VOLUME II.

ILLUSTRATIONS TO ACCOMPANY

"GENETICAL AND CYTOLOGICAL STUDIES
IN THE GENUS SOLANUM".
ILLUSTRATIONS TO ACCOMPANY
SECTION I.
(CYTOLOGICAL STUDIES).
EXPLANATION OF THE PLATES.

All drawings were made with Leitz Camera-lucida, using Zeiss 1/12 apochromatic objective and compensating oculars. Figures 1-2 were drawn at a magnification of 1,090 diameters; Figures 2a-3 at 640 diameters and Figures 4-327 at 2,240 diameters; magnification of other figures is noted in the legends.

Chromosomes which are dotted lie at a different focus from those chromosomes in black. All figures were drawn from material fixed from plants which were grown under similar conditions.
PLATE 1.

Fig. 1. *S. infundibuliforme*. A cell from tapetal tissue showing 48 chromosomes.

Fig. 2. *S. infundibuliforme*. A group of two pollen-mother-cells at prophase, one showing cytomyxis.

Fig. 2a. *S. infundibuliforme*. Two pollen-mother-cells at first metaphase. Note the cytomyxis in one cell.

Fig. 3. *S. infundibuliforme*. A group of pollen-mother-cells showing lack of synchronization during division; the cell in the middle is at prophase whereas the two adjacent cells are at first metaphase.
PLATE I.

Figures 1-3. S. infundibuliforme.
Figures 4-26.

PLATE 14.

B. lanciforine.
PLATE 1a.

Fig. 4. *S. lanciforme*. Diakinesis showing 12 bivalents.

Fig. 5. *S. lanciforme*. First metaphase complement drawn separately to show 12 bivalents.

Fig. 6. *S. lanciforme*. First metaphase, polar view, showing 13 chromosomes, presumably 11 bivalents and 2 univalents (u).

Fig. 7. *S. lanciforme*. Complement at first metaphase showing 11 bivalents and 2 univalents (u).

Fig. 8. *S. lanciforme*. First metaphase. 12 bivalents in polar view.

Figs. 9-19. *S. lanciforme*. First metaphase plates showing various types of secondary association. Fig. 9: 1 group of 2 and 10 free bivalents. Fig. 10: 1 group of 3 and 9 free bivalents. Fig. 11: 2 groups of 2 and 8 free bivalents. Fig. 12: 1 group of 4 and 8 free bivalents. Fig. 13: 1 group of 3; 1 group of 2 and 7 free bivalents. Fig. 14: 3 groups of 2 and 6 free bivalents. Fig. 15: 2 groups of 3 and 6 free bivalents. Fig. 16: 1 group of 3; 2 groups of 2 and 5 free bivalents. Fig. 17: 1 group of 4; 1 group of 3 and 5 free bivalents. Fig. 18: 4 groups of 2 and 4 free bivalents. Fig. 19: 2 groups of 3; 1 group of 2 and 4 free bivalents.

Fig. 20. *S. lanciforme*. Early first anaphase. Chromosomes are drawn separately to show their separation. Note the 2 univalents (u) in one side.

Fig. 21. *S. lanciforme*. First anaphase. Note the univalent chromosome in one pole which is split (u).

Fig. 22. *S. lanciforme*. First anaphase. 2 univalents (u) are shown which have reached their respective poles earlier than the rest of the chromosomes.
PLATE la (continued).

Fig. 23. *S. lanciforme*. First anaphase showing chromatid bridge, elimination of one univalent (el) and one fragment (f). The distribution of chromosomes is 10-11 at the poles.

Fig. 24. *S. lanciforme*. First anaphase showing lagging of a univalent chromosome which is divided \(u_1^1\) and \(u_2^1\), and a fragment (f).

Fig. 25. *S. lanciforme*. Two univalents are lagging between the separating groups of chromosomes, one of them is divided \(u_1^1\) and \(u_2^1\) and the other is split (u).

Fig. 26. *S. lanciforme*. First anaphase. Chromatid bridge together with one univalent which is divided \(u_1^1\) and \(u_2^1\) and lagging. Another univalent (u) lies outside the spindle zone.
Fig. 27. *S. lanciforme*. Second metaphase plates showing distribution of 12-12 chromosomes.

Fig. 28. *S. lanciforme*. Second metaphase showing distribution of 12-13 chromosomes.

Fig. 29. *S. lanciforme*. Second metaphase showing distribution of 11-12 chromosomes and 1 eliminated (el) chromosome.

Fig. 30. *S. lanciforme*. Second metaphase plate showing 12 free chromosomes.

