Swanson, These

3. Impermeable
4. U. proposal

186-

On Bright's Disease
On Bright's Disease.

Before commencing the subject of my thesis I will devote a short table to the consideration of the anatomy of the kidney, and of the characters of healthy tissue. May, however, premise that I cannot offer any original observations which might help to elucidate any of the points touched upon, but that I will try briefly and correctly the facts observed and reason in regard to Bright's Disease.

Without further introduction, then, I will at once commence with the anatomy of the kidney. The kidneys, two in number, are placed one on each side of the spinal column about the level of the last dorsal and upper lumbar vertebrae.
Their shape is quite characteristic. They are more or less compressed anteriorly and posteriorly, converging to the poles. Converging to the upper ends of the former concave pockets there is a connective tissue, called the hilus, by which the vessels and nerves have their entrance and exit.

On opening into the kidney, the hilus is seen to extend into the substance of the organ forming the genic. This region is lined with tubules by the fibrous coat of the kidney which passes far at the hilus and after lining the tubules reflected onto the blood vessels forming sheaths for the principal branches interposing and from them reflected onto the peritoneum.

The kidney consists of two structures, the cortical and the medullary. The cortical substance which is soft and easily incised forms the outer portion of the kidney, and lies immediately beneath the fibrous capsule.

It is of a uniform deep red color containing a number of dark black points, the "Mallorhian Bodies." The medullary portion of the kidney is collected into pyramids of Mallorhia, varying in numbers from 12 to 18, the bases being...
devoted towards the surface and the apices
to the sinus of the gland, the latter where
projecting into the sinus being called the papille.
The word as it enters the pelvis is divided into
the pelvis of the kidney; this pelvis divides
successively into three, sometimes into two principal
tubes, which again divide and subdivide into
closer tubes called calices or pyelocelecal.
The calices embrace the prominence portion of
the pyramids and into these the papillae
protrude. Small orifices visible on the papillae
or being traced into the pyramids are found to
be the openings of the tubular structure. These
tubular papillae dividing and subdividing as they
go into the central substance of the kidney in
which, instead of being straight as the the
pyramids, they become convoluted and
anastomose freely with one another, and
terminate in the little dilatation which
embraces a Malpighian body, or in free closed
extremities.
The renal artery divides at the hilus into five
branches which papillae dividing and
subdividing, to the pyramids where they form a
pieces.
A series of anastomosing arches. From these arched branches and which pass through the cortical substance of the kidney, deduce in numerous capillaries which form a network on the prismatic tubes. They end in small venules which by their fusion form the afferent veins. The Malpighian bodies are formed by an afferent and an efferent vessel. The afferent vessel divides into many branches which spread out on the surface of the body and lead in its interior in a finer caliber vessels, from which the efferent vessel sprouts.

These vessels are received into the adluerated edges of the prismatic tubes as formerly mentioned.

Waters from a pale amber colored fluid, having a slightly acid reaction, and a peculiar fragrant smell. Its specific gravity varies greatly, but the average may be considered to be about 1020. The quantity excreted by the adult male averages from thirty to forty ounces daily, but is liable to great variations according to the amount of food and drink, temperature of the weather, and
The amount of the above principal constituent of the urine varies considerably but taking 33 ounces of urine as the average quantity...
Quantity passed during the 24 hours, the total amount being excreted at the rate of 12 parts in 1000 will be 24 grains, or nearly half an ounce. These bead consist in very small quantity in the urine of birds and warm-blooded animals generally, forming only one part in 2000. But in cold-blooded animals the forms lie for the most important purposes, the white being in these solid.

Causés. The causes of Brights disease are not very well ascertained. For to their mode perhaps thoroughly understood, but the following are generally recognised as probable causes.

Cold and Wet. In this as in other diseases, the influence of cold and wet as an exciting cause is very generally recognised; but it is mainly in adult cases that this cause is found in operation.

Disease of the Heart. And lungs is probably in some cases a cause of the disease, but it is very difficult in many cases to decide whether the diseased condition of the heart or lungs is a cause or a consequence of Brights disease.
Malaria has been by all observers clasped as one of the causes of Bright's disease. All cases of dropping following Malaria cannot be clasped as Bright's disease. But undoubtedly very many of them are B. The connection is generally explained by the disturbance occasioned to the function of the liver during the desquamation stage. The occurrence of the drop is most common after mild cases of Malaria, probably because the liver is excited during convalescence, exposure to cold during the desquamative stage being frequently observed to be immediately followed by a drop in attack.

