This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated.
A copy can be downloaded for personal non-commercial research or study, without prior permission or charge.
This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author.
The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author.
When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given.
COMPUTATIONAL METHODS FOR RNA INTEGRATIVE BIOLOGY

ALINA SELEGA

Doctor of Philosophy
School of Informatics
University of Edinburgh

2017
Alina Selega:
Computational methods for RNA integrative biology
Doctor of Philosophy, 2017

Supervisors:
Guido Sanguinetti
Sander Granneman
Ribonucleic acid (RNA) is an essential molecule, which carries out a wide variety of functions within the cell, from its crucial involvement in protein synthesis to catalysing biochemical reactions and regulating gene expression. Such diverse functional repertoire is indebted to complex structures that RNA can adopt and its flexibility as an interacting molecule.

It has become possible to experimentally measure these two crucial aspects of RNA regulatory role with such technological advancements as next-generation sequencing (NGS). NGS methods can rapidly obtain the nucleotide sequence of many molecules in parallel. Designing experiments, where only the desired parts of the molecule (or specific parts of the transcriptome) are sequenced, allows to study various aspects of RNA biology. Analysis of NGS data is insurmountable without computational methods.

One such experimental method is RNA structure probing, which aims to infer RNA structure from sequencing chemically altered transcripts. RNA structure probing data is inherently noisy, affected both by technological biases and the stochasticity of the underlying process. Most existing methods do not adequately address the issue of noise, resorting to heuristics and limiting the informativeness of their output. In this thesis, a statistical pipeline was developed for modelling RNA structure probing data, which explicitly captures biological variability, provides automated bias-correcting strategies, and generates a probabilistic output based on experimental measurements. The output of our method agrees with known RNA structures, can be used to constrain structure prediction algorithms, and remains robust to reduced sequence coverage, thereby increasing sensitivity of the technology.

Another recent experimental innovation maps RNA-protein interactions at very high temporal resolution, making it possible to study rapid binding events happening on a minute time scale. In this thesis, a non-parametric algorithm was developed for identifying significant changes in RNA-protein binding time-series between different conditions. The method was applied to novel yeast RNA-protein binding time-course data to study the role of RNA degradation in stress response. It revealed pervasive changes in the binding to the transcriptome of the yeast transcription termination factor Nab3 and the cytoplasmic exoribonuclease Xrn1 under nutrient stress. This challenged the common assumption of viewing transcriptional changes as the major driver of changes in RNA expression during stress and highlighted the importance of
degradation. These findings inspired a dynamical model for RNA expression, where transcription and degradation rates are modelled using RNA-protein binding time-series data.
ACKNOWLEDGEMENTS

I would like to thank my supervisors Guido Sanguinetti and Sander Granneman, without whom this PhD project would not have been as successful as it was. Guido introduced me to the field of computational biology and taught me a great deal about both the theory and practical applications. He always had time for me when I (perhaps too often) needed advice, encouragement, or even simply a chat. Throughout the whole of my PhD, Sander provided me with a rich resource of data, which is invaluable for computational projects. Sander was also infinitely patient with me as I continued to ask undoubtedly repeating questions about various biological intricacies. I feel privileged to have worked with my supervisors who are as excellent experts as they are friendly and caring people.

I would also like to thank Ian Simpson for assisting with my annual reviews and giving me his support when I needed it. Many members of Informatics staff have spent their time talking to me about the future and sharing their experience, which was truly appreciated. Jane Hillston, Iain Murray, and Alison Edie deserve a special mention for their kindness and support. A special thanks goes to all students and staff of the DTC; it was a great pleasure to meet all of them and an incredible feeling to be a part of this community, which seemed so large back when I joined in 2013 and is almost at its end today.

I want to thank the research groups in CIBIO and FBK at the University of Trento, with whom I spent almost three months during my PhD. Toma Tebaldi, Gabriella Viero, Primoz Knap, and others made me feel welcome and made my time in Italy unforgettable. This too, goes back to Guido who put me in contact and organised the collaboration.

Our research group has provided me with much more than just colleagues. I will miss our daily morning coffee, our Christmas skittles with the customary pilgrimage to Arthur’s seat, and our invariably outdoorsy summer socials (which, the Greeks were convinced, were intended to kill them). I am indebted to David, Gabriele, Botond, Edward, Giulio, Tom, Anastasis, Yuanhua, Andreas, Michalis, Dimitris, Michael, Emily, Ylenia, Fabio, Daniel, Van-Anh, Veronica, and, of course, Guido for creating such a supportive and fun atmosphere within the group over the years.

It would not be possible for me to get to the day when I am writing these lines if it wasn’t for the endless and unconditional support of my friends and family. Matt, Paolo, Martino, Nathalie and others were there to experience the whole thing along-
side me. Sam, Svet, and Dragos were a part of our DTC13 team. Stefaniia, Liz, Artem, Dasha, Ivan and the What? Where? When? squad never failed to cheer me up. Thousands of kilometers didn’t stop Viv, Natasha, and June from making me feel their warmth. John and Irene in their kindness gave me a beautiful and relaxing place to stay in the final stretch. My parents and Marina always knew which words to say (or not to say) and would drop everything to speak with me when things were not going well.

Finally, I dedicate this thesis to Gavin Gray, who did everything to support me every step of the way. I would not be here without him.
DECLARATION

I declare that this thesis was composed by myself, that the work contained herein is my own except where explicitly stated otherwise in the text, and that this work has not been submitted for any other degree or professional qualification except as specified.

Edinburgh, 2017

[Signature]

Alina Selega, November 29, 2017
CONTENTS

Abbreviations xii

1 INTRODUCTION 1
 1.1 Contributions ... 2
 1.1.1 Collaboration with Alessandro Quattrone 2
 1.1.2 Additional publication 3
 1.2 Structure of the thesis 3

2 INTRODUCTION TO RNA BIOLOGY 4
 2.1 DNA structure and replication 4
 2.2 RNA transcription 5
 2.3 Gene expression .. 5
 2.4 Importance of RNA in cellular function 6
 2.5 Next-generation sequencing technologies 6
 2.5.1 High-throughput RNA sequencing 7
 2.5.2 Biological relevance of NGS data 10
 2.6 RNA structure .. 11
 2.7 RNA structure prediction and determination 12
 2.7.1 Single sequence structure prediction 12
 2.7.2 Comparative structure prediction 14
 2.7.3 RNA structure probing experiments 14
 2.7.4 Existing structure probing approaches 15
 2.7.5 BUM-HMM: a computational analysis pipeline for structure probing data .. 18
 2.8 Interactions between RNA and proteins 19
 2.8.1 Cross-linking methods for mapping RNA-protein interactions 19
 2.8.2 Mapping rapid interactions with reduced irradiation times 20
 2.9 Gene expression regulation in stress response 21
 2.9.1 Roles of transcription and decay in gene expression regulation 21
 2.10 Directly measuring degradation rates 23
 2.10.1 Co-transcriptional degradation pathway 23
 2.10.2 Cytoplasmic degradation pathway 23
 2.10.3 Identifying differential binding to degradation mediators under stress 24
 2.10.4 Modelling RNA expression kinetics 24

3 INTRODUCTION TO MACHINE LEARNING METHODS 25
3.1 Hidden Markov models .. 25
 3.1.1 HMM architecture ... 26
 3.1.2 Transition and emission models 27
 3.1.3 Inference in HMM .. 27
 3.1.4 Expectation maximisation 28
 3.1.5 Applications of HMMs in computational biology 30
3.2 Gaussian Processes ... 30
 3.2.1 Motivation .. 31
 3.2.2 GP specification ... 31
 3.2.3 Inference in GPs ... 32
 3.2.4 Marginal likelihood ... 34
 3.2.5 Applications of GPs in computational biology 34
3.3 Dynamical models ... 35
 3.3.1 Types of differential equations 35
 3.3.2 Applications of dynamical models in computational biology .. 36
4 MODELLING RNA STRUCTURE PROBING DATA 38
 4.1 Illustration of an RNA structure probing experiment 39
 4.2 Data representation and the model 40
 4.2.1 Measuring drop-off rate variation 41
 4.2.2 Computing empirical p-values 41
 4.2.3 Computing posterior probabilities of modification with HMM .. 42
 4.3 Paper 1: BUM-HMM ... 45
 4.4 Bias correction .. 55
 4.4.1 Coverage bias ... 55
 4.4.2 Sequence bias .. 60
 4.5 Parameter optimisation .. 60
 4.6 Conclusions and outlook 61
 4.6.1 Breadth of existing analysis strategies for RNA structure probing data 61
 4.6.2 Existing model-based approaches 62
 4.6.3 Contributions to the field 64
 4.6.4 Recent developments since publication 65
5 MODELLING DYNAMICS OF INTERACTOME AND RNA EXPRESSION 70
 5.1 Transcription and degradation in yeast 72
 5.2 Experimental design .. 72
 5.3 Identifying differential cross-linking between conditions 74
 5.4 Paper 2: χCRAC analysis of Nab3 77
 5.5 Formal definition of the model 95
ABBREVIATIONS

e.g. for example
i.e. that is to say
DNA deoxyribonucleic acid
RNA ribonucleic acid
mRNA messenger RNA
rRNA ribosomal RNA
tRNA transfer RNA
miRNA micro RNA
snRNA small nuclear RNA
snoRNA small nucleolar RNA
ncRNA non-coding RNA
CUT cryptic unstable transcript
SUT stable uncharacterised transcript
XUT Xrn1-sensitive unstable transcript
RNAP RNA polymerase
Pol II polymerase II
NNS Nrd1-Nab3-Sen1
GO gene ontology
NGS next-generation sequencing
RNA-Seq RNA sequencing
PCR polymerase chain reaction
cDNA complementary DNA
RT reverse transcriptase
RPKM reads per kilobase of transcript per million mapped reads

FPKM fragments per kilobase of transcript per million mapped reads

TPM transcripts per million

pH potential of hydrogen

PARS parallel analysis of RNA structures

FragSeq fragmentation sequencing

SHAPE selective 2’-hydroxyl acylation analysed by primer extension

SHAPE-MaP selective 2’-hydroxyl acylation analyzed by primer extension and mutational profiling

DMS dimethyl sulfate

NAI 2-methylnicotinic acid imidazolide

1M7 1-methyl-7-nitroisatoic anhydride

TCPEM two-channel Poisson expectation maximization

BUM-HMM beta-uniform mixture hidden Markov model

RBP RNA-binding protein

UV ultraviolet

CLIP cross-linking immunoprecipitation

CRAC cross-linking and analysis of cDNA

PAR-CLIP photoactivatable-ribonucleoside-enhanced cross-linking and immunoprecipitation

iCLIP individual-nucleotide resolution CLIP

HMM hidden Markov model

EM expectation-maximisation

GP Gaussian process

ODE ordinary differential equation

PDE partial differential equation
LDR log-ratio between drop-off rates
AUC area under the curve
PR precision-recall
ROC receiver operating characteristic
ALS amyotrophic lateral sclerosis
All life as we know it, from the first primitive cells to the spectacular diversity of the organisms that have inhabited our planet throughout its history, shares the basic principles of its biological organisation. All life forms are composed of cells and all cells use the same fundamental types of molecules to represent and manipulate their genetic information: a complete set of rules required for growth, development, functioning, and reproduction. Understanding the mechanisms of a great many intricate biological processes that take place in the cell every second can have a major impact on medical research, molecular and evolutionary biology, and many other research fields of great significance.

The main biological actors in the cell are the DNA, RNA, and proteins. All three types of molecules are necessary for correct cellular functioning and are tightly interconnected by the underlying processes. RNA (ribonucleic acid) fulfills an important role of transforming the instructions contained in the DNA code into real biological events, implemented by the proteins. It is now known that the functions of RNA extend much further, regulating various aspects of cell biology. The development of sequencing methods that can assay a wide range of phenomena happening on a genome-wide scale, together with speed gains and cost reductions which made these methods accessible for a wider research community, has generated a vast multitude of datasets elucidating all stages of gene expression. The analysis of next-generation sequencing data, collected in various biological conditions and at increasingly high spatial and temporal resolution, is insurmountable without advanced computational techniques.

In this thesis, I discuss computational methods that I developed for the analysis of next-generation sequencing data with the aim to investigate the two main aspects of RNA biology. Namely, I focus on two experimental technologies: RNA structure probing methods, which assay the molecular structure of RNA, and cross-linking methods, which map interactions between RNA and proteins. Both are experimentally challenging protocols studying inherently complex and noisy biological processes. The methods, discussed in this thesis, address these problems using statistical and machine learning techniques and provide the tools for the modelling and analysis of these experimental signals.
The contributions of this thesis can be summarised as follows:

1. The development of a computational analysis pipeline for modelling of RNA structure probing data, which explicitly captures biological variability of the data, provides automated strategies for correcting biases of the technology, and generates an interpretable probabilistic output. The software implementing the method was released as a peer-reviewed Bioconductor package (Selega et al., 2016) and the paper presenting the method was published in Nature Methods (Selega et al., 2017).

2. The development of a non-parametric method for modelling RNA-protein interactions time-series data of high temporal resolution, obtained with a novel cross-linking protocol χCRAC, which enables testing individual transcripts for differential binding with the protein of interest between biological conditions. The software implementing the method is freely available and the paper presenting χCRAC and using the method for parts of its analysis was published in Nature Communications (van Nues et al., 2017).

3. The conception and theoretical formulation of a dynamical model for RNA expression under nutrient stress, which uses RNA-protein interactions time-series data to infer the underlying transcription and degradation rates determining the total RNA abundance. The implementation of the proposed model is presently ongoing in collaboration with David Schnoerr, Edward Wallace, Sander Granneman, and Guido Sanguinetti.

1.1.1 Collaboration with Alessandro Quattrone

Additionally, during the duration of this PhD project, I collaborated with Alessandro Quattrone’s lab at the Centre for Integrative Biology, University of Trento, Italy. The collaboration was a part of the “Axonomix” research project, further linked to the University of Edinburgh through a partnership with Thomas Gillingwater at the Centre for Integrative Physiology. The project aimed to investigate the effects of translational impairment in amyotrophic lateral sclerosis (ALS).

I developed exploratory deconvolution analysis for next-generation sequencing data of total and polysomal mRNA, isolated from the spinal cords of pre- and post-symptomatic SOD1 mice (a common model for ALS). The deconvolution computational approach I applied (Kuhn et al., 2011) aimed to identify post-transcriptional
disease-specific changes, while taking into account degenerative alterations in histological tissue composition, associated with the disease phenotype. As the method relies on reference genes expressed only by certain cell types, I performed the stability analysis, recovering cell type-specific differentially regulated genes for different combinations of reference genes. The software implementing these analyses was passed on to the computational biologist of the group Toma Tebaldi. This work did not fit in with the overall narrative of this PhD project and for this reason was not included in the thesis.

The first paper reporting the results obtained within the “Axonomix” research project was recently published in *Cell Reports* (Bernabo et al., 2017). The findings of this paper are outside of my involvement in the “Axonomix” project.

1.1.2 Additional publication

In the final year of my PhD, I presented my work on the modelling of RNA structure probing data at the Wellcome Trust Conference on Computational RNA Biology and co-authored an invited meeting report with my supervisor Guido Sanguinetti. The report reviewed the state of the art of this interdisciplinary field and was published in *Genome Biology* (Selega and Sanguinetti, 2016).

1.2 Structure of the thesis

This thesis is structured as follows. Chapter 2 provides the necessary background to RNA biology, focussing on the experimental technologies relevant to this thesis. Chapter 3 gives a brief introduction to the probabilistic models, mathematical frameworks, and machine learning techniques used by the methods developed for this thesis. Chapter 4 discusses the BUM-HMM method for modelling RNA structure probing data and provides the associated journal paper, evaluating the method on real and synthetic data in various contexts. Chapter 5 presents the algorithm for identifying differential RNA-protein binding between conditions and applies it to study the role of different degradation pathways in the context of stress response, proposing a dynamical model for RNA expression motivated by the findings of the discussed analyses. Finally, Chapter 6 provides an overview of the methods presented in this thesis and discusses possible avenues for future research.
INTRODUCTION TO RNA BIOLOGY

It is estimated that there are more than 10 million species currently living on our planet (Alberts et al., 2014). All of them, dramatically ranging in their diversity, are composed of cells that share the same mechanisms for most of their basic processes. It is those universal features common to all known life that enable the notion of heredity — the ability of each species to yield progeny, faithfully reproducing itself.

Whether it is a single cell organism or a multicellular giant such as the human body, its entirety has been generated through cell division starting from the very first cell. Thus, a cell is the smallest unit equipped both with hereditary information and the necessary machinery required for constructing a new cell in its own image.

All cells store their hereditary information in the form of a linear chemical code provided by the double-stranded molecules of DNA (deoxyribonucleic acid). Given that living cells were estimated to have been evolving for more than 3.5 billions years (Alberts et al., 2014), such permanency of information representation is astonishing and seems to be fundamental to the definition of life.

2.1 DNA STRUCTURE AND REPLICATION

Each strand of the DNA is composed from a long chain of nucleotides, drawn from a 4-letter alphabet: A, T, G, and C. A nucleotide has two parts: a sugar (deoxyribose) with an attached phosphate group and a base, which can be adenine (A), guanine (G), thymine (T), or cytosine (C). Sugars are linked together with their phosphate groups, forming a chain with protruding bases. An isolated strand can be composed in any order. However, in living cells DNA is not synthesised in isolation, but from an existing template strand. The bases in the template strand bind to the bases in the synthesised strand according to the strict rule of base complementarity: A binds to T and G binds to C. The base-pairing holds the synthesised molecule in place and selects the monomer that should be added next, enlarging the chain. This process creates a double-stranded DNA molecule with two exactly complementary strands, which twist around each other forming the well-known double helix.

The bonds between the base pairs are weaker than the sugar-phosphate links, which makes it possible to separate the strands without breaking their sugar-phosphate
backbones. The separated strands can then become template strands, creating more copies of their hereditary information; a process called DNA replication.

2.2 RNA TRANSCRIPTION

Hereditary information is expressed with the help of another dedicated molecule, closely related to DNA. RNA (ribonucleic acid) copies a part of the DNA code and uses it to guide synthesis of proteins, another major class of macromolecules that put the cell’s genetic information into action.

In its structure, RNA is very similar to DNA, with a few differences. The RNA backbone is comprised of ribose, a sugar with a hydroxyl group at the 2’ position, which is replaced with a hydrogen atom in the related deoxyribose. Further, one of the RNA bases is different (uracil (U) instead of thymine (T)). All other bases are the same and the base complementarity rule still holds (however, other base pair interactions are possible (Reece et al., 2014)). During transcription, the RNA molecule is synthesised from the template DNA strand by the enzyme RNA polymerase, much like the DNA monomers are assembled during DNA replication. The resulting transcript thus encodes a part of the genetic information encoded by the DNA, even if it is in a slightly different alphabet.

2.3 GENE EXPRESSION

The main difference between RNA and DNA comes with their usage within the flow of genetic information within a cell. Many transcripts can be repeatedly synthesised from the same DNA segment. Thus, DNA represents the fixed “archive” of genetic information, whereas RNA molecules copy its certain parts and are mass-produced. The transcripts arising from the protein-coding segments of the genetic code (or genes) are called the messenger RNA (mRNA) and each transcript is translated into a molecule of the protein species it encodes.

These two steps — transcription, which transforms protein-coding genes into mRNA, and translation, which generates proteins those genes express from the mRNA — together constitute the process of gene expression, one of the most important functions implemented by the cell.
2.4 IMPORTANCE OF RNA IN CELLULAR FUNCTION

Another big difference between the two nucleic acids stems from the structure of RNA. Unlike DNA, it is predominantly single-stranded and thus has a flexible backbone, which allows the weak base pair bonds to form between the complementary parts of the same nucleotide chain. This base pairing leads to a variety of possible shapes the RNA molecule can fold into. Different shapes enable selective recognition and binding of other molecules and can even serve as a catalyst for chemical reactions.

These crucial abilities of RNA to store and copy genetic information, as well as catalyse biochemical reactions gave rise to the “RNA world” hypothesis, which suggests that self-replicating RNAs proliferated before the DNA and proteins evolved (Cech, 2012). It is thought that DNA could have taken on the information storage function due to its increased stability compared to the more fragile RNA, while proteins became the main biocatalysts as their abundance and the diversity of amino acids, their building blocks, makes them more versatile.

The wide-ranging capabilities of RNA make it a strong candidate for important regulatory roles in cellular function. These roles have indeed been confirmed as many novel experimental technologies have been recently generating vast amounts of data, which dramatically enriched our understanding of RNA biology. It is now clear that the importance of RNA extends much further than just an intermediate step in gene expression.

The majority of RNAs do not code for a protein (non-coding RNAs, ncRNAs) but instead have crucial regulatory functions (Mattick and Makunin, 2006). Some very abundant examples are ribosomal RNAs (rRNAs) and transfer RNAs (tRNAs), both prominently involved in translation. Very short transcripts called microRNAs (miRNAs) can implement gene silencing by binding to mRNA and blocking its translation (Matzke and Matzke, 2004). Ribozymes (RNA enzymes) can catalyse biochemical reactions such as cleaving and ligating other molecules (Fedor and Williamson, 2005). RNA-protein complexes called spliceosomes perform RNA processing by splicing introns out of pre-mRNA (Berg et al., 2002). Some RNAs can even modify their own activity: a riboswitch is a regulatory segment of mRNA that can change the resulting protein production by binding a small molecule (Nudler and Mironov, 2004).

2.5 NEXT-GENERATION SEQUENCING TECHNOLOGIES

Our understanding of the transcriptome diversity and the richness of its functional repertoire was greatly aided by next-generation sequencing (NGS) (Schuster, 2007).
NGS is a technological advancement of Sanger sequencing, which was automated in the first generation of DNA sequencers. NGS provides significant improvements in speed, cost, accuracy and requires a smaller sample size. The main contribution to the improvement in sequencing speed came with the development of parallel analysis, giving the technology its second name “high-throughput sequencing”.

Different high-throughput sequencing technologies exist, making use of various signals they detect, e.g. change in pH used in ion torrent sequencing. A common high-throughput sequencing method called Illumina sequencing relies on optical signals. A typical experiment involves cleaving the sample into shorter reads and amplifying them with the polymerase chain reaction (PCR). The amplified reads, separated into single strands, are attached to a slide which is flooded with a mixture of DNA polymerase and nucleotides, fluorescently labelled by base (Fig. 2.1a). These labelled nucleotides also have a terminator which stops the chain from growing once a nucleotide is added. An image is taken of the slide, detecting fluorescent signals corresponding to the bases added to the end of each read (Fig. 2.1b). For the next cycle, the terminator and the fluorescent label are removed from the added nucleotides, allowing the next base to be added. The process is repeated, imaging after adding each nucleotide, and thus, sequencing many reads at the same time (Fig. 2.1c). NGS is so massively parallel that 300 billion bases of DNA can be processed in a single run on a single chip. Other high-throughput sequencing methods differ in technical protocols but broadly follow similar logic.

As reads are amplified prior to sequencing, NGS relies on many short overlapping reads, sequencing each part of DNA multiple times. The more each section is repeatedly sequenced, the greater the coverage, leading to a more reliable sequence.

NGS methods have been extensively modified outside of their original scope of genome sequencing. Existing high-throughput technologies can map interactions between nucleic acids and other molecules (Johnson et al., 2007; Ule et al., 2005) and quantify transcript abundance genome-wide (Wang et al., 2009), at a greater speed and more affordable price than before.

2.5.1 High-throughput RNA sequencing

RNA-seq is a method for RNA sequencing, which generates a library of complementary DNA (cDNA) using reverse transcription (implemented by a reverse transcriptase enzyme) and sequences that library with NGS (Wang et al., 2009). The resulting reads are aligned to a reference genome or assembled de novo with bioinformatic analyses. RNA-seq can determine not only the sequence of RNA present in a sample, but also
2.5 next-generation sequencing technologies

Figure 2.1: The basic process of an Illumina sequencing experiment. a. The reads are attached to a slide, flooded with DNA polymerase and fluorescently labelled nucleotides with terminators, which ensure that once a nucleotide is attached, the chain stops growing. b. The slide is imaged, detecting the fluorescent signal of the attached nucleotide. c. Its terminator is removed and the process is repeated, imaging one nucleotide at a time. Images reproduced from (EMBL-EBI, 2017).
the abundance of individual transcripts. However, to ensure accurate transcript quantification, various data normalisation strategies are required.

A number of biases can arise during the cDNA library preparation. As longer RNAs have to be cleaved into shorter fragments, different protocols achieve this with either RNA or cDNA fragmentation, each of which is known to be associated with a certain bias in the sequencing outcome (Wang et al., 2009; Marguerat and Bähler, 2010). Additionally, if amplification step is used by the protocol, corrections have to be made in order to distinguish the reads reflecting the genuine transcript abundance from the PCR artifacts.

Fragmentation steps result in the dependence of the number of reads mapped to a gene on its length. In order to be able to rank the abundances of different transcripts in the same sample, it must be noted that more reads are expected to arise from longer genes rather than shorter genes. Additionally, the effects of the library size on the number of mapped reads must be taken into account. These considerations are commonly addressed by normalising the raw counts of mapped reads by transforming them into measures such as reads per kilobase of transcript per million mapped reads (RPKM) (Mortazavi et al., 2008). RPKM is computed by dividing the sum of all reads in the sample by 10^6 and scaling all counts by this factor. Then the scaled counts are divided by their gene lengths in kilobases.

Other related normalisation transformations are fragments per kilobase of transcript per million mapped reads (FPKM) and transcripts per million (TPM). FPKM is similar to RPKM but is used for paired-end sequencing, where a fragment is sequenced from both ends, generating high-quality alignable sequence data. In this case, two reads can arise from a single fragment and the FPKM measure takes this into account by not counting this fragment twice. For TPM, the normalisation by gene length comes first in the transformation algorithm, making all normalised read counts sum to the same value in each sample. This can make it easier to compare the proportion of reads mapped to a gene in each sample. In contrast, the sum of the normalised counts may be different between samples when using FPKM normalisation; however, FPKM can be transformed into TPM using a single formula (Pachter, 2011).

Scaling counts to the library size intuitively reflects the expectation that sequencing a sample to half the coverage depth should yield half the number of reads mapped to each gene. However, this normalisation is unable to adequately capture differences in transcript abundance if the composition of the RNA population significantly changes between the compared samples (Robinson and Oshlack, 2010). Thus, FPKM and RPKM can be used for within-sample normalisation, taking care of the gene length and library size effects. TPM is more suited for between-sample normalisation; however, if a large number (but not the majority) of genes is unique or highly
expressed in one sample but not the other, it is advised (Conesa et al., 2016) to use an empirical normalisation method based on trimming the mean of gene-wise fold-changes (Robinson and Oshlack, 2010). It is worth noting that this method assumes that the majority of genes are not differentially expressed between samples.

2.5.2 Biological relevance of NGS data

The size and complexity of the NGS datasets unsurprisingly turned out to be insurmountable without computational methods to process them. However, even beyond the technical aspects of handling the data, it became increasingly clear that advanced statistical methodologies must be developed to interpret the data. This need gave rise to many analytical and modelling efforts focused on high-throughput sequencing data, a niche that is now firmly embedded into the interdisciplinary fields of bioinformatics and computational biology.

Many novel classes of transcripts were discovered as a result of these efforts. Additionally, they exposed a great variety of protein-coding transcripts that arises from different isoforms and synonymous variants.

A single gene can give rise to different protein isoforms via the process of alternative splicing, whereby some exons of the gene are included within or excluded from the resulting mRNA (Black, 2003). Alternative splicing is well regarded to be a major factor driving transcriptomic and proteomic complexity, as a high percentage of genes is thought to have alternative splice forms (Modrek and Lee, 2002). A novel class of highly conserved neuron-specific micro-exons was recently discovered and its misregulated alternative exclusion was shown to be linked to autistic phenotypes (Irimia et al., 2014). Further, many transcripts have multiple variants that differ only in their non-coding regions (Sandberg et al., 2008). Remarkably, while the proteins they generate have identical amino acid sequence, their functions can be drastically different in such important contexts as cell migration and cell survival (Berkovits and Mayr, 2015).

These important discoveries undoubtedly extended our understanding of RNA biology and its pervasive control at all steps of gene expression, with complex wide-ranging functions and implications in disease phenotypes. They were only made possible through collaborative efforts, which combined advanced experimental technologies and sophisticated computational strategies. High-throughput sequencing data, in all of its tremendous variety, provides an invaluable resource, yet is only informative when dealt with computationally. Thus, machine learning and computational methods for NGS data can shed light on two main aspects of RNA regulation —
its **structure** and **interactome**, both recently demonstrated to be the most influential research areas in RNA biology (Selega and Sanguinetti, 2016).

2.6 RNA Structure

An extra hydroxyl group in the ribose sugar enables RNA to form hydrogen bonds more easily. Thus, base pairs often form within the RNA molecule, creating folds and other structural elements. This gives rise to a large repertoire of highly complex structures that RNA can adopt (Adams, 2012). Fig. 2.2a shows a three-dimensional representation of the large 50S subunit of the prokaryotic ribosome, demonstrating the structural complexity of the RNA molecules.

As structure can facilitate (or prohibit) interactions with binding partners, it can thereby determine the biological function of the RNA. The structure of the target mRNA can affect its recognition by miRNAs, which increase its degradation or inhibit translation (Long et al., 2007). Further, most RNA processing reactions occurring post-transcriptionally are mediated by binding events with RNA-binding proteins and trans-acting RNAs (Glisovic et al., 2008). Thus, RNA structure prediction remains an important field which receives a lot of attention in the computational biology community.

RNA structure has been probed with methods such as X-ray crystallography (Speir et al., 1995) and nuclear magnetic resonance spectroscopy (Puglisi et al., 1992). While largely successful at solving three-dimensional RNA structures, these methods require complicated preparation procedures. Firstly, both methods require large quantities of purified RNA in order to generate useful structural information (Cheong et al., 2004). Secondly, RNA crystallisation is a complex multi-parametric process, for which the right solvent conditions are hard to determine *ab initio* (Kondo et al., 2014). Finally, understanding the RNA behaviour in the directly relevant physiological environment, its dynamic changes, and their impacts on the RNA binding and function is a task impossible to achieve with such experimental methodologies.

As RNA three-dimensional structures can be highly complex and understandably pose interpretation challenges, a useful representation is commonly used given by the RNA **secondary structure**: a list of base-pairing interaction patterns within the molecule. RNA secondary structure has many known functionally-relevant motifs; most common ones include hairpin loops (Svoboda and Cara, 2006). Fig. 2.2b shows the secondary structure representation of a hairpin loop, indicating the nucleotide sequence and the base-pairing interactions within it.
2.7 RNA structure prediction and determination

The problem of RNA secondary structure prediction has been extensively addressed with computational strategies. Many approaches tackle the complex problem of predicting the structure from a single nucleotide sequence.

2.7.1 Single sequence structure prediction

As the RNA structure is mainly determined by base pairing and base stacking interactions, the total sum of the free energy for these interactions should give an indication of the overall structure stability. This rationale motivates most single sequence structure prediction algorithms, which try to predict the folding free energy of a given secondary structure that could arise from the sequence and then pick the most stable structure by selecting that with the lowest free energy.