Figs. 31-45. *S. lanciforme*. Second metaphase plates showing various types of secondary association. Fig. 31: 1 group of 2 and 10 free chromosomes. Fig. 32: 1 group of 3 and 9 free chromosomes. Fig. 33: 2 groups of 2 and 8 free chromosomes. Fig. 34: 1 group of 4 and 8 free chromosomes. Fig. 35: 1 group of 3, 1 group of 2 and 7 free chromosomes. Fig. 36: 3 groups of 2 and 6 free chromosomes. Fig. 37: 2 groups of 3 and 6 free chromosomes. Fig. 38: 1 group of 4, 1 group of 2 and 6 free chromosomes. Fig. 39: 1 group of 3, 2 groups of 2 and 5 free chromosomes. Fig. 40: 4 groups of 2 and 4 free chromosomes. Fig. 41: 2 groups of 3, 1 group of 2 and 4 free chromosomes. Fig. 42: 1 group of 4, 2 groups of 2 and 4 free chromosomes. Fig. 43: 1 group of 3, 3 groups of 2 and 3 free chromosomes. Fig. 44: 1 group of 4, 3 groups of 2 and 2 free chromosomes. Fig. 45: 1 group of 3, 4 groups of 2 and 1 free chromosome.

Fig. 46. *S. lanciforme*. Second anaphase showing elimination of a chromosome (in black, el).
PLATE 3.

Figs. 41-73. s. Parodi.
PLATE 3.

Fig. 47. S. Parodii. Diakinesis. 12 bivalents. Note the fragment (f, outlined).

Fig. 48. S. Parodii. First metaphase complement showing 12 bivalents.

Fig. 49. S. Parodii. First metaphase complement showing 11 bivalents and 2 univalents (u).

Fig. 50. S. Parodii. First metaphase, polar view, showing 13 chromosomes, presumably 11 bivalents and 2 univalents (u). The univalents are secondarily associated.

Fig. 51. S. Parodii. First metaphase, side-view, showing secondary association of univalents (u11, 1 group of 2).

Fig. 52. S. Parodii. First metaphase. Note the fragment (f).

Fig. 53. S. Parodii. First metaphase, side-view, showing non-orientation of a ring-bivalent.

Fig. 54. S. Parodii. First metaphase, polar view, 12 bivalents.

Figs. 55-73. S. Parodii. First metaphase showing different types of secondary association. Fig. 55: 1 group of 2 and 10 free bivalents. Fig. 56: 1 group of 3 and 9 free bivalents. Fig. 57: 2 groups of 2 and 8 free bivalents. Fig. 58: 1 group of 4 and 8 free bivalents. Fig. 59: 1 group of 3, 1 group of 2 and 7 free bivalents. Fig. 60: 3 groups of 2 and 6 free bivalents. Fig. 61: 1 group of 4, 1 group of 2 and 6 free bivalents. Fig. 62: 1 group of 3, 2 groups of 2 and 5 free bivalents. Fig. 63: 1 group of 5, 1 group of 2 and 5 free bivalents. Fig. 64: 1 group of 4, 1 group of 3 and 5 free bivalents. Fig. 65: 4 groups of 2 and 4 free bivalents. Fig. 66: 2 groups of 3, 1 group of 2 and 4 free bivalents. Fig. 67: 1 group of 4, 2 groups of 2 and 4 free bivalents.
PLATE 3 (continued)

Fig. 68: 1 group of 3, 3 groups of 2 and 3 free bivalents. Fig. 69: 1 group of 4, 1 group of 3, 1 group of 2 and 3 free bivalents. Fig. 70: 1 group of 5, 2 groups of 2 and 3 free bivalents. Fig. 71: 1 group of 5, 1 group of 3, 1 group of 2 and 2 free bivalents. Fig. 72: 1 group of 4, 3 groups of 2 and 2 free bivalents. Fig. 73: 5 groups of 2 and 2 free bivalents.
Figures 74-100. II. Parodi.

Sections of chromosomes in groups of S.

In free chromosomes.
Fig. 74. S. Parodii. First anaphase showing the early reaching of 1 univalent at either pole (u).

Fig. 75. S. Parodii. First anaphase. Distribution of chromosomes II-1-13; the lagging univalent (in black) is splitting.

Fig. 76. S. Parodii. First anaphase showing chromatid bridge and a fragment (f).

Fig. 77. S. Parodii. First anaphase. Fragment (f) lagging between the separating groups of chromosomes.

Fig. 78. S. Parodii. First anaphase. Note 2 bivalents, the chromosomes of which are showing difficulty in separating.

Fig. 79. S. Parodii. First anaphase, polar view. The separating chromosomes are widely spaced. Note the secondary association of chromosomes in groups of 2.(II).

Fig. 80. S. Parodii. Second metaphase plate showing 12 free chromosomes.

Figs. 81-97. S. Parodii. Second metaphase plates showing various types of secondary association. Fig. 81: 1 group of 2 and 10 free chromosomes. Fig. 82: 1 group of 3 and 9 free chromosomes. Fig. 83: 2 groups of 2 and 8 free chromosomes. Fig. 84: 1 group of 4 and 8 free chromosomes. Fig. 85: 1 group of 3, 1 group of 2 and 7 free chromosomes. Fig. 86: 3 groups of 2, and 6 free chromosomes. Fig. 87: 1 group of 4, 1 group of 2 and 6 free chromosomes. Fig. 88: 2 groups of 3 and 6 free chromosomes. Fig. 89: 1 group of 3, 2 groups of 2 and 5 free chromosomes. Fig. 90: 1 group of 5, 1 group of 2 and 5 free chromosomes. Fig. 91: 4 groups of 2 and 4 free chromosomes.
Fig. 92: 1 group of 4, 2 groups of 2 and 4 free chromosomes. Fig. 93: 2 groups of 3, 1 group of 2 and 4 free chromosomes. Fig. 94: 1 group of 3, 1 group of 3 and 4 free chromosomes. Fig. 95: 1 group of 3, 3 groups of 2 and 3 free chromosomes. Fig. 96: 5 groups of 2 and 2 free chromosomes. Fig. 97: 1 group of 4, 3 groups of 2 and 2 free chromosomes.