Interference is one of the most important causes of Bright's disease. Many of the patients to Bright's disease have been “habitual drunkards,” and others, though not entitled to the title “habitual drunkard,” have nevertheless been in the habit of frequently indulging in alcoholic stimulants. The connection between the abuse of alcohol and disease of the kidneys is a sufficiently obvious one. The long continued over-stimulation of the system by a chronic or powerful acid certainly in its operation as alcohol is being quite sufficient to account
account for it.
Another and perhaps the most common cause of Bright's disease is the "Proliferous Nephritis." The frequent recurrence of the renal accumulation during the progress of nephritis is well known, and the examination of the urine during life, as well as by careful inspection of the kidneys after death, great disorganization will in many cases be found.

In many other circumstances albuminuria is found, some of which may possibly precede 
Bright's disease, but those which prove appear to be the most important causes of that disease.

Symptoms. Acute Form. In this form of Bright's disease the symptoms at the outset generally
perform the premonitions of the disease. The patient, after exposure to cold and
feeling like the approach of a dangerous malady, the skin is frequent
and the pulse is slow. The tongue is dry. The patient is
very restless and complains much of thirst and
headache. The appetite is poor, and the tongue is dry.
and
And context. The urine is soon diminished in quantity, sometimes, though rarely, entirely suppressed. It is highly albuminous and bloody, the blood being often in the form of spots. Great difficulty is experienced in making water, pain is felt in the region of the kidneys and across the epigastrium. The pain being increased on pressure, and often shooting to the thighs and into the peritonaeum. These symptoms are generally accompanied by great thirst, severe vomiting, and vomit, perhaps not for a day or two. Exsudation, swellings are observed, generally first at the face and limbs. Secondary affections as coma, convulsions, and acute inflammation of the second membranes in many cases with the state of the urine. The urine as have already mentioned is quantity, bloody, and highly albuminous. It is of a dark colour, the shade varying according to the amount of blood. Its specific gravity is frequently but little changed from that of normal urine, though in some cases it is greatly reduced. The sediment is abundant, of a dark reddish brown colour, and when examined microscopically presents a characteristic.
characteristic appearance. It consists of blood corporcles, renal epithelium, large dead, fibrous epithelial tube casts which are frequently modelled in the lumen of the tubular processes containing blood corporcles and renal epithelium cells, pus corporcles. Sometimes the casts are composed entirely of blood, and in some cases they have been observed to contain oil globules. The deposit of urine acid is not characteristic of this disease, but it very frequently occurs. It appears generally after the congestion has been relieved, and continues more or less abundantly until the restoration of the patient to health.

Symptoms of the chronic form. Like other chronic derangements of urine, renal chronic Bright's disease may exist for a considerable time without giving any very distinct notice of its presence. Very frequently the first symptoms that attract the patient's attention are frequency of micturition. And then, if the patient be allowed to remain, he has to rise once or twice during the night to make water. This may not always depend on the secretion of one

publicly
eventually large quantity of urine, but seems to be caused continued by the presence of some abnormal ingredient. Dr. Wirtz concludes no single symptom is invariably or so much service
in indicating the presence of the disease. Gradual failure of strength and anaemia frequently attract the notice of the patient or his friends.

The disease, however, when established is generally marked by the following symptoms. There is reduction of strength, emaciation, an anaemia appearance. The patient very characteristic of the disease. The skin is dry and hyperemic. The patient is often the picture of the disease. He has no appetite, no interest in eating, or drinking anything in present. There is great thirst.

The appetite symptoms are due partly to irritation of the mucous membrane of the stomach and small intestines caused by the effect to eliminate waste of the products of its decomposition. Partly to the irritation produced by sympatry with the organs more immediately affected. Change in the gastric juice may also be produced by the irritation of the plexus, and this of course could help to account for the presence of the hydropepsia.

The appetite is generally diminished; in some cases there
There being absolute loss of food, or it may be merely capricious and backache. The food when taken gives rise to uncomfortable distension of the stomach and intestines by acid fermentation. There may be also pain in the stomach and epigastria. There is also frequently nausea and vomiting, and diarrhoea alternating with a crotitic state of the bowels. The tongue is ragged at the tip and edges, and at the cost covered with a creamy film. The patient often complains of great languor, no making water, pains in the umbilical region, dead sounds or later anaemic swellings occur, increasing sometimes to an enormous state, but it is from the state of the urine that the most characteristic marks of Bright's disease are to be derived and to it I shall now direct my attention.

