Understanding the Origins of Haematopoietic Stem Cells in the E11.5 AGM Region using a Novel Reaggregate Culture System.

Christèle Gonneau

Thesis presented for the degree of Doctor of Philosophy
University of Edinburgh
Centre for Regenerative Medicine, Institute for Stem Cell Research
2009
I declare that the work present in this thesis is my own, except otherwise stated

Christèle Gonneau
À mes parents …
i. Acknowledgements

I thank my supervisor, Dr. Alexander Medvinsky for his guidance, support, and encouragement throughout my PhD. I also thank him for many invaluable discussions and for his genuine passion for science, both of which have been a great inspiration during difficult times. I also thank Dr. Samir Taoudi for his extreme patience, scientific teachings, and friendship; they have been invaluable assets. My sincere thanks are given to animal units members, Ray McInnes and Carol Manson and their technicians, who provided superb assistance and professionalism. I would also like to acknowledge the provision of fantastic technical assistance from Suling Zhao, Erin Taylor and Karen Anderson. Thanks to Jan Vrana and Simon Monard for their help with cell sorting, and to Dr. Adin Ross-Gillespie for his help with statistics. Thanks to Dr. David Hills, Dr. Stanislav Rybstov, Dr. Jennifer Antonchuk, Dr. Kate Moore, Dr. Sabrina Gordon-Keylock, Dr. Celine Souilhol, and Dr. Owen Davies for their post-doctoral scientific and moral support.

I would also like to thank my dear PhD fellows and friends Nick, Pedro, Laura, Ellie, Michelle, Anna, Alison, Alistair and Aga for sharing the same boat, for their support and understanding in the dark days. Many thanks to Remi, Fleur, and Sophie for their precious friendship, and for always being there for me. I would like to particularly thank my great friend Katia, who was never scared to stay by my side until late hours and whose friendship, kindness and moral support have been invaluable. I would also like to particularly thank my dear friend Adin, my rock throughout my PhD, for his patience and understanding, for his wonderful rants, his imaginative cooking, and for the many long discussions that opened my mind about many aspects of science and life.

Finally, I would like to thank my parents, Jean-Pierre and Marika, for their unwavering moral support throughout my studies and whose infinite love and trust are my greatest strengths. Merci maman et papa…
ii. **Abstract**

Identifying the sites and mechanisms involved in haematopoietic stem cells (HSCs) during development would improve our understanding of how to induce HSCs from alternative sources like embryonic stem cells, while offering insight into pathways involved in HSC-related diseases such as leukaemia. Adult-type HSC, or long-term reconstituting HSCs (LTR-HSCs), are widely defined as cells capable of reconstituting the entire haematopoietic system of a lethally irradiated adult recipient. The first LTR-HSCs emerge and expand in the aorta-gonad-mesonephros (AGM) region of the mid-gestation mouse embryo. Recently, the development of a novel reaggregate culture system has provided a valuable tool to identify key cell populations involved in LTR-HSC development. This system allows the mechanical dissociation of the E11.5 AGM region prior to culture whilst maintaining its ability to autonomously expand LTR-HSCs. Here, I show that reaggregate LTR-HSCs are $\text{CD45}^+\text{Sca1}^+\text{c-kit}^+\text{CD31}^\text{med}$ and that IL-3, SCF, and Flt3l are required in order to achieve an optimal 150 fold LTR-HSC expansion. I also characterise the pattern of Runx1 expression in the adult and E11.5 AGM region of our novel Runx1$^{\text{EGFP}}$ reporter mouse and identify a population of EGFP$^+$CD45$^-$VE-cadherin$^-$ cells in the E11.5 AGM region that disappears during reaggregate culture. Finally, using the E11.5 AGM reaggregate culture, I show that while uro-genital ridges are potentially required for optimal LTR-HSC expansion, most LTR-HSCs are derived from the dorsal aorta (Ao) region, and that the dorsal aspect of the dorsal aorta (AoD) can contribute to the reaggregate LTR-HSCs compartment.
iii. Table of contents

I. ACKNOWLEDGEMENTS 1

II. ABSTRACT 2

III. TABLE OF CONTENTS 3

IV. LIST OF ABBREVIATIONS 9

1. INTRODUCTION 11

1.1. General Introduction 11
 1.1.1. On stem cells… 11
 1.1.2. On haematopoietic stem cells… 11

1.2. The adult haematopoietic hierarchy 13
 1.2.1. The haematopoietic stem cell compartment 15
 1.2.1.1. The bone marrow HSC identity 15
 1.2.1.2. The bone marrow HSC niche 16
 1.2.2. The colony-forming unit spleen 17
 1.2.3. Common myeloid and common lymphoid progenitors 17
 1.2.4. Terminally differentiated haematopoietic lineages 20

1.3. The development of the haematopoietic system 20
 1.3.1. The embryonic origin of LTR-HSCs: the beginnings of a controversy 22
 1.3.2. Primitive erythropoiesis in the early yolk sac 23
 1.3.3. Identifying the intra-embryonic source of LTR-HSCs 23
 1.3.4. The extra-embryonic sources of LTR-HSCs 24
 1.3.4.1. The controversial role of the early yolk sac 24
 1.3.4.2. The placenta as a haematopoietic organ 25
 1.3.5. Quantitative analysis of LTR-HSCs during embryonic development: a model for haematopoietic hepatic colonisation 26
 1.3.6. Primitive and definitive haematopoiesis and their ontogenetical connections 29
 1.3.6.1. Defining primitive and definitive haematopoiesis 29
 1.3.6.2. The distinct origin of primitive and definitive haematopoiesis 29
 1.3.6.2.1. CD41 expression as a candidate marker of definitive haematopoiesis 29
 1.3.6.2.2. Insights from amphibian studies 30
 1.3.6.3. Molecular resolution of primitive and definitive haematopoiesis 31
 1.3.6.3.1. The role of stem cell leukaemia (SCL) gene 32
 1.3.6.3.2. The role of LIM domain only 2 (limo2) 34
 1.3.6.3.3. The roles of GATA transcription factors 34
 1.3.6.3.4. The role of notch signalling 36
 1.3.6.3.5. The role of runx1 37

1.4. The ancestry of LTR-HSCs in developing embryos 38
 1.4.1. The spatial origin of LTR-HSCs in the E11.5 AGM region 38
 1.4.2. The ancestry of LTR-HSCs in the developing embryo 40
 1.4.2.1. The endothelial origins of LTR-HSCs 41
1.4.2.2. Concept of the haemangioblast
1.4.2.3. Concept of haemogenic endothelium
1.4.2.4. The mesodermal theories: pre-HSCs
1.4.2.5. The mesodermal theories: sub-aortic patches
1.4.2.6. The primordial germ cells theory

1.5. Runx1 as a master regulator of haematopoiesis
1.5.1. Structure and transcriptional regulation of Runx1 gene
1.5.1.1. Regulation of Runx1 transcription
1.5.1.2. Structure of the protein and alternative splicing
1.5.1.3. Runx1-mediated transcriptional activation
1.5.1.4. Runx1 mediated transcriptional inactivation
1.5.2. The roles of Runx1 in adult haematopoiesis
1.5.2.1. Runx1 in LTR-HSCs
1.5.2.2. Runx1 roles in lymphoid lineages
1.5.2.3. Roles of Runx1 in myeloid lineages
1.5.2.3.1. Role of Runx1 in megakaryocytes
1.5.2.3.2. Role of Runx1 in erythrocytes
1.5.2.3.3. Role of Runx1 in monocytes/macrophages
1.5.3. Roles of Runx1 during embryonic development
1.5.3.1. Runx1 expression in the developing null or haploinsufficient embryo
1.5.3.2. Insights from the Runx1 knockout model
1.5.3.3. Runx1 effect on LTR-HSC emergence is dose-dependent
1.5.3.4. Runx1 and the emergence of LTR-HSCs

1.6. The ex vivo expansion of LTR-HSCs
1.6.1. Hoxb4: a potent stimulator of LTR-HSC expansion
1.6.2. Soluble growth factors as potent inducers of LTR-HSC expansion
1.6.2.1. Stem cell factor
1.6.2.2. Interleukin-3
1.6.2.3. Flt3-ligand

1.7. Summary and project goals

2. MATERIALS AND METHODS

2.1. General solutions

2.2. Animals
2.2.1. Animal husbandry
2.2.2. Timed matings
2.2.3. Mouse lines

2.3. Runx1EGFP line genotyping and backcrossing
2.3.1. Runx1EGFP mouse line genotyping
2.3.2. Runx1EGFP mouse line backcrossing

2.4. Embryonic tissue isolation and preparation
2.4.1. Isolation of embryonic tissue
2.4.2. Cellular preparation of embryonic tissues

2.5. Adult tissue isolation and preparation
2.5.1. Isolation of adult tissue 74
2.5.2. Cellular preparation of adult tissues 74
2.5.3. Erythrocyte depletion in adult tissues 75

2.6. Flow cytometry 75
 2.6.1. Staining and flow cytometric analysis of adult and embryonic cellular suspensions 75
 2.6.2. Fluorescence Activated Cell Sorting of embryonic tissues 77

2.7. Tissue culture 79
 2.7.1. E11.5 AGM region reaggregation 79
 2.7.2. E11.5 AGM tissues explant cultures 80

2.8. In vitro haematopoietic assay: methylcellulose based differentiation 80

2.9. In vivo haematopoietic stem cell assay: competitive long-term repopulation assay 81
 2.9.1. In vivo transplantation 81
 2.9.2. Assessment of haematopoietic reconstitution 81

2.10. Confocal microscopy 82
 2.10.1. Staining for cell surface markers 82
 2.10.1.1. Embedding and Sectioning 82
 2.10.1.2. Immunofluorescent staining 82

2.11. Cytological analysis 83
 2.11.1. Cytospin preparation 83
 2.11.2. May-Grünwald-Giemsa staining 83

2.12. Statistical analysis 83

3. THE REAGGREGATE CULTURE SYSTEM: CHARACTERISATION AND INSIGHTS INTO CYTOKINE-MEDIATED LTR-HSC EXPANSION 85

3.1. Introduction 85

3.2. Characterisation of the reaggregate culture system using standard conditions 87
 3.2.1. Basic characterisation of the E11.5 AGM region 87
 3.2.2. Basic characterisation of haematopoietic populations in reaggregates 87
 3.2.3. The expansion of haematopoietic progenitors during reaggregate culture 90
 3.2.4. The expansion of LTR-HSCs during reaggregate culture 92
 3.2.5. Normal LTR-HSC function: multilineage reconstitution and secondary transplantation 95
 3.2.6. LTR-HSC phenotype in reaggregates 98
 3.2.7. Conclusions 101

3.3. Refinement of culture conditions for E11.5 AGM reaggregates 102
 3.3.1. The role of FCS in IMDM for LTR-HSC expansion 102
 3.3.1.1. Serum free conditions: haematopoietic progenitor expansion 102
 3.3.1.2. Serum free conditions: LTR-HSC expansion 102
 3.3.1.3. Serum free conditions: long-term multilineage contribution and secondary transplantations 104
3.3.2. The need for growth factors for LTR-HSC expansion
 3.3.2.1. Growth factor free conditions: haematopoietic progenitor expansion
 3.3.2.2. Growth factor free conditions: LTR-HSC expansion
 3.3.2.3. Growth factor free conditions: long-term multilineage analysis and secondary transplantations.

3.4. Requirement of individual growth factors for optimal haematopoietic development in E11.5 AGM reaggregates
 3.4.1. The impact of growth factor deprivation on E11.5 AGM reaggregates haematopoiesis
 3.4.1.1. Descriptive analysis: morphology and haematopoietic cells
 3.4.1.2. Functional analysis: haematopoietic progenitors
 3.4.1.3. Functional analysis: LTR-HSC expansion
 3.4.1.4. Normal function of LTR-HSCs: multilineage analysis and secondary transplantations
 3.4.1.5. Conclusions
 3.4.2. Influence of individual growth factor on haematopoiesis in E11.5 AGM reaggregates
 3.4.2.1. Descriptive analysis: morphology and cell numbers
 3.4.2.2. Functional analysis: expansion of haematopoietic progenitors
 3.4.2.3. Functional analysis: expansion of LTR-HSCs
 3.4.2.4. Normal function of LTR-HSCs: multilineage analysis and secondary transplantations
 3.4.2.5. Conclusions

3.5. Discussion
 3.5.1. The reaggregate culture system, in vitro model of in vivo LTR-HSC development?
 3.5.2. The requirement for growth factors in reaggregate culture

4. CHARACTERISATION OF RUNX1 EXPRESSION IN THE RUNX1EGFP REPORTER MOUSE MODEL
 4.1. Introduction
 4.2. Genotyping of the Runx1EGFP mice
 4.3. Mendelian inheritance pattern of the Runx1EGFP mouse line
 4.4. Absence of detectable phenotype in the Runx1EGFP mice
 4.4.1. Cellularity of Runx1EGFP/EGFP adult haematopoietic organs
 4.4.2. Haematopoietic progenitors content in Runx1EGFP/EGFP adult bone marrow
 4.4.3. Cellularity of the Runx1EGFP E11.5 AGM region
 4.4.4. Flow cytometric analysis of Runx1EGFP mice
 4.5. Characterisation of Runx1 expression in the Runx1EGFP adult mouse
 4.5.1. Runx1 expression in the bone marrow linscalc-kit+ (LSK) fraction
 4.5.2. Runx1 expression in myeloid lineages in Runx1EGFP/WT adult mouse
 4.5.2.1. Runx1 expression in granulocytes and monocytes
 4.5.2.2. Runx1 expression during erythroid differentiation
 4.5.3. Runx1 expression in lymphoid lineages in Runx1EGFP/WT adult mouse
 4.5.3.1. Runx1 expression in T cell lineages
4.5.3.2. Runx1 expression in B cell lineages

4.6. Characterisation of Runx1 expression in the Runx1EGFP embryo

4.6.1. EGFP expression in the E11.5 AGM region: CD34+ cell subsets.
4.6.2. EGFP expression in the E11.5 AGM region: c-kit+ cell subsets.
4.6.3. EGFP expression in the E11.5 AGM region: VE-cadherin cell subsets.
4.6.4. EGFP expression in the E11.5 AGM region: pre-LTR-HSCs type I (CD45+VE-cadherin+CD41lo)
4.6.5. EGFP expression in E11.5 AGM reaggregates

4.7. LTR-HSC numbers in the Runx1EGFP E11.5 AGM region

4.7.1. Functional analysis of LTR-HSCs in Runx1EGFP mice: LTR-HSCs numbers

4.8. Discussion

4.8.1. EGFP expression in the Runx1EGFP adult mouse
4.8.2. EGFP expression in the Runx1EGFP E11.5 embryo
4.8.3. LTR-HSC numbers in the Runx1EGFP E11.5 AGM region

5. THE SPATIAL LOCALISATION OF PRE-HSC IN THE E11.5 AGM REGION

5.1. Introduction

5.2. Axio-lateral polarity of LTR-HSC expansion within E11.5 AGM region

5.2.1. Axio-lateral characterisation of the fresh E11.5 AGM region
5.2.1.1. Cellular composition of the Ao and UGR
5.2.1.2. Axio-lateral repartition of haematopoietic progenitors in the E11.5 AGM region
5.2.2. Autonomous haematopoietic potential of E11.5 Ao and UGRs in reaggregate cultures
5.2.2.1. Expansion of haematopoietic (CD45+) cells in E11.5 Ao and UGR reaggregates
5.2.2.2. Expansion of haematopoietic progenitors in E11.5 Ao and UGR reaggregates
5.2.3. Spatial origin of LTR-HSCs in E11.5 AGM reaggregates: axio-lateral polarity
5.2.3.1. Expansion of haematopoietic (CD45+) cells in chimeric (Ao/UGR) E11.5 AGM reaggregates
5.2.3.2. CFU-C expansion potential of chimeric (Ao/UGR) E11.5 AGM reaggregates
5.2.3.3. The axio-lateral polarity of LTR-HSC development
5.2.4. Supportive effect of the UGR on LTR-HSC expansion

5.3. Dorso-ventral polarity of LTR-HSC development within E11.5 AGM region

5.3.1. Dorso-ventral dissections of the E11.5 AGM region
5.3.2. Dorso-ventral distribution of cell populations in the fresh E11.5 AGM region
5.3.2.1. Dorso-ventral distribution of haematopoietic (CD45+) and endothelial (VE-cadherin+) cells
5.3.2.2. Dorso-ventral distribution of EGFP+ cells in Runx1EGFP,WT embryos
5.3.3. Dorso-ventral distribution of haematopoietic progenitors (CFU-Cs) in the fresh E11.5 AGM region.
5.3.4. The influence of dorsal tissue on AoD haematopoiesis
 5.3.4.1. Influence of dorsal tissue on AoD haematopoietic cells outcome during explant culture.
 5.3.4.2. The influence of dorsal tissue on AoD haematopoietic progenitors.
 5.3.4.3. Influence of dorsal tissue on LTR-HSC expansion using explant cultures
 5.3.4.4. Analysis of multilineage reconstitution of mice transplanted with IMDM AGM explant cultures

5.3.5. Dorso-ventral polarity in generation of LTR-HSCs in the E11.5 AGM region
 5.3.5.1. Haematopoietic development from AoD in chimeric reaggregates
 5.3.5.2. AoD contribution into the LTR-HSC compartment in E11.5 AGM chimeric reaggregates
 5.3.5.3. Multilineage contribution of AoD-derived LTR-HSCs from AGM chimeric reaggregates

5.4. Discussion
 5.4.1. Axio-lateral polarity of LTR-HSC development in E11.5 AGM reaggregates
 5.4.2. Dorso-ventral polarity of LTR-HSC development in E11.5 AGM reaggregates

6. SUMMARY AND PERSPECTIVES

6.1. Summary

6.2. Ongoing work
 6.2.1. The supportive role of the UGRs for LTR-HSC development
 6.2.2. The haematopoietic potential of AoD

6.3. Perspectives

7. APPENDIXES

8. PUBLICATION

9. REFERENCES
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-AAD</td>
<td>7-aminoactinomycin D</td>
</tr>
<tr>
<td>AGM</td>
<td>Aorta Gonad Mesonephros</td>
</tr>
<tr>
<td>Ao</td>
<td>dorsal Aorta</td>
</tr>
<tr>
<td>AoD</td>
<td>dorsal Aorta, Dorsal domain</td>
</tr>
<tr>
<td>AoV</td>
<td>dorsal Aorta, Ventral domain</td>
</tr>
<tr>
<td>BFU-E</td>
<td>Burst Forming Unit-Erythroid</td>
</tr>
<tr>
<td>bHLH</td>
<td>basic Helix Loop Helix</td>
</tr>
<tr>
<td>BL-CFC</td>
<td>Blast Colony Forming Cell</td>
</tr>
<tr>
<td>BrDU</td>
<td>Bromodeoxyuridine</td>
</tr>
<tr>
<td>CBF</td>
<td>Core Binding Factor</td>
</tr>
<tr>
<td>CFSE</td>
<td>Carboxyfluorescein Succinimidylic Ether</td>
</tr>
<tr>
<td>CFU-C</td>
<td>Colony Forming Unit-Culture</td>
</tr>
<tr>
<td>CFU-GEMM</td>
<td>Granulocyte/Erythrocyte/Macrophage/Megakaryocyte</td>
</tr>
<tr>
<td>CFU-GM</td>
<td>Colony Forming Unit-Granulocyte/Macrophage</td>
</tr>
<tr>
<td>CFU-mac</td>
<td>Colony Forming Unit-macrophage</td>
</tr>
<tr>
<td>CFU-mast</td>
<td>Colony Forming Unit-mast</td>
</tr>
<tr>
<td>CFU-meg</td>
<td>Colony Forming Unit-megakaryocyte</td>
</tr>
<tr>
<td>CFU-S</td>
<td>Colony Forming Unit-Spleen</td>
</tr>
<tr>
<td>CLP</td>
<td>Common Lymphoid Progenitor</td>
</tr>
<tr>
<td>CMP</td>
<td>Common Myeloid Progenitor</td>
</tr>
<tr>
<td>DAPI</td>
<td>4-6 Diamidino-2-phenylindole</td>
</tr>
<tr>
<td>DLP</td>
<td>Dorso-Lateral Plate</td>
</tr>
<tr>
<td>DMZ</td>
<td>Dorsal Marginal Zone</td>
</tr>
<tr>
<td>DT</td>
<td>Dorsal Tissue</td>
</tr>
<tr>
<td>E</td>
<td>Embryonic day</td>
</tr>
<tr>
<td>EB</td>
<td>Embryoid Body</td>
</tr>
<tr>
<td>EGFP</td>
<td>Enhanced Green Fluorescent Protein</td>
</tr>
<tr>
<td>ES</td>
<td>Embryonic Stem</td>
</tr>
<tr>
<td>FACS</td>
<td>Fluorescence Activated Cell Sorting</td>
</tr>
<tr>
<td>FCS</td>
<td>Fetal Calf Serum</td>
</tr>
<tr>
<td>FGF</td>
<td>Fibroblast Growth Factor</td>
</tr>
<tr>
<td>Flt3l</td>
<td>Fms-like tyrosine kinase 3-ligand</td>
</tr>
<tr>
<td>GFP</td>
<td>Green Fluorescent Protein</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>Granulocyte-Macrophage Colony Stimulating Factor</td>
</tr>
</tbody>
</table>
GMP Granulocyte Macrophage Progenitor
Hox Homeobox
HSC Haematopoietic Stem Cell
IAHC Intra-Aortic Haematopoietic Cluster
IGF Insulin Growth Factor
IL Interleukin
IRES Internal Ribosome Entry Site
Lin Lineage
Lmo2 LIM domain only 2
LSK Lin'Sca1'c-kit'
LTR Long-Term Repopulating
M-CSF Macrophage Colony Stimulating Factor
MEP Megakaryocyte Erythrocyte Progenitor
MFI Median Fluorescence Intensity
NLS Nuclear Localisation Signal
P/S Penicillin/Streptomycin
PBC Peripheral Blood Chimerism
PBS Phosphate Buffered Saline
PCR Polymerase Chain Reaction
PGC Primordial Germ Cell
P-Sp Para-aortic Splanchnopleura
Rd Dose of Reaggregate
RT Room Temperature
RT-PCR Reverse-Transcriptase Polymerase Chain Reaction
SAP Sub-Aortic Patch
SCL Stem Cell Leukaemia
SLAM Signalling Lymphocyte Activation Molecule
STR Short Term Repopulating
TPO Thrombopoietin
UGR Urogenital Ridge
VBI Ventral Blood Island
VE Vascular Endothelial
VEGF Vascular Endothelial Growth Factor
VMZ Ventral Marginal Zone
WT Wild Type
YS Yolk Sac
1. Introduction

1.1. General Introduction

1.1.1. On stem cells…

The future of regenerative medicine, which promises treatments for complex diseases such as neurological disorders or cancers, relies mainly on the advances of stem cell research. A stem cell is widely defined as an undifferentiated cell that undergoes the processes of self-renewal and differentiation into mature cell types.

Embryonic stem (ES) cells, isolated from the inner cell mass of the pre-implantation embryo, are the only pluripotent cells with the capacity for *in vivo* and *in vitro* differentiation into cell lineages from all three germ layers (endoderm, mesoderm and, ectoderm)(Beddington and Robertson, 1989; Bradley et al., 1984). Undifferentiated ES cell lines can be maintained and expanded when either co-cultured on fibroblast feeder cells (Evans and Kaufman, 1981; Martin, 1981) or in the presence of leukaemia inhibitory factor and bone morphogenetic protein 4 (Smith et al., 1988; Williams et al., 1988; Ying et al., 2003).

During embryonic development, and in the adult organism, tissue specific stem cells can be isolated (Figure 1.1). Contrary to ES cells, tissue specific stem cells can only give rise to cell lineages that are from the same germ layer and sometimes from the same tissue only.

1.1.2. On haematopoietic stem cells…

Elucidating the mechanisms by which haematopoietic stem cells (HSC) can be generated is of major scientific interest as it will improve our understanding of how to induce HSCs from alternative sources such as ES cells, while offering important insights into pathways involved in HSC-related diseases such as leukaemia. Because it is believed that long-term repopulating haematopoietic stem
ES cells are the most primitive stem cells that are isolated from the inner cell mass of pre-implantation embryos and can give rise to all embryonic and extra-embryonic lineages. Further along development, only tissue specific stem cells are present in the organism and they can be isolated from most tissues of the endodermal, mesodermal, and ectodermal germ layers.
cells (LTR-HSCs) arise *de novo* during ontogeny only, the study of embryonic LTR-HSCs is under a great scrutiny. The study of embryonic LTR-HSCs is a challenge because, contrary to the adult, embryonic haematopoiesis involves a complex spatial and temporal chain of events which are characterised by successive appearance of haematopoietic progenitors in extra-embryonic tissues followed by the emergence of LTR-HSCs in intra-embryonic organs (Cumano et al., 1996; Cumano et al., 2001; Gekas et al., 2005; Medvinsky and Dzierzak, 1996; Moore and Metcalf, 1970; Muller et al., 1994; Ottersbach and Dzierzak, 2005; Yoder and Hiatt, 1997; Yoder et al., 1997b). This is further complicated by the possible existence of two ontogenetically distinct haematopoietic hierarchies during development: the primitive (embryonic) and definitive (adult) haematopoietic hierarchies.

In this introduction, current knowledge and issues associated with the ontogeny of LTR-HSCs in the murine embryo are discussed. The complex spatial and temporal emergence of the primitive and definitive waves of haematopoiesis will be extensively described with a particular focus on theories about the ancestry of LTR-HSC and their supporting evidence. After a brief overview on molecular mechanisms involved in LTR-HSCs biology, the essential role of the transcription factor Runx1 in haematopoiesis will be discussed.

1.2. The adult haematopoietic hierarchy

The adult (definitive) haematopoietic hierarchy is represented by the steady-state haematopoiesis that exists within the organism\(^1\). Haematopoiesis is the process by which a small number of LTR-HSCs, located in the bone marrow, is able to support and provide sufficient progeny that will progressively restrict differentiation potential and differentiate into mature blood cells (Figure 1.2).

\(^1\) Unless stated otherwise, all discussions are presented in the context of the murine organism.
Figure 1.2: Schematic representation of the definitive haematopoietic hierarchy.

The definitive haematopoietic hierarchy is described by the LTR-HSCs compartment giving rise to progeny that sequentially lose self-renewal capacity (STR-HSC) and commit to specific lineages (CMP and CLP) before undergoing terminal differentiation and giving rise to mature blood cells.

(adapted from Larsson and Karlsson, 2005)
1.2.1. The haematopoietic stem cell compartment

HSCs are the cells capable of simultaneously self-renewing and differentiating into more committed progeny. These cells subsequently proliferate and further differentiate into all blood cell types. In the adult bone marrow, there are two types of multipotent\(^2\) cells with the capacity to home and engraft in adult haematopoietic organs upon transplantation, the LTR-HSCs and the short-term repopulating (STR) progenitors. STR progenitors lack life-long self-renewal capacity and thus can only provide haematopoietic reconstitution for a limited period (Zhao et al., 2000; Zhong et al., 1996). LTR-HSCs however, are capable of undergoing life-long self-renewal and robustly support haematopoiesis throughout life. Experimentally, LTR-HSCs are detected and assessed functionally by the \textit{in vivo} competitive long-term repopulation assay and are defined by their ability to repopulate the haematopoietic system of a lethally irradiated adult recipient mouse upon serial transplantations (Szilvassy et al., 1990).

1.2.1.1. The bone marrow HSC identity

The bone marrow of an adult mouse (CBA x C57/Bl6) contains LTR-HSC at a frequency of 1 in 10,000 nucleated cells (Kumaravelu et al., 2002). Flow cytometry have allowed the purification of bone marrow LTR-HSCs: they can either be identified by their ability to efflux the nuclear dye Hoechst 33342 (Goodell et al., 1996) or by a complex immunophenotype based on the absent/low expression of cell surface proteins expressed on mature cell lineages (Lin\(^-\))(includes Ter119, Mac-1, Gr-1, B220, CD3\(\varepsilon\), CD4 and CD8 lineage markers) and the expression of Sca1, c-kit, Thy1.1 and CD34 (Berman and Basch, 1985; Ikuta and Weissman, 1992; Osawa et al., 1996; Spangrude et al., 1988). An LTR-HSC enrichment of 1 in 5 cells can be achieved by fluorescent assisted cell sorting (FACS) of Lin\(^-\)Sca1\(^+\)c-kit\(^+\)Thy1.1\(^{lo}\) or

\(^2\) Property to give rise to multiple, yet limited, number of cell lineages. For example, haematopoietic stem cells can differentiate into blood cells but not into brain cells.
Lin−Scal+−c-kit+CD34lo− cell fractions (Osawa et al., 1996; Wagers et al., 2002). A more recent study has achieved very high levels of LTR-HSC purity using a simple combination of antibodies against the signalling lymphocyte activation molecule (SLAM) family markers CD48 and CD150 (frequency of 1 in 5 in CD48CD150+ cells and 1 in 2 in CD48CD150−CD41− cells) (Kiel et al., 2005).

Four weeks after birth, postnatal HSCs switch from a predominantly proliferating state to a more quiescent state (Bowie et al., 2007b; Bowie et al., 2006). In the adult bone marrow, elegant experiments combining flow cytometry with bromodeoxyuridine (BrdU) label-retaining assay have identified a rarely dividing (once every 36 days) HSC population and a highly dormant HSC population (once every 145 days) containing the majority of the LTR-HSC activity (Wilson et al., 2008). It is thought that quiescence prevents HSC exhaustion and limits the occurrence of mutations that could lead to transformation into cancer stem cells (Orford and Scadden, 2008; Warner et al., 2004). Even if the majority of LTR-HSC are in a quiescent state in the bone marrow, they are readily capable of reversibly switching from dormancy to self-renewal under conditions of injury and stress (Wilson et al., 2008).

1.2.1.2. The bone marrow HSC niche

The majority of adult LTR-HSC are located in the trabecular zone of the bone marrow but can also be found in much smaller numbers in the liver and the spleen (Calvi et al., 2003; Kiel and Morrison, 2008; Kiel et al., 2005; Taniguchi et al., 1996; Wolber et al., 2002; Zhang et al., 2003). Understanding the nature of the HSC niche is almost as important as understanding the HSC intrinsic properties because niche elements can regulate HSC migration, quiescence and differentiation (Arai et al., 2004; Calvi et al., 2003; Nilsson et al., 2001; Orford and Scadden, 2008; Warner et al., 2004; Zhang et al., 2003). Genetic studies have shown that factors secreted by

3 Specialized microenvironment made of supporting cells influencing HSC behaviour.
endosteal cells (osteoblasts and osteoclasts) can promote HSC maintenance (Kiel and Morrison, 2008). However, further characterisation of the endosteum as well as conditional inactivation of factors of interest, in particular endosteal cell types, remain to be performed to elucidate major niche-mediated mechanisms involved in HSC biology (Kiel and Morrison, 2008). Additionally, a growing body of evidence highlights the possible roles of sinusoid vascular cells and the wider perivascular environment (Kiel and Morrison, 2008). Possible mechanisms by which niche components can influence HSCs are complex and are likely to involve a wide range of surrounding cells (Figure 1.3).

1.2.2. The colony-forming unit spleen

Downstream of the HSC compartment in the definitive haematopoietic hierarchy are the colony-forming unit spleen (CFU-S) which are defined as cells capable of homing to the spleen and forming macroscopic colonies (Till and Mc, 1961). CFU-S can be divided into early CFU-S that can generate colonies 7-9 days after transplantations (and recede by day 10) and late CFU-S that generate colonies after 9-12 days post transplantation and remain until day 14 (Magli et al., 1982). These two CFU-S types have accordingly been named CFU-S8 and CFU-S12. CFU-S12 are more primitive progenitors than CFU-S8 because of their capacity for self-renewal (Magli et al., 1982; Siminovitch et al., 1963).

CFU-S12 were considered to be HSCs for a long time because cell separation techniques based on expression of cell surface markers failed to separate CFU-S from HSCs. Evidence against this hypothesis came much later by allowing the separation of CFU-S and HSCs using counterflow centrifugal elutriation, a technique that separates cells according to their size and density (Jones et al., 1990).

1.2.3. Common myeloid and common lymphoid progenitors

Downstream of the CFU-S are the lineage-committed progenitors, the common lymphoid progenitor (CLP) and the common myeloid progenitor (CMP).
Figure 1.3: Diversity and complexity of the bone marrow LTR-HSC niche. Contributions of cells near the endosteum (osteoblasts and osteoclasts) and at perivascular sites (vessels endothelial cells and associated reticular cells, megakaryocytes and mesenchymal progenitors). LTR-HSCs in the niche can be regulated either by cell-cell contacts, soluble factors, or by intermediate cells. (Reviewed and adapted from Kiel and Morrison, 2008)
Similarly to HSCs, CLP and CMP are Lin\(^-\) but express low levels of Sca1 and c-kit (Akashi et al., 2000; Kondo et al., 1997). They can be isolated based on their differential expression of interleukin 7 receptor \(\alpha\)-chain (IL7-R), CLP being Lin\(^-\)Thy1.1\(^{lo}\)Sca1\(^{lo}\)c-kit\(^{lo}\)IL-7R\(\alpha\)^+ and CMP being Lin\(^-\)Thy1.1\(^{lo}\)Sca1\(^{c}\)-kit\(^{+}\)IL-7R\(\alpha\)\(^-\) (Akashi et al., 2000; Kondo et al., 1997).

CLP differentiation potential is limited to lymphoid lineages. The CLPs are capable of transient \textit{in vivo} reconstitution of the lymphoid compartment (B cells, T cells, and natural killer cells) and can only give rise to B lymphoid colonies \textit{in vitro} even when exposed to cytokines used for myeloid differentiation (Kondo et al., 1997).

CMP differentiation potential is limited to myeloid lineages and can also provide transient \textit{in vivo} reconstitution of the myeloid compartment (Akashi et al., 2000). The CMP population can be further divided by flow cytometry based on the differential expression of Fc\(\gamma\) receptor II-III (Fc\(\gamma\)R) and CD34; three functionally distinct populations with different differentiation potential can be identified. First, the CMP (Fc\(\gamma\)R\(^{lo}\)CD34\(^{+}\)) can give rise to all types of myeloid colony forming unit-culture (CFU-Cs), the progenitors to fully differentiated lineages (Akashi et al., 2000). Myeloid CFU-Cs include Burst Forming Unit-Erythroid (BFU-E), CFU-Mast, CFU-Macrophage (CFU-mac), CFU-Megakaryocyte (CFU-Meg), CFU-Granulocyte/Macrophage (CFU-GM), and CFU-Granulocyte/Erythrocyte/Macrophage/Megakaryocyte (CFU-GEMM). Second, the granulocyte macrophage lineage-restricted progenitor (GMP)(Fc\(\gamma\)R\(^{hi}\)CD34\(^{+}\)) can only give rise to both CFU-mac and CFU-GM (Akashi et al., 2000). Finally; the megakaryocyte erythrocyte lineage-restricted progenitor (MEP)(Fc\(\gamma\)R\(^{lo}\)CD34\(^{+}\)) can only give rise to CFU-Meg, BFU-E (Akashi et al., 2000). Experiments in which CMP were serially cultured in methylcellulose determined that the CMP gave rise to the more committed lineage restricted progenitors GMP and MEP (Akashi et al., 2000).
1.2.4. **Terminally differentiated haematopoietic lineages**

All cells from the leucocytic\(^4\) lineages express the plasma membrane protein CD45 (Lagasse et al., 2000; Ledbetter and Herzenberg, 1979; Thomas, 1989). As previously mentioned, fully differentiated lineages can be divided into myeloid lineages (granulocytes, monocytes/macrophages, mast cells, magakaryocytes/platelets, erythrocytes) and lymphoid lineages (B cells, T cells, and natural killer cells).

Erythrocytes function to facilitate gaseous exchange in tissues of the organism; enucleation occurs as part of their terminal differentiation, a process that can be followed by the differential expression of the plasma membrane proteins CD71 and Ter119 (Kina et al., 2000).

Apart from having a very different array of functions (which will not be discussed here), fully differentiated haematopoietic cell lineages express different plasma membrane proteins. Development of monoclonal antibodies against these proteins has allowed the identification of these cell types by fluorescent microscopy and flow cytometry. The most commonly used lineage specific markers were summarised in Table 1.1.

1.3. **The development of the haematopoietic system**

Understanding the emergence of LTR-HSCs during embryonic development is of major interest because it is believed to be the only time during the mammalian organism life when LTR-HSCs can arise *de novo*. Haematopoiesis during development is very different to the steady state haematopoiesis happening in the adult and is far more complex as it occurs in various organs at various developmental times.

\(^4\) Nucleated cells belonging to the immune system (also called white blood cells). Main types include neutrophils, eosinophils, basophils, lymphocytes (B cells, T cells, and natural killer cells), monocytes, macrophages and dendritic cells.
Table 1.1: Erythroid, lymphoid and myeloid lineage specific cell surface markers expressed on fully differentiated cells
(taken from Taoudi, 2006)

<table>
<thead>
<tr>
<th>Haematopoietic lineage</th>
<th>Plasma membrane protein</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leucocyte</td>
<td>CD45/Ly-5</td>
<td>Ledbetter and Herzenberg, 1979; Thomas, 1989; Lagasse et al, 2000</td>
</tr>
<tr>
<td>Erythroid</td>
<td>Ter119</td>
<td>Kina et al, 2000; Zhang et al, 2003</td>
</tr>
<tr>
<td></td>
<td>CD71</td>
<td>Kemp et al, 1987; Zhang et al, 2003</td>
</tr>
<tr>
<td>Lymphoid</td>
<td>B220</td>
<td>Hardy et al, 1991; Allman et al, 1992; Rolink et al, 1996</td>
</tr>
<tr>
<td>B-cell</td>
<td>CD19</td>
<td>Krop et al, 1996; Tedder et al, 1994</td>
</tr>
<tr>
<td></td>
<td>CD43</td>
<td>Hardy et al, 1991</td>
</tr>
<tr>
<td>T-cell</td>
<td>CD33α</td>
<td>Leo et al, 1987; Nakano et al, 1996</td>
</tr>
<tr>
<td></td>
<td>CD4</td>
<td>Pierres et al, 1984</td>
</tr>
<tr>
<td></td>
<td>CD8α</td>
<td>Ledbetter et al, 1980; van Ewijk et al, 1981</td>
</tr>
<tr>
<td>Natural killer</td>
<td>NK1.1</td>
<td>Koo and Peppard, 1984; Yokoyama and Seaman, 1993</td>
</tr>
<tr>
<td>Myeloid</td>
<td>CD34</td>
<td>Drew et al, 2002</td>
</tr>
<tr>
<td>Mast cell</td>
<td>c-Kit/CD117</td>
<td>Drew et al, 2002</td>
</tr>
<tr>
<td></td>
<td>Sca-1</td>
<td>Drew et al, 2002</td>
</tr>
<tr>
<td></td>
<td>FcαRI</td>
<td>Ishizaka and Ishizaka, 1984; Dombrowicz et al, 1993; Turner et al, 1999</td>
</tr>
<tr>
<td></td>
<td>Gr-1</td>
<td>Hestdal et al, 1991; Fleming et al, 1993; Lagasse and Weissman, 1996</td>
</tr>
<tr>
<td>Neutrophil</td>
<td>Mac-1/CD11b</td>
<td>Lagasse and Weissman, 1996</td>
</tr>
<tr>
<td></td>
<td>Gr-1</td>
<td>Hestdal et al, 1991; Fleming et al, 1993; Lagasse and Weissman, 1996</td>
</tr>
</tbody>
</table>
During development, the dynamics of LTR-HSC emergence, migration and expansion have been linked to four major haematopoietic organs: the aorta-gonad mesonephros (AGM region), the yolk sac (YS), the fetal liver and the placenta (Gekas et al., 2005; Kumaravelu et al., 2002; Muller et al., 1994; Ottersbach and Dzierzak, 2005; Yoder et al., 1997b).

1.3.1. The embryonic origin of LTR-HSCs: the beginnings of a controversy

The first haematopoietic cells to appear in the developing embryo are observed in the YS blood islands from embryonic day (E) 7.5, approximately two days before the onset of blood circulation\(^5\) (Moore and Metcalf, 1970). Blood islands first produce nucleated erythrocytes cells that express embryonic globins in a process called primitive erythropoiesis. The detection of CFU-S and CFU-C in early YS explants (Moore and Metcalf, 1970; Palis et al., 1999) led to the hypothesis that LTR-HSCs originate \textit{in situ} in the early YS before migrating via peripheral circulation and colonising to the fetal liver (Moore and Metcalf, 1970). Such hypothesis was supported by experiments in avian models (Moore and Owen, 1965; Moore and Owen, 1967). Two studies in the mouse reported repopulation activity in the YS prior to E11 when donor cells were microinjected \textit{in utero} into recipient embryos. Contribution to the adult haematopoietic system was either limited to the erythroid lineage (Toles et al., 1989) or to almost undetectable lymphoid lineages (Weissman IL, 1978).

The extra-embryonic source of LTR-HSC hypothesis was challenged when a series of elegant experiments with chicken-quail chimeras (quail embryos and haematopoietic organs were grafted onto chick YS) revealed that all blood cell types were of quail origin, thus proving the intra-embryonic origin for the adult

\(^5\) which begins at E8.5 with the completion of the omphalomesenteric artery and is completed at E10.5 with a beating heart that drives haematopoietic circulation (McGrath et al, 2003).
haematopoietic system (Dieterlen-Lievre, 1975). Further experiments by the same group showed that while the YS was capable of generating a transient wave of erythroid cells, the site of HSC generation was predominantly intra-embryonic (Lassila et al., 1978; Lassila et al., 1982).

1.3.2. Primitive erythropoiesis in the early yolk sac

Defining primitive and definitive haematopoiesis has been subject to a long debate among scientists and is discussed further in Section 1.3.6. Here, primitive haematopoiesis will be defined as the process by which mature erythroid cells and some macrophages are formed by the early YS. After their initial formation in the E7.5 YS, the outer layer of the blood islands differentiate into endothelial cells while the inner cells loose their intercellular attachments and differentiate into primitive erythroblasts (McGrath and Palis, 2005). After their formation, primitive erythroblasts enter the embryonic vasculature where they proliferate, hence providing the embryo with an immediate supply of oxygen carrying cells necessary to fill in the gap between maternal passive oxygen diffusion and the start of erythrocytes production by E11 fetal liver. Contrary to adult type erythrocytes (as formed by the E11 fetal liver), primitive erythroblasts (also called megaloblasts due to their size) are nucleated and express the embryonic forms of hemoglobin (βH1 and ε)(McGrath and Palis, 2005; Palis et al., 1999). YS derived primitive erythroid cells are no longer found in the bloodstream after E16 (McGrath and Palis, 2005).

1.3.3. Identifying the intra-embryonic source of LTR-HSCs

The presence of CFU-S$_8$ and CFU-S$_{11}$ in the E10.0 AGM region but not YS provided the first evidence of an intra-embryonic source of multilineage progenitors (Medvinsky et al., 1993). Because this activity reaches a maximum in the AGM region at E11.0, shortly before similar haematopoietic activity can be found in the fetal liver, it was speculated that the AGM region was the source of hepatic multilineage progenitors (Medvinsky et al., 1993). Proper assessment of LTR-HSC
content in the E10 embryo by serial long-term multilineage engraftment into irradiated adult recipients confirmed the AGM region as the first site in the embryo to harbour LTR-HSC activity (Muller et al., 1994). While these results indicated that the AGM region was the most potent pre-liver site of definitive haematopoiesis, this did not address the issue of the site of origin of the LTR-HSCs because of the active interchange of cells via circulation and interstitial migration that could have happened prior to E10.5 (Medvinsky and Dzierzak, 1996). The development of an ex vivo organ culture system, preventing possible cellular interchanges and thus revealing the autonomous and intrinsic capacity of the haematopoietic organs to generate LTR-HSCs, finally confirmed the E10.0 AGM as the first site of LTR-HSC emergence and expansion (from 1 to 12 LTR-HSCs) in the murine embryo (Kumaravelu et al., 2002; Medvinsky and Dzierzak, 1996). This was further supported by studies performed before the onset of circulation showing that E8 para-aortic splanchnopleura (P-Sp)\(^6\), but not the YS, contained multipotent lymphomyeloid progenitors, although they were not capable of high level reconstitution of adult recipients (Cumano et al., 1996; Cumano et al., 2001).

1.3.4. The extra-embryonic sources of LTR-HSCs

1.3.4.1. The controversial role of the early yolk sac

A controversial body of evidence has indicated that the E8.0 YS was capable of generating LTR-HSCs when cells were transplanted in utero (Toles et al., 1989; Weissman IL, 1978). However, various studies failed to detect early YS cells with the capacity to engraft adult irradiated recipients or display multilineage differentiation prior to E11.0 (Cumano et al., 1996; Cumano et al., 2001; Medvinsky and Dzierzak, 1996; Medvinsky et al., 1993; Muller et al., 1994).

\(^6\) Region including the splanchnic mesoderm surrounding the endoderm of the developing gut and the endothelium of arteries, it is a transient structure which develops into the AGM region at late E9 (Cumano et al, 1996).
It was hypothesised by Yoder and colleagues that the failure of \(\leq E_{11.0} \) YS cells to demonstrate LTR-HSC activity was a result of the failure of these cells either to home to haematopoietic microenvironments or to respond appropriately to such microenvironments (Yoder and Hiatt, 1997). Intravenous and intrahepatic injections into conditioned newborn pups confirmed this idea and showed that intrahepatic injections of E9-10 YS could give rise to high level long-term multilineage reconstitution in the adult haematopoietic system (Yoder and Hiatt, 1997; Yoder et al., 1997a; Yoder et al., 1997b).