Fig. 98. S. Parodii. Second metaphase plates showing the distribution of 12-12 chromosomes.

Figs. 99a and 99b. S. Parodii. Second metaphase plates showing distribution of 12-1 + 1f.-11 chromosomes; the eliminated chromosome and the fragment are split. One pole has been cut by a knife. The remaining chromosome has been taken from the next section (99a).

Fig. 100. S. Parodii. Second anaphase showing a lagging chromosome which is split.
Figures 101-122. *S. infundibuliforme.*
Fig. 101. *S. infundibuliforme*. Diakinesis showing 12 bivalents.

Fig. 102. *S. infundibuliforme*. First metaphase complement showing 12 bivalents. Note the non-terminalization of chiasmata in two bivalents (a,b.).

Fig. 103. *S. infundibuliforme*. First metaphase complement with 11 bivalents and 2 univalents (u).

Fig. 104. *S. infundibuliforme*. First metaphase showing a fragment (f).

Fig. 105. *S. infundibuliforme*. First metaphase showing non-orientation of a bivalent (in black); the bivalent shows incomplete terminalization.

Fig. 106. *S. infundibuliforme*. First metaphase, polar view, with 12 bivalents.

Figs. 107–118. *S. infundibuliforme*. First metaphase plates showing different types of secondary association. Fig. 107: 1 group of 2 and 10 free bivalents. Fig. 108: 1 group of 3 and 9 free bivalents. Fig. 109: 2 groups of 2 and 8 free bivalents. Fig. 110: 1 group of 4 and 8 free bivalents. Fig. 111: 1 group of 3, 1 group of 2 and 7 free bivalents. Fig. 112: 1 group of 5 and 7 free bivalents. Fig. 113: 3 groups of 2 and 6 free bivalents. Fig. 114: 1 group of 4, 1 group of 2 and 6 free bivalents. Fig. 115: 2 groups of 3 and 6 free bivalents. Fig. 116: 1 group of 3 and 2 groups of 2 and 5 free bivalents. Fig. 117: 4 groups of 2 and 4 free bivalents. Fig. 118: 1 group of 5, 1 group of 3 and 4 free bivalents.
Fig. 119. *S. infundibuliforme.* First metaphase, unreduced nucleus with 24 chromosomes. Note the satellite-chromosome (s).

Fig. 120. *S. infundibuliforme.* First anaphase showing distribution of 11-12 chromosomes at the poles, and a lagging univalent which is divided.

Fig. 121. *S. infundibuliforme.* First anaphase. Two chromosomes (in black) of a bivalent which have separated late owing to their non-orientation on the metaphase plate, are lying off the spindle. The distribution of chromosomes at the poles is 11-11.

Fig. 122. *S. infundibuliforme.* First anaphase showing a lagging univalent (u) and a fragment (f).
Figures 123-146. *S. infundibuliforme.*
12.

PLATE 6.

Fig. 123. *S. infundibuliforme*. First anaphase. Distribution of 12 chromosomes on each plate. The chromosomes here have been widely spaced out.

Fig. 124. *S. infundibuliforme*. Second metaphase plate showing 12 chromosomes.

Figs. 125-142. *S. infundibuliforme*. Second metaphase plates showing various types of secondary association. Fig. 125: 1 group of 2 and 10 free chromosomes. Fig. 126: 1 group of 3 and 9 free chromosomes. Fig. 127: 2 groups of 2 and 8 free chromosomes. Fig. 128: 1 group of 4 and 8 free chromosomes. Fig. 129: 1 group of 3, 1 group of 2 and 7 free chromosomes. Fig. 130: 1 group of 5 and 7 free chromosomes. Fig. 131: 3 groups of 2 and 6 free chromosomes. Fig. 132: 1 group of 4, 1 group of 2 and 6 free chromosomes. Fig. 133: 2 groups of 3 and 6 free chromosomes. Fig. 134: 1 group of 3, 2 groups of 2 and 5 free chromosomes. Fig. 135: 1 group of 5, 1 group of 2 and 5 free chromosomes. Fig. 136: 4 groups of 2 and 4 free chromosomes. Fig. 137: 2 groups of 3, 1 group of 2 and 4 free chromosomes. Fig. 138: 1 group of 4, 2 groups of 2 and 4 free chromosomes. Fig. 139: 1 group of 4, 1 group of 3, 1 group of 2 and 3 free chromosomes. Fig. 140: 1 group of 5, 2 groups of 2 and 3 free chromosomes. Fig. 141: 1 group of 3, 3 groups of 2 and 3 free chromosomes. Fig. 142: 5 groups of 2 and 2 free chromosomes.