State of Urine. In the earlier stages the urine is generally diminished in quantity; it is very rarely increased, and in many cases marks but little from the normal standard. It is sometimes as low in quantity as 3, 12, or 16 ounces; 50 claret wine has found it sometimes as low as 2.25 ounces; and sometimes I have entirely suppressed it.
but this he found always to presage a fatal termination. Its colour is most frequently little changed, sometimes however, there is an evident admixture of blood which occasionally appears in jets. It is often rendered muddy by the presence of fine dust particles. Sometimes there is a sediment of urates, very rarely of phosphates. Its specific gravity is little altered. The most characteristic feature however, is the presence of an abnormal ingredient—albumen.

But the presence of albumen does not necessarily indicate Bright's Disease, for in various circumstances albumen has been found in the urine. The presence of blood or pus in the urine may, of occasion, to it. It has also been found during pregnancy and in some cases of diabetes particularly after fasting pasty. After blisters too it has been detected, and it has been found in the urines of those who are undergoing a course of purgation. It varies much in quantity but is generally abundant in the early stage. Sometimes, however, it disappears suddenly for a time, but then, more commonly in the advanced stages of the disease. The relation existing between its chemical...
chemical composition and that Urea suggested to M. Solow the idea that it was formed at the expense of the Urea, but T. Gerstner's observations show that that is not the case. It is more probable that its presence is owing to some peculiar irritation of the Kidneys, affecting the progress of the disease. Its presence may be accounted for in another way: That it is owing to a transudation of the Serum into the blood into the pericellular tubules and Malphigian capsules.

The quantity of solid ingredients in the urine is diminished both absolutely and relatively to the specific gravity of the urine, the high specific gravity being dependent on the presence of the albumen.

In the advanced stage of the disease the urine is very often increased in quantity, 100 or 150 ounces in some cases being excreted in the day. The suppression of all the diseases, however, or the long continuance of the disease causes a great diminution in the quantity. Its colour is generally pale than in health, and it is slightly turbid. Its specific gravity sinks.
As the disease advances, 1000 or 1000 being very common, sometimes less as low as 100. The albumen varies much in quantity, and sometimes entirely disappears. The solid contents are very much diminished.

The microscopic examination of the sediment is of very great importance, for from it direct evidence of desorganisations may be obtained. The characteristic appearances consist of what have been called tube casts. These are of four kinds viz.: The osmiotic (which have mentioned when speaking of the acute form of the disease), the desquamative, fatty, and thease.

The desquamative are the result of the separation of the epithelial cells from the sediment. They consist of the epithelial cells either closely packed together, or united by a molecular combination. The fatty result in the same way as the desquamative, but in them the cells have undergone the fatty transformation. The casts are sometimes completely filled with oil globules, at others the cells seem only to be in the incipient stage of the fatty desorganisation. The prase are diaphanous structures of casts.
constituting according to Dr. Johnson a substance secreted by the basement membrane after it has lost its cell lining; or as suggested by Dr. Bennett of the basement membrane itself chemically altered. All these forms of casts may be found deposited in the urine readily.

Important changes take place in the state of the blood; and these will now briefly consider. In the earlier stage, when the disease advances to the acute form, if there has been no tubular disorganizing process going on previously, the characters already described, as attending on inflammatory disease, are present. It coagulates with a firm, buffy, often cupped clot. The serum is milky in appearance, and when shaken with sulphuric ether yields an oily matter not unlike the ganglionic matter of the cellular tissue. It is greatly reduced in density as well as fluid shown by Dr. R. Robson, his observations being confirmed by Dr. Christison and Dr. Gregory. This disease is very remarkable; the serum which had a density in health estimated at 10.29 or 10.31 being now at 10.20 or even 10.19; and when

when
What this results there is generally a large quantity of albumen in the urine. The eliminative in the amount of the solid contents, affects equally the saline and albuminous ingredients. Ova is frequently found in the urine in considerable quantity where the amount of it in the urine is considerably diminished. Ova, however, is not characteristic of the blood in Bright's Disease for it has been found the saline quantity in the blood of healthy persons, as well as in other diseases such as gout and cholera, but in Bright's disease it is more permanently present. The saline is usually increased, and the colorancy in the early stage but little affected.

