western Region). Bolgatanga is an active mining area, and may thus release naturally occurring As. Asante et al. (2007) measured As concentrations in human urine samples of inhabitants of Tarkwa, concluding that the concentrations were similar to those of concentrations found in e.g. Bangladesh and India, although they could not ascertain a link to drinking water. As concentrations in rivers were higher than boreholes, indicating air-borne contamination (Smedley, 1996). Kortas et al. (2008b) found that 21% of the boreholes in the Offin basin (Ashanti Region) contain As concentrations above the WHO guideline. Interestingly, Amonoo-Neizer and Amekor (1993) showed that crops grown close to Obuasi often had double As contents compared to the same crop types grown around Kumasi.
indicating the release of high concentrations of As in mining areas. Kortatsi (2008a) also identified a number of samples with As concentrations above the drinking water guideline in the Central, Greater Accra and Volta Region. From the results of this study, it does not appear that As is a widespread problem in Ghana, however, it is still important to monitor and regulate contamination from mining activities as very high localised concentrations occur.

(Figure 4)

High concentrations of lead (Pb), above the WHO guideline value 10 µg/L, were found in the Ashanti region, as well as on the coast. The highest concentration determined was 35 µg/L. Concentrations of Pb above the WHO guideline in wells and boreholes imply that groundwater sources are not necessarily safe from pollution from industrial activities. The high Pb concentrations found at very low pH, and south of Obuasi, indicating acid mine drainage or other mining contamination as a possible source.

Concentrations of uranium (U) above the provisional WHO guideline (15 µg/L) were found in the Central Region and the Volta Region. The Volta Region sample also had high concentrations of NO₃⁻ (508 mg/L, ten times the WHO guideline value), F⁻ (4.24 mg/L, nearly three times the guideline value) and Cl⁻ (500 mg/L, double the taste guideline value). The borehole containing most U (267 µg/L) was in the Central Region. It did not contain other chemical pollutants. Other boreholes in that area also contained U, although not below the drinking water guideline value. U was previously found by Dampare (2005). Concentrations below the drinking water guideline were also found in the Upper East, indicating that while U may not be a widespread concern, it may be worth monitoring as it is a natural part of the geology. As well as being naturally radioactive, U is chemically toxic and when ingested may target bones or damage the kidney (The Royal Society, 2002; Kurttio et al., 2005).

Boron (B) was found at levels up to 2034 µg/L (the WHO guideline value is 500 µg/L) in the Northern Region. The highest B concentrations corresponded with alkaline pH. Speciation models of the water (using Minteq 2.53, results not shown), showed B to exist mainly as boric acid (H₃BO₃) over the acidic to neutral pH range, and borate (H₂BO₂⁻) above pH 8.5. Sources of boron include seawater (unlikely in this situation), coal burning and industrial sources as well as borate-containing fertilizers, which may be the most likely source in this case as there is agricultural activity in the region.

About 6.7% of the samples contained fluoride (F⁻) concentrations above the WHO guideline value (1.5 mg/L) (Figure 4). High concentrations of F⁻ were found in the north, but also in many locations along the coast, mainly in wells and boreholes. In the Upper East about 17% of the samples contained F⁻ concentrations above the guideline. Boreholes near the coast in the Volta Region contained F⁻ concentrations of above 4 mg/L, which can cause skeletal fluorosis. Kortatsi (2008b) also found F⁻ concentrations of 11 mg/L in the Offin Basin (Ashanti Region).

(Figure 5)

Nitrate (NO₃⁻) has a WHO guideline value of 50 mg/L and exceeded this concentration in 21% of the samples (Figure 5). The highest concentration was 508 mg/L. The locations were widespread but mostly found in the Western, Ashanti, southern Volta, Northern region and Upper East. NO₃⁻ isregulated as it is one of the causes of methaemoglobinemia (or “blue-baby syndrome”) in infants (Manassaram et al., 2006) as well as a potential risk of stomach cancer (Abrahams, 2002). Forty-seven percent of the well waters had concentrations above the guideline, compared to 16% of the borehole waters (Figure 6). The concentrations of NO₃⁻ were also higher in wells than in surface water (results not shown). This indicates a widespread problem of elevated NO₃⁻ in shallow groundwater, probably a result of poor sanitation and latrine construction (MacDonald and Calow, 2009). High levels can also be caused by fertilizer use. The results of Pelig-Ba (2004) confirm those of this study and report a mean of 93.3 mg/L of NO₃⁻ and a maximum of 511 mg/L in groundwater in the Upper West. The WHO guideline value for nitrite (NO₂⁻) is 0.2 mg/L. Because NO₂⁻ needs to be determined within 48 hours (Clesceri et al., 1998; Rump, 1999), this was not possible during this trial and hence no data is available.