Fig. 143. *S. infundibuliforme*. Second anaphase showing a lagging univalent which is divided and moving to poles (u11 and u12). Note the eliminated chromosome (el).
PLATE 6 (continued).

Fig. 144. *S. infundibuliforme*. Second anaphase showing distribution of 11-11 (outlined) and 10-10 (dotted) chromosomes on poles. The lagging chromosome is divided (u₁ and u₂). Note three eliminated chromosomes (el) and a fragment (f).

Fig. 145. *S. infundibuliforme*. From second anaphase. Chromatid bridge.

Fig. 146. *S. infundibuliforme*. Second anaphase showing chromatid bridges and irregular movement of chromosomes to poles.
Plate 7.

Figures 147-171. Stenotomum var. stenotomum var.
Fig. 147. *S. stenotomum* var. Diakinesis showing 12 bivalents.

Fig. 148. *S. stenotomum* var. First metaphase complement with 12 bivalents.

Fig. 149. *S. stenotomum* var. First metaphase complement showing 11 bivalents and 2 univalents (u).

Fig. 150. *S. stenotomum* var. First metaphase complement with 1 trivalent (tr), 10 bivalents and 1 univalent (u).

Fig. 151. *S. stenotomum* var. First metaphase showing 13 chromosomes, presumably 11 bivalents and 2 univalents.

Fig. 152. *S. stenotomum* var. First metaphase. 12 bivalents in polar view.

Figs 153-168. *S. stenotomum* var. First metaphase plates showing various types of secondary association. Fig. 153: 1 group of 2 and 10 free bivalents. Fig. 154: 1 group of 3 and 9 free bivalents. Fig. 155: 1 group of 3, 1 group of 2 and 7 free bivalents. Fig. 156: 3 groups of 2 and 6 free bivalents. Fig. 157: 1 group of 4, 1 group of 2 and 6 free bivalents. Fig. 158: 1 group of 3, 2 groups of 2 and 5 free bivalents. Fig. 159: 1 group of 4, 1 group of 3 and 5 free bivalents. Fig. 160: 4 groups of 2 and 4 free bivalents. Fig. 161: 1 group of 4, 2 groups of 2 and 4 free bivalents. Fig. 162: 2 groups of 3, 1 group of 2 and 4 free bivalents. Fig. 163: 1 group of 3, 3 groups of 2 and 3 free bivalents. Fig. 164: 1 group of 4, 1 group of 3, 1 group of 2 and 3 free bivalents. Fig. 165: 1 group of 5, 2 groups of 2 and 3 free bivalents. Fig. 166: 5 groups of 2 and 2 free bivalents.
PLATE 7 (continued).

Fig. 167: 1 group of 4, 3 groups of 2 and 2 free bivalents. Fig. 168: 3 groups of 3, 1 group of 2 and 1 free bivalent.

Fig. 169. *S. stenotomum* var. First metaphase showing non-orientation of a bivalent.

Fig. 170. *S. stenotomum* var. First anaphase. Delayed separation of bivalents owing to non-terminalization of chiasmata (in black).

Fig. 171. *S. stenotomum* var. First anaphase. Chromatid bridge and a fragment (f).
Figures 172-196. *S. stenotomum* var. **Y**. Details of the testa, showing the striations.

The figures 172-196 show *S. stenotomum* var. Y, highlighting the testa striations and internal features visible through the microscope. These images provide a detailed view of the plant's surface characteristics, which are crucial for identification and study in botany.
Fig. 172. S. stenotomum var. First anaphase showing a long chromatid bridge and a small fragment (f).

Fig. 173. S. stenotomum var. First anaphase. Chromatid bridge and 2 fragments (f). Note the univalent chromosome (u).

Fig. 174. S. stenotomum var. First anaphase. Early reaching of one univalent (u) at either pole.

Fig. 175. S. stenotomum var. First anaphase showing one univalent which is divided (u\textsubscript{11} and u\textsubscript{12}), and one fragment (f), and one univalent (u) eliminated.

Fig. 176. S. stenotomum var. First anaphase. 2 lagging univalents, one of them is divided (u\textsubscript{11} and u\textsubscript{12}).

Fig. 177. S. stenotomum var. Interkinesis. Daughter nuclei of different sizes, and a micro-nucleus formed from eliminated chromosomes.

Fig. 178. S. stenotomum var. Second metaphase plate showing 12 chromosomes.

Figs. 179-193. S. stenotomum var. Second metaphase plates showing various types of secondary association. Fig. 179: 1 group of 2 and 10 free chromosomes. Fig. 180: 1 group of 3 and 9 free chromosomes. Fig. 181: 2 groups of 2 and 8 free chromosomes. Fig. 182: 1 group of 4 and 8 free chromosomes. Fig. 183: 1 group of 3, 1 group of 2 and 7 free chromosomes. Fig. 184: 3 groups of 2 and 6 free chromosomes. Fig. 185: 1 group of 4, 1 group of 2 and 6 free chromosomes. Fig. 186: 1 group of 3, 2 groups of 2 and 5 free chromosomes. Fig. 187: 4 groups of 2 and 4 free chromosomes. Fig. 188: 2 groups of 3, 1 group of 2 and 4 free chromosomes. Fig. 189: 1 group of 3, 3 groups of 2 and 3 free chromosomes.
PLATE 8 (continued).