In the more advanced stages the most marked change in the blood is the diminution of the blood corpuscles. This diminution occurs itself by a corresponding change in the complexes, a change varying of course with the natural fluid of the blood yet so characteristic that to a physician at all experienced in this disease it affords an important indication of the morbid condition.
under which the patient is labouring. The blood corpuscles frequently amount to only one third of their normal proportion. The urine in the advanced stage usually regains its normal specific gravity, sometimes even exceeds it. The urea in general disappears only to reappear as the disease approaches to a termination: and the fibres, previously increased, generally regain their normal amount. Relief influenced by the occurrence of some acute disease.

Various secondary disorders occur during the progress of Bright's disease which require consideration. Of those affections the most frequent and important is the diplopia. Called so common is its occurrence that at one time it was considered a essential symptom, but later on experience and more careful observation have shown this idea to be erroneous, many cases occurring their course without any ophthalmic accumulations, and others presenting it subsequent to very advanced period of the disease. The diplopia which accompanies renal disease is
most frequently general, affecting first the
ankles and feet, then gradually extending
to the trunk, upper extremities, and face. And
ultimately, if allowed to increase, invading
the back and forward. When the disease
begins in the acute form, the erysipelas is generally
developed in a few days. In chronic
cases the appearance of acute symptoms
generally occurs its appearance.

In acute cases French considered the erysipelas
to be the consequence of the paralysis of the
capillaries of the skin and subcutaneous
because excited alone by exposure to cold.

But unless there had been previously a treated
disease in the kidney, it does not seem likely
that paralysis of the capillaries alone would
cause erysipelas. There must therefore evidently
be some other cause in operation. The
retention of the urine, the blood being well
known to have a poisonous effect, either
directly or by its decomposition, may furnish
the cause. For it may either by acting directly on
the walls or indirectly on the venous system
cause relaxation of the capillaries, condition
which
which is known to exist in dropsy, and which, by retarding the circulation, must favor the transudation of serum. In the chronic form, however, there are more causes (in operation). The urea again prevents exert its influence, but it materially assisted by the watery state of the blood, and the relaxed condition of the smaller arteries and capillaries caused by the impaired nutrition.

A secondary disorder proves more formidable or at least threatening, more immediate danger to life than dropsy. It is known by the general theme of head symptoms. The approach of this series of symptoms is generally in chronic cases very gradual. There is at first some drowsiness, often accompanied by headache and delirium, which gradually increases till it deepens into profound coma. Epileptic convulsions are of occasional occurrence. In other cases convulsions are the first symptoms which direct our attention to the head. These convulsions are followed by delirium or coma, each convolution leaving the patient more delirious or comatose, until, at last,
Fatal coma supervened. In other cases a hemiplegic attack precedes the fatal coma, but this is rare. These symptoms are usually associated with a rapid secretion of urine, and large quantities of urine are found in the blood; hence the occurrence of these symptoms has generally been thought to depend on the poisonous influence of the urea. But Franci supposed the poisonous agent to be not the urea itself, but carbonate of ammonia, the result of the decomposition of urea in the blood. This theory he bases on the results of observations on patients labouring under uremic poisoning, and on the experiments he performed on dogs. In patients labouring under uremic poisoning he found the air exhaled by them to contain carbonate of ammonia in quantities proportioned to the intensity of the symptoms. He also detected carbonate of ammonia in the blood.

Two series of experiments were performed by him to support this doctrine. In the first series he injected urea into the blood of animals, after whom the kidneys had been previously removed, in front an hour and a quarter to eight
eight hours symptoms of uraemic poisoning occurred, and simultaneously carbonate of ammonia was found in the expired air. Death occurred in from two and a half to two hours. Ammonia was detected in the blood, contents of the stomach and bile. In another series of symptomatic experiments carbonate of ammonia was injected into the blood, and this was followed punctually by convulsions, quickly succeeded by stupor, carbonate of ammonia being again detected in the expired air. On the cessation of the exhalation of carbonate of ammonia, the symptoms ceased, but were again produced on re-injection of carbonate of ammonia.