A common method for predicting the free energy for a structure is an empirical nearest-neighbour model (Mathews, 2006), where the change in free energy for each motif depends on its sequence and its neighbouring base pairs. The model is parameterised by estimates derived from calorimetric experiments measuring microscopic physical properties of the molecule (Mathews et al., 2004; Xia et al., 1998).

While in principle, finding the most stable structure is trivially achieved if all possible structures can be generated, this approach is completely infeasible in practice. The number of possible structures increases exponentially with the length of the RNA, e.g.

Figure 2.2: a. 3D representation of the large ribosomal subunit (50S) of the prokaryotic ribosome (Yikrazuul, 2010). The ribosomal RNA are shown in ochre, the proteins are shown in blue. b. An example of a hairpin loop RNA secondary structure (Sakurambo, 2006). Blue bars indicate base-pairing interactions.
a transcript of a modest length of only 100 nucleotides has more than 10^{25} possible secondary structures (Mathews, 2006).

This problem was addressed with dynamic programming algorithms (Nussinov and Jacobson, 1980; Zuker and Stiegler, 1981), which remain a common solution in the field of secondary structure prediction. Dynamic programming allows to check all possible structures without explicitly generating them. The algorithm first determines the lowest possible free energy for each possible sequence fragment, starting with the shortest ones. The lowest free energy for longer fragments is determined recursively, using previously computed results for shorter sequences, which considerably speeds up the process. Once the lowest energy for the whole sequence is computed, the exact structure of the molecule is generated (Mathews, 2006).

Structure prediction methods that rely on free energy minimisation are potentially limited by their assumption that the most stable structure is the most probable. Not all known RNAs necessarily fold into structures which conform with the thermodynamic minimum (Freyhult et al., 2005). Further, some RNA sequences can have more than one structural conformation that is actively adopted in vivo, e.g. riboswitches (Nudler and Mironov, 2004). For these reasons, some structure prediction methods generate a list of “suboptimal” structures, which all have similarly low free energies (Zuker, 2003). Another approach is to generate statistically representative samples of possible structures from a Boltzmann ensemble (Ding and Lawrence, 2003).

Both dynamic programming and statistical sampling approaches frequently encounter a problem with prediction of complex structural elements such as pseudoknots (Andronescu et al., 2010). A pseudoknot contains two or more stem-loop structures, where a half of one stem is inserted between the two halves of another stem (Staple and Butcher, 2005). Many important RNA molecules rely on this complex three-dimensional structure, e.g. a ribozyme RNase P, which cleaves off extra RNA sequences on tRNA molecules (Guerrier-Takada et al., 1983), has a highly conserved pseudoknot region in its structure (Lee et al., 1996). Dynamic programming algorithms are well suited to detect “well-nested” structures, where formed base pairs do not overlap each other in sequence position. Pseudoknots are formed by interactions between distant nucleotides and so can only be detected by dynamical programming algorithms that have been substantially modified (Rivas and Eddy, 1999). However, these algorithms tend to be very computationally expensive. In fact, the general problem of pseudoknot prediction has been theoretically shown not to have a fast known solution (Lyngso and Pedersen, 2000). Thus, most existing methods will not predict pseudoknots present in the query sequence, allowing the methods to perform at competitive speed (Knudsen and Hein, 2003).
Another approach for three-dimensional structure prediction includes direct simulations of molecular dynamics (Sharma et al., 2008). These methods are already restricted to shorter sequences but even for those, full-resolution simulations can be computationally very costly. For this reason, coarse-grained models can be an attractive solution (Poblete et al., 2015).

2.7.2 Comparative structure prediction

In comparative structure prediction, the method relies on additional data (Gardner and Giegerich, 2004). Sequence covariation information is often used following the motivation that covariation of two distant nucleotides suggests the presence of a structural link between them. Using multiple sequences to predict consensus structure has a lot in common with sequence alignment.

A common strategy is to first align multiple sequences and then fold the determined consensus sequence, similarly as in single sequence structure prediction (Knudsen and Hein, 2003; Hofacker et al., 2002). In this case, the accuracy of structure prediction will depend on the quality of the alignment. The alignment step can be also addressed with a model-based approach, e.g. sequence covariation information was successfully used in maximum entropy global probability models to aid three-dimensional RNA structure inference (Weinreb et al., 2016).

Another method attempts to fold and align at the same time, merging sequence alignment and folding dynamic programming algorithms (Sankoff, 1985; Mathews and Turner, 2002; Holmes, 2005). As the general algorithm is very computationally expensive in both running time and required storage space, most practically used implementations apply restrictions to the maximal sequence length or variants of possible consensus structures.

2.7.3 RNA structure probing experiments

Another type of data that is now commonly incorporated into structure prediction algorithms (Reuter and Mathews, 2010) is obtained with chemical or enzymatic RNA structure probing, which became available with the advent of structure probing experiments. The experimentally derived scores are included as constraints to the model when computing free energy.

Structure probing experimental protocols utilise diagnostic chemical reagents, which can differentially modify parts of the RNA in a structure-dependent way. Typically, the modification exerted by the probing reagent is either cleaving the RNA (Kertesz et al., 2010) or adding a chemical group to its conformationally flexible nucleotides.
Constrained nucleotides, either by complementary base pairing, protein interaction or local folding, should be protected from such modification. Thus, structure probing methods elucidate RNA secondary structure by characterising individual nucleotide accessibility.

This indirect readout of nucleotide accessibility is obtained using the fact that chemical modification causes the enzyme (reverse transcriptase, RT), synthesising the complementary DNA (cDNA) of the probed transcript, to terminate during the synthesis. The resulting cDNA is shorter than the original RNA and its length indicates the position of the modified nucleotide. Thus, if a read is observed terminating at a particular position, then the upstream neighbouring nucleotide could have been modified. However, further complications are introduced by the ability of the RT to randomly terminate in the absence of any chemical reagent. It is therefore necessary to correct the signal for background levels of RT termination (or drop-off events) that can arise simply by chance. This is achieved by pairing the structure probing experiment, in which the sample was treated with a chemical agent, with a control experiment performed in the same way but with no agent added. Structure probing experiments will be introduced again in more detail in Chapter 4 (Section 4.1).

2.7.4 Existing structure probing approaches

Earlier structure probing techniques, such as parallel analysis of RNA structures (PARS) (Kertesz et al., 2010), made use of two enzymes RNase V1 and nuclease S1. V1 preferentially cleaves phosphodiester bonds 3' of double-stranded regions while S1 cleaves 3' of single-stranded regions. The quantitative measure of modification at each nucleotide position was defined as the log-ratio between the numbers of reads obtained in the two enzyme experiments. A similar method called FragSeq (Underwood et al., 2010) used a single nuclease specific to single-stranded regions and complemented it with a control nuclease-free experiment. However, both of these in vitro methods suffered from low resolution of measured structural information due to characteristic limitations of nuclease probing (Mauger and Weeks, 2010).

A recent, widely used probing reagent was first introduced by the influential method called SHAPE (2'-hydroxyl acylation analysed by primer extension) (Wilkinson et al., 2006), which gave rise to many related techniques. The SHAPE chemical acylates the 2'-hydroxyl group on the ribose of nucleotides in single-stranded and flexible regions, without discriminating by base (Mortimer and Weeks, 2007). When performed on intact crystals of bacterial ribosomes, SHAPE demonstrated strong agreement between its reactivities and nucleotide flexibility, independent of solvent or molecular accessibility (McGinnis et al., 2012).
Another common chemical agent dimethyl sulfate (DMS) selectively methylates nitrogen of unpaired adenine and cytosine residues (Zemora and Waldsich, 2010). The theoretical selectivity of DMS action can aid downstream validation analyses and the assessment of specificity and sensitivity of the experimental method.

Both agents, SHAPE and DMS, can be used in vivo, making them a popular choice in structure probing studies. Many factors inherent to the intracellular environment can influence RNA structure, e.g. transcription rates or presence of small molecules and RBPs (Zemora and Waldsich, 2010). Thus, the focus in the field has quickly shifted to structure probing in vivo. Combining SHAPE and DMS with a selective amplification strategy established a highly-sensitive method DMS/SHAPE-LMPCR, which allowed measuring structural information of lowly abundant RNAs in vivo in plants for the first time (Kwok et al., 2013).

Next, chemical structure probing in vivo was combined with high-throughput sequencing. DMS-Seq provided a parallel readout of a randomly fragmented pool of DMS-treated RNAs, selecting only prematurely terminated fragments (Rouskin et al., 2014). With DMS-seq, it was found that there were vastly fewer structured mRNA regions in dividing cells than in vitro, and even thermostable structures were often denatured in living cells. This finding once again highlighted the influence of cellular processes on RNA structure regulation and challenged the Anfinsen’s dogma that the structure formed is the most thermodynamically favourable (Anfinsen, 1973).

Almost at the same time, structure-seq, another DMS-based high-throughput profiling method was globally applied in vivo in plants (Ding et al., 2014). It produced the first genome-wide nucleotide-resolution structure maps for any organism, quantitatively characterising more than 10,000 transcripts. The method computed per-nucleotide reactivity to DMS as a difference between the normalised drop-off counts of RT in the DMS (+) library and DMS (-) library (control). Raw drop-off counts were log-transformed and normalised by the average count of RT stops across each given transcript.

Notably, two years before, an in vitro method SHAPE-Seq combined SHAPE with paired-end high-throughput sequencing (Lucks et al., 2011). Paired-end sequencing enabled measurement of the sequence coverage information for each nucleotide. Using coverage and RT drop-off count, a drop-off rate was computed for each nucleotide, indicating its SHAPE reactivity in control (-) and treated (+) conditions. Introducing a reactivity measure instead of a raw drop-off count was an important development, as sequence coverage can vary dramatically along the transcriptome.

Moreover, SHAPE-Seq was extended by an automated mathematical framework, which implemented a maximum likelihood estimation strategy to infer relative reactivities from the observed fragment distribution (Aviran et al., 2011). This was the
first computational effort aiming to probabilistically model the underlying structural properties given the experimental measurements, drawing inspiration from models used in RNA sequencing analysis (Trapnell et al., 2010). Following the estimation of reactivity probabilities within the model, they are transformed into SHAPE reactivity scores (Lucks et al., 2011) using an empirically-derived normalisation strategy (Low and Weeks, 2010), which then aid the classification of nucleotide structural properties.

RNA-seq, which provides an integral part of RNA structure probing, is well known to be hampered by technological biases such as sequence-dependent bias (Shiroguchi et al., 2012) and coverage-dependent bias (Wang et al., 2009). The former has been routinely addressed by using barcodes with random nucleotides (Shiroguchi et al., 2012; Hector et al., 2014). Further, coverage-dependent bias can arise from various library preparation protocols, e.g. cDNA fragmentation is usually strongly biased towards the 3’ end of the transcript (Wang et al., 2009).

Some of these considerations were addressed by SHAPE-MaP, a method combining SHAPE, high-throughput sequencing, and mutational profiling (Siegfried et al., 2014). It exploited conditions which caused RT to misread modified nucleotides and add a non-complementary base to the synthesised cDNA. This permanently stored positions and frequencies of SHAPE-formed 2’-O-adducts as mutations in the cDNA sequence. The method generated such mutational profiles for RNAs treated with a SHAPE reagent, a control solvent, and under denaturing conditions to control for sequence bias.

In SHAPE-MaP, nucleotide reactivities were computed by subtracting the control sample data from the treatment sample data and normalising it by the data from denaturing conditions. Its advantage stemmed from its insensitivity to biases arising from multi-step library-construction schemes. Moreover, single-stranded breaks, background degradation or signal decay did not affect it, unlike the structure probing methods depending on RT stops. However, SHAPE-MaP relied on a high read depth, with a recommendation of at least 5,000 reads required for accurate nucleotide-resolution structure mapping (Siegfried et al., 2014). Such sequencing depth cannot be guaranteed for more than a handful of transcripts in most transcriptome-wide experiments.

A related method ChemModSeq combined SHAPE, paired-end high-throughput sequencing, and statistical modelling (Hector et al., 2014). ChemModSeq utilised TCP*EM, an expectation maximisation algorithm with a Poisson model, to compute the likelihood of being modified for each nucleotide. A characteristic difference of the experimental design of ChemModSeq was the use of RT with oligonucleotides which randomly hybridised to the RNA template during cDNA synthesis and thus, circumvented problems with coverage-dependent bias. ChemModSeq was applied to
the intermediates of the yeast small ribosomal subunit 40S during its synthesis, providing insights into how ribosome assembly factors regulate the formation of 40S in eukaryotes (Hector et al., 2014).

2.7.5 BUM-HMM: a computational analysis pipeline for structure probing data

A recently launched curated repository (Norris et al., 2017) demonstrates the increasing pace at which high-throughput RNA structure probing studies are being performed. This explosion of available data once again recapitulates the need for computational strategies to analyse them.

The rich variety of genome-wide structure probing methods, of which the previous section only provides an incomplete description, commonly shares their form of output, given by some derivative of SHAPE reactivity scores. A handful of methods incorporate probabilistic models estimating the quantities of interest from the observed measurements of RT stops (Hector et al., 2014; Aviran et al., 2011). While the model-based approach is undoubtedly well-suited for accurately modelling the experimentally measured signal, some models’ assumptions may not be applicable to specific properties of other experimental protocols. In addition, the overwhelming majority of existing methods makes use of semi-arbitrary thresholds when assessing structural properties of individual nucleotides (Siegfried et al., 2014; Kertesz et al., 2010; Lucks et al., 2011; Ding et al., 2014).

Further, most existing algorithms support a single pair of treatment-control experimental replicates (Siegfried et al., 2014; Rouskin et al., 2014; Kertesz et al., 2010; Underwood et al., 2010; Lucks et al., 2011; Kwok et al., 2013) and are thus unable to comprehensively quantify biological variability. Many algorithms do not or only superficially consider intrinsic biases of the technology. Finally, methods using log-ratio as a reactivity measure can assume different interpretations of the same score values, e.g. by setting negative log-ratio values to zero (Ding et al., 2014).

This PhD project aimed to address the above issues by developing a computational pipeline for modelling high-throughput RNA structure probing data while explicitly capturing biological variability (Selega et al., 2017). The pipeline performs data-driven bias-correcting steps and generates posterior probabilities of chemical modification for each nucleotide in the sequence. The description of the BUM-HMM (Beta-Uniform Mixture Hidden Markov Model) computational analysis pipeline is provided in Chapter 4.
2.8 INTERACTIONS BETWEEN RNA AND PROTEINS

RNA is exceptionally flexible as an interacting molecule, acting on DNA, other RNAs, and RNA-binding proteins (RBPs). Characterisation of these interactions both experimentally and computationally is a major research direction in RNA biology.

RNA is associated with proteins during all stages of its life cycle: transcription, splicing, nuclear export, and localisation to the cytoplasm where it is bound by ribosomes. RBPs, referred to as post-transcriptional regulators, interfere with many of these underlying processes. For instance, SR proteins recruit RNA-protein complexes that form the spliceosome, which itself consists of a large number of protein components (Long and Caceres, 2009). CPSF protein complex and poly(A)-binding protein ensure that mRNAs receive a 3’ poly(A) tail (Glisovic et al., 2008). ZBP1 transports mRNAs into the cytoplasm and is able to repress translation by preventing the ribosome from binding (Glisovic et al., 2008).

2.8.1 Cross-linking methods for mapping RNA-protein interactions

The primary technology to identify interactions between RBPs and RNA is given by cross-linking methods. Ultraviolet (UV) light-based methods in particular avoid problems associated with chemical cross-linkers, such as difficulties with entering the cores of large complexes. A revolutionary method which paved the path for many further technological modifications is CLIP (cross-linking immunoprecipitation) (Ule et al., 2005). Its workflow begins with exposing the living cells to UV light, which creates covalent bonds between interacting RNA and proteins (Fig. 2.3). The cells are then lysed and the protein of interest is isolated by immunoprecipitation. The resulting RNA-protein complexes are separated from free RNA and the protein and reverse transcribed into cDNA, allowing to identify the interacting RNA and its quantity.

A few years after its original application to study interactions of neuron-specific splicing factors (Ule et al., 2005), CLIP was combined with high-throughput sequencing, giving rise to HITS-CLIP (Licatalosi et al., 2008). Since then, HITS-CLIP (also called CLIP-seq (Yeo et al., 2009)) was used to generate genome-wide interaction maps for many RBPs, uncovering their roles in RNA regulation and connections with disease (Darnell, 2010). However, disadvantages of CLIP-like methodologies included DNA damage from the UV exposure, lower cross-linking efficiency compared to chemical cross-linkers, and low resolution of the generated interaction maps.

These problems were addressed by a number of related technologies. A method called CRAC (cross-linking and analysis of cDNA) was modified to have a denaturing affinity-purification step on nickel beads to improve specificity (Granneman...
et al., 2009). CRAC was designed to be easier to apply in yeast and was used to study the architecture of preribosomes and their maturation. A further innovation based on HITS-CLIP was given by PAR-CLIP (photoactivatable-ribonucleoside-enhanced cross-linking and immunoprecipitation) (Hafner et al., 2010). PAR-CLIP incorporated photoreactive ribonucleoside analogs into RNA in vivo which left mutations at the interaction sites in the resulting cDNA, enabling single-nucleotide resolution of binding events. iCLIP (individual-nucleotide resolution CLIP) also generated highly-resolved RNA-protein interaction maps, but instead employed an enzyme which digests the cross-linked RNA, stopping at the interaction site (König et al., 2010). Unlike PAR-CLIP, iCLIP is not restricted to only those experimental systems that are amenable to RNA alteration.

Figure 2.3: An illustration of the basic principle of the CLIP experimental protocol (Blue-whale22, 2014). Covalent bonds are created between interacting RNA and proteins upon exposure to UV light.

2.8.2 Mapping rapid interactions with reduced irradiation times

However, despite the improvements in the resolution of cross-linking site detection, the UV irradiation time, which could last up to tens of minutes (Beckmann, 2017), remained a rate-limiting step of the technology. This limitation posed a number of problems. Firstly, prolonged UV irradiation exposes cells to major additional stresses and could bias results towards the irradiation-specific conditions. Secondly, fast interactions are more difficult to capture with methods requiring a UV step longer than the duration of those interactions.

The longevity of the irradiation step was addressed by a recent method extended from CRAC (Granneman et al., 2009) called χCRAC (kinetic CRAC). χCRAC allows to quantitatively measure RNA-protein binding dynamics in vivo on a minute time-scale (van Nues et al., 2017).
The required cross-linking time was dramatically reduced with the UV-irradiation device Vari-X-linker, developed as part of the technology. The fastest available device for cross-linking proteins to RNA in actively growing cells (Megatron (Granneman et al., 2011)) requires at least 100 seconds to achieve good cross-linking yields. In contrast, the Vari-X-linker has a number of features that enhance the effectiveness of UV cross-linking and allow 1-minute time resolution. The sample is presented in a specifically constructed UV transparent bag and flanked by two beds of lamps. The device uses a shutter system, enabling stable and repeatable UV exposure, and a fan cooling system, minimising thermal shock to the sample, while a vacuum pump rapidly extracts cells from the UV chamber (van Nues et al., 2017). This technological advancement underlying χCRAC made previously elusive rapid interactions between RNA and RBPs accessible for scientific scrutiny.

The paper presenting the χCRAC technology (van Nues et al., 2017), given in Chapter 5, among other results, describes the analyses of RNA-protein interactions time-course data that were performed with a non-parametric algorithm developed by myself as part of this PhD project. The following sections of this chapter motivate the context of the study presented in the paper and introduce the relevant computational methods developed for this thesis.

2.9 GENE EXPRESSION REGULATION IN STRESS RESPONSE

Survival under stress increasingly depends on the ability to rapidly change the gene expression programme, e.g. up-regulating some genes to deal with the hostile conditions and down-regulating others for energy considerations. Differential gene expression is affected by modulating cellular RNA levels, which are determined by the coordinated processes of transcription, RNA processing, and degradation.

2.9.1 Roles of transcription and decay in gene expression regulation

When explaining the dynamic changes to RNA levels underlying the adaptation response, a lot of emphasis has been placed on transcriptional control (Nachman et al., 2004; Ernst et al., 2007; Kim et al., 2009), while degradation rate was assumed to be constant (Barenco et al., 2009). However, this simplifying assumption was challenged by demonstrating that degradation can significantly affect the state of the transcriptome (Elkon et al., 2010; Shalem et al., 2008). Modelling of the data from gene expression time courses and the atlas of mRNA stability revealed that down-regulation of many transcripts during stress could not be explained by even a full shut-off of transcription (Elkon et al., 2010).
Further complications surrounding the study of changes in RNA expression were caused by the fact that transcription and degradation rates were determined via indirect methods. Degradation rate was routinely estimated by inhibiting transcription (Pelechano and Pérez-Ortín, 2008), which is ill-suited for dynamic settings and severely affects cell growth and survival, while the use of drugs can also lead to various side effects. Further, measuring degradation in isolation from transcription could be problematic as regulation of these two processes is likely to be tightly interconnected. On the other hand, metabolic labelling of RNA with 4-thiouridine provided a good technology to distinguish recently transcribed RNA with minimal adverse effects on cells (Friedel and Dölken, 2009). However, microarray platforms were often used (Cleary et al., 2005), which required large quantities of RNA and thus, longer labelling times, preventing a resolved dynamic analysis.

These issues were addressed by Rabani et al., who employed metabolic labelling coupled with massively parallel sequencing. They used a dynamic model to decompose RNA levels into the separate contributions of production and degradation and to estimate changes in degradation rates. While their model allowed a time-variant degradation rate, their results identified changes in transcription rates as a major determinant of temporal changes in RNA levels (Rabani et al., 2011).

Another study developed a ‘switch’ model, allowing for an additional instantaneous mRNA stabilization (or destabilization) event to happen at some time during the stress response, in contrast to the model with constant degradation rate (Marguerat et al., 2014). Their results showed that, while expression of most transcripts was best explained by the ‘constant’ model, for many mRNAs regulation of their turnover provided an additional control mechanism during the first minutes of the stress response, along with transcriptional changes. Marguerat et al. estimated transcription rates using the occupancy data of polymerase II (Pol II), a major RNA polymerase responsible for the mRNA synthesis. They specifically focused on the exonic regions located near the 3’ ends of genes to control for Pol II stalling.

Pol II occupancy has been shown to correlate with metabolic labelling data (Miller et al., 2011) and was further validated by showing that its dynamic range is able to detect variations across the entire range of transcription rates (Marguerat et al., 2014). While confounding factors such as Pol II stalling have to be adequately taken into account, this non-invasive experimental method is still beneficial in terms of its relevance in vivo.

The results of the majority of studies identifying transcriptional control as the primary driver of changes in stress response could be underscored by the unavailability of direct measurements of degradation rates, especially at the early stages, previously suggested to be important (Marguerat et al., 2014).
2.10 **Directly Measuring Degradation Rates**

Exploiting the significantly shorter irradiation times, \(\chi \)CRAC was applied to the RBP mediating co-transcriptional degradation, Nab3, (van Nues et al., 2017) and the nuclease involved in cytoplasmic degradation, Xrn1 (currently unpublished data). These experiments generated the first direct and early measurements of degradation rates, examining their role in the context of stress response.

2.10.1 Co-transcriptional degradation pathway

The main nuclear degradation pathway identified in the yeast species *Saccharomyces cerevisiae* is regulated by the protein complex Nrd1-Nab3-Sen1 (NNS), which terminates transcription by interacting with the phosphorylated Pol II C-terminal domain (Vasiljeva et al., 2008) and with specific sequences in the nascent transcript (Carroll et al., 2007). These interactions then direct Pol II termination and processing of the nascent transcript (Arigo et al., 2006).

Widespread control of transcriptional regulation by NNS was elucidated by high-resolution transcriptome-wide maps of Nrd1 and Nab3 interactions (Webb et al., 2014; Creamer et al., 2011), measured *in vivo* with CRAC and PAR-CLIP (Granneman et al., 2009; Hafner et al., 2010). In addition to terminating transcription of non-coding RNAs, Nab3 and Nrd1 were shown to have many protein-coding targets (Webb et al., 2014). The function of both Nrd1 and Nab3 was also shown to be tightly integrated with the nutrient response pathway (Webb et al., 2014).

2.10.2 Cytoplasmic degradation pathway

The major cytoplasmic degradation pathway is governed by the activity of decapping enzymes and the 5’ to 3’ exoribonuclease Xrn1, which degrades the decapped transcripts completely (Berretta and Morillon, 2009). While Xrn1 is not essential for cell survival, its disruption was shown to markedly affect cell growth (Larimer and Stevens, 1990). In yeast, a novel class of Xrn1-sensitive unstable transcripts (XUT) has been identified, which implement various regulatory functions and are degraded in the cytoplasm (Van Dijk et al., 2011).

A summary of transcription and degradation mechanisms in yeast, governed by different pathways, is provided in Chapter 5 (Section 5.1).
2.10.3 Identifying differential binding to degradation mediators under stress

\(\chi \text{CRAC} \) was applied to Nab3, Pol II, and Xrn1 in glucose-deprived and glucose-rich \(S. \text{cerevisiae} \) cells at various time points as early as 1 minute after the nutrient shift. In this PhD project, I developed a model-based approach for the analysis and modelling of RNA-protein binding time-series data. This computational method, aimed at identifying differentially bound transcripts, was applied to the Nab3, Pol II, and Xrn1 \(\chi \text{CRAC} \) datasets. The analysis revealed pervasive rapid changes in Nab3 cross-linking to transcripts shortly after the stress induction, which were largely independent from changes in transcription (van Nues et al., 2017). The method can use different observation models, facilitating its application to datasets using raw or normalised cross-linking counts. This is demonstrated with the analysis of the Xrn1 dataset, which identified many of its interacting partners differentially bound under stress. The details of the developed method, the paper, presenting the Nab3 study, and the analysis of the currently unpublished Xrn1 \(\chi \text{CRAC} \) data are provided in Chapter 5.

2.10.4 Modelling RNA expression kinetics

In general, model-based studies of RNA expression kinetics assume that RNA decay can be summarized by a single mRNA half-life for each transcript, corresponding to a simple exponential decay process (Honkela et al., 2015; Rabani et al., 2011). This is despite the many identified RNA degradation pathways and their complexity (Deneke et al., 2013). This “constant degradation rate” assumption was recently further challenged by the dynamic behaviour of the transcriptional termination factor Nab3, revealed by the novel experimental technology \(\chi \text{CRAC} \) (van Nues et al., 2017).

Building on the insights obtained in the analyses of RNA-protein binding time-series, a dynamical model for RNA expression under stress was proposed in this PhD project. The proposed model aims to use the \(\chi \text{CRAC} \) dynamic binding data of the transcription catalyst Pol II, termination factor Nab3, and degradation factor Xrn1 to explain the changes in transcript abundance, associated with nutrient stress. The detailed description of the model is given in Section 5.9 of Chapter 5.
INTRODUCTION TO MACHINE LEARNING METHODS

This chapter outlines the necessary background on machine learning algorithms and models used in this thesis. It briefly introduces hidden Markov models, the EM algorithm, Gaussian processes, and dynamical models, mentions their applications in the field of computational biology, and specifies their usage in this thesis.

3.1 HIDDEN MARKOV MODELS

Hidden Markov models (HMMs) are a class of probabilistic models, in which the modelled system is assumed to be a Markov process with unknown (or latent) states (Baum and Petrie, 1966).

Definition 3.1.1. A discrete-time Markov process (or Markov chain) (Markov, 1906) is a sequence of random variables $X_1, X_2, X_3...$ which satisfy the Markov property, namely the condition that the probability of observing the value of the next variable depends only on the value of the present variable and not on the values of previous variables:

$$p(X_{t+1} = s|X_t = s_t) = p(X_{t+1} = s|X_1 = s_1, X_2 = s_2, ..., X_t = s_t), \text{ for } t \geq 1$$ (3.1)

All possible values of each random variable X_t form a countable set $S = \{s_1, s_2, ...\}$ called the state space of the chain.

Let the random variables $X_1, X_2, X_3, ..., X_t$ describe the state of a stochastic process at times 1, 2, 3..., t. Then the Markov property corresponds to the notion of memorylessness, whereby one could predict the state of the process at the next time $t + 1$, using only its state at time t, just as well as if one knew the full previous history of the process.

In an HMM, the states of the process are not directly visible but their outputs, which depend on the state at the corresponding time, are observed. Each hidden state has a probability distribution over its possible outputs and thus, the observed sequence of outputs can provide information about the sequence of hidden states that generated it.
Example 3.1.1. Suppose you start gambling with 5 Galleons\(^1\) and bet 1 Galleon on a fair coin toss. You keep betting indefinitely or until you run out of gold. If \(X_t\) is the number of Galleons you have after \(t\)-th coin toss, then the sequence \(X = \{X_t : t \in \mathbb{N}\}\) with \(X_0 = 5\) is a Markov process. If an impartial observer knew that you currently had 7 Galleons, they would expect that after the next toss, you would have either 8 Galleons or 6 Galleons, with equal odds. Knowing the history of your previous wins or losses does not improve the observer’s prediction.

3.1.1 HMM architecture

Let us denote the hidden state of the process at time \(t\) with a random variable \(h(t) \equiv h_t\). A hidden state \(h_t\) can adopt any value from the hidden state space \(H\). The visible output at time \(t\) will be denoted with \(v_t\) and similarly, it takes values from the observed state space \(V\). Typically, \(H\) is modelled as discrete, while \(V\) can be either discrete or continuous. In the graphical representation, the random variables are conventionally enclosed in circles, with arrows between the variables indicating conditional dependencies (Fig. 3.1).

According to the conditional independence relationships between variables implied by the graphical representation, given the values of \(h\) at all times, \(h_t\) depends only on the value of \(h_{t-1}\). Similarly, given all values of \(h\) and \(v\), \(v_t\) depends only on the value of its hidden state \(h_t\). Using the notation \((h_1, h_2, ..., h_t) \equiv h_{1:t}\) and letting \(T\) to be the time of the last state, the above conditions are given in Eqs. 3.2, 3.3.

\[
p(h_t|h_{1:T}) = p(h_t|h_{t-1}) \tag{3.2}
\]

\[
p(v_t|h_{1:T}, v_{1:T}) = p(v_t|h_t) \tag{3.3}
\]

The joint distribution of the HMM is thus given by:

\[
p(h_{1:T}, v_{1:T}) = p(h_1)p(v_1|h_1) \prod_{t=2}^{T} p(h_t|h_{t-1})p(v_t|h_t) \tag{3.4}
\]

\(^1\) A Galleon is the most valued coin of the wizarding currency.
3.1.2 Transition and emission models

Let us consider a discrete hidden state space H, which consists of N possible outcomes. Transition probabilities control the way the new state h_t is chosen given the value of the previous state at the time $t-1$. These probabilities can be summarised in a $N \times N$ transition matrix, where the entry at the position (i,j) is given by the conditional probability of moving to the state i from the state j. Transitions from any given state h_t must sum up to 1:

$$\sum_i p(h_t = i | h_{t-1} = j) = 1 \quad (3.5)$$

The observed state space can be modelled as discrete, with v_t taking one of M possible values according to a categorical distribution, or as a continuous M-dimensional multivariate distribution of choice. Emission probabilities describe the way the observed value v_t is chosen given the hidden state h_t at time t. Transition and emission probabilities are the parameters of the HMM.