(Figure 6)

3.5. Aesthetic parameters

Parameters analysed for in this study with non-health based WHO guideline were Al, Fe, Mn, Cl and SO₄²⁻. Despite not being a health concern, high concentrations affect the quality of water, leading to bad taste and colouration of cooking utensils and food. This has caused hundreds of wells to be abandoned in favour of surface waters likely contaminated with harmful micro-organisms (Smedley, 1996; Gyau-Boakye and Dapaah-Siakwan, 1999).

The most widespread pollutant was aluminium (Al). The health effects from Al remain unclear, however, Al does have a practicable non-health based WHO guideline value of 0.2 mg/L (stated as an achievable level for small water treatment facilities. This takes into consideration the health concerns but also the benefits from using Al in water treatment (World Health Organisation, 2006)). Ninety-five percent of the samples measured were above the recommended guideline value (Figure 5), several more than ten-fold, with the maximum concentration at 67 mg/L. Areas of particularly high Al concentration were in the Volta Region (regional average of 27 mg/L) where Nkwanta district, Asuogyaman, Hohoe, Keta and Ketu districts had especially high concentrations (average of 30, 42, 28 and 44 mg/L, respectively). The Western Region also had locations containing high Al concentrations, with an average of 13 mg/L in the Wassa West district. Al may leach from soils unable to buffer acidic precipitation and from minerals such as kaolinite and gibbsite (Langmuir, 1997). Some researchers find high Al concentrations in association with particles (Reimann et al., 2003), in our study however, Al showed no correlation with turbidity. Al concentrations were found to be highest around neutral pH, where Al normally is less soluble. The high Al in the samples may possibly be associated with colloids smaller than the 0.45 µm filter. Pelig-Ba (2004) also found higher Al concentrations in water at neutral pH and explained it by presence of chelating agents such as soil organic matter raising the Al solubility. In Pelig-Ba’s study from the Upper Regions (1998) the Al range was reported as up to 47 mg/L, with a mean of 4.4 mg/L in the Northern Region.

A number of samples had very high sulphate (SO₄²⁻) concentrations (>500 mg/L) (Figure 5). One was found in a relatively new borehole in the Northern Region, probably due to mudstone geology. In this sample high Mn concentrations were also found. Due to the taste, consumers preferred to drink water from the nearby shallow well, which contained low SO₄²⁻ and Mn concentrations but possible microbiological contamination. This illustrates how poor chemical water quality of new deeper groundwater sources may drive people back to shallow contaminated sources. Another borehole from the same region contained similar SO₄²⁻ and TDS levels, but no Mn, and people were happy to drink the water.

Around 5.7% of the waters sampled contain more chloride (Cl) than the recommended value (250 mg/L) (Figure 5). This value is based on taste, but waters of these Cl concentrations are also more
corrosive. As can be seen from the map in Figure 1, much of the high Cl concentrations are found in the Volta delta and along the coast. Gill et al. (1996) also reported high Cl concentrations in the Keta district and found similar evidence of seawater intrusion. A study conducted by Kortatsi (2006) in the Acra plains similarly found high concentrations of Cl and concluded that 75% of the boreholes in the area were brackish (TDS range 1000-10000 mg/L), with Na and Cl as the dominating ions.

Iron (Fe) concentrations below 2000 μg/L are described as safe by the WHO (Figure 4), although taste is affected above 300 μg/L. This taste based value is used by many studies when reporting Fe. Up to 4257 μg/L was measured. As can be seen from the map (Figure 1), high Fe concentrations were found in a variety of locations along the coast, inland in forested areas and the Northern Region. Most samples (97.4%) fall below 300 μg/L and 99% are below the guideline value 2000 μg/L (Figure 4).

Most of the sources containing very high Fe concentrations were found in boreholes. The chemistry of naturally occurring Fe is controlled by the redox conditions of the water (not measured), where Fe is mobilised under reducing conditions, indicating that the environment of these boreholes was reducing.