These experiments certainly favour the idea that it is not the urea that is the cause of the symptoms, but frequently were in cases of great depression of the urine. Carbonate of ammonia cannot be detected in the air expired by the patient, and it has, besides, been found both in the air expired by, and the blood of healthy persons.

Dr. Hammond of Philadelphia also performed a series of experiments of this point. He injected ura
prepar was mixed with several ounces, and Carbonate of Ammonia into the blood of animals whose kidneys had not been removed. Slight measures were produced in every case, the symptoms coming on more immediately and more violently after the injection of Carbonate of Ammonia, but the animals speedily recovered. No Ammonia could be detected in the expired air except when the Carbonate of Ammonia was injected.

In this second series of experiments Dr. Hammond, after removing the kidneys, injected the same substance into the blood. After the injection, the animals convulsions came on in from three to four hours, and proved fatal in from six to eight hours. No Ammonia could be found in the breath, nor was any ammoniacal odour perceived during the examination of the bodies. After injection of the Carbonate of Ammonia the earlier symptoms were observed earlier, and were accompanied by vomiting. Ammonia was detected both in the expired air and vomited matters. Dr. Watson thinks that the water containing
The blood may have some effect in producing the coma, and one explanation similar to this was suggested by Dr. Peas. Colitis is not necessarily connected with the extent of the abdominal accumulation; but of course if allowed to go on uncontrolled, it will ultimatey, by pressure, produce coma.

Dyspepsia is a very common occurrence in this disease. Considered it when speaking of the symptoms.

Diarrhoea is another very common secondary affection. It is generally the result of great irritability of the mucous membrane of the intestines, and increased mucous secretion, though sometimes ulceration is present. Pulmonary disease also frequently occurs often only in the form of slight oedema, but sometimes bronchitis and chronic pneumonia are met with.

Inflammation of the serous membranes is also found occurring generally as pleurisy or peritonitis.

Chronic rheumatism was found by Dr. Riessen to be of very common occurrence.
pefection more commonly in the muscles than in the joints. It is not generally met with when the
arrested effusion is great.
Cardiac disease, if frequently found associated with Bright's disease, have mentioned this as
one of the causes of Bright's disease, but it is
perhaps more commonly a consequence.
Hypertrophy of the left side of the heart is the
most common form in which it occurs, often
however, accompanied by valvaral disease.
The probability, as pointed out by Sir Bright,
is that this affection is produced by the change
in the blood causing it to act as too strong a
stimulant to the heart's action.
Disease of the liver is found in a very large
proportion of cases of Bright's disease, and
considering the frequency of interference as a cause
of both affections it is natural that they should
frequently be met with together.
It may often be found enlarged by palpation
and percussion, but sometimes it is contracted
and indurated. Whenever ascites is the
predominant abdominal affection there is
great probability that the liver is affected.
Spleen Anatomy.

1. Inflammatory form. The kidneys are considerably enlarged and increased in weight. They are smooth on the surface, and their capsules readily separable. Their vascularity is increased; their colour varying from a bright red to a dark brown. Their surface is covered with dark spots shown by Mr. Bowman to be caused by blood being extravasated into the convoluted portions of the tubes. When cut into the cortical substance is seen to be like the surface congested, and the echymotic spots are here also visible. The medullary portion of the kidney is usually dark coloured. The bodies of the cortex are compressed by the cortical substance, and their bases spread out in it. The mucous membrane of the pelvis and ureter is generally much congested.

On microscopic examination the convoluted tubes are found to be filled by a fibrinous exudation in which are intertwined epithelial cells and this on being squeezed out resembles the casts found in the urine. The straight tubes are generally normal in appearance, though some are found filled with exudation.
in the same way as the convoluted ones.
In the more chronic state the kidney is
modified in appearance the congestion having
diminished, the extravasated blood is absorbed
and the glomerular process discharged by the
prize gradually disintegrates in some cases
proceeding the fatty accretions formation. This
lip system causes intubation and atrophy of the
nuclei the organ thus becoming shrivelled and
swelled, and in the end causing death.

3. Watery form. The kidney in this form of the
disease is larger and heavier than in health.
Its capsule can be easily removed, its surface
is pale and marked free and there with red
spots. On section the cut surface is pustul
and translucent. The cortical substance is
relatively increased the palle of a pale wavy
appearance but containing points free and
therein shining bodies—the Malpighian bodies:
The cones are well marked and natural in
appearance.