1.3.4.2. The placenta as a haematopoietic organ

Recent studies have revived the idea that the placenta is a significant embryonic haematopoietic organ because it harbours high frequencies of committed lymphoid (pre-B cells) and myeloid progenitors (CFU-GM, CFU-GEMM, and BFU-E) from E8.5 onwards (Alvarez-Silva et al., 2003; Melchers, 1979). More recently, two research groups independently confirmed that the placenta is a reservoir for a large pool of LTR-HSCs from E11 until E13.5 when it dramatically reduces, concomitantly with the extensive hepatic pool expansion (Gekas et al., 2005; Ottersbach and Dzierzak, 2005). Placental LTR-HSCs can be enriched in the CD34\(^{-}\)c-kit\(^{+}\)Sca1\(^{+}\) fraction, similarly to LTR-HSCs isolated in the AGM region and YS (Gekas et al., 2005; Ottersbach and Dzierzak, 2005; Sanchez et al., 1996; Yoder et al., 1997a), and are located within the endothelial layer of embryonic vessels in chorionic and labyrinth regions (Ottersbach and Dzierzak, 2005; Rhodes et al., 2008). However, the actual number of LTR-HSCs in the E12.5 placenta is still unclear because Gekas and colleagues counted approximately 50 LTR-HSCs per placenta while Ottersbach and colleagues counted approximately 12 (Gekas et al., 2005; Ottersbach and Dzierzak, 2005).

Unlike the E10.5 AGM, the E10.5 placenta is not able to autonomously initiate LTR-HSC formation when cultured as organ explant (Ottersbach and Dzierzak, 2005). The presence of haematopoietic progenitors in the allantois and the
chorion (whose fusion forms the placenta) in the early headfold embryo suggests an autonomous potential of the placenta (Zeigler et al., 2006). Additional experiments with embryos lacking a heartbeat, thus having no peripheral circulation (Ncx1−/− embryos⁷), also suggest that the placenta contains multipotent haematopoietic cells as early as E8.5, prior to the onset of circulation (Rhodes et al., 2008). However, the lack of transplantation experiments did not provide evidence in favour of autonomous LTR-HSC generation in the placenta, leaving this question unanswered.

1.3.5. Quantitative analysis of LTR-HSCs during embryonic development: a model for haematopoietic hepatic colonisation

Studies that quantified LTR-HSCs in the murine embryo from E10.5, at the onset of LTR-HSC emergence, have proven that LTR-HSCs are detected in the fetal liver by E11.5 and that this pool undergoes massive expansion (from 3.3 LTR-HSCs at early E11 up to 250 at E13)(Ema and Nakauchi, 2000; Gekas et al., 2005; Kumaravelu et al., 2002; Morrison et al., 1995). Such rapid expansion within the fetal liver cannot possibly be explained by mitotic divisions of a small number of LTR-HSCs that had previously colonised the fetal liver (Kumaravelu et al., 2002). Proper quantification of the LTR-HSCs within the haematopoietic organs from the onset of their emergence until their expansion in the liver have suggested that the fetal liver is seeded by consecutive waves of LTR-HSCs migrating from the AGM region first and subsequently from the YS and the placenta (Gekas et al., 2005; Kumaravelu et al., 2002; Moore and Metcalf, 1970). Such model is based on the following evidence and summarised in Figure 1.4:

⁷ Ncx1−/− embryos lack heartbeat due to a defect in the sodium-calcium exchange pump 1 and thus do not survive beyond E10.5 (Koushik et al, 2001).
Figure 1.4: Embryonic haematopoietic sites and LTR-HSCs journey during development.

LTR-HSCs in the developing mouse embryo can be isolated first from the AGM region, the YS, and the placenta. The site where LTR-HSCs emerge is still controversial and their trafficking between these 3 embryonic sites is still unclear. After they emerge, LTR-HSC are thought to migrate to the fetal liver where they expand and migrate to the bone marrow post-natally. They reside in the bone marrow throughout life.
- The expansion of LTR-HSCs in the liver occurs concomitantly with increasing numbers of LTR-HSCs in the circulation (Kumaravelu et al., 2002).

- Although the AGM is capable of significant LTR-HSC expansion *ex vivo* (Kumaravelu et al., 2002; Medvinsky and Dzierzak, 1996), the numbers of progenitors and LTR-HSCs found *in situ* in the AGM are low at all times (between 1 and 2 LTR-HSCs) (Gekas et al., 2005; Kumaravelu et al., 2002; Muller et al., 1994).

- The YS contains similar numbers of LTR-HSCs as the AGM from E11 onwards but becomes competent to generate LTR-HSCs at E12 (7 LTR-HSCs) (Kumaravelu et al., 2002).

- The placenta contains large amount of LTR-HSCs from E10.5 but placental LTR-HSCs number dramatically decreases after E13.5 (Gekas et al., 2005; Ottersbach and Dzierzak, 2005).

- The lineage tracing of vascular endothelial (VE) cadherin positive cells suggests that haematopoietic cells in the fetal liver originate from endothelial cells in the AGM region (Zovein et al., 2008) (see Section 1.4.2.3 for more details).

Mapping LTR-HSCs numbers in developing embryos has given fundamental information about the origins of LTR-HSCs seeding the fetal liver, but one must keep in mind that the precise sites of LTR-HSC emergence are still subject to extensive debate as LTR-HSCs are first detected after the onset of circulation. Specific genetic marking of YS, AGM, and placental cells would empirically determine the extent by which each organ contributes to the LTR-HSC pool as well as whether fetal liver LTR-HSCs even originate from these sites.
1.3.6. **Primitive and definitive haematopoiesis and their ontogenetical connections**

1.3.6.1. **Defining primitive and definitive haematopoiesis**

Distinguishing between primitive (embryonic) and definitive (adult) haematopoiesis has been another great subject of debate in the HSC field. If definitive haematopoiesis was defined as adult haematopoiesis, with a hierarchy sequentially evolving from the LTR-HSCs and giving rise to CFU-S, CLP and CMP, the presence of such progenitors in the embryo prior to E10.5 would indicate that LTR-HSCs have already developed by this stage (Jaffredo et al., 2005). This would mean that LTR-HSCs are present in extra-embryonic tissues but the niche in which they reside limits their properties and differentiation potential to erythroid and macrophage lineages (Taoudi, 2006; Yoder and Hiatt, 1997). Evidently, this argues against the hypothesis of an independent mid-gestation emergence of LTR-HSCs in the AGM region.

Another possibility is that haematopoiesis during embryogenesis occurs in two waves: the first transitory wave is initiated in the E7.5 YS and generates nucleated erythrocytes and macrophages to meet the organism’s immediate need for oxygen (discussed in Section 1.3.2). The second definitive wave is initiated perhaps in the E10.5 AGM region with the emergence of the first detectable LTR-HSCs and from then on it is possible that haematopoiesis occurs in an adult-like manner (ie: restricted progeny arise from LTR-HSCs)(Medvinsky and Dzierzak, 1996; Muller et al., 1994; Taoudi, 2006). In the context of this discussion, primitive haematopoiesis will refer to primitive erythropoiesis and the emergence of early progenitors, and definitive haematopoiesis will refer to the emergence and differentiation of the first LTR-HSCs in the E10.5 AGM region (Godin and Cumano, 2002).

1.3.6.2. **The distinct origin of primitive and definitive haematopoiesis**

1.3.6.2.1. **CD41 expression as a candidate marker of definitive haematopoiesis**
The platelet glycoprotein receptor IIb/IIIa (CD41) is a protein composed of two subunits that interact with CD61 to form a functional adhesive protein receptor in the presence of calcium (Phillips et al., 1988). It has long been used as a phenotypic marker for megakaryocyte-platelet lineage and is required for its normal function (Phillips et al., 1988). Additionally, CD41 expression has been reported in E10.5 AGM progenitors and in E9.5 primitive and definitive haematopoietic progenitors (Ferkowicz et al., 2003; Mikkola et al., 2003a; Mitjavila-Garcia et al., 2002). Because haematopoietic activity of YS CD45^ cells could be enriched on the basis of CD41, it was hypothesized that CD41 may be an early marker for the initiation of definitive haematopoiesis (Mikkola et al., 2003a). Later during ontogeny, definitive progenitors in the E12.5-13.5 fetal liver become heterogeneous for CD41 expression (Ferkowicz et al., 2003; Mitjavila-Garcia et al., 2002). Interestingly, most E12.5 fetal and adult bone marrow LTR-HSCs are CD41^, which might indicate that CD41 expression is lost upon “pre-HSC” maturation (Ferkowicz et al., 2003). The crossing of CD41 promoter driven Cre recombinase mice with a reporter mouse strain showed that CD41 is expressed in progenitors in the YS, AGM region and fetal liver in vivo (Emambokus and Frampton, 2003). However, the limited expression of β-galactosidase in adult bone marrow suggested that two waves of progenitors arise in the fetus and that the majority of bone marrow HSC might not emerge from a CD41^ precursor (Emambokus and Frampton, 2003).

The evidence presented so far indicate that CD41 expression is the earliest haematopoietic marker (pre-CD45) as CD41 cells are committed to haematopoietic differentiation (Mikkola et al., 2003a) but fail to prove that CD41 is expressed in founder cells of the adult haematopoietic hierarchy.

1.3.6.2.2. Insights from amphibian studies

A clear model for the in vivo dissection of the origins of primitive and definitive haematopoiesis came from amphibian models. The ability to perform orthotopical transplantations with differentially marked cells have allowed the reliable tracing of cells that contribute to primitive and definitive haematopoiesis (Chen and Turpen, 1995; Ciau-Uitz et al., 2000; Turpen et al., 1997). In Xenopus...
laevis, the ventral blood island (VBI), a region analogous to the mammalian YS, generates the primitive haematopoietic supply and also contributes to definitive haematopoiesis but at a later stage (Chen and Turpen, 1995; Turpen et al., 1997). The dorso-lateral plate (DLP), the region analogous to the mammalian AGM region, is only capable of definitive haematopoiesis and contributes to the majority of the hepatic haematopoietic pool and the earliest stage of liver colonization (Chen and Turpen, 1995). While this study was consistent with the hypothesis of a dual intra and extra-embryonic contribution to the hepatic LTR-HSCs pool, fate tracing experiments performed by the same group, in which the ventral marginal zone (VMZ) was differentially labelled, indicated a common origin of both primitive and definitive haematopoietic cells within the VBI and the DLP (Chen and Turpen, 1995). However, improved resolution of individual blastomeres within the VMZ and the dorsal marginal zone (DMZ) demonstrated that primitive and definitive haematopoietic lineages originate from different regions within the 32 blastomeres stage (Ciau-Uitz et al., 2000). Intriguingly, the same study by Ciau Uitz et al confirmed that the VBI is able to produce both primitive and definitive blood cells but is derived from two independent blastomeres, suggesting that primitive and definitive haematopoietic activity might be ontogenetically independent (Ciau-Uitz et al., 2000).

1.3.6.3. **Molecular resolution of primitive and definitive haematopoiesis**

The clearest functional resolution of primitive and definitive haematopoiesis in the murine embryo has come from gene inactivation studies. Inactivation of certain genes such as stem cell leukemia (SCL) gene, LIM domain only 2 (lmo2) or the GATA factors has been shown to disrupt both primitive and definitive haematopoiesis. Another set of genes, including notch, c-kit, c-myb, Runx1, and core-binding factor β (CBFβ), when inactivated have been shown to disrupt definitive haematopoietic specifically. A third set of genes, including β1-, α4-integrins, and CXCR4, has been shown to affect HSC migration and homing to the fetal haematopoietic organs. As discussing the roles of each gene in detail is beyond the scope of this introduction, Table 1.2 summarises a list of the major genes.
involved in governing the processes of primitive and definitive haematopoiesis (Godin and Cumano, 2002). A more detailed discussion about a few relevant genes of interest is provided.

1.3.6.3.1. The role of stem cell leukaemia (SCL) gene

The SCL gene is a member of the basic-helix-loop-helix (bHLH) class of transcription factors, and has been termed a master regulator of haematopoiesis because of the dramatic haematopoietic phenotype observed in SCL^{-/-} murine model (Porcher et al., 1996; Robb et al., 1995; Shivdasani et al., 1995). SCL null embryos, which die <i>in utero</i> between E8.5 and E10.5, fail to initiate both primitive and definitive haematopoiesis as evidenced by the absence of YS blood islands and primitive nucleated erythrocytes, the absence of CFU-Cs, and the failure of SCL^{-/-} ES cells to contribute to adult haematopoiesis in chimaeric mice (Porcher et al., 1996; Robb et al., 1995; Shivdasani et al., 1995).

Conditional inactivation of SCL in the adult organism revealed that SCL was dispensable for maintenance, engraftment, self-renewal and multilineage differentiation of LTR-HSCs (Mikkola et al., 2003b). Interestingly however, a recent study by Souroullas and colleagues has shown that adult “HSCs” in lyl1/SCL-conditional double knockout fail to repopulate irradiated recipients and undergo rapid apoptosis, indicating that lyl1 is essential for HSC function in the absence of SCL. Lyl1 is a bHLH transcription factor that is highly related (80%) to SCL with a similar expression pattern (Giroux et al., 2007). Despite the inability of lyl1 to rescue SCL deficient phenotype during development (Chan et al., 2007), these results indicate a functional overlap between these two proteins in the adult LTR-HSC compartment (Souroullas et al., 2009). This example illustrates functional redundancy between related proteins and brings to attention the care with which single gene inactivation studies should be interpreted.
Table 1.2: Genes involved in the ontogenesis of the haematopoietic system.
(adapted from Godin and Cumano, 2002).

<table>
<thead>
<tr>
<th>Gene product</th>
<th>Time of death</th>
<th>YS haematopoiesis</th>
<th>FL haematopoiesis</th>
<th>references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genes affecting both primitive and definitive haematopoiesis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tal1/SCL</td>
<td>9-10.5</td>
<td>markedly reduced</td>
<td>absent</td>
<td>Robb et al., 1995; Shivdasani et al., 1995</td>
</tr>
<tr>
<td>Lmo-2</td>
<td>9-10.5</td>
<td>markedly reduced</td>
<td>absent</td>
<td>Warren et al., 1994; Yamada et al., 1998</td>
</tr>
<tr>
<td>GATA-1</td>
<td>10.5-11.5</td>
<td>markedly reduced</td>
<td>absent</td>
<td>Pevny et al., 1991</td>
</tr>
<tr>
<td>Flk-1</td>
<td>8.5-9.5</td>
<td>markedly reduced</td>
<td>absent</td>
<td>Shalaby et al., 1997; Shalaby et al., 1995</td>
</tr>
<tr>
<td>Tie-2</td>
<td>8.5-9.5</td>
<td>markedly reduced</td>
<td>absent</td>
<td>Takakura et al., 1998</td>
</tr>
<tr>
<td>CBP</td>
<td>8.5-10.5</td>
<td>reduced</td>
<td>absent</td>
<td>Oike et al., 1999</td>
</tr>
<tr>
<td>Genes affecting definitive haematopoiesis only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AML1/Runx1</td>
<td>11.5-12.5</td>
<td>normal</td>
<td>blocked</td>
<td>North et al., 1999; Okuda et al., 1996; Wang et al., 1996</td>
</tr>
<tr>
<td>CBFβ</td>
<td>11.5-14</td>
<td>normal</td>
<td>blocked</td>
<td>Wang et al., 1996b</td>
</tr>
<tr>
<td>GATA-2</td>
<td>10.5-11.5</td>
<td>reduced</td>
<td>markedly reduced</td>
<td>Tsai et al., 1994</td>
</tr>
<tr>
<td>c-myb</td>
<td>15</td>
<td>normal</td>
<td>decreased</td>
<td>Mucenski et al., 1991</td>
</tr>
<tr>
<td>c-kit</td>
<td>at birth</td>
<td>decreased erythropoiesis</td>
<td>blocked erythropoiesis</td>
<td>Bernex et al., 1996; Ogawa et al., 1993</td>
</tr>
<tr>
<td>Pu.1</td>
<td>18.5</td>
<td>normal</td>
<td>reduced</td>
<td>Scott et al., 1997</td>
</tr>
<tr>
<td>Ikaros</td>
<td>viable</td>
<td>normal</td>
<td>reduced</td>
<td>Georgopoulos et al., 1994; Nichogiannopoulos et al., 1999</td>
</tr>
</tbody>
</table>
1.3.6.3.2. The role of LIM domain only 2 (lmo2)

Lmo2/Rbtn2 encodes a LIM-domain nuclear protein that directly interacts with SCL and GATA-1 as a bridging molecule and is largely expressed in primitive and definitive erythroid cells during development (Warren et al., 1994). Lmo2 null embryos die \emph{in utero} between E10.5 and E11.5 with a failure to develop YS blood islands and a complete absence of primitive erythrocytes (Warren et al., 1994). However, the ability of Lmo2−/− ES cells and E9.5 YS cells to form macrophages colonies \emph{in vitro} indicate that haematopoiesis is not completely ablated (Warren et al., 1994), a similar phenotype as GATA-1 null embryos (see Section 1.3.6.3.3). The generation of chimeric mice, in which Lmo2−/− ES cells were microinjected into wild type (WT) blastocysts, revealed that Lmo2 deficient cells do not contribute to adult haematopoiesis (Yamada et al., 1998). This study indicated that Lmo2 was essential for the development of the definitive haematopoietic system but the stage at which Lmo2 plays a role is yet to be determined. The only circumstantial evidence of a role for Lmo2 at the stage of LTR-HSC emergence came from the \emph{in situ} hybridisation detection of Lmo2 in midgestation aortic endothelium, intra-aortic haematopoietic clusters (IAHC), and possibly sub-aortic patches (SAP)(Bertrand et al., 2005; Manaia et al., 2000)(see Section 1.4).

1.3.6.3.3. The roles of GATA transcription factors

The GATA family of transcription factors is composed of 6 members of zinc finger proteins that recognize a GATA consensus motif, and can be divided into two groups: \emph{GATA-4, GATA-5, and GATA-6} which are mainly expressed in cardiac cells and lineages derived from the endoderm (Peterkin et al., 2005), and \emph{GATA-1, GATA-2, and GATA-3} which are mainly expressed in the central nervous system and various ectodermal lineages as well as haematopoietic lineages (Evans and Felsenfeld, 1989; Pandolfi et al., 1995; Pevny et al., 1991; Tsai et al., 1994; Yu et al., 2002).

GATA-1 target sites are found in the regulatory elements of virtually all genes expressed by erythroid cells and is also expressed in mast, megakaryocyte and eosinophil lineages (Evans and Felsenfeld, 1989; Tsai et al., 1989; Yu et al., 2002).
Insights into the differential role of GATA-1 in primitive and definitive haematopoiesis have come from embryoid bodies (EB) differentiation models in which temporal appearance of precursors resembles that in the early embryo. GATA-1 loss and gain of function studies have revealed the essential requirement of GATA-1 for normal definitive erythroid development both in vitro and in vivo (Fujiwara et al., 1996; Pevny et al., 1991; Simon et al., 1992). The loss of functional GATA-1 in ES cells leads to impaired primitive erythropoiesis whereas definitive erythroid progenitors are present in normal numbers yet display a severe developmental arrest and death at the pro-erythroblast stage (Weiss et al., 1994). In vivo however, both primitive and definitive erythroid precursors are present but experience a developmental arrest at the pro-erythroblast stage (Fujiwara et al., 1996).

GATA-2 is expressed in various haematopoietic lineages including the adult bone marrow LTR-HSC pool (Orlic et al., 1995). GATA-2−/− embryos die at E11.5 and exhibit marked anaemia (Tsai et al., 1994). In the midgestation embryo, GATA-2 is expressed in the E9.5-11.5 AGM region but not in the YS as assessed by in situ hybridisation in a reporter mouse model (Minegishi et al., 1999; Zhou et al., 1998), suggesting a predominant role in definitive rather than primitive haematopoiesis. The presence of normal primitive erythroid cells in knockout embryos, and the failure of GATA-2−/− cells to contribute to definitive haematopoiesis in embryonic or adult haematopoietic organs, functionally confirms the requirement of GATA-2 for definitive haematopoiesis (Tsai et al., 1994). Interestingly, GATA-2 haploinsufficient embryos failed to facilitate the LTR-HSC expansion in the E11.5-12.5 AGM region whereas YS-derived LTR-HSCs expanded similarly to controls, suggesting that there are distinct pathways governing extra and intra embryonic haematopoiesis (Ling et al., 2004).

8 Primitive erythroid precursors arise at 6-7 days EBs whereas definitive erythroid precursors are found in E10-14 days EBs (Weiss et al, 1994).
GATA-3 gene inactivation results in embryonic lethality around E11.75-12.5 due to extensive internal haemorrhages, growth retardation and central nervous system malformations (Pandolfi et al., 1995). The numbers of YS progenitors in null E11.5 embryos are comparable to WT animals whereas the numbers of FL progenitors are markedly decreased; leading to the conclusion that GATA-3 deficiency specifically affects definitive haematopoiesis (Pandolfi et al., 1995). However, analysis of chimaeric GATA-3+/RAG-2−/− adult mice revealed that GATA-3−/− cells contribute to functional adult myeloid lineages (Mac-1+ and Gr-1+) and B cell lineage but fail to complete T-lymphocyte differentiation (Ting et al., 1996). While this highlights an important role of GATA-3 for T-lymphocyte differentiation, it also strongly suggests that GATA-3−/− cells contributes to definitive adult haematopoiesis (Ting et al., 1996). Additionally, GATA-3 expression was reported in SAPs (see Section 1.4.2.5) and aortic endothelium in the E10.5-11.5 AGM region, structures hypothesised to be associated with LTR-HSC emergence in the AGM region (see Section 1.4). However, the role of GATA-3 in definitive haematopoiesis is still unclear due to the lack of direct functional evidence showing a requirement of GATA-3 in the LTR-HSC compartment and linking SAPs to LTR-HSCs.

1.3.6.3.4. The role of notch signalling

The Notch family of receptors, comprising the four members Notch-1, Notch-2, Notch-3 and Notch-4, and their ligands (Delta-like-1, -3, -4, and Jagged-1 to 2) are expressed in various haematopoietic lineages and control cell fate decisions during haematopoietic lineage differentiation (Milner and Bigas, 1999). Conditional inactivation of Notch-1 in adult animals has demonstrated that it is dispensable for the maintenance of LTR-HSCs in vivo (Maillard et al., 2008; Mancini et al., 2005; Radtke et al., 1999), a finding confirmed and extended to all four members of the Notch family (Maillard et al., 2008).

However, Notch-1 gene inactivation is embryonic lethal by E11.5, with null embryos showing severe vasculature defects in the dorsal aorta and the YS (Krebs et al., 2000), which may disturb LTR-HSC development. In vivo data have shown that
Notch-1 signalling is dispensable for normal primitive haematopoiesis (Hadland et al., 2004; Kumano et al., 2003). As Notch-1 deficient ES-cells contribute to YS derived haematopoiesis but not to adult haematopoiesis in chimaeras (Hadland et al., 2004). Notch-1 in particular, specifically via activation by Jagged-1 (Robert-Moreno et al., 2008), seems to be essential for cell-autonomous emergence of LTR-HSC in the developing embryos as such observations were not made in Notch-2 or Notch-4 deficient embryos (Kumano et al., 2003; Robert-Moreno et al., 2005).

The evidence available indicates that Notch signalling does not play a major role in primitive haematopoiesis; it acts at the step of LTR-HSC emergence but is dispensable for their expansion and maintenance in the adult (Maillard et al., 2008; Mancini et al., 2005; Radtke et al., 1999; Robert-Moreno et al., 2005; Robert-Moreno et al., 2008).

1.3.6.3.5. The role of runx1

Runx1 is a critical gene involved in human leukaemogenesis (Speck and Gilliland, 2002). Runx1 gene inactivation studies have shown that Runx1 is dispensable for primitive erythrocytes formation, although required for their final maturation and normal Ter119 and GATA-1 expression (Yokomizo et al., 2008). However, Runx1 is essential for the emergence of LTR-HSCs and the establishment of definitive haematopoiesis (Okuda et al., 1996; Wang et al., 1996a). Conditional Runx1 inactivation models, created to by-pass embryonic lethality, showed that Runx1 is essential for the normal maturation of lymphoid cells (B and T cells) and megakaryocytes (Growney et al., 2005; Ichikawa et al., 2004; Ichikawa et al., 2008; Putz et al., 2006). The role of Runx1 is extensively discussed in Section 1.5.
1.4. The ancestry of LTR-HSCs in developing embryos

1.4.1. The spatial origin of LTR-HSCs in the E11.5 AGM region

At E11.5, the AGM region comprises the dorsal aorta (Ao), the urogenital ridges (UGR) and remnants of the ventral mesentery (see Figure 5.1). Transplantations of fresh Ao and UGR have demonstrated that LTR-HSCs first emerge in the Ao at E11.5 (de Bruijn et al., 2000b; Taoudi and Medvinsky, 2007). This axio-lateral polarity is still quantitatively observed at E12.5 but at this stage some LTR-HSCs can be experimentally detected in the UGR (de Bruijn et al., 2000b). Interestingly however, the presence of LTR-HSCs in E11.5 Ao and UGR explants raises the possibilities that UGRs could autonomously induce/expand LTR-HSCs or that pre-HSCs seed the UGR prior to E11.5 (de Bruijn et al., 2000b). In addition, co-culture of Ao and UGRs does not increase LTR-HSCs output from UGR or Ao, suggesting that there are no supportive/inhibitory interactions between these two tissues (de Bruijn et al., 2000b).

The hypothesis of a dorso-ventral polarity in the Ao came from the identification of IAHCs on the ventral wall of the Ao in vertebrate species (avian, mouse, human)(Figure 1.5). IAHC are structures hypothesised to mature into LTR-HSCs. This theory relies on the expression of various haematopoietic markers in IAHCs (CD34, PECAM-1, CD45 in the 5-week old human and CD45, CD34, PECAM-1, AA4.1, Runx1, Notch1, and Lmo2 in the E10.5-11.5 Ao)(Bertrand et al., 2005; Garcia-Porrero et al., 1995; Garcia-Porrero et al., 1998; Kumano et al., 2003; Manaia et al., 2000; North et al., 1999; Robert-Moreno et al., 2008). The absence of IAHC upon inactivation of genes involved in definitive haematopoiesis and the presence IAHC concomitantly with the presence of LTR-HSCs in the AGM, have supported this model (Medvinsky and Dzierzak, 1996; North et al., 1999).
Figure 1.5: Presence of intra-aortic haematopoietic clusters on the ventral aspect of the dorsal aorta in vertebrate species of midgestation embryos.

A: transverse section through murine E11.5 AGM region, a CD34+ IAHC is lying on the ventral part of the dorsal aorta (arrow head), scale bar = 57 µm (taken from Garcia-Porrero et al, 1998).

B: transverse section through avian E3 dorsal aorta, QH1+ IAHC is lying on the ventral part of the dorsal aorta (square), scale bar = 75 µm (taken from Jaffredo et al, 1998).

C: transverse section through day 32 human dorsal aorta, two CD34+ IAHCs are lying on the ventral part of the dorsal aorta (arrow heads), scale bar = 100 µm (taken from Tavian et al, 1999).

D: Transverse section through murine E11.5 AGM region, GATA-3+ IAHC (arrow) and SAP (arrowheads) are ventrally located, scale bar = 100 µm (taken from Manaia et al, 2000).
The ventral localisation of LTR-HSC development was further hinted by the observation of SAPs in the ventral para-aortic mesenchyme, and the expression of high-levels of GATA-2, GATA-3, and Lmo2 within this region (Bertrand et al., 2005; Manaia et al., 2000).

However, to date, only one study in the mouse embryo has provided functional evidence of ventral localisation of LTR-HSCs in the E11.5 AGM region (Taoudi and Medvinsky, 2007). In this study, sub-dissection of the dorsal aorta into dorsal (AoD) and ventral (AoV) domains demonstrated that only the AoV harbours LTR-HSCs and is capable of autonomous LTR-HSC induction/expansion (Taoudi and Medvinsky, 2007). See Section 5.1 for more details.

Despite the functional evidence of dorso-ventral polarity of LTR-HSC development in the E11.5 AGM region and the large amount of circumstantial evidence linking IAHC and SAP to LTR-HSC emergence, no group to date has been able to functionally attribute LTR-HSC activity to any of these morphological structures.

1.4.2. The ancestry of LTR-HSCs in the developing embryo

As previously described, the first blood cells appear in the YS blood islands as a compact group of cells which are initially identical. As development proceeds, the cells at the exterior of the clusters adopt endothelial identity while the cells within the clusters progressively lose inter-cellular connections and differentiate into haematopoietic cells and primitive erythrocytes (McGrath and Palis, 2005). This close association of endothelial and haematopoietic cells that develop from cells that are originally identical have led to the hypothesis of a common precursor of both lineages: the haemangioblast (Sabin, 1920). The close developmental link between endothelial and haematopoietic cells is also illustrated by the close association of the IAHCs with the endothelial lining of the Ao as well as the common expression of various cell surface markers such as PECAM-1, CD34, c-kit, Tie-2, Flk-1, CD45, and VE-cadherin (Baumann et al., 2004; Bernex et al., 1996; Nishikawa et al., 1998a;
While there is some evidence in favour of the endothelial ancestry of LTR-HSCs, alternative theories have arisen in the past few years (schematically summarised in Figure 1.6).

1.4.2.1. The endothelial origins of LTR-HSCs

To successfully demonstrate the endothelial origin of LTR-HSCs in the embryo, it is necessary to specifically label endothelial cells and accurately trace their fate in vivo or evaluate their haematopoietic potential in vitro (Taoudi, 2006). This relies on the assumption that endothelial cells can be specifically identified based on their surface markers and/or their properties (summarized in Table 1.3). To date, the expression of VE-cadherin is the most effective single surface marker that immunophenotypically identifies endothelial cells (Breier et al., 1996; Matsuyoshi et al., 1997; Nishikawa et al., 1998b).

The only reported instance in which VE-cadherin is expressed in non-endothelial cells is in the first LTR-HSCs that reside in the E11.5 AGM region (CD45\(^+\)VE-cadherin\(^-\))(North et al., 2002; Taoudi et al., 2005). Based on these results, basic immunophenotypes were defined for endothelial cells (CD45\(^+\)VE-cadherin\(^+\)), haematopoietic cells (CD45\(^-\)VE-cadherin\(^-\)), and a purified population of LTR-HSCs (CD45\(^-\)VE-cadherin\(^+\))(Fraser et al., 2003; Nishikawa et al., 1998b; North et al., 2002; Taoudi et al., 2005).

1.4.2.2. Concept of the haemangioblast

The haemangioblast is defined as a precursor that is restricted to differentiate into endothelial and haematopoietic cells exclusively (Sabin, 1920). Experimentally, the isolation of Flk-1 positive precursors capable of differentiating into both endothelial and haematopoietic cells has been postulated to be putative haemangioblasts in avian and murine embryos (Eichmann et al., 1997; Huber et al.,
The haemangioblast theory implies that there is one common progenitor to endothelium and LTR-HSCs.
The haemogenic endothelium theory implies that LTR-HSCs are derived from endothelial cells that are already primed to a haematopoietic fate.
The pre-HSC theory implies that LTR-HSCs are derived from mesodermal cells that can mature into LTR-HSCs.
The sub-aortic patches theory implies that LTR-HSCs are derived from mesodermal cells contained in these sub aortic structures and that subsequently migrate and mature into LTR-HSCs in IAHCs before being released into the bloodstream.
(adapted from Taoudi, 2006).
<table>
<thead>
<tr>
<th>Plasma membrane protein</th>
<th>Function/comments</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ac-LDL receptor</td>
<td>Binds Ac-LDL</td>
<td>Voyta et al, 1984; Brown et al, 1979; Brown et al, 1980</td>
</tr>
<tr>
<td></td>
<td>Expressed on macrophages</td>
<td></td>
</tr>
<tr>
<td>Flk-1</td>
<td>VEGF receptor expressed by endothelium and mesoderm</td>
<td>Millauer et al, 1993; Quinn et al, 1993; Nishikawa et al, 1998</td>
</tr>
<tr>
<td></td>
<td>Expressed on foetal liver and quiescent adult bone marrow LTR-dHSCs</td>
<td></td>
</tr>
<tr>
<td>PECAM-1/CD31</td>
<td>Involved in inter-endothelial homotypic interactions Expressed on some adult</td>
<td>Vecchi et al, 1994; Delisser et al, 1994; Suri et al, 1996; Baumann et al, 2004; North et al, 2002</td>
</tr>
<tr>
<td></td>
<td>haematopoietic cells and all HSCs during ontogeny and adulthood</td>
<td></td>
</tr>
<tr>
<td>VE-cadherin/CD144</td>
<td>Essential for angiogenesis and preserving vascular Integrity at endothelial</td>
<td>Gotsch et al, 1997; Lampugnani et al, 1992; Breier et al, 1996; Carmeliet et al, 1999; Crosby et al, 2005; Gory et al, 1999</td>
</tr>
<tr>
<td></td>
<td>adherens junctions</td>
<td></td>
</tr>
</tbody>
</table>

VE-cadherin, vascular endothelial cadherin; Flk-1, foetal liver kinase-1; PECAM-1, platelet endothelial cell adhesion molecule-1
Ac-LDL, acetylated low density lipoprotein; VEGF, vascular endothelial growth factor; HSC, haematopoietic stem cell; LTR-dHSC, long-term repopulating definitive haematopoietic stem cell

Table 1.3: Endothelial associated plasma membrane proteins
(taken from Taoudi, 2006)
Support for the haemangioblast concept was also provided by EB differentiation model: the blast colony forming cell (BL-CFC) arising within EBs after 2.5-4.0 days of differentiation has been hypothesised to be the in vitro equivalent of the haemangioblast (Choi et al., 1998). BL-CFCs emerge before the onset of haematopoiesis within EBs; they express the mesodermal markers Flk-1 and Brachyury, and have the potential to form colonies made of haematopoietic and endothelial cells after culture in methylcellulose containing vascular endothelial growth factor (VEGF) and transfer to liquid medium with cytokines (Choi et al., 1998; Fehling et al., 2003; Kennedy et al., 1997). An analogous in vivo Flk-1⁺Brachyury⁺ population has been isolated from the posterior region of the primitive streak as a transient population in the E7-7.5 embryo (Huber et al., 2004).

The fact that BL-CFCs arise before the onset of haematopoiesis in EBs supports the idea of a common precursor for endothelial and haematopoietic cells. However, the mesodermal Flk-1⁺Brachyury⁺ immunophenotype and the presence of smooth muscle in the differentiated colonies raised the possibility that the cells used for secondary culture were a population of uncommitted mesoderm (Choi et al., 1998; Fehling et al., 2003). Taken together, these studies do not prove the existence of the haemangioblast because it is difficult to be sure that these progenitors are not capable of differentiating into some other mesodermal lineages.

The most convincing in vivo proof of the haemangioblast was obtained in zebrafish through the construction of single-cell-resolution fate maps obtained by the laser activation of fluorescently labelled cells (Vogeli et al., 2006). This study demonstrated the presence of bipotential precursors arising along the ventral mesoderm and giving rise to small subsets of haematopoietic (GATA-1⁺) and endothelial (Flk-1⁺) cells exclusively (Vogeli et al., 2006). However, assays confirming the functionality of Flk-1⁺ as endothelial, and GATA-1⁺ as haematopoietic, would provide a stronger proof for the existence of the haemangioblast in this model system.
1.4.2.3. Concept of haemogenic endothelium

An alternative theory for the origin of haematopoiesis is that haematopoietic cells (and perhaps LTR-HSCs) are derived from endothelium that is already committed to an haematopoietic fate: the hemogenic endothelium (Jordan, 1917). Evidence in favour of this hypothesis came from studies in avian embryos in which heterotopic grafts of spanchnopleural lateral plate mesoderm, but not paraxial mesoderm, contribute to endothelial cells in the AoV as well as IAHC (Jaffredo et al., 1998; Pardanaud et al., 1996). Labelling of endothelial cells with acetylated low-density lipoprotein (a-LDL) tag or with non-replicative retroviral vector and in vivo tracing of their progeny, strongly suggested that the IAHCs are derived from precursors in the underlying aortic endothelium (Jaffredo et al., 2000; Jaffredo et al., 1998). However, the interpretation of these results is problematic as they rely on the following assumptions: the endothelial specificity of a-LDL uptake, the identity of endothelial cells being Flk-1^-CD45^- and all haematopoietic cells in the IAHCs being Flk-1^-CD45^+ (Jaffredo et al., 1998).

The first functional evidence of a haemogenic endothelium came from an in vitro ES cell differentiation model showing that Flk-1^+ could give rise to VE-cadherin^+ that could differentiate into functional endothelium and haematopoietic cells (Nishikawa et al., 1998a). Analysis of such VE-cadherin^+ endothelial cells (characterised as CD45^-, Ter119^-, PECAM-1^+, Flk-1^+, CD34^+ and a-LDL^+) isolated from E9.5 YS and embryo proper (caudal half of the embryo) could generate lymphoid and myeloid progeny as well as fully reconstitute the haematopoietic system of conditioned newborn recipients upon intrahepatic injections (Fraser et al., 2002; Nishikawa et al., 1998b).

Recently, live cell imaging of the differentiation of ES cell derived Flk-1^-E-cadherin^- mesodermal precursors has shown that endothelial cells (defined by morphology, VE-cadherin expression, incorporation of a-LDL and claudin-5 at the cell junctions) can give rise to haematopoietic cells that express CD41 prior to CD45 (also defined by round non-adherent morphology and Mac-1 expression)(Eilken et al., 2009). These results confirm the existence of endothelial cells capable of haematopoietic commitment as well as the use of CD41 cell surface marker as the
earliest reliable marker for haematopoietic cells. Similarly, another group also using time-lapse photography showed that Tie-2hi c-kit−CD41− endothelial cell population could acquire the haematopoietic marker CD41 (Lancrin et al., 2009). Based on this transient cell population’s lack of Brachyury expression and failure to generate blast colonies, they postulate that the haemogenic endothelium is downstream of the heamangioblast (Lancrin et al., 2009). Finally, labelling of VE-cadherin expressing cells during embryogenesis by crossing an inducible VE-cadherin Cre with Rosa26R-lacZ demonstrated that haematopoietic cell in the fetal liver and in the adult haematopoietic organs are the progeny of the VE-cadherin labelled cells (Zovein et al., 2008). This could be an \textit{in vivo} proof of the endothelial origin of LTR-HSCs, but it relies on the assumption that VE-cadherin is exclusively specific to endothelial cells. In fact, VE-cadherin is expressed in the earliest population of HSCs in the AGM region (North et al., 2002; Taoudi et al., 2005).

1.4.2.4. The mesodermal theories: pre-HSCs

So far, various types of long term engrafting cells in the murine embryo have been identified using different assays: LTR-HSCs from E10.5 AGM region, neonatal repopulating cells from E9 YS and low-level adult repopulating cells in the E8 P-Sp (Cumano et al, 2001; Muller et al, 1994; Yoder et al, 1997b). However, it is not clear whether these cells are ontogenetically related. Specifically, it is reasonable to assume that early engrafting cells in the E9 YS and E8 P-Sp are pre-HSCs that require maturation before acquiring characteristics of LTR-HSCs (Medvinsky and Dzierzak, 1999). This idea is supported by a couple of circumstantial lines of evidence: first, the conserved expression of c-kit and CD34 among engrafting cells during development (ie, in the E9.5 YS and P-Sp (Yoder et al., 1997a), and LTR-HSCs in AGM region and placenta (Gekas et al., 2005; Sanchez et al., 1996)); second, the ability of the E8.25 YS cells to acquire LTR-HSC activity upon over-expression of Hoxb4 (Kyba et al., 2002) or after co-culture with the AGM-S3 cell line (Matsuoka et al., 2001b). However, the ability of E9 and P-Sp to develop LTR-HSC potential after experimental manipulation does not necessarily recapitulate the events occurring \textit{in vivo}.

46
Direct evidence for pre-HSC maturation arose from kinetic analysis of the CD45^+VE-cadherin^+ compartment during ex vivo culture (Taoudi et al., 2008). Genetically labelled CD45^+VE-cadherin^+ isolated from the E11.5 AGM give rise to the vast majority of the 150 LTR-HSCs obtained during 4 days reaggregate culture (Taoudi et al., 2008). Carboxyfluorescein succinimidyl ester (CFSE) retention analysis demonstrated that the CD45^+VE-cadherin^+ cells underwent approximately 6 divisions during the 4 days culture period (Taoudi et al., 2008). Considering that the E11.5 contains 1 CD45^+VE-cadherin^+ LTR-HSC (Kumaravelu et al., 2002; North et al., 2002; Taoudi et al., 2005), it is virtually impossible that proliferation of this single cell could account for the 150 LTR-HSCs obtained, so it became clear that CD45^+VE-cadherin^+ pre-HSCs matured into LTR-HSCs during ex vivo culture (Taoudi et al., 2008). However, the extent to which maturation and proliferation of pre-HSCs and LTR-HSCs contribute to the final pool of LTR-HSCs after 4 days culture remains to be determined.

1.4.2.5. The mesodermal theories: sub-aortic patches

The observation of mesodermal structures, termed sub-aortic patches (SAP), located below the aortic floor in the E10.5-11.5 AGM region have been proposed to constitute a pool of pre-HSCs (Bertrand et al., 2005; Manaia et al., 2000). Immunostaining, in situ hybridization, and reverse transcriptase polymerase chain reaction (RT-PCR) analyses have indicated that SAPs express the haematopoietic markers Lmo-2, GATA-3, AA4.1, c-kit, PECAM-1, CD41, and low levels of CD45 (Bertrand et al., 2005; Manaia et al., 2000). As only IAHCs express similar combination of haematopoietic markers, a close developmental link between these two structures was assumed. Additionally, the concomitant disappearance of SAP and IAHC with the cessation of LTR-HSC production by the AGM region further supported the idea that the pre-HSCs or/and LTR-HSCs migrate from SAP to IAHCs from which they are released in the peripheral circulation (Bertrand et al., 2005; Manaia et al., 2000). Direct functional evidence for such a model has not been provided so far and more sophisticated lineage trace systems (such as reaggregate culture) may be useful for the accurate tracing of pre-HSCs in the SAPs.
1.4.2.6. The primordial germ cells theory

The colonisation of the genital ridges at E10.5 by germ cells with totipotent\(^9\) potential have led scientists to hypothesise primordial germ cells (PGCs) as a source of LTR-HSCs (Rich, 1995). PGCs are ectoderm-derived, express alkaline phosphatase and emerge at the base of the allantois in E6.5 embryos (Ginsburg et al., 1990). The observation that PGCs can give rise to erythroid lineage cells and cobblestone areas indicates that these cells have haematopoietic potential, and therefore may harbour the potential for LTR-HSC formation (Rich, 1995). Functional evidence supporting this possibility remains to be published.

1.5. Runx1 as a master regulator of haematopoiesis

Runx1 (also known as AML1, PEBP\(\alpha\)2 and CBFA2) is a transcription factor involved in many oncogenic chromosomal translocations (Speck and Gilliland, 2002). The inactivation of Runx1 in murine models has stimulated major scientific interest on Runx1 because definitive haematopoiesis is completely ablated in Runx1\(^{-/-}\) embryos, whilst primitive haematopoiesis remains fairly undisturbed (Okuda et al., 1996; Wang et al., 1996a).

The Runx family of transcription factors consists of 3 members (Runx1, Runx2, and Runx3) that show a high degree of homology within their coding regions (Bae, 1993, Ogawa, 1993a). Runx2 is involved in osteogenesis \(\text{in vivo}\); deficient murine embryos die neonatally, likely owing to an early arrest in osteoblast development and a malformed rib cage that prevents normal breathing (Komori et al., 1997). Runx3 is predominantly expressed in haematopoietic organs, epidermal appendages, developing bones and sensory ganglia; its inactivation \(\text{in vivo}\) highlights its role for the development and survival of dorsal root ganglia neurones (Levanon et al., 2002; Levanon et al., 2001a). Interestingly, Runx3 expression overlaps with

\(^9\) Totipotency refers to the ability of a single cell to divide and produce all the cell types in an organism, including extra-embryonic tissues.
Runx1 in the developing haematopoietic system, raising the possibility that cross-regulation between them plays a role during embryogenesis (Levanon et al., 2001a; Spender et al., 2005).

1.5.1. **Structure and transcriptional regulation of Runx1 gene**

1.5.1.1. Regulation of Runx1 transcription

Mouse *Runx1* spans 224 kb gene on chromosome 16 (analogous to chromosome 21 in the human), and comprises 7 protein coding exons (Bee et al., 2009b) (Figure 1.7A). Transcriptional regulation of the human and murine Runx1 is under the control of distal (P1) and proximal (P2) promoters that are 128 kb apart and differ in their CpG contents (Bee et al., 2009b; Ghozi et al., 1996). Their alternative use directs the expression of Runx1 isoforms varying in the N-terminal region, and potentially leading to differential gene regulation (Levanon et al., 2001b). Among the upstream regulators of Runx1 expression are Runx transcription factors themselves as the P1 promoter contains Runx-binding sites (Ghozi et al., 1996; Pimanda et al., 2007). For example, Runx1 expression is repressed by Runx3 in B cells (Spender et al., 2005). Retinoic acid has also been speculated to act as an upstream regulator of Runx1 expression as an increased Runx1 expression was observed during retinoic-acid induced differentiation of human leukaemic monocyte lymphoma cell line (Tanaka et al., 1995).