3.1.3 Inference in HMM

One of the most useful inference questions for HMMs is to compute probabilities of some latent variables conditioned on the model parameters and observations, thereby recovering the true hidden state of the process at certain times, while using the information provided by the observed output.

The task of computing the distribution of any hidden variable given the observations is called smoothing:

$$p(h_k | v_{1:t}), \text{ for } k < t \quad (3.6)$$
3.1 hidden markov models

Smoothed values (or posterior marginals) of the hidden variables can be efficiently computed with the forward-backward algorithm, which is a belief propagation approach.

The forward-backward algorithm computes the required values in two passes. The first, forward message pass computes the probabilities of being in any particular state h_k given the first k observations $\forall k \in \{1, ..., T\}$, using recurrently defined forward messages α_k:

$$
\alpha_1(h_1) = p(h_1)p(v_1|h_1) \quad (3.7)
$$

$$
\alpha_k(h_k) = p(h_k, v_{1:k}) \propto p(h_k|v_{1:k}) \quad (3.8)
$$

$$
\alpha_k(h_k) = \sum_{h_{k-1}} p(v_k|h_k)p(h_k|h_{k-1})\alpha_{k-1}(h_{k-1}) \quad (3.9)
$$

The second, backward message pass computes the probabilities of seeing the remaining observations given any starting time k, making use of the backward messages β_k:

$$
\beta_k(h_k) = p(v_{k+1:T}|h_k) = \sum_{h_{k+1}} p(v_{k+1}|h_{k+1})p(h_{k+1}|h_k)\beta_{k+1}(h_{k+1}) \quad (3.10)
$$

$$
\beta_T(h_T) = 1 \quad (3.11)
$$

Together, the forward and backward set of probabilities combine to yield the (un-normalised) probability distribution over any hidden state h_k given all observations (Eq. 3.12). This result is obtained using Bayes’ rule and the conditional independence between the observations $v_{1:k}$ and $v_{k+1:T}$ given h_k.

$$
p(h_k|v_{1:T}) = p(h_k|v_{1:k}, v_{k+1:T}) \propto p(v_{k+1:T}|h_k, v_{1:k})p(h_k, v_{1:k}) = p(v_{k+1:T}|h_k)p(h_k, v_{1:k}) = \beta_k(h_k)\alpha_k(h_k) \quad (3.12)
$$

Another useful inference task is finding the most likely explanation of the observed data. This problem requires finding the maximum joint probability of the entire sequence of hidden states that generated the observations and can be solved with Viterbi algorithm (Forney, 1973).

3.1.4 Expectation maximisation

In order to perform inference in HMMs, the model parameters must be known. The task of finding the best set of transition and emission probabilities given the sequence
of observations is called parameter learning. The local maximum likelihood estimates of the parameters given the observations can be efficiently derived with the expectation-maximisation (EM) algorithm (Dempster et al., 1977).

Let us denote the HMM parameters with a vector θ and define a likelihood function of θ as:

$$L(\theta; h_{1:T}, v_{1:T}) = p(h_{1:T}, v_{1:T} | \theta)$$

Then the maximum likelihood estimate of the unknown parameter values is determined by the marginal likelihood of the observed data $p(v_{1:T} | \theta)$, which is often intractable as the number of all possible values for the sequence of hidden variables grows exponentially with the length of the sequence.

The EM algorithm aims to find the maximum likelihood estimate of the marginal likelihood by iterating between two steps. The E-step (or the expectation step) calculates the expected value of the log likelihood function with respect to the conditional distribution of $h_{1:T}$ given $v_{1:T}$, evaluated with the current parameter estimates $\theta^{(t)}$:

$$E_{h_{1:T} | v_{1:T}, \theta^{(t)}}[\log L(\theta; h_{1:T}, v_{1:T})] = Q(\theta | \theta^{(t)})$$

The M-step (or the maximisation step) finds the new parameter values $\theta^{(t+1)}$ that maximise this quantity:

$$\theta^{(t+1)} = \arg\max_{\theta} Q(\theta | \theta^{(t)})$$

The motivation for the algorithm uses the fact that if the model parameters are known, then the most likely sequence of hidden states can be found. Conversely, if the hidden states are known, then the parameters can be estimated by grouping together observations according to their latent state.

When both parameters θ and the hidden states $h_{1:T}$ are unknown, the algorithm proceeds as follows:

1. θ is initialised with some values.
2. The probabilities are computed for each possible value of the sequence $h_{1:T}$ using the current θ values.
3. The values of $h_{1:T}$ are used to find better estimates for the parameter values.
4. Steps 2 and 3 are iterated until convergence.
At each iteration of the EM algorithm, the parameter values are chosen to increase the value of $Q(\theta|\theta^{(1)})$. It can be shown that such selections result in the value of the log marginal likelihood $\log p(v_{1:T}|\theta)$ to be non-decreasing at all iterations (Little and Rubin, 2014). Thus, as the algorithm increases the marginal likelihood of the observed data, it monotonically approaches at least its local maximum. No guarantees exist for the EM algorithm to converge to a global maximum, which is why many heuristic approaches are used that aim to escape local maxima (e.g. starting with several random initialisations of the parameter values). The EM algorithm is an attractive method for finding maximum likelihood estimates as it doesn’t require evaluating derivatives and often has closed-form update expressions for each step if the likelihood function belongs to an exponential family.

3.1.5 Applications of HMMs in computational biology

Even though HMMs are traditionally defined as models for a time-evolving process with a hidden state, they have become a common tool for modelling sequencing data. In these applications, each random variable h_t corresponds to the hidden state of the t-th nucleotide in the sequence (instead of the state of a process at time t), while v_t encodes some experimental measurement that provides information about the hidden state of the nucleotide.

HMMs have been widely used in such applications as gene prediction (Burge and Karlin, 1997; Korf, 2004), multiple sequence alignment (Durbin et al., 1998), and protein structure prediction (Bystroff et al., 2000). HMMs were also applied to RNA-seq data for discovery of splicing junctions (Dimon et al., 2010), non-coding RNA annotation (Weinberg and Ruzzo, 2005), and RNA structural alignment (Yoon and Vaidyanathan, 2008).

In this thesis, I developed a computational analysis pipeline for modelling RNA structure probing data (Selega et al., 2017), which used an HMM with a mixture model governing emission probabilities. The detailed description of the BUM-HMM pipeline is presented in Chapter 4.

3.2 Gaussian processes

Gaussian Processes (GP) are Bayesian non-parametric models with a continuous input space (often representing time), where every point in space is associated with a Gaussian distributed random variable and every finite collection of those random variables is also jointly Gaussian. The distribution of a GP is thus the joint distribution
of infinitely many Gaussian random variables, which can be viewed as a distribution over functions with a continuous domain.

GP models are often used to solve problems concerned with supervised learning. Supervised learning problems, where the aim is to learn the mapping from input to output using training data, are divided into classification or regression problems. The usage of GPs in this thesis is concerned with regression problems, where the output is a continuous quantity.

3.2.1 Motivation

Let’s denote the input variable as \(x \) and the output variable as \(y \). Then the training dataset with \(N \) observations can be written as a set of input-output pairs for each training item \(i \), \(D = \{ (x_i, y_i) | i = 1, ..., N \} \). Given \(D \), we would like to make predictions about the previously unseen inputs \(x_* \). Thus, the problem is to find a function \(f \) that maps every possible input to an output value.

One must make assumptions about the behaviour of \(f \), to restrict the choice from the set of all possible functions consistent with the training data. One approach is to only consider a special class of functions, e.g. linear functions of the input. However, this can affect the accuracy of prediction if the expressiveness of this class is not powerful enough to adequately capture the data. In contrast, increasing the function’s complexity can lead to problems with overfitting, when the function models the training data so well that it is unable to generalise to new examples.

Another approach is to attach some prior probability to every possible function, with higher probabilities given to functions that are deemed more likely. This is implemented by the Gaussian Process model (Rasmussen and Williams, 2006), which is a generalisation of the Gaussian probability distribution to functions. A useful way to think about a function in this context is in the form of a very long – infinite – vector, whose each value specifies \(f(x) \) at an input \(x \). Despite dealing with infinite-dimensional objects, GPs present a computationally tractable framework, where inference performed on a finite number of points would give results consistent with the case where infinitely many points were taken into account.

3.2.2 GP specification

Definition 3.2.1. A Gaussian Process is a collection of random variables any subset of which is jointly Gaussian distributed.
A Gaussian Process $f(x)$ is fully specified with mean and covariance functions defined on the inputs:

$$m(x) = \mathbb{E}[f(x)] \quad (3.16)$$

$$k(x, x') = \mathbb{E}[(f(x) - m(x))(f(x') - m(x'))] \quad (3.17)$$

$$f(x) \sim GP(m(x), k(x, x')) \quad (3.18)$$

In a GP, random variables represent the value of $f(x)$ at input x. For notational convenience, f_i is often used to denote $f(x_i)$. In this introduction, the mean function is taken as equal to 0 for simpler notation.

The choice of the covariance function specifies the distribution over functions. A common choice is a squared exponential covariance function (sometimes called radial basis function):

$$\text{cov}(f(x_p), f(x_q)) = k(x_p, x_q) = \alpha \exp\left(-\frac{(x_p - x_q)^2}{2l^2}\right) \quad (3.19)$$

For this covariance function, the covariance is high for variables whose inputs are close to each other and decreases with the distance between the corresponding inputs. The hyperparameter α controls the variance of the random function $f(x)$ and the length-scale hyperparameter l indicates the distance between the inputs, after which the function value can significantly change.

Many different choices of covariance functions are used in order to encode the process’ stationarity (invariance to translations in the input space), isotropy (invariance to rotations), smoothness, and periodicity. Specifying these properties reflects our beliefs about what a suitable function should look like.

Having specified the GP, we can draw samples from it by selecting input points, computing the corresponding covariance matrix for all pairs of points, and generating a Gaussian vector with this covariance matrix. Each generated vector is a sample function from the prior distribution.

3.2.3 Inference in GPs

In general, we’d like to incorporate the training data into the inference process when making predictions for new points. If we’re modelling the training data in dataset D and assuming noise-free observations, then the output y_i gives the value of the
random variable \(f \). Let the set of training inputs be \(X \) and the set of test inputs \(X_* \) (for which we wish to generate predictions).

According to the prior distribution, the joint distribution of training outputs \(f \) and test outputs \(f_* \) is given by:

\[
\begin{bmatrix} f \\ f_* \end{bmatrix} \sim N \left(0, \begin{bmatrix} K(X,X) & K(X,X_*) \\ K(X_*,X) & K(X_*,X_*) \end{bmatrix} \right)
\]

(3.20)

In the above, \(K(X,X_*) \) denotes the covariances between all training and test inputs, and similarly for other block covariances. In order to compute the posterior distribution, we should select only those functions from the prior distribution that agree with the training data. This is achieved by conditioning the joint distribution on the observations:

\[
f_*|f, X_*, X \sim N(\bar{f_*}, \text{cov}(f_*)),
\]

(3.21)

\[
\bar{f}_* = K(X_*,X)K(X,X)^{-1}f
\]

(3.22)

\[
\text{cov}(f_*) = K(X_*,X_*) - K(X_*,X)K(X,X)^{-1}K(X,X_*)
\]

(3.23)

In the case of noisy observations, the above inference process holds with a few modifications. Assuming additive Gaussian noise \(\epsilon \), a diagonal matrix is added to the covariance matrix between observations:

\[
y = f(x) + \epsilon
\]

(3.24)

\[
\epsilon \sim N(0, \sigma_n^2)
\]

(3.25)

\[
\text{cov}(y) = K(X,X) + \sigma_n^2 I
\]

(3.26)

The noise term then also appears in the covariance function of the joint distribution of observations and function values at test inputs:

\[
\begin{bmatrix} y \\ f_* \end{bmatrix} \sim N \left(0, \begin{bmatrix} K(X,X) + \sigma_n^2 I & K(X,X_*) \\ K(X_*,X) & K(X_*,X_*) \end{bmatrix} \right)
\]

(3.27)

If we then introduce simplified notation for \(K = K(X,X) \) and \(K_* = K(X,X_*) \), the conditional predictive distribution for GP regression has the following mean and covariance functions:
The mean prediction is a linear combination of observations y, while the covariance depends only on the inputs as we are predicting the values of the random process f_*. The variance is the difference between the prior covariance between test points and a positive term that represents the information about the function supplied by observations. If we wanted to predict the noisy observations y_* at test locations, it would suffice to add the diagonal noise matrix $\sigma_n^2 I$ to $\text{cov}(f_*)$.

3.2.4 Marginal likelihood

Definition 3.2.2. Marginal likelihood (or evidence) $p(y|X)$ is the likelihood of observations given the input points.

$$p(y|X) = \int p(y|f, X)p(f|X)df$$ \hspace{1cm} (3.31)

When computing marginal likelihood of the training data, all function values f are integrated out. This makes it possible to use marginal likelihood maximisation for optimising GP regression model parameters. If the observation noise is Gaussian then all terms under the integral are Gaussian and the log marginal likelihood has the following analytic form:

$$\log p(y|X) = -\frac{1}{2}y^T(K + \sigma_n^2 I)^{-1}y - \frac{1}{2} \log |K + \sigma_n^2 I| - \frac{n}{2} \log 2\pi$$ \hspace{1cm} (3.32)

If the observation model is not Gaussian then the likelihood $p(y|f, X)$ can be approximated, e.g. with Laplace’s method (MacKay, 2003).

3.2.5 Applications of GPs in computational biology

As GPs provide a rich framework for modelling time-series data, they have recently become a popular tool for analysis of gene expression time courses. One of the first such applications included modelling the dynamics of transcriptional regulation using expression levels of known target genes (Lawrence et al., 2007). Other applications
of the GP framework aimed to identify temporal intervals of differential gene expression (Stegle et al., 2010) and to detect quiet/active genes in microarray data (Kalaitzis and Lawrence, 2011).

A GP regression model was applied to RNA-seq time-series data, specifically accounting for experiment-specific biases in gene expression dynamics (Äijö et al., 2014). Notably, it was shown that modelling complete time-series instead of performing timepoint-wise analysis, as well as applying normalisation strategies for replicated measurements, allowed the discovery of differentially expressed genes that would otherwise have been missed. Further, a GP-based method was recently applied to single-cell RNA-seq data in order to detect branching dynamics for individual genes in populations of cells undergoing differentiation (Boukouvalas et al., 2017).

In this thesis, I developed an algorithm testing for differential binding, which used GP regression models for capturing the dynamics of RNA-protein interactions in different conditions (van Nues et al., 2017). The description of the model and its usage for hypothesis testing is presented in Chapter 5.

3.3 Dynamical Models

Dynamical models describe the time-dependent changes in the state of a system. They are typically formalised with differential equations.

Definition 3.3.1. A differential equation relates a function with its derivatives. In applications, the function often represents some physical quantity and the derivatives describe its rates of change.

3.3.1 Types of differential equations

Differential equations can be divided into different types. The type of the equation provides information about the approach to solving it.

A commonly occurring type is ordinary differential equations (ODEs), which describe the relation between the function of a single independent variable and its derivatives:

\[
\frac{dy}{dx} = F(x, y)
\]

(3.33)

In the equation above, \(x\) is an independent variable and \(y\) is the dependent variable with \(y = f(x)\) for some function \(f\). An ODE can describe an \(n\)-th order derivative \(\frac{d^n y}{dx^n}\) and the function \(F\) on the right hand side can be a function of \(x\) and all derivatives of order up to \(n - 1\).
In a linear ODE, F can be written as a linear combination of the derivatives of y. For linear ODEs, there exists a closed-form solution, whereas non-linear ODEs often have to be solved numerically as their exact solution is in series or integral form.

One approach is Euler’s method (Butcher, 2016), which gives a first-order approximation of the unknown curve that satisfies the ODE and starts at a given point A. The method takes small steps of size h along the curve’s tangent line starting from A, with each new point computed from the previous one. Each y_n is the approximation of the ODE solution at time x_n.

$$y_{n+1} = y_n + hF(x_n, y_n)$$ \hspace{1cm} (3.34)

Differential equations that deal with multivariable functions and their partial derivatives are called partial differential equations (PDE). Both ODEs and PDEs can be generalised to their stochastic versions, where the unknown quantity is a stochastic process and the expression on the right involves a noise term. The solution for a stochastic differential equation is also a stochastic process and there are various methods for finding it numerically (Kloeden et al., 2012).

3.3.2 Applications of dynamical models in computational biology

Along with their applications in developmental biology and epidemiology, dynamical models have been widely used in computational systems biology. The following sources provide a few examples summarising the advances in this area. Alon (2006) gives an extensive overview of using dynamical systems for studying biological systems, particularly focusing on the design and dynamics of gene regulation networks. Lawrence et al. (2010) outlines inference approaches for biological networks, uncovering the structure and parameterisation of the underlying models of genetic regulation. Wilkinson (2011) provides an introduction to stochastic kinetic modelling of biological networks in the context of systems biology.

When studying the dynamics of RNA expression, the changes in RNA abundance are traditionally modelled as a combination of a time-variant transcription rate, which is seen as a main driver of change, and a constant degradation rate. However, many variants of this scenario have been considered. Transcription rate was modelled non-parametrically and included a processing delay (Honkela et al., 2015) and there have been attempts to allow a more flexible degradation rate schedule (Rabani et al., 2011; Marguerat et al., 2014).
In this thesis, a dynamical model for RNA expression under stress was proposed, based on the insights obtained with the differential binding analyses of RNA-binding proteins involved in degradation. The model aims to explain the changes in transcript abundance with the dynamical changes in the binding of proteins associated with transcription and degradation pathways. Further description of the theoretical formulation of the model and of the ongoing work on its development are given in Section 5.9 of Chapter 5.
This chapter introduces the use of RNA structure probing experiments for informing structure prediction algorithms, identifies existing problems surrounding the analysis of the resulting data, and proposes a probabilistic modelling pipeline to analyse high-throughput RNA structure probing data.

Section 4.1 provides an illustration of the experimental methodology and states the main question that the BUM-HMM pipeline aims to answer. Then, Section 4.2 gives an intuitive overview of the proposed method. This introductory material is intended to aid the understanding of the paper which presents the methodology and evaluates its performance on real data (Selega et al., 2017).

In accordance with the University of Edinburgh regulations, the paper is included in its published form in Section 4.3. The supplementary figures that are relevant for a detailed description of the pipeline’s features are presented throughout this chapter. All Supplementary Figures for the paper are included in Section A.2 of Appendix A.

The proposed modelling pipeline was developed by myself and all computational analyses evaluating the method were performed by myself unless stated otherwise. The other authors contributed in the following manner. Christel Sirocchi, Ira Io-sub, and Sander Granneman carried out the experiments. Christel Sirocchi, Sander Granneman, and Guido Sanguinetti performed exploratory computational analyses, informing the early pipeline development. Sander Granneman processed raw sequencing data and performed computational analyses informing the bound on coverage required for effective structure probing and investigating the link between structural flexibility and ribosome occupancy. Guido Sanguinetti and Sander Granneman jointly supervised my work on the BUM-HMM pipeline, with Guido Sanguinetti providing supervision on the modelling side. The manuscript was written by myself, Guido Sanguinetti, and Sander Granneman.

The chapter proceeds by providing a detailed description of the pipeline’s automated bias-correcting strategies in Section 4.4. The optional parameter optimisation strategy is referenced in Section 4.5. The chapter concludes by discussing recent developments in the field and summarising the key contributions of the proposed methodology in Section 4.6.
RNA structure is known to be a key regulator of many important cellular mechanisms. RNA structural regulatory elements are interrogated with chemical and enzymatic structure probing (Kubota et al., 2015). In these experiments, a chemical agent reacts with the RNA molecule in a structure-dependent way, cleaving or otherwise modifying its structurally flexible parts. These modified positions can then be detected, providing valuable structural information that can improve structure prediction (Wu et al., 2015).

Specifically, chemical modification terminates the reverse transcription reaction, resulting in the reverse transcriptase (RT) dropping off just before the modified position. Thus, the modified position is 1 nucleotide upstream in the sense direction of the position of the RT drop-off. The drop-off positions can be mapped back to the reference sequence, identifying structurally flexible parts of the transcript. However, the challenge lies in the stochasticity of this process as the RT can also drop off randomly. To address this, a complementary control experiment is routinely performed to monitor random RT drop-offs when no reagent is used.

Let us consider a toy example of data obtained in a paired-end sequencing RNA structure probing experiment, when fragments are sequenced from both ends (Fig. 4.1). We’ll focus on a particular nucleotide G in the sequence and consider the data from a control experiment (with no reagent added) and a treatment experiment (with RNAs modified by the reagent). In control conditions, we mapped 5 fragments overlapping with the nucleotide G, one of which also terminated at that position. Thus, this nucleotide had a coverage of 5 and a drop-off count of 1 (the number of times the RT dropped off at this position), giving it a drop-off rate of $\frac{1}{5}$. In treatment conditions, more fragments terminated at this position and we measured a drop-off rate of $\frac{4}{5}$. This seems to suggest that the next nucleotide T has been modified by the reagent and perhaps corresponds to a flexible site within the transcript molecule.

However, would our conclusion remain the same had we observed a higher drop-off rate in control conditions to start with? In fact, how high would this control drop-off rate have to be for us to dismiss the drop-off rate of $\frac{4}{5}$ as a noisy measurement of random drop-off rather than an indication of real modification by the chemical reagent?

This question reinforces the need for deciding statistically whether the drop-off rate in treatment conditions is significantly higher than the drop-off rate in control. To do this, we must understand how much noise can be expected in control conditions. If the treatment drop-off rate is outside of this range of drop-off rate variability, then
we could deem it as being significantly higher and conclude that a real chemical modification signal is present.

4.2 Data representation and the model

The pipeline uses two types of experimental information for each nucleotide position: the coverage, defined as the total number of reads that cover a nucleotide, and the drop-off count, defined as the total number of reads stopping at a nucleotide. It combines them in a measure of a drop-off rate, defined for each nucleotide as the ratio between its drop-off count k and coverage n:

$$ r = \frac{k}{n} $$

(4.1)

The drop-off rate represents a nucleotide’s reactivity to the chemical probing reagent and ranges between 0 and 1. Its usage also provides a normalisation strategy for different read depths.
4.2 Data Representation and the Model

4.2.1 Measuring drop-off rate variation

The pipeline uses information collected in replicate experiments in control and treatment conditions. Any number of experimental replicates is supported, with no constraint on them being paired as treatment-control.

The goal is to identify the variability in drop-off rates that arise in the absence of a chemical agent in order to be able to deem a signal measured in treatment conditions as real. The biological variability is quantified with the log-ratio between the drop-off rates (LDR) at the same nucleotide position in a pair of control replicates i and j:

\[
LDR = \log \left(\frac{r_i}{r_j} \right) = \log (r_i) - \log (r_j) \quad (4.2)
\]

If the drop-off rate is stable across control replicates, LDR at a nucleotide will be close to 0, indicating little to no variability. In contrast, big changes in drop-off rates between replicates will result in a large absolute value of the measure. Due to a log transform, the nucleotide positions with the drop-off rates $r = 0$ in either replicate of the pair are discarded from the analysis.

LDRs corresponding to all pair-wise comparisons between control replicates collectively describe the variability in drop-off rates at all nucleotide positions that could be observed in the absence of the probing reagent. A collection of these define the null distribution of LDRs.

4.2.2 Computing empirical p-values

For each combination of treatment-control replicates, LDRs are computed for all nucleotide positions, quantifying the difference between the drop-off rate observed in a treatment experiment with respect to a control replicate. The goal is to decide whether this difference is larger than what we expect at random. This is achieved by comparing the treatment-control LDRs to the quantiles of the null distribution:

\[
p\text{-value} = 1 - q, \text{ where } q \text{ is the closest quantile} \quad (4.3)
\]

The resulting p-value for each treatment-control LDR represents the probability of it being insignificantly different from what could be observed by chance.

For instance, if a particular LDR is closest to the 99th quantile, then the difference between the drop-off rates at that nucleotide in the compared treatment and control
experiments is larger than most differences that could be observed in the absence of a reagent. This LDR would be assigned an empirical p-value of 0.01 or a 1% probability of it being insignificantly different from the null distribution. This result would provide evidence towards chemical modification of the nucleotide position in question.

Conversely, if an LDR is closest to the 10th quantile, it would receive a p-value of 0.9, suggesting that this difference between the drop-off rates is not unusual. Thus, a low empirical p-value is indicative of a significant difference between the drop-off rates in a pair of treatment and control experiments.

4.2.3 Computing posterior probabilities of modification with HMM

The empirical p-values for each nucleotide position and each treatment-control comparison are used as observations in a hidden Markov model, introduced in Section 3.1 (Chapter 3). The hidden state h_t ($t = 1...T$ for T nucleotides) corresponds to the true binary state of the t-th nucleotide (chemically modified or unmodified) and the observed variable v_t is given by the empirical p-value attached to that position.

Modelling p-values directly enabled the definition of the HMM emission distribution as a Beta-Uniform mixture model. This design exploits the result that p-values are uniformly distributed under the null hypothesis (e.g. Murdoch et al. (2012)). When the null hypothesis is true, the drop-off rates in a given treatment-control pair do not differ significantly, which would lead us to believe that the corresponding nucleotide position t was unmodified in the treatment experiment. This scenario is represented by the unmodified binary state of the nucleotide $h_t = U$ and thus the distribution of p-values given this state is modelled as Uniform.

For the alternative hypothesis, a significant difference between the drop-off rates would suggest that the nucleotide was chemically modified. In this case of the modified state $h_t = M$, we expect to see large LDRs and small associated p-values, which are modelled with a Beta distribution favouring small values. The p-value distribution computed for the transcriptome-wide dataset strongly agrees with this model (Panels a, b in Fig. 4.2 show the null distributions computed from the transcriptome-wide data for two strands). P-values at the same nucleotide position that correspond to different comparisons of treatment-control experimental replicates $\{v^n_t : n = 1..N\}$ for N different comparisons are assumed to be independent measurements.
\[p(v_t | h_t = U) \sim U(0, 1) \quad (4.4) \]

\[p(v_t | h_t = M) \sim Beta(\alpha, \beta), \text{ with } \alpha = 1, \beta = 10 \quad (4.5) \]

\[p(v_t | h_t) = \prod_{n=1}^{N} p(v_t^n | h_t), v_t = v_t^1, ... , v_t^N \quad (4.6) \]

Transition probabilities of the HMM were defined using empirically derived lengths of single- and double-stranded regions of nucleotides. The model assumes expected uninterrupted stretches of 20 double-stranded (or constrained) nucleotides and 5 single-stranded (or flexible) nucleotides. The exact expressions are given in Section A.1 of Appendix A.

Posterior probabilities of being in the modified state \(p(h_t = M | v_{1:T}) \) are computed per-nucleotide with the forward-backward algorithm, generating a statistically interpretable output which obviates the need for heuristically chosen thresholds.
Figure 4.2: a, b. The histograms show the distributions of empirical p-values associated with LDRs between all combinations of treatment and control samples on the transcriptome data set for both strands. Reproduced from Supplementary Figures of Selega et al. (2017).
Robust statistical modeling improves sensitivity of high-throughput RNA structure probing experiments

Alina Selega1, Christel Sirocchi2, Ira Iosub3, Sander Granneman2 & Guido Sanguinetti1,2

Structure probing coupled with high-throughput sequencing could revolutionize our understanding of the role of RNA structure in regulation of gene expression. Despite recent technological advances, intrinsic noise and high sequence coverage requirements greatly limit the applicability of these techniques. Here we describe a probabilistic modeling pipeline that accounts for biological variability and biases in the data, yielding statistically interpretable scores for the probability of nucleotide modification transcriptome wide. Using two yeast data sets, we demonstrate that our method has increased sensitivity, and thus our pipeline identifies modified regions on many more transcripts than do existing pipelines. Our method also provides confident predictions at much lower sequence coverage levels than those recommended for reliable structural probing. Our results show that statistical modeling extends the scope and potential of transcriptome-wide structure probing experiments.

RNA structure plays a key role in regulating RNA stability, transcription, and mRNA translation rates. In order to identify novel RNA structural regulatory elements, chemical and enzymatic structure probing is routinely used to interrogate RNA structure both in vivo and in vitro1. Current in silico RNA structure prediction programs rely on thermodynamic estimates to generate the most likely secondary structure models. By incorporating data from structure probing experiments, the accuracy of secondary and tertiary RNA structure prediction can be significantly improved2,3.

Most chemical RNA structure probing methods rely on the formation of adducts or cleavage of the RNA backbone, using as probes dimethylsulfate (DMS) and SHAPE reagents such as 1-methyl-7-nitroisatoic anhydride (1M7) and 2-methylnicotinic acid imidazolide (NAI)4,5. In all of these methods, the reagents terminate reverse transcription (RT), enabling detection of the sites of cleavage or modification by primer extension analyses, followed by mapping the RT drop-off position back to the reference sequence. These methods can be combined with next-generation sequencing (NGS) to simultaneously probe thousands of RNA molecules, as well as very long RNAs, in a single RT reaction. Insights obtained by these techniques include the largely unstructured state of stress-responsive transcripts in yeast and plants6,7. Recently, we developed the ChemModSeq structure probing pipeline to gain deeper understanding of RNA structural changes in long ribosomal RNA precursors during ribosome assembly8.

NGS is certainly revolutionizing the RNA structure probing field; however, several data analysis issues need to be addressed. First, NGS is often plagued by sequencing representation and coverage biases introduced during library preparation9. Identifying and correcting such biases is essential for avoiding erroneous interpretations; however, to our knowledge, current methods do not address these issues. Second, statistical assessments must be informed by an analysis of inter-replicate variability in both control and treatment samples. Except for Mod-seq10, current methods do not exploit replicate information; as a result, their output scores are not readily statistically interpretable, and interpretation of these scores often requires setting arbitrary thresholds and other postprocessing. Finally, a major question in the field concerns the coverage per nucleotide necessary to get reliable chemical reactivity values. Partly as a result of unresolved statistical issues in handling variability, current recommendations indicate that very high coverage levels are required10,11, and this requirement is normally only met for a handful of transcripts in transcriptome-wide experiments.

To tackle these important issues, we developed beta-uniform mixture hidden Markov model (BUM-HMM), a statistical machine-learning pipeline for modeling NGS RNA structure probing data. BUM-HMM uses inter-replicate variability to identify transcript regions that are significantly more modified compared with control conditions, incorporating coverage and sequence bias information within the model. The output of BUM-HMM is probabilistic, giving a transparent statistical interpretation which obviates the need for arbitrary thresholds and postprocessing. We demonstrate that, compared with existing bioinformatic pipelines, BUM-HMM is highly sensitive and remarkably robust even at low coverage.