The microscopic examination the Malpighian
bodies are seen to be pale and translucent.
And the mast cells are filled by a substance which is sometimes epithelium undergoing a fatty transformation and sometimes has no appreciable structure.

On touching over the action with a solution of iodine the whole assumes the colour of the iodine, but the Malpighian bodies assume a reddish or orange colour which becomes changed to purple on sometimes a blue hue on the addition of sulphuric acid.

This degeneration has been found by Merkel and others to commence in the muscular coat of the smaller arteries and from it spreads to the other coats diminishing the lumen calibre of the vessel, and then spreads to the structures supplied by the arteries.

3. Fatty Form. This may be a result of the inflammatory form, but is more frequently independent of it. It occurs most frequently in individuals advanced in life suffering from cardiac and pulmonary disorders, or who have been addicted to the use of stimulants. It is frequently found associated with fatty degeneration.
Degeneration of other organs as of the heart and liver.

The kidney is usually enlarged, bloody, and of a light color. Its surface may be smooth or irregular from hypertrophy of the fibrous tissue, causing contraction round the convoluted tubules. The surface is sometimes of a mottled appearance from the accumulation of fatty particles which have escaped by the bursting of the over-distended tubules. The tubules are more or less obstructed by the epithelial cells lining their basement membrane which lay their plexus; restrict the tubules and compress the surrounding tissues.

Such appear to be three forms of disease, most commonly met with in Bright's disease, though separate and distinct from each other. They may be met with combined in the same kidney, and the kidney may be found the seat of both the fatty and kidney form of the disease, or it may be found at the part presenting the characters of the inflammatory form, and in another of fatty degeneration.
Treatment

1. Acute Form. In few cases of this affection will severe antiphlogistic treatment be necessary. Confinement to bed will suffice. The case is very much pallied by absolutely necessary. The diet should be light consisting mainly of jam and milk. Adequate action of the skin and bowels should be secured. For obtaining free action of the skin the hot-air bath will be found very agreeable, but where it cannot be easily employed the warm bath may be advantageously substituted. Diaphoretic medicines may be used to aid the operation of the latter. Ool the diaphoretic recommended by Dr. Johnson as the most agreeable is the antimonial wine in small doses repeated every three or four hours.

A purgative which will be found very useful in many cases is the compound phial. In doses of a dram or half a dram new every day or every two days.

In many cases nothing more will be necessary but in others more severe means must be had recourse to.opping off the lous will generally relieve
relieve the severe pain sometimes complained of, and mitigate the severity of the head symptoms if they have occurred. Pulsation is seldom necessary, cupping on the loins generally having the desired effect. The patient must be careful during convalescence not to expose himself too freely to cold or to anything which might occasion a relapse of the disease. Wine may often be used during convalescence with great advantage.

2. Chronic Form. In this form also the functions of the skin and bowels must be attended to. In many cases, however, an irritable state of the small intestine exists in which cases the use of purgatives must be cautiously watched.

The existence of the pain is very frequently the most troublesome feature in the disease. An attempt must be made to get rid of this in some way or other and the most natural seems to be by the employment of medicines to stimulate the renal glands to action. But the use of diuretics has been objected to on the ground
ground that exciting the kidneys to increased action would tend to increase the disease. The pain, however, is caused by obstruction in the secreting tubes presenting a mechanical obstacle to the escape of water, and it accordingly seems probable that by increasing the flow the obstructive accumulations may be removed. Whether this is the case or not diuretics have repeatedly been given with the best results, as regards the removal of the dropsy, and without producing any bad result whatever.

Diuretics fail to reduce the swelling or have not been employed, purgative medicine may be used. Among the best of these is the compound jalap powder, or castor oil or cathartics may be used. Rub-sponaneous devices may also prevent the employment of cathartics, and diuretics cannot in some cases be got to act, and in such instances the hot air bath will sometimes be found beneficial. In some cases, however, puncture of the affected part may be necessary and it will be found generally to give great relief.

But the most important part of the treatment consists in attention to the general constitution.
condition of the patient. The use of nutritious diet combined with the employment of iron or other tonics will very frequently be found of great service.

The various secondary diseases which may arise in the course of the disease will require special treatment.

Have thus cursory glanced at the various points of interest in Bright's disease. Perfect and imperfectly no doubt but it is in the main correct.

George E. Stanton