Fig. 190: 5 groups of 2 and 2 free chromosomes. Fig. 191: 1 group of 4, 3 groups of 2 and 2 free chromosomes.
Fig. 192: 2 groups of 3, 2 groups of 2 and 2 free chromosomes. Fig. 193: 1 group of 3, 4 groups of 2 and 1 free chromosome.

Fig. 194. *S. stenotomum* var. Second metaphase plates showing distribution of 12-12 chromosomes. Note the much drawn-out chromosome (a and b) at either pole.

Fig. 195. *S. stenotomum* var. Second metaphase. Distribution of 12-13 (a) chromosomes.

Fig. 196. *S. stenotomum* var. Second metaphase. Distribution of 13-13 chromosomes.
Figures 197-201. *S. stenotomum* var.
Fig. 197. S. stenotomum var. Second metaphase showing distribution of 12-14 (a) chromosomes.

Fig. 198. S. stenotomum var. Second metaphase showing distribution of 11-15 (a) chromosomes.

Fig. 199. S. stenotomum var. Second anaphase showing 1 lagging chromosome at either side.

Fig. 200. S. stenotomum var. Second anaphase showing 1 lagging and 1 eliminated chromosome. Distribution of chromosomes 11-12 (dotted) and 11-11 (outlined).

Fig. 201. S. stenotomum var. Second anaphase. Chromatid bridge and a fragment (f).
FIGURES 202-225. *E. Rybinii*.
PLATE 10.

Fig. 202. *S. Rybinii*. Mid-diplotene. The bivalents are widely spaced to show the various types of configurations. Note the interstitial chiasmata in two bivalents (a and b).

Fig. 203. *S. Rybinii*. Diakinesis showing 12 bivalents, which are evenly spaced.

Fig. 204. *S. Rybinii*. First metaphase complement with 12 bivalents.

Fig. 205. *S. Rybinii*. First metaphase complement showing 11 bivalents and 2 univalents (u).

Fig. 206. *S. Rybinii*. Polar view of first metaphase. 12 bivalents.

Figs. 207-223. *S. Rybinii*. First metaphase plates showing various types of secondary association. Fig. 207: 1 group of 2 and 10 free bivalents. Fig. 208: 1 group of 3 and 9 free bivalents. Fig. 209: 2 groups of 2 and 8 free bivalents. Fig. 210: 1 group of 4 and 8 free bivalents. Fig. 211: 1 group of 3, 1 group of 2 and 7 free bivalents. Fig. 212: 1 group of 5 and 7 free bivalents. Fig. 213: 3 groups of 2 and 6 free bivalents. Fig. 214: 1 group of 4, 1 group of 2 and 6 free bivalents. Fig. 215: 1 group of 3, 2 groups of 2 and 5 free bivalents. Fig. 216: 4 groups of 2 and 4 free bivalents. Fig. 217: 1 group of 4, 2 groups of 2 and 4 free bivalents. Fig. 218: 2 groups of 3, 1 group of 2 and 4 free bivalents. Fig. 219: 1 group of 3, 3 groups of 2 and 3 free bivalents. Fig. 220: 1 group of 4, 1 group of 3, 1 group of 2 and 3 free bivalents. Fig. 221: 1 group of 4, 3 groups of 2 and 2 free bivalents. Fig. 222: 2 groups of 3, 2 groups of 2 and 2 free bivalents. Fig. 223: 2 groups of 3 and 3 groups of 2.
PLATE 10 (continued).

Fig. 224. *S. Rybinii*. First metaphase. Note the fragment (f).

Fig. 225. *S. Rybinii*. First anaphase showing 2 chromatid bridges and 3 fragments (f).
Figures 226-249a. *S. polyadenium.*
Fig. 226. *S. polyadenium*. Diakinesis. 12 bivalents.

Fig. 227. *S. polyadenium*. First metaphase complement with 12 bivalents.

Fig. 228. *S. polyadenium*. First metaphase complement with 11 bivalents and 2 univalents (u).

Fig. 229. *S. polyadenium*. First metaphase, polar view, showing 12 bivalents.

Fig. 230-244. *S. polyadenium*. First metaphase plates showing various types of secondary association. Fig. 230: 1 group of 2 and 10 free bivalents. Fig. 231: 1 group of 3 and 9 free bivalents. Fig. 232: 2 groups of 2 and 8 free bivalents. Fig. 233: 3 groups of 2 and 6 free bivalents. Fig. 234: 1 group of 4, 1 group of 2 and 6 free bivalents. Fig. 235: 1 group of 3, 2 groups of 2 and 5 free bivalents. Fig. 236: 1 group of 5, 1 group of 2 and 5 free bivalents. Fig. 237: 4 groups of 2 and 4 free bivalents. Fig. 238: 1 group of 4, 2 groups of 2 and 4 free bivalents. Fig. 239: 2 groups of 3, 1 group of 2 and 4 free bivalents. Fig. 240: 1 group of 3, 3 groups of 2 and 3 free bivalents. Fig. 241: 1 group of 5, 2 groups of 2 and 3 free bivalents. Fig. 242: 1 group of 4, 3 groups of 2 and 2 free bivalents. Fig. 243: 1 group of 5, 1 group of 3, 1 group of 2 and 2 free bivalents. Fig. 244: 1 group of 4, 1 group of 3, 2 groups of 2 and 1 free bivalent.