Transcriptional networks regulating Runx1 expression in the development of the haematopoietic system have been under scrutiny. Recently, a 23 kb enhancer, located in the first intron of Runx1, has been identified as a cis-regulatory element, acting during early haematopoiesis and depending on upstream regulators GATA-2 and Ets proteins (Nottingham et al., 2007). BMP-4 activity, well known for facilitating haematopoietic differentiation of ES cells and HSC activity in human cord blood cells culture (Bhatia et al., 1999; Chadwick et al., 2003), can modulate Runx1 expression (Pimanda et al., 2007) (Landry et al., 2008; Nottingham et al., 2007).
Figure 1.7: Mouse Runx1 genomic locus and alternative splice forms.
A: Runx1 genomic locus under control of distal (P1) and proximal (P2) promoters.
B: Runx1 splice forms: Runx1c, Runx1b, Runx1bΔEx5, 521-41 and Runx1bΔEx5-5.3.
Numbers correspond to exons, white boxes: coding sequences; grey: untranslated regions (UTRs); striped: predicted coding + UTR.
(adapted from Bee et al, 2009).
Finally, a recent study showed that SCL directly transactivates Runx1 in the fetal liver and YS via the binding of an SCL-Lmo2-GATA2 complex to regions flanking the conserved E-boxes of the Runx1 locus (Landry et al., 2008).

1.5.1.2. Structure of the protein and alternative splicing

The distal (P1) and proximal (P2) promoters direct primary transcripts that are alternatively spliced to give a repertoire of mRNA isoforms that are differentially expressed in various cell types at different developmental stages (Figure 1.7B). P1 encodes RUNX1c while P2 encodes RUNX1b and the short isoform RUNX1a (Miyoshi et al., 1995). Very little is known about the role of specific isoforms in the emergence, maintenance, and expansion of LTR-HSCs. The generation of mice with significantly diminished proximal promoter activity on the second allele suggested that P1 (Runx1c) activity was sufficient for primitive haematopoiesis whereas P2 activity (Runx1b) was required for adult definitive haematopoiesis (Pozner et al., 2007). Interpretations of these results are limited to the fact that a hypomorphic dose of Runx1 was available during development. A recent study focusing on P1 and P2 transcripts in the YS, AGM, placenta, fetal liver, and adult bone marrow showed that primitive erythropoiesis is largely P2 driven (Bee et al., 2009b). Both P1 and P2 act with the +23 enhancer to drive the transcription of Runx1 in the YS, AGM, and fetal liver at the time of LTR-HSC emergence (Bee et al., 2009a; Bee et al., 2009b). After haematopoietic cell migration to the liver, P1 gradually becomes the main haematopoietic promoter, as it will remain into adulthood (Bee et al., 2009b).

Runx proteins are conserved and share a runt DNA-binding domain, homologous with the Drosophila pair-rule gene runt (Kania 1990). A nuclear localisation signal (NLS) is located within the Runt domain and immunofluorescent labelling experiments have shown that Runx1 localised in the nucleus (Lu et al., 1995).

Runx1 functions as a heterodimeric transcription factor composed of Runx1 (DNA binding unit) and CBFβ, a 128 amino acids protein which allosterically enhances the DNA binding affinity of Runx1 (Yan et al., 2004). The requirement of
CBFβ for normal Runx1 function is supported by CBFβ knockout mice, which display a very similar phenotype to the Runx1 knockout animals (Niki et al., 1997; Okuda et al., 1996; Sasaki et al., 1996; Wang et al., 1996a; Wang et al., 1996b). Interestingly, CBFβ is mainly located in the cell cytoplasm, suggesting that its translocation to the nucleus is another regulatory mechanism of Runx1 function (Lu et al., 1995; Tanaka et al., 1997). Additionally, CBFβ also protects Runx1 protein from ubiquitin-proteasome-mediated degradation, thus regulating Runx1 turnover (Huang et al., 2001). A model of Runx1 cellular localisation and its regulation is summarised in Figures 1.8.

1.5.1.3. Runx1-mediated transcriptional activation

Upon DNA binding, Runx1/CBFβ acts as an organising factor by recruiting various co-factors and interacting with other transcription factors genes (Durst and Hiebert, 2004; Lutterbach et al., 2000)(summarised in Figure 1.9A). A number of haematopoietic genes are activated by Runx1, including interleukin-3 (IL-3)(Uchida et al., 1997), granulocyte-macrophage colony stimulating factor (GM-CSF), macrophage colony stimulating factor (M-CSF)(Zhang et al., 1996), CSF-1 receptor (Zhang et al., 1994), neutrophil elastase (Nuchprayoon et al., 1994), myeloperoxidase (Suzow and Friedman, 1993), or the defensin protein, NP3 (Westendorf et al., 1998) amongst many others.
Once synthesized, Runx1 is targeted to the nucleus but it has a poor DNA binding affinity due to negative regulatory domain for DNA binding (NRDB)n and NRDBc occupying Runx1 runt domain. CBFβ, which is stored in the cytoplasm, is targeted to the nucleus where dimerization with Runx1 happens at the runt domain, enhancing Runx1/CBFβ DNA binding affinity. Runx1/CBFβ then binds to target genes promoters and influence their transcription. If dimerization with CBFβ does not occur, Runx1 is degraded via the ubiquitin-proteasome pathway.
Figure 1.9: Models of Runx1-mediated transcriptional activation and repression.

A: Runx1-mediated transcriptional activation. Runx1/CBFβ binds to DNA and recruits co-activators such as ETS1, Myb, or C/EBP. LEF-1 protein induces DNA bending and P300/CBP is recruited and mediates interactions with both histone acetyltransferases and basal transcription complex proteins.

B: Runx1-mediated transcriptional repression. Upon DNA binding, Runx1/CBFβ recruits co-repressors Groucho and mSin3A and LEF-1 protein induces DNA binding. The epigenetic state is altered by histones deacetylases (HDACs) and methyltransferases (SUV39H1 for instance) when they are recruited.

These diagrams are simplified and do not take into account particular situations.
1.5.1.4. Runx1 mediated transcriptional inactivation

Even though Runx1 on its own appears to be a weak transcriptional enhancer, it is a potent transcriptional repressor (Durst and Hiebert, 2004). Interactions with Groucho, dCtBP, and histone deacetylases (Rpd3 and mSin3A) act in the maintenance of repression via three repression domains (RD1, 2, 3)(Figure 1.9B)(Aronson et al., 1997; Lutterbach et al., 2000; Wheeler et al., 2002). For example, Groucho interacts with Runt proteins at the C-terminal VWRPY amino acid sequence located in RD3 (Aronson et al., 1997) whereas recruitment of mSin3A and USV39H1, a histone methyltransferase, are via RD1 and RD2 respectively (Lutterbach et al., 2000; Reed-Inderbitzin et al., 2006). The most famous haematopoietic gene downregulated by Runx1 is the T cell marker CD4 (Durst and Hiebert, 2004).

1.5.2. The roles of Runx1 in adult haematopoiesis

The roles of Runx1 in adult haematopoiesis have been widely investigated because chromosomal translocations leading to impaired function of Runx1 in the haematopoietic system are associated with a wide range of disorders (Speck and Gilliland, 2002).

1.5.2.1. Runx1 in LTR-HSCs

The LTR-HSC enriched fraction lin\(^{-}\)c-kit\(^{+}\) express high levels of Runx1 in the functional Runx1-IRES-GFP knock-in model, which has no observable haematopoietic phenotype (Lorsbach et al., 2004).

Although Runx1 is essential for embryonic haematopoiesis, its role during adult haematopoiesis remained unclear for a long time. To elucidate this issue, scientists generated models in which Runx1 can be deleted by Cre-mediated recombination (Growney et al., 2005; Ichikawa et al., 2004; Putz et al., 2006). Such models showed that Runx1 is not essential for adult haematopoiesis and the null
mutation (Runx1Δ) leads to expansion of the LTR-HSC pool but with a possible reduced competitive repopulating activity (Growney et al., 2005; Ichikawa et al., 2004; Ichikawa et al., 2008; Putz et al., 2006).

However, the effects of different Runx1 dosages in adult mice are still unclear. While the large majority of LTR-HSCs in haploinsufficient animals express Runx1, Ichikawa and colleagues report an increase in the number of LTR-HSCs whereas Sun and Downing reports a 50% decrease in the number of LTR-HSCs (Ichikawa et al., 2008; Sun and Downing, 2004). The reason for this discrepancy is most likely due to the fact that Ichikawa’s animals had two Runx1 functional alleles until poly(I:C) injection whereas Sun’s animals were haploinsufficient since conception (Ichikawa et al., 2008), indicating that a full dose of Runx1 is necessary for establishing a normal LTR-HSCs pool.

1.5.2.2. Runx1 roles in lymphoid lineages

The role of Runx1 in the development of T cells is now well documented (Collins et al., 2009). In the knock-in reporter mouse, Runx1 is highly expressed in CD4−CD8− thymocytes\(^\text{10}\) and CD4+ peripheral T cells express 2 to 3 times higher levels of Runx1 compared to CD8+ T cells (Lorsbach et al., 2004). Runx1 role in mature CD4+ T cells is dose-dependent, which is supported by literature documenting gene silencing of CD4 by Runx1 (Collins et al., 2009; Durst and Hiebert, 2004; Growney et al., 2005). Lineage analyses of the reconstitution obtained from Runx1Δ adults have showed a defect in lymphoid reconstitution (B and T cells)(Growney et al., 2005; Ichikawa et al., 2004; Ichikawa et al., 2008; Putz et al., 2006). The reduced size of thymi and the accumulation of CD4−CD8− thymocytes

\(^\text{10}\) T-cell lineage choice in the thymus progresses through a series of developmental stages: CD4−CD8− (DN) precursors enter the thymus and begin rearranging the T-cell receptor-β chain locus and become CD4+CD8− (DP) and then commit to CD4+ or CD8+ mature T cell fate (Collins et al, 2009).
indicate that Runx1 is required in the early stages of T cell differentiation (Grownney et al., 2005; Putz et al., 2006).

In addition to T cells, there is a severe defect in B cell maturation in Runx1 null adults and also a defect in reconstituting the B cell compartment of recipients (Grownney et al., 2005; Ichikawa et al., 2004; Putz et al., 2006). Runx1 is expressed at similar levels during stages of B cell development (North et al., 2004) but very little is known about the stage of B cell maturation at which Runx1 is important.

1.5.2.3. Roles of Runx1 in myeloid lineages

A full deletion (Runx1$^{Δ/Δ}$) or a haploinsufficient dose, present throughout development (Runx1$^{lz/WT}$) or induced during adulthood (Runx1$^{Δ/WT}$), results in an increased number of committed myeloid progenitors, which can give rise to a myeloproliferative phenotype, thrombocytopenia or splenomegaly (Ichikawa et al., 2008; Putz et al., 2006; Sun and Downing, 2004).

1.5.2.3.1. Role of Runx1 in megakaryocytes

It was shown that Runx1 is up-regulated at the early stages of megakaryocytic differentiation (Elagib et al., 2003; Lorsbach et al., 2004). Inducible Runx1 deletion (Runx1$^{Δ/Δ}$) results in a rapid and prolonged fivefold drop in peripheral blood platelets whereas it has minimal effects on red blood cell and neutrophil numbers (Goldfarb, 2009; Grownney et al., 2005; Ichikawa et al., 2004). Histochemical analysis of Runx1$^{Δ/Δ}$ bone marrow with acetylcholinestase staining showed an absence of normal looking megakaryocytes but an increase in small, hypolobulated megakaryocyte-like cells showing a marked decrease in ploidy (Grownney et al., 2005; Ichikawa et al., 2004).
1.5.2.3.2. Role of Runx1 in erythrocytes

Runx1 reporter models have clearly shown that Runx1 is down-regulated upon erythrocyte differentiation, which can be followed by the differential expression of cell surface markers CD71 and Ter119 (Basecke et al., 2002; Kina et al., 2000; Lorsbach et al., 2004; North et al., 2004). However, conditional deletion of Runx1 does not affect erythroid cell numbers or the potential to reconstitute the erythroid compartment (Growney et al., 2005; Putz et al., 2006; Sun and Downing, 2004), indicating Runx1 is dispensable for erythrocyte maturation.

1.5.2.3.3. Role of Runx1 in monocytes/macrophages

In WT and Runx1 haploinsufficient adult bone marrow, the large majority of myeloid blast cells, granulocytes and monocytes express Runx1 at various stages of maturation (Basecke et al., 2002; North et al., 2004). Runx1Δ/Δ animals can reconstitute the granulocytic and monocytic compartments of irradiated recipients, indicating that the effect of Runx1 deletion in these myeloid cells is milder compared to lymphoid lineages (Growney et al., 2005; Ichikawa et al., 2004). However, the increased myeloid cell numbers observed in the spleen and the bone marrow of Runx1Δ/Δ adults, together with Runx1 expression in myeloid lineages and Runx1-mediated activation of the M-CSF promoter, strongly suggest a potential role of Runx1 in myeloid development but its stage specific requirement is still to be fully investigated (Basecke et al., 2002; Growney et al., 2005; Ichikawa et al., 2004; North et al., 2004; Putz et al., 2006).

1.5.3. Roles of Runx1 during embryonic development

1.5.3.1. Runx1 expression in the developing null or haploinsufficient embryo

Runx1 expression in the knock-in LacZ reporter mouse model is first observed at E7.5, at the neural stage plate, in the endoderm and some extraembryonic mesodermal cells (North et al., 1999). At E8.5, strong LacZ expression can be
observed in the YS blood islands (both endothelial and haematopoietic cells), in the
distal portion of the allantois at the junction point with the chorion, in endothelial
cells of the vitelline artery and in the ventral aspect of the paired dorsal aortae (North
et al., 1999). LacZ is also expressed in primitive erythrocytes but its expression
diminishes and disappears by E11.5 (North et al., 1999). At E10.5, the time of LTR-
HSC emergence, Runx1 expression can be observed in the vitelline and umbilical
arteries, the AGM region, the fetal liver, the placental labyrinth and other sites
unrelated to haematopoiesis such as the olfactory epithelium, the spinal ganglia, and
the maxillary processes (North et al., 1999; Rhodes et al., 2008; Simeone et al., 1995;
Zeigler et al., 2006)(Figure 1.10B). In the E10.5-11.5 AGM region, Runx1 is
expressed in ventral IAHCs, and particularly endothelial, haematopoietic and
mesenchymal cells (North et al., 1999; North et al., 2002)(Figure 1.10C and D). Most
importantly, Runx1 marks LTR-HSCs in the Runx1 haploinsufficient embryo (North
et al., 2002).

1.5.3.2. Insights from the Runx1 knockout model

Runx1 deficiency (Runx1^{−/−}) results in a complete block of LTR-HSC
emergence with no IAHCs in the Ao and vitelline and umbilical arteries (North et al.,
1999; Okada et al., 1998; Okuda et al., 1996; Wang et al., 1996b). Runx1^{−/−} embryos
develop extensive central nervous haemorrhages and anaemia and die between E11.5
and E12.5 (Okuda et al., 1996; Samokhvalov et al., 2006; Wang et al., 1996a)(Figure
1.10A). Extensive cellular necrosis involving endothelial cells in the nervous system
capillaries has been observed (Wang et al., 1996a).

No differences in primitive erythrocyte morphology or numbers are observed
between Runx1^{−/−} embryos and WT age-matched controls (Okuda et al., 1996; Wang
et al., 1996a). However, primitive erythrocytes in Runx1^{−/−} mice display abnormal
morphology and a reduced expression of Ter119 and GATA-1 (Yokomizo et al.,
2008).

In contrast to primitive haematopoiesis, there is a total lack of adult-type
haematopoiesis, histologically characterised by the absence of enucleated erythroid,
Figure 1.10: Phenotype of Runx1 deficient E11.5 embryos and Runx1 expression in embryonic organs.

A: Phenotype of E11.5 Runx1 deficient embryo (Runx1^{−/−}) compared to wild type (WT). Runx1^{−/−} embryo displays clear central nervous system haemorrhages and liver pallor (pointed by arrows) (taken from Samokhvalov et al, 2006).

B: Runx1 expression in the E11.5 Runx1 haploinsufficient (Runx1^{+/−}) embryo (in LacZ knock-in reporter mouse model). Runx1 expression is observed in haematopoietic sites such as vitelline (v) and umbilical (u) arteries, the AGM (agm) region, and the fetal liver (fl) and non-haematopoietic sites such as the olfactory epithelium (o), the maxillary processes (m), spinal ganglia (g) and external genitalia (not seen from this angle) (taken from North et al, 1999).

C: Sections of E10.5 Runx1^{+/−} embryo showing Runx1 expression on the ventral wall of the dorsal aorta (a) and in haematopoietic cells in the fetal liver (fl) (taken from North et al, 1999).

D: View of the ventral wall of the E10.5 Runx1^{+/−} dorsal aorta showing Runx1 expression in endothelial cells (closed arrows), para-aortic mesenchyme (open arrows) and circulating haematopoietic cells (c) (taken from North et al, 1999).
myeloid, and megakaryocytic cells in the fetal liver, and functionally characterised by the absence of haematopoietic progenitors and LTR-HSCs in the E9.5-11.5 YS, P-Sp/AGM region, and fetal liver (Mukouyama et al., 2000; North et al., 1999; Okuda et al., 1996; Wang et al., 1996a). The essential requirement for Runx1 in the generation of the adult haematopoietic system was confirmed by the failure of Runx1^{−/−} ES cells to contribute to adult haematopoietic system in chimaeric animals (Okuda et al., 1996). In addition, further support was obtained from experiments in which the rescue of Runx1 expression in Runx1^{−/−} ES cells in vitro, or by conditional reactivation of a reversible knockout in vivo restores definitive haematopoietic potential (Goyama et al., 2004; Mukouyama et al., 2000; Okuda et al., 2000; Samokhvalov et al., 2006).

1.5.3.3. **Runx1 effect on LTR-HSC emergence is dose-dependent**

The study of the LacZ reporter mouse showed that haploinsufficiency results in a dramatic change in temporal and spatial distribution of LTR-HSCs (Cai et al., 2000). The emerging LTR-HSCs in the E10.5 and E11.5 AGM, vitelline and umbilical arteries in these animals all express Runx1 but have a heterogenous immunophenotype, including haematopoietic (CD45⁺), endothelial (PECAM-1⁺, VE-cadherin⁺, and Flk1⁺), and mesenchymal cells (CD45[−]VE-cadherin[−]); proportions in the haploinsufficient embryo varied from WT controls (North et al., 2002).

Additionally, a hemizygous dose of Runx1 results in fewer CFU-Cs in the E10.5-11.5 YS and the E9.5-11.5 P-Sp/AGM region and also CFU-S in the YS, AGM and fetal liver from E10.5 onwards (Cai et al., 2000; Mukouyama et al., 2000; Okuda et al., 1996; Robin et al., 2006; Wang et al., 1996a). Kinetics of LTR-HSCs appearance in these embryos demonstrated that LTR-HSCs emerge earlier as they are readily detectable in the E10.5 AGM region and the YS (Cai et al., 2000). Explants culture confirmed the early emergence of LTR-HSCs in the YS. However, LTR-HSC maintenance/expansion in the E10.5 AGM region requires two functional Runx1 alleles, suggesting a requirement for Runx1 in the AGM microenvironment (Cai et al., 2000). Also, both the numbers of IAHCs and LTR-HSCs in the AGM region are
Runx1 dose dependent (Cai et al., 2000; North et al., 1999; Robin et al., 2006; Yokomizo et al., 2001), providing further circumstantial evidence for a developmental link between IAHCs and LTR-HSCs.

1.5.3.4. Runx1 and the emergence of LTR-HSCs

The expression of Runx1 in an array of cell types in the E10.5 AGM region, as well as the failure of Runx1 deficient embryos to generate LTR-HSCs, has led scientists to wonder which specific cell types require Runx1 to allow LTR-HSC development. One study reported that LTR-HSCs ancestor cells are marked by Runx1 and can be traced back to the E7.5 YS (Samokhvalov et al., 2007). Apart from showing that LTR-HSCs ancestors express Runx1 at some stage, this study remains controversial because it fails to demonstrate robustly that labelling cannot occur in the embryo proper, allantois and placenta. Many other laboratories have also attempted to understand which mechanisms controlled by Runx1 are involved in the emergence of LTR-HSCs. The available data supports a model in which Runx1 is essential for the transition of haemogenic endothelial cells (see Section 1.4.2.3) to haematopoietic commitment, and more particularly LTR-HSCs (Chen et al., 2009; North et al., 2002; Yokomizo et al., 2001).

The first evidence supporting this model came from the observation that Runx1-null endothelial cells (VE-cadherin\(^+\) in this case) fail to generate definitive haematopoietic lineage cells (Yokomizo et al., 2001). This was further indicated by the combined observations that Runx1-null embryos have similar numbers of VE-cadherin\(^+\) compared to WT controls but have virtually no CD45\(^+\)VE-cadherin\(^+\) cells, suggesting that there is a failure in haematopoietic commitment at this early stage (Fraser et al., 2003; Yokomizo et al., 2001). Additionally, North and colleagues reported that endothelial (PECAM-1\(^+\) or VE-cadherin\(^-\)) and mesenchymal cell fractions in the E10.5-11.5 AGM region, vitelline and umbilical arteries had some LTR-HSC activity (North et al., 2002). However, this study involved Runx1 haploinsufficient embryos, which have impaired LTR-HSCs kinetics and immunophenotype. Additionally, their idea of a Runx1\(^+\) endothelial LTR-HSC is
based on the lack of CD45 expression, indicating a non-haematopoietic phenotype (North et al., 2002). As previously discussed, CD41 is a more accurate early marker for haematopoietic cells as it is expressed earlier than CD45, suggesting that VE-cadherin$^+$CD45$^-$Runx1$^+$ cells might already be haematopoietic (Eilken et al., 2009; Ferkowicz et al., 2003; Mikkola et al., 2003a). Finally, a recent study from the same lab used a conditional knockout in vivo approach to better define the stage at which Runx1 is essential for LTR-HSC emergence (Chen et al., 2009). Runx1 deletion in the endothelial compartment, using VE-cadherin Cre recombinase, showed that LTR-HSCs are much reduced in the E11.5 AGM region of the Runx1Δ^Δ:VE-cadherin Cre animals (Chen et al., 2009). This indicates that LTR-HSC development is impaired, but with a strong selective pressure exerted on cells that escape excision, accounting for the presence of LTR-HSCs (Chen et al., 2009). Similar experiments with Vav-Cre were carried out and showed that Runx1 excision in the Vav$^+$ compartment does not affect the LTR-HSC development. Vav expression is restricted to most haematopoietic lineages in vivo (Ogilvy et al., 1999) so it was assumed Vav$^+$ cells are already be committed haematopoietic fate. Based on this assumption, they concluded that Runx1 is essential at the endothelial cell level but is dispensable afterwards (Chen et al., 2009), pinpointing a stage at which Runx1 is no longer required. Lancrin and colleagues came to a similar conclusion using an in vitro ES cell model in which they could rescue Runx1 expression and showed that Runx1 is not necessary for the establishment of haemogenic endothelium (defined as Tie2$^+$c-kit$^+$CD41$^+$) but is required for definitive haematopoiesis by this population based on colony assay (Lancrin et al., 2009). Even though these studies yielded very interesting observations, the criteria by which endothelial cells are defined (Tie2 expression or VE-cadherin expression only) are not sufficiently robust; thus compromising the interpretation that Runx1 is needed for the transition from hemogenic endothelial cells to LTR-HSCs.
1.6. **The ex vivo expansion of LTR-HSCs**

The failure to generate LTR-HSCs from ES cells *in vitro* has challenged the field of haematopoiesis for years. In contrast, attempts to induce, maintain, and expand LTR-HSCs from haematopoietic tissues *ex vivo* have proven fairly successful and have provided major insights into LTR-HSC biology. HSC expansion is defined as a symmetrical self-renewal division generating two HSCs whereas HSC maintenance involves asymmetrical self-renewal division generating one HSC and a more differentiated progeny (Cellot and Sauvageau, 2006). Extensive LTR-HSC expansion occurs during ontogeny within the placenta and the fetal liver niche (Ema and Nakauchi, 2000; Gekas et al., 2005; Morrison et al., 1995). Studies aiming to achieve LTR-HSC expansion *in vitro* are briefly reviewed in the following sections.

1.6.1. **Hoxb4: a potent stimulator of LTR-HSC expansion**

Insights into the roles of Homeobox (Hox) genes in haematopoiesis emerged from over-expression studies. For example, over-expression of Hoxa10, Hoxb3 and Hoxb6 in bone marrow cells results in a block in differentiation of B and T cells, impaired erythropoiesis and myeloproliferative disorders (Argiropoulos and Humphries, 2007). The engineered retroviral over-expression of Hoxb4 in the bone marrow transplantation model induces LTR-HSC expansion both *in vivo* and *in vitro* (Sauvageau et al., 1995). A subsequent study using a similar approach achieved a net 41 fold *ex vivo* expansion of LTR-HSC with normal reconstitution of both the myeloid and lymphoid compartments without inducing leukaemia (Antonchuk et al., 2002), placing Hoxb4 as one of the most potent stimulator of LTR-HSC expansion. In addition, Hoxb4 over-expressing cells have enhanced regenerative potential; meaning transplantation with over-expressing Hoxb4 cells can restore the LTR-HSC pool to its normal size compared to around 25% with controls (Antonchuk et al., 2001; Antonchuk et al., 2002; Sauvageau et al., 1995; Thorsteinsdottir et al., 1999).

Intriguingly however, the effects of Hoxb4 deficiency on LTR-HSC self-renewal are fairly elusive, with no disruption of definitive haematopoiesis albeit with subtle reductions in HSC and progenitors numbers and a modest impairment of the
competitive repopulating ability (Argiropoulos and Humphries, 2007; Bijl et al., 2006; Brun et al., 2004). More recently, a near-complete Hoxb cluster knockout revealed that Hoxb genes are dispensable for normal haematopoiesis as Hoxb deficient LTR-HSCs remain competitive and retain their full differentiation potential (Bijl et al., 2006). Taken together, these studies highlight the complex network of genetic interactions between different categories of Hox genes in LTR-HSCs biology and demonstrate their potential overlapping functions (Argiropoulos and Humphries, 2007; Bijl et al., 2006).

1.6.2. Soluble growth factors as potent inducers of LTR-HSC expansion

Stem cell engineering using retroviral transduction raises the issue of safety when it comes to applying this knowledge to the clinic. Many attempts to achieve LTR-HSC expansion by modulating the growth factors present in ex vivo culture media have been reported. The most successful bone marrow LTR-HSC expansion achieved a 30 fold LTR-HSC expansion upon culture in serum free medium supplemented with soluble SCF, thrombopoietin (TPO), Insulin-like growth factor 2 (IGF-2), fibroblast-growth factor 1 (FGF-1) and angiopoietin like 2 and 3 (Zhang et al., 2006). Our group also recently reported a 150-fold LTR-HSCs increase during 4 days ex vivo culture with SCF, IL-3 and Flt3l (Taoudi et al., 2008). However, this increase was due to pre-HSC maturation rather than expansion by symmetrical self-renewal divisions (Taoudi et al., 2008).

Cytokines are secreted proteins that regulate many aspects of LTR-HSC functions including quiescence, self-renewal, differentiation, apoptosis and mobility (Zhang and Lodish, 2008). It is believed that stromal cells in HSC niches (see Section 1.2.1.2) synthesise the appropriate HSC cytokines but little is known about which cytokine is produced by which niche stromal cell type (Zhang and Lodish, 2008). The roles of SCF, IL-3 and Flt3l in the regulation of LTR-HSC emergence/maintenance and expansion are discussed. For a more detailed summary of cytokine families involved in haematopoiesis, refer to (Zhang and Lodish, 2008).
1.6.2.1. Stem cell factor

Also known as Steel factor, SCF functions by binding to c-kit, which is expressed in LTR-HSCs throughout development (Gekas et al., 2005; Morrison et al., 1995; Sanchez et al., 1996; Yoder et al., 1997a). Almost all cytokine combinations used for the *ex vivo* culture of LTR-HSCs include SCF (Zhang and Lodish, 2008).

SCF deficiency results in reduced numbers of LTR-HSCs (assessed by numbers of Lin-Thy-1^{lo}Sca1^{+} cells in the E13-15 fetal liver) and CFU-S but does not affect their proliferation (Ikuta and Weissman, 1992). Interestingly, fetal liver LTR-HSCs are 6-fold more sensitive to SCF than their adult counterparts, meaning that 50 ng/mL of SCF is sufficient to maintain fetal liver LTR-HSCs *in vitro* compared to 300 ng/mL (and 20 ng/mL of IL-11) required for adult LTR-HSCs (Bowie et al., 2007a). Taken together, these studies prove that fetal LTR-HSCs are highly sensitive to exogenous SCF and that SCF/c-kit-mediated cellular responses might provide an explanation for why fetal and adult LTR-HSC display different biological properties.

1.6.2.2. Interleukin-3

The effect of IL-3 on adult LTR-HSC function remains controversial, as it has been reported both to enhance (Bryder and Jacobsen, 2000) and inhibit (Peters et al., 1996; Yonemura et al., 1996) LTR-HSC expansion *ex vivo*. These discrepancies could be due to differences in concentration, presence of other cytokines or serum (Robin et al., 2006).

Disruption of IL-3 or the IL-3 receptor genes does not affect adult steady state haematopoiesis as IL-3 deficient mice have normal blood cell counts, CFU-Cs and LTR-HSCs (Lantz et al., 1998; Mach et al., 1998). Exogenous addition of SCF to IL-3^{−/−} bone marrow cultures results in fewer mast cells compared to WT cultures (Lantz et al., 1998). This defect was rescued by the addition of exogenous IL-3, highlighting the synergetic action of IL-3 and SCF (Lantz et al., 1998). Only one study to date has investigated the role of IL-3 on the emergence/expansion of LTR-HSCs during embryonic development (Robin et al., 2006). The numbers of LTR-
HSCs contained in the E11.5 AGM region, YS and placenta are decreased compared to WT controls in the IL-3 haploinsufficient embryos, and undetectable in the IL-3 knockout animals (Robin et al., 2006). Similar results were obtained in explants of IL-3 mutant haematopoietic tissues (Robin et al., 2006). Exogenous addition of IL-3 mediates proliferation and survival of phenotypically enriched LTR-HSC populations (CD34⁺c-kit⁺ (Sanchez et al., 1996) and Sca-1⁺c-kit⁺ (de Bruijn et al., 2002)) as well as their early appearances in the E10.5 AGM region and YS (Robin et al., 2006). Interestingly however, addition of exogenous IL-3 to explant medium yields an unprecedented 35-fold expansion in E11.5 AGM explants, with a similar positive effect of IL-3 observed in E11.5 YS and placenta explants (Robin et al., 2006). Taken together, this study highlights the important positive role of IL-3 in the emergence, proliferation and survival of the first LTR-HSCs (Robin et al., 2006).

1.6.2.3. Flt3-ligand

Flms-like tyrosine kinase 3 (Flt3, also known as Flk-2) is activated by its ligand (Flt3l), which can be released as a soluble homodimeric protein and is expressed in cells of the bone marrow microenvironment as well as myeloid and lymphoid hematopoietic cell lines (Gilliland and Griffin, 2002). When soluble Flt3-l is administered to mice, hematopoietic progenitors in the bone marrow and the spleen expand and HSCs are mobilised into the peripheral blood (Brasel et al., 1996). Flt3l deficient animals do not display any overt phenotype, they have normal numbers of LTR-HSCs but display reduced numbers of B cell progenitors, dendritic cells and natural killer cells in vivo (McKenna et al., 2000; Sitnicka et al., 2002).

A recent study focusing on E14.5 fetal liver of Flt3 deficient embryos has shown that Flt3 receptor and ligand are dispensable for normal LTR-HSC function, both in steady state, and during fetal or posttransplantation expansion (Buza-Vidas et al., 2009). While this study implies that fetal liver LTR-HSC expansion is not impaired in Flt3l deficient embryos in vivo, no current study has addressed a potential role of Flt3l in the emergence of LTR-HSCs at earlier developmental stages.
(E10.5 at the onset of LTR-HSC emergence) or in other embryonic haematopoietic organs (AGM region, YS and placenta).

However, the engraftability of bone marrow LTR-HSCs after ex vivo culture, and the enhancement of LTR-HSC expansion by the concerted effects of SCF and Flt3l, confirm previous studies reporting that Flt3l strongly synergises with other haematopoietic growth factors and interleukins (Buza-Vidas et al., 2009; Diehl et al., 2007; Gilliland and Griffin, 2002).

Despite a great progress in the past decade, identification and functional study of HSC cytokines are still at the primitive stage and many secreted or cell surface proteins that affect HSC function remain to be discovered (Zhang and Lodish, 2008).

1.7. Summary and project goals

While various sites such as the AGM region, the YS, the fetal liver and the placenta harbour LTR-HSCs during embryogenesis, the question of the site of the first LTR-HSC emergence remains controversial. Functional evidence to date has indicated that the E10.5 AGM region is the earliest site with detectable LTR-HSC activity and with the capacity to autonomously initiate LTR-HSC expansion (Medvinsky and Dzierzak, 1996; Muller et al., 1994). The unique properties of the AGM region to autonomously expand LTR-HSCs have generated a large interest in the field of haematopoiesis. However, dissection of mechanisms underlying this process has been complicated by the lack of a culture system in which individual cells could be manipulated and yet maintain the capacity of the organ to expand LTR-HSCs. Recently, the reaggregate culture system was developed in our lab (Taoudi et al., 2008). This system enables the dissociation of the E11.5 AGM region prior to culture whilst maintaining its ability to expand LTR-HSCs. The project presented here is based on this system and follows three major lines of investigation:
1. The E11.5 AGM reaggregate system is capable of *ex vivo* expanding LTR-HSCs from 1 (Kumaravelu et al., 2002) to 150 (Taoudi et al., 2008), a range similar to what is observed *in vivo* (Gekas et al., 2005). Such expansion is achieved in the presence of the cytokines IL-3, SCF and Flt3l.

 a) The first goal of this project was to phenotypically characterise the LTR-HSCs obtained in reaggregates.

 b) The second goal was to investigate the role of individual cytokines in the LTR-HSC expansion.

2. The second part of this project was to understand the role of Runx1 in the emergence and expansion of LTR-HSCs in the E11.5 AGM region using the reaggregate system. In order to address this question, our Runx1EGFP reporter mouse model was used.

 a) The first goal was to characterise Runx1 expression in cell populations in the adult and the E11.5 embryo to establish whether the transgenic Runx1EGFP allele was functional.

 b) The second goal was to identify non-haematopoietic cell populations expressing Runx1 and assess their potential to develop into LTR-HSCs using the reaggregate culture system.

3. The third part aimed to localise pre-HSCs within the E11.5 AGM region using the reaggregate culture system. De Bruijn et al have previously shown that the Ao is the site where the first LTR-HSC appear in the E11.5 AGM region (de Bruijn et al., 2000b). Within the Ao, the majority of LTR-HSCs emerge and are localised to the AoV (Taoudi and Medvinsky, 2007).

 a) The first goal was to investigate the possible axio-lateral polarity of LTR-HSC development in reaggregates and whether close proximity of Ao and UGR cells affected their haematopoietic potential.

 b) The second goal was to assess the presence of cells in the AoD that might be competent to mature into LTR-HSCs when exposed to the AGM microenvironment (ie, the AoV and UGR).
2. Materials and Methods

Most of the methods described in this section are routinely used in our laboratory and were previously described in (Taoudi, 2006).

2.1. General solutions

Dissection solution: room temperature (RT) Dulbecco’s phosphate buffered saline (PBS) solution (with Mg$^{2+}$ and Ca$^{2+}$ ions; Sigma) containing 7% fetal calf serum (FCS) (Gibco, PAA, or Biosera) and 50 units/ml penicillin and streptomycin (P/S; Gibco).

Flow Cytometry buffer solution: Dulbecco’s PBS (without Mg$^{2+}$ and Ca$^{2+}$) containing 7% FCS and 50 units/ml P/S.

2.2. Animals

2.2.1. Animal husbandry

C57BL6, CBA, aEGFP (termed GFP) and Runx1EGFP animals were housed and bred within the University of Edinburgh animal houses and according to the regulations of the Animals Scientific Procedures Act, UK, 1986. Animals were provided with a constant supply of water and chow food, and were housed in a constant environment with a 14 hours light/10 hours dark cycle (midpoint 12am and 12pm, and midpoint 7am and 7pm for recipient animals).

Litters obtained were left with parents for three weeks postnataally before weaning by separating parents and offsprings. Only mice older than 6 weeks were used for matings.
2.2.2. Timed matings

For embryonic tissue collection, time matings were organised to obtain embryos at specific stages of gestation. Overnight matings were set up and the females were examined for the presence of vaginal plugs the following morning. Vaginal plug discovery day was assumed to correspond to E0.5.

2.2.3. Mouse lines

Tissues termed wild type (WT) were obtained from C57BL/6 animals. For lineage tracing experiments, embryos were generated from the pairing of C57BL/6 stud males with C57BL/6/aEGFP females. Resulting WT and GFP embryos were genotyped under fluorescent light. aEGFP animals (termed GFP) constitutively express EGFP (Gilchrist et al., 2003).

2.3. \textit{Runx1}^{EGFP} line genotyping and backcrossing

2.3.1. \textit{Runx1}^{EGFP} mouse line genotyping

Animal ear samples were taken at weaning by the animal unit staff. To obtain DNA, samples were treated with 100 µl of lysis buffer containing 10% Tween 20, NP40, and 10 mg/ml proteinase K in PCR buffer (Qiagen); and incubated at 55°C overnight. Samples were vortexed and proteins denaturated at 95°C for 5 minutes. Samples were either used immediately or stored at -20°C.

Presence of \textit{Runx1}^{EGFP} allele in genomic DNA was determined by polymerase chain reaction (PCR). Mastermix was prepared in clean water (Sigma) containing PCR buffer, 10mM dNTPs, 5 units/µl Taq polymerase, 3 primers at 0.1µM/µl final concentration, and finally genomic DNA obtained from ear samples lysis. Oligonucleotide primers (Table 2.1) were designed by H. Inoue and obtained from Eurogentec. All other reagents used for PCR were obtained from Qiagen (cat #201207).
Table 2.1: \textit{Runx1}^{EGFP} PCR genotyping primer sequences and genomic locations. H. Inoue designed oligonucleotide sequences. Transgenic allele PCR product size is 304 base pairs and wild type allele PCR product size is 367 base pairs. Refer to Figure 5.2. EGFP: enhanced green fluorescent protein, UTR: untranslated region.

<table>
<thead>
<tr>
<th>primer name</th>
<th>genomic location</th>
<th>sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runx1 forward</td>
<td>Runx1 exon 6</td>
<td>5'-CATCGGCATGTGCAGCCATGAG-3'</td>
</tr>
<tr>
<td>EGFP forward</td>
<td>EGFP</td>
<td>5'-CGGCATCAAGGTGAACTTCAAGAT-3'</td>
</tr>
<tr>
<td>Runx1 reverse</td>
<td>Runx1 3'UTR</td>
<td>5'-TCGATGGCGATGGCGCTCAG-3'</td>
</tr>
</tbody>
</table>
Samples were run in a T3 thermocycler machine (Biometra) using the following steps: 1) denaturation at 95°C for 3 minutes, 2) followed by 35 cycles of: denaturation at 94°C for 30 seconds, annealing at 60°C for 40 seconds, extension at 72°C for 3 minutes. Samples were kept at 4°C until examination with a 2% agarose gel electrophoresis (30V for 2 hours). DNA was labelled with ethidium bromide and pictures were taken with a Geneflash camera (Syngene Bio Imaging).

2.3.2. \textit{Runx1}^{EGFP} mouse line backcrossing

In order to transfer \textit{Runx1}^{EGFP} animals on C57Bl6 genetic background, \textit{Runx1}^{EGFP/WT} males were mated with C57Bl6 females. Offspring were genotyped by PCR according to the procedure described in Section 2.3.1 and appropriate \textit{Runx1}^{EGFP/WT} males were subsequently mated with C57Bl6 females 8 times before the line was assumed to be of C57Bl6 background.

2.4. Embryonic tissue isolation and preparation

2.4.1. Isolation of embryonic tissue

Pregnant females were sacrificed according to schedule 1 method of cervical dissociation. The uterus was dissected and embryos were extracted into dissection solution. The embryos were then carefully separated from extra-embryonic tissues such as YS when appropriate. Developmental stage was scored according to Thelier criteria (http://genex.hgu.mrc.ac.uk/intro.html). E11.5 corresponds to stage 19, and main morphological characteristics being 41-47 somites pairs, round limb buds and not entirely completed eye pigmentation (Figure 3.1A). Embryonic organs of interest were dissected in dissection medium using sharpened tungsten needles under dissecting microscope (LEICA MZ8 microscope). When required, embryonic peripheral blood was placed on ice immediately after isolation.

For the lateral sub-dissection of the E11.5 AGM region, UGRs were gently cut along the ridges, leaving most para-aortic mesenchymal tissue attached to the Ao (Figure 5.1).
For the dorso-ventral subdissection of the E11.5 AGM region, remnants of the mesentery (ventral), somites and notochord (dorsal) were left on the AGM to easily distinguish AoV and AoD in the dissection dish. When appropriate, these extra aortic tissues were subsequently removed and AoV immediately placed into separate dishes (Figure 5.12).

2.4.2. Cellular preparation of embryonic tissues

To obtain single cell suspensions, embryonic organs were transferred to a 5ml polystyrene tube (BD Falcon) containing 450µl of dissection solution supplemented with 50µl of 10mg/ml collagenase dispase (Roche). Organs were digested in a 37°C gently shaking water bath for 40 minutes. Immediately after, 1ml of dissection medium was added and then centrifuged at 1500rpm (GS-6R centrifuge, Beckman) for 5 minutes at RT. Cells were gently resuspended in flow cytometry buffer solution at RT and immediately placed on ice.

2.5. Adult tissue isolation and preparation

2.5.1. Isolation of adult tissue

Adult animals were all sacrificed according to schedule 1 method of cervical dissociation. Spleen and thymus were dissected free of connective tissue and fat and immediately placed in flow cytometry buffer solution. Peripheral blood was obtained by bleeding from lateral tail vein, and immediately collected into 1ml PBS/EDTA (200µg/ml). Bone marrow was obtained by flushing femurs in flow cytometry buffer solution with a 26-gauge syringe needle (BD Microlance).

2.5.2. Cellular preparation of adult tissues

Single cell suspensions from adult spleen and thymus were obtained by pressing grossly cut organs with a 1ml syringe plunger (BD Plastipak) into round-bottom 96 well plate (Bibby Sterilin) in the presence of flow cytometry buffer
solution. After that, tissues were filtered through a 40µm cell strainer (BD Falcon) to get rid of cell clumps. Bone marrow was mechanically dispersed in flow cytometry buffer solution using the 26-gauge syringe needle after flushing. Cells were immediately placed on ice.

2.5.3. Erythrocyte depletion in adult tissues

Adult blood samples (when appropriate, other haematopoietic cell suspensions) were centrifuged at 2000rpm (Biofuge pico from Heraeus Instruments) for 3 minutes at RT and pellets were resuspended, well mixed and incubated in dark at RT for 15 minutes in 1ml of PharM Lyse solution (BD Bioscience).

For recipient’s peripheral blood reconstitution analysis, samples were then centrifuged at 2000rpm (Biofuge pico from Heraeus Instruments) for 4 minutes at RT before being resuspended in 1ml of flow cytometry buffer solution and being processed for flow cytometry analysis.

For other tissues and/or analysis, 1ml of flow cytometry buffer was added to samples, and then centrifuged at 1500rpm (Labofuge 400R from Heraeus Instruments) for 5 minutes at 4°C, resuspended in 1ml of flow cytometry buffer solution and stored on ice.

2.6. Flow cytometry

2.6.1. Staining and flow cytometric analysis of adult and embryonic cellular suspensions

Cell suspensions were obtained as previously described in Sections 2.4.2 and 2.5.2. Cell numbers were determined using a haemocytometer. Staining procedures were performed in 5ml polystyrene tubes (BD Falcon). Samples were centrifuged at 1500rpm (Labofuge 400R from Heraeus Instruments) for 5 minutes at 4°C and resuspended in 100µl of CD16/32 (Table 2.2). After 10 minutes incubation on ice, 100µl of antibody solution at the appropriate final concentration (Table 2.2) was
Table 2.2: Primary antibodies used for flow cytometry and confocal microscopy.

APC denotes Allophycocyanin; BIO, biotin; FITC, fluorescein isothiocyanate; PE, phycoerythrin; PerCP: peridinin chlorophyll protein; none, non-conjugated.