RESULTS

To demonstrate the strength of the BUM-HMM method, we reanalyzed high-throughput DMS and 1M7 RNA structure probing experiments performed on yeast 405 ribosomes8. This study generated biological triplicates of each chemical probing experiment with high sequence coverage, both in treatment and control samples (Supplementary Table 1). As secondary structure

1School of Informatics, University of Edinburgh, Edinburgh, UK. 2Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, UK.
Correspondence should be addressed to S.G. (sgrannem@staffmail.ed.ac.uk) or G.S. (gsanguin@inf.ed.ac.uk).
RECEIVED 25 MARCH; ACCEPTED 3 OCTOBER; PUBLISHED ONLINE 7 NOVEMBER 2016; DOI:10.1038/NMETH.4068
models for rRNAs and crystal structures of yeast ribosomes are now readily available\(^\text{12,13}\), these data allowed us to investigate the sensitivity and specificity of BUM-HMM compared with existing methods. In addition, we also generated two \textit{in vivo} yeast mRNA transcriptome data sets using NAI as the chemical probe (see Online Methods), which enabled us to test the performance of BUM-HMM in the context of a transcriptome-wide mRNA structure probing experiment. For these analyses, between 36 and 55 million paired cDNA sequences were analyzed per sample (see Supplementary Table 1 and Online Methods).

Data preparation and model

All cDNA libraries were generated by random priming\(^\text{6,8,11,14}\) and paired-end sequenced (see Online Methods and Supplementary Fig. 1). Paired-end sequencing allows normalization for different read depths through calculating drop-off rates, which we define as the total number of reads stopping at a nucleotide divided by the total number of reads that cover that nucleotide\(^\text{6,8,11,14}\). The full procedure is described in detail in the Online Methods and schematically illustrated in Figure 1.

Briefly, we quantified biological variability using the log ratio between the drop-off rates at the same nucleotide in a pair of control replicates (log-drop ratio, LDR), for all possible pairs. We assembled all control LDRs in a null distribution (step A) and corrected sequence and coverage biases (step B) to control for confounders (see Online Methods and Supplementary Fig. 2). We then evaluated empirical \(P\) values for all treatment-control LDRs at each nucleotide (step C) and modeled these \(P\) values using a BUM-HMM (step D) with hidden states corresponding to presence or absence of modification (see Online Methods and Supplementary Fig. 3 for a theoretical justification of the beta-uniform choice). We used BUM-HMM to compute posterior probabilities of chemical modification for all nucleotides (step E), providing a robust and statistically interpretable readout.

It is important to note that, while single molecules are either modified or unmodified at a particular locus, interpreting structure probing data as binary may appear overly simplistic. Transcripts \textit{in vivo} exhibit dynamic secondary structures and may be bound by different proteins, so that different molecules of the same transcript may be accessible to chemical reagents at different positions. Furthermore, not all accessible nucleotides will be modified at low reagent concentrations, such as those nucleotides typically used in structure probing experiments. The correct interpretation of the probabilistic output of BUM-HMM is therefore not that all transcript molecules with high posterior probability at a locus are in a specific state of accessibility, but that the proportion of modified molecules is sufficiently large to lead to an LDR value which cannot be explained by random variability alone.

Performance comparisons

Interpreting and evaluating the outcome of structure probing experiments is a notoriously difficult task because of a lack of ‘ground truth’ examples to validate model predictions (see also “Discussion”). In this respect, yeast 18S ribosomal RNA represents a case of a high-abundance transcript with a well-defined and stable secondary structure. Therefore, we first evaluated BUM-HMM’s performance in terms of recovering the 18S structure from a recently published chemical probing data set\(^\text{8}\). These data sets have extremely high coverage (with a mean coverage per nucleotide close to 1 million for some samples; Supplementary Table 1), which clearly cannot be achieved on many transcripts in transcriptome-wide studies. We thus later examine the performance of BUM-HMM on a transcriptome data set that reflects a more realistic coverage scenario. We demonstrate through a number of case studies how BUM-HMM can aid the use of structure prediction algorithms and recover structural features in conserved areas of transcripts and we examine the robustness of BUM-HMM toward reductions in coverage.

BUM-HMM recovers the structure of 18S with readily interpretable output

Guided by the available 80S and 40S structures\(^\text{12,13}\), we determined which nucleotides were accessible and single stranded...
and should therefore, in theory, be modified by 1M7 or DMS. Notice that this crystallographic structure is different from the phylogenetic (predicted) structure used in other studies. As DMS preferentially reacts with A and C nucleotides, we were able to examine the sensitivity and specificity of BUM-HMM. From DMS preferentially reacts with A and C nucleotides, we were able to examine the sensitivity and specificity of BUM-HMM. From many existing bioinformatic approaches, we chose the following methods to compare our model to: structure-seq and ΔTCR, Mod-seq, and structure-seq for reconstructing secondary structure of 18S rRNA, as evaluated against the known crystal structure. (c) Base composition of called nucleotides for all methods, when considering reactivity scores greater than a value close to zero (10^-6), a low-reactivity threshold (0.1), a medium-reactivity threshold (0.4), and a high-reactivity threshold (0.85). (d) A fragment of the 18S secondary structure with bases colored according to the BUM-HMM posterior probability at the corresponding nucleotide position.

Figure 2 | BUM-HMM identifies many modified nucleotides of 18S ribosomal RNA with high accuracy and specificity. (a, b) True-positive rate and true-negative rate of BUM-HMM as compared with those of ΔTCR, Mod-seq, and structure-seq for reconstructing secondary structure of 18S rRNA, as evaluated against the known crystal structure. (c) Base composition of called nucleotides for all methods, when considering reactivity scores greater than a value close to zero (10^-6), a low-reactivity threshold (0.1), a medium-reactivity threshold (0.4), and a high-reactivity threshold (0.85). (d) A fragment of the 18S secondary structure with bases colored according to the BUM-HMM posterior probability at the corresponding nucleotide position.
structures (from a free energy point of view) will be present. We therefore used the BUM-HMM output as constraints for structure prediction with the RNAstructure web server.

To quantify the improvement provided by the BUM-HMM constraints, we selected as representative examples the coding sequences of SCM4, which encodes a mitochondrial outer membrane protein, and of RPL37A and RPL19B, which encode ribosomal 60S subunit proteins. These genes all have good coverage levels (mean coverage per nucleotide: 799; 38,711; and 15,798, respectively), thus problems with missing information are avoided; they are also relatively long transcripts (564, 260, and 568 nucleotides long, respectively), and hence challenging for structure prediction algorithms. We used the Fold method in RNAstructure, with and without the BUM-HMM constraints, to predict the secondary structure of these genes. Fold generally returns an ensemble of around 20 low-free-energy structures, and we quantified the distance between two structures by using the binary Hamming distance. Constraining the algorithm with the BUM-HMM output considerably narrowed down the search space for free energy minimization, as demonstrated by smaller Hamming distances between the resulting structures (Fig. 3a–c). Furthermore, these structures were more similar to the output of the alternative method MaxExpect compared with only using sequence (Supplementary Fig. 5). We conclude that using posterior probabilities generated by BUM-HMM as algorithm constraints can improve secondary structure prediction for relatively long transcripts.

BUM-HMM correctly predicts structure of conserved regions in U3 small nucleolar RNA

While transcripts may coexist in several different structural configurations, it is likely that some of their sections present increased structural stability for correct cellular functioning (e.g., in order to be bound by proteins). It is reasonable to expect highly conserved regions of a transcript to represent its more stable parts. To validate our model in a more realistic transcriptome-wide coverage scenario, we turned to the small nucleolar RNA (snoRNA) U3. U3 is a model for evolutionary fitness studies and has an accepted secondary structure in yeast, making it a good candidate for validation.

Even though the coverage on U3 was uneven and did not allow structural predictions on the whole molecule, BUM-HMM achieved an AUC of 0.76 when evaluated on the highly conserved regions located in boxes A, A’, B, C, C’, and D. Furthermore, when considering the longest conserved region with 16 nucleotides (box A and one highly conserved upstream nucleotide), BUM-HMM demonstrated excellent prediction accuracy of 0.88.

BUM-HMM increased informativeness on transcriptome-wide analysis of RNA structure probing data

To evaluate the applicability of the methods in the transcriptome-wide scenario, we generated synthetic data sets by randomly selecting subsets of reads from the 18S DMS data set and evaluated the consistency of the methods at lower coverage (see Online Methods). BUM-HMM showed excellent consistency, as the mean coverage along the transcript was progressively reduced (Fig. 4), retaining accuracy significantly above that of random performance even at a reduction of almost 2,000 times (Supplementary Fig. 6). This performance challenges recent recommendations for the minimum coverage level for chemical probing experiments, indicating that BUM-HMM can obtain reliable predictions on a large fraction of transcripts in a standard transcriptomic experiment. Mod-seq and structure-seq exhibited considerably lower levels of consistency, but behaved as random predictors at the lowest coverage level. Highly consistent reactivity scores generated by ATCR (Fig. 4b) were largely due to its extreme conservatism at the chosen threshold of 50% of the dynamic range, at which it called no more than 20 nucleotides at all coverage levels. Notably, all methods identified fewer modified nucleotides than BUM-HMM both on the full data set and at all coverage levels; this difference was particularly striking with ATCR and Mod-seq (Fig. 4b,c).

While performance analysis is hampered by a lack of a ground truth for most transcripts, a more general assessment of the informativeness of the methods’ outputs is possible and instructive. We therefore quantified how many transcripts had at least 5% of their length called as modified by BUM-HMM and ATCR. We considered those nucleotides which obtained a score above 50% of the dynamic range of the model (having removed outliers for ATCR) to be ‘called as modified’. With this procedure, BUM-HMM identified 2,219 transcripts; while ATCR only retrieved 285. The low number of transcripts identified by ATCR is at odds with
previous studies6,7, suggesting that many RNAs are largely accessible and unstructured in vivo; this conservativeness may be due to the normalization procedures of ∆TCR14 (see Supplementary Fig. 7 for illustration of associated problems).

We next analyzed the distribution of posterior probabilities across those mRNA transcripts which had a nonzero score attached to more than 75% of their length, transcripts which we call effectively probed. BUM-HMM selected 363 mRNA genes (Fig. 5a), a striking contrast with ∆TCR’s 43 selected transcripts. When relaxing this criterion to (still highly informative) effective probing of more than 50% of the length, the number of mRNAs selected by BUM-HMM increased dramatically to 1,764. Analyses of the 363 selected genes revealed that many appeared to have long segments of almost completely unstructured regions (such as TDH3, Fig. 5b) and many had significant structure in the coding sequence (such as YOR365W, Fig. 5b). We next calculated the average fragments per kilobase of transcript per million mapped reads (FPKMs) for these genes using the read counts from the control and treated sequencing data. This revealed a broad distribution with a median 191 (Fig. 5b) and the lowest FPKM of 60 (YOR385W, Fig. 5b,c). The YOR385W gene had an average coverage of 335 reads per nucleotide, which we propose can be an indicative guideline of the lower bound on coverage required for high-throughput RNA structure probing experiments to effectively probe long transcripts.

Metabolic transcripts are generally flexible around the translation start site

Structure in untranslated regions (UTR) and around the translation start site (AUG) can reduce translation efficiency21,22. Recent high-throughput RNA structure probing also revealed a weak but significant negative correlation between RNA structure at AUG in vitro and ribosome occupancy23. To test whether RNA structure measured in vivo also correlates with ribosome occupancy, we plotted the distribution of posterior probabilities around the translation start sites and performed a k-means clustering to identify patterns in the data. This revealed five clusters with different reactivity profiles (Fig. 5d). For the majority of transcripts, the region around the AUG had high posterior probabilities and therefore appeared to be largely unstructured (genes in clusters 0, 2, 3, and 4). Interestingly, KEGG pathway analyses revealed that these clusters were highly enriched for transcripts encoding for ribosomal and metabolic proteins, in particular proteins involved in glycolysis or gluconeogenesis and amino
acids biosynthesis (Supplementary Table 3). Remarkably, the more structured transcripts in cluster 1 were mostly enriched for transcripts encoding proteins involved in mitochondrial translation (Supplementary Table 3).

One possible explanation for why the metabolic transcripts appear largely unstructured in vivo could be because they were occupied by ribosomes, which have an intrinsic RNA helicase activity to unfold structured regions within mRNAs. We therefore asked whether there was a significant correlation between RNA flexibility within that region and ribosome occupancy on the transcripts. To test this, we calculated log₂ of the sum of posterior probabilities within 50 nucleotides around AUG and compared it with the translational efficiency obtained from recently published polysome microarray data (Fig. 5e). This revealed that flexibility around the AUG did not positively correlate with polysome occupancy (Pearson correlation: −0.196; P value = 0.0014). Similar results were obtained when using the entire 5’ UTR region (Fig. 5f). Taken together, these results suggest that high ribosome occupancy alone is not sufficient to explain why certain transcripts were highly flexible in our in vivo NAI chemical probing data.

DISCUSSION

Our statistical pipeline addresses a number of important problems in the analysis of high-throughput RNA secondary structure probing data. First, it explicitly models the biological variability of the data, providing a statistical basis for determining the significance of the observed signal. As such, it removes the need to set arbitrary thresholds and perform extensive postprocessing of the analysis results, yielding a clean and statistically interpretable pipeline. This is a direct consequence of the probabilistic formulation of BUM-HMM. In this respect, it is indebted to earlier probabilistic models of SHAPE-Seq data; notably, however, recent developments in the experimental technology—and in particular, the shift to random-primed experimental designs—force a major change in model architecture and motivate the nonparametric approach we take.

Our analysis identified important biases in the technology, especially prominent in transcriptome-wide experiments, which can have severe downstream consequences in any analysis. While random-priming designs effectively resolve the 3’ biases of earlier SHAPE technologies, significant sequence and coverage biases remain. Our method provides automated empirical strategies for correcting these biases, potentially extending the applicability of the technology.

Finally, the BUM-HMM model generates accurate and more informative results compared with the results of other methods. Crucially, its predictions remain consistent even with reduced sequence coverage, demonstrating that the choice of an appropriate modeling framework can greatly increase the robustness of the technology. This is borne out by the effectiveness of BUM-HMM on a transcriptome data set with relatively low coverage; while current state-of-the-art methods can only provide information over a handful of transcripts, BUM-HMM selected more than 360 transcripts, some of which had a per-nucleotide coverage as low as 335, heralding the advent of truly transcriptome-wide structure probing experiments.

However, it is important to stress that significant issues remain unresolved with the interpretation of RNA structure probing data. Many factors may affect accessibility (protein binding being a prime example), and in general transcripts in vivo may coexist in multiple configurations, cautioning against simplistic interpretations in terms of secondary structure. How structure probing data may be used to inform model-based structure prediction is an important and active research field. Our results show that BUM-HMM constraints, when incorporated in structure prediction algorithms, lead to more consistent structure models for many transcripts, demonstrating the importance of statistically sound data analysis strategies for downstream analyses.
METHODS
Methods and any associated references are available in the online version of the paper.

Accession codes. The transcriptome-wide chemical probing sequencing data are available in the Gene Expression Omnibus under accession number GSE78208.

Note: Any Supplementary Information and Source Data files are available in the online version of the paper.

ACKNOWLEDGMENTS
We thank all the members of the Granneman and Sanguinetti labs for critically reading the manuscript. This work was supported by grants from the Wellcome Trust to G.S. (091549) and I.I. (102334), a European Research Council grant to G.S. (MULNDS) and the Wellcome Trust Centre for Cell Biology core grant (092076). A.S. is supported in part by grants from the UK Engineering and Physical Sciences Research Council, Biological Sciences Research Council, and the UK Medical Research Council (EP/F500385/1 and BB/F529254/1 to the University of Edinburgh Doctoral Training Centre in Neuroinformatics and Computational Neuroscience). Next generation sequencing was carried out by Edinburgh Genomics, The University of Edinburgh. Edinburgh Genomics is partly supported through core grants from NERC (R8/H10/56), MRC (MR/K001744/1) and BBSRC (BB/F529254/1 and BB/F529254/1 to the University of Edinburgh Doctoral Training Centre in Neuroinformatics and Computational Neuroscience). The transcriptome-wide chemical probing sequencing data are available in the Gene Expression Omnibus under accession number GSE78208.

AUTHOR CONTRIBUTIONS
All authors contributed to writing the manuscript and approved the final manuscript.

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.

ONLINE METHODS
ChemModSeq library preparation. The 18S DMS and 1M7 data sets were previously described and can be accessed under the accession code GSE52878 at the Gene Expression Omnibus repository. To generate the NAI transcriptome-wide data set, yeast cells (BY4741 strain) were grown to exponential phase and harvested by centrifugation. Cells were subsequently resuspended in 1 volume of phosphate buffer saline (PBS). NAI (dissolved in DMSO) was added to the suspension in a final concentration of 100 mM (5% DMSO final) and incubated for 10 min at room temperature. Cells were harvested by centrifugation, washed with ice-cold PBS, and snap frozen in liquid nitrogen. Total RNA was extracted as previously described. The mRNAs were isolated using the PolyATtract mRNA isolation kit according to manufacturer’s procedures (Promega). Two biological replicates were generated for the transcriptome-wide analyses. The ChemModSeq libraries were generated as previously described. Briefly, cDNA was generated by random priming using a random hexamer oligo. Subsequently, a DNA adaptor was ligated to the 3’ end of cDNAs using CircLigase. These adaptors contained a random nucleotide at the 5’ end to minimize the sequence representation biases introduced during the linker ligation reaction. Following PCR, libraries were resolved on 2% MetaPhor gels, and fragments between 200–700 were gel purified. Samples were sequenced on Illumina HiSeq2500 systems.

Sequence data processing and raw data analysis. To process the fastq files the pyCRAC package was used. To demultiplex the raw sequencing data we used pyBarcodeFilter.py, after which the remaining random nucleotide was removed from the 5’ end of the forward reads. The data were subsequently collapsed using pyFastqDuplicateRemover.py that utilizes the random barcode information present in the 5’ adaptors to remove potential PCR duplicates. The resulting fasta file was mapped to the Saccharomyces cerevisiae genome (version R64, ENSEMBL) using novoalign 2.05, and only uniquely mapped reads were considered. PyReadCounters.py was subsequently used to generate read counts and FPKMs for all annotated features. The resulting GTF output files were converted to tab-delimited files containing three columns: chromosome, genomic position, and coverage or drop-off counts using pyGTF2sgr.py. These files were then fed to the BUM-HMM model to generate posterior probabilities.

Software. The software implementing the BUM-HMM pipeline can be accessed in the following repository: https://github.com/alinaselega/BUMHMM.

Data characterization. Using the final output files (see sequence data processing and raw data analysis), the drop-off rate was computed for all nucleotide positions in each replicate as a measure of nucleotide’s reactivity to the probing reagent in a given experiment. By definition, the drop-off rate ranges between 0 and 1. All drop-off rates were normalized to a common median across replicate samples.

\[r = \frac{k}{n} \]

where \(r \) is the drop-off rate, \(k \) is the drop-off count, and \(n \) is the coverage.

A measure of inter-replicate variability at each nucleotide position is defined as the log-ratio of drop-off rates (LDR) in a pair of replicate samples \(i \) and \(j \):

\[\log \frac{r_i}{r_j} = \log(r_i) - \log(r_j) \]

If the drop-off rates are similar in both samples, the LDR will be close to 0, indicating little variability. In contrast, different drop-off rates would result in an LDR large in absolute value. LDRs in control conditions collectively describe the variability in drop-off rates that could be observed in the absence of the probing reagent. The set of these define the null distribution of LDRs.

LDRs are then computed for each combination of treatment-control replicates, quantifying the difference between the drop-off rate observed in a treatment experiment with respect to a control replicate. These are compared with the null distribution giving rise to empirical \(P \) values. For efficiency, LDRs are compared with the precomputed quantiles of the null distribution. The \(P \) value of an LDR represents the probability of it being insignificantly different from what could be observed by chance.

\[P = 1 - q, \text{ where } q \text{ is the closest quantile} \]

Preprocessing. In order to use the log transform, it is necessary to ensure that no nucleotides have zero drop-off rates. Therefore, only those nucleotides with nonzero drop-off counts for a corresponding pair of replicate samples are used. The pipeline also features a user-defined parameter describing the minimum level of coverage that nucleotides should have to be included in the analysis (set to 1 in our analyses).

Model. Empirical \(P \) values, computed for each nucleotide position and each treatment-control comparison (of which there are \(mn \) for \(n \) treatment and \(m \) control experimental replicates) are passed onto a hidden Markov model. The model has a hidden state \(h_t \) \((t = 1 \ldots T \text{ for } T \text{ nucleotides})\) representing the true binary state of the \(t \)-th nucleotide (modified, 1; or unmodified, 0) and the observed variable \(v_t \), corresponding to the empirical \(P \) value at that position. \(P \) values corresponding to different pairs of treatment-control replicates are assumed to be independent measurements. Notice that, since \(P \) values are used as features and not for decision making, no issues of multiple hypothesis testing arise.

Transition probabilities are defined through empirically derived lengths of single- and double-stranded stretches of nucleotides. The model assumes expected uninterrupted stretches of 20 double-stranded, or constrained, nucleotides and 5 single-stranded, or flexible, nucleotides.

Emission probabilities come from a beta-uniform mixture (BUM) model. This design exploits the result that \(P \) values are uniformly distributed under the null hypothesis. \(P \) values corresponding to accessible nucleotides are modeled with a Beta distribution, which favors small values, accommodating the fact that accessible nucleotides would have LDRs greater than most values in the null distribution. The \(P \) value distribution computed for the transcriptome-wide data set strongly agrees with this model (Supplementary Fig. 3). The HMM is then run separately on continuous stretches of nucleotides with a user-specified minimum coverage threshold and a nonzero drop-off rate in at least one treatment sample.

\[P(v_t \mid h_t = 0) \sim U(0,1) \]

\[P(v_t \mid h_t = 1) \sim \text{Beta}(\alpha, \beta), \text{ with } \alpha = 1; \beta = 10 \]

NATURE METHODS

doi:10.1038/nmeth.4068
The default values for the beta parameters were chosen heuristically as to attach approximately equal likelihood under both hypotheses to nucleotides with LDR in the top quintile of the empirical distribution.

Statistics. Quantification of P values associated with each nucleotide in treated data sets is done by comparing log-dor ratio (LDR) values to the quantiles of the empirical LDR distribution in control data sets.

Optimization of parameters. We provide a strategy to optimize parameters of the beta distribution with respect to the data. This strategy uses the expectation-maximization (EM) algorithm\cite{2} and Newton's optimization method.

The iterative EM algorithm starts with the initial values of $\alpha = 1$ and $\beta = 10$, with which the posterior probabilities are computed. It then computes new estimates for α and β using Newton's optimization method. Newton's method finds the maximum of the expected complete data log likelihood or, more precisely, its relevant terms. The shape parameters α and β only appear in the emission term and, within that, only in the component corresponding to the modified state of the latent variable h_t.

The expected complete data log likelihood is given by the following expression (all expectations are with respect to corresponding distributions):

$$
\langle \log p(v_{1:T}, h_{1:T} | \alpha, \beta) \rangle = \langle \log p(h_t) \rangle + \left(\sum_{t=1}^{T} \sum_{n=1}^{N} \log p(v_i^n | h_t) \right) + \left(\sum_{t=1}^{T-1} \log p(h_{t+1} | h_t) \right),
$$

for $t = 1 \ldots T$ nucleotides and $n = 1 \ldots N$ number of treatment-control comparisons.

The relevant term corresponds to emission probabilities (second term in the previous expression):

$$
\left(\sum_{t=1}^{T} \sum_{n=1}^{N} \log p(v_i^n | h_t) \right) = \left(\sum_{t=1}^{T} \sum_{n=1}^{N} \log p(v_i^n | h_t = 0) p(h_t = 0 | v_{1:T}^n) \right) + \left(\sum_{t=1}^{T} \sum_{n=1}^{N} \log p(v_i^n | h_t = 1) p(h_t = 1 | v_{1:T}^n) \right)
$$

Within that expression, the relevant term corresponds to the modified state of the hidden variable (second term in the previous expression):

$$
\sum_{t=1}^{T} \sum_{n=1}^{N} \log p(v_i^n | h_t = 1) p(h_t = 1 | v_{1:T}^n) = \sum_{t=1}^{T} \sum_{n=1}^{N} \gamma_t \log \left(\frac{(1-\gamma_t)^{\alpha-1} \beta^\alpha}{B(\alpha, \beta)} \right) = F.
$$

Where $\gamma_t = p(h_t = M | v_{1:T}^n)$ is the responsibility.

The first order derivatives of F are:

$$
\frac{\delta F}{\delta \alpha} = \sum_{t=1}^{T} \sum_{n=1}^{N} \gamma_t \log v_i^n - \gamma_t (\psi_0(\alpha) - \psi_0(\alpha + \beta))
$$

$$
\frac{\delta F}{\delta \beta} = \sum_{t=1}^{T} \sum_{n=1}^{N} \gamma_t \log (1 - v_i^n) - \gamma_t (\psi_0(\beta) - \psi_0(\alpha + \beta))
$$

The second order derivatives of F are:

$$
\frac{\delta^2 F}{\delta \alpha^2} = \sum_{t=1}^{T} \gamma_t N(\psi_1(\alpha + \beta) - \psi_1(\alpha))
$$

$$
\frac{\delta^2 F}{\delta \alpha \delta \beta} = \sum_{t=1}^{T} \gamma_t N(\psi(\alpha + \beta))
$$

$$
\frac{\delta^2 F}{\delta \beta^2} = \sum_{t=1}^{T} \gamma_t N(\psi_1(\alpha + \beta) - \psi_1(\beta))
$$

Here ψ is the polygamma function. Log transform is applied at the beginning of the algorithm to ensure that the estimated α and β are positive. Posterior probabilities are recomputed with the new estimates of α and β, and the process is repeated a maximum number of ten times or until the parameter values stop changing within the small predefined tolerance range. We remark that, in our experiments, the EM optimization appeared severely vulnerable to local minima, and we therefore opted to keep the beta parameters fixed.

Bias correction. We used the transcriptome-wide data set to identify potential confounding factors which influence the LDRs in the absence of a reagent. The aim is to transform all LDRs accordingly and eliminate the revealed biases.

Coverage bias. The coverage bias was identified by plotting the control LDRs as a function of the inter-replicate mean coverage at the corresponding nucleotide position (Supplementary Fig. 2a,b).

This bias is corrected by learning the functional dependency between these variables and transforming the data to reduce the variance of LDRs. We model drop-off count as a binomially distributed variable, which thus has the following s.d.:

$$
\sigma[k] = \sqrt{np(1-p)}
$$

with probability of drop-off p for a nucleotide covered n times and a drop-off count of k.

Consequently, LDR has a s.d. of:

$$
\sigma[\text{LDR}] \propto \frac{\sigma[k]}{n} = \frac{\sqrt{p(1-p)}}{\sqrt{n}}
$$

Therefore, the functional relationship between log-ratios and coverage can be modeled as $k = \frac{1}{\sqrt{n}} + b$, with some unknown parameters k and b, which are learned from the data using a nonlinear least-squares technique. Then, all LDRs are rescaled by this model with fitted parameters. For efficient runtime on
transcriptome-wide data sets, the LDRs are split in bins of equal coverage ranges and the 95th quantile of LDRs and mean coverage are computed for each bin. These are used for parameter fitting. **Supplementary Figure 2c, d** shows that the transformed LDRs have reduced dependency on coverage.

Sequence bias. We compared the resulting LDR null distributions when separately considering nucleobase patterns of length 3 (AAA, AAT, AAG,...). For each of the 64 combinations of nucleobases, the transcriptome sequence was searched for all places of its occurrence. The LDRs of the middle nucleotide at these occurrences defined the null distribution specific to this nucleobase combination. **Supplementary Figure 2e, f** demonstrates significant differences between these null distributions.

To correct for this sequence-dependent bias, we store the quantiles of each of the 64 different null distributions and compute empirical \(P \) values by keeping track of which nucleobase triplet corresponds to the current nucleotide position and looking up values from the corresponding null distribution.

On account of the short length of the 18S ribosomal RNA molecule, the sequence-bias correcting step was omitted from the analysis when handling the corresponding data sets.

Handling of missing data and outliers. The methods used in the evaluation\(^6,10,14\) not only generate scores with drastically differing dynamic ranges, but they also assume different interpretations of the same score values. For instance, \(\Delta TC \) makes no distinction between the equal drop-off rates in control and treatment conditions and no coverage, assigning a score of 0 in both cases. Structure-seq marks missing data with a dummy value, whereas Mod-seq clamps the scenarios of no coverage and no significant modification to the same score of 0. Further, the outputs of these methods have clear outliers, with a handful of values being much larger than the 99th quantile of the output distribution. Therefore, simply choosing the midpoint of the dynamic range for binarizing the resulting classifications would result in as few as a single true positive for some methods.

Thus, when performing evaluation, we set the missing data (for those methods that use it) and the outliers (computed as the values greater than the 99.5th quantile of the output distribution) to 0. Considering other strategies, such as removing outliers or only evaluating on the nonmissing data, resulted in grossly limited outputs generated by some methods for the lowest coverage levels. Our choice, while circumventing these problems and enabling comparisons, follows the methods' use of complete data and the assumption that the reactivity of zero does not carry significant structural information.

When computing true-positive and true-negative rates, the output scores of all methods were normalized to the range of BUM-HMM. AUCs and true-positive and true-negative rates were computed with the ROC package\(^33\). When characterizing the methods’ sensitivities using the DMS data set specific to As and Cs, the outputs of \(\Delta TC \) and Mod-seq were normalized with the 2–8% normalization rule\(^34\) to enable comparisons at the same (previously used) low-, medium-, and high-reactivity thresholds\(^34,35\).

Secondary structure prediction. When generating secondary structures informed by BUM-HMM, posterior probabilities were uploaded to the RNAstructure web server\(^17\) as a SHAPE constraint file with default parameter values used. For RPL37A and RPL19B, the structure was predicted for the longest CDS region.

Performance evaluation of BUM-HMM on the conserved regions of U3 snoRNA. Conservation scores associated with the human U3 snoRNA were taken from Rfam\(^36\). Highly conserved parts of the box regions, matching in sequence between the human\(^37\) and yeast transcripts\(^39\), were selected, with three weakly conserved nucleotides allowed in the middle of the regions (a total of 40 nucleotides). Evaluation was performed on those nucleotides with an attached posterior probability \(P > 0 \) (28 of those nucleotides).

Lower coverage simulation analysis. To evaluate the output consistency of the methods at lower coverage levels, we generated synthetic data sets by randomly selecting subsets of 2 million; 1 million; 100,000; 30,000; 20,000; 10,000; and 1,000 reads from the 18S DMS data set. For each subset, ten such selections were made. Files with coverage and drop-off counts were generated for each selection and passed to BUM-HMM. Consistency was evaluated with the AUC statistic between the output scores generated by each method for a given synthetic subset selection and the whole data set. For all methods, outliers were handled as described above and calling of modified nucleotides (used for the barplots of base composition) was performed at the threshold of 50% of the dynamic range of each method after having dealt with the outliers.

Code Availability. All of the code used in this study can be accessed in the following repository: https://github.com/alinaselega/BUMHMM.

30. Webb, S., Hector, R.D., Kudla, G. & Granneman, S. PAR-CLIP data indicate that Nrd1-Nab3-dependent transcription termination regulates expression of RPL37A and RPL19B, the structure was predicted for the longest CDS region.

This section aims to provide a more detailed description of the automated empirical bias-correcting strategies employed by the BUM-HMM computational pipeline, complementing the brief corresponding sections in the Online Methods of the paper.