Concentrations of manganese (Mn) above the WHO drinking water guideline value (400 μg/L) were found mainly the Western and Ashanti region and along the coast (Figure 1). The highest concentrations were found in boreholes (Figure 6). Similarly to Fe, Mn chemistry is also redox controlled. High concentrations of Fe and Mn corresponded in some samples, but for the majority of them high Mn concentrations were not accompanied by high Fe concentrations.

High concentrations of calcium (Ca), magnesium (Mg) and potassium (K) (Figure 5) are generally not a health concern and thus do not have guideline values set by the WHO, but are important nutrients. Studies have shown an inverse relationship between cardiovascular disease and water hardness, with increased risk occurring with Ca concentrations >60mg/L of Ca (Packham, 1990). In fact the water sources in Ghana were generally soft and the concentrations of the samples in the third percentile were below 15 mg/L for Mg and 40 mg/L for Ca (Table 1). In large concentrations however, they may affect the taste of the water by contributing to high TDS, which will also affect practical water usage (washing with soap).

In summary, the water quality from the different sources in Ghana displayed a wide range of chemical water quality, with many sources containing concentrations above the drinking water guidelines. In boreholes high concentrations of NO₃, F, B, Pb, As, U, Cl, Fe, Mn and SO₄²⁻, and high levels turbidity were found. In wells NO₃, Fe and turbidity were common problems, as well as some instances of As, Mn, Cl and F.

3.6. Current rural water sources, costs and ability to pay

The Ghana Water Policy advocates provision of demand driven basic water and sanitation services for communities that contribute towards capital cost, operation, maintenance and repairs (Government of Ghana, 2007). Non-government organisations often support the communities by paying up to 95% of the borehole cost, while the community raises 5% of the borehole cost (Government of Ghana, 2007).

About 25% of the communities visited had an annual user fee per household ranging from 5000 to 40000 cedis (£0.3-£21, August 2007). About 33% of the water supplies had a water collection charge based on quantity of water collected (Figure 7). Surface and many well waters were often free of charge while boreholes, piped and especially truck-delivered water attracted the highest charges. The cost per bucket (18L) for boreholes and piped water ranged from 25 to 250 cedis (£0.07 to £0.7/m³, based on 62 communities) and the cost per basin (40L) ranged from 50 to 500 cedis (£0.07 to £0.7/m³, based on 47 communities). Where water was trucked in, the cost was 1000-1200 cedis per bucket (€2.9-3.5/m³, based on two communities). An appointed water vendor from the WatSan committee was often situated at the water source to directly collect the payment from the users. Understandably some households choose to use cheaper or free water sources for washing and bathing, increasing the risk of contact with diseases transmitted by surface water. Surface water is often used during the rainy season due to availability while in dry seasons they may be used if borehole re-charge is low (Iten and McCarron, 2006). 13% of the communities visited did not have an operational payment system in place. Many communities were therefore struggling to raise between 1.5-2.5 million cedis (about £80-£130) in order to pay for repairs or spare parts of pumps, broken a couple of years earlier. This proved to be a major hurdle and pumps would remain disused or even abandoned. Another problem encountered in some communities was that there was no payment system for the trained community members to get paid for maintenance services, which meant that they were unwilling to assist. Organising maintenance and collecting payment for repairs is further complicated by the dynamic movement of people between different communities and even parts of the country (Iten and McCarron, 2006). In some cases pumps were ill designed, causing unaffordable chronic failure of parts.

(Figure 7)