Fig. 245. *S. polyadenium*. First anaphase showing the difficulty of movement of chiasma in a bivalent (a). Note the separation of chromatids at the end (in black).
Fig. 246. *S. polyadenium.* First anaphase. Chromatid bridge and a fragment (f).

Fig. 247. *S. polyadenium.* First anaphase showing two chromatid bridges.

Fig. 248. *S. polyadenium.* First anaphase. Broken chromatid bridge (in black) and 2 fragments (f₁ and f₂). Note the split univalent near one of the poles (u).

Fig. 249. *S. polyadenium.* First anaphase showing 2 lagging univalents (u) which are split, and 1 fragment (f).

Fig. 249a. *S. polyadenium.* First anaphase, polar view, showing distribution of 12-12 chromosomes. The chromosomes are widely spaced out.
Figures 250-261. *Parodii* x *infundibuliforme.*
Fig. 250. *S. Parodii x infundibuliforme.* Diakinesis. 12 bivalents. Note the bivalent with interstitial chiasma (a).

Figs. 251-252. *S. Parodii x infundibuliforme.* First metaphase plate showing secondary association. Fig. 251: 3 groups of 2 and 6 free bivalents. Fig. 252: 1 group of 4, 1 group of 3, 1 group of 2 and 3 free bivalents.

Fig. 253. *S. Parodii x infundibuliforme.* First metaphase complement with 12 bivalents.

Fig. 254. *S. Parodii x infundibuliforme.* First metaphase complement with 11 bivalents and 2 univalents. The univalents are split (u).

Fig. 255. *S. Parodii x infundibuliforme.* First metaphase showing non-orientation of a bivalent (in black).

Fig. 256. *S. Parodii x infundibuliforme.* First anaphase showing 2 lagging univalents which are split.

Fig. 257. *S. Parodii x infundibuliforme.* First anaphase showing distribution of 11-12 chromosomes and 1 lagging univalent which is divided.

Fig. 258. *S. Parodii x infundibuliforme.* First anaphase showing chromatid bridge and distribution of 12-11 chromosomes.

Fig. 259. *S. Parodii x infundibuliforme.* First anaphase. Note the broken chromatid bridge (in black).

Fig. 260. *S. Parodii x infundibuliforme.* First anaphase showing distribution of 12-12 chromosomes on the plates. The chromosomes are widely spaced in the drawing.

Fig. 261. *S. Parodii x infundibuliforme.* Interkinesis. Unequal number (12 and 13) of chromosomes in the daughter nuclei. Note the wide separation of sister chromosomes (a and b) in the 13-chromosome nuclei.
Figures 262-289. *S. Parodii* x *infundibuliforme*
Figs. 290-293. *S. simplicifolium* x *Rybinii.

PLATE 13. A single chromosome of *S. Parodii* in metaphase (left).
B single chromosome of *S. simplicifolium* in metaphase (right).
Fig. 262. **S. Parodii x infundibuliforme.** Second metaphase plate with 12 chromosomes.

Figs. 263-284. **S. Parodii x infundibuliforme.** Second metaphase plates showing various types of secondary association. Fig. 263: 1 group of 2 and 10 free chromosomes. Fig. 264: 1 group of 3 and 9 free chromosomes. Fig. 265: 2 groups of 2 and 8 free chromosomes. Fig. 266: 1 group of 4 and 8 free chromosomes. Fig. 267: 1 group of 3, 1 group of 2 and 7 free chromosomes. Fig. 268: 1 group of 5 and 7 free chromosomes. Fig. 269: 3 groups of 2 and 6 free chromosomes. Fig. 270: 2 groups of 3 and 6 free chromosomes. Fig. 271: 1 group of 4, 1 group of 2 and 6 free chromosomes. Fig. 272: 1 group of 3, 2 groups of 2 and 5 free chromosomes. Fig. 273: 1 group of 5, 1 group of 2 and 5 free chromosomes. Fig. 274: 4 groups of 2 and 4 free chromosomes. Fig. 275: 2 groups of 3, 1 group of 2 and 4 free chromosomes. Fig. 276: 1 group of 4, 2 groups of 2 and 4 free chromosomes. Fig. 277: 1 group of 5, 1 group of 3 and 4 free chromosomes. Fig. 278: 1 group of 3, 3 groups of 2 and 3 free chromosomes. Fig. 279: 1 group of 5, 2 groups of 2 and 3 free chromosomes. Fig. 279a: 1 group of 5, 2 groups of 2 and 3 free chromosomes. Fig. 280: 1 group of 4, 1 group of 3, 1 group of 2 and 3 free chromosomes. Fig. 281: 1 group of 6, 1 group of 3 and 3 free chromosomes. Fig. 282: 5 groups of 2 and 2 free chromosomes. Fig. 283: 1 group of 4, 3 groups of 2 and 2 free chromosomes. Fig. 284: 1 group of 4, 1 group of 3, 2 groups of 2 and 1 free chromosome.