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Clone</th>
<th>Isotype</th>
<th>Working concentration</th>
<th>Conjugate</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>B220</td>
<td>RA3-6B2</td>
<td>Rat IgG2α, κ</td>
<td>2.0 µg/ml</td>
<td>PE, BIO, FITC</td>
<td>Pharmingen</td>
</tr>
<tr>
<td>c-kit</td>
<td>2B8</td>
<td>Rat IgG2β, κ</td>
<td>2.0 µg/ml</td>
<td>PE, BIO</td>
<td>Pharmingen</td>
</tr>
<tr>
<td>CD3ε</td>
<td>145-2C11</td>
<td>Hamster IgG1</td>
<td>2.0 µg/ml</td>
<td>PE, FITC</td>
<td>eBioscience</td>
</tr>
<tr>
<td>CD4</td>
<td>GK1.5</td>
<td>Rat IgG2β, κ</td>
<td>2.0 µg/ml</td>
<td>PE, BIO</td>
<td>Pharmingen</td>
</tr>
<tr>
<td>CD8α</td>
<td>53-6.7</td>
<td>Rat IgG2α, κ</td>
<td>2.0 µg/ml</td>
<td>PE, FITC</td>
<td>eBioscience</td>
</tr>
<tr>
<td>CD16/32</td>
<td>93</td>
<td>Rat IgG2β, κ</td>
<td>2.0 µg/ml</td>
<td>none</td>
<td>eBioscience</td>
</tr>
<tr>
<td>CD19</td>
<td>1D3</td>
<td>Rat IgG2β, κ</td>
<td>2.0 µg/ml</td>
<td>PE</td>
<td>Pharmingen</td>
</tr>
<tr>
<td>CD34</td>
<td>RAM34</td>
<td>Rat IgG2α, κ</td>
<td>2.0 µg/ml</td>
<td>PE, FITC</td>
<td>eBioscience</td>
</tr>
<tr>
<td>CD41</td>
<td>MWReg30</td>
<td>Rat IgG1, κ</td>
<td>2.0 µg/ml</td>
<td>PE, FITC</td>
<td>eBioscience</td>
</tr>
<tr>
<td>CD43</td>
<td>eBioR2/60</td>
<td>Rat IgM</td>
<td>2.0 µg/ml</td>
<td>PE</td>
<td>eBioscience</td>
</tr>
<tr>
<td>CD45</td>
<td>30-F11</td>
<td>Rat IgG2β, κ</td>
<td>2.0 µg/ml</td>
<td>PE, FITC, APC, PerCP</td>
<td>Pharmingen</td>
</tr>
<tr>
<td>CD71</td>
<td>R17217</td>
<td>Rat IgG2α, κ</td>
<td>2.0 µg/ml</td>
<td>FITC</td>
<td>eBioscience</td>
</tr>
<tr>
<td>Gr-1</td>
<td>RB6-8C5</td>
<td>Rat IgG2β, κ</td>
<td>2.0 µg/ml</td>
<td>PE, BIO</td>
<td>eBioscience</td>
</tr>
<tr>
<td>Ly-5.1</td>
<td>A20</td>
<td>Mouse IgG2α, κ</td>
<td>2.0 µg/ml</td>
<td>PE, APC</td>
<td>Pharmingen</td>
</tr>
<tr>
<td>Ly-5.2</td>
<td>104</td>
<td>Mouse IgG2α, κ</td>
<td>2.0 µg/ml</td>
<td>FITC, APC</td>
<td>eBioscience</td>
</tr>
<tr>
<td>Mac-1</td>
<td>M1/70</td>
<td>Rat IgG2β, κ</td>
<td>2.0 µg/ml</td>
<td>PE, FITC</td>
<td>eBioscience</td>
</tr>
<tr>
<td>PECAM-1</td>
<td>MEC 13.3</td>
<td>Rat IgG2α, κ</td>
<td>2.0 µg/ml</td>
<td>PE</td>
<td>Pharmingen</td>
</tr>
<tr>
<td>Sca-1</td>
<td>D7</td>
<td>Rat IgG2α, κ</td>
<td>2.0 µg/ml</td>
<td>PE</td>
<td>Pharmingen</td>
</tr>
<tr>
<td>Ter-119</td>
<td>TER-119</td>
<td>Rat IgG2β, κ</td>
<td>2.0 µg/ml</td>
<td>PE</td>
<td>Pharmingen</td>
</tr>
<tr>
<td>VE-cadherin</td>
<td>11D4.1</td>
<td>Rat IgG2α, κ</td>
<td>8.0 µg/ml</td>
<td>none</td>
<td>Pharmingen</td>
</tr>
</tbody>
</table>
added to each tube. Cells were then incubated in the dark on ice for 20 to 45 minutes. After incubation, 1ml of ice-cold flow cytometry buffer solution was added to each sample and cells were centrifuged at 1500rpm (Labofuge 400R from Heraeus Instruments) for 5 minutes at 4°C. When appropriate, supernatant was removed and cells were resuspended in 100µl of fluorochrome conjugated streptavidin solution (diluted at the appropriate concentration, Table 2.3). Cells were incubated for 15 minutes in the dark on ice. 1ml of ice-cold flow cytometry buffer solution was added and samples were centrifuged at 1500rpm (Labofuge 400R from Heraeus Instruments) for 5 minutes at 4°C. Supernatant was gently removed and cells were resuspended in 100 to 200µl of 0.25-0.5µg/ml 7-aminoactinomycin D (7-AAD).

Flow cytometric analysis was performed using a dual laser FACScalibur (BD Bioscience). Fluorescence levels were detected by FL-1, FL-2 and Fl-4 channels (Table 2.4). Compensation adjustments were made based on appropriate isotype controls and single stains. Viable cells were selected according to their low 7-AAD intakes and detected in the FL-3 channel. Cell size and granularity were assessed by forward and side scatter profiles respectively. Data acquisition was performed using BD CellQuest™ software (BD Bioscience). Data analysis and flow cytometric statistical analysis was performed using FlowJo software (Tree Star, Inc).

2.6.2. Fluorescence Activated Cell Sorting of embryonic tissues

Cell sorting was performed with the help of J.Vrana and S. Monard using a MoFlo (DakoCytomation) flow cytometer. Cells were processed and stained as described in Section 2.6.1. After processing, samples were resuspended at a concentration no higher than 1x10^6 cells/ml in 0.25µg/ml 7-AAD. In order to avoid cell losses during collection, 5ml polystyrene tubes (BD Falcon) were wetted with ice-cold flow cytometry buffer solution and filled with buffer (2.5ml). Throughout the cell sorting procedure, cells were maintained at 4°C and the conditions were maintained as aseptic as possible. When cell numbers allowed, a purity check of collected cell populations was performed.
Table 2.3: Secondary reagents and isotype controls antibodies used for flow cytometry.

7-AAD denotes 7-amino-actinomycin; APC denotes Allophycocyanin; BIO, biotin; FITC, fluorescein isothiocyanate; PE, phycoerythrin; n/a, non-applicable.

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Clone</th>
<th>Working concentration</th>
<th>Conjugate</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-AAD</td>
<td>n/a</td>
<td>0.25-0.5 µg/ml</td>
<td>n/a</td>
<td>eBioscience</td>
</tr>
<tr>
<td>Hamster IgG1</td>
<td>A19-3</td>
<td>as appropriate</td>
<td>PE, FITC</td>
<td>Pharmingen</td>
</tr>
<tr>
<td>Mouse IgG2α, κ</td>
<td>G155-178</td>
<td>as appropriate</td>
<td>PE, FITC, APC</td>
<td>Pharmingen</td>
</tr>
<tr>
<td>Rat IgG1, κ</td>
<td>R3-34</td>
<td>as appropriate</td>
<td>PE, FITC</td>
<td>eBioscience</td>
</tr>
<tr>
<td>Rat IgG2α, κ</td>
<td>R35-95</td>
<td>as appropriate</td>
<td>PE, BIO, FITC, APC</td>
<td>Pharmingen</td>
</tr>
<tr>
<td>Rat IgG2β, κ</td>
<td>A95-1</td>
<td>as appropriate</td>
<td>PE, BIO, FITC, APC</td>
<td>Pharmingen</td>
</tr>
<tr>
<td>Rat IgM</td>
<td>G35-238</td>
<td>as appropriate</td>
<td>PE</td>
<td>Pharmingen</td>
</tr>
<tr>
<td>Streptavidin</td>
<td>n/a</td>
<td>0.2 µg/ml</td>
<td>PE, APC</td>
<td>Pharmingen</td>
</tr>
<tr>
<td>TOPRO-3</td>
<td>n/a</td>
<td>1 µM</td>
<td>n/a</td>
<td>Invitrogen</td>
</tr>
</tbody>
</table>

Table 2.4: FACScalibur channels and their corresponding fluorochromes.

Fluorochromes indicated here were used for flow cytometric analysis and appropriate controls were run with each fluorochrome to compensate for fluorescent leakage from one channel to another. FITC: fluorescein isothiocyanate, GFP: green fluorescent protein, eGFP: enhanced green fluorescent protein, PE: phycoerythrin, 7-AAD: 7-aminoactinomycin D, PerCP: peridinin chlorophyll protein; PE-Cy5: phycoerythrin-cyanine5, APC: allophycocyanin

<table>
<thead>
<tr>
<th>channel</th>
<th>fluorochromes detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>FL-1</td>
<td>FITC, Alexa fluor-488, GFP, EGFP</td>
</tr>
<tr>
<td>FL-2</td>
<td>PE</td>
</tr>
<tr>
<td>FL-3</td>
<td>7-AAD, PerCP, PE-Cy5.5</td>
</tr>
<tr>
<td>FL-4</td>
<td>APC, TOPRO-3</td>
</tr>
</tbody>
</table>

78
2.7. **Tissue culture**

Tissue culture procedures were carried out in class 2 laminar flow hoods (Envair and Nuaire) using aseptic technique by treating all surface areas and items in the hood with 70% industrial methylated spirits. Chemicals were prepared in sterile conditions.

Cells were cultured in 5% CO$_2$ at 37°C in humidified incubators (Heraeus Instruments). Solutions were stored at +4°C. Supplementary reagents were prepared by the tissue culture core-facility staff and stored at -20°C (except β-mercaptoethanol which was stored at +4°C). All solutions and reagents were allowed to warm-up to RT prior to use and all media were prepared freshly.

Unless otherwise stated Gibco supplied all media and supplementary reagents; PeproTech supplied all growth factors.

2.7.1. **E11.5 AGM region reaggregation**

The E11.5 AGM reaggregation technique was carried out as previously described (Sheridan et al., 2009; Taoudi et al., 2008); AGM suspensions were obtained from pooled embryos, centrifuged at 1500rpm for 5 minutes at 4°C (GS-6R centrifuge, Beckman), and resuspended at a concentration of 1 embryo-equivalent (e.e) in 15-20µl of culture medium. 200µl pipette tip were then filled with 15-20µl of cell suspension and carefully sealed with Parafilm (VWR International). Tips were then placed in 25ml tubes (Corning) and centrifuged at 1500rpm (GS-6R centrifuge, Beckman) for 5 minutes at 4°C. Cell pellets were then carefully expelled from the tip and placed onto Durapore 0.65µm membrane filters (Millipore) at the gas-liquid interface of 5ml of culture medium per well in 6 well plates. No more than 4 pellets were placed on each membrane filter.

Reaggregates were cultured in IMDM$^+$ medium (Iscove’s Modified Dulbecco’s Medium (IMDM) containing 10-20% FCS; 4mM glutamine; 0.1mM β-mercaptoethanol; 50 units/ml P/S; 100ng/ml IL-3; 100ng/ml SCF; and 100ng/ml
Flt3l). In some cases IL-3, SCF, and Flt3l were not added to the medium (referred as IMDM medium).

When appropriate, Durapore 0.65\(\mu\)m membrane filters were rinsed 3 times and incubated overnight at \(37^\circ\)C, 5\% CO\(_2\) in tissue culture grade with P/S. Membranes were rinsed again 3 times before being completely dried prior to use.

Following 4 to 5 days culture at \(37^\circ\)C, 5\% CO\(_2\), membrane filters were submersed into the culture medium, and reaggregates were collected by gentle pipetting. Reaggregates single cell suspensions were used for analysis (see section 2.4).

2.7.2. E11.5 AGM tissues explant cultures.

E11.5 AGM tissues were dissected as described in section 2.4.1. Explant cultures were slightly modified from protocols previously described (Kumaravelu et al., 2002; Medvinsky and Dzierzak, 1996). E11.5 AGM tissues were submersed in the appropriate culture medium and gently put onto Durapore 0.65\(\mu\)m membrane filters (sometimes washed, see Section 2.7.1). Membrane filters were placed at the liquid gas interface of 5 ml of appropriate medium and cultured for 4 days at \(37^\circ\)C, 5\% CO\(_2\). A maximum of 4 AGM explants were put onto each membrane. Explants were cultured in Myelo-cult medium (M5300, Stem Cell Technologies) supplemented with 1\(\times\)10\(^{-6}\)M hydrocortisone 21-hemisuccinate sodium salt and 50 units/ml P/S. On occasions, explant cultures were carried out in IMDM medium.

After culture, explants were taken off the membranes and made into single cell suspensions (see sections 2.4 and 2.7.1).

2.8. In vitro haematopoietic assay: methylcellulose based differentiation

Prior to use, methylcellulose based MethoCult medium containing erythropoietin, IL-3, IL-6, and SCF (M3434, Stem Cell Technologies) was thawed at
RT and 50 units/ml P/S was added. After cell suspensions were added to MethoCult at 1/10 dilution, cultures were processed and plated according to manufacturer’s instructions (www.stemcell.com). Haematopoietic colonies were counted and scored after 9-11 days of differentiation. The colonies were scored according to described standard criteria (Medvinsky et al., 2008; Taoudi, 2006)

2.9. **In vivo haematopoietic stem cell assay:**

 competitive long-term repopulation assay

2.9.1. **In vivo transplantation**

Cells for the long-term repopulation assay were obtained from either fresh or cultured embryonic organs from Ly-5.2/5.2 mice. Appropriate doses of cells were resuspended in ice cold 1% FCS/PBS and co-injected along with 2x10^4 adult carrier bone marrow cells from Ly-5.1/5.2 animals. Prior to transplantation, Ly-5.1/5.1 animals were irradiated. A total dose of 9.5 Gy was split into two doses separated by at least 3 hours and delivered by sealed Cs source at a rate of 21.6 rad/min. No more than 300µl of cell suspension were injected into each recipient mouse using a 30-gauge syringe needle (BD Plastipak). All injections were performed in the lateral tail vein according to the procedures described by project licence 603715 and the regulations of the Animals Scientific Procedures Act, UK, 1986.

Experiments described in Chapter 3 were performed with F1 (CBA X C57Bl6) animals. All other experiments were performed with pure C57Bl6 animals.

2.9.2. **Assessment of haematopoietic reconstitution**

Recipients’ peripheral blood chimerism (PBC) was first assessed 6 weeks post-transplantation for short-term repopulation and at least 12 weeks post-transplantation for long-term repopulation. Blood samples were processed as described in Sections 2.5.3 and 2.6.1. Only animals with donor chimerism higher than 5% were considered reconstituted.
Multilineage analysis was performed on animals reconstituted for at least 16 weeks post-transplantation. Bone marrow, spleen, and thymus were isolated, processed and depleted of erythrocytes (see Sections 2.5.2 and 2.5.3) and myeloid and lymphoid donor contribution was assessed by flow cytometry (see Section 2.6.1).

2.10. Confocal microscopy

2.10.1. Staining for cell surface markers

2.10.1.1. Embedding and Sectioning

Fresh or cultured organs were snap-frozen in O.C.T compound (BDH Gurr) on dry ice. 10µm thick frozen sections were produced using a LEICA CM1900 cryostat (Leica) and directly put onto polysine-coated slides (VWR International). Sections were air-dried and stored at -20°C. Sections were warmed up at RT and fixed with -20°C cold 100% acetone for 2.5 minutes. Sections were air-dried before further processing.

2.10.1.2. Immunofluorescent staining

Sections were first encircled with a PAP pen and rehydrated with PBS (containing MgCl and CaCl) for 2 minutes. Dissection solution (no P/S) was used to block non-specific antibody binding for 15 minutes at RT. Sections were then washed once with PBS before adding fluorochrome-conjugated antibodies appropriately diluted in PBS (Table 2.2) and incubated in dark at RT for at least 30 minutes. After removal of the staining solution, sections were washed 3 times for 5 minutes with PBS. Cell nuclei were stained with 0.2% 4-6-Diamidino-2-phenylindole (DAPI)(Molecular Probes) in the dark at RT for 10 minutes, followed by quick 3 times washing with PBS and a very quick rinse with distilled H2O before air-drying. Finally sections were mounted using a small drop of VECTORSHIELD hard-set medium (Vector Laboratories) and left to harden overnight at +4°C.
according to the manufacturer’s instructions. Stained sections were studied and pictures were taken using an inverted confocal microscope (Leica DM IRE2). Images were then processed and prepared using Adobe Photoshop.

2.11. Cytological analysis

2.11.1. Cytospin preparation

Single cytospin chambers were loaded with a polysine-coated slide, and a filter card (Thermo), followed by filling with 100µl of the cell suspension. At RT, samples were centrifuged at 1000rpm for 5 minutes (Cytospin 3, Shandon), air-dried and fixed 100% methanol for 2.5 minutes. Methanol was removed and slides were air-dried.

2.11.2. May-Grünwald-Giemsa staining

May-Grünwald and Giemsa were freshly prepared in PBS as a 50% solution and a 10% solution respectively and filtered through number 1 Whatman filter paper (Whatman International Ltd).

Slides fixed in methanol were stained first with May-Grünwald solution for 15 minutes, followed by replacement of primary stain with Giemsa stain for 12 minutes, all in the dark at RT. Finally, slides were rinsed 3 times briefly, washed for 5 minutes with distilled H$_2$O, and were air-dried and stored in the dark at RT until analysis. Pictures were taken using an upright Vanox AHBT3 microscope (Olympus) and Openlab software (Improvision).

2.12. Statistical analysis

Where treatments comprised 3 or more replicates, differences in mean cell numbers, percentages, and CFU-Cs counts between treatments were calculated.
Parametric tests were used where possible to assess statistical significance. Groups were compared using either 2-sample t-tests, or paired t-tests for paired data. In each case, the assumption of similar variances between groups was also tested using an F-test, and the data inspected for normality. If these assumptions were not met, or the number of replicates was low (<4), non-parametric tests were used instead. Unmatched groups were compared using a Mann-Whitney test, while in the case of paired data; the Wilcoxon Signed Rank test was used.

Significance was calculated at the 5% significance level. All statistical analyses were performed using Minitab v15 (www.minitab.com).

In the case of the efficacy of haematopoietic reconstitution in the long-term repopulation assay, statistical significance was calculated using 2 x 2 contingency tables and the Fisher exact test (www.exactoid.com).
3. The reaggregate culture system: characterisation and insights into cytokine-mediated LTR-HSC expansion

3.1. Introduction

Studies have demonstrated that culturing the E10.5-12.5 AGM region and the E12.5 YS as explants at the liquid gas interphase can facilitate LTR-HSC expansion (Kumaravelu et al., 2002; Medvinsky and Dzierzak, 1996). An advantage of the explant culture system is that it maintains the structural integrity and preserves cell interactions that in vivo may be essential for LTR-HSC development. It also enables the investigation of the autonomous potential of the organ, independent of surrounding tissues. However, the need to culture an intact organ also limits the accessibility to specific cell populations, and restricts the manipulation of a potentially powerful LTR-HSC niche.

The reaggregate system (Taoudi et al., 2008), however, enables the identification of specific cell populations that play key roles in LTR-HSC development from the AGM region; including key niche components. The reaggregate culture conditions described in Section 2.7.1 were schematically represented in Figure 3.1A and will be referred as standard conditions. After culture, single cell suspensions are obtained from reaggregates and used for functional assays and flow cytometric analysis (Figure 3.1B). The methylcellulose-based assay is used to determine the number of haematopoietic progenitors (CFU-C) and the competitive repopulation assay to determine the presence of LTR-HSCs.
Figure 3.1: Standardised experimental procedures to generate and analyse reaggregates.

A: Standard procedure for reaggregate set-up. E11.5 AGM regions are dissected and dissociated by collagenase dispase treatment. One embryo equivalent of the cell suspension obtained is centrifuged in a sealed tip. The pellet is placed on a membrane filter at the liquid-gas interface and cultured at 37°C, 5% CO₂ for 4 days in IMDM+.

B: Standard analysis of reaggregates. After culture, reaggregates are collected and dissociated by collagenase dispase treatment with mechanical disruption. The cell suspension obtained is used to perform competitive repopulation assays, colony forming unit culture (CFU-C) assays, and flow cytometric analysis.
3.2. Characterisation of the reaggregate culture system using standard conditions

3.2.1. Basic characterisation of the E11.5 AGM region

Standard cultures were set up to validate the reproducibility of the system (Taoudi, 2006). Flow cytometric analysis in fresh and cultured E11.5 AGM tissue was performed (Figure 3.2A). Pan-leucocyte marker CD45 was chosen to mark haematopoietic cells, and vascular-endothelial cadherin (VE-cadherin) was chosen to mark endothelial cells. The fresh E11.5 AGM contained 222100±64530 total cells of which 73060±3700 were viable (Table 3.1). The majority of the tissue (68120±610 cells) was composed of stromal (non haematopoietic, non endothelial) CD45–VE-cadherin– cells. The E11.5 AGM region contained 63±22 CD45–VE-cadherin+ cells, a population highly enriched for LTR-HSCs (North et al., 2002; Taoudi et al., 2005). Finally, 2600±750 cells were CD45+VE-cadherin– (haematopoietic, CD45 single-positive/CD45SP) and 2420±820 cells were CD45–VE-cadherin+ (endothelial)(Table 3.1 and Figure 3.2A).

3.2.2. Basic characterisation of haematopoietic populations in reaggregates

After 4 days in culture, reaggregates typically adopt a circular morphology (roughly 1mm diameter) with cellular protrusions at the periphery (Figure 3.2B). Also, some red blood cells can sometimes be observed (Figure 3.2B). Flow cytometric analysis showed that a single reaggregate contained 188000±34120 cells of which 124380±18620 cells were viable (Table 3.1). Both the stromal and CD45– VE-cadherin+ (endothelial) compartments were maintained as a single reaggregate contained 110650±14650 cells and 2400±1060 cells respectively (Table 3.1 and Figure 3.2A). The DP population was also maintained as there were 100±75 cells but with high variation among cultures. Finally, the CD45SP population underwent extensive expansion as single reaggregates contained 22070±6080 CD45SP cells,
Figure 3.2: Anatomy of reaggregates and haematopoietic expansion during culture in IMDM.

A: Flow cytometric analysis of both endothelial (VE-cadherin⁺) and haematopoietic (CD45⁺) cell populations in fresh E11.5 AGM compared to reaggregates. Plots are representative of 7 and 8 experiments respectively.

B: Representative image of a reaggregate after 4 days culture. Typically, the gross morphology is circular with a diameter of approximately 1mm and protrusions are observed at the periphery. (scale bar: approximately 0.5 mm)

C: Flow cytometric analysis of erythroid (Ter119) cell population in reaggregates. Quadrants are based on appropriate isotype control (Appendix 3.1) and values indicate the percentage of cells.
Table 3.1: Cell composition of fresh E11.5 AGM region compared to reaggregates cultured in IMDM.

Results obtained by flow cytometry (viability determined by 7-AAD exclusion). Data is representative of 7 independent experiments in fresh tissue and 8 independent experiments in reaggregates.

absolute numbers ± standard deviation; DP: CD45⁺VE-cadherin⁻; DN: CD45⁻VE-cadherin⁻

<table>
<thead>
<tr>
<th></th>
<th>fresh</th>
<th>reaggregate</th>
<th>fold increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>total cells</td>
<td>222100 ± 64530</td>
<td>188000 ± 34120</td>
<td>0.8</td>
</tr>
<tr>
<td>total live cells</td>
<td>73060 ± 3700</td>
<td>124380 ± 18620</td>
<td>1.7</td>
</tr>
<tr>
<td>total CD45⁺ cells</td>
<td>2600 ± 750</td>
<td>22070 ± 6080</td>
<td>8.5</td>
</tr>
<tr>
<td>total VE-cadherin⁺ cells</td>
<td>2420 ± 820</td>
<td>2400 ± 1060</td>
<td>1.0</td>
</tr>
<tr>
<td>total DP cells</td>
<td>63 ± 22</td>
<td>100 ± 75</td>
<td>1.6</td>
</tr>
<tr>
<td>total DN cells</td>
<td>68120 ± 610</td>
<td>110650 ± 14650</td>
<td>1.6</td>
</tr>
</tbody>
</table>
which constitutes an 8.5 fold expansion compared to the fresh tissue (Table 3.1 and Figure 3.2A).

As the haematopoietic compartment underwent considerable expansion, the nature of the CD45$^+$ cells was further investigated. Although red blood cells could be observed under the microscope (Figure 3.2B), the absence of mature erythrocytes was indicated by the absence of CD45$^-$Ter119$^+$ cells (Figure 3.2C; Figure 3.3A). However, the presence of few CD45$^-$CD71$^-$Ter119$^+$ suggested that erythropoiesis was initiated (Figure 3.3A). The CD71 expression in 46.8±3.9% of CD45$^+$ cells also indicated that these haematopoietic cells were still cycling at the end of the culture period (Figure 3.3A).

The expression of LTR-HSC markers such as Sca1, c-kit and CD34 was investigated (Figure 3.3A). 43±0.2% of CD45$^+$ cells co-expressed Sca1 and c-kit, a classic LTR-HSC immunophenotype (Figure 3.3A). Interestingly, only a very small fraction of CD45$^+$ cells expressed CD34 (less than 1%), an embryonic LTR-HSC marker (Figure 3.3A)(Ema and Nakauchi, 2000; Sanchez et al., 1996; Yoder et al., 1997a).

Cytospin preparations were performed to investigate cell morphology and confirm the presence of specific haematopoietic cell types within reaggregates. Massive cell clusters were observed in high numbers but without a haematopoietic appearance (Figure 3.3B). Cells resembling macrophages and erythroid cells could be observed, confirming the flow cytometric observations (Figure 3.2C, Figure 3.3A,B). In addition, given the high frequency of cells with erythroid characteristics (blue cytoplasm and purple nucleus), the majority of these cells could also be blasts cells.

3.2.3. The expansion of haematopoietic progenitors during reaggregate culture

As CD45SP haematopoietic cells underwent massive expansion during culture, the expansion of haematopoietic progenitors was investigated. To this end, CFU-Cs assays were performed in the fresh E11.5 AGM region and following 4 days
Figure 3.3: Characterisation of haematopoietic and non-haematopoietic cell populations in E11.5 AGM reaggregates cultured in IMDM+.

A: Flow cytometric analysis of haematopoietic (CD45+) and non-haematopoietic (CD45−) cell populations. Plots are representative of two independent experiments. Quadrants are based on appropriate isotype control (Appendix 3.1); and values indicate the percentage of cells.

B: Cytospin preparations from whole reaggregates. Asterix indicate cells with macrophage like morphology (white globules inside cytoplasm and purple nuclei). Arrows indicate erythrocyte like cells or blast cells (dark blue cytoplasms and purple nuclei). Other unidentified cell types are also present in high numbers and example of cell cluster in low left panel.
reaggregate culture. Haematopoietic colonies were counted after 9 days in methylcellulose culture. Colony type was assessed according to gross morphology (initially confirmed with cytopsin until comfortable with gross scoring, (Medvinsky et al., 2008; Taoudi, 2006).

The fresh E11.5 AGM region contained 144±42 CFU-Cs made of 42±19 CFU-mast, 26±24 BFU-E, 8±7.5 CFU-GM, 60±22 CFU-mac, and 9±6 CFU-GEMM (Figure 3.4A). After culture in standard conditions, reaggregates contained 4425±1025 CFU-Cs made of 1095±700 CFU-mast, 735±380 BFU-E, 410±230 CFU-GM, 1825±970 CFU-mac, and 360±90 CFU-GEMM (Figure 3.4B). This represents a 31-fold expansion.

3.2.4. The expansion of LTR-HSCs during reaggregate culture

It was previously demonstrated that the fresh E11.5 AGM contains around 1 LTR-HSCs (Gekas et al., 2005; Kumaravelu et al., 2002). Using the explant culture on α-MEM based medium, it is possible to generate 12 LTR-HSCs after 72 hours (Medvinsky and Dzierzak, 1996). To date, a maximum of 34 LTR-HSCs can be obtained per explant AGM region by supplementing the culture medium with IL-3 (Robin et al., 2006).

To investigate the expansion of the LTR-HSC compartment during reaggregate culture, the in vivo long-term repopulation assay was used (Figure 3.5A). Limiting dilution analysis was performed to functionally quantify the absolute number of LTR-HSC by the end of the culture. To this end, 0.1 dose of reaggregate (rd), 0.01rd and 0.005rd were injected into individual adult irradiated recipients and peripheral blood chimerism (PBC) was determined at least 12 weeks after transplantation. I found that 8 out of 8 mice transplanted with 0.1rd were successfully repopulated (78.6% mean PBC); 13 out of 14 mice transplanted with 0.01rd were repopulated (23.7% mean PBC) and 9 out of 10 mice transplanted with 0.005rd were repopulated (12.3% mean PBC)(Figure 3.5B). As 0.005rd was sufficient to repopulate most of the transplanted mice, this suggests the presence of at least 200
Figure 3.4: Haematopoietic progenitors expansion during reaggregate culture in IMDM⁺.

A: Number of CFU-Cs per fresh E11.5 AGM region. Bars indicate standard deviation of three independent experiments.

B: Number of CFU-Cs per reaggregate cultured in standard conditions. Bars indicate standard deviation of ten independent experiments (from controls run throughout Chapter 3 experiments).

BFU-E: burst forming unit-erythroid; CFU: colony forming unit; Mast: mast; Mac: macrophage; GM: granulocyte/macrophage; GEMM: granulocyte/erythroid/macrophage/megakaryocyte; ee: embryo equivalent
Figure 3.5: Assessment of LTR-HSC numbers in E11.5 AGM reaggregates cultured in IMDM.

A: In-vivo competitive long term repopulation assay. Donor cells from Ly5.2 embryos are cultured and transplanted into irradiated Ly5.1 adult recipients. LTR-HSCs are detected by peripheral blood chimerism assessed by flow cytometry using anti Ly5.1 and Ly5.2 antibodies, at least 12 weeks post-transplantation.

B: LTR-HSC limiting dilution analysis in reaggregates. Each point represents a single recipient mouse. Recipients were considered reconstituted when their peripheral blood chimerism exceeded 5% at least 12 weeks after transplantation. Cumulative result from two independent experiments. rd: reaggregate dose
LTR-HSCs in a single reaggregate, even if limiting dilution was not reached. This is consistent with data previously published, revealing that LTR-HSC numbers ranged from 98 to 150 in single reaggregates (Taoudi et al., 2008).

3.2.5. Normal LTR-HSC function: multilineage reconstitution and secondary transplantation

Contribution of donor cells into haematopoietic tissues (peripheral blood, spleen, bone marrow, and thymus) of recipients reconstituted with 0.01rd was checked by flow cytometry. All tissues contained CD45.2 donor cells in high proportions (81.7±5.1% in peripheral blood, 67.6±9.2% in spleen, 77.1±4.6% in bone marrow, and 84.6±1.2% in thymus)(Figure 3.6A). Blood, spleen and bone marrow contained both myeloid cells, marked by Mac1 and Gr1, and lymphoid cells marked by B220, CD3 and CD43 (Figure 3.6B). The majority of donor cells in the thymus were CD4⁺CD8⁺ (65.1±19.1%), an immunophenotype that corresponds to the immature T cell population (Figure 3.6B).

The AGM-derived LTR-HSCs were subject to secondary transplantations. Two reconstituted primary recipients were sacrificed and 1/10 of their whole bone marrow (paired femurs and tibias) was transplanted into each secondary recipients. Secondary recipient PBC was analysed at least 12 weeks post-transplant and multilineage analysis was performed (Figure 3.7). The primary recipients chosen for the experiment had PBC of 82.5% and 30.2% on the day of the secondary transplantation (Figure3.7A). At least 16 weeks post-transplantation, individual secondary recipients displayed 74% and 64.8% and 16.7% PBC (Figure 3.7A). The blood of secondary recipients demonstrated successful serial reconstitution of the lymphoid (CD3/B220) and myeloid (Mac1/Gr1) compartments (Figure 3.7B).
Figure 3.6: Multilineage haematopoietic reconstitution by E11.5 AGM reaggregates cultured in IMDM+

A: Long term donor-derived reconstitution in major haematopoietic organs (peripheral blood, spleen, bone marrow, and thymus).
B: Long-term multilineage (myelo-lymphoid) analysis of donor derived cells in all major haematopoietic organs (peripheral blood, spleen, bone marrow, and thymus). Events gated on donor derived cells.

Representative example of analysis performed on six mice reconstituted by reaggregates. Quadrants are based on appropriate isotype control (Appendix 3.2) and values indicate percentages of cells. Cell viability was determined by 7-AAD uptake.
Figure 3.7: Secondary transplantations and multilineage haematopoietic reconstitution of secondary recipients.

A: Secondary transplantation of bone marrow cells from reconstituted primary recipients. 1/10 of whole bone marrow (paired femurs and tibias) from each of two primary recipients (reconstituted by reaggregates cultured in IMDM+) was transplanted individually into irradiated secondary recipients. Peripheral blood chimerism in secondary recipients was analyzed at least 12 weeks after transplantation; matching symbols represent secondary recipients and their corresponding primary recipients.

B: Long term multilineage (myelo-lymphoid) analysis of donor derived cells in the peripheral blood of secondary recipients. Representative example of analysis of three secondary recipients. Quadrants are based on appropriate isotype control (Appendix 3.2); values indicate percentages of cells. Events gated on donor derived cells.
3.2.6. LTR-HSC phenotype in reaggregates

To determine the immunophenotype of LTR-HSCs generated in reaggregates, FACS was performed and cell populations of interest were transplanted into recipient mice.

Previous experiments demonstrated that all LTR-HSCs are contained in the CD45\(^+\) compartment (Taoudi et al., 2008). The endothelial marker CD31 (also known as PECAM-1), the early haematopoietic marker CD41, the haematopoietic progenitor marker CD48, and the LTR-HSC markers Sca1 and c-kit were used to further characterise the LTR-HSCs population.

Analysis of CD31 expression showed that 1.66% of viable cells were CD45\(^+\)CD31\(^{\text{high}}\), 18.5% were CD45\(^+\)CD31\(^{\text{medium}}\), and 3.54% were CD45\(^+\)PECAM\(^{\text{low}}\) (Figure 3.8A). When, 0.05rd of these three populations were transplanted into recipient mice, only CD45\(^+\)CD31\(^{\text{medium}}\) cells successfully reconstituted mice (3 out of 5, mean PBC: 23%)(Figure 3.8A’), indicating that LTR-HSCs are contained in the CD45\(^+\)CD31\(^{\text{medium}}\) cell population. Previous data looking at the co-expression of the endothelial markers VE-cadherin and CD31 revealed that the endothelial cells reside in the CD31\(^{\text{high}}\) population (Taoudi et al., 2008; Taoudi and Medvinsky, 2007), demonstrating that reaggregate LTR-HSCs differ from the endothelium.

The CD45\(^+\) cell population was then further divided using a LTR-HSC marker c-kit and an early haematopoietic marker CD41: 31.2% of the CD45\(^+\) population was c-kit\(^-\)CD41\(^+\), 1.65% was c-kit\(^+\)CD41\(^+\), 0.35% was c-kit\(^+\)CD41\(^-\), and 60% was c-kit\(^-\)CD41\(^-\) (Figure 3.8B). When 0.05rd of each of these four populations were transplanted into recipient mice, the majority of LTR-HSC activity was found within c-kit\(^-\)CD41\(^+\) and c-kit\(^+\)CD41\(^-\) populations: 1 out of 5 mice was reconstituted at low level with c-kit\(^-\)CD41\(^+\) cells (9.77% PBC), and 5 out of 8 mice were reconstituted with c-kit\(^-\)CD41\(^-\) cells (mean PBC: 35.2%)(Figure 3.8B’), indicating that most HSCs in reaggregates are c-kit\(^+\)CD41\(^-\). FACS purity analysis of c-kit\(^+\)CD41\(^-\) population (84.6% purity with little contamination from c-kit\(^-\)CD41\(^-\) cells) indicated that cell contamination was unlikely, thus a few LTR-HSCs might express CD41.
Figure 3.8: LTR-HSC phenotyping in E11.5 AGM reaggregates cultured in IMDM⁺.

A, A’: LTR-HSC phenotyping using CD31 marker. A: isotype control (left) and representative staining pattern of reaggregates (right). A’: peripheral blood chimerism of recipients transplanted with CD45⁺ cells sorted on the basis of different CD31 expression levels. Result from 1 experiment.

B, B’: LTR-HSC phenotyping using c-kit and CD41 markers. B: isotype control (left) and representative staining pattern of reaggregates CD45⁺ population (right). B’: peripheral blood chimerism of recipients transplanted with CD45⁺ cells sorted on the basis of different c-kit and CD41 expression. Cumulative result of 2 experiments.

C, C’: LTR-HSC phenotyping using c-kit and sca1 markers. C: isotype control (left) and representative staining pattern of reaggregates CD45⁺ population (right). C’: peripheral blood chimerism of recipients transplanted with CD45⁺ cells sorted on the basis of different c-kit and sca1 expression. Cumulative result of 2 experiments.

D, D’: LTR-HSC phenotyping using CD48 marker. D: isotype control (left) and representative staining pattern of reaggregates (right). D’: peripheral blood chimerism of recipients transplanted with CD45⁺ cells sorted on the basis of different CD48 expression levels. Result from 1 experiment.

All gates were based on displayed isotype control and values indicate percentages of cells. Recipients were considered reconstituted when their peripheral blood chimerism exceeded 5% at least 12 weeks post-transplantation. Dots represent individual recipient mice. rd: reaggregate dose; r: recipient; med.: medium
The CD45\(^+\) cell population was also divided using classical LTR-HSC markers Sca1 and c-kit: 20.6% of the CD45\(^+\) population were c-kit\(^-\)Sca1\(^-\), 11.5% were Sca1\(^+\) and 61.3% were either c-kit\(^-\)Sca1\(^-\) or autofluorescent (Figure 3.8C). When 0.05rd were transplanted per recipient, Sca1\(^+\) cells achieved reconstitution in 5 out of 19 mice, whilst Sca1\(^-\) cells only in 1 out of 8 mice, indicating that the vast majority of LTR-HSCs in reaggregates express Sca1 (Figure 3.8C\('\)). The reconstitution of a mouse by c-kit\(^-\)Sca1\(^-\) cells could hardly be explained by FACS contamination (95.4% pure); however, the overlap of positive cells with autofluorescent ones (included in the c-kit\(^-\)Sca1\(^-\) gate in this case) cannot be excluded. Nevertheless, on the basis of previous experiments (Figure 3.8B\('\)) and additional data from S. Taoudi, the majority if not all HSCs are c-kit\(^-\)Sca1\(^+\).

Finally, LTR-HSCs were tested for CD48 expression, a marker of both adult and fetal liver haematopoietic progenitors (Kiel et al., 2005; Kim et al., 2006). The CD45\(^+\) population was subdivided into CD48\(^+\) (17.6%) and CD48\(^-\) (3.66%) fractions (Figure 3.8D). All recipient mice transplanted with 0.05rd of CD48\(^-\) cells were reconstituted at high level (mean PBC: 76.6%) (Figure 3.8D\('\)). When transplanted with 0.05rd and 0.01rd of CD48\(^+\) cells, 5 out of 5 mice (mean PBC: 43.8%) and 1 out of 4 mice (18% PBC) were reconstituted respectively (Figure 3.8D\('\)), indicating that reaggregate LTR-HSCs are heterogenous for CD48 expression.

Taken together, these experiments demonstrate that the majority of LTR-HSCs produced in reaggregates are CD45\(^-\)CD31\(^{medium}\)c-kit\(^-\)Sca1\(^+\). Interestingly; LTR-HSCs were heterogenous for the cell surface markers CD41 and CD48.

3.2.7. Conclusions

The reaggregate culture system described above is a robust and reproducible model system that allows the dissociation of the E11.5 AGM prior to culture whilst maintaining its ability to produce LTR-HSCs. During culture, haematopoiesis is largely stimulated as 8.5-fold expansion of haematopoietic (CD45\(^+\)) cells is observed. Functional analysis also demonstrated an extensive expansion of haematopoietic progenitors and LTR-HSCs: around 146 LTR-HSCs are obtained.
Figure 3.12: Multilineage haematopoietic reconstitution and secondary transplantsations of LTR-HSCs generated in growth factors free conditions

A: Long-term donor derived reconstitution in major haematopoietic organs of primary recipient (peripheral blood, spleen, bone marrow, and thymus).

B: Long-term multilineage (myelo-lymphoid) analysis of donor-derived cells in major haematopoietic organs of primary recipient (peripheral blood, spleen, bone marrow, and thymus).

Representative example of analysis from two mice reconstituted with reaggregates cultured in growth factors free conditions. Quadrants are based on appropriate isotype control (Appendix 3.2); values indicate percentages of cells.

C: Secondary transplantation of bone marrow cells from a reconstituted primary recipient. 1/10 of whole bone marrow (2 femurs and 2 tibias) from the primary recipient was transplanted into each secondary recipient; peripheral blood chimerism was analysed at least 12 weeks post-transplantation.
from E11.5 AGM region while it originally contains one (Kumaravelu et al., 2002; Taoudi et al., 2008).

3.3. Refinement of culture conditions for E11.5 AGM reaggregates

3.3.1. The role of FCS in IMDM\(^+\) for LTR-HSC expansion

As FCS contains some unknown and variable components between batches, an FCS-free culture medium would provide a system less susceptible to biological variations and allow more defined studies on molecular pathways involved in LTR-HSC development. IMDM\(^+\) medium contains defined growth factors (IL-3, SCF, Flt3l), suggesting that FCS could be dispensable for LTR-HSC expansion. In order to investigate this hypothesis, reaggregates were set up and cultured in IMDM\(^+\) and IMDM\(^+\) without FCS (IMDM\(^+\) - FCS).

3.3.1.1. Serum free conditions: haematopoietic progenitor expansion

The difference in expansion of haematopoietic progenitors was investigated in 2 experiments presented individually. In the presence of FCS (IMDM\(^+\)), there was a total of 5300 and 6450 CFU-Cs (2000 and 1850 CFU-mast, 700 and 1800 BFU-E, 100 and 800 CFU-GM, 2050 and 1500 CFU-mac, and 450 and 500 CFU-GEMM respectively)(Figure 3.9A). In the absence of FCS, there was a total of 2800 and 1900 CFU-Cs (950 and 800 CFU-mast, 650 and 200 BFU-E, 50 and 50 CFU-GM, 850 and 600 CFU-mac, 300 and 250 CFU-GEMM respectively)(Figure 3.9A). In both experiments, the presence of FCS significantly stimulated the expansion of CFU-Cs.

3.3.1.2. Serum free conditions: LTR-HSC expansion

The requirement of FCS for LTR-HSC expansion was then investigated by transplanting 0.01rd into single recipients. PBC was determined at least 12 weeks
Figure 3.9: Haematopoietic progenitors and LTR-HSC expansion in reaggregates cultured in serum free conditions

A: Numbers of CFU-Cs per reaggregate cultured in the presence (IMDM+) or absence (IMDM+ - FCS) of fetal calf serum (FCS). Cumulative result of two independent experiments (* correspond to the values from experiment 1, others to values from experiment 2).

BFU-E: burst forming unit-erythroid; CFU: colony forming unit; Mac: macrophage; GM: granulocyte/macrophage; GEMM: granulocyte/erythroid/macrophage/megakaryocyte

B: Peripheral blood chimerism of recipients transplanted with 0.01rd of reaggregates cultured in the presence (IMDM+) or absence (IMDM+ - FCS) of FCS. Each dot represents a single recipient mouse. Recipients were considered reconstituted when their peripheral blood chimerism exceeded 5% at least 12 weeks after transplantation. Cumulative result of two independent experiments.
post transplantation by flow cytometric analysis. With IMDM+, 7 out of 7 recipients were reconstituted at high level (mean PBC: 67.2\%) (Figure 3.9B). In IMDM− -FCS, only 2 out of 8 recipients were reconstituted (mean PBC: 40.6\%) (Figure 3.9B). Only 2 out of 8 recipients were reconstituted in serum free condition, compared to 7 out of 7 with medium containing FCS, indicating fewer LTR-HSCs in the absence of FCS. This difference was statistically significant (Fisher’s exact test; p=0.02). However, the reconstitution of 2 out of 8 mice in serum free cultures suggested the presence of at least 25 LTR-HSCs. This still represents a significant LTR-HSC expansion compared to the fresh E11.5 AGM region (Gekas et al., 2005; Kumaravelu et al., 2002).

3.3.1.3. Serum free conditions: long-term multilineage contribution and secondary transplantations.

To confirm the normal function of LTR-HSCs generated in serum free conditions, long-term multilineage analysis of haematopoietic organs and secondary transplantations were performed. High donor cell reconstitution was observed in peripheral blood, spleen, and thymus (Figure 3.10A). The donor cells in peripheral blood and spleen were of both myeloid (Mac1+ and Gr1+) and lymphoid lineages (CD3+ and B220+) (Figure 3.10B). In addition, the majority of donor cells in the thymus were immature (CD4−CD8−) T cells (Figure 3.10B). The low reconstitution level in bone marrow (3.65\%) was multilineage as both myeloid (Mac1+ and Gr1+) and lymphoid lineages (CD3+ and B220+) were present (Figure 3.10A, B). However, such low reconstitution was not observed in the other recipient analysed (62.8\% PBC, both myeloid and lymphoid).

As 2 of the recipients transplanted with “serum free reaggregates” were highly reconstituted, secondary transplantations were performed. One primary recipient was sacrificed and 1/10 of its bone marrow (paired femurs and tibias) was transplanted into each secondary recipient. Secondary recipients PBC was analysed at least 12 weeks post-transplantation (Figure 3.10C). While the PBC of the primary recipient was 35.5\%, none of the secondary recipient was reconstituted with donor
bone marrow cells (Figure 3.10C). This is either due to the low reconstitution level of bone marrow in the primary recipient (4.03%) or a genuine defect in LTR-HSCs; additional secondary transplantations would be required to discriminate between these two options.

3.3.2. The need for growth factors for LTR-HSC expansion

It was demonstrated that maximal LTR-HSC expansion requires FCS in IMDM⁺. Based on this result, the requirement of the growth factors cocktail for LTR-HSC expansion was also investigated. E11.5 AGM reaggregates were cultured in IMDM⁺ or IMDM⁻ (containing FCS but no growth factors) to address this question.

3.3.2.1. Growth factor free conditions: haematopoietic progenitor expansion

The difference in CFU-C expansion between cultures in IMDM⁺ and IMDM⁻ was first quantified in 2 experiments presented individually. In IMDM⁺, reaggregates contained a total of 6450 and 5300 CFU-Cs as previously described in section 3.3.2.1 (Figure 3.9A and Figure 3.11A). When cultured in IMDM⁻, reaggregates contained a total of 150 and 200 CFU-Cs, consisting of 0 and 150 BFU-E, 50 and 0 CFU-mac, and 150 and 0 CFU-GEMM (Figure 3.11A). It was concluded that growth factors in the medium are strongly required for optimal CFU-C expansion in reaggregates. Interestingly, it appeared that the original numbers of CFU-Cs in the fresh E11.5 AGM region tissue (144±42 CFU-Cs, Figure 3.4) were in a similar range as reaggregates cultured in IMDM⁻, suggesting that FCS might be enough for maintenance/survival of CFU-Cs numbers.
Figure 3.11: Haematopoietic progenitor and LTR-HSC content in reaggregates cultured in growth factor free conditions

A: Numbers of CFU-Cs per reaggregate cultured in the presence (IMDM⁺) or absence of growth factors (IMDM⁻). Cumulative result of 2 independent experiments (* correspond to the values from experiment 1, others to values from experiment 2).