3.7. Is water treatment a suitable option for sources of poor chemical quality?

The problems encountered in the survey were those of high turbidity, high concentrations of F, NO₃⁻, Al, Mn, Fe and localised contamination of Pb, As, B and U. Overall, 38% of the sources analysed exceeded a health-based WHO guideline for chemical parameters. Installation costs of boreholes and wells are about £3800 and £1800, respectively. Many boreholes fail due to the high chemical content of for example F (Smedley et al., 2002) and to 64% of the boreholes in the north of Ghana fail based on water flow, re-charge and chemical quality (Iten and McCarron, 2006). Thus for the actual costs of developing ground water the number of unsuccessful boreholes drilled need to be taken into account. To reduce this cost in areas of complex geology, investment in initial hydrogeological investigations is important to improve success (MacDonald and Calow, 2009). An alternative option to capping existing boreholes and drilling new, potentially unsuccessful boreholes would be to treat the water. Suitable treatment options in developing countries can be provided as centralised, community based or point-of-use/household based approaches. For economic and infrastructural reasons, community based or point-of-use treatments are considered preferable to centralised treatment for rural communities (Peter-Varbanets et al., 2009). This also applies to rural areas of Ghana where boreholes or wells may already exist while access to a centralised supply does not. Treatment technologies considered suitable for developing countries, such as sand filtration, UV disinfection (SODIS), ceramic filters and chlorination mainly remove or destroy microbial pathogens and turbidity (Sobsey et al., 2008; Peter-Varbanets et al., 2009) and could potentially be used to disinfect surface waters of good chemical quality, but do not effectively remove chemical contaminants. Importantly, over 90% of the samples had a turbidity of more than 0.1 NTU, which must be reduced before disinfection can be effective.

Treatment methods which target chemical contaminants combine processes such as adsorption or coagulation with ultrafiltration or sand filtration processes (Brandhuber and Amy, 2001; Johnston and Rossiter, 1996). This also applies to rural areas of Ghana where boreholes or wells may already exist while access to a centralised supply does not. Treatment technologies considered suitable for developing countries, such as sand filtration, UV disinfection (SODIS), ceramic filters and chlorination mainly remove or destroy microbial pathogens and turbidity (Sobsey et al., 2008; Peter-Varbanets et al., 2009) and could potentially be used to disinfect surface waters of good chemical quality, but do not effectively remove chemical contaminants. Importantly, over 90% of the samples had a turbidity of more than 0.1 NTU, which must be reduced before disinfection can be effective.

To reduce this cost in areas of complex geology, investment in initial hydrogeological investigations is important to improve success (MacDonald and Calow, 2009). An alternative option to capping existing boreholes and drilling new, potentially unsuccessful boreholes would be to treat the water. Suitable treatment options in developing countries can be provided as centralised, community based or point-of-use/household based approaches. For economic and infrastructural reasons, community based or point-of-use treatments are considered preferable to centralised treatment for rural communities (Peter-Varbanets et al., 2009). This also applies to rural areas of Ghana where boreholes or wells may already exist while access to a centralised supply does not. Treatment technologies considered suitable for developing countries, such as sand filtration, UV disinfection (SODIS), ceramic filters and chlorination mainly remove or destroy microbial pathogens and turbidity (Sobsey et al., 2008; Peter-Varbanets et al., 2009) and could potentially be used to disinfect surface waters of good chemical quality, but do not effectively remove chemical contaminants. Importantly, over 90% of the samples had a turbidity of more than 0.1 NTU, which must be reduced before disinfection can be effective.
This method still requires further development and testing, however, and the resulting concentrations depend on concentrations originally present. The need to remove a variety of chemical contaminants from existing water sources persists and long-term studies are lacking. The issue of F removal from drinking water in the northern regions of Ghana, for example, is unresolved (CWSA, 2007). In such situations membrane technologies have unique potential due to their physical separation. Nanofiltration or reverse osmosis are well adapted in developed countries for water desalination, reuse and removal of dissolved contaminants while application in developing countries has not yet widely progressed. Investment cost into single tap reverse osmosis has been estimated to £190-£380 (Peter-Varbanets et al., 2009) which may be an option if it could be developed for boreholes. A solar powered community-based membrane system was field tested by Schäfer et al. (2007) and found to perform well in terms of potable water production. The system had a specific energy consumption of 1.2 kWh/m³. Investment and maintenance costs into a solar powered electrodialysis system have been calculated as £0.15-0.28/m³, with an initial investment of at least £5400 (Ortiz et al., 2008). However, the long-term integration of operation and maintenance of such systems into communities requires solid strategies at a local level.