Fig. 285. **S. Parodii x infundibuliforme.** Second metaphase plates showing distribution of 12-12 chromosomes. Note one elongated chromosome at either pole which presumably contributed to bridge formation during first division.
PLATE 13 (continued).

Fig. 286. *S. Parodii* × *infundibuliforme*. Second metaphase. Distribution of 12-12 chromosomes.

Fig. 287. *S. Parodii* × *infundibuliforme*. Second metaphase. Distribution of 12-13(a) chromosomes.

Fig. 288. *S. Parodii* × *infundibuliforme*. Second anaphase. Distribution of 12-12 (dotted) and 11-1-11 (outlined) chromosomes. The lagging chromosome is split (in black).

Fig. 289. *S. Parodii* × *infundibuliforme*. Second anaphase showing the distribution of 11-1-11 (left) and 11-1-12 (right) chromosomes.

Fig. 290. *S. simplicifolium* × *Rybinii*. Diakinesis. 12 bivalents.

Fig. 291. *S. simplicifolium* × *Rybinii*. First metaphase complement with 12 bivalents.

Fig. 292. *S. simplicifolium* × *Rybinii*. First metaphase complement with 11 bivalents and 2 univalents (u).

Fig. 293. *S. simplicifolium* × *Rybinii*. First metaphase showing a fragment (f).
Figures 294-320. *S. simplicifolium* × *Rybinii*.
Fig. 294. *S. simplicifolium* x *Rybinii*. First metaphase plate showing secondary association: 1 group of 3, 2 groups of 2 and 5 free bivalents.

Fig. 295. *S. simplicifolium* x *Rybinii*. First metaphase showing non-orientation of 2 bivalents (in black).

Fig. 296. *S. simplicifolium* x *Rybinii*. First anaphase chromatid bridge and a fragment (f).

Fig. 297. *S. simplicifolium* x *Rybinii*. First anaphase showing division of 2 lagging univalents.

Fig. 298. *S. simplicifolium* x *Rybinii*. First anaphase showing distribution of 12-12 chromosomes and lagging of one half univalent (u-1).

Fig. 299. *S. simplicifolium* x *Rybinii*. First anaphase, polar view. Separation of 12-12 chromosomes. The chromosomes are widely spaced out.

Fig. 300. *S. simplicifolium* x *Rybinii*. Second metaphase plate showing 12 chromosomes.

Figs. 301-314. *S. simplicifolium* x *Rybinii*. Second metaphase plates showing various types of secondary association. Fig. 301: 1 group of 2 and 10 free chromosomes. Fig. 302: 1 group of 3 and 9 free chromosomes. Fig. 303: 2 groups of 2 and 8 free chromosomes. Fig. 304: 1 group of 4 and 8 free chromosomes. Fig. 305: 1 group of 3, 1 group of 2 and 7 free chromosomes. Fig. 306: 1 group of 5 and 7 free chromosomes. Fig. 307: 3 groups of 2 and 6 free chromosomes. Fig. 308: 1 group of 4, 1 group of 2 and 6 free chromosomes. Fig. 309: 1 group of 3, 2 groups of 2 and 5 free chromosomes. Fig. 310: 4 groups of 2 and 4 free chromosomes. Fig. 311: 2 groups of 3, 1 group of 2 and 4 free chromosomes.
PLATE 14 (continued).

Fig. 312: 1 group of 5, 1 group of 3 and 4 free chromosomes. Fig. 313: 1 group of 6, 1 group of 2 and 4 free chromosomes. Fig. 314: 1 group of 3, 3 groups of 2 and 3 free chromosomes.

Fig. 315. *S. simplicifolium* x *Rybinii*. Metaphase in a diploid pollen-mother-cell showing 24 chromosomes.

Fig. 316. *S. simplicifolium* x *Rybinii*. Anaphase in a diploid pollen-mother-cell showing separation of 24-24 chromosomes.

Fig. 317. *S. simplicifolium* x *Rybinii*. Second metaphase plates. Distribution of 12-12 chromosomes.

Fig. 318. *S. simplicifolium* x *Rybinii*. Distribution of 12-13(a) chromosomes.

Fig. 319. *S. simplicifolium* x *Rybinii*. Second metaphase plates showing distribution of 13-13 chromosomes.

Fig. 320. *S. simplicifolium* x *Rybinii*. Second metaphase showing distribution of 12-12+1 fragment (outlined), chromosomes.
Figures 321-329.

Figs. 321-327 and 329: *S. simplicifolium* × *Rybinii*.

Fig. 328: *S. Parodii* × *infundibuliforme*.
Fig. 321. S. simplicifolium x Rybinii. From second anaphase showing a chromatid bridge.