BFU-E: burst forming unit-erythroid; CFU: colony forming unit; Mac: macrophage; GM: granulocyte/macrophage; GEMM: granulocyte/erythroid/macrophage/megakaryocyte

B: Peripheral blood chimerism of recipients transplanted with 0.01rd of reaggregates cultured in the presence (IMDM⁺) or absence of growth factors (IMDM⁻).

Each point represents a single recipient mouse. Recipients were considered reconstituted when their peripheral blood chimerism exceeded 5% at least 12 weeks after transplantation. Cumulative result of 2 independent experiments.
3.3.2.2. Growth factor free conditions: LTR-HSC expansion

The expansion in LTR-HSCs was investigated by transplanting 0.01rd into each recipient mouse. In IMDM⁺, 7 out of 7 mice (100%) were reconstituted at high level (mean PBC: 67.2%)(Figure 3.11B). In IMDM⁻, only 3 out of 9 mice (33%) were reconstituted (mean PBC: 37.7%)(Figure 3.11B). Thus, “IMDM⁻ reaggregates” contained significantly fewer LTR-HSCs than “IMDM⁺ reaggregates” (Fisher’s exact test, p=0.01).

3.3.2.3. Growth factor free conditions: long-term multilineage analysis and secondary transplantations.

The function of LTR-HSCs was then investigated by multilineage analysis of haematopoietic organs and secondary transplantations. Peripheral blood, spleen, and bone marrow were reconstituted with donor cells of myeloid (Mac1⁺ and Gr1⁺) and lymphoid (CD3⁺ and B220⁻) lineages (Figure 3.12A, B). Interestingly, the thymus was not highly reconstituted and the proportion of T cells (CD4⁺ and CD8⁻) derived from donor cells was very low (Figure 3.12A, B). This could hardly be explained by technical difficulty in isolating thymic tissue in aged mice (due to thymic involution) as flow cytometric analysis of the whole tissue showed it contained 71% of CD4⁺CD8⁺ cells, as expected. Instead, this observation made in both recipients analysed suggests that at least one growth factor in the culture is necessary for the generation of fully functional LTR-HSCs capable of T-cell maturation.

To assess the self-renewal potential of LTR-HSCs generated in IMDM⁻, secondary transplantations were performed. The primary recipient, which had 77.2% PBC, was sacrificed and 1/10 of its bone marrow (paired femurs and tibias) was transplanted into each secondary recipient. None of the secondary recipients were reconstituted with donor cells, which was intriguing because the primary recipient blood was highly reconstituted (Figure 3.12C). However, the bone marrow reconstitution level of the primary recipient, testing additional primary recipients, and clonal analysis, would be required to draw any conclusion about a possible defect.
Figure 3.10: Multilineage haematopoietic reconstitution and secondary transplantsations of LTR-HSCs generated in serum free conditions

A: Long-term donor derived reconstitution in major haematopoietic organs of primary recipient (peripheral blood, spleen, bone marrow, and thymus).

B: Long-term multilineage (myelo-lymphoid) analysis of donor derived cells in major haematopoietic organs of primary recipient (peripheral blood, spleen, bone marrow, and thymus).

Representative example of analysis from two mice reconstituted with reaggregates cultured in serum free conditions. Quadrants are based on appropriate isotype control (Appendix 3.2); values indicate percentages of cells.

C: Secondary transplantation of bone marrow cells from a reconstituted primary recipient. 1/10 of whole bone marrow (paired femurs and tibias) from the primary recipient was transplanted into each secondary recipient; peripheral blood chimerism was analysed at least 12 weeks post-transplantation.
3.4. Requirement of individual growth factors for optimal haematopoietic development in E11.5 AGM reaggregates

3.4.1. The impact of growth factor deprivation on E11.5 AGM reaggregates haematopoiesis

Previous studies have demonstrated that all three growth factors used in IMDM\(^+\) (IL-3, SCF, and Flt3l) are involved in haematopoiesis (see Section 1.6.2). In order to investigate whether any one of these factors plays a predominant role in the extensive LTR-HSC expansion observed in E11.5 AGM reaggregates, single growth factors were omitted from the culture medium.

3.4.1.1. Descriptive analysis: morphology and haematopoietic cells

After 4 days of culture, images of reaggregates showed no obvious morphological differences among different conditions (either size or morphology)(Figure 3.13A).

In addition, cells were counted and flow cytometry was performed with anti-CD45 antibody to mark haematopoietic cells in two experiments presented individually. In IMDM\(^+\), there were a total of 140000 and 140300 cells, of which 19200 and 15200 were CD45\(^+\) respectively (Figure 3.13B). Without IL-3, there were 120000 and 116300 cells in total, of which 5700 and 4200 were CD45\(^+\) (Figure 3.13B). Without SCF, there were 200000 and 121200 cells in total, of which 23200 and 10850 were CD45\(^+\) (Figure 3.13B). Without Flt3l, there were 180000 and 89600 cells in total, of which 16600 and 9500 were CD45\(^+\) (Figure 3.13B). Interestingly, only the removal of IL-3 resulted in consistently lower numbers of CD45\(^+\) cells compared to IMDM\(^+\) controls but did not compromise the maintenance of the original CD45\(^+\) compartment (Figure 3.13B; Table 3.1).
Figure 3.13: Effect of growth factor deprivation on reaggregates morphology and haematopoiesis

A: Representative images of reaggregates cultured in media deprived of single growth factors. All reaggregates had similar morphology (round with peripheral protrusions) with a rough diameter of 1mm.

B: Haematopoietic cell numbers (CD45+) per reaggregate cultured in media deprived of single growth factors. (*) correspond to the values from experiment 1, others to values from experiment 2). Values obtained by flow cytometric analysis (cell viability determined by 7-AAD uptake).
3.4.1.2. Functional analysis: haematopoietic progenitors

After 4 days culture, CFU-Cs assays were set up to investigate the impact of single growth factor deprivation on the expansion of haematopoietic progenitors. In IMDM\(^+\), there was a total of 4080±1333 CFU-Cs (1275±518 CFU-mast, 875±492 BFU-E, 400±318 CFU-GM, 1165±199 CFU-mac, 366±75 CFU-GEMM) (Figure 3.14A). In the absence of IL-3, there was a total of 470±60 CFU-Cs (186±29 CFU-mast, 50±86 BFU-E, no CFU-GM, 233±58 CFU-mac, and no CFU-GEMM) (Figure 3.14A). In the absence of SCF, there was a total of 3030±630 CFU-Cs (967±153 CFU-mast, 630±208 BFU-E, 400±0 CFU-GM, 800±264 CFU-mac, and 233±58 CFU-GEMM) (Figure 3.14A). In the absence of Flt3l, there was a total of 2920±320 CFU-Cs (1050±50 CFU-mast, 386±202 BFU-E, 283±144 CFU-GM, 750±450 CFU-mac, and 450±304 CFU-GEMM) (Figure 3.14A). Compared to IMDM\(^+\) control, only the lack of IL-3 resulted in a significantly reduced CFU-C expansion (Paired T-test; \(p=0.001\)) (SCF deprived: \(p=0.23\); Flt3l deprived: \(p=0.12\)).

3.4.1.3. Functional analysis: LTR-HSC expansion

Repopulation assays were performed to investigate the impact of single growth factor deprivation on LTR-HSC expansion. In each experiment, 0.01rd was transplanted into individual recipient mice and PBC was determined at least 12 weeks post-transplantation. In standard conditions (IMDM\(^+\)), 11 out of 11 mice (100\%) were reconstituted at high level (mean PBC: 70.2\%) (Figure 3.14B). In the absence of IL-3, only 8 out of 12 mice (66\%) were successfully reconstituted (mean PBC: 59.5\%) (Figure 3.14B). In the absence of SCF, 9 out of 11 recipient mice (82\%) were reconstituted (mean PBC: 48.5\%) (Figure 3.14B). In the absence of Flt3l, 5 out of 7 mice (71\%) were successfully reconstituted (mean PBC: 69.7\%) (Figure 3.14B). The presence of non-reconstituted mice upon removal of any single growth factor indicates fewer LTR-HSCs than in IMDM\(^+\) control, suggesting that all three factors are required for maximal LTR-HSC expansion. Nevertheless, the large proportion of reconstituted animals in each condition indicates a significant LTR-HSC expansion, suggesting that the concerted action of at least 2 growth factors is sufficient for LTR-
Figure 3.14: Haematopoietic progenitors and LTR-HSCs expansion in reaggregates cultured in media deprived of single growth factors.

A: Number of CFU-Cs contained per reaggregate cultured in media deprived of a single growth factor. Bars indicate standard deviation from 3 independent experiments.

BFU-E: burst forming unit-erythroid; CFU: colony forming unit; Mac: macrophage; GM: granulocyte/macrophage; GEMM: granulocyte/erythroid/macrophage/ megakaryocyte

B: Peripheral blood chimerism of recipients transplanted with 0.01 dose of reaggregates cultured in media deprived of a single growth factor.

Each point represents a single recipient mouse. Recipients were considered reconstituted when their peripheral blood chimerism exceeded 5% at least 12 weeks after transplantation.

Cumulative result of 3 independent experiments.
HSC expansion. Whilst only the removal of IL-3 generated significantly fewer reconstituted mice (Fisher’s exact test, p=0.03) compared to IMDM control (SCF deprived: p=0.4; Flt3l deprived: p=0.13), the removal of other growth factors resulted in similar percentages of reconstituted mice. In order to appropriately quantify the absolute number of LTR-HSCs in each condition, limiting dilution experiments would be required and increasing the numbers of recipients would strengthen the statistical analysis.

3.4.1.4. Normal function of LTR-HSCs: multilineage analysis and secondary transplantations

To confirm that LTR-HSCs generated in each condition were fully functional, multilineage analysis and secondary transplantations were performed. Previous data showed that LTR-HSCs generated in IMDM+ are fully functional (Figures 3.6 and 3.7). In other conditions, the contribution of donor cells to myeloid and lymphoid lineages in haematopoietic tissues (blood, spleen, bone marrow and thymus) was assessed by flow cytometry at least 12 weeks post-transplant except for “no SCF” condition due to the lack of available animal. In the absence of IL-3 and Flt3l, peripheral blood, spleen, bone marrow and thymus were reconstituted with donor cells (Figure 3.15A, B). Donor derived lymphoid cells (CD3+, CD43+ and B220+) were observed in blood, spleen and bone marrow in both conditions (Figure 3.15A’, B’). Myeloid cells (Mac1+ and Gr1+) were also observed in these tissues in both conditions (Figure 3.15A’, B’). Donor derived cells in the thymus contributed to T cells populations (CD4+ and CD8+) (Figure 3.15A’, B’). Low numbers of Mac+ cells in the spleen of mice transplanted with cells cultured without IL-3 or without Flt3l was not observed in other analysed recipients, so LTR-HSCs generated without IL-3 or without Flt3l may provide multilineage contribution to recipient haematopoietic tissues.

Secondary transplantations were performed in each condition to identify any potential LTR-HSC defect. One primary recipient from each condition was sacrificed and 1/10 of its whole bone marrow (paired femurs and tibias) was transplanted into
Figure 3.15: Multilineage haematopoietic reconstitution by LTR-HSCs generated in media deprived of single growth factors.

A, A’: Long-term multilineage analysis of recipient mice reconstituted with reaggregatess cultured in the absence of IL-3. A: Donor derived reconstitution in major haematopoietic organs (peripheral blood, spleen, bone marrow, and thymus). A’: Multilineage (myelolymphoid) contribution in major haematopoietic organs (peripheral blood, spleen, bone marrow, and thymus) of recipients. Events gated on donor derived cells.

B, B’: Long-term multilineage analysis of recipient mice reconstituted with reaggregatess cultured in the absence of Flt3l. B: Donor derived reconstitution in major haematopoietic organs (peripheral blood, spleen, bone marrow, and thymus). B’: Multilineage (myelolymphoid) contribution in major haematopoietic organs (peripheral blood, spleen, bone marrow, and thymus) of recipients. Events gated on donor derived cells.

Representative example of analysis from two mice reconstituted with reaggregates cultured in single growth factor deprived conditions. Quadrants are based on appropriate isotype control (Appendix 3.2); values indicate percentages of cells. Analysis of primary recipients peripheral blood was performed at least 12 weeks after transplantation.
Figure 3.16: Secondary transplantations of LTR-HSCs generated in media deprived of single growth factors

A, A’: Secondary transplantation and multilineage reconstitution in peripheral blood of secondary recipients transplanted with bone marrow originally reconstituted with reaggregates cultured in the absence of IL-3. A: Secondary transplantation of bone marrow cells from reconstituted primary recipient. A’: Long-term multilineage (myelolymphoid) contribution in secondary recipients peripheral blood.

B, B’: Secondary transplantation and multilineage reconstitution in peripheral blood of secondary recipients transplanted with bone marrow originally reconstituted with reaggregates cultured in the absence of SCF. B: Secondary transplantation of bone marrow cells from reconstituted primary recipient. B’: Long-term multilineage (myelolymphoid) contribution in secondary recipients peripheral blood.

C, C’: Secondary transplantation and multilineage reconstitution in peripheral blood of secondary recipients transplanted with bone marrow originally reconstituted with reaggregates cultured in the absence of Flt3l. C: Secondary transplantation of bone marrow cells from reconstituted primary recipient. C’: Long-term multilineage (myelolymphoid) contribution in secondary recipients peripheral blood.

A, B, C: 1/10 of whole bone marrow (2 femurs and 2 tibias) from a primary recipient was transplanted into each secondary recipient; peripheral blood chimerism was analysed at least 12 weeks post-transplantation.

A’, B’, C’: Representative example of analysis from two reconstituted secondary recipients. Quadrants are based on appropriate isotype control (Appendix 3.2); values indicate percentages of cells. Events gated on donor derived cells.
each secondary recipients and PBC was determined at least 12 weeks post transplant. Without IL-3, the primary recipient had a PBC of 84.7% and 4 out of 4 secondary recipients were reconstituted at high level (mean PBC: 86%)(Figure 3.16A). Both myeloid (Mac1⁺ and Gr1⁺) and lymphoid (CD3⁺ and B220⁺) compartments were repopulated (Figure 3.16A’). Without SCF, the primary recipient had 82.3% PBC and 3 out of 3 secondary recipients were reconstituted at a lower level compared to the primary recipient (mean PBC: 54.5%)(Figure 3.16B). Both myeloid (Mac1⁺ and Gr1⁺) and lymphoid (CD3⁺ and B220⁺) lineages in the blood were repopulated (Figure 3.16B’). Without Flt3l, the primary recipient used had a PBC of 87% and 4 out of 4 secondary recipients were reconstituted at high level (mean PBC: 88.9%)(Figure 3.16C). Both myeloid (Mac1⁺ and Gr1⁺) and lymphoid (CD3⁺ and B220⁺) lineages in the blood were reconstituted (Figure 3.16C’).

3.4.1.5. Conclusions

All growth factors (IL-3, SCF and Flt3l) are required to achieve maximal LTR-HSC expansion in reaggregate culture. However, the LTR-HSCs generated in the absence of single growth factors were capable of multilineage reconstitution in various haematopoietic organs and successfully reconstituted secondary recipients.

3.4.2. Influence of individual growth factor on haematopoiesis in E11.5 AGM reaggregates

In order to understand the roles of individual growth factors in the expansion of haematopoietic cells (CD45⁺), progenitors (CFU-Cs) and LTR-HSCs, reaggregates were cultured with individual cytokines and analysed after 4 days reaggregate culture.
3.4.2.1. Descriptive analysis: morphology and cell numbers

Gross morphological study of reaggregates from each condition revealed no obvious differences as reaggregates were of similar size and had cell protrusions at their periphery (Figure 3.17A). In standard conditions (IMDM$^+$), one reaggregate contained 198800 ± 33170 cells, of which 16840 ± 4920 were CD45$^+$ (Figure 3.17B). When cultured in IL-3 only, one reaggregate contained 191820 ± 36010 cells of which 8000 ± 2790 were CD45$^+$ (Figure 3.17B). When cultured in SCF only, one reaggregate contained 154000 ± 32240 cells of which 2040 ± 760 cells CD45$^+$ (Figure 3.17B). When cultured in Flt3l only, one reaggregate contained 199210 ± 35230 cells of which 2340 ± 500 were CD45$^+$ (Figure 3.17B).

Every condition generated a significantly lower number of CD45$^+$ cells compared to IMDM$^+$ control (Paired T-test; IL-3: $p=0.008$; SCF: $p=0.002$; Flt3l: 0.002), indicating that optimal haematopoietic cell expansion occurs from a synergetic response of at least two growth factors.

3.4.2.2. Functional analysis: expansion of haematopoietic progenitors

After 4 days, progenitor content per reaggregate was assessed by CFU-C assay. In IMDM$^+$, there were 4620 ± 990 CFU-Cs (1620 ± 333 CFU-mast, 550 ± 50 BFU-E, 600 ± 50 CFU-GM, 1517 ± 562 CFU-mac, and 333 ± 104 CFU-GEMM)(Figure 3.18A). In the presence of IL-3, there were 2730 ± 310 CFU-Cs (1030 ± 176 CFU-mast, 383 ± 161 BFU-E, 333 ± 58 CFU-GM, 833 ± 29 CFU-mac, 150 ± 132 CFU-GEMM)(Figure 3.18A). In the presence of SCF, there were a total of 670 ± 300 CFU-Cs (333 ± 208 CFU-mast, 100 ± 87 BFU-E, 33 ± 58 CFU-GM, 133 ± 76 CFU-mac, 70 ± 115 CFU-GEMM)(Figure 3.18A). In the presence of Flt3l, there were a total of 280 ± 30 CFU-Cs (130 ± 58 CFU-mast, 33 ± 29 BFU-E and 117 ± 29 CFU-mac)(Figure 3.18A). Statistical analysis demonstrated that significantly fewer CFU-Cs were generated in all conditions (Paired T-test, IL-3: $p=0.03$; SCF: $p=0.002$; Flt3l: $p=0.01$), once again indicating that optimal CFU-C expansion occurs through combined effects of at least 2 growth factors.
Figure 3.17: Influence of single growth factors on reaggregate morphology and haematopoiesis.

A: Morphology of reaggregates cultured in single growth factor media. All reaggregates had similar morphology (round with cell protrusions) with a diameter of approximately 1mm.

B: Haematopoietic cell numbers (CD45+) contained per reaggregate cultured in single growth factor media. Bars indicate the standard deviation of 5 independent experiments.
Figure 3.18: Haematopoietic progenitors and LTR-HSC expansion in reaggregates cultured in single growth factor media.

A: Numbers of CFU-Cs per reaggregate cultured in media containing a single growth factor. Bars indicate standard deviation of 3 independent experiments. BFU-E: burst forming unit-erythroid; CFU: colony forming unit; Mac: macrophage; GM: granulocyte/macrophage; GEMM: granulocyte/erythroid/macrophage/megakaryocyte

B: Peripheral blood chimerism of recipients transplanted with 0.01dose of reaggregates cultured in media containing a single growth factor. Each point represents a single recipient mouse. Recipients were considered reconstituted when their peripheral blood chimerism exceeded 5% at least 12 weeks after transplantation. Cumulative result of 3 independent experiments.
3.4.2.3. Functional analysis: expansion of LTR-HSCs

Repopulation assays were performed to assess LTR-HSC expansion in each condition. In control experiments (IMDM⁻), 12 out of 17 mice (71%) injected with 0.01 rd each were reconstituted (mean PBC: 40.9%)(Figure 3.18B). This level of repopulation was lower than expected, most probably due to biological variations. In the presence of IL-3, 8 out of 22 mice (36%) were successfully reconstituted (mean PBC: 37.5%)(Figure 3.18B). This result approximates findings previously reported (Robin et al., 2006). In the presence of SCF, 6 out of 20 mice (30%) were reconstituted (mean PBC: 33.9%) and in Flt3l, 2 out of 20 mice (10%) were reconstituted (mean PBC: 27.8%)(Figure 3.18B). Compared to IMDM⁻ control, all conditions contained significantly lower proportion of reconstituted recipients (Fisher’s exact test; IL-3: p=0.05; SCF: p=0.02; Flt3l: p=0.0004). Thus, the presence of a single growth factor cannot on its own account for the extensive LTR-HSC expansion observed in reaggregates, but rather results from a combined effect of at least two growth factors.

3.4.2.4. Normal function of LTR-HSCs: multilineage analysis and secondary transplantations

The function of LTR-HSCs from each condition was assessed by multilineage analysis and secondary transplantations. Multilineage analysis of peripheral blood, spleen, bone marrow and thymus was performed by flow cytometry on reconstituted recipients at least 12 weeks post-transplant. In all conditions, donor derived cells of myeloid (Mac1⁺ and Gr1⁺) and lymphoid (CD3⁺, B220⁺, CD4⁺ and CD8⁺) lineages were detected in all tissues (Figure 3.19A’, B’, and C’).

For secondary transplantations, primary recipients were sacrificed and 1/10 of their whole bone marrow (paired femurs and tibias) was transplanted into secondary recipients. In the presence of IL-3, the primary recipient (75% PBC) bone marrow cells successfully reconstituted 4 out of 4 secondary recipients (mean PBC: 37.2%)(Figure 3.20A). In the presence of SCF only, the primary recipient (85.8% PBC) bone marrow cells successfully reconstituted 3 out of 3 secondary recipients.
Representative example of analysis from two mice reconstituted with marrow, and thymus) of recipients.

C: Cultured in

B: Cultured in

A: Cultured in

C': Cultured in

B': Cultured in

A': Cultured in

Figure 3.19: Multilineage haematopoietic reconstitution by reaggregates cultured in the presence of single growth factors.

A, A': Long-term multilineage analysis of recipient mice reconstituted with reaggregates cultured in the presence of IL-3. A: Donor derived reconstitution major haematopoietic organs (peripheral blood, spleen, bone marrow, and thymus). A': Multilineage (myeloid) contribution in major haematopoietic organs (peripheral blood, spleen, bone marrow, and thymus) of recipients. Events gated on donor derived cells.

B, B': Long-term multilineage analysis of recipient mice reconstituted with reaggregates cultured in the presence of SCF. B: Donor derived reconstitution major haematopoietic organs (peripheral blood, spleen, bone marrow, and thymus). B': Multilineage (myeloid) contribution in major haematopoietic organs (peripheral blood, spleen, bone marrow, and thymus) of recipients. Events gated on donor derived cells.

C, C': Long-term multilineage analysis of recipient mice reconstituted with reaggregates cultured in the presence of Flt3l. C: Donor derived reconstitution major haematopoietic organs (peripheral blood, spleen, bone marrow, and thymus). C': Multilineage (myeloid) contribution in major haematopoietic organs (peripheral blood, spleen, bone marrow, and thymus) of recipients. Events gated on donor derived cells.

Representative example of analysis from two mice reconstituted with reaggregates cultured in single growth factor conditions. Quadrants are based on appropriate isotype control (Appendix 3.2); values indicate percentages of cells.
A

% peripheral blood chimerism

primary recipients secondary recipients

A'

B

% peripheral blood chimerism

primary recipients secondary recipients

B'

C

% peripheral blood chimerism

primary recipients secondary recipients

C'
Figure 3.20: Secondary transplantations of LTR-HSCs generated in the presence of single growth factor.

B, B': Secondary transplantation and multilineage reconstitution of secondary recipients transplanted with bone marrow originally reconstituted with reaggregates cultured in the presence of SCF. B: Secondary transplantation of bone marrow cells obtained from reconstituted primary recipient. B': Long-term multilineage (myelo-lymphoid) contribution in secondary recipients peripheral blood.

C, C': Secondary transplantation and multilineage reconstitution of secondary recipients transplanted with bone marrow originally reconstituted with reaggregates cultured in the presence of Flt3l. C: Secondary transplantation of bone marrow cells obtained from reconstituted primary recipient. C': Long-term multilineage (myelo-lymphoid) contribution in secondary recipients peripheral blood.

A, B, C: 1/10 of whole bone marrow (paired femurs and tibias) from the primary recipient was transplanted into each secondary recipient; peripheral blood chimerism was analysed at least 12 weeks post-transplantation.

A', B', C': Representative example of analysis from two mice reconstituted with reaggregates cultured in single growth factor conditions. Quadrants are based on appropriate isotype control (Appendix 3.2); values indicate percentages of cells. Events gated on donor derived cells.
(mean PBC: 49.2%)(Figure 3.20B). In the presence of Flt3l only, the primary recipient (42.2% PBC) bone marrow cells reconstituted 4 out of 4 secondary recipients at relatively low level (mean PBC: 7.10%)(Figure 3.20C). In all conditions, donor-derived cells of both myeloid (Mac1$^+$ and Gr1$^+$) and lymphoid (CD3$^+$ and B220$^+$) lineages were observed (Figure 3.20A’, B’, and C’). These results indicate that the LTR-HSCs generated in the presence of single growth factors are fully functional as they provide long-term multilineage reconstitution of secondary recipients.

3.4.2.5. Conclusions

The results presented in this section confirm that at least 2 growth factors in IMDM$^+$ are required for maximal LTR-HSC expansion. However, reaggregates cultured in IL-3 only generated higher numbers of CD45$^+$ cells, CFU-Cs and LTR-HSCs compared to other conditions, raising the possibility that IL-3 might be the most potent factor in the IMDM$^+$.

3.5. Discussion

The reaggregate culture system is a robust and reliable model for the study of LTR-HSC development in the E11.5 AGM as it allows the dissociation of the tissue prior to culture, giving access to specific cell populations, whilst maintaining the tissue’s intrinsic ability to generate LTR-HSCs. Herein, culture conditions were tested and it was concluded that the extensive haematopoietic cell, precursors, and stem cell expansion during culture was due to the concerted effects of IL-3, SCF, Flt3l, and FCS.
3.5.1. The reaggregate culture system, *in vitro* model of *in vivo* LTR-HSC development?

At E11.5 the entire embryo contains from 3 to 10 LTR-HSCs, a number which rises to 70 to 150 by E12.5 (Gekas et al., 2005; Kumaravelu et al., 2002). The LTR-HSC expansion in reaggregates (approximately 146 LTR-HSCs) appears similar to the one that naturally occurs *in vivo* (Taoudi et al., 2008), implying it might recapitulate biological processes that occur during development.

An interesting aspect of the reaggregate culture is the CD45⁺cKit⁺Sca1⁺PECAM^{med}CD34⁻ immunophenotype of the LTR-HSCs produced, which is similar to adult LTR-HSCs rather than AGM LTR-HSCs (Baumann et al., 2004; Osawa et al., 1996; Taoudi et al., 2005; Uchida and Weissman, 1992). The lack of CD34 expression indicates that the fetal liver stage might have been bypassed (Matsuoka et al., 2001a; Taoudi et al., 2005). However, the heterogeneity for CD48 expression was intriguing. Additional experiments using a different anti-CD48 antibody clone would be required to confirm the LTR-HSC heterogeneity for CD48 expression since data previously published demonstrated that neither adult nor fetal (in E12.5 fetal liver, placenta, E9.5 YS and E11.5 AGM region) expressed CD48 (Kiel et al., 2005; Kim et al., 2006; McKinney-Freeman et al., 2009). The most likely explanation is that the *ex vivo* culture altered LTR-HSC phenotype. Such phenomenon is observed in reaggregates because, contrary to the fresh tissue, LTR-HSCs no longer express CD34 after reaggregate culture (Noda et al., 2008; Sanchez et al., 1996; Taoudi et al., 2008). Interestingly, similarly to reaggregate LTR-HSCs, HSCs obtained upon cultured of ES-cells treated with ectopic *Cdx4* and *HoxB4* do not express CD34 and are heterogenous for CD48 (McKinney-Freeman et al., 2009).

3.5.2. The requirement for growth factors in reaggregate culture

Various culture conditions were tested to identify the factors that might be of importance for LTR-HSC expansion in reaggregates.
Interestingly, some LTR-HSC expansion was retained upon removal of FCS (approximately 23 LTR-HSCs). This is promising for the future study of molecular pathways involved in LTR-HSC emergence, as they require stringent defined culture conditions. Some LTR-HSC expansion was also retained upon removal of all growth factors (IMDM) (approximately 33 LTR-HSCs), indicating that FCS is sufficient to support limited LTR-HSC expansion. However, it is important to note that FCS batch variations could potentially trigger results different to the ones reported here.

The roles of individual cytokines (IL-3, SCF, and Flt3l) in LTR-HSC expansion were investigated. These well-studied haematopoietic cytokines are commonly used for LTR-HSC culture, and their roles in various aspects of haematopoiesis have been extensively reported (see Section 1.6.2). The removal of single growth factors showed that none was dispensable for optimal LTR-HSC expansion in E11.5 AGM reaggregates.

When reaggregates were cultured in the presence of single growth factors, there were significantly fewer LTR-HSC compared to control and to numbers obtained in the presence of 2 growth factors. This indicates that the concerted action of at least growth factors enhances LTR-HSC expansion. Approximately 35 LTR-HSCs were obtained when reaggregates were cultured in IL-3, a result comparable to that observed in E11.5 AGM explants (Robin et al., 2006). Apart from cultures with IL-3 only, the numbers of LTR-HSC in other conditions are comparable to the one obtained in IMDM (approximately between 10 and 25 LTR-HSCs). Thus, SCF and Flt3l on their own are not sufficient to support extensive LTR-HSC expansion. Altogether, these observations supported the conclusion that growth factors act in a synergistic way. This result was expected because previous studies have reported that Flt3l strongly synergises with other haematopoietic growth factors, including SCF, and interleukins (Buza-Vidas et al., 2009; Diehl et al., 2007; Gilliland and Griffin, 2002).

Although various growth factor combinations yielded different numbers of LTR-HSCs, successful multilineage contribution and secondary transplantations was achieved in each condition, demonstrating that LTR-HSCs were fully functional.
Most of LTR-HSC numbers in this study were estimated based on the proportion of reconstituted animals in each condition. Limiting dilution analyses will be required to determine the exact numbers of LTR-HSCs in each condition, thus defining more accurately the roles of each cytokine in reaggregate culture. Each cytokine might act on different processes involved in LTR-HSC development. As it has been shown that (although proliferation may also be important) the extensive LTR-HSC expansion observed in reaggregates is the result of pre-HSC maturation (Taoudi et al., 2008), future studies will aim to understand which individual cytokine promotes such process.
4. Characterisation of Runx1 expression in the Runx1\(^{EGFP}\) reporter mouse model

4.1. Introduction

The second part of this study focused on the role of Runx1 in the emergence of LTR-HSCs in the E11.5 AGM region and investigating Runx1 expression in pre-HSC populations.

Although current theory states that Runx1 transcription factor is required for the transition from endothelial to haematopoietic fate, its precise role remains unclear (see Section 1.5.3).

Various Runx1 reporter mouse models were generated to track Runx1 expression and better understand its roles in haematopoiesis. The Runx1-LacZ reporter mouse contains LacZ sequences fused to the 3’ coding sequence of the Runx1 locus and generates a non-functional allele (Runx1\(^{lz}\))(North et al., 1999). Haploinsufficient dose of Runx1 results in fewer CFU-Cs and CFU-S\(_{11}\) in the YS, fetal liver and AGM region (Cai et al., 2000; Mukouyama et al., 2000; Wang et al., 1996a), and in deviation of spatial and temporal LTR-HSC development (Cai et al., 2000). To avoid haploinsufficiency, another Runx1 reporter mouse model was generated by introducing Runx1 cDNA linked to green fluorescent protein (GFP) via internal ribosome entry site (IRES) sequences within the endogenous Runx1 locus (Runx1\(^{GFP}\))(Lorsbach et al., 2004). Although Runx1 protein is functional, this mouse expresses only one major Runx1 isoform, Runx1b. In addition, the presence of an active selection marker here may interfere with expression of nearby genes or Runx1 itself. Also, important regulatory elements within the Runx1 3’UTR are not active in this model.
To avoid these potential problems, A. Suleman in our laboratory produced a Runx1 mouse reporter line in which an IRES-EGFP sequence was introduced after exon 6 of the Runx1 locus (Figure 4.1A). The insertion of IRES-EGFP does not replace any genomic sequence and leaves both the Runx1 promoters and the 3’UTR regulatory sequences intact, allowing normal regulation of Runx1 expression. In addition, EGFP was chosen as the reporter protein because it is significantly brighter than WT GFP owing to a double amino-acid substitution of FL64,65ST (Yang et al., 1996). This allows more sensitive detection of Runx1 expression levels.

By introducing only a subtle modification within the targeted Runx1 locus, Runx1EGFP reporter mice should provide an accurate model for studying the temporal and spatial expression pattern of Runx1 in the embryo and the adult. It is also useful for purification of various Runx1+ populations for ex vivo assays.

The first goal of this study was to perform extensive descriptive and functional analysis of the Runx1EGFP/EGFP line to determine if these animals display any detectable phenotype. The second goal was to identify which cell populations express Runx1 in both the adult haematopoietic system and in the E11.5 AGM.

4.2. Genotyping of the Runx1EGFP mice

As targeting experiments were performed on the 129 genetic background, the Runx1EGFP mouse line was backcrossed for 8 generations to transfer the line to the pure C57 Bl/6 genetic background (see Section 2.3.2) and allow in vivo transplantations into C57 Bl/6 recipient mice.

For genotyping animals, PCR primers were designed by H. Inoue in our laboratory and consisted of: two forward primers, one within Runx1 exon 6 and another one within the IRES-EGFP sequence, and a reverse primer located within the Runx1 3’UTR (Figure 4.1A; sequences provided in Table 2.1). Resulting PCR products were 367bp for the Runx1WT allele and 304bp for the Runx1EGFP allele. Sizes of PCR products were determined by agarose gel electrophoresis in comparison with migration of 1KB ladder. DNA controls (both Runx1WT and Runx1EGFP) and
Figure 4.1: Runx1EGFP mouse line PCR genotyping design.
A: Schematic representation of Runx1WT and Runx1EGFP alleles with primer sets (arrows) used for genotyping and sizes of the resulting PCR fragments.
B: Representative example of PCR genotyping performed on offspring from Runx1EGFP/WT X Runx1EGFP/WT cross. Each lane corresponds to an individual animal; upper fragment corresponds to Runx1WT (367bp) and lower fragment corresponds to Runx1EGFP (304bp). Fragment sizes were determined based on 1KB ladder migration. H2O controls were run in every case to detect cases of contamination. Black: Runx1WT/WT, Blue: Runx1EGFP/WT, Pink: Runx1EGFP/EGFP.
water control were run along with samples (Figure 4.1B). The black, blue, and pink genotypes in future figures refer to \(\text{Runx1}^{\text{WT}/\text{WT}} \), \(\text{Runx1}^{\text{EGFP}/\text{WT}} \), and \(\text{Runx1}^{\text{EGFP}/\text{EGFP}} \) animals respectively.

All experiments in this study were performed with \(\text{Runx1}^{\text{WT}/\text{WT}} \) age matched controls. Unless otherwise stated, all adult and embryonic Runx1 expression analyses presented here were performed on a mixed genetic background.

4.3. Mendelian inheritance pattern of the \(\text{Runx1}^{\text{EGFP}} \) mouse line

\(\text{Runx1}^{\text{EGFP}} \) mice were expected to have a phenotype comparable with \(\text{Runx1}^{\text{WT}} \) animals, due to only minor modification introduced into the Runx1 locus.

No obvious morphological defects were observed in \(\text{Runx1}^{\text{EGFP}/\text{EGFP}} \) adults and E11.5 embryos. \(\text{Runx1}^{\text{EGFP}} \) mice were born in expected Mendelian ratio (Table 4.1). Crosses of \(\text{Runx1}^{\text{EGFP}/\text{WT}} \) males and \(\text{Runx1}^{\text{EGFP}/\text{WT}} \) females produced 25% of \(\text{Runx1}^{\text{WT}/\text{WT}} \), 48% of \(\text{Runx1}^{\text{EGFP}/\text{WT}} \), and 28% of \(\text{Runx1}^{\text{EGFP}/\text{EGFP}} \) of offsprings (expected ratio is 25% of \(\text{Runx1}^{\text{WT}/\text{WT}} \), 50% of \(\text{Runx1}^{\text{EGFP}/\text{WT}} \), and 25% of \(\text{Runx1}^{\text{EGFP}/\text{EGFP}} \)).

To rule out the possibility that a proportion of transgenic animals preferably die before birth, E11.5 embryos from \(\text{Runx1}^{\text{EGFP}/\text{WT}} \times \text{Runx1}^{\text{EGFP}/\text{WT}} \) crosses were analysed. Out of a total of 36 embryos, 28% were \(\text{Runx1}^{\text{WT}/\text{WT}} \), 50% were \(\text{Runx1}^{\text{EGFP}/\text{WT}} \), and 22% were \(\text{Runx1}^{\text{EGFP}/\text{EGFP}} \) (Table 4.1), roughly coinciding with predicted Mendelian ratio. Slightly low percentage of \(\text{Runx1}^{\text{EGFP}/\text{EGFP}} \) embryos (22%) can be explained by the low numbers of litters. No breeding impairment was observed when the mouse line was maintained as a homozygous \(\text{Runx1}^{\text{EGFP}/\text{EGFP}} \) colony.
Table 4.1: *Runx1*^{EGFP} mouse line breed in Mendelian proportions.
Total numbers and the relative percentage of offspring with different genotypes (*Runx1^{WT/WT}, *Runx1*^{EGFP/WT}, *Runx1*^{EGFP/EGFP}) obtained from *Runx1*^{EGFP/WT} X *Runx1*^{EGFP/WT} cross. Animal numbers were obtained by genotyping both adult and E11.5 animals. Numbers in brackets correspond to Mendelian breeding ratios proportions.

<table>
<thead>
<tr>
<th></th>
<th>Runx1<sup>WT/WT</sup></th>
<th>Runx1<sup>EGFP/WT</sup></th>
<th>Runx1<sup>EGFP/EGFP</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>adult</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>animals</td>
<td>25</td>
<td>48</td>
<td>28</td>
</tr>
<tr>
<td>% of total</td>
<td>25% (25%)</td>
<td>48% (50%)</td>
<td>28% (25%)</td>
</tr>
<tr>
<td>E11.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>animals</td>
<td>10</td>
<td>18</td>
<td>8</td>
</tr>
<tr>
<td>embryos</td>
<td>% of total</td>
<td>28% (25%)</td>
<td>50% (50%)</td>
</tr>
</tbody>
</table>

Table 4.2: Cellularity of adult haematopoietic organs of *Runx1*^{EGFP/EGFP} animals compared to *Runx1*^{WT/WT} animals.
Haematopoietic organs were obtained from aged-matched individual adult males. Cell counts were performed using Newbauer haemocytometer. Absolute numbers ± standard deviation; average of 6 independent experiments.

<table>
<thead>
<tr>
<th>Cell counts (x10<sup>5</sup>)</th>
<th>Runx1<sup>WT/WT</sup></th>
<th>Runx1<sup>EGFP/EGFP</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>bone marrow</td>
<td>235 ± 48</td>
<td>209 ± 14</td>
</tr>
<tr>
<td>spleen</td>
<td>992 ± 99</td>
<td>1076 ± 171</td>
</tr>
<tr>
<td>thymus</td>
<td>762 ± 204</td>
<td>680 ± 143</td>
</tr>
</tbody>
</table>
4.4. Absence of detectable phenotype in the $\text{Runx1}^{\text{EGFP}}$ mice

4.4.1. Cellularity of $\text{Runx1}^{\text{EGFP/EGFP}}$ adult haematopoietic organs

The cellularity of major adult haematopoietic organs (bone marrow, spleen, and thymus) was compared between $\text{Runx1}^{\text{WT/WT}}$ and $\text{Runx1}^{\text{EGFP/EGFP}}$ males. Of importance, transgenic animals were all age matched and on pure C57 Bl/6 background. $\text{Runx1}^{\text{WT/WT}}$ and $\text{Runx1}^{\text{EGFP/EGFP}}$ adult bone marrows (count made from paired femurs and tibias) contained a total of $235\pm48 \times 10^5$ cells and $209\pm14 \times 10^5$ cells respectively (Table 4.2). Statistical analysis using a paired T-test revealed no significant difference between $\text{Runx1}^{\text{WT/WT}}$ and $\text{Runx1}^{\text{EGFP/EGFP}}$ bone marrows ($p = 0.129$).

$\text{Runx1}^{\text{WT/WT}}$ and $\text{Runx1}^{\text{EGFP/EGFP}}$ adult spleens contained a total of $992\pm99 \times 10^5$ cells and $1076\pm171 \times 10^5$ cells respectively (Table 4.2). Paired T-test revealed no significant difference between $\text{Runx1}^{\text{WT/WT}}$ and $\text{Runx1}^{\text{EGFP/EGFP}}$ spleens ($p = 0.301$).

$\text{Runx1}^{\text{WT/WT}}$ and $\text{Runx1}^{\text{EGFP/EGFP}}$ adult thymi contained a total of $762\pm204 \times 10^5$ cells and $680\pm203 \times 10^5$ cells respectively (Table 4.2). Paired T-test revealed no significant difference between $\text{Runx1}^{\text{WT/WT}}$ and $\text{Runx1}^{\text{EGFP/EGFP}}$ thymi ($p = 0.115$).

Thus, no difference was observed in the cellularity of major adult haematopoietic organs (bone marrow, spleen and thymus) between $\text{Runx1}^{\text{WT/WT}}$ and fully backcrossed $\text{Runx1}^{\text{EGFP/EGFP}}$ adults.

4.4.2. Hemaatopoietic progenitors content in $\text{Runx1}^{\text{EGFP/EGFP}}$ adult bone marrow

To further investigate whether $\text{Runx1}^{\text{EGFP/EGFP}}$ mice on a C57 Bl/6 background have a haematopoietic phenotype, numbers of CFU-Cs contained in the bone marrow of $\text{Runx1}^{\text{WT/WT}}$ and $\text{Runx1}^{\text{EGFP/EGFP}}$ adult males were compared. There
were 76±5 CFU-Cs per 2x10^4 Runx1^{WT/WT} bone marrow cells (19±2 CFU-mast, 4±3
BFU-E, 30±9 CFU-GM, 22±3 CFU-mac, and 1±1 CFU-GEMM)(Figure 4.2). In
comparison, Runx1^{EGFP/EGFP} bone marrow contained 72±11 CFU-Cs per 2x10^4 cells
(18±4 CFU-mast, 5±4 BFU-E, 26±8 CFU-GM, 23±6 CFU-mac, and 1±1 CFU-
GEMM)(Figure 4.2). Paired T-test showed no significant difference in bone marrow
CFU-Cs numbers between Runx1^{WT/WT} and Runx1^{EGFP/EGFP} animals (p = 0.591).

4.4.3. Cellularity of the Runx1^{EGFP} E11.5 AGM region

E11.5 AGM regions from Runx1^{WT/WT}, Runx1^{EGFP/WT}, and Runx1^{EGFP/EGFP}
embryos were dissected and cell counted. These animals looked morphologically
normal at E11.5, with no obvious defect. Numbers of cells in the E11.5 AGM region
were summarized in Table 4.3. A paired T-test showed a significant difference
between Runx1^{WT/WT} and Runx1^{EGFP/WT} AGM total cell numbers (p=0.003).
Intriguingly, no difference was observed between Runx1^{WT/WT} and Runx1^{EGFP/EGFP}
animals (paired T-test, p=0.1). However, Wilcoxon signed-rank test showed no
significant difference between CD45^+ cell numbers among genotypes (p≥0.2 in each
case). Such observation has various explanations. First, some human error is likely
when performing haemocytometer based cell counts so additional replicates would
be required for more powerful statistical analysis. Second, the fact that CD45^+ cell
numbers were similar in Runx1^{WT/WT}, Runx1^{EGFP/WT}, and Runx1^{EGFP/EGFP} embryos
suggests that normal haematopoiesis occurs in transgenic embryos, but perhaps other
stromal cell types are sensitive and preferentially die during flow cytometry
processing.

4.4.4. Flow cytometric analysis of Runx1^{EGFP} mice

Flow cytometric analyses were performed in Runx1^{EGFP} mice to characterise
populations expressing EGFP in the adult and embryonic haematopoietic systems. To
pick possible differences and an eventual haematopoietic phenotype, percentages of
cells falling into each cell population were compared between Runx1^{WT/WT} and
Runx1^{EGFP} animals.
Figure 4.2: Haematopoietic progenitors contained in adult bone marrow of Runx1^{EGFP/EGFP} animals compared to Runx1^{WT/WT} animals. Bars indicate the standard deviation of 4 independent experiments for total CFU-Cs.

BFU-E: burst forming unit-erythroid; CFU: colony forming unit; Mac: macrophage; GM: granulocyte/macrophage; GEMM: granulocyte/erythroid/macrophage/megakaryocyte.
Table 4.3: Comparison of the cell compositions of Runx1\(^{WT/WT}\), Runx1\(^{EGFP/WT}\), and Runx1\(^{EGFP/EGFP}\) E11.5 AGM regions.

Data is representative of 7 independent experiments for Runx1\(^{WT/WT}\) embryos, 3 independent experiments for Runx1\(^{EGFP/WT}\) embryos, and 4 independent experiments for Runx1\(^{EGFP/EGFP}\) embryos.

Data was acquired by flow cytometric analysis; cell viability was determined by 7-AAD uptake. Absolute numbers ± standard deviation; EGFP: enhanced green fluorescent protein; WT: wild type.