3.8. Sustainability of treatment systems

The effectiveness and sustainability of point-of-use and small-scale water treatment technology remains to be seen as contents (see for example Hunter (in press), Hunter et al. (2009) and Schmidt and Cairncross (in press)). Three components of sustainability for engineered solutions in developing countries were identified by Montgomery et al. (2009) as 1) effective community demand, 2) local financing and cost recovery, and 3) dynamic operation and maintenance. The importance of local ownership of both the technology development (local sourcing and production) as well as the resulting systems should be emphasized. Failure to incorporate these components into a water source and potential water treatment reduce the likelihood of its long-term functionality. Cost recovery of five community managed water systems in the Ashanti Region was investigated by Nyarko et al. (2007), who found that neither of the communities recovered their full capital and operational costs, while four out of five recovered their operation and maintenance costs. Interview results showed that there was not an understanding amongst the community members of the full costs involved, while some preferred to use free untreated water sources when the prices were too high. The importance of demand-driven appropriate water treatment was high-lighted in a study by Hoque et al. (2004). They found that household treatment systems often were abandoned after a short period, while community based systems proved more sustainable. For this reason it is important to understand the willingness (and ability) to pay for water provision in such communities as well as elucidating the most suitable treatment option.

4. Conclusions

It was found in this study that 38% of the wells and boreholes in Ghana had high concentrations of inorganic contaminants. Major problems identified were that of high turbidity, low pH, high concentrations of Na+, Ca, Mg, and Cl and in localised areas As, Pb, B and U. The importance of regular monitoring of groundwater sources is emphasized. While some ‘low-cost’ treatment technologies to remove, for instance, As and F exist, the long-term sustainability and management of such technologies is yet to be proven for a wide range of chemical contaminants and how performance (in particular contaminant breakthrough) can be monitored. The maintenance costs of systems could potentially be incorporated in the maintenance costs currently paid by community members (up to £0.7/m³), especially if government and NGO’s were willing to invest in the capital costs. This could be worthwhile, considering the cost of unsuccessful boreholes. About 58% of the communities had a payment system in place to recover basic maintenance costs.

In areas of high chemical contamination more advanced inorganic removal treatment such as nanofiltration and reverse osmosis may be necessary. This would require extensive training in operation and maintenance, but while initial investment would increase, it may facilitate maintenance and potentially reduce long-term costs in particular if renewable energy is used as a power supply. Given that renewable energy powered ground water pumps are rapidly penetrating the market and water charges for trucked water is comparable to membrane treatment costs this is a most viable option. Any form of improved water supply requires community ownership and commitment by local and national authorities to ensure that long-term needs are met. Research into ensuring long-term sustainability in terms of community demand, cost recovery, failure management, maintenance of water sources and treatment needed is timely and of critical importance.

5. Acknowledgements

UNESCO Scotland are thanked for project funding, the Royal Society and the Royal Academy of Engineering for travel support. A studentship from EPSRC and ESRC was provided for H.M.A. Rossiter. Mr. Samuel Ansere is thanked for his superb local guidance in Ghana as the driver of the team during the field trip in summer 2007 and KNUST for the provision of a vehicle. Tanya Pesshur and Dr Peter Anderson assisted with IC analysis, and Dr Lorna Eades for assistance with ICP-MS (all University of Edinburgh).

Prof. Bryce Richards (Heriot Watt University) is thanked for his active participation in the sampling trip, while Bjørn Schalte-Herbrüggen as well as Kofi Awuah who provided some remote samples. Faustina Atiopka (CWSA, Bongo district), Osmund Ana-Ansare (WR, Accra), Hajo Schäfer (IGIP Consulting Engineers, Kumasi) are thanked for helpful discussions in conjunction with field trip logistics. Gloria Addicio (University of Hull) provided the map modified for the paper. Prof. Menachem Elimelech (Yale University) has critically reviewed the manuscript and Annalisa DeMunari and Laura Richards (University of Edinburgh) are thanked for editorial proof reading.

References

AmonooNeizer EH, Amekor EMK. Determination of total arsenic in Environmental-Samples from Kumasi and Obuasi, Ghana. Environ Health Perspect 1993; 101: 46-49.

CWSA. Summary of the fluoride issues in the northern region, 2007.

AmmonoNeizer EH, Amekor EMK. Determination of Total Arsenic in Environmental-Samples from Kumasi and Obuasi, Ghana. Environ Health Perspect 1993; 101: 46-49.

Reimann C, Banks D. Setting action levels for drinking water: Are we protecting our health or our economy (or our backs!)? Sci Total Environ 2004; 332: 13-21.