Fig. 322. S. simplicifolium x Rybinii. Second anaphase showing chromatid bridge and a fragment (f).

Fig. 323. S. simplicifolium x Rybinii. Anaphase showing a chromatid bridge and a lagging chromosome in a diploid pollen-mother-cell.

Fig. 324. S. simplicifolium x Rybinii. Second anaphase showing separation of 11-11 chromosomes at either side with one lagging chromosome which is divided (u₁ and u₁₂) and 2 eliminated chromosomes (e₁₁ and e₁₂).

Fig. 325. S. simplicifolium x Rybinii. Second anaphase. Lagging of 1 chromosome at either side (u).

Fig. 326. S. simplicifolium x Rybinii. Second anaphase. Elimination of 2 chromosomes (e₁₁ and e₁₂).

Fig. 327. S. simplicifolium x Rybinii. Second anaphase showing distribution of 11-11 (in outline) and 12-12 (dotted) chromosomes and 1 eliminated chromosome which is split (e₁).

Fig. 328. S. Parodii x infundibuliforme. Pollen. Note the deformed and dwarf pollen. X 50 diameters.

Fig. 329. S. simplicifolium x Rybinii. Pollen. Note the deformed and dwarf pollen. X 50 diameters.
ILLUSTRATIONS TO ACCOMPANY
SECTION II.
(GENETICAL STUDIES).
Figures 1 - 12.
PLATE 1.

Figures 1 - 12.
PLATE 1.

Fig. 1. Showing leaf of *S. simplicifolium*.

Fig. 2. do. do. *S. simplicifolium* x *Rybinii*.

Fig. 3. do. do. *S. Rybinii*.

Fig. 4. do. do. *S. Rybinii* x *demissum*.

Fig. 5. do. do. *S. demissum*.

Fig. 6. do. do. *S. commersonii*.

Fig. 7. do. do. *S. commersonii* x *ajuscoense*.

Fig. 8. do. do. *S. ajuscoense*.

Fig. 9. do. do. *S. commersonii* x *chacoense*.

Fig. 10. do. do. *S. chacoense*.

Fig. 11. do. do. *S. fendleri*.

Fig. 12. do. do. *S. fendleri* x *demissum*.
PLATE 2.

Fig. 13. Showing leaf of *S. fendleri-demissum* x *polyadenium*.

Fig. 14. Showing leaf of *S. polyadenium*.

Fig. 15. Showing intermediate type of leaf in F2 progenies of *S. Rybinii* x *demissum*.

Fig. 16. Showing *demissum*-type of leaf in F2 progenies of *S. Rybinii* x *demissum*.

Fig. 17. Showing *Rybinii*-type of leaf in F2 progenies of *S. Rybinii* x *demissum*.

Fig. 18. Showing "Off-type" of leaf in F2 progenies of *S. Rybinii* x *demissum*.

Fig. 19. Showing habit of a plant with "off-type" form of leaf.

Fig. 20. Showing intermediate type of leaf in F2 progenies of *S. fendleri* x *demissum*.

Fig. 21. Showing *demissum*-type of leaf in F2 progenies of *S. fendleri* x *demissum*.

Fig. 22. Showing *fendleri*-type of leaf in F2 progenies of *S. fendleri* x *demissum*.

Fig. 23. Showing intermediate type of leaf in progenies of *S. fendleri-demissum* x *polyadenium*.

Fig. 24. Showing *demissum*-type of leaf in progenies of *S. fendleri-demissum* x *polyadenium*.
PLATE 3.

Fig. 25. Showing *fendleri*-type of leaf in progenies of *S. fendleri*-demissum x *polyadenium*.

Fig. 26. Showing *polyadenium*-type of leaf in progenies of *S. fendleri*-demissum x *polyadenium*.

Fig. 27. Showing habit of *S. simplicifolium*.

Fig. 28. Showing habit of *S. Rybinii*.

Fig. 29. Showing habit of *S. simplicifolium* x *Rybinii*.

Fig. 30. (Right, a) shows compound form of leaf in F2 progenies of *S. simplicifolium* x *Rybinii*.

(Left, b) shows compound form of leaf in back-cross progenies of *S. simplicifolium* x *Rybinii*.

Fig. 31. An F2 plant from *S. simplicifolium* x *Rybinii* showing compound form of leaf.

Fig. 32. An F2 plant from *S. simplicifolium* x *Rybinii* showing simple form of leaf.

Fig. 33. (Right, a) showing simple form of leaf in back-cross progenies of *S. simplicifolium* x *Rybinii*.

(Left, b) showing simple form of leaf in F2 progenies of *S. simplicifolium* x *Rybinii*.

Fig. 34. Showing wing structure of *S. simplicifolium*. Note the broad wing.
Fig. 35. Stem of *S. Rybinii* showing absence of wing.

Fig. 36. Showing wing structure of *S. simplicifolium* × *Rybinii*. Note the broad wing.

Fig. 37. (a) Showing broad wing in the F₂ progenies of *S. simplicifolium* × *Rybinii*.

(b) Stem from an F₂ progeny of *S. simplicifolium* × *Rybinii* showing absence of wing.