The aim of the bias investigation, performed during the development of the pipeline, was to identify the dependency of control LDRs, per-nucleotide variability measures of drop-off rates in the absence of a reagent, on some (if any) confounding factors. These factors would correspond to the *intrinsic* biases of the technology and would not be representative of the processes underlying chemical modification. The aim of the bias-correcting steps was to then transform the treatment-control LDRs (as well as control LDRs) to eliminate the revealed dependencies, in theory leaving only the ‘real’ signal.

The bias investigation was performed on the transcriptome-wide dataset, as it should be able to provide a rich (and in the ideal case of a perfect dataset, almost extensive) repertoire of scenarios necessary for detecting biases. The analysis revealed the sequence coverage level and the nucleotide sequence to be the confounding factors influencing the control LDRs.

4.4.1 Coverage bias

The transcriptome-wide dataset had two experimental replicates in control conditions and two replicates treated with NAI as the chemical probe (details provided in the paper). Two control datasets resulted in a single control-control comparison, and thus the null distribution contained one LDR for each nucleotide position (provided it had a positive coverage level and positive drop-off count in both control replicates).

The coverage bias was identified by plotting the control LDRs as a function of the mean coverage between the replicates at the corresponding nucleotide position (Panels a, b in Fig. 4.3 show the corresponding transcriptome-wide data for two strands). The plot demonstrated that the majority of nucleotides had a mean coverage well under 1000 in control conditions. It also showed that the variability of the drop-off rate at nucleotides was roughly inversely proportional to the mean coverage. This can be expected as the faithfulness of the signal should improve with increased read sequencing depth. Consequently, the plot revealed that most nucleotides had a large LDR (in absolute value), which means that their measured drop-off rates did not agree well between control experimental replicates due to lower coverage levels.

The aim of the coverage bias-correcting strategy was to transform the data in order to reduce the variance of control LDRs as a function of coverage. This would quan-
tify the drop-off rate variabilities at nucleotide positions across replicates in control conditions independently of the coverage levels achieved at these positions.

To make progress, let us consider an idealised model where the drop-off count \(k \) of a nucleotide covered \(n \) times can be modelled as a binomially distributed random variable with some unknown success probability \(p \). This simplified model assumes that the event of random RT drop-off is equiprobable across the transcriptome. A more sophisticated model would require extensive biological insight into the machinery of reverse transcription and its spontaneous termination; such a model is not required for our purposes here. The standard deviation of the random variable \(k \) is thus given in Eq. 4.8.

\[
k \sim \text{B}(n, p) \quad \text{(4.7)}
\]

\[
\sigma(k) = \sqrt{np(1-p)} \quad \text{(4.8)}
\]

Correspondingly, the random variable representing the drop-off rate \(r \) at that nucleotide would have a standard deviation as given in Eq. 4.9.

\[
\sigma(r) = \frac{\sigma(k)}{n} = \frac{\sqrt{p(1-p)}}{\sqrt{n}} \quad \text{(4.9)}
\]

In order to determine the variance of the transformed random variable \(\log(r) \), we use the following result. The moments of a function \(f \) of a random variable \(X \) can be approximated with Taylor expansion, provided that \(f \) is sufficiently differentiable and the moments of \(X \) are finite (Hogg and Craig, 1995). Specifically, the first-order approximation of the second moment of \(f(X) \) can be derived as shown in Eq. 4.10.

Let’s denote \(E[f(X)] = \mu_f \) and \(E[X] = \mu_x \).

\[
\begin{align*}
\text{var}[f(X)] &= E[(f(X) - \mu_f)^2] \\
&\approx E[(f(\mu_x) + f'(\mu_x)(X - \mu_x) - f(\mu_x))^2] \\
&= E[(f'(\mu_x)(X - \mu_x))^2] \\
&= (f'(\mu_x))^2 \var[X]
\end{align*}
\quad \text{(4.10)}
\]

Similarly, one can approximate the covariance between functions of random variables \(X \) and \(Y \) with the expression in Eq. 4.11, denoting \(E[Y] = \mu_y \).
Figure 4.3: a, b. Presence of a coverage-dependent bias, reflected by the dependency between the LDR and the mean coverage at each nucleotide position in a pair of control replicate samples, for all such pairs, computed from the yeast transcriptome-wide data set on both strands. c, d. Same dependency plotted as in a, b after applying a bias-correcting strategy to the LDRs. e, f. Presence of a sequence-dependent bias, reflected by differing null distributions of LDRs. Each boxplot represents the null distribution (y-axis shows LDR) computed only for the nucleotide positions corresponding to a given trinucleotide pattern (indicated on the x-axis). Reproduced from Supplementary Figures of Selega et al. (2017).
\[\text{cov}[f(X), f(Y)] = E[(f(X) - E[f(X)])(f(Y) - E[f(Y)])] \approx \frac{f'(\mu_x)f'(\mu_y)\text{cov}(X, Y)}{(4.11)} \]

As the logarithm function is differentiable and the moments of \(r \) are assumed to be finite, the variance of the log-transformed drop-off rate can be approximated as given in Eq. 4.13. As the expected value of \(r \) is independent of \(n \) under these modelling assumptions (Eq. 4.12), the logarithm transformation only adds a constant factor \(\frac{1}{p^2} \) to the variance of \(r \) in the expression for the approximated variance of log-transformed drop-off rate as a function of coverage \(n \).

\[E[r] = \frac{E[k]}{n} = \frac{np}{n} = p \quad (4.12) \]
\[\text{var}[\log(r)] \approx \left(\frac{1}{E[r]} \right)^2 \text{var}[r] \quad (4.13) \]

Now let’s examine the variance of the LDR measure at some nucleotide position for control replicates \(i \) and \(j \):

\[\text{var}[LDR] = \text{var}[\log(r_i) - \log(r_j)] = \text{var}[\log(r_i)] + \text{var}[\log(r_j)] - 2\text{cov}[\log(r_i), \log(r_j)] \quad (4.14) \]

We can approximate the covariance between \(\log(r_i) \) and \(\log(r_j) \) using Eq. 4.11, yielding:

\[\text{cov}(\log(r_i), \log(r_j)) \approx \frac{1}{E[r_i]E[r_j]}\text{cov}(r_i, r_j) \quad (4.15) \]

The last thing to do is to consider the covariance between the drop-off rates in two experimental replicates, \(r_i \) and \(r_j \). Even though we expect these random variables to measure a similar (ideally, identical) signal, which reflects structural properties of the transcript at that position, the noise associated with their measurements in independent experimental replicates is independent of each other. We can then factorise the covariance, showing that \(r_i \) and \(r_j \) are conditionally independent given the experimental procedure:
\[\text{cov}(r_i, r_j) = \text{E}[(r_i - p)(r_j - p)] = \text{E}[r_i - p]\text{E}[r_j - p] = 0 \] (4.16)

Putting together our results and approximating the coverage levels in control replicates with their mean \(n \), the binomial model implies that the variance of a control LDR has an approximately inverse dependency on coverage \(n \):

\[\text{var}[\text{LDR}] = \text{var}[\log(r_i)] + \text{var}[\log(r_j)] \approx \left(\frac{1}{\text{E}[r_i]} \right)^2 \text{var}[r_i] + \left(\frac{1}{\text{E}[r_j]} \right)^2 \text{var}[r_j] = \frac{2(1 - p)}{pn} \] (4.17)

We would like to transform the data in a way that rids the variance of LDR of this dependency on \(n \). We model the standard deviation of a control LDR with an unknown parameter \(k \) as shown in Eq. 4.18 and allow an intercept \(b \) to account for the variance we still observe in control LDRs for large coverage levels.

\[\sigma[\text{LDR}] = \frac{k}{\sqrt{n}} + b \] (4.18)

In order to learn \(k \) and \(b \) from the data, all control LDRs were split in bins of equal coverage ranges. For each bin, the mean coverage \(n \) and the 95\(^{th} \) quantile \(f \) were computed. As the 95\(^{th} \) quantile approximately corresponds to 2 standard deviations from the mean, the bin-wise values of \(f \) with subtracted mean and mean coverage levels \(n \) were fitted to the model in Eq. 4.18 with a non-linear least squares technique, thus determining the parameters \(k \) and \(b \).

Then, all LDR values were divided by \(\frac{k}{\sqrt{n}} + b \), with their corresponding mean coverage \(n \) and the determined values of \(k \) and \(b \). The standard deviation of these rescaled LDR values should thus be independent of \(n \).

\[\sigma\left(\frac{\text{LDR}}{\frac{k}{\sqrt{n}} + b} \right) = \frac{\sigma(\text{LDR})}{\frac{k}{\sqrt{n}} + b} \approx \frac{\sigma(\text{LDR})}{2\sigma(\text{LDR})} = \frac{1}{2} \] (4.19)

Plotting the rescaled control LDRs against the corresponding mean coverage demonstrated that their variance as a function of coverage was reduced (Panels c, d in Fig. 4.3). The coverage bias-correcting strategy is aimed at reducing the influence of cov-
average levels on the measure of drop-off rate variability employed in the BUM-HMM pipeline and demonstrates that sequence coverage is a factor that should be taken into account when modelling RNA structure probing data (and other sequencing data).

4.4.2 Sequence bias

To investigate whether sequence has an impact on the distribution of LDRs in control conditions, three-nucleotide patterns were separately considered. Combinations of three were chosen in order to efficiently search the transcriptome sequence for pattern occurrences and following the interpretation of looking at a nucleotide and both of its immediate neighbours. However, the pipeline software implementation features a user-defined parameter for the number of nucleotides in the pattern.

For each of the $4 \cdot 4 \cdot 4 = 64$ combinations of three nucleotides, the transcriptome sequence was searched for all places of its occurrences. Then, control LDRs were extracted from the null distribution, transformed with the coverage bias strategy, for all positions of the middle nucleotide at these occurrences, generating a null distribution specific to each pattern. Resulting null distributions demonstrated significant differences (Panels e, f in Fig. 4.3 show the corresponding transcriptome-wide data for two strands).

The sequence bias-correcting step of the pipeline stores the quantiles of each of the 64 different null distributions and computes empirical p-values for each nucleotide according to the three-nucleotide pattern it belongs to, comparing its treatment-control LDR to the corresponding null distribution.

The sequence bias correction is designed for transcriptome-wide studies and should be omitted from the analysis for short molecules as the limited number of pattern occurrences in the sequence will be unable to sufficiently inform the null distributions. The sequence bias-correcting strategy is aimed at correctly performing LDR comparisons in scenarios when the variability of the drop-off rate is affected by the local sequence, revealing it to be a factor that needs to be accounted for when handling RNA structure probing data.

4.5 Parameter optimisation

The BUM-HMM pipeline provides an optional automated strategy to optimise shape parameters of the Beta distribution component of the mixture model, which defines the emission model of the HMM. The strategy combines the EM algorithm, introduced in Section 3.1.4 (Chapter 3), with Newton’s optimisation method.
Briefly, the algorithm iterates between computing new estimates for the shape parameters α, β (initialised at the default values $\alpha = 1, \beta = 10$) with Newton’s method based on the expected complete data log-likelihood and using these estimates to generate posterior probabilities. Further details and derivations are given in the Online Methods section of the paper.

4.6 CONCLUSIONS AND OUTLOOK

The arsenal of experimental technologies for rapid and high precision characterisation of structural features within complex RNA populations has been steadily growing since the last decade, gradually moving from *in vitro* to *in vivo* and from single-transcript studies to transcriptome-wide. Chemical probing replaced nuclease cleaving, experimental designs utilising random priming provided a strategy to resolve technology bias associated with the 3’ end, generated structural maps became single-nucleotide resolution, and high-throughput sequencing allowed simultaneous probing of thousands of transcripts. However, the technological progress underlying these important innovations remained unmatched by justified statistical algorithms to analyse and interpret the mass of resulting data, which were advancing at a slower pace. Specifically, methods, existing at the beginning of this PhD project, differed significantly both in measures used in the analysis and the pre- and post-processing strategies applied to these measures.

4.6.1 Breadth of existing analysis strategies for RNA structure probing data

Some methods defined the measure of chemical modification using raw counts of RT stops, transformed with various normalisation strategies (Kertesz et al., 2010; Ding et al., 2014). Perhaps a legacy of experimental designs employing single-paired sequencing, the sole usage of drop-off counts is potentially vulnerable to differences in coverage, which can vary dramatically along the transcriptome. A more commonly used (Rouskin et al., 2014; Kwok et al., 2013; Siegfried et al., 2014) definition relied on a notion of *drop-off rate*, obtained by using the measured number of reads at each position and representing the *reactivity* of a nucleotide.

Normalisation strategies for either raw drop-off counts or calculated drop-off rates in general shared a common goal of defining a scale for the measurements in order to enable comparisons and interpretation. However, in practice, the strategies ranged from normalising values to the highest reactivity (Rouskin et al., 2014), scaling lowest values in treatment experiments to the values at corresponding positions in control experiments (Low and Weeks, 2010), and dividing values by the total sum of mea-
measurements on the whole transcript, followed by normalisation by the length (Ding et al., 2014). Many methods employed the log-transform (Kertesz et al., 2010; Ding et al., 2014; Underwood et al., 2010), but differed in which steps of the normalisation strategy they applied it to.

Most methods applied additional post-processing to their transformed measures of reactivity. A commonly used outlier detection strategy was the 2-8% rule, which removed the highest 2% of reactivities and scaled the rest by the average reactivity of the next highest 8% (Low and Weeks, 2010). This heuristic strategy was empirically derived for SHAPE-directed structure prediction experiments and has since been used by many other methods using SHAPE and DMS (Lucks et al., 2011; Kwok et al., 2013; Ding et al., 2014). Caution should be applied when using heuristic approaches as their derived thresholds might be specific to conditions of a given experimental protocol or a lab-specific setup. Further, this and other outlier removing methods varied in their application: some methods removed outliers from raw data before normalising it (Rouskin et al., 2014), some performed it after scaling their measures of interest (Ding et al., 2014; Lucks et al., 2011; Kwok et al., 2013).

Once the reactivity measures have been transformed with the chosen normalisation strategies, they needed to be compared with their counterparts derived in control conditions in order to account for background RT stops. Some methods performed their analysis directly on treatment measurements (Rouskin et al., 2014), but most methods tried to correct for random drop-offs, even though using a simplistic log-ratio criterion (Ding et al., 2014; Kertesz et al., 2010; Underwood et al., 2010; Kwok et al., 2013). A direct subtraction of control log-reactivities from the treatment values meant that methods often had to define the difference to be 0 if more drop-off was observed in control than in treatment. Further, this scenario became impossible to tease apart from the situation when the same drop-off rate was observed in both conditions.

Finally and perhaps, most importantly, analyses relying on this statistic retained no information about the measurement variability and were thus unable to accommodate the fact that the measurements are noisy observations of a stochastic process, influenced by many factors that were both intrinsic to the technology and represented the underlying biological process.

4.6.2 Existing model-based approaches

One model-based approach which aimed to probabilistically decide whether drop-off in treatment conditions is significantly higher than in control is TCP$^\text{EM}$ (two-channel Poisson expectation maximization) (Hector et al., 2014). The algorithm does
conclusions and outlook

not model random and chemically-induced RT stops separately; instead, it models two settings for the drop-off rate at each nucleotide λ_1, λ_2 (high and low). Assuming these high and low rates are constant along the transcript, each nucleotide is assigned to one of three classes: high drop-off in both conditions (corresponding to random RT stops), low drop-off in both conditions (assigning the unmodified state), and low drop-off in control and high drop-off in treatment experiments (assigning the modified state). The position-wise class probabilities and λ_1, λ_2 are estimated with the EM algorithm and upon convergence, each nucleotide is classified based on its class probabilities.

This approach benefits from the incorporated noise model for the measurements and probabilistic classification of the nucleotide’s structural state. However, its assumption of constant high and low drop-off rates λ_1, λ_2 enforces constant propensities to reacting with the probe for all structurally flexible nucleotides. Further, restricting attention to only high and low drop-off rates disregards nucleotides exhibiting intermediate number of drop-offs and implies a somewhat binary view on the structural state of nucleotides. In reality, many factors can influence the structural properties of a nucleotide, as well as multiple structural conformations can exist for a transcript in vivo.

Another probabilistic approach separately modelled a set of natural drop-off propensities $\{\Gamma_i\}_{i=1}^n$ and a set of relative reactivities to the probe $\{\Theta_i\}_{i=1}^n$ for all n nucleotide positions in a transcript (Aviran et al., 2011). The sets $\{\Gamma_n\}, \{\Theta_n\}$, and the expected number of modifications per molecule c, modelled with a Poisson distribution, were estimated with maximum likelihood optimisation, yielding probabilistic reactivities for all nucleotides in a transcript that best described the observed counts under this model.

An important assumption of this approach was that all fragments started at the 3’ end and a fragment of length k was generated in a scenario when the k-th position was the first modified position encountered by RT, regardless of the number of formed adducts upstream from that. This assumption rendered the model not applicable for modelling data collected in experiments employing random priming, whereby RT can randomly hybridise to the RNA. This illustrates how assumptions enforced by a parametric model can limit the generalisation abilities of a method without suitable extensions. However, this approach fulfilled a very important purpose by being the first fully probabilistic stochastic model for RNA structure probing data, treating the experimental counts as noisy measurements of underlying processes and using them to infer the quantities of interest.
4.6.3 Contributions to the field

At the time when this project was beginning, the existing computational methods for analysis of RNA structure probing data differed wildly in normalisation techniques and various post-processing. The employed transformations were not always statistically justified and therefore hard to compare and evaluate for correctness. Importantly, most methods deduced the structural state of a nucleotide based on a single comparison of intrinsically very noisy measurements. Even those methods that aimed to treat them as noisy measurements still only utilised information from a single experimental replicate in each condition.

The main contribution of the BUM-HMM computational analysis pipeline is its formulation in terms of multiple experimental replicate datasets, whereby the performance of the pipeline can only be improved with more biological replicates. The goal of BUM-HMM is to determine whether the drop-off in treatment conditions is significantly above the drop-off in control while using statistically justified methods. This is achieved by quantifying the variability of random drop-off and thus, making a statistical assessment for the drop-off at every position in the presence of a chemical reagent.

BUM-HMM assumes no parametric form for drop-off events, except when empirically correcting the coverage-dependent bias. The only parametric distributions used in the model are chosen according to justified statistical results describing p-value distributions, which was the main motivation to use empirical p-values as observation in an HMM instead of some measure of difference between reactivities in two conditions. The non-parametric approach makes BUM-HMM flexible to experimental variations (such as random priming) as it would work on any setup that characterises reactivity at a nucleotide position.

As part of the BUM-HMM development, bias investigative analysis was performed in order to identify confounding factors influencing the measure of choice, the log-ratio of drop-off rates between conditions (LDR). As many existing methods use the same or a very similar statistic, the results of this investigation are not only useful for improving the BUM-HMM performance, but also are of general interest to the field. Coverage levels and sequence have been shown to influence the resulting distributions of LDRs in control conditions, suggesting that this dependency should be corrected for in order to expose the signal pertinent to chemical modification rather than background processes. The BUM-HMM pipeline implements data-driven strategies to remedy these biases and perform correct comparisons.

As BUM-HMM is probabilistically formulated, its output is given by posterior probabilities of chemical modification in the treatment experiment for each nucleotide po-
conclusions and outlook

Even though validation of algorithms analysing RNA structure probing data is notoriously difficult due to lack of "ground truth" for most transcripts, a number of experiments demonstrated the performance of BUM-HMM. The pipeline generates a more informative output, assessing the likelihood of chemical modification for more nucleotides than other methods, while agreeing well with known structures. The generated output can be used as constraints for free energy-based algorithms to produce tighter ensembles of possible secondary structures of transcripts, possibly explained by escaping local minima. Simulated data analysis showed that the method is robust to variations in coverage, with results remaining consistent as the coverage of the dataset decreases to much lower coverage levels that have been previously recommended for effective structure probing. This result is likely to be significant for experimental planning and cost-effectiveness.

To summarise, the main features of the BUM-HMM pipeline that addressed gaps in the field of RNA structure probing data analysis are:

- explicit modelling of biological variability,
- automated data-driven strategies to address intrinsic biases,
- probabilistic and directly interpretable output,
- the choice of statistical model confirmed by data and greatly extending the sensitivity of the technology when coverage levels are lower than recommended.

Finally, the software implementing the BUM-HMM statistical modelling framework has been released on Bioconductor, a peer-reviewed platform for open source software for bioinformatics, in a package called BUMHMM (Selega et al., 2016). The implementation features user-defined parameters setting the minimum threshold for nucleotide-wise coverage and the length of a nucleotide pattern for correcting the sequence-dependent bias. The transition of the R software implementing the BUM-HMM pipeline into the form of an accepted Bioconductor package, including unit testing and integration with existing classes, was performed by myself. All R software for developing, testing, and evaluating the pipeline was developed by myself.

4.6.4 Recent developments since publication

Perhaps the most prominent recent development in the field tackling similar problems to BUM-HMM came with PROBer, a general statistical analysis pipeline for
Published a few months after our paper, it once again recapitulated the need for well-justified statistical methods for analysing vast amounts of available data collected with many similar experimental protocols. PROBer is solving a bigger problem, proposing a general framework for modelling data from high-throughput sequencing toeprinting assays, which measure a signal of interest (such as the structural state of a nucleotide) via RT drop-offs and recover them by mapping the resulting cDNA toeprints. Such assays undoubtedly include RNA structure probing, but also assays mapping RNA-protein interactions (König et al., 2010) and detecting RNA modification such as pseudouridylation (Carlile et al., 2014) and 2′-O-methylation (Incarnato et al., 2017).

The motivation of the method is based on the fact that inference of quantities of interest heavily depends on accurately estimating the RT drop-off profiles from data, which are simultaneously influenced by RT noise, variable transcript abundance, and ambiguous read mapping. PROBer thus jointly infers transcript abundances and modification probabilities, combining together models for RNA-seq (Trapnell et al., 2010) and RNA structure probing data (Aviran et al., 2011).

The method builds upon on the previously discussed model-based approach for structure probing data (Aviran et al., 2011), whereby at each nucleotide position of a cDNA fragment encountered by the RT, there is a probability of premature synthesis termination due to modification or random drop-off, or in the case of reaching the fragment’s end. However, it additionally models the generation process of a cDNA by selecting a transcript from the transcriptome based on its lengths and abundance, randomly priming or fragmenting it, and primer extending it one position at a time.

Note that commonly used experimental designs employing random priming are now supported by the PROBer model, in contrast to Aviran et al. (2011). However, this and other modelling choices lead to a very large number of model parameters, which are estimated with expectation maximisation algorithm as before (Aviran et al., 2011). In order to lighten the computational burden, PROBer assumes that transcript abundances do not change between treatment and control conditions and further imposes a parametric form on the chemical modification and RT noise profiles. This could, perhaps, again argue in favour of a non-parametric approach, such as the one we take with the BUM-HMM method, which would remain generalisable even in the case of major changes to technical procedures of experimental protocols.

PROBer’s evaluation in the context of simulated data demonstrated that it could generate structural estimates of equal or better accuracy compared with other methods while requiring up to 90% less reads. This result echoes our own finding (Selega et al., 2017), whereby BUM-HMM would generate informative results even as the
coverage was vastly reduced. This once again supports our statement that rigorous statistical modelling can greatly extend the scope of experimental technologies.

As the simulated data was partly produced using PROBer itself, the authors carried out additional evaluation analyses on real data. The performances of PROBER and other methods against the “ground truths” (e.g. known secondary structures and RBP binding motifs) were evaluated in terms of a variety of different metrics (area under the curve of precision-recall (PR) and receiver operating characteristic (ROC) curves, sensitivity, positive predictive value). While PROBer mostly scored the highest on the shown metrics, the difference between its performance and performance of other methods was often very small. Also in comparison with BUM-HMM on the 18S and 25S rRNAs, the difference between both methods in sensitivity and positive predictive value was in the range of few percent.

This once again draws attention to the notorious problems with validation in the field of RNA structure probing and prediction. The aforementioned issues stemming from the lack of known structures are further complemented by the incomplete understanding of what properties of a molecule are measured in a structure probing experiment and how they relate to its structure. Even for the highly abundant transcripts with a well-defined and stable secondary structure, such as 18S, the best achieved performance only achieves 52% PR classification accuracy and 84% ROC classification accuracy on its crystallographically informed secondary structure, which is far from a perfect reconstruction. (This is keeping in mind that PR area under the curve is more suited for class imbalance problems with many more negative examples than positive examples so 52% might be a closer estimate of accuracy.) This suggests that new predicted structures for less abundant transcripts might have an even lower accuracy. Further, crystallographically obtained structures are likely to differ from the structural conformations found in vivo and some transcripts might even exist in multiple structural variants (e.g. caused by ribosnitches (Wan et al., 2014)). These factors provide severe limitation for the development and evaluation of computational methods for RNA structure inference.

Additionally, in PROBER’s evaluation, the differences between the performances of compared methods were not equally spaced when measured with different metrics: some metrics yielded much closer results than others. It would be enlightening to understand what caused this behaviour, thereby providing a systematic comparative analysis between different methods. Otherwise, it is not immediately obvious which metric should be chosen in order to select the best performing method from many existing ones.

This goes to show that evaluation remains a very hard problem not only for modelling structure probing data but also data from other high-throughput sequencing
assays based on RT drop-offs. However, PROBer is an important milestone that both aims to provide a unified framework for many experimental protocols sharing key steps and reminds the field that accounting for noise and other confounding factors is a necessary requirement for accurate inference.

The breadth of computational analysis methods for RNA structure profiling data, available both at the beginning of this project (briefly summarised in Section 4.6.1) and still to this date, has been comprehensively outlined in a recent review (Choudhary et al., 2017a). The review pointed out common conceptual frameworks employed by most methods in estimating reactivity to chemical modification, yet also noted vast differences in carried out methodologies, confirming the motivation behind the development of BUM-HMM.

Further, the authors paid special attention to the importance of informing the analysis with datasets from multiple biological replicates. They note that information derived from replicate experiments can help to identify significant biological variation, the idea which lies at the very cornerstone of the BUM-HMM architecture. In line with this reasoning, an interactive tool for quality control of RNA structure probing data was recently proposed (Choudhary et al., 2017b). SEQalyzer allows one to gauge the agreement between replicates and perform exploratory analysis of high-throughput data, identifying regions with poor quality data or conversely, screening for transcripts with available high-quality information. The tool implements commonly used strategies for optimising and normalising reactivity scores (Aviran et al., 2011; Tang et al., 2015). In its aim to provide a standardised tool for data quality assessment, it mirrors the motivation behind BUM-HMM, which proposes a justified modelling strategy that could unite disparate computational methods.

Another recent effort has directly demonstrated the utility of RNA structure probing data for the problem of structure prediction. Building on the theoretically formulated probabilistic framework of Eddy (2014), which derived the likelihood-based expressions for pseudo-energy terms from a statistical model for structure probing data, Deng et al. (2016) implemented its extension to multiple structural contexts within the RNAstructure software for RNA structure prediction (Reuter and Mathews, 2010). The study further carried out theoretical investigations, assessing the information content of various reactivity values and showing that high reactivities are the major drivers of structure prediction. This result pointed out that increasing the information content of moderate reactivity values may hold the key to further improvements in structure prediction.

The authors additionally noticed the importance of upstream modelling efforts for RNA structure probing, the examples of which are Aviran et al. (2011) or the BUM-HMM (Selega et al., 2017). The reactivities estimated within a justified statisti-
cal model may better represent the underlying signals in the data and thus be informative when incorporated into the algorithms optimising free energy. The authors further point out that multiple replicates are an essential component for adequately capturing the data from a statistical analysis perspective.

In conclusion, the last two years have witnessed important work in the field of computational analysis for RNA structure probing data. These studies drew attention to such vital aspects of modelling as carefully accounting for noise and confounding factors, aspiring to propose rigorous, well-justified statistical frameworks, and thus moving towards more global and unified computational approaches. In many ways, they echoed the problems addressed by the BUM-HMM pipeline, showing that statistical analysis of high-throughput data can be of great assistance to informing experimental design and generating highly informative estimates without necessarily increasing the sequencing depth and experimental cost.
MODELLING THE DYNAMICS OF RNA-PROTEIN INTERACTIONS

This chapter presents a non-parametric approach for the analysis of RNA-protein interactions time-course data. Specifically, the algorithm identifies transcripts which are differentially bound by the protein of interest between conditions. The algorithm was applied to longitudinal RNA-protein binding data of high temporal resolution acquired with a novel experimental UV cross-linking methodology called χCRAC. χCRAC was applied to the mediators of transcription and degradation in the context of stress response.

The chapter begins by introducing the machinery underlying transcription and degradation in yeast in Section 5.1. It then formulates the main question that the proposed algorithm aims to answer and explains the utilised experimental design in Section 5.2. Section 5.3 provides an illustrative overview of the proposed computational method for time-series analysis. These introductory materials are intended to aid understanding of the paper which uses the proposed method to study the role of the yeast transcription termination factor Nab3 in regulating gene expression during stress (van Nues et al., 2017).

In accordance with the University of Edinburgh regulations, the paper is included in its published form in Section 5.4. Supplementary Information is included in Section B.4 of Appendix B.

The application of the proposed method for the differential cross-linking test led to one of the main findings of the paper. Pervasive changes in Nab3 binding to the transcriptome during the early stages of stress response revealed that transcription termination can provide an important control mechanism of gene expression. The analyses underlying this result are provided in the following Results sections of the paper:

- Monitoring in vivo dynamics of protein-RNA interactions
- χCRAC provides insights into transcription kinetics
- Nab3-RNA interaction dynamics during glucose starvation.

The introductory section provides motivation for the study and summarises its key findings and contributions, while Discussion gives an overview of the results and suggests directions for future work.
The remaining sections of the paper present other important results characterising the χCRAC experimental methodology and the underlying function of Nab3 during stress. Namely, the first section provides evidence for the cross-linking mapping efficiency of χCRAC and its ability to generate more biologically relevant results that are not affected by biases associated with prolonged UV irradiation. The Results section that follows the sections stated above characterises the changes in Nab3 binding site distribution under stress. The following sections made use of the anchor-away experimental system that depletes nuclear Nab3 to identify known and novel target genes regulated by Nab3 and demonstrate its effect on expression regulation of retrotransposon genes. While providing important insights into the function of the transcription termination factor, these sections are not directly relevant to this PhD thesis.

The method for differential binding analysis was developed by myself. The χCRAC time-series datasets were normalised and the analysis generating protein-specific transcript targets was performed by myself. The other authors contributed in the following manner. Sander Granneman conceived the χCRAC method. Sander Granneman, Rob van Nues, and Peter Wadsworth conceived the filtration unit used for cell harvesting. Sander Granneman and Rob van Nues designed the experiments and themselves and Erica de Leau performed the experiments. Sander Granneman performed the comparisons between the Vari-X-linker and Megatron, statistical analyses of data replicability, GO-term and clustering analyses of differentially bound transcripts, comparisons between changes in Nab3 and Pol II binding, and analyses of anchor-away data. Gabriele Schweikert performed the analyses for Nab3 transcriptomic redistribution. Guido Sanguinetti provided supervision on data modelling and the development of the differential cross-linking testing method. Sander Granneman, Guido Sanguinetti, and myself wrote the relevant Results sections specified above. Guido Sanguinetti and myself wrote the relevant Methods sections: Data normalisation and Testing for differential dynamic response.