<table>
<thead>
<tr>
<th></th>
<th>Runx1(^{WT/WT})</th>
<th>Runx1(^{EGFP/WT})</th>
<th>Runx1(^{EGFP/EGFP})</th>
</tr>
</thead>
<tbody>
<tr>
<td>total cells</td>
<td>293530 ± 41490</td>
<td>239440 ± 27400</td>
<td>272990 ± 44900</td>
</tr>
<tr>
<td>live cells</td>
<td>94440 ± 25380</td>
<td>89780 ± 20120</td>
<td>86630 ± 18230</td>
</tr>
<tr>
<td>CD45(^+) cells</td>
<td>3200 ± 780</td>
<td>3670 ± 570</td>
<td>3460 ± 940</td>
</tr>
</tbody>
</table>
In the adult haematopoietic system, Wilcoxon signed-rank test showed no significant differences in percentages of cells between Runx1WT/WT and Runx1EGFP/WT mice in any of the cell populations and tissues tested (p ≥ 0.2 in all gates). Original flow cytometry dot plots were provided in Figures 4.4A, 4.5A B C, 4.6A B, 4.7A B, 4.8A B C D, and 4.9 and percentages of cells were summarized in Figure 4.9.

In the E11.5 AGM region, Wilcoxon signed-rank test showed no significant differences in percentages of cells between Runx1WT/WT and Runx1EGFP/EGFP embryos in any of the cell populations tested (p ≥ 0.2 in all gates) (Figure 4.11A, 4.12A, 4.13A, and 4.14A, summarized in Figure 4.9). Although not statistically different, percentages of cells in haematopoietic cell populations were consistently higher in the Runx1EGFP/EGFP embryos compared to Runx1WT/WT embryos. Although results were collected from 4 independent experiments, this observation highlights the limitations of statistical analysis with low numbers of replicates and the need for additional experiments to detect very small but significant differences between Runx1WT/WT and Runx1EGFP/EGFP mice.

4.5. Characterisation of Runx1 expression in the Runx1EGFP adult mouse

4.5.1. Runx1 expression in the bone marrow lin–sca1+c-kit+ (LSK) fraction

LTR-HSCs are phenotypically characterised by the absence of expression of mature lineage markers (Weissman et al., 2001). To investigate Runx1 expression in the LTR-HSC population and non-committed progenitors of adult bone marrow, flow cytometric analysis using a cocktail of lineage specific antibodies (anti-CD3\textepsilon, anti-CD4, anti-CD8, anti-B220, anti-Gr1, anti-Mac1, anti-Ter119) permitted the exclusion of mature haematopoietic cells; and Sca1 and c-kit staining allowed detection of the LSK fraction, which is highly enriched in LTR-HSCs (Osawa et al., 1996; Wagers et al., 2002). All flow cytometric analyses within this section were
carried out using age-matched Runx1^{WT/WT} and Runx1^{EGFP/WT} adult males on a C57 Bl/6 background.

Adult bone marrow from Runx1^{WT/WT} and Runx1^{EGFP/WT} mice contained 2.62±0.7% and 2.21±0.6% of lin[−] cells respectively. Whole population shifts were observed in all the lin[−] populations except Sca1[−]c-kit[−] (Figure 4.3B). Conservative gating was performed in each histogram to obtain an approximate percentage of cells expressing EGFP. The EGFP⁺ cells represented 35.1±6.8% of the lin[−]sca1[−]c-kit[−] population, 77.3±7.1% of the lin[−]sca1[−]c-kit⁺ population, 18.2±21% of the lin[−]sca1⁺c-kit[−] population, and 75.3±15% of the LSK population (Figure 4.3B).

The median fluorescence intensity (MFI) shift of the Runx1^{EGFP/WT} mice compared to Runx1^{WT/WT} mice was 6.5±0.4 in the lin[−]sca1[−]c-kit[−] population, 21.4±0.9 in the lin[−]sca1[−]c-kit⁺ population, 6.33±0.2 in the lin[−]sca1[−]c-kit[−] population, and 11.16±0.9 in the LSK population (Figure 4.3B; Table 4.3).

Altogether, these data show that EGFP/Runx1 is expressed in all lin[−] cell fractions of the bone marrow. Fractions with the highest proportion of EGFP⁺ cells as well as the highest EGFP intensity (shown by highest relative MFI) were lin[−]Sca1[−]c-kit[−] and LSK. This strongly suggests that adult bone marrow LTR-HSCs express high levels of Runx1, confirming findings of the haploinsufficient model (North et al., 2004).

4.5.2. Runx1 expression in myeloid lineages in Runx1^{EGFP/WT} adult mouse

4.5.2.1. Runx1 expression in granulocytes and monocytes

Because Runx1 is involved in many fusion genes associated with myeloid leukaemias, it is likely that Runx1 plays a role during myeloid lineages differentiation (Speck and Gilliland, 2002). To investigate Runx1 expression in granulocytes and monocytes, haematopoietic organs (bone marrow, blood, and spleen) were dissected from Runx1^{EGFP/WT} adult mice, stained for the granulocyte and monocyte markers Gr1 and Mac1, and analysed by flow cytometry. Contrary to other
Figure 4.3: EGFP expression within adult bone marrow lin⁻c-kit⁺Sca1⁺ fraction.
A: Representative lin⁻sca1⁻c-kit⁺ (LSK) stains in adult bone marrow of Runx1EGFP/WT animals compared to Runx1WT/WT animals. Quadrants were based on appropriate isotype controls (Appendix 4.1A) and values indicate percentages of cells.
B: Histograms showing EGFP expression in sca1⁻c-kit-, sca1⁻c-kit⁺, sca1⁺c-kit-, and sca1⁺c-kit⁺ fractions. Black: Runx1WT/WT animals; Blue: Runx1EGFP/WT animals. Values indicate percentages of cells in Runx1EGFP/WT animals.

Cells were stained with a cocktail of antibodies against mature lineage markers (anti-CD3ε, anti-CD4, anti-CD8, anti-B220, anti-Gr1, anti-Mac1, anti-Ter119), positive cells for those markers were excluded along with dead cells (uptaking 7-AAD) in the Fl-3 channel. Plots are representative examples of 3 independent experiments.
Runx1 reporter models (Lorsbach et al., 2004; North et al., 1999), analysis of the percentage of EGFP positive cells in our Runx1EGFP mouse was problematic due to very small EGFP shifts. As a result, conservative gating was not appropriate. Instead, measures of the MFI in Runx1EGFP/WT mice compared to Runx1WT/WT mice were presented to report small, yet consistent, population shifts (summarized in Table 4.4). Finally, to prove that very small EGFP shifts in the FL-1 channel were not a false positive signal due to under-compensation from the FL-2 channel, FL-2 single stains performed in Runx1WT/WT tissues were presented in Appendix 4.1.

In the adult bone marrow, the MFI shift of the Runx1EGFP/WT mice compared to Runx1WT/WT mice was 1.66±0.5 in the Mac1loGr1lo population, 5.08±1.4 in the Mac1loGr1hi population, 2.95±0.67 in the Mac1hiGr1lo population, and 1.9±0.2 in the Mac1hiGr1hi population (Figure 4.4A; Table 4.4).

In the peripheral blood, the MFI shift of the Runx1EGFP/WT mice compared to Runx1WT/WT mice was 2.09±0.15 in the Mac1loGr1lo population, 2.23±0.3 in the Mac1loGr1hi population, 2.43±0.7 in the Mac1hiGr1lo population, and 6.1±2.8 in the Mac1hiGr1hi population (Figure 4.4B; Table 4.4).

In the spleen, the MFI shift of the Runx1EGFP/WT mice compared to Runx1WT/WT mice was 0.88±0.1 in the Mac1loGr1lo population, 1.52±0.3 in the Mac1loGr1hi population, 1.7±0.5 in the Mac1hiGr1lo population, and 1.1±0.3 in the Mac1hiGr1hi population (Figure 4.4C; Table 4.4).

Mac1loGr1lo cell population, which contains monocytes, expressed the highest levels of EGFP in bone marrow, as shown by the MFI analysis. As previously reported, MFI shifts become smaller upon increasing expression of the Gr1 antigen in the bone marrow (Lorsbach et al., 2004). Because Gr1 expression increases in maturing myeloid cells, the MFI analysis here suggests that Runx1 expression decreases upon myeloid maturation (Lorsbach et al., 2004).
A Bone marrow

B Peripheral blood

C Spleen
Figure 4.4: EGFP expression in myeloid cells: granulocytes and macrophages lineages.
A: Representative Mac1 Gr1 stains in adult bone marrow of Runx1^{EGFP/WT} animals compared to Runx1^{WT/WT} animals and histograms showing EGFP expression in Mac1⁻Gr1⁻, Mac1^{lo}Gr1^{lo}, Mac1^{hi}Gr1^{lo}, and Mac1^{hi}Gr1^{hi} fractions in the bone marrow.
B: Representative Mac1 Gr1 stains in adult peripheral blood of Runx1^{EGFP/WT} animals compared to Runx1^{WT/WT} animals and histograms showing EGFP expression in Mac1⁻Gr1⁻, Mac1^{lo}Gr1^{lo}, Mac1^{hi}Gr1^{lo}, and Mac1^{hi}Gr1^{hi} fractions in the peripheral blood.
C: Representative Mac1 Gr1 stains in adult spleen of Runx1^{EGFP/WT} animals compared to Runx1^{WT/WT} animals and histograms showing EGFP expression in Mac1⁻Gr1⁻, Mac1^{lo}Gr1^{lo}, Mac1^{hi}Gr1^{lo}, and Mac1^{hi}Gr1^{hi} fractions in the spleen.
Black: Runx1^{WT/WT} animals; Blue: Runx1^{EGFP/WT} animals. Quadrants on dot plots were based on appropriate isotype controls (Appendix 4.1B); values indicate percentages of cells. Cell viability was determined by 7-AAD uptake. In histograms, values indicate percentages of cells in Runx1^{EGFP/WT} animals.
All plots are representative examples of 3 independent experiments.
4.5.2.2. Runx1 expression during erythroid differentiation

To characterise Runx1 expression in the erythroid lineage, bone marrow and spleen cells from Runx1^{EGFP/WT} adult mice were collected and analysed on the basis of co-expression of CD45 and Ter119 markers (Kina et al., 2000). Indeed, erythrocyte maturation is described by the down regulation of CD45 marker and the acquisition of Ter119 marker, and thus processes through the following immunophenotypes: CD45^{hi}Ter119[−], CD45^{hi}Ter119⁺, CD45^{lo}Ter119⁺, CD45[−]Ter119⁺ (Kina et al., 2000).

In the adult bone marrow, the MFI shift of the Runx1^{EGFP/WT} mice compared to Runx1^{WT/WT} mice was 6.11±1.0 in the CD45^{hi}Ter119[−] population, 5.54±0.8 in the CD45^{hi}Ter119⁺ population, 1.6±0.5 in the CD45^{lo}Ter119⁺ population, and 0.25±0.06 in the CD45[−]Ter119⁺ population (Figure 4.5A; Table 4.4).

In the adult spleen, the MFI shift of the Runx1^{EGFP/WT} mice compared to Runx1^{WT/WT} mice was 2.04±0.3 in the CD45^{hi}Ter119[−] population, 2.03±0.3 in the CD45^{hi}Ter119⁺ population, 0±0.1 in the CD45^{lo}Ter119⁺ population, and 0±0.04 in the CD45[−]Ter119⁺ population (Figure 4.5B; Table 4.4).

Here, Runx1 expression is down regulated during erythrocyte development, consistent with previous reports (Lorsbach et al., 2004; North et al., 2004). However, additional Ter119 CD71 staining would be needed to describe more precisely the patterns of Runx1 expression during specific stages of erythrocyte maturation.

4.5.3. Runx1 expression in lymphoid lineages in Runx1^{EGFP/WT} adult mouse

4.5.3.1. Runx1 expression in T cell lineages

Reports have shown that Runx1 is involved at various stages of T cell development (Collins et al., 2009). Anti-CD4 and anti-CD8 antibodies are commonly used to characterise T cell maturation stages and are also markers for mature helper T cells and cytotoxic T cells respectively (Collins et al., 2009). Both were used to stain peripheral blood and thymus from Runx1^{WT/WT} and Runx1^{EGFP/WT} adult males.
Figure 4.5: EGFP expression in myeloid cells: erythroid lineage.

A: Representative CD45 Ter119 stains in adult bone marrow of Runx1^{EGFP/WT} animals compared to Runx1^{WT/WT} animals and histograms showing EGFP expression in CD45^{+}Ter119^{-}, CD45^{+}Ter119^{+}, CD45^{lo}Ter119^{+}, and CD45^{+}Ter119^{+} fractions in the bone marrow.

B: Representative CD45 Ter119 stains in adult spleen of Runx1^{EGFP/WT} animals compared to Runx1^{WT/WT} animals and histograms showing EGFP expression in CD45^{+}Ter119^{-}, CD45^{+}Ter119^{+}, CD45^{lo}Ter119^{+}, and CD45^{+}Ter119^{+} fractions in the spleen.

Black: Runx1^{WT/WT} animals; Blue: Runx1^{EGFP/WT} animals. Quadrants on dot plots were based on appropriate isotype controls (Appendix 4.1C); values indicate percentages of cells. Cell viability was determined by 7-AAD uptake.

In histograms, values indicate percentages of cells for Runx1^{EGFP/WT} animals.

All plots are representative examples of 3 independent experiments.
In the peripheral blood, the MFI shift of the Runx1EGFP/WT mice compared to Runx1WT/WT mice was 2.5±0.3 in the CD4−CD8− population, 1.76±0.3 in the CD4−CD8+ population, and 0.91±0.3 in the CD4+CD8− population (Figure 4.6A; Table 4.4). CD4+CD8+ population was not analysed because its percentage was insignificant (Figure 4.6A; Table 4.4). A small subset of autofluorescent cells in the CD4−CD8+ and CD4−CD8− cell populations (1.06±1.2% and 1.5±1.2 respectively) could be observed (Figure 4.6A).

In the thymus, the MFI shift of the Runx1EGFP/WT mice compared to Runx1WT/WT mice was 3±0.4 in the CD4−CD8− population, 3.0±0.5 in the CD4+CD8− population, 1.6±0.1 in the CD4−CD8+ population, and 2.93±0.3 in the CD4+CD8+ population (Figure 4.6B; Table 4.4).

In addition to CD4 and CD8, populations of mature T cells were analysed for EGFP expression using anti-CD3 antibody in adult haematopoietic tissues (bone marrow, peripheral blood, spleen and thymus). In the T cell CD3+B220− population the MFI shift of the Runx1EGFP/WT mice compared to Runx1WT/WT mice was 1.4±0.3 in the bone marrow, 1.67±0.3 in the peripheral blood, 0.62±0.17 in the spleen, and 1.68±0.1 in the thymus (Figure 4.7A, B, C, D; Table 4.4).

Altogether, there is very little expression of EGFP in T cell compartment of Runx1EGFP/WT adult mouse. As previously reported, populations of mature T cells (CD4−CD8−, CD4−CD8+ and CD3+B220+) generally have stronger EGFP expression in the thymus compared to other organs (Lorsbach et al., 2004). Analysis also showed that the EGFP expression in the thymus was the highest in CD4−CD8− cells, in line with the role of Runx1 in the transition from CD4−CD8− to CD4+CD8+ stages of T cell maturation (Growney et al., 2005; Putz et al., 2006). Additionally, EGFP was stronger in CD4−CD8− cells compared to CD4−CD8+ cells, also consistent with published observations (Lorsbach et al., 2004).
Figure 4.6: EGFP expression in lymphoid cells: T cell lineage.

A: Representative CD4 CD8 stains in adult peripheral blood of Runx1^{EGFP/WT} animals compared to Runx1^{WT/WT} animals and histograms showing EGFP expression in CD4⁻CD8⁻, CD4⁻CD8⁺, and CD4⁺CD8⁻ fractions in the peripheral blood.

B: Representative CD4 CD8 stains in the adult thymus of Runx1^{EGFP/WT} animals compared to Runx1^{WT/WT} animals and histograms showing EGFP expression in CD4⁻CD8⁻, CD4⁻CD8⁺, and CD4⁺CD8⁻ fractions in the thymus.

Black: Runx1^{WT/WT} animals; Blue: Runx1^{EGFP/WT} animals. Quadrants on dot plots were based on appropriate isotype controls (Appendix 4.1D); values indicate percentages of cells. Cell viability was determined by 7-AAD uptake.

In histograms, values indicate percentages of cells for Runx1^{EGFP/WT} animals.

All plots are representative examples of 3 independent experiments.
A Bone marrow

![Flow cytometry graphs for Bone marrow showing Runx1WT/WT and Runx1EGFP/WT. The graphs display CD3 and EGFP expression with gates R1, R2, R3, and R4.]()

B Peripheral blood

![Flow cytometry graphs for Peripheral blood showing Runx1WT/WT and Runx1EGFP/WT. The graphs display CD3 and EGFP expression with gates R1, R2, R3, and R4.]()

C Spleen

![Flow cytometry graphs for Spleen showing Runx1WT/WT and Runx1EGFP/WT. The graphs display CD3 and EGFP expression with gates R1, R2, R3, and R4.]()
Figure 4.7: EGFP expression in lymphoid cells: T and B cell lineages.

A: Representative CD3 B220 stains in adult bone marrow of Runx1EGFP/WT animals compared to Runx1WT/WT animals and histograms showing EGFP expression in CD3 B220−, CD3+ B220−, and CD3 B220− fractions in the bone marrow.

B: Representative CD3 B220 stains in adult peripheral blood of Runx1EGFP/WT animals compared to Runx1WT/WT animals and histograms showing EGFP expression in CD3 B220−, CD3+ B220−, and CD3 B220− fractions in the peripheral blood.

C: Representative CD3 B220 stains in the adult spleen of Runx1EGFP/WT animals compared to Runx1WT/WT animals and histograms showing EGFP expression in CD3 B220−, CD3+ B220−, CD3− B220+, and CD3− B220− fractions in the spleen.

D: Representative CD3 B220 stains in the adult thymus of Runx1EGFP/WT animals compared to Runx1WT/WT animals and histograms showing EGFP expression in CD3 B220−, CD3− B220+, and CD3− B220− fractions in the thymus.

Black: Runx1WT/WT animals; Blue: Runx1EGFP/WT animals. Quadrants on dot plots were based on appropriate isotype controls (Appendix 4.1E) and values indicate percentages of cells.

Cell viability was determined by 7-AAD uptake.

In histograms, values indicate percentages of cells for Runx1EGFP/WT animals.

All plots are representative examples of 3 independent experiments.
4.5.3.2. Runx1 expression in B cell lineages

Involvement of Runx1 in paediatric acute B-lymphocytic leukaemia suggests that an important role of Runx1 in B lymphopoiesis (Speck and Gilliland, 2002). Thus, the expression of EGFP in B cell subset was analysed in bone marrow, peripheral blood, spleen and thymus using an anti-B220 antibody, which marks most mature B cells. In addition, anti-CD19 antibody was used to detect mature B cells in the bone marrow.

In the B cell CD3\(^{-}\)B220\(^{+}\) population, the MFI shift of the \(\text{Runx1}^{\text{EGFP/WT}}\) mice compared to \(\text{Runx1}^{\text{WT/WT}}\) mice was 1.8±0.4 in the bone marrow, 2.29±0.3 in the peripheral blood, 0.68±0.1 in the spleen, and 3.42±1.2 in the thymus (Figure 4.7A, B, C, D; Table 4.4).

As B220 expression is not completely restricted to B cells, anti-CD19 in combination with anti-B220 were used in the bone marrow, where B cell maturation takes place, to analyse EGFP expression in mature B cells (CD19\(^{+}\)B220\(^{-}\)). The MFI shift of the \(\text{Runx1}^{\text{EGFP/WT}}\) mice compared to \(\text{Runx1}^{\text{WT/WT}}\) mice was 2.45±0.5 in the CD19\(^{lo}\)B220\(^{+}\) population, 2.39±0.5 in the CD19\(^{-}\)B220\(^{+}\) population, and 2.08±0.4 in the CD19\(^{+}\)B220\(^{+}\) population (Figure 4.8 and Table 4.4).

There was no difference in the EGFP expression between immature B cells (CD19\(^{-}\)B220\(^{-}\)) and mature B cells (CD19\(^{+}\)B220\(^{-}\)). These data compare with Runx1\(^{\text{lacZ/+}}\) haploinsufficient mice that have no B cell phenotype and no obvious difference in Runx1 expression during B-cell differentiation, as appropriately assessed with anti-CD43 and anti-B220 stainings (North et al., 2004).

4.6. Characterisation of Runx1 expression in the Runx1\(^{\text{EGFP}}\) embryo

Runx1 deficient embryos completely lack definitive haematopoietic progenitors (CFU-Cs and CFU-S\(_{11}\)) and definitive LTR-HSCs in the YS, fetal liver, and AGM region (Cai et al., 2000; Mukouyama et al., 2000; North et al., 1999; North et al., 2002; Okada et al., 1998; Okuda et al., 1996; Wang et al., 1996a). During
Figure 4.8: EGFP expression in lymphoid cells: B cell lineage.
Representative CD19 B220 stains in adult bone marrow of Runx1EGFP/WT animals compared to Runx1WT/WT animals and histograms showing EGFP expression in CD19-B220, CD19-B220+, and CD19+B220+ fractions in the bone marrow. Black: Runx1WT/WT animals; Blue: Runx1EGFP/WT animals. Quadrants on dot plots were based on appropriate isotype controls (Appendix 5.1F) and values indicate percentages of cells. Cell viability was determined by 7-AAD uptake. In histograms, values indicate percentages of positive cells for Runx1EGFP/WT animals. All plots are representative examples of 3 independent experiments.
Figure 4.9: Summary of proportion of cell populations in Runx1^{WT/WT} and Runx1^{EGFP/WT} adult haematopoietic system.

Black: Runx1^{WT/WT} animals; Blue: Runx1^{EGFP/WT} animals. Values indicate percentages of cells (mean±standard deviation of 3 experiments). Cell viability was determined by 7-AAD uptake.
Table 4.4: Relative EGFP expression within haematopoietic cell subsets in the Runx1^{EGFP/WT} adult mouse.

Relative median fluorescent intensity (MFI) (Runx1^{EGFP/WT} MFI – Runx1^{WT/WT} MFI) for each cell populations with the mentioned phenotype.

SEM: standard error of the mean. Lineage identity is associated with each phenotype and each organ is color-coded: black: bone marrow; red: peripheral blood; green: spleen; orange: thymus.

<table>
<thead>
<tr>
<th>Haematopoietic lineage</th>
<th>Phenotype</th>
<th>Tissue</th>
<th>Relative MFI±SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSC</td>
<td>lin’sca1’c-`kit’</td>
<td>bone marrow</td>
<td>11.16±0.9</td>
</tr>
<tr>
<td>Progenitors</td>
<td>lin’sca1’c-`kit’</td>
<td>bone marrow</td>
<td>6.33±0.2</td>
</tr>
<tr>
<td>Myeloid lineages</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>monocytes</td>
<td>Mac1<sup>hi</sup>Gr1<sup>lo</sup></td>
<td>bone marrow</td>
<td>5.08±1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>blood</td>
<td>2.23±0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>spleen</td>
<td>1.52±0.26</td>
</tr>
<tr>
<td>macrophages</td>
<td>Mac1<sup>hi</sup>Gr1<sup>lo</sup></td>
<td>bone marrow</td>
<td>2.95±0.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>blood</td>
<td>2.43±0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>spleen</td>
<td>1.7±0.55</td>
</tr>
<tr>
<td>neutrophils</td>
<td>Mac1<sup>hi</sup>Gr1<sup>hi</sup></td>
<td>bone marrow</td>
<td>1.9±0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>blood</td>
<td>6.1±2.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>spleen</td>
<td>1.1±0.3</td>
</tr>
<tr>
<td>non erythroid</td>
<td>CD45<sup>hi</sup>Ter119<sup>+</sup></td>
<td>bone marrow</td>
<td>6.11±1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>spleen</td>
<td>2.04±0.3</td>
</tr>
<tr>
<td>immature erythroid</td>
<td>CD45<sup>hi</sup>Ter119<sup>+</sup></td>
<td>bone marrow</td>
<td>5.54±0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>spleen</td>
<td>2.03±0.3</td>
</tr>
<tr>
<td></td>
<td>CD45<sup>hi</sup>Ter119<sup>+</sup></td>
<td>bone marrow</td>
<td>1.60±0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>spleen</td>
<td>0±0.1</td>
</tr>
<tr>
<td>mature erythroid</td>
<td>CD45<sup>hi</sup>Ter119<sup>+</sup></td>
<td>bone marrow</td>
<td>0.25±0.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>spleen</td>
<td>0±0.04</td>
</tr>
<tr>
<td>Lymphoid lineages</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mature T cells</td>
<td>CD3<sup>+</sup>B220<sup>+</sup></td>
<td>bone marrow</td>
<td>1.4±0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>blood</td>
<td>1.67±0.29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>spleen</td>
<td>0.62±0.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>thymus</td>
<td>1.68±0.11</td>
</tr>
<tr>
<td></td>
<td>CD4<sup>+</sup>CD8<sup>+</sup></td>
<td>blood</td>
<td>1.76±0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>thymus</td>
<td>3.0±0.5</td>
</tr>
<tr>
<td></td>
<td>CD4<sup>+</sup>CD8<sup>+</sup></td>
<td>blood</td>
<td>0.91±0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>thymus</td>
<td>1.6±0.1</td>
</tr>
<tr>
<td>immature T cells</td>
<td>CD4<sup>+</sup>CD8<sup>+</sup></td>
<td>thymus</td>
<td>2.93±0.3</td>
</tr>
<tr>
<td>B cells</td>
<td>CD3<sup>+</sup>B220<sup>+</sup></td>
<td>bone marrow</td>
<td>1.8±0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>blood</td>
<td>2.29±0.27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>spleen</td>
<td>0.68±0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>thymus</td>
<td>3.42±1.2</td>
</tr>
<tr>
<td>pro-B cells</td>
<td>CD19<sup>+</sup>B220<sup>+</sup></td>
<td>bone marrow</td>
<td>2.39±0.53</td>
</tr>
<tr>
<td>dendritic cells</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mature B cells</td>
<td>CD19<sup>+</sup>B220<sup>+</sup></td>
<td>bone marrow</td>
<td>2.08±0.46</td>
</tr>
</tbody>
</table>
development, previous analysis performed by A. Suleman in E9.5 and E10.5 Runx1^{EGFP} embryos did not detect any abnormalities. Here, a more detailed analysis focusing on the E11.5 AGM region and using fully backcrossed homozygous Runx1^{EGFP/EGFP} animals was performed.

4.6.1. **EGFP expression in the E11.5 AGM region: CD34⁺ cell subsets.**

EGFP expression in CD34[±] cell subsets was investigated as CD34 marks LTR-HSCs in the E11.5 AGM region (Sanchez et al., 1996). A whole population shift was observed in the CD45^{SP} cell fraction of the AGM region, showing that most express EGFP (92.6±6.58%) (Figure 4.10B). Values from conservative gating were presented since few cells appeared to be CD45⁺EGFP⁺. They were gated out although it is not possible to rule out that they express very low levels of EGFP; due to major overlap between Runx1^{WT/WT} and Runx1^{EGFP/EGFP} plots (Figure 4.10B). The MFI shift of the Runx1^{EGFP/EGFP} mice compared to Runx1^{WT/WT} mice was 12.69±1.9 in the CD45^{SP} population. Similar gating strategy to the CD45^{SP} population was adopted for the CD45⁺CD34⁺ population and showed that 71.95±21.6% of cells were EGFP⁺ (Figure 4.10B). The MFI shift of the Runx1^{EGFP/WT} mice compared to Runx1^{WT/WT} mice was 25.06±4.1 in the CD45⁺CD34⁺ population.

Histograms were not used for the analysis of CD45⁺ cell populations as no detectable EGFP shift was observed, showing that the majority of CD45⁺ cells do not express EGFP. However, overlaying of Runx1^{WT/WT} and Runx1^{EGFP/EGFP} dot plots revealed the existence of few EGFP⁺ cells in CD45⁺ populations (Figure 4.10B). Two distinct populations expressing EGFP were observed in the CD45[−]CD34[−] cell fraction: a EGFP_{lo} fraction that overlaid with WT cells but with higher density (suggesting a very low EGFP expression) and a EGFP⁺ fraction (0.47±0.1%), distinctive from WT cells (Figure 4.10B). By using conservative gating, there were 1.75±0.4% of EGFP⁺ cells in the CD45[−]CD34[−] population (Figure 4.10B). Of note, the majority of these cells appeared to be CD45^{lo} (Figure 4.10B).
Figure 4.10: EGFP expression in E11.5 AGM region haematopoietic stem cells (CD45^+CD34^+ fraction).

A: Representative CD45 CD34 stains in E11.5 AGM region of Runx1^{EGFP/EGFP} animals compared to Runx1^{WT/WT} animals. Quadrants on dot plots were based on appropriate isotype controls (Appendix 4.2A).

B: Histograms and dot plots showing analysis EGFP expression in CD45^−CD34^−, CD45^−CD34^+, CD45^+CD34^−, and CD45^+CD34^+ cell fractions in the E11.5 AGM region. Values indicate percentages of cells for Runx1^{EGFP/EGFP} animals.

Black: Runx1^{WT/WT} embryos; Pink: Runx1^{EGFP/EGFP} embryos. All plots display live cells only (determined by 7-AAD uptake).

All plots are representative examples of 4 independent experiments.

EGFP: enhanced green fluorescent protein; WT: wild type
4.6.2. **EGFP expression in the E11.5 AGM region: c-kit\(^+\) cell subsets.**

EGFP expression in c-kit\(^{+/−}\) cell subsets was investigated as c-kit also marks LTR-HSCs in the E11.5 AGM region (Sanchez et al., 1996). For the reasons previously described, histograms were used to present CD45\(^+\) cell fractions and dot plots used to describe CD45\(^−\) cell fractions. EGFP was expressed in 96.67±0.3% of CD45\(^{SP}\) cells and 83.4±24.9% of CD45\(^{−}\)c-kit\(^+\) cells (Figure 4.11B). The MFI shift of the Runx1\(^{EGFP/EGFP}\) embryos compared to Runx1\(^{WT/WT}\) embryos was 12.85±1.1 in the CD45\(^{SP}\) population and was not calculated for the CD45\(^{−}\)c-kit\(^+\) (Figure 4.11B). Indeed, the Runx1\(^{WT/WT}\) curve was pushed against the axis, probably due to slight over-compensation in this channel.

In the CD45\(^{−}\)c-kit\(^−\) cell fraction, 0.24±0.1% of cells were EGFP\(^+\) (Figure 4.11B). In the CD45\(^{−}\)c-kit\(^+\) cell fraction, 0.98±0.2% of cells were EGFP\(^+\) (Figure 4.11B). No population shifts were observed in these two populations when histograms of Runx1\(^{WT/WT}\) and Runx1\(^{EGFP/EGFP}\) were plotted, together indicating that only very few non-haematopoietic cells express EGFP.

4.6.3. **EGFP expression in the E11.5 AGM region: VE-cadherin cell subsets**

Because LTR-HSCs in the E11.5 AGM region also have a CD45\(^{VE-cadherin\(^{+}\)}\) immunophenotype (North et al., 2002; Taoudi et al., 2005), EGFP expression was investigated in this cell compartment. The gating strategy was similar to that previously described. In the CD45\(^{SP}\) cells, 98.20±1.0% of cells were EGFP\(^+\) and in the CD45\(^{−}\)VE-cadherin\(^{+}\) cells, 96.76±1.0 were EGFP\(^+\) (Figure 4.12B). The MFI shift of the Runx1\(^{EGFP/EGFP}\) embryos compared to Runx1\(^{WT/WT}\) embryos was 9.8±2.0 in the CD45\(^{SP}\) population and 16.33±8.3 in the CD45\(^{−}\)VE-cadherin\(^−\) population (Figure 4.12B).
Figure 4.11: EGFP expression in E11.5 AGM region haematopoietic stem cells (CD45+c-kit+ fraction).

A: Representative CD45 c-kit stains in E11.5 AGM region of Runx1\(^{EGFP/EGFP}\) animals compared to Runx1\(^{WT/WT}\) animals. Quadrants on dot plots were based on appropriate isotype controls (Appendix 4.2B)

B: Histograms and dot plots showing analysis EGFP expression in CD45-c-kit-, CD45-c-kit+, CD45+c-kit- and CD45+c-kit+ cell fractions in the E11.5 AGM region. Values indicate percentages of cells for Runx1\(^{EGFP/EGFP}\) animals.

Black: Runx1\(^{WT/WT}\) embryos; Pink: Runx1\(^{EGFP/EGFP}\) embryos. All plots display live cells only (determined by 7-AAD uptake).

All plots are representative examples of 4 independent experiments.

EGFP: enhanced green fluorescent protein; WT: wild type
Figure 4.12: EGFP expression in E11.5 AGM region haematopoietic stem cells (CD45⁺VE-cadherin⁺).
A: Representative CD45⁺VE-cadherin stains in E11.5 AGM region of Runx¹^{EGFP/EGFP} animals compared to Runx¹^{WT/WT} animals. Quadrants on dot plots were based on appropriate isotype controls (Appendix 4.3A)
B: Histograms and dot plots showing analysis EGFP expression in CD45[−]VE-cadherin[−], CD45[−]VE-cadherin⁺, CD45[−]VE-cadherin[−], CD45⁺VE-cadherin[−] cell fractions in the E11.5 AGM region. Values indicate percentages of cells for Runx¹^{EGFP/EGFP} animals.
Black: Runx¹^{WT/WT} embryos; Pink: Runx¹^{EGFP/EGFP} embryos. All plots display live cells only (determined by 7-AAD uptake). EGFP: enhanced green fluorescent protein; WT: wild type
All plots are representative examples of 4 independent experiments.
In the non-haematopoietic fractions, 0.43±0.1% of cells expressed EGFP in the CD45^-VE-cadherin^- fraction, and 0.82±0.05% of cells in the CD45^-VE-cadherin^+(Figure 4.12B).

4.6.4. EGFP expression in the E11.5 AGM region: pre-LTR-HSCs type I (CD45^+VE-cadherin^+CD41^{lo})

Here, the aim was to further characterise non-haematopoietic cell subsets expressing Runx1. CD45^+ cells were excluded using an anti-CD45 PerCP antibody (Appendix 4.2C), and anti-VE-cadherin (endothelial) and anti-CD41 (pre-haematopoietic) antibodies were used. Such population is of interest to our laboratory as it has been shown that CD45^-VE-cadherin^+CD41^{lo} can develop into LTR-HSCs (S. Rybstov, unpublished data). These cells were termed pre-LTR-HSCs type I because their phenotype is more primitive (ie: do not express CD45) than the pre-LTR-HSCs type II (CD45^-VE-cadherin^+), which already have a haematopoietic phenotype. Analysis below addressed whether pre-HSCs type-I cell population express Runx1.

Because analysis involves CD45^- cells only, dot plots were used. As previously, histograms were checked and there was no readily noticeable EGFP shift in cell populations. The percentage of EGFP^+ cells increased as the level of CD41 expression increased: 1.0±0.4% in CD45^-VE-cadherin^-CD41^- cells, 13.8±3.2% in CD45^-VE-cadherin^-CD41^{med} cells and 38.9±16.9% in CD45^-VE-cadherin^-CD41^{hi} cells (Figure 4.13B). A similar observation was made in the endothelial cell population (VE-cadherin^+), with EGFP^+ cells representing: 0.26±0.1% in CD45^-VE-cadherin^+CD41^- population, 13.27±4.1% in CD45^-VE-cadherin^+CD41^{med} population, and 41.2±7.5% in CD45^-VE-cadherin^+CD41^{hi} population (Figure 4.13B).

4.6.5. EGFP expression in E11.5 AGM reaggregates

Future experiments with the Runx1^{EGFP} mice will involve sorting of CD45^-EGFP^+ cells prior to ex vivo culture to assess whether such cells are enriched for pre-HSCs. Runx1^{EGFP/EGFP} E11.5 AGM reaggregates were set up to confirm that
Figure 4.13: EGFP expression in E11.5 AGM region in pre haematopoietic stem cells type I (CD45\(^-\)VE-cadherin\(^+\)CD41\(^{med}\) fraction).

A: Representative VE-cadherin CD41 stains in the non-haematopoietic cells (CD45\(^-\)) in the E11.5 AGM region of Runx1\(^{EGFP/EGFP}\) animals compared to Runx1\(^{WT/WT}\) animals. Quadrants on dot plots were based on appropriate isotype controls (Appendix 4.2C).

B: Dot plots showing analysis EGFP expression in CD45\(^-\)VE-cadherin\(^-\)CD41\(^-\), CD45\(^-\)VE-cadherin CD41\(^{med}\), CD45\(^-\)VE-cadherin CD41\(^{hi}\), CD45\(^-\)VE-cadherin\(^+\)CD41\(^-\), CD45\(^-\)VE-cadherin\(^+\)CD41\(^{med}\), and CD45\(^-\)VE-cadherin\(^+\)CD41\(^{hi}\) cell fractions in the E11.5 AGM region. Values indicate percentages of positive cells for Runx1\(^{EGFP/EGFP}\) animals.

Black: Runx1\(^{WT/WT}\) embryos; Pink: Runx1\(^{EGFP/EGFP}\) embryos. All plots display live cells only (determined by 7-AAD uptake). EGFP: enhanced green fluorescent protein; WT: wild type. All plots are representative examples of 4 independent experiments.
Runx1EGFP/EGFP E11.5 AGM region performs similarly as Runx1WT/WT embryos and also to characterise EGFP+ populations in reaggregates. Wilcoxon signed-rank test showed no significant difference cells percentages between Runx1WT/WT and Runx1EGFP/EGFP reaggregates (p≥0.1 in all gates). Similarly to the fresh E11.5 AGM region however, the percentage of CD45SP cells was consistently higher in Runx1EGFP/EGFP reaggregates (Figure 4.14A).

When conservative gating was applied, 98.2±1.3% of CD45SP cells were EGFP+ (Figure 4.14B). The MFI shift of the Runx1EGFP/EGFP reaggregates compared to Runx1WT/WT reaggregates was 10.15±5.8 in the CD45SP population (Figure 4.14B). Only 3.01±0.5% of the CD45+VE-cadherin+ population was EGFP+ (Figure 4.14B). The collection of more events would allow detection of a possible population shift in this population.

In the non-haematopoietic populations, 0.34±0.07% of CD45+VE-cadherin+ cells were EGFP+ (Figure 4.14B). Interestingly, only 0.08±0.04% of CD45+VE-cadherin− population was EGFP+, which represents a 5 fold decrease compared to the fresh tissue (0.43±0.1%, Figure 4.13B, Figure 4.14B). This observation raises the question of the fate of these EGFP+ stromal cells, and further experiments will determine whether these cells matured into LTR-HSCs during reaggregate culture.

The strategy will consist of FACS sorting of CD45+EGFP+ cells, and reaggregating them with other AGM cell populations to assess their potential for developing into LTR-HSCs. Such chimeric reaggregate set-up, however, would be limited by the fact that EGFP is restricted to Runx1+ cells, and thus cannot be used as a genetic marker to lineage trace cells in culture. To overcome this technical limitation, a lineage-trace system taking advantage of the Ly-5.1 and Ly-5.2 system was set up. Briefly, as Runx1EGFP/EGFP animals have a Ly-5.2/5.2 genotype, Runx1EGFP cells could be reaggregated with Ly-5.2/5.1 or Ly-5.1/5.1 cells and thus still be discriminated by flow cytometry. The fact that only CD45+ cells could be identified using this system should not be a problem because all reaggregate LTR-HSCs express CD45 (Taoudi et al., 2008). The normal behaviour of Ly-5.2/5.1 and Ly-5.1/5.1 cells when cultured as reaggregates was tested and proved the validity of Ly5.2/5.1 cells for this system (Appendix 4.4). Fully backcrossed Runx1EGFP animals
Figure 4.14: EGFP expression in haematopoietic and endothelial compartments of Runx1EGFP/EGFP E11.5 AGM reaggregates.

A: Representative CD45 VE-cadherin stains in Runx1EGFP/EGFP and Runx1WT/WT E11.5 AGM reaggregates of Runx1EGFP/EGFP animals. Quadrants on dot plots were based on appropriate isotype controls (Appendix 4.3C).

B: Analysis of EGFP in CD45 VE-cadherin−, CD45 VE-cadherin+, CD45−VE-cadherin+, CD45+VE-cadherin+ cell fractions. Values indicate percentages of cells in Runx1EGFP/EGFP reaggregates.

Black: Runx1WT/WT reaggregates; Pink: Runx1EGFP/EGFP reaggregates. All plots display live cells only (determined by 7-AAD uptake). EGFP: enhanced green fluorescent protein; WT: wild type. All plots are representative examples of 4 independent experiments.
Figure 4.15: Summary of proportion of cell populations in Runx1WT/WT and Runx1EGFP/EGFP E11.5 AGM region.

Black: Runx1WT/WT animals; Pink: Runx1EGFP/EGFP animals. Values indicate percentages of cells (mean±standard deviation of 4 experiments). Cell viability was determined by 7-AAD uptake.
were obtained only recently so functional experiments using this lineage-trace system for EGFP+ cells are still pending.

4.7. LTR-HSC numbers in the $\text{Runx1}^{E\text{GFP}}$ E11.5 AGM region

After backcrossing, functional analysis of the $\text{Runx1}^{E\text{GFP}}$ mice could be started. Fresh E11.5 AGM transplantation was carried out to assess whether LTR-HSC numbers were similar in $\text{Runx1}^{E\text{GFP}}$ and Runx1^{WT} E11.5 embryos. This experiment was important to functionally prove that the $\text{Runx1}^{E\text{GFP}}$ allele was functional, as it was clearly shown that Runx1 dosage had an impact on LTR-HSC development (Cai et al., 2000; North et al., 2002).

4.7.1. Functional analysis of LTR-HSCs in $\text{Runx1}^{E\text{GFP}}$ mice: LTR-HSCs numbers

Upon transplantation of 2 $\text{Runx1}^{\text{WT/WT}}$ E11.5 AGM regions into each recipient mouse, 7 out of 10 recipients were reconstituted by donor cells, 6 of which had a PBC higher than 20% (Figure 4.16). When $\text{Runx1}^{E\text{GFP/WT}}$ AGM regions were transplanted, 3 out of 11 recipients were reconstituted and 2 of them had a PBC higher than 20% (Figure 4.16). Although the proportions of reconstituted animals were 70% and 27% with $\text{Runx1}^{\text{WT/WT}}$ and $\text{Runx1}^{E\text{GFP/WT}}$ donor cells respectively (Figure 4.16), there was no statistical difference between the two conditions (Fisher’s exact test, p=0.08). Limiting dilution experiments will be required to accurately determine the numbers of LTR-HSCs in $\text{Runx1}^{E\text{GFP/WT}}$ embryos. Also, multilineage characterisation will be required to demonstrate their normal function.

Additionally, as preliminary experiments indicated that $\text{Runx1}^{E\text{GFP/WT}}$ E11.5 AGM contains fewer LTR-HSCs than $\text{Runx1}^{\text{WT/WT}}$ embryos based on the proportions of reconstituted animals, transplantations using $\text{Runx1}^{E\text{GFP/EGFP}}$ embryos will be performed to investigate any effect of $\text{Runx1}^{E\text{GFP}}$ allele dosage on LTR-HSC numbers and so conclude whether this allele is fully functional.
Figure 4.16: Functional assessment of LTR-HSCs content in Runx1^{WT/WT} and Runx1^{EGFP/WT} E11.5 AGM region.

Peripheral blood chimerism of recipients each transplanted with 2 embryos equivalent of E11.5 AGM cells.
Each point represents a single recipient mouse. Recipients were considered reconstituted when their peripheral blood chimerism exceeded 5% at least 12 weeks after transplantation. Percentages show the proportion of reconstituted recipients. Data is cumulative of 4 independent experiments.
4.8. Discussion

Flow cytometry and functional assays presented here describe the pattern of Runx1 expression in Runx1EGFP adult and E11.5 embryos. Although allowing detection of small EGFP expression by flow cytometry, our reporter, as others, has technical limitations. Firstly, insertion of the reporter gene after Runx1 exon 6 results in EGFP expression only when Runx1b and Runx1c isoforms are expressed. Secondly, although EGFP is much brighter than GFP, it also has a longer half-life than GFP (over 24 hours compared to 9 hours for GFP)(Choi et al., 2005; Li et al., 1998; Verkhusha et al., 2003). Since the half-life of the Runx1 protein is 3.3 hours (Huang et al., 2001), EGFP is detectable in cells that no longer express Runx1. Thus, future experiments require the evaluation of the fidelity of the EGFP reporter to Runx1 by checking the overlapping expression of EGFP and Runx1 with more sensitive techniques such as quantitative PCR. Despite these points, EGFP expression reported here coincides with Runx1 expression patterns reported in other models so the Runx1EGFP/EGFP mouse should provide an accurate Runx1 reporter, correlating closely to the WT situation (Ichikawa et al., 2004; Lorsbach et al., 2004; North et al., 1999; North et al., 2002; North et al., 2004). Statistical analysis presented here must also be interpreted carefully as few independent experiments limit the power of any statistical test. Additional replicates should be performed in order to obtain more robust statistical analysis and detect potential subtle differences.

4.8.1. EGFP expression in the Runx1EGFP adult mouse

Both descriptive (cellularity, flow cytometry) and functional (CFU-Cs) analyses in Runx1WT/WT and Runx1EGFP/WT mice showed no detectable phenotype in adult animals. However, in vivo transplantations performed at limiting dilution would be required to conclude about any adult LTR-HSC phenotype.

EGFP was highly expressed in LSK cells, which are enriched for LTR-HSCs (Osawa et al., 1996; Wagers et al., 2002). In addition, EGFP was expressed in the lin`Sca1`c-kit`cell fraction, which contains common lymphoid progenitors (lin`Sca1^{lo}
kit
loThy-1−IL7R− immunophenotype)(Kondo et al., 1997) and in the lin−Sca1+c-kit−, which contains common myeloid progenitors (Akashi et al., 2000).