Table 1 Distribution of measured parameters in the samples. The minimum, mean, maximum and median values are given along with the WHO guideline values and the percentage of samples which exceeded the guideline value.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>N</th>
<th>Mean</th>
<th>Min</th>
<th>Q1</th>
<th>Median</th>
<th>Q3</th>
<th>WHO guideline%</th>
<th>outwith guideline%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>mg/L</td>
<td>192</td>
<td>11.87</td>
<td><0.020</td>
<td>3.927</td>
<td>8.500</td>
<td>14.600</td>
<td>66.69</td>
<td>0.2*</td>
</tr>
<tr>
<td>As</td>
<td>µg/L</td>
<td>195</td>
<td>1.930</td>
<td><0.003</td>
<td>0.073</td>
<td>0.532</td>
<td>169.5</td>
<td>10</td>
<td>0.5</td>
</tr>
<tr>
<td>B</td>
<td>µg/L</td>
<td>192</td>
<td>61.11</td>
<td><2.551</td>
<td>5.820</td>
<td>10.08</td>
<td>27.14</td>
<td>2034</td>
<td>500</td>
</tr>
<tr>
<td>Br</td>
<td>mg/L</td>
<td>192</td>
<td>0.209</td>
<td><0.200</td>
<td><0.200</td>
<td><0.200</td>
<td>1.116</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ca</td>
<td>mg/L</td>
<td>192</td>
<td>28.59</td>
<td>0.091</td>
<td>10.411</td>
<td>19.70</td>
<td>39.61</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cd</td>
<td>µg/L</td>
<td>195</td>
<td>0.025</td>
<td><0.001</td>
<td><0.001</td>
<td>0.013</td>
<td>1.755</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Cl</td>
<td>mg/L</td>
<td>193</td>
<td>4.944</td>
<td><0.200</td>
<td>3.711</td>
<td>13.27</td>
<td>597.2</td>
<td>250*</td>
<td>5.7</td>
</tr>
<tr>
<td>Co</td>
<td>µg/L</td>
<td>195</td>
<td>0.262</td>
<td><0.051</td>
<td><0.051</td>
<td><0.051</td>
<td>0.077</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cr</td>
<td>µg/L</td>
<td>195</td>
<td>0.199</td>
<td><0.068</td>
<td><0.068</td>
<td><0.068</td>
<td>0.151</td>
<td>9.290</td>
<td>50</td>
</tr>
<tr>
<td>Cu</td>
<td>µg/L</td>
<td>195</td>
<td>2.774</td>
<td><0.173</td>
<td><0.173</td>
<td><0.173</td>
<td>0.715</td>
<td>2000</td>
<td>-</td>
</tr>
<tr>
<td>F</td>
<td>mg/L</td>
<td>193</td>
<td>0.470</td>
<td><0.100</td>
<td>0.044</td>
<td>0.209</td>
<td>4.45</td>
<td>-</td>
<td>6.7</td>
</tr>
<tr>
<td>Fe</td>
<td>µg/L</td>
<td>195</td>
<td>84.73</td>
<td><0.001</td>
<td>5.446</td>
<td>17.78</td>
<td>46.16</td>
<td>4257</td>
<td>-</td>
</tr>
<tr>
<td>K</td>
<td>mg/L</td>
<td>187</td>
<td>4.382</td>
<td>0.241</td>
<td>1.475</td>
<td>2.564</td>
<td>5.511</td>
<td>-</td>
<td>29.65</td>
</tr>
<tr>
<td>Mg</td>
<td>mg/L</td>
<td>192</td>
<td>10.52</td>
<td><0.030</td>
<td>2.586</td>
<td>6.459</td>
<td>14.55</td>
<td>-</td>
<td>66.20</td>
</tr>
<tr>
<td>Mn</td>
<td>µg/L</td>
<td>195</td>
<td>134.8</td>
<td>0.030</td>
<td>4.447</td>
<td>19.21</td>
<td>117.9</td>
<td>2051</td>
<td>-</td>
</tr>
<tr>
<td>Ni</td>
<td>µg/L</td>
<td>195</td>
<td>0.579</td>
<td><0.054</td>
<td><0.054</td>
<td>0.0436</td>
<td>29.59</td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td>NO₃⁻</td>
<td>mg/L</td>
<td>193</td>
<td>3.041</td>
<td><0.200</td>
<td>0.514</td>
<td>6.394</td>
<td>31.52</td>
<td>507.7</td>
<td>50</td>
</tr>
<tr>
<td>Pb</td>
<td>µg/L</td>
<td>195</td>
<td>1.526</td>
<td><0.006</td>
<td>0.489</td>
<td>1.517</td>
<td>34.94</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>PO₄³⁻</td>
<td>mg/L</td>
<td>193</td>
<td>0.058</td>
<td><0.100</td>
<td><0.100</td>
<td><0.100</td>
<td>1.214</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S</td>
<td>mg/L</td>
<td>192</td>
<td>6.905</td>
<td><0.200</td>
<td>0.372</td>
<td>1.150</td>
<td>4.091</td>
<td>-</td>
<td>235.4</td>
</tr>
<tr>
<td>Se</td>
<td>µg/L</td>
<td>195</td>
<td>0.434</td>
<td><0.306</td>
<td><0.306</td>
<td><0.306</td>
<td>0.598</td>
<td>6.175</td>
<td>10</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>mg/L</td>
<td>193</td>
<td>34.69</td>
<td><0.200</td>
<td>1.648</td>
<td>5.236</td>
<td>23.75</td>
<td>931.4</td>
<td>500*</td>
</tr>
<tr>
<td>U</td>
<td>µg/L</td>
<td>195</td>
<td>1.988</td>
<td><0.001</td>
<td>0.049</td>
<td>0.114</td>
<td>0.410</td>
<td>266.6</td>
<td>15</td>
</tr>
<tr>
<td>V</td>
<td>µg/L</td>
<td>195</td>
<td>2.380</td>
<td><0.011</td>
<td><0.011</td>
<td><0.011</td>
<td>0.891</td>
<td>45.37</td>
<td>-</td>
</tr>
<tr>
<td>Zn</td>
<td>µg/L</td>
<td>195</td>
<td>9.305</td>
<td><1.591</td>
<td><1.591</td>
<td><1.591</td>
<td>1.591</td>
<td>454.8</td>
<td>3000</td>
</tr>
<tr>
<td>Conductivity</td>
<td>µS/cm</td>
<td>199</td>
<td>457.1</td>
<td>15.00</td>
<td>178.0</td>
<td>314.0</td>
<td>549.0</td>
<td>2280</td>
<td>-</td>
</tr>
<tr>
<td>TDS</td>
<td>mg/L</td>
<td>198</td>
<td>176.2</td>
<td>4.963</td>
<td>51.77</td>
<td>98.42</td>
<td>178.2</td>
<td>1454</td>
<td>1200*</td>
</tr>
<tr>
<td>Turbidity</td>
<td>NTU</td>
<td>199</td>
<td>14.30</td>
<td>0</td>
<td>0.237</td>
<td>0.793</td>
<td>3.302</td>
<td>629.7</td>
<td>0.1*</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>199</td>
<td>6.32</td>
<td>3.69</td>
<td>5.67</td>
<td>6.43</td>
<td>6.98</td>
<td>8.88</td>
<td>6.5*</td>
</tr>
</tbody>
</table>