Following the paper, this chapter proceeds by providing the formal definition of the model and the associated derivations in Section 5.5. Section 5.6 provides a correction for the presented paper. The chapter then presents the analysis of the cross-linking time-series of the cytoplasmic degradation factor Xrn1 in Section 5.7, illustrating its role in gene expression regulation. This analysis was performed with the modified method for differential binding analysis that used an observation model more suitable for the data. Section 5.8 compares the results of the two method modifications by applying them to the previously discussed cross-linking datasets. The chapter concludes with Section 5.9 by summarising the main results gained from the cross-linking time-series analyses and identifying the future research directions motivated
by these findings. A dynamical model for RNA expression in stress conditions is proposed, which aims to explain transcript abundance through relative contributions of transcription and two degradation pathways (nuclear and cytoplasmic).

5.1 Transcription and Degradation in Yeast

Transcription in eukaryotic cells is catalysed by the enzyme RNA polymerase (RNAP). There are multiple types of nuclear RNAP, each of which is responsible for the synthesis of distinct functional types of RNA. RNA polymerase II (Pol II) is the most studied type and it synthesises precursors of mRNA, small nuclear RNA (snRNA), and microRNA. In yeast (and human), Pol II has 12 subunits. The largest subunit is called RPB1 and it forms a part of the DNA-binding domain, necessary for catalysing transcription.

In yeast, the process of transcription can be modulated by the activity of the Nrd1-Nab3-Sen1 (NNS) protein complex. Assisted by another co-factor TRAMP (Houseley and Tollervey, 2009), the complex gives rise to the nuclear co-transcriptional degradation pathway. Proteins Nrd1 and Nab3 bind specific sequences in transcribed RNA and interact with the Pol II C-terminal domain. As a result of these interactions, transcription is terminated and the nascent transcript is degraded by the NNS-recruited exosome. Nrd1 and Nab3 have also been shown to participate in the nutrient response pathway (Webb et al., 2014).

Mature transcripts can be degraded in the cytoplasm by the cooperative effort of decapping enzymes, which remove the 5’cap, and the exoribonuclease Xrn1, which then degrades the transcript completely.

In summary, RNA expression in yeast arises from the combination of transcript production (via transcription) and decay (Fig. 5.1). The latter is implemented by various degradation pathways, two of which are mediated by the NNS complex in the nucleus and the Xrn1 nuclease in the cytoplasm.

5.2 Experimental Design

The study, within which the proposed testing algorithm was applied, used the novel experimental method \(\chi \text{CRAC} \) to characterise the role of degradation in gene expression regulation. \(\chi \text{CRAC} \) is a UV cross-linking method for mapping RNA-protein interactions, which reduces the irradiation time to seconds. This cross-linking efficiency enabled quantitative measuring of short-lived RNA-protein interactions, which would be impossible to capture with other methods that required longer irradiation times.
5.2 Experimental Design

The χCRAC experimental protocol was previously introduced in more detail in Chapter 2 (Section 2.8.2).

The study drew motivation from the combination of the following results about stress adaptation. Firstly, dynamical modelling of Marguerat et al. suggested that degradation might play a role in shaping gene expression at the early stages of stress response, which were previously inaccessible experimentally. Secondly, the proteins of the NNS complex involved in co-transcriptional degradation were known to be functionally relevant in nutrient stress response (Webb et al., 2014). Thirdly, glucose deprivation in yeast has been shown to lead to significant changes in mRNA levels and transcriptome-wide redistribution of the NNS complex components (Darby et al., 2012). Finally, the lack of direct experimental measurements of degradation and the general view of attributing the main importance in gene expression regulation to transcription, illustrated in Section 2.9 of Chapter 2, put together with the aforementioned results, led to the conceived experimental design.

The study aimed to investigate the role of transcription termination in adaptation response of yeast to nutrient stress. Exponentially growing *S. cerevisiae* cells were UV cross-linked to the protein of interest Nab3. Then, a portion of cells was rapidly harvested with a custom-made device (described in the Methods section of the paper) and placed in a glucose-lacking medium. These glucose-starved cells were then repeatedly UV cross-linked to Nab3 at various timepoints after stress induction (e.g. 1, 2, 4... minutes after cells were starved). The first cross-linking experiment before the transfer corresponds to the timepoint of 0 minutes. To control for cell transfer, a complementary series of control experiments was performed, which mirrored the “treatment” experiments except that the cells were transferred to the same glucose-rich medium. The experimental design is illustrated in Fig. 5.2.

Experiments following the same design were also performed for Pol II. Additionally, transcript abundance was quantified at various timepoints since cell transfer to
5.3 IDENTIFYING DIFFERENTIAL CROSS-LINKING BETWEEN CONDITIONS

The proposed algorithm aims to identify transcripts whose regulation by the protein of interest significantly changed in response to nutrient stress compared to control conditions. The algorithm is based on the Gaussian process (GP) model, introduced in Section 3.2 of Chapter 3. The GP model is a Bayesian non-parametric regression model and an infinite-dimensional generalisation of the multivariate Gaussian distribution, which specifies a prior distribution over the space of all possible functions used to model the data.

The algorithm follows a similar approach to that of Äijö et al., in that it fits GPs to time-series under different models and uses the Bayes factor to compute the evidence of one model over another. Specifically, two possible models are considered:

- **null hypothesis** or model M_0: all time-series, collected both in stress and control conditions, can be explained as noisy observations of a single underlying function that describes the dynamics of the system.

Figure 5.2: Experimental design of χCRAC experiments studying the dynamics of gene expression regulation under nutrient stress. Cells were UV cross-linked to the protein of interest at various times after transferring them to media with and without glucose. Reproduced from van Nues et al. (2017).
• alternative hypothesis or model M_1: time-series data collected in control and stress conditions arise from two distinct underlying functions, i.e. the dynamics of the system change between conditions.

The observed binding response $y_j(t)$ between the protein and a transcript (corresponding to the measured counts in a cross-linking experiment) is modelled as being generated by the underlying process $f_j(t)$ with the addition of Gaussian noise. Let j denote the condition (stress or control) and t denote time in minutes since the induction of stress.

$$y_j(t) = f_j(t) + \epsilon \quad (5.1)$$
$$\epsilon \sim N(0, \sigma^2) \quad (5.2)$$

Under the null hypothesis, both control and stress time-series y_c and y_s can be explained by a single function f (given in vector notation in Eq. 5.3, 5.4). Under the alternative hypothesis, time-series in each condition is generated by its own function, f_c and f_s, correspondingly (Eq. 5.5, 5.6). Graphically, this corresponds to fitting one function to all data, treating time-series from control and stress conditions as replicates, and fitting two different functions to control time-series and stress time-series separately (Fig. 5.3). The algorithm examines whether two separate functions explain the data better than a single one.

$$y = [y_c, y_s]^T \quad (5.3)$$
$$y = f + \epsilon \quad (5.4)$$

$$y_c(t) = f_c(t) + \epsilon \quad (5.5)$$
$$y_s(t) = f_s(t) + \epsilon \quad (5.6)$$

The marginal likelihood of the data is computed given each model. Under the null hypothesis model M_0, we compute the marginal likelihood jointly over the time-series in both conditions, $p(y_c, y_s|M_0)$. Under the alternative hypothesis model M_1, we compute the marginal likelihood of the data as the product of the marginal likelihood of the control time-series, $p(y_c|M_1)$, and the marginal likelihood of the stress time-series, $p(y_s|M_1)$. The Bayes factor (BF) is defined as the ratio of the marginal likelihoods of the the data given each model and evaluates the evidence of the al-
ternative model M_1 (Eq. 5.7). It is assumed that both models are equally likely. The treatment of hyperparameters is discussed in Section 5.5.4.

$$BF = \frac{p(y_c|m_1)p(y_s|m_1)}{p(y_c, y_s|m_0)}$$ \hspace{1cm} (5.7)$$

We follow the suggestion based on Bayes factor interpretation (Jeffreys, 1998) that a Bayes factor greater or equal to 10 provides strong evidence in favour of the model M_1 over the model M_0. Thus, transcripts with Bayes factors exceeding this threshold are selected as targets, whose binding to Nab3 changes in response to stress.

The testing question is thereby reformulated as a model selection problem, where for selected targets, the null hypothesis, stating that the differences in the binding profiles between the RBP and each transcript can be explained solely by noise, is rejected. The algorithm is applied independently to the cross-linking data of each transcript.

The algorithm was used to identify transcripts that showed significant changes in Pol II or Nab3 cross-linking profiles after the shift to a medium lacking glucose. Results are presented in the earlier specified relevant sections of the paper, which is included below.

Figure 5.3: A graphical illustration of the GP-based algorithm testing for differential binding response. On the left, the toy cross-linking data corresponding to control conditions (red points) and stress conditions (blue points) are explained with a single hidden process (mean shown by the green curve, variance indicated by the green shaded region). On the right, the two time-series are explained by two separate hidden functions (indicated in red and blue, correspondingly).
Kinetic CRAC uncovers a role for Nab3 in determining gene expression profiles during stress

Rob van Nues1,4, Gabriele Schweikert2, Erica de Leau1,5, Alina Selega2, Andrew Langford3, Ryan Franklin3, Ira Iosub1, Peter Wadsworth3, Guido Sanguinetti1,2 & Sander Granneman1

RNA-binding proteins play a key role in shaping gene expression profiles during stress, however, little is known about the dynamic nature of these interactions and how this influences the kinetics of gene expression. To address this, we developed kinetic cross-linking and analysis of cDNAs (χCRAC), an ultraviolet cross-linking method that enabled us to quantitatively measure the dynamics of protein–RNA interactions in vivo on a minute time-scale. Here, using χCRAC we measure the global RNA-binding dynamics of the yeast transcription termination factor Nab3 in response to glucose starvation. These measurements reveal rapid changes in protein–RNA interactions within 1 min following stress imposition. Changes in Nab3 binding are largely independent of alterations in transcription rate during the early stages of stress response, indicating orthogonal transcriptional control mechanisms. We also uncover a function for Nab3 in dampening expression of stress-responsive genes. χCRAC has the potential to greatly enhance our understanding of in vivo dynamics of protein–RNA interactions.
RNA-binding proteins (RBPs) control almost all aspects of gene expression, including the stability of the RNA, its structure, the rate at which the RNA is processed, how efficiently it is translated and its subcellular localization. Not surprisingly, because of these important functions, RBPs are often found associated with many diverse genetic and somatic diseases, including muscular disorders, autoimmune diseases, and cancer. RBPs also play a very important role in adapting to dynamic environments, such as those encountered by microbes when exposed to stress. Survival under stress is contingent on the ability to rapidly reprogram gene expression and, while this ability has been largely attributed to the activity of transcription factors, it is becoming increasingly clear that RBPs also play a primary role in shaping gene expression response profiles by modulating RNA processing and decay. RBPs involved in RNA decay are believed to play an important role during the first few minutes of the adaptation response during which major transcriptional reprogramming events happen. However, direct measurement of protein–RNA interactions during these early stages has so far proved elusive. Consequently, little is known about the contribution of individual RNA decay factors during rapid rewiring of the gene expression program in response to environmental changes.

In recent years, ultraviolet (UV) cross-linking and immunoprecipitation (CLIP) followed by deep sequencing has emerged as the main technology to map protein–RNA interactions in vivo. UV-irradiation is used to forge covalent bonds (cross-links) between proteins and directly bound RNAs. Proteins of interest are then purified under stringent conditions and high-throughput sequencing of the cross-linked RNA enables mapping of the interaction sites. A number of CLIP-related techniques have been developed over the years, such as CRAC (cross-linking and analysis of cDNAs), iCLIP, and PAR-CLIP (photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation). For CRAC the protein of interest is fused to a tandem affinity purification tag (HTP; His6-TEV-ProtA) to enable purification of cross-linked RNAs under completely denaturing conditions. Recent advancements have enhanced the efficiency of the library preparation, increased the data complexity and improved the resolution of RNA-binding site detection. Despite such advances, current protocols are ill-suited to quantitatively measure dynamic changes in protein–RNA interactions. Using current commercially available UV-irradiation equipment, the cross-linking step can take up to 30 min to reach the desired dose (depending on organism and wavelength). This limitation rules out measurements of the early stress responses, which can happen on the minute time scale. In addition, due to prolonged UV-irradiation, cells are exposed to major additional stresses, such as DNA damage, which can confound the results and insert a bias toward RNA transcripts that are specific for the irradiation conditions.

To tackle these problems, we have improved the original CRAC protocol and developed a UV-irradiation device that cross-links proteins to RNA in vivo. These advancements enabled us to perform quantitative time-resolved in vivo measurements of direct protein–RNA interactions at 1-min time-point resolution. We refer to this method as kinetic CRAC (χCRAC).

We have applied χCRAC to glucose-deprived Saccharomyces cerevisiae to investigate the dynamic interactions of the RBP Nab3 in the adaptation process. Nab3 is a component of the Nrd1-Nab3-Sen1 (NNS) transcription termination complex that is involved in degradation of diverse classes of Inc-RNAs, such as cryptic unstable transcripts (CUTs), Nrd1 unterminated transcripts, and various messenger RNAs (mRNAs) and in the maturation of snoRNAs. Depriving yeast of glucose results in...
Results

Very fast protein–RNA cross-linking in vivo. To establish χCRAC, we developed a UV-irradiation apparatus (Vari-X-linker) to improve the in vivo protein–RNA cross-linking efficiency (Supplementary Fig. 1; see Methods for a more detailed description of the apparatus). To test the effectiveness of the Vari-X-linker, we performed CRAC experiments on yeast strains expressing HTP-tagged (His6-TEV-ProtA) Nab3 that were UV-irradiated in the Vari-X-linker or in the Megatron, which (to the best of our knowledge) is currently the most efficient UV cross-linker on the market for cross-linking cell cultures. Our tests with the Vari-X-linker’s 254 nm lamps showed that it can cross-link yeast proteins to RNA in seconds, up to tenfold more efficiently than the Megatron (Fig. 1a). Combined with a cell filtration device that we developed, it is possible to cross-link cells and harvest 1 L of cells in ~1 min. We also tested the Vari-X-linker standard lamps on an E. coli strain expressing a His6-TEV-FLAG-tagged Hfq protein, which showed a sevenfold improvement in cross-linking time (Fig. 1b). The Vari-X-linker can also be used with 365 nm lamps (350 W) to
perform PAR-CLIP experiments, providing a high cross-linking efficiency after 2 min of UV-irradiation at considerably lower 4-thio-Uracil concentrations and shorter labeling times (see Methods for more details) (Fig. 1c).

Thus, we can perform time-resolved (PAR-)CLIP/CRAC experiments on very short time-scales, enabling the measurement of dynamic protein–RNA interactions in living cells with high temporal resolution.

Differential expression analysis of Nab3 CRAC data generated using the Megatron and the Vari-X-linker revealed significant differences between the two UV-irradiation conditions (Fig. 2a, DESeq2\(^2\); adjusted \(p\)-values < 0.05). The Vari-X-linker data were more highly enriched for short-lived lncRNA species (Stable Uncharacterized Transcripts (SUTs), Xrn1 Unstable Transcripts (XUTs), Cryptic Unstable Transcripts (CUTs), and anti-sense transcripts) (Fig. 2b). This suggests that very short UV-irradiation times significantly improve the recovery of these unstable lncRNAs, as shown for two known CUTs that originate from the Nrd1 and Pho84 genes (Fig. 2c,d)\(^23, 24\). The ~300 protein-coding genes enriched in the Megatron data (Fig. 2b) were highly enriched for genes that are upregulated during DNA damage (Fig. 2c,f; FDR < 0.01). Although the steady state levels of retrotransposons did not significantly change during the 100 s UV-irradiation in the Megatron (Supplementary Fig. 2), the DESeq2 analyses revealed significantly higher cross-linking of Nab3 to these transcripts, suggesting that Nab3 actively targets these transcripts during long UV-irradiation times (Fig. 2c,f). Additionally, we also detected a significant enrichment of almost all transfer RNAs (tRNAs) in the Megatron data, which we believe reflects Nab3-dependent degradation of tRNAs that accumulate in the nucleus during the DNA damage response\(^25\). While these data suggest a role for the NNS complex in regulating DNA damage response and suppressing retrotransposon transcription (see below), it also illustrates that long UV-irradiation times increase the likelihood of detecting alterations in transcription that are the result of the activation of the DNA damage response.

Monitoring in vivo dynamics of protein–RNA interactions. Yeast cells deprived of glucose redistribute NNS components over the transcriptome\(^7\). Therefore, to test the feasibility of our \(\chi\)CRAC method, we measured changes in Nab3 cross-linking during glucose deprivation. Because Nab3 co-transcriptionally binds RNA, we also performed \(\chi\)CRAC on RNA polymerase II using a strain expressing an HTP-tagged Rpo21 subunit\(^26\). This enabled us to determine how well Nab3 binding correlates with changes in Pol II transcription. To measure changes in steady-state RNA levels, we performed RNA-Seq on ribosomal RNA-depleted total RNA. We devised a simple experimental set-up that would enable us to rapidly shift cells to a new medium (Fig. 3a). Cells were grown to exponential phase in glucose medium after which a fraction of the cells were harvested (\(t = 0\) time-point). The rest was rapidly harvested by filtration and transferred to a flask with medium lacking glucose. After the shift,

Fig. 3 Time-resolved cross-linking analyses during glucose deprivation. a Outline of experimental set-up. Cells are grown in glucose medium to exponential phase. A fraction is cross-linked and harvested (\(t = 0\) sample). The rest is rapidly harvested by filtration and transferred into medium lacking glucose or medium with glucose (control experiment).

Subsequently, the cells were UV irradiated at the indicated times. b Nab3 cross-linking to RNA during glucose deprivation. Shown is a result of a typical \(\chi\)CRAC experiment. After resolving purified protein with RNAse-digested radiolabeled cross-linked RNA on NuPAGE gels, the cross-linked RNA is detected by autoradiography. Western blotting was performed to ensure that comparable amounts of protein was recovered in each time-point. A cDNA library was subsequently prepared from RNA extracted from a single membrane slice containing RNA from all time-points. c Early time-points are highly correlated. The heat map shows a Pearson’s \(r\) correlation analysis of each individual time-point from Pol II and Nab3 replicate \(\chi\)CRAC experiments. The darker the blue color, the higher the Pearson’s correlation. Pearson correlations were calculated from log2 transformed FPKM (fragments per kilobase transcript per million reads) values. d A Gaussian process model was used to select genes that show significantly different cross-linking profiles between the control (glucose to glucose) and treated (glucose to no glucose) experiment. The example shows the ENO1 Pol II cross-linking profiles from a control (blue) and treated (red) experiment. The \(x\)-axis shows the time-points (minutes) at which samples were taken during the time-course. All data were normalized to the 0 time-point. The \(y\)-axis shows the log2-fold changes in FPKM.
Fig. 4 RNA polymerase II χCRAC shows rapid changes in Pol II transcription during glucose deprivation. a The pie chart shows what percentage of each RNA class showed changes in Pol II transcription during glucose deprivation. b Pol II cross-linking profiles for protein-coding genes were generated by K-means clustering, performed using STEM^{60}. c Comparison of changes in Pol II transcription (y-axis) to changes in total RNA levels (x-axis) for several time-points. d RNA degradation is a rate limiting step during the glucose deprivation response. For each time-point, we calculated what fraction of genes that showed an increase or decrease in transcription (>\pm 2-fold) also showed a similar change in the RNASeq data (y-axis). The x-axis shows the time-points (minutes) after induction of glucose starvation that were analyzed. The red line shows the results for the transcriptionally upregulated genes. The blue line shows the results for transcriptionally downregulated genes. e Transcription of most r-protein genes is shut down within 4–8 min, but total RNA levels only decrease many minutes later. The x-axis shows the time-points (minutes) after induction of glucose starvation that were analyzed. The heat map shows a side-by-side comparison of Pol II χCRAC and RNASeq r-protein data from a glucose starvation time-course. The higher the FPKM, the redder the color. The lower the FPKM the darker blue the color. Note that the RNASeq data has two longer time-points (30 and 40 min).
cells were cross-linked at various time-points. To control for changes in gene expression caused by the filtration process, we performed experiments where filtered cells were transferred back to glucose containing medium. To accurately quantify differences in cross-linking between time-points, we made several improvements to the original CRAC protocol to reduce sequence representation biases (Supplementary Fig. 3) and to improve the preparation of complementary DNA (cDNA) libraries (see Methods). After resolving the purified protein–RNA complexes on SDS-polyacrylamide gel electrophoresis (PAGE) gels, they were transferred to nitrocellulose (Fig. 3b). Western blotting was performed to assess the efficiency of protein recovery after the nickel purification steps (Fig. 3b). RNA from each sample was ligated to 5′ adapters with unique barcodes (Supplementary Table 2). To reduce technical noise, cross-linked RNAs from all the time-points were pooled by extracting RNA from a single membrane slice containing the radioactive signal just above the main bands (Fig. 3b, red dashed rectangle) from which a single cDNA library was generated.

Statistical analyses of biological replicates revealed that γCRAC generates highly reproducible results (Fig. 3c, Supplementary Fig. 4). The early (1–4) min time-points were also highly correlated (Fig. 3c), followed by a sharp drop in correlation coefficients, suggesting that major changes in cross-linking profiles take place shortly after the first 4 min of glucose deprivation.

To identify transcripts that showed significant differential cross-linking profiles between the control (glucose to glucose) and treated (glucose to no glucose), we fitted a Gaussian process (GP) regression model to both time series to compute the likelihood that the control and treated originated from different profiles (see Methods; Fig. 3d).

Finally, to validate our findings we used the anchor-away system. By tagging Nab3 with the FKBP12-rapamycin-binding (FRB) domain in the anchor-away strain, we were able to rapidly and effectively deplete Nab3 from the nucleus by adding rapamycin to the glucose medium 1 h before shifting the cells to medium lacking glucose (see Methods, Supplementary note 1, Supplementary Figs. 5 and 6).

γCRAC provides insights into transcription kinetics. GP analyses identified 2431 Pol II transcripts that showed significant changes in Pol II cross-linking profiles after the shift to medium lacking glucose (Bayesian Factor > 10 supporting different response dynamics (see Methods)). The largest changes were observed in snoRNAs, protein-coding genes and anti-sense RNAs (Fig. 4a).

To determine how well our data agrees with previous findings we used the anchor-away system. By tagging Nab3 with the FKBP12-rapamycin-binding (FRB) domain in the anchor-away strain, we were able to rapidly and effectively deplete Nab3 from the nucleus by adding rapamycin to the glucose medium 1 h before shifting the cells to medium lacking glucose (see Methods, Supplementary note 1, Supplementary Figs. 5 and 6).

Nab3-RNA interaction dynamics during glucose starvation. We detected differential cross-linking of Nab3 to over 4100 transcripts (~37% of all features) during glucose deprivation. Using K-means clustering, we divided the Nab3 cross-linking profiles of the differentially bound transcripts into four clusters (Fig. 5a). Interestingly, both clusters 2 and 3 show a very rapid increase in Nab3 cross-linking during the first few minutes of the adaptation response. Clusters 1 and 2 also indicated transient changes in Nab3 cross-linking during the first 8 min of glucose deprivation. These data suggest that Nab3 binding very rapidly changes during glucose deprivation and is dynamic. Cluster 0 contains transcripts that generally show a decrease in Nab3 binding. About three quarters of the transcripts in this cluster are ncRNAs (XUTs, CUTs, SUTs, anti-sense RNAs, and snoRNAs), suggesting that Nab3 binding to this class of transcripts decreases during glucose starvation (Fig. 5b).

Collectively, our data indicate that during glucose deprivation the bulk of the transcriptional changes take place within the first 8 min and that degradation of transcripts from down-regulated genes could be a rate-limiting step during the adaptation process.
decoupled, suggesting rapid changes in Nab3 binding that were independent of alterations in Pol II transcription. Thus, during early stages of glucose deprivation, binding of Nab3 to nascent transcripts might be regulated by additional factors, providing an additional level of control, which is largely orthogonal to transcriptional regulation. At later time-points, however, the correlation between the data sets improved, indicating that the cells have started to adjust to their new environment. Consistent with this, comparison of Nab3 and Pol II χCRAC profiles revealed that at later time-points Nab3-binding profiles generally followed Pol II transcription (Fig. 5d, groups 2–3). Notably, group 1 contained many genes involved in the heat-shock response, transmembrane sugar transporters and glycolysis/gluconeogenesis. Group 2 is enriched for genes involved in the oxidative stress response and starch/sucrose metabolism, hinting at a role for Nab3 in regulating the oxidative stress response.

As many yeast promoters are intrinsically bi-directional24, 33, the induction of the group 1 and 2 genes during glucose starvation frequently resulted in the appearance of divergent anti-sense transcripts (Fig. 5e), which are also bound by Nab3. Two examples are CUT075 (Fig. 5d, group 2) and Unit247/CUT246 (Fig. 5d, group 1) that are readily detected upon the
induction of the heat-shock proteins SSA2 and HSP78 (both group 3 genes; Supplementary Fig. 7). Unit247/CUT246 and CUT0755 are anti-sense to POM33 and YAP6, respectively. Interestingly, our Nab3-depletion data suggests that Nab3 prematurely terminates these transcripts, preventing the poly- merases from reaching the 5’ ends of POM33 and YAP6, which could result in silencing of these genes.

For a number of the downregulated genes we observed a transient increase in Nab3 cross-linking and a reduction in Pol II binding (Fig. 5d, group 3). Two examples are shown in Fig. 5fg. Transcription of the ILV5 and RPP0 genes decreased almost linearly during glucose starvation (Fig. 5fg, top two graphs), however, Nab3 cross-linking reproducibly increased about 2–3-fold during the first 4 to 8 min (Fig. 5fg, top two graphs). These examples demonstrate that γCRAC can detect rapid changes in protein–RNA interactions at very high temporal resolution.

In cis changes in Nab3 binding during glucose deprivation. Nab3-binding profiles within transcripts also changed for many genes during glucose starvation (Fig. 6). As anticipated, the majority of the Nab3 cross-linking peaks identified in the glucose data (t = 0) clustered near the 5′ end of protein-coding genes where Nab3 is known to act31, 32, 34 (Fig. 6a). However, 14 min after the shift to medium lacking glucose, the binding pattern of Nab3 appeared to spread more into the coding sequence (Fig. 6b). The Nab3 peak distribution plot in Fig. 6c confirmed that the Nab3-binding site distribution in the no-glucose data was significantly different from the glucose data (two sample Kolmogorov–Smirnov test; p-value < 10−5). A striking example was the enolase (ENO1) gene, an enzyme involved in gluconeogenesis and glycolysis (Fig. 6d), which is strongly upregulated during glucose deprivation (Fig. 6d, top panel). In the glucose to no-glucose Nab3 control data (Fig. 6d, Nab3 (glu to glu)) we mainly observed three Nab3 peaks in the 5′UTR of ENO1 that overlapped with two CUTs. In the no glucose data (Fig. 6d, Nab3 glu to noglu) the main Nab3 peaks were located further downstream in the coding sequence. This transition happens very quickly: already after the first few minutes of glucose starvation we see a change in the intensity of Nab3 binding at various sites in ENO1 (Fig. 6d).

These results demonstrate that γCRAC is also capable of detecting rapid in cis changes in protein–RNA interactions. We hypothesized that this redistribution of Nab3 in ENO1 could be linked to the use of alternative TSSs when cells are grown in glucose. Such a mechanism is sometimes employed to regulate expression of genes encoding metabolic proteins, such as IMD235, 36, under specific conditions. To test whether expression of ENO1 is controlled by a similar mechanism, we analyzed Cap-binding protein (Cbp1) CRAC37, ChiP-Seq38 and TIF-Seq39 data to identify transcription start sites and transcript isoforms, respectively. All data sets show that transcription can initiate upstream of the ENO1 TATA box (Supplementary Fig. 8a–c). The high ChiP signal near the CUT TSS indicates that CUT transcription is regulated by TFIID. All the available data indicate that CUT transcription is driven by a different promoter. Relative to the orthologous ENO2, formation of transcription initiation complexes at the ENO1 promoter appears to be inefficient, and we speculate that this is partly the result of transcriptional interference from the upstream CUT (Supplementary Fig. 8c).

Transcription of this CUT probably terminates between the ENO1 TATA box and TSS as high levels of Nab3 cross-linking was detected in this region (Supplementary Fig. 8a). Indeed, analysis of reads containing non-encoded oligo-A tails, which are a hallmark for NNS-ensoxome degradation30, revealed many degradation intermediates that overlapped with the Nab3 cross-linking sites (Fig. 6d panel Oligo-A tails), but mainly in cells grown in glucose. Nab3 depletion resulted in a ~8-fold increase in the cut levels, confirming that Nab3 binding triggers the degradation of the CUT. However, overall the expression levels did not change during the time-course (Fig. 6e). Relative to ACT1, ENO1 mRNA levels in glucose were low and Nab3-depleted cells showed a modest increase in ENO1 quantitative reverse transcription-PCR (qRT-PCR) signal (Fig. 6f), possibly because CUT transcripts no longer terminate at the Nab3-binding sites, and less termination in the ENO1 coding sequence (Fig. 6f, left plot). However, Nab3 depletion did not significantly affect gene expression levels of ENO1 during glucose starvation (Fig. 6f).

We speculate that the upstream CUT helps to suppress transcription initiation at the ENO1 transcription start site (TSS) when cells are grown in glucose (also see Discussion and Supplementary note 2).

Nab3 dampens the expression of stress-responsive genes. Our data analyses (Fig. 5b,d) revealed that almost a quarter of the protein-coding transcripts are differentially bound by Nab3 during glucose starvation. We hypothesized that Nab3 could play a role in regulating the kinetics of these genes during stress. To test this model, we again employed the anchor-away method to deplete Nab3 from the nucleus and asked how this globally affected Pol II transcription. To identify Nab3-regulated protein-coding genes we calculated Pol II escape indices (E41; Fig. 7a) that are a measure of changes in Pol II distribution over the gene upon rapamycin treatment. We assumed that genes that are tightly controlled by Nab3 would show high read densities near Nab3-binding sites in the promoter proximal region as a result of Pol II pausing. Upon Nab3 depletion, we expected that these “pileups” would largely dissolve, leading to an increased Pol II density over the body of the gene (see example in Supplementary Fig. 6b). Thus, genes with an E1 > 1 are potentially regulated by...
Nab3. To reduce noise, we only considered highly expressed genes with an EI ≥ 2 that showed at least a 1.5 increase in Pol II transcription upon rapamycin treatment (see Methods for more details; Fig. 7b, top-right red quadrant).

Five of the 14 genes selected from the glucose data (Supplementary Table 4) were previously shown to be regulated by NNS, including SER3, IMD3, NRD1, and URA8 and four others (FLX1, HEM4, TRS31, and SEN2) were picked up as a result of snoRNA read-through. We identified a number of new genes that are regulated by Nab3-dependent attenuation during glucose deprivation (Fig. 7b; middle and right plot). These include the aldolase GRE3, the mitochondrial copper transporter PIC2 (Fig. 5 group 2), the maltose fermentation regulatory protein MAL33 and the small GTPase RHO5, all of which were upregulated during glucose starvation. Comparison of the Pol II χCRAC profiles of the Nab3-depleted and control (ethanol treated) data for these genes showed a clear accumulation of Pol II around the Nab3 cross-linking sites in the ethanol-treated cells and little transcription downstream, indicative of Pol II pausing and termination (Supplementary Fig. 9b–e).
treated cells more Pol II could be detected in the body of these genes. Importantly, rapamycin treatment of the anchor-away strain expressing Nab3 without the FRB domain did not noticeably affect the Pol II transcription profiles of these genes (Supplementary Figs 6b,10), demonstrating that the observed changes in Pol II distribution is a direct result of Nab3-FRB depletion from the nucleus.