Very small EGFP shifts were observed in mature lymphoid and myeloid lineages. As a result, conservative gating was not appropriate for analysis and measures of MFI were reported as an indication of small population shifts. The MFI values were consistent between experiments and compensation plots of FL-2 single stains were provided in Appendix 4.1 in order to rule out any false positive signals. The patterns of EGFP expression in the adult haematopoietic system were consistent with observations in other mice reporter models (Lorsbach et al., 2004; North et al., 2004).

In myeloid lineages, EGFP expression was decreased upon granulocyte differentiation as the MFI decreased with increasing levels of Gr1, suggesting a down-regulation of Runx1 upon myeloid differentiation (Lorsbach et al., 2004). This contrasts with the Runx1 LacZ reporter in which a high proportion of bone marrow and peripheral blood Mac1+ and Gr1+ cells express LacZ; but the relevance of such observation in our context is limited because myeloid cells numbers are significantly increased in Runx1+ mice (North et al., 2004). Also, EGFP was expressed in erythroid progenitors but rapidly downregulated upon erythroid differentiation, which processes through the following phenotypes: CD45hiTer119−, CD45hiTer119+, CD45loTer119+, CD45−Ter119+ (Kina et al., 2000). Other groups observed the same Runx1 down-regulation upon erythrocyte maturation (Lorsbach et al., 2004; North et al., 2004). Additional Ter119 CD71 staining would be needed to precisely describe the patterns Runx1 expression during specific stages of erythrocyte maturation.

In lymphoid lineages, populations of mature T cells (CD4+CD8−, CD4−CD8+ and CD3−B220+) displayed a stronger EGFP expression in the thymus, the site of T cells maturation, also consistent with previous observations (Lorsbach et al., 2004). In the thymus, EGFP expression was the highest in CD4+CD8− cells, which corresponds to the early thymocyte (CD4−CD8+) population. This observation was not surprising as previous reports using conditional inactivation of Runx1 in adult mice showed a reduction in thymus size and an accumulation of CD4+CD8− thymocytes, suggesting that Runx1 plays a role in early T-cell differentiation (Growney et al., 2004).
Finally, also consistent with previous observations, EGFP was stronger in CD4⁺CD8⁻ cells compared to CD4⁺CD8⁺ cells (Lorsbach et al., 2004).

EGFP was expressed at similar levels in immature B cells (CD19⁺B220⁺) and mature B cells (CD19⁺B220⁻). These data compare with Runx1lacZ/⁺ haploinsufficient mice where Runx1 expression is maintained during B-cell differentiation (North et al., 2004). Additional staining with anti-CD43 and anti-B220 antibodies would be required to assess accurately Runx1 expression during B cell differentiation. Interestingly, B cell development is severely impaired in conditionally inactivated Runx1 adult mice and LTR-HSC in vivo transplantations fail to reconstitute peripheral B and T cells (Ichikawa et al., 2004). The observation that Runx1EGFP/WT mice compared with Runx1WT/WT animals indicates that the Runx1EGFP allele is most probably functional in the lymphoid compartments.

4.8.2. EGFP expression in the Runx1EGFP E11.5 embryo

The second part of this study focused on the E11.5 AGM region because a focus of the lab is to investigate the role of Runx1 in the emerging LTR-HSCs in the E11.5 AGM region. Runx1EGFP/EGFP embryos were used for most analyses because adult analyses had shown that EGFP shifts were very small in the Runx1EGFP/WT animals.

It was shown that most CD45⁺ cells in the E11.5 AGM region express EGFP, consistent with other reporter models (North et al., 1999; North et al., 2002). The relative EGFP MFI of cell populations that are enriched for LTR-HSCs (CD45⁺ c-kit⁺ CD34⁺ VE-cadherin⁺)(North et al., 2002; Sanchez et al., 1996; Taoudi et al., 2005) were higher than in other haematopoietic cell populations. Interestingly, a small sub-population of CD45⁻ cells expressed EGFP. Further characterisation of this cell population showed that most of these cells did not have an endothelial phenotype based on VE-cadherin expression. Also, some of them express the pre-haematopoietic marker CD41 at high levels. This is of interest because CD41 is expressed at the onset of definitive haematopoiesis (Ferkowicz et al., 2003; Mikkola et al., 2003a; North et al., 2002; Sanchez et al., 1996; Taoudi et al., 2005) and a
recent report has demonstrated that CD41 is expressed prior to CD45 on haematogenic endothelial cells (Eilken et al., 2009). Additionally, this cell population (CD45^−VE-cadherin^EGFP^+) decreased by 6 fold during reaggregate culture. Cell sorting of such EGFP^+ cells and their reaggregation with complementary AGM cell fractions will assess the potential of these cells to develop into LTR-HSCs. Because the EGFP marker is only restricted to cells expressing Runx1, a lineage trace system that consists in setting up Ly-5.2/5.2 and Ly-5.2/5.1 chimeric reaggregates has been established and should provide a useful system to answer whether CD45^−VE-cadherin^Runx1^+ are pre-LTR-HSC or are an important element of the LTR-HSC niche in the AGM microenvironment.

4.8.3. LTR-HSCs numbers in the Runx1^EGFP E11.5 AGM region

Transplantations of fresh E11.5 AGM region were performed to confirm the absence of LTR-HSC phenotype in Runx1^EGFP embryos. Surprisingly, the Runx1^EGFP/WT AGM region appeared to contain fewer LTR-HSCs compared with WT animals. If this result is confirmed by limiting dilution experiments, it could have two major implications: Runx1^EGFP embryos are developmentally retarded and LTR-HSCs appear slightly later; or Runx1^EGFP allele is hypomorphic and there are fewer LTR-HSCs with potential functional defects. Future experiments will need to investigate if there is any dose-dependent effect of the Runx1^EGFP allele by transplanting Runx1^EGFP/EGFP embryos and will help discriminating between these hypotheses. This is important because an abnormal LTR-HSC phenotype during development could severely affect the outcome of reaggregate lineage trace experiments.
5. The spatial localisation of pre-HSC in the E11.5 AGM region

5.1. Introduction

The third part of this study focused on localising pre-HSCs in the AGM region and identifying potential interactions between sub-compartments of the AGM region. I focused on: 1) the axio-lateral polarity of LTR-HSC development and 2) the dorso-ventral polarity of LTR-HSC development and the hypothesis that cells in the AoD might be competent to become LTR-HSCs when exposed to the appropriate microenvironment.

The E11.5 AGM region harbours and can autonomously expand the first LTR-HSCs of the embryo (Medvinsky and Dzierzak, 1996; Muller et al., 1994). However, the question of the origin of LTR-HSCs within the AGM region and identification of key niche components remains of importance.

Previous studies have addressed the axio-lateral repartition of haematopoietic progenitors (CFU-S₈ and CFU-S₁₁) and LTR-HSCs in the E11.5 AGM region (de Bruijn et al., 2000a; de Bruijn et al., 2000b; Medvinsky et al., 1996; Taoudi and Medvinsky, 2007). Although their numbers are slightly higher in the dorsal aorta (Ao), both Ao and the urogenital ridges (UGRs) contain CFU-S₈ and CFU-S₁₁ at E10.5 (de Bruijn et al., 2000a; Medvinsky et al., 1996). Absolute numbers of CFU-S increased at E11.5 and E12.5 in both regions (de Bruijn et al., 2000a; Medvinsky et al., 1996). In contrast, LTR-HSCs were exclusively located in the Ao (including surrounding mesenchyme) at E11.5 (de Bruijn et al., 2000b; Taoudi and Medvinsky, 2007). At E12.5 however, LTR-HSCs are still preferentially located in the Ao but can be functionally detected in the UGRs, and more precisely in the mesonephroi (de Bruijn et al., 2000b). Small numbers of LTR-HSCs can be obtained from E11.5 UGRs when they are cultured as explants showing either their capacity to autonomously initiate LTR-HSC induction/expansion or that they were populated by
pre-HSCs from the Ao prior to E11.5 (de Bruijn et al., 2000b). Co-culture of Ao and UGRs as explants failed to show any stimulatory or inhibitory action from either tissue on each other (de Bruijn et al., 2000b).

Since reaggregation, in contrast to explant culture, ensures close intercellular contacts, this part of my study addressed whether culturing the E11.5 AGM as reaggregates would reveal potential enhancing/inhibiting interactions between Ao and UGR in LTR-HSC development. In addition, the presence of IL-3, SCF, and Flt3l and longer culture period could possibly influence the outcome of such experiments.

This part of my study also was to understand cellular mechanisms underlying dorso-ventral polarization in LTR-HSC development. The ventral domain of the E10.5-11.5 Ao (AoV) contains the majority of LTR-HSCs in the fresh tissue and is capable of autonomous LTR-HSCs generation (Taoudi and Medvinsky, 2007). I tested, using the reaggregate culture system, whether the dorsal domain of the Ao (AoD) contains cells capable of developing into LTR-HSCs under the influence of the competent AoV microenvironment.

5.2. Axio-lateral polarity of LTR-HSC expansion within E11.5 AGM region

E11.5 embryos were selected as described in Section 2.4.1, and the AGM regions were sub-dissected into UGR and Ao (Figure 5.1). Importantly, UGRs were dissected along the ridges so that the para-aortic mesenchyme was left with the Ao. The blood within the Ao was not removed (Figure 5.1).
Figure 5.1: Scheme of E11.5 AGM region lateral sub-dissection into dorsal aorta and urogenital ridges.
Sub-dissection of the E11.5 AGM region into the dorsal aorta and its surrounding mesenchyme (Ao), and the two urogenital ridges (UGR)(scale bar: 1mm).

Table 5.1: Lateral repartition of cells in the E11.5 AGM region (Ao and UGR).
Data was acquired by flow cytometric analysis; viability determined by 7-AAD uptake. Absolute numbers ± standard deviation; mean of 4 independent experiments.
DP: CD45⁺VE-cadherin⁺; DN: CE45⁻VE-cadherin⁻

<table>
<thead>
<tr>
<th></th>
<th>AGM</th>
<th>Ao</th>
<th>UGR</th>
</tr>
</thead>
<tbody>
<tr>
<td>total cells</td>
<td>232500 ± 24660</td>
<td>77460 ± 19170</td>
<td>134300 ± 36210</td>
</tr>
<tr>
<td>total live cells</td>
<td>113400 ± 28610</td>
<td>47660 ± 10140</td>
<td>59440 ± 11500</td>
</tr>
<tr>
<td>total CD45⁺ cells</td>
<td>3360 ± 780</td>
<td>1270 ± 400</td>
<td>1800 ± 260</td>
</tr>
<tr>
<td>total VE cadherin⁺ cells</td>
<td>1410 ± 440</td>
<td>470 ± 160</td>
<td>970 ± 340</td>
</tr>
<tr>
<td>total DP cells</td>
<td>63 ± 38</td>
<td>20 ± 22</td>
<td>15 ± 9</td>
</tr>
<tr>
<td>total DN cells</td>
<td>108600 ± 27570</td>
<td>45900 ± 9690</td>
<td>56650 ± 11150</td>
</tr>
</tbody>
</table>
5.2.1. Axio-lateral characterisation of the fresh E11.5 AGM region

5.2.1.1. Cellular composition of the Ao and UGR

The lateral repartition of haematopoietic (CD45⁺) cells and LTR-HSCs (CD45⁺VE-cadherin⁺) between Ao and UGR were analysed by flow cytometry. The Ao contained 77460±19170 cells, of which 47660±10140 were viable (Table 5.1). The UGR contained 134300±36210 cells, of which 59440±11500 were viable (Table 5.1). There was no polarised repartition of haematopoietic cells between Ao and UGR, which contained 1270±400 and 1800±260 CD45SP cells respectively (paired T-test, p≥0.2)(Table 5.1). There was also no polarised repartition of the CD45⁺VE-cadherin⁺ cells between Ao and UGR, which contained 20±22 and 15±9 CD45⁺VE-cadherin⁺ cells respectively (paired T-test, p≥0.2)(Table 5.1). Finally, the Ao and UGR respectively contained 470±160 and 970±340 CD45⁻VE-cadherin⁺ cells and 45910±9690 and 56650±11150 CD45⁻VE-cadherin⁻ cells (Table 5.1).

Of note, the sum of Ao and UGR cells reached the range of the numbers found in the whole AGM (Table 5.1) indicating that there was no preferential cell death in either the Ao and UGR during flow cytometry processing.

5.2.1.2. Axio-lateral repartition of haematopoietic progenitors in the E11.5 AGM region

There was no significant difference in haematopoietic progenitors (CFU-Cs) between fresh E11.5 Ao and UGR (paired T-test, p=0.09)(Figure 5.2). Ao contained 84±11 CFU-Cs (17±9 CFU-mast, 10±7 BFU-E, 8±6 CFU-GM, 46±15 CFU-mac, and 3±1 CFU-GEMM) and the UGR contained 47±24 CFU-Cs (10±7 CFU-mast, 6±6 BFU-E, 4±4 CFU-GM, 17±27 CFU-mac, and 0 CFU-GEMM)(Figure 5.2). Although there were considerable variations within types and numbers of CFU-Cs in the UGR, there were consistently more CFU-Cs in the Ao compared to UGR. Interestingly, no CFU-GEMM was observed in the UGRs in any of the experiments (Figure 5.2).
Figure 5.2: Lateral repartition of haematopoietic progenitors in the E11.5 AGM (Ao and UGR).

Bars indicate the standard deviation of 4 independent experiments.

BFU-E: burst forming unit-erythroid; CFU: colony forming unit; Mac: macrophage; GM: granulocyte/macrophage; GEMM: granulocyte/erythroid/macrophage/megakaryocyte; ee: embryo equivalent.
Cumulative numbers of CFU-Cs in Ao and UGRs roughly corresponded to the range of CFU-C numbers in the whole AGM (140±30 CFU-Cs: 37±22 CFU-mast, 15±3 BFU-E, 15±13 CFU-GM, 66±13 CFU-mac, and 7±2 CFU-GEMM)(Figure 5.2) suggesting that sub-dissection of the AGM does not influence development of haematopoietic colonies in culture.

5.2.2. Autonomous haematopoietic potential of E11.5 Ao and UGRs in reaggregate cultures

As described in Chapter 3, the reaggregate culture system enables efficient expansion of LTR-HSCs from 1 to around 150 within 4 days (Kumaravelu et al., 2002; Taoudi et al., 2008). Ao and UGR reaggregates were set up in IMDM+ to examine their autonomous haematopoietic potential.

5.2.2.1. Expansion of haematopoietic (CD45+) cells in E11.5 Ao and UGR reaggregates

Ao and UGR reaggregates were similar by size but UGR reaggregates lacked peripheral cell protrusions characteristic of AGM reaggregates (Figure 5.3A). There was no statistical difference between cell numbers in Ao and UGR reaggregates which respectively contained 98840±31170 and 143170±49860 cells (paired T-test, p=0.1)(Figure 5.3B). Ao and UGR reaggregates contained 16070±7130 and 7880±3860 CD45+ cells respectively (Figure 5.3B). Although CD45+ cells were not statistically different in Ao and UGR cultures (paired T-test, p≥0.2), Ao reaggregates contained more CD45+ cells than UGR reaggregates in 3 out of 4 experiments. Cumulatively, haematopoietic cell numbers in Ao and UGR reaggregates in each experiment were similar to those in entire AGM reaggregates (Figure 5.3B), suggesting no inhibiting or enhancing interactions between Ao and UGR.
Figure 5.3: Haematopoietic potential of Ao and UGR reaggregates.
A: Representative images of AGM, Ao and UGR reaggregates. Ao and UGR reaggregates had similar morphology and were smaller than their AGM controls counterparts.
B: Haematopoietic cell numbers (CD45+) in AGM, Ao, and UGR reaggregates. Bars indicate standard deviation of 6 experiments in AGM and Ao reaggregates, and 4 experiments in UGR reaggregates.
Data was acquired by flow cytometric analysis; cell viability was determined by 7-AAD uptake.
5.2.2.2. Expansion of haematopoietic progenitors in E11.5 Ao and UGR reaggregates

The expansion of haematopoietic progenitors in Ao and UGR reaggregates was assessed by the CFU-C assay. The Ao reaggregates contained 1780±1350 CFU-Cs (780±568 CFU-mast, 163±213 BFU-E, 25±29 CFU-GM, 725±527 CFU-mac, and 88±118 CFU-GEMM) while the UGR reaggregates contained 540±540 CFU-Cs (300±280 CFU-mast, 25±50 BFU-E, 15±25 CFU-GM, 191±200 CFU-mac, and 0 CFU-GEMM)(Figure 5.4). Even though Ao reaggregates consistently contained more CFU-Cs than UGR reaggregates (n=4), the difference was not significant (paired T-test; p=0.216). Interestingly, similar to the fresh tissue, UGR reaggregates did not contain CFU-GEMM.

AGM reaggregates controls for each of these experiments contained 4190±1280 CFU-Cs (1725±674 CFU-mast, 450±311 BFU-E, 275±263 CFU-GM, 1500±734 CFU-mac, and 240±165 CFU-GEMM)(Figure 5.4). In each of the four experimental replicates, CFU-C number in AGM reaggregates was significantly higher than the cumulative numbers obtained from Ao and UGR reaggregates; suggesting a stimulatory interaction between Ao and UGR.

5.2.2.3. Expansion of LTR-HSC in E11.5 Ao and UGR reaggregates

In vivo transplantations experiments were set up to answer the following questions: 1) do Ao and UGR have the autonomous potential to expand LTR-HSCs when cultured as reaggregates in IMDM? 2) If so, is number of LTR-HSCs generated in Ao and UGR reaggregates cumulatively similar to those generated in AGM reaggregates?

Transplantation of AGM reaggregates (0.01rd/recipient) resulted in repopulation of 23 out of 27 recipients (85%)(mean PBC: 58.4±27 %)(Figure 5.5A). The same dose of Ao reaggregates resulted in repopulation of only 10 out 22 recipient mice (45%)(mean PBC: 32.3±17 %)(Figure 5.5A). A higher dose of Ao reaggregate (0.05rd/recipient) resulted in repopulation of 5 out of 11 recipients.
Figure 5.4: Haematopoietic progenitor expansion in Ao and UGR reaggregates.
Bars indicate the standard deviation of 4 independent experiments.
BFU-E: burst forming unit-erythroid; CFU: colony forming unit; Mac: macrophage; GM: granulocyte/macrophage; GEMM: granulocyte/erythroid/macrophage/megakaryocyte; ee: embryo equivalent.
Figure 5.5: Autonomous LTR-HSCs expansion potential of the Ao and UGR as reaggregates.

A: Peripheral blood chimerism of recipients transplanted with Ao reaggregates. Data is cumulative of 6 independent experiments.

B: Peripheral blood chimerism of recipients transplanted with UGR reaggregates. Data is cumulative of 4 independent experiments. Each point represents a single recipient mouse. Recipients were considered reconstituted when their peripheral blood chimerism exceeded 5% at least 12 weeks after transplantation. (rd: dose of reaggregate injected per recipient mouse)
(45%)(mean PBC: 75.9±10 %)(Figure 5.5A). The mean PBC in this case was higher than with a lower dose, suggesting a higher number of LTR-HSCs. Statistical analysis showed that there was a significant difference in reconstitution levels between AGM reaggregates and Ao reaggregates (Fisher’s exact test, p=0.01).

Similar experiments were set up with UGR reaggregates. Control AGM reaggregates (0.01rd/recipient) gave repopulation of 15 out of 19 recipients (79%)(mean PBC: 69.9±17.2 %)(Figure 5.5B). The same dose of UGR reaggregates gave no repopulation (0 out of 17 recipients) except one recipient with low-level reconstitution (3.58%)(Figure 5.5B). A higher dose (0.05rd/recipient) was transplanted to potentially detect low numbers of LTR-HSCs. No recipient mice were reconstituted (Figure 5.5B), suggesting that the UGR cannot autonomously generate detectable LTR-HSCs even in the presence of growth factors.

Taken together, these data indicate that only the Ao can autonomously generate detectable numbers of LTR-HSCs. However, the data show that AGM reaggregates can generate more LTR-HSCs (approximately 85) than the Ao on its own (approximately 45). In addition, the mean PBC of recipients transplanted with AGM reaggregates was higher than those of recipients transplanted with Ao reaggregates. This further indicates that AGM reaggregates produce more LTR-HSCs than Ao reaggregates. Thus, although UGR reaggregates cannot independently facilitate LTR-HSC formation, UGRs could enhance optimal LTR-HSC formation in the Ao. Alternatively, Ao could induce formation of LTR-HSCs from the UGRs.

5.2.2.4. Multilineage reconstitution by LTR-HSCs derived from Ao reaggregates

Multilineage analysis of mice transplanted with Ao reaggregates cells was performed by flow cytometry. The presence of donor cells in primary recipients was checked 16 weeks post-transplantation in haematopoietic tissues (peripheral blood, spleen, bone marrow, and thymus). All tissues contained CD45.2 donor cells in high proportions (ranging from 40 to 73% in peripheral blood, 7 to 70% in bone marrow, 44 to 76% in the spleen, and 90 to 95% in the thymus)(Figure 5.6A). Peripheral
Figure 5.6: Multilineage haematopoietic reconstitution by LTR-HSCs generated in Ao reaggregates.

A: Long-term donor derived reconstitution in major haematopoietic organs (peripheral blood, spleen, bone marrow, and thymus).
B: Long-term multilineage (myelo-lymphoid) contribution in major haematopoietic organs (peripheral blood, spleen, bone marrow, and thymus) of recipients. Events were gated on donor cells exclusively.

Representative example of analysis performed on 2 recipients transplanted with 0.05rd showing high-level reconstitution.

Quadrants are based on appropriate isotype control (Appendix 3.2) and values indicate percentages of cells. Cell viability was determined by 7-AAD uptake.
blood, spleen and bone marrow contained myeloid cells (Mac1\(^+\) and Gr1\(^+\)) and lymphoid cells (CD3\(^+\) T cells, and B220\(^+\) and CD43\(^+\) B cells)(Figure 5.6B). The majority of donor cells in the thymus were immature CD4\(^+\)CD8\(^+\) T cells and mature single-positive T cells (CD4\(^-\)CD8\(^-\) and CD4\(^-\)CD8\(^+\))(Figure 5.6B). Thus, HSCs generated by Ao reaggregates are true multilineage LTR-HSCs.

5.2.3. Spatial origin of LTR-HSCs in E11.5 AGM reaggregates: axio-lateral polarity

The fact that AGM reaggregates produce more LTR-HSCs than Ao reaggregates has two possible explanations: UGRs could generate high level reconstituting LTR-HSCs when induced by Ao cells; or that UGRs could enhance LTR-HSCs production from the Ao. Chimeric reaggregates combining WT and GFP cells were set up to distinguish between these two possibilities. The experimental strategy was to produce Ao\(^{GFP}\) with UGR\(^{WT}\) chimeric reaggregates to trace Ao and UGR cells during culture (Figure 5.7A). To exclude a potential influence of constitutive GFP expression, reciprocal experiments in which chimeric Ao\(^{WT}\) and UGR\(^{GFP}\) reaggregates were produced (Figure 5.7A). In addition, basic characterisation of E11.5 AGM\(^{GFP}\) was performed to confirm constitutive GFP expression in the tissue (Appendix 5.1; Gilchrist et al., 2003). No significant difference in cell numbers between GFP and WT E11.5 AGM regions were observed (Appendix 5.1A). Interestingly, 1.44±0.4 % of viable cells were GFP\(^+\) (Appendix 5.1A). GFP reaggregates were also set up. Although 1.34% of cells in GFP reaggregates were GFP\(^+\), all CD45\(^+\) cells were GFP\(^+\) (Appendix 5.1B). Analysis of a reconstituted recipient showed that more than 98% of leucocytes in the peripheral blood were GFP\(^+\). This analysis confirmed the validity of using GFP mice in cell fate tracing experiments.
Figure 5.7: Experimental design to trace the origin of LTR-HSCs in the E11.5 AGM region.

A: Generation of chimeric reaggregates to trace pre-HSCs in the E11.5 AGM region: organs are laterally sub-dissected in both WT and GFP embryos and chimeric reaggregates are produced with Ao and UGR from the 2 genotypes. After 4 days in culture, LTR-HSCs are assessed by competitive repopulation assay.

B: Representative images of AGM chimeric reaggregates showing no morphological difference between reciprocal set-ups.
5.2.3.1. Expansion of haematopoietic (CD45⁺) cells in chimeric (Ao/UGR) E11.5 AGM reaggregates

There were no obvious morphological or size differences between Ao^{WT}|UGR^{GFP} and Ao^{GFP}|UGR^{WT} reaggregates (Figure 5.7B). Fluorescent images of these reaggregates showed preferable concentration of Ao cells in the centre of the reaggregates (Figure 5.7B). More accurate analysis by confocal microscopy is required to investigate the spatial segregation of Ao and UGR derived cells.

There was no statistical difference in cell numbers between reciprocal reaggregate set-ups (Ao^{WT}|UGR^{GFP}: 199500±51030 cells and Ao^{GFP}|UGR^{WT}: 194330±19120 cells)(Wilcoxon signed rank test, p≥0.2). Respective contribution of Ao and UGR to the viable cell population was assessed by flow cytometry. Wilcoxon signed rank test showed no significant differences between reciprocate set ups (p≥0.2 for both Ao and UGR): in Ao^{WT}|UGR^{GFP} and Ao^{GFP}|UGR^{WT} set ups, UGR generated 78200±15480 and 82670±14810 cells respectively; and Ao generated 58850±17980 and 53570±12200 cells respectively (Figure 5.8A).

Wilcoxon signed rank test showed no significant difference between the numbers of haematopoietic (CD45⁺) cells in reciprocate set-ups (p≥0.2): Ao^{WT}|UGR^{GFP} and Ao^{GFP}|UGR^{WT} reaggregates contained 21700±5300 and 20000±5510 CD45⁺ cells respectively (Figure 5.8B). In Ao^{WT}|UGR^{GFP} and Ao^{GFP}|UGR^{WT} reaggregates, Ao generated 15370±3390 cells and 13800±4290 CD45⁺ cells respectively (Figure 5.8B). In Ao^{WT}|UGR^{GFP} and Ao^{GFP}|UGR^{WT} reaggregates, UGRs generated 6340±2540 and 6170±1260 CD45⁺ cells respectively (Figure 5.8B). Respective contributions of Ao and UGRs to CD45⁺ cells were not significantly different between reciprocate set-ups (Wilcoxon signed rank test, p=0.58 for UGR, and p=0.85 for Ao).

Taken together, these data indicate that similar cell contributions from Ao and UGR are obtained in Ao^{WT}|UGR^{GFP} and Ao^{GFP}|UGR^{WT} reaggregates. In both cases, the majority (around 70%) of CD45⁺ cells in reaggregates are Ao-derived and only around 30% of CD45⁺ are derived from UGR.
Figure 5.8: Respective contribution of Ao and UGR to the haematopoietic cell compartment of E11.5 AGM chimeric reaggregates.

A: Live cells numbers and respective contribution of Ao and UGR.
B: Haematopoietic cell (CD45+) numbers and respective contribution of Ao and UGR.

Bars indicate the standard deviation of 4 independent experiments.

Data was acquired by flow cytometric analysis; cell viability was determined by 7-AAD uptake.
When compared with the fresh tissue, Ao and UGR cells respectively underwent between 1.2 and 1.3 fold expansion during reaggregate culture. However, CD45+ cells from Ao underwent 12-fold expansion while CD45+ cells from UGR underwent 3-fold expansion. Thus, the haematopoietic potential of the Ao, judged by the number of CD45+ cells produced, is significantly greater than the UGR.

5.2.3.2. CFU-C expansion potential of chimeric (Ao/UGR) E11.5 AGM reaggregates

There was no difference in CFU-Cs numbers between AoWT|UGR GFP and Ao GFP|UGR WT set-ups (Wilcoxon signed rank test, p=0.85)(Figure 5.9). AoWT|UGR GFP and Ao GFP|UGR WT reaggregates respectively contained 4190±1280 CFU-Cs (1725±674 CFU-mast, 450±311 BFU-E, 275±263 CFU-GM, 1500±734 CFU-mac, and 240±165 CFU-GEMM) and 3940±840 CFU-Cs (1775±685 CFU-mast, 312±165 BFU-E, 265±209 CFU-GM, 1387±522 CFU-mac, and 200±168 CFU-GEMM)(Figure 5.9).

Unfortunately, the respective contribution of the Ao and UGR to CFU-Cs could not be reliably assessed for several reasons. First, there was a high amount of autofluorescence background in methylcellulose colonies (based on WT colonies controls), making the evaluation unreliable. In addition, some mature haematopoietic cells express low levels of GFP (own observation and S. Gordon-Keylock, personal communication), which are hard to detect by microscopy. To overcome this problem, FACS could be attempted but the very low numbers of cells in some individual colonies (around 100 in some cases) was unsuitable for flow cytometry processing. As a result, several attempts to determine the origin of individual CFU-C colonies based on GFP expression were unsuccessful.
Figure 5.9: Haematopoietic progenitors expansion in E11.5 AGM chimeric reaggregates.
Bars indicate the standard deviation of 4 independent experiments.
BFU-E: burst forming unit-erythroid; CFU: colony forming unit; Mac: macrophage; GM: granulocyte/macrophage; GEMM: granulocyte/erythroid/macrophage/megakaryocyte; ee: embryo equivalent
5.2.3.3. The axio-lateral polarity of LTR-HSC development

The respective contribution of Ao and UGR into the chimeric reaggregates LTR-HSCs compartment was assessed using GFP expression. Transplantation of 0.01 dose of chimeric Ao^{WT}|UGR^{GFP} reaggregates resulted in reconstitution of 19 out of 27 recipients (70%)(mean PBC: 62±22 %)(Figure 5.10). Transplantation of 0.01 dose of Ao^{GFP}|UGR^{WT} reaggregates resulted in reconstitution of 8 out of 15 recipients (54%)(mean PBC: 53±37 %)(Figure 5.10). Although it appeared that Ao^{WT}|UGR^{GFP} contained more LTR-HSCs than Ao^{GFP}|UGR^{WT} based on the proportion of reconstituted recipients, this was not statistically significant (Fisher’s exact test, p=0.3).

Respective contribution of Ao and UGR to recipient’s peripheral blood was analysed based on GFP expression. The large majority of high level of blood chimerism was derived from Ao, both in Ao^{WT}|UGR^{GFP} and Ao^{GFP}|UGR^{WT} set-ups (Figure 5.10). In contrast, UGR only contributed to low level chimerism in 2 out of 19 recipients (9% and 3.7%) transplanted Ao^{WT}|UGR^{GFP} reaggregates (Figure 5.10). However, most recipients reconstituted with Ao^{GFP}|UGR^{WT} reaggregates cells had low (between 0.9 and 4.7%) but yet detectable contribution by UGR-derived cells (Figure 5.10). It is conceivable that some low WT donor contribution was due to down-regulating GFP in Ao-derived blood cells. Quantitative PCR would be required to properly establish this. However, given that LTR-HSCs are considered to be high level repopulating cells, we can safely conclude that in AGM reaggregates, LTR-HSCs originate from the Ao. Combined with the conclusion that higher numbers of LTR-HSCs are produced in AGM reaggregates compared to Ao reaggregates, these data demonstrate that LTR-HSCs production from the Ao is significantly enhanced by the presence of UGRs in the reaggregates.

5.2.4. Supportive effect of the UGR on LTR-HSC expansion

The better LTR-HSC production in AGM reaggregates could either be due to the presence of the UGRs providing a positive effect on Ao or to the size of the reaggregate (called here “community effect”). In order to test this possibility,
Figure 5.10: Lateral polarity of LTR-HSC expansion in E11.5 AGM chimeric reaggregates.

Peripheral blood chimerism of recipients transplanted with 0.01 dose of E11.5 AGM chimeric reaggregates.

Data is cumulative of 6 independent experiments for Ao\(^{WT}\)|UGR\(^{GFP}\), and 4 independent experiments for Ao\(^{GFP}\)|UGR\(^{WT}\).

Only reconstituted mice are displayed; percentages correspond to the proportion of reconstituted recipients. Each bar represents a single recipient mouse. Recipients were considered reconstituted when their peripheral blood chimerism exceeded 5% at least 12 weeks after transplantation.
reaggregates made with 2 Ao (Ao|Ao) were set up along with AGM controls and Ao reaggregates.

Only LTR-HSC data were analysed for these experiments. When 0.01 dose of AGM reaggregate was transplanted into single recipient mice, 8 out of 8 mice (100%) were reconstituted (mean PBC: 36.3%)(Figure 5.11). In similar conditions, only 3 out of 5 mice (60%) were reconstituted when transplanted with Ao reaggregate cells (mean PBC: 37.1%); and 3 out of 6 mice (50%) were reconstituted when transplanted with Ao|Ao reaggregates (mean PBC: 21%)(Figure 5.11). When transplanted with 0.05 doses of reaggregates, 3 out of 6 mice (50%) were reconstituted with Ao reaggregate cells (mean PBC of 79.6%) and 4 out of 6 mice (67%) were reconstituted with Ao|Ao reaggregates (mean PBC: 34.6%)(Figure 5.11). These data show that doubling of the numbers of Ao cells in reaggregates generates approximately the same LTR-HSCs numbers (≈60 in both Ao and Ao|Ao reaggregates in contrast to at least 100 in AGM reaggregates).

Furthermore, because comparable numbers of LTR-HSCs were obtained from a single Ao and two Ao, suggests the performance of a single Ao is decreased when exposed to additional Ao cells. Altogether, these results confirm that co-culture with UGR cells specifically enhances LTR-HSCs formation from Ao. Additional experiments would be required in order to obtain more accurate numbers of LTR-HSCs generated by the Ao.

5.3. Dorso-ventral polarity of LTR-HSC development within E11.5 AGM region

Our laboratory has demonstrated that LTR-HSCs in the E11.5 AGM region are almost exclusively located in the AoV and that only this site has the autonomous potential of expanding LTR-HSCs when cultured as explants (Taoudi and Medvinsky, 2007).

Here, I focused on the haematopoietic potential of the AoD and aimed to establish whether it harbours cells that are competent to develop into LTR-HSCs.
Figure 5.11: Supportive effect of the UGR on LTR-HSCs expansion from the Ao.
Reaggregation of large numbers of Ao cells (Ao|Ao, 2 embryo equivalent per reaggregate) compared to E11.5 AGM region (Ao|UGR) reaggregates.
Data are cumulative of 2 independent experiments.
Each point represents a single recipient mouse. Recipients were considered reconstituted when their peripheral blood chimerism exceeded 5% at least 12 weeks after transplantation.
(rd: dose of reaggregate injected per recipient mouse)
Two major approaches were undertaken to address this issue: 1) does the presence of the notochord and adjoining somites inhibit LTR-HSCs formation in the AoD? 2) Can LTR-HSCs be induced from AoD when exposed to AoV/UGR and the combination of IL-3, SCF, and Flt3L?

5.3.1. **Dorso-ventral dissections of the E11.5 AGM region**

Previously, the dorsal tissue (DT)(containing notochord and partly somites) was left attached to the AoD in order to facilitate the dissections and to keep a landmark for the dorso-ventral orientation of the Ao. To test whether DT influences the AoD haematopoietic potential, DT was dissected from the AGM region prior to AoD-AoV sub-dissection.

Figure 5.12 shows dorso-ventral dissections and highlights that DT can be removed from the AGM prior to sub-dissection of the Ao (Figure 5.12A and B). Confocal microscopy confirmed that the endothelial lining of the AoD and AoV, marked by CD31 staining, was not disrupted during sub-dissections (Figure 5.12C). Note that the confocal pictures shown in this figure were taken prior to DT dissections.

5.3.2. **Dorso-ventral distribution of cell populations in the fresh E11.5 AGM region**

5.3.2.1. **Dorso-ventral distribution of haematopoietic (CD45+) and endothelial (VE-cadherin+) cells**

E11.5 AGM regions were sub-dissected and analysed by flow cytometry. DT was also isolated and analysed. Wilcoxon signed rank test showed no significant difference in cell numbers between AoD and AoV, containing 49330±11010 and 66330±8000 total cells respectively, and 35570±8250 and 38750±3110 viable cells respectively (p=0.18)(Table 5.2). No obvious dorso-ventral polarity of
Figure 5.12: Scheme of E11.5 AGM region dorso-ventral subdissection into dorsal and ventral aspects of the dorsal aorta

A: Dissection of the E11.5 AGM region and removal of the dorsal tissue (DT) containing notochord and somite remnants. Bars: 1mm

B: Sub-dissection of the AGM region into urogenital ridges (UGR) and dorsal (AoD) and ventral (AoV) domains of the dorsal aorta. Bars: 1mm

C: Confocal microscopy of AoD and AoD shows intact endothelial lining of the dorsal aorta (Ao) after dissection (arrows). Blue: DAPI, Red: CD31
Table 5.2: Cell composition of the fresh E11.5 AGM region and their dorso-ventral repartition in AoV, AoD, and dorsal tissue.

Data was acquired by flow cytometry; cell viability was determined by 7-AAD uptake.
Mean absolute numbers ± standard deviation of 4 independent experiments.

DP: CD45$^+$VE-cadherin$^+$; DN: CD45$^+$VE-cadherin$^-$

<table>
<thead>
<tr>
<th></th>
<th>AGM</th>
<th>AoD</th>
<th>AoV</th>
<th>UGR</th>
<th>DT</th>
</tr>
</thead>
<tbody>
<tr>
<td>total cells</td>
<td>229000 ± 47880</td>
<td>49330 ± 11010</td>
<td>66330 ± 8000</td>
<td>151400 ± 45230</td>
<td>123670 ± 9500</td>
</tr>
<tr>
<td>total live cells</td>
<td>120200 ± 8830</td>
<td>35570 ± 8250</td>
<td>38750 ± 3110</td>
<td>58740 ± 12900</td>
<td>93700 ± 13340</td>
</tr>
<tr>
<td>total CD45$^+$ cells</td>
<td>3400 ± 1110</td>
<td>880 ± 260</td>
<td>1380 ± 190</td>
<td>1560 ± 300</td>
<td>1600 ± 200</td>
</tr>
<tr>
<td>total VE cadherin$^+$ cells</td>
<td>3030 ± 540</td>
<td>340 ± 110</td>
<td>660 ± 140</td>
<td>1450 ± 230</td>
<td>290 ± 30</td>
</tr>
<tr>
<td>total DP cells</td>
<td>76 ± 37</td>
<td>22 ± 11</td>
<td>35 ± 11</td>
<td>26 ± 11</td>
<td>8 ± 2</td>
</tr>
<tr>
<td>total DN cells</td>
<td>113140 ± 7120</td>
<td>34150 ± 7990</td>
<td>36680 ± 2990</td>
<td>55680 ± 12410</td>
<td>91800 ± 13160</td>
</tr>
</tbody>
</table>
haematopoietic (CD45+) cells was observed: AoD and AoV contained 880±260 and 1380±190 CD45+ cells respectively (Wilcoxon signed rank test, p=0.18) (Table 5.2). Although not significantly different, numbers of CD45+VE-cadherin+ cells (enriched for LTR-HSCs) were consistently higher in the AoV compared to AoD (AoD: 22±11 CD45+VE-cadherin+ cells, AoV: 35±11 CD45+VE-cadherin+ cells; Table 5.2) (Wilcoxon signed rank test, p=0.18). Interestingly, DT contained 1600±190 of CD45+ cells, comparable to what is obtained in the AoD and AoV (Table 5.2). There were 8±2 CD45+VE-cadherin+ cells in DT (Table 5.2).

Altogether, these data confirm published data that there is no significant dorso-ventral polarisation of haematopoietic cells in the E11.5 AGM region (Taoudi et al., 2008). Furthermore, the DT did not differ in this respect to the AoV and AoD. This raises the question of the haematopoietic potential of the DT and its potential to influence haematopoiesis from the AoD.

5.3.2.2. Dorso-ventral distribution of EGFP+ cells in Runx1EGFP/WT embryos

In Runx1 haploinsufficient mice, Runx1 expression is restricted to the AoV (North et al., 1999). This observation was based on histological sections and the dorso-ventral polarity of Runx1 expression in the E11.5 AGM region has yet to be quantified and characterised. Runx1WT/WT and Runx1EGFP/WT E11.5 AGM regions were sub-dissected into AoV, AoD, and UGRs, and analysed by flow cytometry according to the strategy described in Chapter 4.

In the UGRs, 96.9±1.7% of CD45SP cells were EGFP+ and 89.3±1.7 of CD45+VE-cadherin+ cells were EGFP+ (Figure 5.13B). The MFI shift of the Runx1EGFP/WT embryos compared to Runx1WT/WT embryos was 11.1±0.7 in the CD45SP population and 13.9±0.8 in the CD45+VE-cadherin+ population (Figure 5.13B). In the non-haematopoietic fractions, 0.60±0.1% of cells expressed EGFP in the CD45+VE-cadherin+ fraction, and 0.80±0.2% of cells in the CD45+VE-cadherin+ (Figure 5.13B).
In the AoD, 93.5±2.3% of CD45SP cells were EGFP+ and 97.6±2.3% of CD45VE-cadherin+ cells were EGFP+ (Figure 5.13B). The MFI shift of the Runx1EGFP/WT embryos compared to Runx1WT/WT embryos was 9.6±0.8 in the CD45SP population and 21.0±4.8 in the CD45VE-cadherin+ population (Figure 5.13B). In the non-haematopoietic fractions, 0.19±0.06% of cells expressed EGFP in the CD45VE-cadherin- fraction, and 1.37±0.1% of cells in the CD45VE-cadherin+ (Figure 5.13B).

In the AoV, 96.7±0.4% of CD45SP cells were EGFP+ and 98.0±1.5% of CD45VE-cadherin+ cells were EGFP+ (Figure 5.13B). The MFI shift of the Runx1EGFP/WT embryos compared to Runx1WT/WT embryos was 11.3±1.1 in the CD45SP population and 23.2±1.8 in the CD45VE-cadherin+ population (Figure 5.13B). In the non-haematopoietic fractions, 1.22±0.2% of cells expressed EGFP in the CD45VE-cadherin- fraction, and 0.71±0.2% of cells in the CD45VE-cadherin+ (Figure 5.13B).

The MFI shift of the Runx1EGFP/WT embryos compared to Runx1WT/WT embryos was lower in the UGR than in aortic region (AoD and AoV). The presence of few CD45EGFP+ cells in UGRs, AoD, and AoV indicates that such cells are not segregated to a particular location. Interestingly however, a larger proportion of these CD45EGFP+ cells were located in the AoV, giving additional incentive to investigate the fate of such cells. These results also confirm that most CD45+ cells express EGFP/Runx1 (Sections 4.5.1, 4.5.3, 4.5.4, 4.5.5), independently of their location in the AGM region. Combining cell numbers with flow cytometric analysis indicates that Runx1 positive cells are equally distributed in the AoV and AoD. This contradicts previous report in which Runx1 expression was concentrated in the AoV in haploinsufficient Runx1lz/+ mice (de Bruijn et al., 2002; North et al., 1999). Such discrepancy is likely due to the Runx1 haploinsufficiency in Runx1lz/+ mice.
Figure 5.13: EGFP expression in haematopoietic and endothelial compartments of Runx1EGFP/WT E11.5 UGR, AoD, and AoV.

A: Representative CD45 VE-cadherin stains in E11.5 UGRs of Runx1EGFP/WT animals compared to Runx1WT/WT animals and analysis of EGFP in CD45VE-cadherin−, CD45VE-cadherin+, CD45VE-cadherin−, CD45VE-cadherin+ cell fractions. Quadrants on dot plots were based on appropriate isotype controls (Appendix 4.3B).

B: Representative CD45 VE-cadherin stains in E11.5 AoD of Runx1EGFP/WT animals compared to Runx1WT/WT animals and analysis of EGFP in CD45VE-cadherin−, CD45VE-cadherin+, CD45VE-cadherin−, CD45VE-cadherin+ cell fractions.

C: Representative CD45 VE-cadherin stains in E11.5 AoV of Runx1EGFP/WT animals compared to Runx1WT/WT animals and analysis of EGFP in CD45VE-cadherin−, CD45VE-cadherin+, CD45VE-cadherin−, CD45VE-cadherin+ cell fractions.

EGFP: enhanced green fluorescent protein; WT: wild type; UGR: urogenital ridges; AoD: dorsal domain of the dorsal aorta; AoV: ventral domain of the dorsal aorta.

Black: Runx1WT/WT animals; Blue: Runx1EGFP/WT animals. Quadrants on dot plots were based on appropriate isotype controls (Appendix 4.3B) and values indicate percentages of cells. Cell viability was determined by 7-AAD uptake.

In histograms, values indicate percentages of cells for Runx1EGFP/WT animals. All plots are representative examples of 3 independent experiments.
5.3.3. **Dorso-ventral distribution of haematopoietic progenitors (CFU-Cs) in the fresh E11.5 AGM region.**

The fresh AoD contained 20±7.0 CFU-Cs (4±3.0 CFU-mast, 4±1.5 BFU-E, 1±0.7 CFU-GM, 10±3.4 CFU-mac, and 1±0.5 CFU-GEMM) and AoV contained 42±11.8 CFU-Cs (14±2.5 CFU-mast, 6±2.5 BFU-E, 4±2.6 CFU-GM, 17±5.0 CFU-mac, and 2±1.5 CFU-GEMM), suggesting that there was a dorso-ventral gradient of CFU-Cs (Wilcoxon signed rank test, p=0.18)(Figure 5.14). Similarly to AoD, DT contained 22±11 CFU-Cs (7±4.5 CFU-mast, 2±0.3 BFU-E, 1±2.2 CFU-GM, 12±5.1 CFU-mac, and 0 CFU-GEMM)(Figure 5.14). When DT and AoD were not separated (DAoD), there were a total of 50±17.2 CFU-Cs (17±4.8 CFU-mast, 7±4.5 BFU-E, 4±2.5 CFU-GM, 21±9.7 CFU-mac, and 1±0.8 CFU-GEMM). This corresponded approximately to the sum of AoD and DT CFU-Cs, indicating that the presence of DT had no influence on haematopoietic colony formation during methylcellulose culture (Figure 5.14).