*Recommendation based on aesthetic considerations such as taste and colour.

†Recommendation based on taste (at 300 µg/L) before WHO health guideline is reached, which is why many prefer to use the taste guideline value.

No health based guideline value is set, however values less than 500 mg/L are recommended due to damage to gastrointestinal effects.

List of Figures

Figure 1 Map of Ghana with regions and sample points marked. Locations tested that did not exceed the WHO guideline value for As, B, Cl, F, Fe, Mn, NO₃⁻, Pb or U were marked with an open circle, locations exceeding the WHO guideline were marked according to the legend in the map.

Figure 2 Cumulative frequency (%) versus pH. The dotted lines mark the recommended pH range.

Figure 3 Cumulative frequency (%) versus turbidity (NTU), conductivity (µS/cm) and TDS (mg/L).

Figure 4 Cumulative frequency (%) versus concentration (µg/L) on log axis for Pb, As and U (top) and Fe, Mn and B (below). The dotted line indicates the WHO guideline.

Figure 5 Cumulative frequency (%) versus concentration (mg/L) on log axis for Al (top); then Cl, NO₃⁻ and SO₄²⁻ (middle) and finally Ca, K, Mg and S (bottom). The dotted line indicates the WHO guideline where available.

Figure 6 Comparison between boreholes (BH) and wells: percentage of source type with samples above the WHO guideline for Mn, Fe, Cl, NO₃⁻ and turbidity.

Figure 7 Distribution of water charge systems (charge based on water usage, annual charge, no charge) out of the 220 water sources visited.
Figure 5

Figure 6

Figure 7