To substantiate those results, we performed qRT-PCRs on total RNA isolated from cells treated with rapamycin or the solvent (ethanol), focusing on MAL33 and PIC2 (Fig. 5d; group 2) (Fig. 7c). As positive controls we analyzed the levels of IMD3 (Fig. 5d; group 3) and NRD1, two genes known to be regulated by Nab3-dependent attenuation16, 23. As negative controls we selected three genes (LST8, GLK1, and YBR085C-A; blue dots in Fig. 7b) that showed both a high increase in Nab3 binding and Pol II transcription in glucose-deprived cells (Fig. 5d groups 1 and 2), however, based on the calculated EIs were less likely to be affected by Nab3 binding. Although nuclear depletion of Nab3 resulted in only a modest increase in Pol II cross-linking of IMD3, NRD1, PIC2, and MAL33 (generally less than twofold), total RNA levels increased quite dramatically (Fig. 7c). This suggests that in the absence of Nab3 a substantially higher number of polymerases reach the 3′ end of these genes and are terminated by the canonical cleavage and polyadenylation machinery. After 1 h of rapamycin-treatment total mRNA levels of IMD3 and NRD1 increased about fivefold in glucose, consistent with a role for Nab3 in terminating transcription of these genes16, 23. In Nab3-depleted cells, IMD3 transcription and total RNA levels were generally higher throughout the time-course, suggesting that Nab3 is important for repressing IMD3 expression in glucose and during glucose starvation (Supplementary Fig. 9b; Fig. 7c). In contrast, PIC2 and MAL33 mRNA levels only increased in glucose-deprived cells treated with rapamycin (Fig. 7c). Thus, PIC2 and MAL33 are clear examples of stress-specific Nab3 targets. Except for LST8 (Welch’s t-test; p-value < 0.01), nuclear depletion of Nab3 did not significantly alter total mRNA levels of the control group genes under normal or stress-conditions (Fig. 7d, Supplementary Fig. 9f).

The observation that Nab3-depletion did not affect YBR085C-A gene expression levels was surprising given that we detected a strong increase in Nab3 cross-linking near the 5′ end of the transcript (Fig. 8a,b, and c) and identified hundreds of oligo-A-tailed reads in the sequencing data (Fig. 8a), strongly suggesting that the NNS terminates YBR085C-A transcription in glucose-deprived cells. The NNS, therefore, located a strain in which the Nab3 and Nrd1 motifs in the 5′ region of YBR085C-A were mutated (without affecting the amino-acid sequence) (Fig. 8c). Quantitative RT-PCR analyses revealed that although the difference in mRNA levels between the mutant and the wild-type gene was always less than twofold during the 20-min time-course, the mutant was upregulated faster than the wild-type gene during glucose starvation, demonstrating a role for the NNS in regulating the kinetics of YBR085C-A expression (Fig. 8d).

We conclude that Nab3 controls the induction kinetics as well as the maximum mRNA expression levels of stress-responsive genes during glucose deprivation.

Nab3 suppresses retrotransposon transcription during stress.

We showed that prolonged UV-exposure substantially increased Nab3 cross-linking to Ty retrotransposon transcripts (Fig. 2b, e, and f). To investigate whether Nab3 regulates Ty retrotransposon expression, we measured their transcription and total RNA levels in the Nab3 anchor-away strains treated with ethanol or rapamycin. Yeast expresses five different classes of Ty retrotransposons (Ty1 to Ty5)42. In line with transposon-abundance, we observed a transient increase in Pol II cross-linking to the highly abundant Ty1 and Ty2 retrotransposons (Fig. 9a,b). Rapamycin treatment did not affect Ty1 transcription kinetics during the first 8 min, however, at later time-points Pol II transcription was significantly higher (Fig. 9a; Welch’s t-test; p-value < 1.0×10−5). This suggests that Nab3 activity is required to suppress transcription of Ty1 transposable elements primarily during late stages of the productive response. Consistent with this idea, Nab3 cross-linking to Ty1 was highest at the late time-points (Fig. 9c). Remarkably, Nab3 appears to control transcription of Ty2 retrotransposons more tightly; In Nab3-depleted cells Ty2 transcription was significantly higher in glucose medium (Welch’s t-test; p-value < 1.0×10−5) and continued to increase during the glucose deprivation response (Fig. 9b). Nab3 cross-linking to Ty2 transcripts was dynamic, peaking at 14 min after the medium shift (Fig. 9d). These data demonstrate how CRAC can be used to measure alterations in Pol II transcription kinetics during changes in the environment or in mutant strains.

For the less-abundant Ty3 and Ty4 retrotransposons the pattern was noisy, however, we could detect an increase in Ty3 Pol II transcription during the last time-points, indicating

Fig. 6 Nab3 binds to different sites in protein-coding transcripts during glucose deprivation. a The heat map displays the distribution of Nab3-binding sites across protein-coding genes (y-axis) that were aligned by the TSS (x-axis) and sorted by length. The dashed lines indicate the TSS and 3′-end, respectively. Shown is the glucose data (t = 0). b Same as in a but now for the t = 14 no glucose time-point. c Distribution of Nab3-binding sites around the TSS. For each Nab3 protein-coding target, the distribution frequency of the binding sites was plotted around the TSS (x-axis). These frequencies were subsequently summed (y-axis) to generate this distribution plot. The blue line indicates the data from the glucose experiment (t = 0). The green line shows the data from the no glucose t = 14 time-point. d Genome browser images showing the results of the Pol II control CRAC experiment (top panel; blue), Nab3 control CRAC experiment (green), the Nab3 glucose to no glucose CRAC experiment (red) and the total amount of oligo-A tailed reads for the ENO1 gene. The time-points (minutes) at which samples were harvested after shifting the cells to medium lacking glucose is indicated on the left side of each track. e–f qRT-PCR analyses of ENO1 and upstream CUT levels. Cells were grown in glucose, treated with rapamycin or ethanol for 1 h and subsequently rapidly shifted to medium lacking glucose. RNA was extracted from cells before (0) and 20, 40 min after the shift. The qRT-PCR data were normalized to the levels of ACT1, as both the mRNA levels and the Pol II cross-linking profiles for this gene did not significantly change during the time-course (Supplementary Fig. 9a). ENO1 mRNA levels were quantified using RT-PCR oligonucleotides that amplify a region that is located downstream of the main Nab3 cross-linking sites (Fig. 6d, bottom track). To detect the upstream CUT in e, we used oligonucleotides that amplify the CUT region, including the Nab3-binding sites upstream of the ENO1 TSS. The left bar in f shows the effect of Nab3 depletion on ENO1 mRNA levels in cells grown in glucose. The right bar plot in f shows the results for the whole time-course. Error bars indicate s.d. from three to four experimental replicates.
that Nab3 is also involved in regulating Ty3 expression (Supplementary Fig. 11). Quantitative RT-PCR analyses confirmed that Ty1 and Ty2 total RNA levels increased during the time-course (Fig. 9e,f), most significantly (Welch’s t-test; p-values < 0.01) at late stages of the adaptation response.

To ascertain why Nab3 appears to more tightly regulate Ty2 transcription, we next compared the Nab3 and Pol II cross-linking profiles over Ty1 and Ty2 retrotransposon genes in the Nab3::FRB anchor-away strain grown in glucose (t = 0) or deprived of glucose for 20 min, with and without rapamycin treatment (Fig. 9g.h). To normalize for the differences in Ty transcript lengths, we divided the reads over an equal number of bins (Fig. 9g.h, x-axis). Strikingly, Nab3 cross-linked primarily to a single region in Ty2 retrotransposons (Fig. 9h, panel II), whereas Nab3 cross-linking over Ty1 transcripts was more diffuse (Fig. 9g, panel II). Although Nab3 cross-linking to Ty1 and Ty2 transcripts increased over time during glucose deprivation (Fig. 9c,d), the cross-linking pattern did not

Fig. 7 Nab3 regulates the timing of expression of stress-responsive genes. a Schematic representation of how escape factors (EI) were calculated. For more details, see the Methods section. b Nab3 targets different transcripts during glucose deprivation. The scatter plot shows the comparison of escape indices (EIs) and changes in Pol II transcription for protein-coding genes before the shift (0) and 4 and 18 min after the shift to medium lacking glucose. The red square indicates genes that showed at least a 1.5-fold increase in transcription and an EI of at least 2. The red dots indicate genes that could potentially be attenuated by Nab3. The blue dots indicate that, based on the EI, are less likely to be regulated by Nab3. c Quantitative RT-PCR analyses of IMD3, NRD1, PIC2, and MAL33 transcripts during a glucose starvation experiment. Cells were grown in glucose to exponential phase, treated with rapamycin or ethanol for 1h and subsequently rapidly shifted to medium lacking glucose (but supplemented with rapamycin). RNA was extracted from cells before (0) and 20, 40 min after the shift to medium lacking glucose. d Same as in c but now for genes that based on the calculated EI are less likely to be regulated by Nab3. Error bars indicate s.d. from three to four experimental replicates. The p-value was calculated using an Welch’s t-test on the data from the 40-min time-points.
dramatically change (Fig. 9g,h, compare panels II and III). Ty1 and Ty2 Pol II cross-linking profiles in cells grown in glucose were very similar, with the read densities roughly evenly distributed over the genes. Rapamycin treatment of cells in glucose only modestly increased the read density downstream of the main Nab3 peaks (Ty1 EI = 0.15; Ty2 EI = 0.37; Fig. 9g,h, compare panels IV and V). These data suggest that only a small fraction of Ty1 and Ty2 transcripts is terminated by Nab3 in glucose. However, 20 min after the shift to medium lacking glucose, Pol II cross-linking downstream of the Nab3 sites in both Ty1 and (in particular) Ty2 transcripts was substantially reduced (Fig. 9g,h, panel VI). Nab3 depletion by rapamycin treatment did not completely resolve the Pol II pileups near the Nab3 cross-linking sites (Fig. 9h, compare panels VI with VII), however, still a much higher fraction of reads was detected in downstream regions (Ty1 EI = 0.47, Ty2 EI = 1.0). These data support the notion that Nab3-dependent transcription termination is mostly active on retrotransposons during glucose starvation.

Collectively, these results demonstrate that Nab3 plays an important role in regulating the kinetics of retrotransposon gene expression during glucose deprivation.
Discussion
The methodological advances underpinning the development of χCRAC enabled us to glimpse the highly dynamic reprogramming of RBP–RNA interactions in response to stress. Our data reproducibly show widespread relocation of the yeast transcriptional termination factor Nab3 within a minute of the imposition of stress. Given the central role of RBPs in all aspects of RNA life, it is plausible that other RBPs show similar dynamic behaviors. Because χCRAC is generally applicable we anticipate that its use will enable future studies to unearth novel mechanistic insights into the function of RBPs during stress conditions.

Our results provide evidence that Nab3 “dampens” the induction of several stress-responsive genes during stress. What could be the benefit of this? One possibility is that Nab3 functions as part of a negative feedback loop that reduces noise in gene expression by preventing transcription levels from overshooting.
(Fig. 10a). Nab3 could also regulate the timing of expression of these stress-responsive genes, although both models are not mutually exclusive. Many of these stress-responsive genes are controlled by the same group of transcription factors. Although the benefits of expressing many stress-responsive genes simultaneously undoubtedly has advantages, in some cases it might be required that expression of certain genes is delayed (Fig. 10b) or only strongly induced when the stress signal has reached a certain amplitude. Such a dampening system would also reduce activation of gene expression due to false or noisy signals. In this respect, the role of Nab3 might be similar to that of the Set3c histone deacetylase, although the mechanism is different. Deletion of Set3c induces the expression of certain genes much faster when cells are subjected to changes in carbon sources and, therefore, it was proposed that Set3c dictates the expression timing of these genes.

We also uncovered a role of Nab3 in regulating the expression kinetics of Ty retrotransposons, which are upregulated during a variety of stress conditions. Their expression needs to be carefully controlled as recombination between Ty elements can lead to chromosomal rearrangements, which are detrimental for gene expression and genome stability. In Nab3-depleted cells, transcription of Ty1 and Ty2, in particular, is significantly upregulated at later stages of the glucose deprivation response and we observed a transient increase of Nab3 binding to Ty2 retrotransposons at late stages of the adaptation response. We propose that Nab3 activity contributes to stress adaptation by rapidly shutting down transcription of retrotransposons (Fig. 10c).

In many fungi, as in mammals, retrotransposon transcription is regulated by the RNAi machinery. However, S. cerevisiae, however, does not have RNAi components, and it is tempting to speculate that, in view of its poor conservation, the NNS complex, together with other factors, may have taken up the function of controlling the expression of retrotransposons. We show that γCRAC can also measure rapid in cis changes in protein–RNA interactions in vivo. We demonstrate that Nab3 binding to the ENO1 transcript changes within the first few minutes of the glucose starvation response (Fig. 6). Follow-up analyses revealed that Nab3 binds a CUT that initiates upstream of the ENO1 TATA box and we predict that transcription of this CUT upstream of the ENO1 promoter helps to suppress ENO1 expression when cells are grown in glucose. Deciphering the mechanism of regulation of ENO1 expression is not trivial as this gene is controlled by many different transcription factors. (See Supplementary note 2 and Supplementary Fig. 12). However, it is worth mentioning here that the upstream CUT initiates from an element referred to as the upstream repressor element (URES), which is a binding site for many transcription factors, such as Reb1 and Tyc7 (Sgc1), and mediates ~20-fold repression of ENO1 in glucose. Interestingly, this URS has directionality as reverting this element relieves inhibition of ENO1 expression when cells are grown on glucose (Supplementary Fig. 12). This begs the question whether transcription of the CUT is also reversed in this mutant.

There are many biological scenarios where measurements of in cis changes, as observed in ENO1, could shed light on RBPs–RNA interaction dynamics. A major area of interest is the assembly of large macromolecular RNP complexes, such as the ribosome and the spliceosome, which involves dynamic interactions between many proteins and RNAs. It is likely that some assembly factors contact different sites on their RNA substrates or may not occupy all of their binding sites simultaneously during the assembly process, as is the case for ribosomal proteins during ribosome assembly. We envision that γCRAC could be used to perform high-resolution time-resolved analyses of dynamic changes of protein–RNA interactions in RNP particles during their assembly in vivo. Such studies would require the development of protocols to synchronize the cells in a way that the assembly could be monitored from start to finish.

Another major potential area of application is the study of the kinetics of RNA expression, which is a balance of RNA transcription and degradation. Most studies use indirect methods to estimate RNA decay rates, which can rely on Pol II mutants, metabolic labeling or drugs to inactivate transcription. Although these studies have provided a wealth of interesting results, the data generated by these indirect approaches are not always highly correlated. In general, model-based studies assume that RNA decay can be summarized by a single mRNA half-life for each transcript, corresponding to a simple exponential decay process, despite the complexity of RNA degradation pathways. The highly dynamic behavior of the termination factor Nab3 indeed challenges this assumption. Since RNA degradation involves the activity of many nucleases, dissecting the dynamics of individual proteins is likely to be crucial for understanding how the rate of RNA decay is determined. We envision that γCRAC analyses on individual nucleases would enable us to directly measure such interactions, providing invaluable data to constrain and refine our understanding of the kinetics of gene expression.

Methods

The Vari-X-linker. The Vari-X-linker incorporates a number of new features that enhance the effectiveness of UV cross-linking. The sample is presented in a controlled 1 cm thick layer contained in a specially constructed UV transparent bag and flanked by two beds of powerful 254 nm (400–550 W) or 365 nm lamps (350 W) that were assembled on trays for easy exchange of the lamps. As far as we are aware, the Megatron is currently the fastest cross-linker available on the market for cross-linking proteins to RNA in actively growing cells. Despite this, it still requires about 100 s to get good cross-linking yields with this machine (or more depending on the protein), which is not fast enough to do time-resolved analyses with minute time-point resolution. Another problem we faced with the Megatron system is that it was not trivial to cross-link cells when the lamps were at full output. As a consequence, cells would not always receive the same level of 254 nm light.
UV intensity during the 100 s of UV-irradiation, resulting in variation in cross-linking efficiencies between samples and noise in the data. It was also not possible to control the temperature inside of the unit. Although the Megatron works well for normal cross-linking studies, these issues made it very difficult to perform time-resolved analyses during short periods. To overcome this, we incorporated a shutter system to allow the lamps to be at full power with stable, repeatable output before exposing the cells. A fan cooling system was installed to minimize thermal shock to the sample. With the Vari-X-linker, the lamps can be left on throughout the experiment and cells will only be exposed when the shutters are opened (Supplementary Fig. 1; shutter release). Using a vacuum pump the cells can be quickly extracted from the UV chamber. The bag in the UV-chamber can be exchanged for a tray that allows for the cross-linking of small volumes or adherent cells in petri-dishes. Cross-linking of adherent cells could be improved by growing the cells on UV-transparent plastic. Using a vacuum pump the cells can be quickly extracted from the UV chamber. We also developed a new filtration device that enables harvesting of 1 L of cells in ~30 s. The Vari-X-linker and the filtration device can be purchased from UVOO (www.vari-x-link.com; sales@uvo3.co.uk).

Kinetic CRAC (γCRAC).

For an eight time-points time-course, 8 L of cells were grown in synthetic medium with glucose (SD-TRP) to exponential phase (OD600~0.5) at 30 °C. For time-point zero, 1 L of cells were cross-linked in the Vari-X-linker using the high-output 254 nm lamps for 12 s and then harvested by rapidly passing the cells through a 0.8 μm filter (Millipore) using a new vacuum filtration device (see above). The remaining 7 L of cells were harvested on filters and quickly resuspended in S-TRP (no glucose samples) or SD-TRP (glucose control samples) and maintained at 30 °C. For each time-point 1 L of cells were cross-linked in the Vari-X-linker and harvested by filtration as above. This yielded ~1 g of cells for each time-point.

For the PAR-CLIP experiments (Fig. 1c), for each condition 1 L of cells expressing Nab3-HTP were grown to exponential phase in SD-URA-TRP and incubated with 4-thio-Uracil for 5 min (final concentration = 20 μM). After labeling, the cells were rapidly harvested by filtration onto 0.8 μm membranes to remove the free 4-thio-Uracil and resuspended in SD-TRP before UV-irradiation at 365 nm. Removing the free 4-thio-Uracil greatly enhanced the cross-linking efficiency (data not shown).

Cells were lysed in 1 V/w of TN150 (50 mM Tris pH 8.0, 150 mM NaCl, 0.1% NP-40, 5 mM β-mercaptoethanol, 150 mM NaCl) and three times 5 min with 500 µl of wash buffer I and three times 1xPNK buffer (50 mM Tris-pH 7.5, 0.1% Nonidet P-40, 5 mM β-mercaptoethanol, 300 mM NaCl, 10 mM Imidazole) and three times with 1xPNK buffer (50 mM Tris pH 7.5, 0.1% Nonidet P-40, 5 mM β-mercaptoethanol, 10 mM MgCl2). Cells were subsequently incubated with 80 µl of 1xPNK buffer containing eight units of TSAP alkaline phosphatase (Promega) and 80 units of recombinant RNasin (Promega) for 1 h at 37 °C. After one 500 µl wash with wash buffer I and three 500 µl washes with 1xPNK buffer, the beads were resuspended in 80 µl of 3′ linker ligation mix (1xPNK buffer, App-PE 3′ adapter (see Supplementary Table 2; 0.6 µM final concentration), 10% PEG8000, 30 units of T4 RNA ligase 2 truncated K227Q (NEB), 60 units RNasin (Promega)). The samples were incubated at 25 °C for 4–6 h. Following one 500 µl wash buffer I and three 1xPNK buffer washes, the beads were incubated with 60 µl of 5′ end labeling mix (1xPNK buffer, 30 µCi 32P-ATP (Perkin Elmer) and 30 units of T4 polynucleotide kinase (NEB)) for 40 min at 37 °C. ATP (Roche) was added to 1 mM final concentration, followed by another 20-min incubation at 37 °C. Beads were subsequently washed three times with 500 µl of wash buffer I and three times with 500 µl of 1xPNK buffer and incubated with 80 µl of 5′ linker ligation mix (1xPNK buffer, 10 mM ATP, 80 units RNasin (Promega) 40 units of T4 RNA ligase 1 (NEB) and 5′ adapter (1.25 µM final concentration; see Supplementary Table 2) overnight at 16 °C. Beads were subsequently washed three times with 500 µl wash buffer I and three times with 500 µl of wash buffer II (50 mM Tris pH 7.5, 0.1% Nonidet P-40, 5 mM β-mercaptoethanol, 50 mM NaCl, 10 mM Imidazole). Proteins were eluted from the nickel beads using wash buffer II.

For the Nab3 anchor-away nuclear depletion experiments29, cells were incubated with 1 µg/ml rapamycin (Sigma) for 1 h before the cells were shifted to medium lacking glucose (but supplemented with 1 µg/ml rapamycin). For the PAR-CLIP experiments, cells were lysed in 1 V/w Tn150 (50 mM Tris-HCl pH 8.0, 10 mM MnCl2, 0.1% NP-40, 5 mM β-mercaptoethanol, 150 mM NaCl, Roche Midi protease inhibitors; 1 ml per gram of cells). Subsequently, 1 V/w of Tn150 was added containing 1U/ml of RNase-free DNase (Promega) and the suspension was incubated for half an hour on ice to degrade the chromatin.

For the Hfq cross-linking test (Fig. 1b), 0.5 L of bacteria were grown in Luria-Bertani medium (LB) to an OD600 of 0.4 and cross-linked in the Megatron and Vari-X-linker for the indicated times. To purify the E. coli Hfq-HTF, one gram of cells was lysed as described above. Extracts were incubated with 35 µl of anti-Flag magnetic beads (Sigma) for 2 h at 4 °C. Beads were washed three times 10 min with TN1000 and rinsed three times with TN150.

For the TEV cleavage step, beads (IgG or Flag) were resuspended in 600 µl of TN150 and incubated for 2 h with 10 µg of home-made GST-TEV protease at 18 °C. The TEV eluates were subsequently incubated with 0.1 unit of RNase-IT (Agilent) for 5 min at 37 °C after which 0.4 µg of guanidine HCl (Sigma) was added to the TEV eluates to inactivate the RNases. NaCl and Imidazole was added to a final concentration of 300 and 10 mM, respectively and the samples were incubated overnight with 50 µl of Nickel agarose beads (Qiagen) at 4 °C. Beads were transferred to a Snap Cap columns (Pierce), washed three times with 500 µl wash buffer 1 (50 mM Tris-pH 7.5, 6 M guanidium-HCl, 0.1% Nonidet P-40, 5 mM β-mercaptoethanol, 300 mM NaCl, 10 mM Imidazole) and three times with 1xPNK buffer (50 mM Tris pH 7.5, 0.1% Nonidet P-40, 5 mM β-mercaptoethanol, 10 mM MgCl2). Beads were subsequently incubated with 80 µl of 1xPNK buffer containing eight units of TSAP alkaline phosphatase (Promega) and 80 units of recombinant RNasin (Promega) for 1 h at 37 °C. After one 500 µl wash with wash buffer I and three 500 µl washes with 1xPNK buffer, the beads were resuspended in 80 µl of 3′ linker ligation mix (1xPNK buffer, App-PE 3′ adapter (see Supplementary Table 2; 0.6 µM final concentration), 10% PEG8000, 30 units of T4 RNA ligase 2 truncated K227Q (NEB), 60 units RNasin (Promega)). The samples were incubated at 25 °C for 4–6 h. Following one 500 µl wash buffer I and three 1xPNK buffer washes, the beads were incubated with 60 µl of 5′ end labeling mix (1xPNK buffer, 30 µCi 32P-ATP (Perkin Elmer) and 30 units of T4 polynucleotide kinase (NEB)) for 40 min at 37 °C. ATP (Roche) was added to 1 mM final concentration, followed by another 20-min incubation at 37 °C. Beads were subsequently washed three times with 500 µl of wash buffer 1 and three times with 500 µl of 1xPNK buffer and incubated with 80 µl of 5′ linker ligation mix (1xPNK buffer, 10 mM ATP, 80 units RNasin (Promega) 40 units of T4 RNA ligase 1 (NEB) and 5′ adapter (1.25 µM final concentration; see Supplementary Table 2) overnight at 16 °C. Beads were subsequently washed three times with 500 µl wash buffer I and three times with 500 µl of wash buffer II (50 mM Tris pH 7.5, 0.1% Nonidet P-40, 5 mM β-mercaptoethanol, 50 mM NaCl, 10 mM Imidazole). Proteins were eluted from the nickel beads using wash buffer II.
containing 250 mM Imidazole, TCA precipitated (20% final concentration) and
resolved on 1 mm thick 4–12% NuPAGE gels (Thermo Fisher Scientific),
transferred to nitrocellulose membranes and visualized by autoradiography. Bands
corresponding to the size of the protein of interest, including a region −1 cm above
the band, were cut from the nitrocellulose membrane and pooled in a single 2 ml
tube. Radiolabeled DNA was extracted by incubating the membrane slices with
200 μg of protease K in 800 μl of wash buffer II containing 1% SDS and 5 mM
EDTA. The solution was transferred to a new tube and the RNA was subsequently
phenol-chloroform-extracted and ethanol-precipitated. Reverse transcription with
SuperScript III was performed as per the manufacturer’s procedures (Thermo
Fisher Scientific) using the reverse transcription primer listed in Supplementary
Table 2. The cDNAs were purified using the Zymo DNA Clean & Concentrator
5 kit and eluted into a final volume of 10 μl. Five micro liter of cDNA was PCR
amplified using Phusion polymerase (Promega) for 20–24 cycles (95°C 30 s, 52°C 30 s,
and 72°C 1 min) using PCR oligonucleotides listed in Supplementary Table 2. PCR
products were resolved on 2% Metaphor agarose gels (Lonza) and 160–300 bp
fragments were gel purified using the minElute kit (Qiagen) according to the
manufacturer’s procedures. Pair-end sequencing (50 bp) was performed by
Edinburgh Genomics using the Illumina HiSeq 2500 and 4000 platforms. This
improved the detection of high-confidence cross-linking induced mutations
Following sequencing, samples were demultiplexed using the 5’ adapter barcode
sequence. Unmapped reads were mapped to the yeast genome. To improve T4
RNA ligation efficiencies, we added random nucleotides to adapter termini that
ligate to the RNA (Supplementary Table 2). We found that there is a significant
preference for specific donor-acceptor nucleotide combinations for both 5’ and 3’
T4 RNA ligation reactions (Supplementary Fig. 3).

The uncropped images for Figs. 1 and 3b are provided in Supplementary
Figs. 13 and 14.

Procedures used for western, northern, qRT-PCR and a description of the yeast
strains and media can be found in the Supplementary Methods.

Processing of raw sequencing data

Sequence was performed on Illumina HiSeq 2500 and HiSeq 4000 machine by our Edinburgh Genomics facility. The complete pipeline for the processing of paired-end kinetic CRAC data is available on https://bitbucket.org/sgrann/kinetic_crac_pipeline. The entire pipeline can be run using a single script (CRAC_pipeline.PE.py) that divides the tasks over
multiple processors. The pipeline performs the following steps: demultiplexing of raw fastq files by pyBarcodeFilter.py version 2.3.3 from the pyCRAC tool suite (version 1.2.6.6). Flexbar then trims the reads and removes 3’ adapters sequences (Supplementary Table 2). Reads are then collapsed using random bar code information provided in the in-read barcodes using the pyCRAC tool
pyFastqDuplicateRemover.py (see Supplementary Table 2 for adapter sequences).

Reads are then aligned to the reference sequence (yeast genome R64 in our case)
using novoalign (www.novocraft.com) version 2.0.7 and those that mapped to
multiple genomic regions were randomly distributed over each possible location.

PyReadCounters then makes read count and fragments per kilobase transcript per
million mapped reads (FPKM) tables for each annotated genomic features. Only genes
which cross-linking could be detected in all time-points were considered. Genomic
feature files were obtained from ENSEMBL (version R64-1.17.5). Coordinates for
anti-sense transcripts, CUTs, XUTs, SUTs, and retrotransposons were obtained from
Saccharomyces Genome Database (sgd, yeastgenome.org).

Identification of Nab3-binding sites and oligo-A reads

PyCalculateFDR.py was used to find significantly enriched Nab3-binding peaks using default settings.

Only peaks with at least five reads were considered and the minimum width of
the peak interval was set to 20 nucleotides. Oligo-A reads were identified using blast
in-house perl and python scripts. PyBioCollector.py was used to generate the
Nab3 and Pol II cross-linking distribution figures.

K-means clustering

K-means clustering of cross-linking profiles was performed using the STEM clustering program. Only profiles selected that showed a fold-change in FPKM of at least 1.5 and had a mean pairwise correlation over two biological replicates of 0.7.

Escape indices and selection of Nab3 attenuated genes

To calculate the Pol II transcription EI41, we first selected protein-coding genes that had a minimum coverage of 10 FPKM at the indicated time-points (0, 4 and 18 min after
the induction of the glucose deprivation response). The EI was calculated by summing
the nucleotide density in the promoter proximal region (PPR, −100 to +250 from the
5’UTR) and dividing this number by the nucleotide density of the body region
(+251 to 3’end). Subsequently, we divided the values for the 4 and 18 min
time-point by the values for the 0 time-point to calculate the EI. These data were then
compared to changes in Pol II transcription, which was calculated by dividing the
total normalized nucleotide density of the whole gene from the 18-min sample by
the total normalized nucleotide density of the 0-min sample. We then selected those times that showed an increase in transcription of at least 1.5, a cutoff of +10 FPKM and EI of +0.5 for each time point.

Differential gene expression analyses

For the differential expression analyses we used DESeq2, which in two Megatron data sets were compared to four VARI-X-linker Nab3 glucose data sets. Only differentially expressed genes were selected that had an adjusted p-value of 0.05 or lower.

Testing for differential dynamic response

To determine whether the imposition of stress results in differential dynamics of RBP binding, we used a Bayesian non-parametric regression approach. Let \(f(t) \) represent the binding response in condition \(j \) (stress or control) at time \(t \), relative to time 0. Our main assumption is that this response, averaged over a population of cells, can be well modeled as a smooth function of time. To capture this assumption, we formulate a probabilistic model for the response function in terms of GP (see e.g.,). A GP is an infinite-
dimensional generalization of the multivariate Gaussian distribution, which
provides a suitable prior distribution over a space of functions. Here we enforce the
smoothness assumption by modeling correlations between function values at times \(s \) and \(t \) using a squared-exponential covariance function:

\[
\text{cov}(f(s), f(t)) = \sigma^2 \exp\left(-\frac{(s-t)^2}{2\lambda^2}\right)
\]

This covariance depends on two hyperparameters \(\alpha, \lambda \) that are fitted to the data as described below.