Similarly, the sum of fresh AGM (138±29.3 CFU-Cs in this case) and DT CFU-Cs roughly corresponded to DAGM CFU-C number (159±20 CFU-Cs: 51±7.4 CFU-mast, 30±7.6 BFU-E, 21±17.7 CFU-GM, 51±4.6 CFU-mac, and 6±3 CFU-GEMM), confirming that DT does not influence colony formation in methylcellulose cultures (Figure 5.14).

5.3.4. **The influence of dorsal tissue on AoD haematopoiesis**

5.3.4.1. **Influence of dorsal tissue on AoD haematopoietic cells outcome during explant culture.**

To test whether DT influences AoD haematopoiesis during *ex vivo* culture, explants of AGM, DAGM, AoD and DAoD were set up in IMDM (IMDM based medium with 20% serum but without IL-3, SCF, or Flt3l) and Myelocult medium (M5300, Stem Cell Technologies).
Figure 5.14: Dorso-ventral segregation of haematopoietic progenitors in fresh E11.5 AoV, AoD, and dorsal tissue.
Bars indicate the standard deviation of 3 independent experiments.
BFU-E: burst forming unit-erythroid; CFU: colony forming unit; Mac: macrophage; GM: granulocye/macrophage; GEMM: granulocyte/erythroid/macrophage/megakaryocyte; ee: embryo equivalent.
After 4 days in IMDM medium, DAGM and AGM explants contained 7990±2095 and 6610±1820 CD45\(^+\) cells respectively (Figure 5.15A). DAoD and AoD explants contained 1830±840 and 970±570 CD45\(^+\) cells respectively, which was not significantly different (Wilcoxon signed rank test, p=0.18)(Figure 5.15A). AoV explants contained 1700±555 CD45\(^+\) cells (Figure 5.15A). There was no significant difference in CD45\(^+\) cell numbers between AoD and AoV explants (Wilcoxon signed rank test, p=0.18).

After 4 days in Myelocult medium, AGM explants contained 5770±1840 CD45\(^+\) cells (Figure 5.15B). DAoD and AoD explants contained 900±300 and 310±120 CD45\(^+\) cells respectively (Figure 5.15A’ and B’). AoV explants contained 840±360 CD45\(^+\) cells (Figure 5.15B). Similarly to IMDM medium explants, there were no significant differences in CD45\(^+\) cell numbers between AoD and DAoD explants and between AoD and AoV explants (Wilcoxon signed rank test, p=0.18 in both cases).

When compared to the fresh tissue, there was no expansion of CD45\(^+\) cells during culture in IMDM\(^-\) (x1.0 fold expansion for AoD, and x1.2 fold expansion for AoV). Interestingly, there were consistently more CD45\(^+\) cells in DAoD explants compared to AoD explants, indicating that DT does not have inhibitory influence of AoD haematopoietic cells. However, DT explants are required to understand its autonomous haematopoietic potential.

5.3.4.2. The influence of dorsal tissue on AoD haematopoietic progenitors.

The expansion of CFU-Cs in explant cultures was also assessed. When cultured in IMDM\(^-\), DAGM and AGM explants contained similar numbers of CFU-Cs: 250±30 and 290±80 CFU-Cs respectively (Wilcoxon signed rank test, p=0.79)(Figure 5.16A). There was also no statistical difference between DAoD and AoD explants which contained 39±14 and 50±33 CFU-Cs respectively (Wilcoxon signed rank test, p=0.78)(Figure 5.16A). AoV explants contained 64±39 CFU-Cs (Figure 5.16A). Although not significantly different, CFU-Cs numbers in AoV
Figure 5.15: Influence of dorsal tissue on autonomous haematopoietic cell expansion in E11.5 AGM, AoV, and AoD explants.

A: Haematopoietic cell numbers in explants cultured in IMDM for 4 days.
B: Haematopoietic cell numbers in explants cultured in Myelocult for 4 days.
Bars indicate the standard deviation of 3 independent experiments.
Black: cultures in IMDM; Grey: cultures in Myelocult.
N.D.: not done; ee: embryo equivalent.

Figure 5.16: Influence of dorsal tissue on autonomous haematopoietic progenitors expansion in E11.5 AGM, AoV, and AoD explants.

A: CFU-C numbers contained in E11.5 DAGM, AGM, DAoD, AoD, and AoV explants cultured in IMDM for 4 days.
B: CFU-C numbers contained in E11.5 AGM, DAoD, AoD, and AoV explants cultured in Myelocult medium for 4 days.
Bars indicate the standard deviation of 3 independent experiments.
explants were consistently higher than those in DAoD and AoD explants (Wilcoxon signed rank test, p=0.18).

However, when Myelocult medium was used, a clear dorso-ventral repartition of CFU-Cs was observed as DAoD and AoD explants both contained 2 CFU-Cs whereas AoV explants contained 31±10 CFU-Cs (Figure 5.16B). AGM explants contained 310±22 CFU-Cs (Figure 5.16B). These observations were in line with previous data (Taoudi and Medvinsky, 2007).

AoD explants have a tendency to give lower numbers of CFU-Cs than AoV explants in both IMDM and Myelocult media. Such tendency was accentuated in Myelocult medium, which might be likely to have inhibitory effects on the production of CFU-Cs by AoD.

5.3.4.3. Influence of dorsal tissue on LTR-HSC expansion using explant cultures

LTR-HSC content in explants was assessed by competitive long-term in vivo repopulation assay. When E11.5 AGM explants cultured in IMDM medium for 4 days were transplanted (0.3 ee/recipient), 7 out of 13 recipients (54%) were reconstituted (mean PBC: 56.9%)(Figure 5.17A). However, DAGM in the same conditions showed significantly reduced LTR-HSC activity: only 1 out 9 recipient mice (11%) was reconstituted at high level (87.4%)(Fisher’s exact test, p=0.03)(Figure 5.17). Although control AGM explants showed slightly lower LTR-HSC activity than expected (S. Taoudi, personal communication), there was a clear indication that the presence of DT inhibited LTR-HSC development in the AGM.

When cultured in Myelocult medium, AGM explants (0.3 ee/recipient) reconstituted 8 out of 9 recipients to similar levels as previously reported in this tissue (Figure 5.17B)(Taoudi and Medvinsky, 2007).

Unfortunately, none of the mice transplanted with AoV or AoD explants (0.3 ee/recipient) were reconstituted. These experiments were performed when organ/reaggregate cultures worked suboptimally for all members of the lab, which
Figure 5.17: Influence of dorsal tissue on LTR-HSCs expansion in E11.5 AGM, AoV, and AoD explants.

Peripheral blood chimerism of recipients transplanted with 0.3 embryo equivalents of explant cells.

A: LTR-HSCs expansion in explants cultured in IMDM- for 4 days.
B: LTR-HSCs expansion in explants cultured in Myelocult for 4 days.

Each point represents a single recipient mouse. Recipients were considered reconstituted when their peripheral blood chimerism exceeded 5% at least 12 weeks after transplantation. Percentage represents the proportion of reconstituted animals. Cumulative result of 3 independent experiments.

N.D.: not done.
could explain this intriguing result. Alternatively, this could be due to the longer culture period. Thus, these experiments should be repeated and higher doses of cells should be transplanted to ensure LTR-HSC detection.

5.3.4.4. Analysis of multilineage reconstitution of mice transplanted with IMDM AGM explant cultures

Multilineage analysis of LTR-HSCs was performed at least 16 weeks post-transplantation (Figure 5.18). Peripheral blood, spleen, bone marrow, and thymus were analysed. All tissues contained CD45.2 donor cells in high proportions (ranging from 76 to 81% in peripheral blood, 44 to 72% in the bone marrow, 62 to 71% in the spleen, and 96 to 99% in the thymus) (Figure 5.18A). Peripheral blood, spleen and bone marrow contained both myeloid (Mac1+ and Gr1+) and lymphoid populations (CD3+ T cells, and B220+ and CD43+ B cells) (Figure 5.18B). The majority of donor cells in the thymus were immature double positive (CD4+CD8+) T cells and mature single positive (CD4+CD8- and CD4-CD8+) T cells (Figure 5.18B). Thus, LTR-HSCs produced in IMDM were functional. Multilineage reconstitution from E11.5 AGM explants cultured in Myelocult was previously published (Medvinsky and Dzierzak, 1996).

5.3.5. Dorso-ventral polarity in generation of LTR-HSCs in the E11.5 AGM region

Although AoD contains very few LTR-HSCs, there is no evidence of the production of LTR-HSCs by AoD when cultured as explant in either IMDM or Myelocult (Figure 5.17; (Taoudi and Medvinsky, 2007). However, it is conceivable that AoD contains cells competent to form LTR-HSCs under the influence of AoV and/or UGRs or growth factors.

To test these hypotheses, E11.5 AGM regions from WT and GFP embryos (constitutively expressing GFP, Appendix 5.1, Gilchrist et al., 2003) were sub-dissected into UGR, AoD and AoV. Chimeric reaggregates were generated
Figure 5.18: Long-term multilineage haematopoietic reconstitution by LTR-HSCs generated from E11.5 AGM explants cultured in IMDM.

A: Donor derived reconstitution in major haematopoietic organs (peripheral blood, spleen, bone marrow, and thymus) in recipients reconstituted with IMDM explants cells.

B: Multilineage (myelo-lymphoid) contribution in major haematopoietic organs (peripheral blood, spleen, bone marrow, and thymus) of recipients reconstituted with IMDM explants cells. Events were gated on donor cells exclusively.

Data were collected in high-level reconstituted recipients injected with 0.3 embryo equivalent of explant cells. Plots are representative of 2 recipient mice. Cell viability was determined by 7-AAD uptake. Quadrants are based on appropriate isotype control (Appendix 3.2) and values indicate percentages of cells.
and cultured in IMDM\(^+\) (Figure 5.19). DT was always left with AoD in reaggregates experiments.

5.3.5.1. Haematopoietic development from AoD in chimeric reaggregates

The contribution of AoD to chimeric reaggregates haematopoietic (CD45\(^+\)) cells was assessed. Reaggregates were cultured in IMDM\(^+\) for 4 and 5 days to investigate the potential dynamics of LTR-HSC emergence from AoD. Two independent experiments were performed in each condition and presented individually as their outcomes varied.

In 4 days chimeric AGM reaggregates, AoD-derived cells represented 26% and 21% of the viable cells in the 2 independent experiments (Figure 5.20A). Similar AoD contributions were obtained in 5 days chimeric reaggregates (26% and 24%)(Figure 5.20A). In 4 days chimeric Ao reaggregates, AoD-derived cells represented 47% and 53% of the viable cells in the 2 independent experiments (Figure 5.20A). Similar AoD contributions were obtained in 5 days chimeric reaggregates (51% and 43%) (Figure 5.20A).

AoD-derived haematopoietic (CD45\(^+\)) cell numbers were also assessed. 5 days AGM chimeric reaggregates contained more AoD-derived CD45\(^+\) cells compared to 4 days chimeric AGM reaggregates: 10670 and 7070 after 5 days (representing 44% and 40% of CD45\(^+\) cells) and 5810 and 4960 after 4 days (representing 34 % and 21% of CD45\(^+\) cells)(Figure 5.20B). In chimeric Ao reaggregates, numbers of AoD-derived CD45\(^+\) cells were similar after 4 and 5 days culture: 8890 and 16570 after 4 days (representing 44% and 58% of CD45\(^+\) cells) and 8800 and 8600 after 5 days (representing 43% and 44% of CD45\(^+\) cells)(Figure 5.20B).

Taken together, these data show that there is no obvious difference in CD45\(^+\) cell numbers between AGM and Ao chimeric reaggregates. In both AGM and Ao chimeric reaggregates, AoD underwent a gross 4-fold CD45\(^+\) cell expansion compared to the fresh tissue (Appendix 5.2). Thus, UGR does not influence
Figure 5.19: Experimental design to trace pre-HSCs in E11.5 AGM chimeric reaggregates.

Schematic representation of experimental design for chimeric reaggregates set-ups: WT and GFP AGM regions were sub-dissected into UGRs, AoD and AoV and cells from the 2 genotypes were mixed to produce chimeric reaggregates.
Figure 5.20: Haematopoietic expansion potential of AoD in E11.5 AGM region chimeric reaggregates.

A: AoD contribution to live cell numbers contained in 4 and 5 days chimeric reaggregates.
B: AoD contribution to haematopoietic (CD45+) cell numbers contained in 4 and 5 days chimeric reaggregates.

Black: AoD; Grey: other (AoV and UGR when appropriate). Data is cumulative of 2 independent experiments, * mark experiment 2.
expansion of haematopoietic cells from AoD. AoD reaggregates would be required to conclude on the potential enhancing effects of AoV on haematopoietic cell expansion.

5.3.5.2. AoD contribution into the LTR-HSC compartment in E11.5 AGM chimeric reaggregates

After 4 or 5 days of culture, chimeric reaggregates were transplanted into recipients (0.1 rd/recipient).

When transplanted with 4 days AGM chimeric reaggregates, 6 out of 6 mice (100%) were reconstituted (mean PBC: 78.6%)(Figure 5.21A). AoD contribution in these recipients was assessed using the GFP genetic marker. AoD contribution to recipient’s PBC was observed in 1 out of 2 experiments (stars in Figure 5.21A) and was on average smaller compared to AoV: 12% of the total PBC was AoD-derived (Figure 5.21A). When transplanted with 4 days Ao chimeric reaggregates, 4 out of 6 recipient mice (67%) were reconstituted (mean PBC: 20.2%) and AoD contribution represented 7.6% of the recipients’ PBC (Figure 5.21A).

Similar analysis was performed with 5 days reaggregates. Unpublished data showed a plateau in LTR-HSCs numbers in reaggregates after 4 days of culture (S.Taoudi, unpublished). It has also been shown that maturation of pre-HSCs into LTR-HSCs mainly occurs between 3 and 4 days of culture (Taoudi et al., 2008). In view of these data, it was hypothesised that AoD-derived LTR-HSCs may take slightly longer to mature. Therefore, additional experiments were performed with 5 days cultures. 5 days chimeric AGM reaggregates (0.1 rd/recipient) reconstituted 6 out of 6 recipients (mean PBC: 67.62%) and a similar dose of chimeric Ao reaggregate reconstituted 2 out of 6 recipient mice (33%)(mean PBC: 52%)(Figure 5.21B). In this case, AoD contribution to recipient PBC was observed in the 2 experiments (Figure 5.21B). In AGM chimeric reaggregates, an average of 38.5% of the total PBC was AoD-derived; and in Ao chimeric reaggregates, an average of 9% of the total PBC was AoD-derived (Figure 5.21B). The fact that AoD-derived LTR-HSCs were present in 2 out of 2 experiments in 5 days reaggregates (compared to 1
A 4 days ex-vivo

![Graph showing AoD contribution to LTR-HSC compartment in 4 days chimeric reaggregates cultured for 4 days. Short (6 weeks) and long-term (16 weeks) analysis.]

B 5 days ex-vivo

![Graph showing AoD contribution to LTR-HSC compartment in 5 days chimeric reaggregates. Short (6 weeks) and long-term (16 weeks) analysis.]

Figure 5.21: AoD contribution to LTR-HSC compartment in E11.5 AGM chimeric reaggregates.

Peripheral blood chimerism of recipients transplanted with 0.1 dose of reaggregates. Individual bars correspond to individual recipients.

A: AoD contribution to LTR-HSC compartment in 4 days chimeric reaggregates cultured for 4 days. Short (6 weeks) and long-term (16 weeks) analysis.

B: AoD contribution to LTR-HSC compartment in 5 days chimeric reaggregates. Short (6 weeks) and long-term (16 weeks) analysis.

Black: AoD; Grey: other (AoV and UGR when appropriate).

Data are cumulative of 2 independent experiments, * mark animals from experiment 2 transplanted with reaggregates cultured for 4 days.
out of 2 with 4 days reaggregates) may indicate that AoD-derived LTR-HSCs indeed take slightly longer to mature. This hypothesis is supported by the fact that the AoD-derived chimerism was higher at 5 days than at 4 days (38.5% and 12% in AGM reaggregates respectively)(Figure 5.21B). However, additional experiments are required to establish whether this observation is a consistent phenomenon.

Interestingly, comparison of short-term (6 weeks post-transplant) and long-term (16 weeks-post transplant) showed that AoD-derived chimerism decreased with time (Figure 5.21). Reconstitution with 4 days AGM reaggregates showed 20.6% AoD-derived chimerism 6 weeks post-transplantation which decreased to 12% 16 weeks post-transplantation (Figure 5.21A). Similarly, reconstitution with 5 day reaggregates gave 45.3% AoD-derived chimerism 6 weeks post-transplantation and 38.5% 16 weeks post-transplantation (Figure 5.21B). Similar observations were made with Ao chimeric reaggregates.

Thus, these observations show that AoD contains cells which become LTR-HSCs in appropriate microenvironment, but they seem less competitive than those emerging from emerging in the AoV (Taoudi and Medvinsky, 2007). However, additional experiments are required to confirm this hypothesis. To assess the numbers AoD-derived LTR-HSCs quantitatively; limiting dilution experiments would be required.

5.3.5.3. Multilineage contribution of AoD-derived LTR-HSCs from AGM chimeric reaggregates

The multilineage haematopoietic reconstitution of AoD-derived cells in 4 days AGM and Ao reaggregates cultured was assessed by flow cytometry. More than 16 weeks post-transplantation, the presence of AoD-derived cells in primary recipients was checked by the expression of GFP in haematopoietic tissues (peripheral blood, spleen, bone marrow, and thymus). All tissues contained CD45.2 donor cells in high proportions (ranging from 12 to 90% in the peripheral blood, from 2 to 94% in the bone marrow, from 16 to 89% in the spleen, and from 9 to 99% in the thymus)(Figure 5.22A and B). Gating on GFP+ cells assessed AoD
Figure 5.22: Long-term multilineage haematopoietic reconstitution by AoD-derived LTR-HSCs generated in AGM and Ao chimeric reaggregates.

A: E11.5 AGM chimeric reaggregates donor and AoD derived reconstitution in major haematopoietic organs (peripheral blood, spleen, bone marrow, and thymus). AoD-derived contribution was determined based on GFP expression.

A’: Multilineage (myelo-lymphoid) contribution of AoD-derived cells in major haematopoietic organs (peripheral blood, spleen, bone marrow, and thymus) of recipients. Events were gated on GFP+ exclusively.

B: E11.5 Ao chimeric reaggregates donor and AoD derived reconstitution in major haematopoietic organs (peripheral blood, spleen, bone marrow, and thymus). AoD-derived contribution was determined based on GFP expression.

B’: Multilineage (myelo-lymphoid) contribution of AoD-derived cells in major haematopoietic organs (peripheral blood, spleen, bone marrow, and thymus) of recipients. Events were gated on GFP+ exclusively.

Data were collected in high level reconstituted recipients injected with 0.1 dose of reaggregate each. Plots are representative of 3 recipient mice. Cell viability was determined by 7-AAD uptake. Quadrants are based on appropriate isotype control (Appendix 3.2) and values indicate percentages of cells.
contribution (Figure 5.22A and B). Peripheral blood, spleen and bone marrow contained AoD-derived myeloid cells marked by Mac1 and Gr1 and lymphoid cells marked by CD3 (T cells), B220 and CD43 (B cells) (Figure 5.22A’ and B’). In the thymus, the majority of AoD-derived cells were immature double-positive (CD4+CD8+) T cells (Figure 5.22A’ and B’). Thus AoD-derived LTR-HSCs were functional, independently on whether AoD was cultured with AoV only (Ao reaggregates, Figure 5.22B and B’) or AoV and UGR (AGM reaggregates, Figure 5.22A and A’).

5.4. Discussion

5.4.1. Axio-lateral polarity of LTR-HSC development in E11.5 AGM reaggregates

LTR-HSCs localize solely in the Ao of the E11.5 AGM region (de Bruijn et al., 2000b; Taoudi and Medvinsky, 2007). However, the presence of LTR-HSCs in the E12.5 UGRs and their capacity at E11.5 to induce LTR-HSC formation (de Bruijn et al., 2000b) raises the possibilities that either UGR autonomously support LTR-HSC formation or pre-HSCs from the Ao have seeded UGRs. Co-culture of Ao and UGR as explants does not improve LTR-HSC production from either Ao or UGR (de Bruijn et al., 2000b) but does not exclude the possibilities of LTR-HSC induction in the Ao by UGRs and vice-versa. Reaggregate culture was used to address this question because it allows the production of chimeric “organoids” with enhanced cell-cell contacts, whilst maintaining the AGM capacity to produce high numbers of LTR-HSCs in response to growth factors. First, I showed that there was no axio-lateral polarity in the repartition of haematopoietic cells and progenitors in the uncultured E11.5 AGM region as they are evenly distributed between Ao and UGRs. Second, I investigated the autonomous haematopoietic potential of the E11.5 Ao and UGR reaggregates. Contrary to previous observations with explants, the E11.5 UGRs in our study were not capable of generating LTR-HSCs while the Ao maintained its ability to generate functional LTR-HSCs (from ≈1 to ≈45 in 4 days of
culture). This discrepancy could be due to either the mechanical dissociation of UGRs in our experiments or due to some contamination with the Ao in previous experiments. In my experiments, it was observed that AGM reaggregates consistently contained higher LTR-HSC activity than Ao reaggregates. Although evaluation of accurate numbers of LTR-HSCs requires limiting dilution experiments, these results suggested that both Ao and UGR are required to provide optimal LTR-HSC expansion in reaggregates.

Experiments with E11.5 AGM and Ao chimeric reaggregates were set up in order to answer whether the higher LTR-HSC expansion in AGM reaggregates compared to Ao reaggregates was due to either 1) stimulatory effects of UGRs on the LTR-HSC expansion from the Ao or 2) stimulatory effects of the Ao on LTR-HSC formation in the UGR. Tracing of Ao and UGR cells was allowed by using GFP expression as a genetic marker. The large majority of the PBC of recipients was Ao-derived, demonstrating that most pre-HSCs were located in the Ao region. This result has two implications: 1) it shows that exposure of the UGR to Ao cells did not trigger LTR-HSCs formation from the UGRs; 2) it suggests that UGRs are required to support optimal LTR-HSC expansion from Ao in reaggregates. To address the latter idea and rule out any “size” effect of the smaller Ao reaggregates, double-sized Ao|Ao reaggregates were set up. Similar LTR-HSC numbers were obtained in Ao and Ao|Ao reaggregates. This suggests that UGRs specifically enhance LTR-HSCs expansion from a single Ao.

In addition, my results contradict Myelcult explants data showing that juxtaposition of Ao and UGR in explant cultures did not influence LTR-HSC development from Ao (de Bruijn et al., 2000b). This discrepancy could have two explanations: 1) cell-cell contacts between Ao and UGR cells are required for the UGR to stimulate LTR-HSC expansion, or 2) the absence of growth factors in Myelocult medium fails to reveal the positive effects of UGR cells on LTR-HSC expansion. Near future experiments will address these questions by culturing chimeric reaggregates in IMDM.
5.4.2. Dorso-ventral polarity of LTR-HSC development in E11.5 AGM reaggregates

I have shown that Ao is the site containing the vast majority of pre-HSCs in the E11.5 AGM region. The second aspect of this study was to investigate the dorso-ventral repartition of these pre-HSCs using a similar strategy involving chimeric reaggregates.

In the fresh AGM region, there was no obvious dorso-ventral polarity in the repartition of haematopoietic cells and CFU-Cs, confirming previous observations (Taoudi and Medvinsky, 2007). More interestingly, there was no dorso-ventral polarity of EGFP+ cells in the Ao, implying that AoV and AoD equally express Runx1. This argues with the ventral segregation of Runx1 expression in the E11.5 Ao (North et al., 1999). Although this discrepancy is likely due to a different Runx1 dose in the murine models used (haploinsufficient in Runx1lz, full dose in Runx1EGFP), my observation highlights the AoD as a potential haematopoietic site due to its Runx1 expression.

In previous experiments DT (containing somites remnants and the notochord) was left attached to the AoD. However, surrounding tissues are known to express factors, such as sonic hedgehog or VEGF for example, that can influence haematopoiesis in the AGM region (Pardanaud and Dieterlen-Lievre, 1999; Peeters et al., 2009). In view of these data, the influence of DT on LTR-HSC development was investigated in explants cultures. My results suggested that DAGM explants contained less LTR-HSCs than AGM explants, thus suggesting that DT has a negative influence on LTR-HSC development from the AGM region. Another group made a similar conclusion in a recently published paper (Peeters et al., 2009). It will be interesting to establish in future if the addition of IL-3, SCF, and Flt3l could bypass the inhibitory effects of DT.

Suboptimal culture conditions at the time (observed by all lab members) most likely led to fewer LTR-HSCs in cultures and thus also probably explain the lack of reconstitution in AoV explants. The lack of reconstitution from AoD explants even when DT was stripped off suggested that AoD cannot generate LTR-HSCs.
However, transplantation experiments with higher doses of explants are required to detect very low numbers of LTR-HSCs and thus formally conclude on the effect of DT on AoD explants. Additionally, preliminary data indicate that DT might have an inhibitory effect on the fresh E11.5 AoD but this needs to be confirmed.

Evidence so far has shown that LTR-HSC activity is almost exclusively located in the E11.5 AoV and the explant culture revealed intrinsic properties of the AoV to induce LTR-HSC formation (Taoudi and Medvinsky, 2007). The haematopoietic response of AoV when exposed to the AoD or vice versa could not be assessed by the explant culture. However, such interactions are present in vivo and might play important roles. The reaggregate culture system bypasses such limitations and thus was used to assess the possible presence of cells competent to become LTR-HSCs in the AoD. Chimeric GFP and WT E11.5 AGM and Ao reaggregates were cultured in IMDM for 4 days and 5 days. Whereas AoD-derived reconstitution was observed in 1 out of 2 experiments with 4 days reaggregates, it was observed consistently, at high level, in 5 days reaggregates. This suggests that: 1) AoD contains pre-HSCs that can mature into LTR-HSCs during reaggregate culture and 2) AoD-derived LTR-HSCs might take slightly longer to mature in culture. In addition, reconstitution data were similar in 4 and 5 days reaggregates, confirming S.Taoudi’s unpublished observations. Interestingly, it also appeared that AoD-derived chimerism decreased between short and long term reconstitution analyses, while contribution of AoV remained fairly stable. This indicates that AoD-derived LTR-HSCs have different properties than AoV-derived LTR-HSCs. I also showed that AoD-derived LTR-HSCs are functional as they provide multilineage reconstitution in recipients. Although these results are promising, further experiments are required to generate a set of data that can be analyzed statistically. It will be interesting to investigate the numbers and properties of AoD-derived LTR-HSCs by isolating and transplanting them. Finally, removal of growth factors will be required to assess whether the generation of AoD LTR-HSCs occurs through the exposure of AoV microenvironment or the exposure to growth factors. Altogether, the results from this study are the first indication that AoD contains cells competent to develop into LTR-HSC.
6. Summary and Perspectives

6.1. Summary

This project focused on the reaggregate culture system as a method for studying the emergence and expansion of LTR-HSC in the E11.5 AGM region.

I first demonstrated the reproducibility of this culture system by showing its consistent ability for the extensive LTR-HSC expansion. I further characterised E11.5 AGM reaggregates by showing that the majority of the LTR-HSCs adopted a CD45+ Sca1+ c-kit+ CD31med immunophenotype and that IL-3, SCF, and Flt3l are all required to achieve maximal LTR-HSC expansion.

Second, I characterised EGFP expression in the Runx1EGFP adult haematopoietic system and in the E11.5 AGM region. The reported pattern of Runx1 expression in the adult was in agreement with Runx1 reporter models previously published (Lorsbach et al., 2004; North et al., 2004). As Runx1 is thought to be required for the transition from endothelium to haematopoietic fate, I focused my analyses on EGFP expression in LTR-HSC compartment (CD45+c-kit+CD34+ VE-cadherin+) and in non-haematopoietic compartment (CD45-). I identified a population of CD45'VE-cadherin' cells that express EGFP in the fresh E11.5 AGM but disappear after reaggregate culture. Additionally, preliminary analysis of the LTR-HSC content in the E11.5 AGM highlighted the possibility that the transgenic E11.5 AGM region contains fewer LTR-HSCs than in the WT.

In the third part of my project, the use of reaggregate culture system confirmed the Ao as the site harbouring the majority of pre-HSC in the E11.5 AGM. Interestingly, the close proximity of Ao and UGR cells enhanced the overall LTR-HSC expansion in chimeric reaggregates and preliminary data indicated that the UGRs provide support for Ao pre-HSC maturation. Additionally, the presence of DT appeared to inhibit LTR-HSC formation in AGM explant, supporting the idea that dorso-ventral positioning information is important for haematopoietic induction. Finally, dorso-ventral analysis of the Ao showed that the AoD contains pre-HSCs when cultured in reaggregates.
6.2. **Ongoing work**

6.2.1. **The supportive role of the UGRs for LTR-HSC development**

Preliminary data presented in Chapter 5 indicate that the UGRs provide support for LTR-HSC development from the Ao as the culture of multiple Ao did not result in the extensive LTR-HSC expansion that is observed with the AGM. Currently, I am trying to formally address the role of the UGR in pre-HSC development by setting up multiple Ao reaggregates and transplanting the cellular equivalent of 1 Ao. This should assess the potential of a single Ao when exposed to UGR, and hopefully confirm that UGR have a specific and positive influence.

In addition, I am addressing whether the presence of the UGR for maximal LTR-HSC expansion is still required in the absence of growth factors. Chapter 3 demonstrated that a significant LTR-HSC expansion could be achieved without growth factors. Because the absence of growth factors should be a situation closer to physiological conditions, it will be interesting to understand whether the UGR can achieve such positive effects on their own and perhaps will answer why our observations differed from what was previously observed (de Bruijn et al., 2000b).

Finally, I am also trying to identify the potential factors secreted by the UGRs that specifically improve pre-HSC maturation. This is currently assessed by culturing Ao as explants and reaggregates in the presence of various exogenous factors. Micro-array data from S. Rybtsov provided a list of candidate factors that are preferentially expressed by the UGR and some candidates are currently being tested.

6.2.2. **The haematopoietic potential of AoD**

Results presented in the second part of Chapter 5 are promising but require additional experiments to obtain a larger data set that can be statistically analysed.

I showed that the presence of dorsal tissue in AGM explants might inhibit LTR-HSC development. This result is currently being quantitatively assessed and AoD and DAoD explants are cultured with and without growth factors. In view of these results,
we also are currently trying to reproduce S. Taoudi data by transplanting fresh AoD and DAoD to understand whether DT could potentially inhibited AoD engraftment.

Additionally, chimeric reaggregates showed that AoD contains pre-HSC that could mature when exposed to the AoV microenvironment. My current experiments are repeating these experiments in the absence of growth factors to understand whether exposure to AoV microenvironment is sufficient to stimulate AoD pre-HSC maturation. Near future experiments will also focus on identifying the immunophenotype of the pre-HSCs in the AoD.

6.3. Perspectives

In the future, the reaggregate culture system could prove very useful for dissecting developmental processes involved in de-novo LTR-HSC development and the data presented in this thesis provide some examples of such applications. For example, identifying the immunophenotype of pre-HSCs in the E11.5 AGM region is a key to understand the dynamics by which LTR-HSCs emerge in the AGM region (Taoudi et al., 2008). Intrinsic proliferative properties of LTR-HSCs in the bone marrow have been extensively studied (Bowie et al., 2007b; Bowie et al., 2006; Cellot and Sauvageau, 2006; Wilson et al., 2008). However, the processes of LTR-HSC emergence and pre-HSC maturation are thought to occur exclusively in the embryo (Godin and Cumano, 2002). Whilst still subject to controversy, the AGM region is the first site harbouring LTR-HSCs during development (Muller et al., 1994) and has the capacity to support pre-HSC maturation and LTR-HSC expansion (Medvinsky and Dzierzak, 1996; Taoudi et al., 2008). While gene inactivation studies have shown that such processes are developmentally regulated by various genes such as Runx1, SCL, GATA-2, or Lmo-2 for example (Godin and Cumano, 2002), the exact developmental timepoints and cell types in which such signals are required are still unknown. Reaggregate culture system will allow the use of transgenic cells and tracing of their developmental potential, and as such will aid understanding the processes and stages at which these genes play important roles.
Similarly, the reaggregate system also allows identification and manipulation of key components of the LTR-HSC niche within the AGM region as shown in Chapter 5. Further characterisation of LTR-HSC niche components is of great interest in the HSC field because understanding external signals regulating HSC self-renewal, maintenance, expansion and differentiation is as important as understanding the intrinsic properties of HSCs. Studies of niche components in the adult bone marrow have highlighted the importance and the complexity of such extrinsic signals on LTR-HSCs (Arai et al., 2004; Calvi et al., 2003; Kiel and Morrison, 2008; Nilsson et al., 2001; Orford and Scadden, 2008; Warner et al., 2004; Zhang et al., 2003). In the AGM region more precisely, studies with explants and AGM cell lines have shown that the AGM microenvironment can support LTR-HSC maintenance, and probably induction and expansion (Matsuoka et al., 2001b; Medvinsky and Dzierzak, 1996; Taoudi et al., 2008; Xu et al., 1998). A recent study also highlighted the importance of dorso-ventral positioning for LTR-HSC expansion in the AGM region (Peeters et al., 2009). Importantly, the use of reaggregates in future studies will further assess which cells and signals in the AGM microenvironment promote either LTR-HSC induction, expansion, or differentiation.

Most importantly, dissecting biological processes that govern LTR-HSC emergence will provide an understanding of how to reproduce such developmental mechanisms and induce LTR-HSC formation from alternative sources such as ES cells. Despite many attempts to produce LTR-HSCs from ES cells (Tian and Kaufman, 2008), no one so far has been able to formally induce and expand LTR-HSCs. Such scientific advancements will hopefully provide alternative sources of LTR-HSCs for the treatments of HSC-related diseases such as leukemia as well as providing insights into the complex genetic mechanisms underlying such disorders.
Appendix 3.1: E11.5 AGM reaggregate flow cytometry controls.
Single cell suspensions from E11.5 AGM reaggregates were obtained and incubated with the indicated isotype controls. Antibody stains corresponding to each isotype control are displayed on the top of each plot.
Cell viability was determined by 7-AAD uptake. Biotin conjugated antibodies were incubated with streptavidin APC. Values indicate percentages of cells.
Appendix 3.2: Multilineage analysis flow cytometry controls.

Single cell suspensions from organs of primary recipient reconstituted with E11.5 AGM reaggregate cells were obtained and incubated with the indicated isotype controls. Antibody stains corresponding to each isotype control are displayed on the top of each plot. Cell viability was determined by 7-AAD uptake. Biotin conjugated antibodies were incubated with streptavidin APC. Values indicate percentages of cells. ND: not done.
Appendix 4.1

A Lin sca1 c-kit

B Mac1 Gr1

C CD45 Ter119
D CD4 CD8

E CD3 B220

F CD19 B220
Appendix 4.1: Adult haematopoietic organs flow cytometry controls.

Single cell suspensions from Runx1WT/WT adult haematopoietic organs were obtained and incubated with the indicated isotype controls (left of each panel). Single PE stains against EGFP in Runx1WT/WT organs showing compensation between FL-1 and FL-2 channels (right of each panel)

A: Adult bone marrow Lin Sca1 c-kit stain flow cytometry controls. Live lin\textsuperscript- cells only are displayed and were gated based on 7-AAD intake and lineage marker exclusion.

B: Adult bone marrow, peripheral blood, and spleen Mac1 Gr1 stain flow cytometry controls.

C: Adult bone marrow and spleen CD45 Ter119 stain flow cytometry controls.

D: Adult peripheral blood and thymus CD4 CD8 stain flow cytometry controls.

E: Adult bone marrow, peripheral blood, spleen and thymus CD3 B220 stain flow cytometry controls.

F: Adult bone marrow CD19 B220 stain flow cytometry controls.

Cell viability was determined by 7-AAD uptake. Biotin conjugated antibodies were incubated with streptavidin APC. Values indicate percentages of cells.
Appendix 4.2: E11.5 AGM region flow cytometry controls.

Single cell suspensions from Runx1WT/WT adult were obtained and incubated with the indicated isotype controls (left of each panel). Single PE stains against EGFP in Runx1WT/WT organs showing compensation between FL-1 and FL-2 channels (right of each panel and middle of C panel).

A: E11.5 AGM region CD45 CD34 stain flow cytometry controls.

B: E11.5 AGM region CD45 c-kit stain flow cytometry controls.

C: E11.5 AGM region CD45 VE-cadherin CD41 stain flow cytometry controls. CD45+ cells were excluded using anti-CD45 PerCP antibody (right of the panel).

Cell viability was determined by 7-AAD uptake. Biotin conjugated antibodies were incubated with either streptavidin APC. Values indicate percentages of cells.
Appendix 4.3: E11.5 AGM region CD45 VE-cadherin flow cytometry controls.

Single cell suspensions from Runx1^{WT/WT} adult haematopoietic organs were obtained and incubated with the indicated isotype controls (left of each panel). Single PE stains against EGFP in Runx1^{WT/WT} organs showing compensation between FL-1 and FL-2 channels (right of panels A and C).

A: E11.5 AGM region CD45 VE-cadherin stain flow cytometry controls.

B: E11.5 AGM region sub-compartments (UGR, AoD, and AoV) CD45 VE-cadherin stain flow cytometry controls.

C: E11.5 AGM reaggregates CD45 VE-cadherin flow cytometry controls.

Cell viability was determined by 7-AAD uptake. Biotin conjugated antibodies were incubated with streptavidin PE. Values indicate percentages of cells.
Appendix 4.4

A
Ly-5.2/5.2 E11.5 AGM (donor cells) → reaggregate culture → competitive repopulation assay → Ly-5.1/5.1 recipients

B
Ly-5.2/5.1 E11.5 AGM (donor cells) → reaggregate culture → competitive repopulation assay → Ly-5.1/5.1 recipients

C
Ly-5.1/5.1 E11.5 AGM (donor cells) → reaggregate culture → competitive repopulation assay → Ly-5.2/5.1 recipients

D

<table>
<thead>
<tr>
<th>Donor</th>
<th>% Peripheral Blood Chimerism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ly-5.2/5.2</td>
<td>(92%)</td>
</tr>
<tr>
<td>Ly-5.2/5.1</td>
<td>(100%)</td>
</tr>
<tr>
<td>Ly-5.1/5.1</td>
<td>(58%)</td>
</tr>
</tbody>
</table>
Appendix 4.4: Experimental design for a new lineage trace protocol and assessment of LTR-HSCs expansion potential of Ly-5.1 mice.
A: Control reaggregate system using Ly-5.2/5.2 E11.5 AGM derived donor cells and transplant into Ly-5.1/5.1 recipient mice.
B: Experimental reaggregates using Ly-5.2/5.1 E11.5 AGM derived donor cells and transplant into Ly-5.1/5.1 recipient mice.
C: Experimental reaggregates using Ly-5.1/5.1 E11.5 AGM derived donor cells and transplant into Ly-5.2/5.1 recipient mice.
D: LTR-HSCs expansion in reaggregates generated with Ly-5.2/5.2, Ly-5.2/5.1, and Ly-5.1/5.1 E11.5 AGM region.
Peripheral blood chimerism of recipients transplanted with 0.01 doses of reaggregates. Each point represents a single recipient mouse. Recipients were considered reconstituted when chimerism exceeded 5% at least 12 weeks after transplantation; percentages indicate proportion of reconstituted animals. Data is cumulative of 2 independent experiments.
Appendix 5.1

A

<table>
<thead>
<tr>
<th></th>
<th>WT</th>
<th>GFP</th>
</tr>
</thead>
<tbody>
<tr>
<td>total cells</td>
<td>251081 ± 64147</td>
<td>268664 ± 58812</td>
</tr>
<tr>
<td>total live cells</td>
<td>123201 ± 50981</td>
<td>114316 ± 38303</td>
</tr>
<tr>
<td>total CD45+ cells</td>
<td>4091 ± 2434</td>
<td>4036 ± 2871</td>
</tr>
<tr>
<td>total DP cells</td>
<td>129 ± 11</td>
<td>160 ± 22</td>
</tr>
</tbody>
</table>

B

AGM

- **VE-cadherin**
- **CD45**

reaggregate

- **VE-cadherin**
- **CD45**

Appendix 5.1: Comparison between E11.5 AGM regions from WT and GFP embryos and GFP expression in fresh and cultured E11.5 AGM region.
A: Cell composition of E11.5 AGM regions in wild type and aGFP embryos. Data is representative of 5 independent experiments. Absolute numbers ± standard deviation.
B: Flow cytometric analysis of GFP expression in the endothelial (VE-cadherin+) and haematopoietic (CD45+) cell fractions of the fresh E11.5 AGM region.
C: Flow cytometric analysis of GFP expression in the endothelial (VE-cadherin+) and haematopoietic (CD45+) cell fractions of the E11.5 AGM reaggregate.
Black: WT mouse; Green: GFP mouse. Cell viability was determined by 7-AAD uptake. DP: CD45+VE-cadherin+.
Appendix 5.2

Appendix 5.2: Cell composition of E11.5 fresh dAGM and dAoD.
dAGM and dAoD correspond to AGM and AoD including dorsal tissue (somites remnants and notochord).
Data is representative of 3-4 independent experiments; absolute numbers ± standard deviation.
Cell viability was determined by 7-AAD uptake. DP: CD45+VE-cadherin⁺; DN: CD45⁺VE-cadherin⁻

<table>
<thead>
<tr>
<th></th>
<th>dAGM</th>
<th>dAoD</th>
</tr>
</thead>
<tbody>
<tr>
<td>total cells</td>
<td>401000 ± 64210</td>
<td>160333 ± 35170</td>
</tr>
<tr>
<td>total live cells</td>
<td>189621 ± 63287</td>
<td>116684 ± 22987</td>
</tr>
<tr>
<td>total CD45+ cells</td>
<td>5883 ± 3439</td>
<td>1969 ± 170</td>
</tr>
<tr>
<td>total VE cadherin+ cells</td>
<td>3012 ± 899</td>
<td>524 ± 42</td>
</tr>
<tr>
<td>total DP cells</td>
<td>84 ± 54</td>
<td>30 ± 14</td>
</tr>
<tr>
<td>total DN cells</td>
<td>180650 ± 59103</td>
<td>114444 ± 22776</td>
</tr>
</tbody>
</table>
8. Publication

9. References

Niki, M., Okada, H., Takano, H., Kuno, J., Tani, K., Hibino, H., Asano, S., Ito, Y.,
mutagenesis of a gene encoding a non-DNA binding subunit of the transcription factor,
polyomavirus enhancer binding protein 2/core binding factor. Proc Natl Acad Sci U S A 94,
5697-702.

transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood
97, 2293-9.

Nishikawa, S. I., Nishikawa, S., Hirashima, M., Matsuyoshi, N. and Kodama, H.
(1998a). Progressive lineage analysis by cell sorting and culture identifies FLK1+VE-
cadherin+ cells at a diverging point of endothelial and hemopoietic lineages. Development
125, 1747-57.

Nishikawa, S. I., Nishikawa, S., Kawamoto, H., Yoshida, H., Kizumoto, M., Kataoka, H.
and Katsura, Y. (1998b). In vitro generation of lymphohematopoietic cells from endothelial
cells purified from murine embryos. Immunity 8, 761-9.

vivo-expanded murine hematopoietic stem cells resides in the CD48-Kit+Sca-1+ lineage
marker-cell population. Stem Cells 26, 646-55.

North, T., Gu, T. L., Stacy, T., Wang, Q., Howard, L., Binder, M., Marin-Padilla, M.
clusters. Development 126, 2563-75.

North, T. E., de Bruijn, M. F., Stacy, T., Talebian, L., Lind, E., Robin, C., Binder, M.,
Dzierzak, E. and Speck, N. A. (2002). Runx1 expression marks long-term repopulating
hematopoietic stem cells in the midgestation mouse embryo. Immunity 16, 661-72.

is expressed in adult mouse hematopoietic stem cells and differentiating myeloid and
lymphoid cells, but not in maturing erythroid cells. Stem Cells 22, 158-68.

Nottingham, W. T., Jarratt, A., Burgess, M., Speck, C. L., Cheng, J. F., Prabhakar, S.,
hematopoietic stem-cell emergence is controlled by a Gata/Ets/SCL-regulated enhancer.
Blood 110, 4188-97.

Nuchprayoon, I., Meyers, S., Scott, L. M., Suzow, J., Hiebert, S. and Friedman, A. D.
(1994). PEBP2/CBF, the murine homolog of the human myeloid AML1 and PEBP2
beta/CBF beta proto-oncoproteins, regulates the murine myeloperoxidase and neutrophil
elastase genes in immature myeloid cells. Mol Cell Biol 14, 5558-68.

Promoter elements of vav drive transgene expression in vivo throughout the hematopoietic

Okada, H., Watanabe, T., Niki, M., Takano, H., Chiba, N., Yanai, N., Tani, K., Hibino,
H., Asano, S., Mucenski, M. L. et al. (1998). AML1(-/-) embryos do not express certain
hematopoiesis-related gene transcripts including those of the PU.1 gene. Oncogene 17, 2287-
93.

Okuda, T., Takeda, K., Fujita, Y., Nishimura, M., Yagyu, S., Yoshida, M., Akira, S.,

Uchida, N. and Weissman, I. L. (1992). Searching for hematopoietic stem cells: evidence that Thy-1.1lo Lin- Sca-1+ cells are the only stem cells in C57BL/Ka-Thy-1.1 bone marrow. *J Exp Med* 175, 175-84.