We assume that observations \(y(t,j) \) of binding to a specific transcript in condition \(j \) at time \(t \) (i.e., FPKM from the CRAC experiment at time \(t \) in condition \(j \)) are obtained from the unobserved function \(f(t,j) \) by addition of zero-mean Gaussian noise with standard deviation \(\sigma \). These assumptions enable us to marginalize exactly the unobserved function values to obtain an estimate of the data evidence (or marginal likelihood).

The ratio of the evidence under the two hypotheses (Bayes factor) quantifies the
ratio of posterior probabilities of each model being correct, and hence provides
a criterion for selecting one hypothesis over the other. We follow Kass and Raftery in
adopting a Bayes factor greater or equal to 10 as strong evidence of one hypothesis
over the other. The Bayes factor computation is performed independently for every transcript; it should be noted that, as this is a Bayesian method, no issues of multiple testing arise, since sampling variability is already accounted for in the marginalization process.

It should be noted that the evidence calculation can only be performed exactly when the covariance hyperparameters \(\alpha, \lambda \) as well as the observation noise with standard deviation \(\sigma \) are known. Such parameters can also be assigned a prior distribution and marginalized for a fully Bayesian treatment; however, this greatly complicates the computational task of computing the evidence as exact marginalization is not possible. To avoid these additional overheads, we adopted an empirical Bayesian strategy and fixed the hyperparameters in a data-driven fashion. The scaling hyperparameter \(\nu\) was defined as 50% of the variance of all binding time-series in control and treatment experimental replicates, for a given transcript. The length scale hyperparameter \(\lambda \) which determines the number of units the data can be extrapolated away from, was globally set as 1 min. The variance of the observation noise \(\sigma \) was chosen to be the variance of the binding time-series of a given transcript in control conditions, i.e., under the glucose-to-glucose shift. Notice that the GP models under both hypotheses were provided with the same hyperparameter values, to avoid over fitting to the data.

\(\chi^2 \) paper 2: \(\chi \) CRAC analysis of \(\text{Nab3} \) 92

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00025-5

5.4 PAPER 2: \(\chi \) CRAC analysis of \(\text{Nab3} \) 92

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00025-5

Published online: 13 January 2016

16

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00025-5

www.nature.com/naturecommunications
Code availability. The pyCRAC package\(^5\) used for the data analyses is available on https://bitbucket.org/sgrann/pycrac. The complete data analysis pipeline is available on https://bitbucket.org/sgrann/kinetic_crac_pipeline/. Other python and perl scripts used for isolating oligo-A tailed reads are available upon request.

Data availability. Fastq and processed sequencing data that support the findings of this study have been deposited in the Gene Expression Omnibus (GEO) under the accession code GSE55545 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?&acc=GSE55545). The data that support the findings of this study are available from the corresponding author upon request.

Received: 22 September 2016 Accepted: 20 February 2017

References

25. Note: The pyCRAC package\(^5\) used for the data analyses is available on https://bitbucket.org/sgrann/pycrac. The complete data analysis pipeline is available on https://bitbucket.org/sgrann/kinetic_crac_pipeline/. Other python and perl scripts used for isolating oligo-A tailed reads are available upon request.

Acknowledgements

We would like to thank Lidia Vasiljeva and members of the Granneman lab for critically reading the manuscript. We thank Frank Pugh for helpful suggestions. We are grateful to Ola Helwak for testing the Vari-X-linker with mammalian cells and Francesca Storici for providing the Delitto perfetto plasmids. This work was supported by grants from the Wellcome Trust (to S.G.; 091549) and a BBSRC Sparking award (to S.G.; S.I.2013.0202). All authors contributed to writing the paper and read and approved the manuscript.
5.5 Formal Definition of the Model

This section formally defines the models used by the algorithm and provides the corresponding derivations.

As before, denote the binding of the protein to a transcript in condition j (stress or control) at time t as $f_j(t)$. The binding response at time t is relative to that at the timepoint 0, which corresponds to the cross-linking experiment before the stress induction. Thus, the time-series starts at the value of 1 a.u. and the following values represent the fold-change in binding compared to control conditions. For the time being, let’s omit the index j specifying the condition as the derivations presented below apply to both conditions.

We assume that the RNA-protein cross-linking dynamics, averaged over a population of cells, can be modelled as a smooth function of time. We reflect this assumption by using a squared-exponential covariance function (which depends on two hyperparameters α and λ) to model dependencies between the function values at times t_a and t_b:

$$K_{ab} = \text{cov}(f(t_a), f(t_b)) = \alpha^2 \exp\left(\frac{-(t_a - t_b)^2}{2\lambda^2}\right) \quad (5.8)$$

This makes the function values that are close to each other in time have larger covariance. The hyperparameter α controls the amplitude of the process and the lengthscale λ specifies the distance between timepoints, after which function values can change significantly.

5.5.1 Gaussian Observation Model

As before, we denote the observation of the binding response of a transcript at time t as $y(t)$ (temporarily omitting index j for simplicity). Let us further use the notation such that $y(t) \equiv y_t$ to declutter the following derivations.

We assume that observations differ from the hidden function values by additive noise and we further assume for this noise to come from an independent identically distributed Gaussian. This yields the likelihood of one data point y_t given the value of the hidden process f_i to be Gaussian distributed (Eq. 5.9). Following the independence assumption, the likelihood of the whole time-series $y = \{y_i\}_{i=1}^N$ given the function $f = \{f_i\}_{i=1}^N$ for $i = 1...N$ timepoints factorises as shown in Eq. 5.10. Below, I_N is a diagonal $N \times N$ matrix.
As the study included multiple replicates of Pol II and Nab3 cross-linking experiments in treatment conditions, we further include replicate information in the model, assuming independent replicates. Let y^k correspond to the k-th replicate of a time-series for $k = 1...M$ experimental replicates. The likelihood expression including all replicates is then defined in Eq. 5.11.

$$p(y|f) = \prod_{i=1}^{N} p(y_i|f_i) = \frac{1}{(\sqrt{2\pi}\sigma)^N} \exp \left(-\frac{1}{2\sigma^2} (y - f)^T I_N (y - f) \right)$$ (5.10)

$$p(y|f) = \frac{1}{(\sqrt{2\pi}\sigma)^{NM}} \exp \left(\sum_{k=1}^{M} -\frac{1}{2\sigma^2} (y^k - f)^T I_N (y^k - f) \right)$$ (5.11)

5.5.2 Computing marginal likelihood

We are interested in computing the marginal likelihood of the data, marginalising out the unobserved function values f. The marginal likelihood can be computed by integrating the joint distribution $p(y, f)$ over all values of f (Eq. 5.13), which has an analytical solution if $p(y|f)$ is a Gaussian distribution.

The prior of f is defined to have the mean of 0 and the covariance K, specifying the dependencies between the function values at various times (Eq. 5.12). The mean of zero was chosen both for simplifying the following derivations and as a suitable choice for representing the cross-linking values in the control time-series, which are expected to be around 1 a.u. The same prior is used for the processes under both models to facilitate fair comparison.

$$f \sim N(0, K)$$ (5.12)

$$p(y) = \int p(y, f) df = \int p(y|f)p(f) df$$ (5.13)

Writing out the expression for the marginal likelihood, we get:
The integral over f can be evaluated exactly if the expression under the exponent is written in the quadratic form with respect to f for some mean μ and covariance C:

$$
\int \exp \left(-\frac{1}{2} (f - \mu)^T C^{-1} (f - \mu) \right) df = \sqrt{(2\pi)^N |C|} \quad (5.15)
$$

The expression for the joint distribution $p(y, f)$ can be manipulated into the quadratic form given in Eq. 5.15 by completing the square. Full derivations are given in Section B.1 of Appendix B.

After taking the terms not containing f outside the integral and evaluating it using Eq. 5.15, the expression for the marginal likelihood of the data y is given by:

$$
p(y) = \frac{1}{(\sqrt{2\pi\sigma})^{NM}} \cdot \frac{1}{(\sqrt{2\pi)^N|K|})} \cdot \exp \left(-\frac{1}{2\sigma^2} \sum_{k=1}^{M} (y^k)^T I_N y^k + \frac{1}{2\sigma^4} \left(\sum_{k=1}^{M} y^k \right)^T C \left(\sum_{k=1}^{M} y^k \right) \right) \cdot \sqrt{(2\pi)^N |C|} \quad (5.16)
$$

In Eq. 5.16 above, the covariance matrix is defined as $C = (K^{-1} + \frac{M}{\sigma^2} I_N)^{-1}$, where K is prior covariance, M is the number of replicates, and σ^2 is the observation noise.

5.5.3 Model selection

For the null hypothesis M_0 model, the marginal likelihood is computed for all time-series replicates, in both control and stress conditions. For the alternative hypothesis M_1 model, the marginal likelihood is separately computed for the control time-series and for all time-series replicates in treatment conditions, and their product is taken. For numerical stability, log-marginal likelihoods were computed under both models and the log-Bayes factor was compared with $\log(10)$ for selecting target transcripts with significant changes in cross-linking profiles.
\[
\log BF = \log p(y_c | M_1) + \log p(y_s | M_1) - \log p(y_c, y_s | M_0)
\] (5.17)

It is worth noting that the more complex model \(M_1 \), allowing two different underlying functions, does not necessarily always provide a better explanation for the data than the simpler \(M_0 \) model, which assumes a single hidden function \(f \). This corresponds to the notion of Occam’s razor, which encourages simplicity in explanations. We can see this from the expression of the marginal likelihood of the data. The expression in Eq. 5.16 simplifies as follows:

\[
p(y) = \frac{1}{(\sqrt{2\pi} \sigma M)^N} \cdot |C| \cdot \exp \left(-\frac{1}{2\sigma^2} \sum_{k=1}^{M} (y^k)^T I_N y^k + \frac{1}{2\sigma^4} \left(\sum_{k=1}^{M} y^k \right)^T C \left(\sum_{k=1}^{M} y^k \right) \right)
\] (5.18)

Using the fact that \(|C| = |CK^{-1}|\), we can write down the expression for this determinant as shown in Eq. 5.19. Full derivations are given in Section B.1.3 of Appendix B.

\[
|CK^{-1}| = \left| \frac{\sigma^2}{M} \left(\frac{\sigma^2}{M} \cdot I_N + K \right)^{-1} \right| = \left(\frac{\sigma^2}{M} \right)^N \left| \frac{\sigma^2}{N_c} \cdot I_N + K \right|^{-1}
\] (5.19)

In the expression for the log-marginal likelihood of the data, the term under the exponent measures how close the hidden function is to the data, while the term from Eq. 5.19 penalises the marginal likelihood as \(-\frac{1}{2} \log \left| \frac{\sigma^2}{M} \cdot I_N + K \right|\). Under the null hypothesis \(M_0 \) model, the marginal likelihood is penalised once by this term. In contrast, under the alternative model \(M_1 \), the expression for the marginal likelihood has two such terms, arising from both hidden functions: \(-\frac{1}{2} \log \left| \frac{\sigma^2}{N_c} \cdot I_N + K \right|\) and \(-\frac{1}{2} \log \left| \frac{\sigma^2}{N_t} \cdot I_N + K \right|\), where \(N_c \) and \(N_t \) sum to \(M \) and are the numbers of replicates in control and stress conditions, correspondingly. Thus, under the alternative model, the fit of the hidden functions to the data has to overcome the sum of the penalising terms in order to provide a better explanation over the \(M_0 \) model.
5.5.4 Defining hyperparameters

The marginal likelihoods of the data can be computed exactly only when the hyperparameters are known. The fully Bayesian treatment of hyperparameters involves placing priors on them and marginalising them out, which is impossible to do exactly. Thus, in order to do exact marginalisation and avoid complicating the computational task, an empirical Bayesian strategy was adopted and the hyperparameters were fixed in a data-driven fashion for each transcript.

The scaling hyperparameter α^2 was defined to be 50% of the variance of all time-series in both conditions. The variance of the observation noise σ^2 was chosen to be the variance of the time-series in control conditions, representing our beliefs about the noise associated with experimental measurements. The lengthscale hyperparameter λ was set to 1 minute, corresponding to the temporal resolution of the data and thus, representing the detectable unit of time after which the binding can change significantly.

5.6 correction for the paper

Since the publication of the paper, a numerical error was found in the implementation of the proposed algorithm, which was used to produce lists of transcripts that demonstrated significantly different binding to the protein of interest (Pol II or Nab3) under stress compared to control conditions. The error was found in the function computing the constant which the integral for the marginal likelihood evaluates to, as shown in Eq. 5.15. Specifically, the implementation incorrectly used the inverse of the constant when computing the marginal likelihoods of the data under both models.

The constant was erroneously inverted in expressions corresponding to all marginal likelihoods of the data, $p(y_c|M_1)$, $p(y_s|M_1)$, and $p(y_c, y_s|M_0)$. The constant depends on the matrix C, which is defined in terms of the prior covariance K, the observation noise σ^2, and the number of replicates M used under each model (Eq. B.4). While K and σ^2 are the same in both models, the number of replicates changes for each marginal likelihood: M equals to the number of control replicates, the number of treatment replicates or their sum when fitting the control time-series, the treatment time-series or all time-series, correspondingly.

Thus, the differential binding analysis was performed again for the Pol II and Nab3 χCRAC datasets using the corrected implementation. During processing of raw sequencing data used for the analyses presented in the paper, the untranslated regions (UTR) at each end of the gene were manually set to 200 nucleotides. Reads were
mapped and FPKM (fragments per kilobase per million) values were computed as described in the Methods section “Processing of raw sequencing data”. Prior to the differential binding analysis, the FPKM values were transformed with the normalisation procedure described in the Methods section “Data normalization”.

The results for Nab3 remained largely identical, with 93% of newly selected targets overlapping with the original selection used in the paper (4245 targets were originally selected, 4032 were selected with the corrected implementation, 3955 transcripts were present in both selections). Therefore, all presented analyses involving transcripts differentially bound by Nab3 under stress remain virtually unchanged. This result means that for the majority of transcripts, the error didn’t affect the magnitude of the marginal likelihoods ratio in comparison to the chosen threshold of 10. This could be attributed to the effect of other terms in the expression for the marginal likelihood (Eq. 5.16) on the Bayes factor. As the exponential term depends on the data, this could suggest a confident model selection, whereby the M_1 model consistently produced better fits to the control and treatment cross-linking data than the M_0 model did to all time-series.

For the Pol II dataset, the results were more different. The number of transcripts quoted in the paper as showing significant changes in Pol II cross-linking during stress (Results section “χCRAC provides insights into transcription kinetics”) corresponded to the number of transcripts for which cross-linking was detected at all timepoints. The total number of unfiltered Pol II targets selected by the algorithm was 4372. The correct implementation selected 2695 transcripts, of which 2621 transcripts were also present in the original selection. As the correctly identified Pol II targets constituted 60% of the originally selected targets, the affected analyses presented in the paper were repeated on the corrected selection.

Specifically, the figures corresponding to Fig. 4a and 4b of the paper were generated again for the new transcript selection. The selection was filtered for the time-series with more than 0 reads mapped in any timepoint, as before. Panel a in Fig. 5.4 shows what percentage of each RNA class showed changes in Pol II binding during glucose deprivation. The RNA class split among the selected transcripts remained similar to the results presented in the paper. The largest changes were observed among small nucleolar RNAs (snoRNAs), protein-coding RNAs, and non-coding RNAs (ncRNAs). Changes in Pol II binding of pseudogenes appear slightly larger than before, while changes in the anti-sense RNA class seemed to have been over-estimated. Smaller changes in binding are still observed among the cryptic unstable transcripts (CUTs), stable uncharacterised transcripts (SUTs), and Xrn1-sensitive unstable transcripts (XUTs).
The clusters of Pol II binding patterns found among the filtered selection largely resembled the results shown in Fig. 4b in the paper. The originally identified cluster 0 seemed to correspond to clusters 0 and 1 shown in Panel b (Fig. 5.4), obtained with clustering the new transcripts selection. The profiles shown in cluster 2 (Fig. 5.4b) seemed to include the binding patterns that were originally split into clusters 2 and 3 (Fig. 4b in the paper). The newly identified clusters 0, 1, and 2 also agreed with the enriched GO (gene ontology) terms indicated for their counterparts in the original clusters shown in the paper. The binding profile shown in cluster 3 (Fig. 5.4b) resembled the profiles of the cluster 1 shown in Fig. 4b in the paper, albeit consisted of fewer elements. The new cluster 3 had fewer enriched GO terms associated with it. It is possible that some transcripts that were previously allocated to cluster 1 (shown in the paper) now appear in the newly identified cluster 1, as it recovers enrichment in transcripts involved in DNA integration. The clustering analysis on the new selected targets was performed as described in the Methods section “K-means clustering”.

The correction for the presented paper (van Nues et al., 2017) is in preparation by the senior authors Guido Sanguinetti and Sander Granneman. It will draw attention to the corrected algorithm implementation, include changes to the affected analyses summarised above, and add clarifications regarding the quoted numbers of selected transcripts (filtered and unfiltered) and data processing involving manually edited gene coordinates. Notably, all discussed changes are minor and do not affect the conclusions of the paper. Specifically, the χCRAC experimental protocol and the algorithm for detecting differential cross-linking presented in this chapter provide a powerful tool for studying RNA-protein interactions at high temporal resolution. Our results revealed pervasive changes in Nab3 binding to the large fraction of the transcriptome in response to nutrient stress. These differential Nab3 binding patterns were not simply co-occurring with transcriptional changes and thus, suggest an additional control mechanism for gene expression regulation.

In the light of finding an implementation error after the publication, it is necessary to stress the importance of research reproducibility and careful data handling. All R software developed by myself for implementing the proposed algorithm and applying it to the data is kept in a distributed version control system online. This made it possible for me to speedily reproduce all results presented in the paper and evaluate the arising differences. Sander Granneman recommended the use of the interactive computational environment IPython Notebook, which was used to create figures for the paper and made it easy to repeat analyses collaboratively. The collaboration with Sander Granneman was further made more transparent by storing data in the shared server repository, which enabled myself to easily interact with the data and track changes over time. These and other more advanced practices for software
development and collaborative data handling are of principal importance in the research process and, while requiring considerable amounts of time to configure for useful operation, must not be overlooked.

5.7 time-series analysis of xrn1 cross-linking

Continuing to examine the role of degradation in stress response, further χCRAC experiments, which followed the design described in Section 5.2, were performed on the exoribonuclease Xrn1, a major nuclease involved in cytoplasmic degradation. Experiments were performed by Sander Granneman and Rob van Nues. One time-series was collected in control conditions (shift to a glucose-rich medium) and three time-series were collected in stress conditions (shift to a glucose-deprived medium). The analysis presented in this section additionally used the RNA-seq dataset on ribosomal RNA-depleted total RNA collected in stress conditions (described in the Results section “Monitoring in vivo dynamics of protein-RNA interactions” of the paper), which quantified transcript abundance at various times since the nutrient shift.

5.7.1 Dataset quality control

Instead of working with normalised FPKM values, as was previously done for the analyses presented in the paper, we directly examined the raw counts of reads mapped to transcripts in each χCRAC experiment, in order to assess the quality of the Xrn1 dataset. Reads were mapped and raw counts were generated as described in the Methods section “Processing of raw sequencing data”, using the yeast genome annotation by Nagalakshmi et al. As the differential binding analysis is concerned with independent modelling of each transcript’s time-series, we directly monitored the average number of reads mapped per timepoint in different replicates for each transcript.

The transcripts’ χCRAC time-series were selected for testing using the same normalisation procedure as described in the Methods section “Data normalization”, with the addition of linearly interpolating the cross-linking counts between different time points. This was done due to the fact that the Xrn1 χCRAC experiments were performed at different times following the shift of cells to a different medium. Specifically, the control time-series was collected at 0, 1, 2, 4, 8, 16, 28, and 40 minutes following the shift to the glucose-rich medium. The first experimental replicate in stress conditions was collected at the same timepoints, except for the last experiment, which was performed at a later time of 45 minutes since the nutrient shift. For the second replicate, the later timepoints varied to be 11, 18, 29, and 46 minutes since the nutrient shift. Finally, the third replicate in stress conditions had only 4 timepoints
Figure 5.4: Repeated analyses for the selected targets differentially bound by Pol II under nutrient stress.

a. Percentages of each RNA class with detected changes in Pol II transcription.

Enriched GO-terms:
- ribosome biogenesis (62)
- cytoplasmic translation (62)
- rRNA processing (43)
- ncRNA processing (47)
- nuclear export (24)

b. Cross-linking profiles for all selected targets. Both panels generated as described for Fig. 4a, 4b in the paper.
mapped in total: 0, 4, 16, and 48 minutes following the shift to the glucose-deprived medium. Xrn1 datasets were processed together with the RNA-seq dataset, in order to test for significant changes specific to Xrn1 binding and exclude cases where they can be explained by changes in total abundance of mature transcript. To control for this, time-series for stress replicates were normalised by the RNA-seq time-series (interpolated to the same timepoints) and the control time-series were normalised by the RNA-seq values at 0 minutes. All time-courses in each condition were normalised to their value at 0 minutes, measured before the stress induction and corresponding to control conditions. Transcripts with no reads mapped at more than half of all considered timepoints were removed from the analysis.

For the transcripts selected for testing, the medians were computed across their unprocessed raw count time-series in each condition (Fig. 5.5). The median was used instead of the mean as many time-series commonly had one or two high counts mapped at some timepoints alongside low (or zero) counts mapped in the rest of the time-course. Examination of median counts per time-series confirmed the lower quality of the control and stress replicate 2 datasets (the median values of distributions across all transcripts were 2 and 4.5 reads, correspondingly), which was first detected by comparing the total number of mapped reads at each timepoint. For this reason, it was decided not to use these datasets.

As the experimental control time-course was not being used due to its limited coverage, a synthetic control time-course was generated from the values mapped at 0 minutes in the two remaining Xrn1 time-series in stress conditions. This modelling choice followed the assumption that there should be no significant time-specific changes in Xrn1 binding to the transcriptome in control conditions. Following the Gaussian observation model (Eq. 5.9), the control time-series was generated from a Gaussian distribution with the mean and variance estimated from the two available measurements at 0 minutes in stress conditions. Negative numbers in generated control time-courses were set to 0.

Once the datasets with low coverage were removed from the analysis, more transcripts were selected for testing after the normalisation procedure (5241 instead of 1899). This was due to the fact that only those transcripts were selected that had non-zero values in all timepoints and all experimental replicates after normalisation. The medians of mapped reads at each timepoint for the selected transcripts were 6.5 reads in stress replicate 1 and 12 reads in stress replicate 3, correspondingly. This indicated that 6 reads or less were on average mapped at each timepoint for half of all selected transcripts in the dataset of replicate 1. This suggested that working with FPKM values can misrepresent the true coverage levels of datasets and lead to modelling of transcript binding time-series with only a few reads mapped by χCRAC
Figure 5.5: Boxplots of median values of mapped reads per Xrn1 time-series of each transcript. Each boxplot corresponds to the specified experimental replicate (1 replicate in control conditions, 3 replicates in stress conditions). The bottom panel shows boxplots with removed outliers.
in each timepoint. It was thus decided to work directly with raw counts, preserving information about the coverage of time-series for each transcript.

5.7.2 Poisson observation model

The decision to work with raw integer counts instead of a continuous measure such as FPKM resulted in a change to the definition of the observation model used by the proposed algorithm. The Gaussian observation model could no longer be used and the Poisson distribution was chosen instead as a standard choice for modelling raw sequencing counts. Indeed, the Poisson distribution expresses a probability of observing a given number of cross-linking events between Xrn1 and a transcript in a fixed interval of time given that they occur with a constant rate, which we model with the hidden function f. The observation model is thus defined as below for N timepoints.

\[
p(y_i|f_i) = \text{Pois}(f_i) \tag{5.20}
\]
\[
p(y | f) = \prod_{i=1}^{N} f_i^{y_i} \frac{1}{y_i!} \exp(-f_i) \tag{5.21}
\]

Including the replicate information and following the notation y_i^k for the k-th replicate out of M replicates, the full likelihood of the data given the hidden process is given by:

\[
p(y | f) = \prod_{k=1}^{M} \prod_{i=1}^{N} \frac{(f_i)^{y_i^k}}{(y_i^k)!} \exp(-f_i) = \exp\left(M \sum_{i=1}^{N} (-f_i) \right) \prod_{k=1}^{M} \prod_{i=1}^{N} \frac{(f_i)^{y_i^k}}{(y_i^k)!} \tag{5.22}
\]

The difference between the Gaussian and Poisson observation models lies with their handling of noise. Under the Gaussian model, the zero-mean noise with the same variance was added to all observations, regardless of their value. In the Poisson distribution, the variance is equal to the mean, so the noise associated with each measurement depends on its value, with more noise applied to higher observation values.

Under the new Poisson observation model, the control time-series of Xrn1 binding was generated from the Poisson distribution with the mean estimated from the two cross-linking measurements mapped at 0 minutes in stress replicates 1 and 3. This
procedure is preferred to generating a synthetic time-course under the Gaussian noise model as it generates natural numbers, rendering any post-filtering unnecessary, and avoids estimating variance from only two measurements. Further, the normalisation procedure applied to all time-series was modified to scale them such that they start from the same number. This achieved the same as dividing each time-series by their first value at 0 minutes (as was done previously), but also preserved the original scale.

All time-series were then rounded to the nearest integer. As rounding can introduce many zero values per time-series, the selected transcripts were filtered by the number of zero values in all time-courses, removing any transcripts with more than half of zero entries. Finally, we removed transcripts with more than 100 counts mapped in any timepoint due to taking factorial in the expression for $p(y|f)$ (Eq. 5.22). Those transcripts with high number of counts should be processed by the original algorithm using the Gaussian observation model.

Now that we define the function values $\{f_i\}_{i=1}^N$ to be the rates of Poisson distributions (which must be positive), the prior of the hidden function f should be adjusted to have a non-zero mean (Eq. 5.23). We will further use an exponential transform to restrict the values of f to positive values.

$$p(f) = \mathcal{N}(\mu, K)$$

(5.23)

5.7.3 Computing marginal likelihood

Using a Poisson likelihood $p(y|f)$ makes it impossible to exactly compute the marginal likelihood. This ability for exact computation of marginal likelihood and our choice to use (continuous) FPKM values to represent binding response served as motivation for originally using the Gaussian observation model as described in Section 5.5.

The marginal likelihood is now given by the following integral:

$$p(y) = \int p(y|f)p(f)df =$$

$$= \int \exp \left(M \sum_{i=1}^{N} (-f_i) \prod_{k=1}^{M} \prod_{i=1}^{N} \frac{(f_i)^{y_{k,i}}}{(y_{k,i})!} \cdot \frac{1}{\sqrt{(2\pi)^N|K|}} \exp \left(-\frac{1}{2} (f - \mu)^T K^{-1} (f - \mu) \right) \right) df$$

(5.24)

Taking the terms constant in f outside of the integral yields the following expression:
\[
 p(y) = \frac{1}{(\sqrt{(2\pi)^NK})} \cdot \prod_{k=1}^{M} \prod_{i=1}^{N} \frac{1}{(y_k^i)!} \cdot \int \exp \left(M \sum_{i=1}^{N} \left(-f_i - \frac{1}{2}(f - \mu)^T K^{-1} (f - \mu) \right) \right) \prod_{k=1}^{M} \prod_{i=1}^{N} (f_i)^{y_k^i} \, df
\]

(5.25)

The integral can be approximated as a Gaussian distribution using the Laplace’s method (MacKay, 2003). This method approximates any single-mode distribution with a Gaussian distribution with the mean set as its mode and the variance computed using the curvature at the mode. The full derivations are given in Section B.2 of Appendix B.

As mentioned before, to restrict the values of \(f \) to positive values, which is a requirement for the Poisson observation model, we use the following reparameterisation:

\[
 f = \exp(h)
\]

(5.26)

Under this reparameterisation, the resulting integral in the general form becomes:

\[
 p(y) = \int p(y | \exp(h)) p(\exp(h)) \exp(h) \, dh
\]

(5.27)

And thus, the integral to be approximated is given by:

\[
 \int \exp \left(M \sum_{i=1}^{N} \left(-\exp(h_i) - \frac{1}{2}(\exp(h) - \mu)^T K^{-1} (\exp(h) - \mu) \right) \right) \prod_{k=1}^{M} \prod_{i=1}^{N} (\exp(h_i))^{y_k^i} \prod_{i=1}^{N} \exp(h_i) \, dh
\]

(5.28)

5.7.4 Model selection

The expression in Eq. 5.28 was optimised for each transcript, setting the prior mean \(\mu \) to the mean of the time-series in control conditions. This recovered the mean \(x_0 \) and the covariance \(C \) of the approximating Gaussian. The amplitude and lengthscale hyperparameters for the prior covariance were empirically set for each transcript as before.
The final expression for the marginal likelihood $p(y)$ under each model was computed as follows, denoting the integrand evaluated at the optimised mean as $P(x_0)$:

$$p(y) \approx \frac{\sqrt{|C|}}{\sqrt{|K|}} \prod_{k=1}^{M} \prod_{l=1}^{N} \frac{1}{(y_{k}^{l})!} \cdot P(x_0)$$

(5.29)

For numerical stability, log-marginal likelihoods were computed as before and transcripts with Bayes factors greater or equal to 10 were taken as exhibiting significant changes in Xrn1 binding between control and stress conditions.

5.7.5 Differential binding analysis

The Xrn1 differential binding analysis was performed using two Xrn1 χCRAC replicate datasets and the RNA-seq dataset in stress conditions. The normalisation procedure applied to all time-courses is summarised below. The raw counts for all transcripts were scaled within each timepoint by a constant factor such that the sum of all counts at all timepoints in all experimental replicates was the same. The counts were linearly interpolated across the set of timepoints common to all time-series. Xrn1 binding time-series were normalised by the RNA-seq time-series in order to exclude the effect of changes in transcript abundance on changes in Xrn1 binding. The Xrn1 binding time-series in control conditions was generated using the counts mapped in the χCRAC experiments before the stress induction (at 0 minutes). The control time-series was generated from a Poisson distribution with the mean given by the average of the specified measurements for each transcript. All time-series were rescaled to start at the same value (equal to the first value in the control time-series). Finally, all time-series were rounded to the nearest integer number. The set of remaining transcripts was filtered by the number of zero values in all time-series. Those with more than half of zero values were excluded from the analysis. Additionally, transcripts with a count > 100 in any timepoint were removed from the analysis due to computing factorials of observed values under the Poisson observation model. These transcripts (148) were tested with the original algorithm using Gaussian regression.

The final set of transcripts to be tested for differential binding under stress contained 2872 transcripts. 627 were selected as significantly changing their Xrn1 binding patterns in stress response compared to the synthetic control time-series. Out of the 148 transcripts with at least one high count in all time-series, 97 were selected for the Gaussian regression analysis (as described in Section 5.7.1) and 29 were selected as demonstrating significant changes in binding. Thus, a total of 656 transcripts (or
22% of all tested transcripts) were selected as showing significant changes in Xrn1 binding in response to nutrient stress.

These selected transcripts belonged to 10 different RNA classes. The pie chart in Fig. 5.6 shows what percentage of each RNA class showed changes in Xrn1 binding during stress, similar to the analysis for Pol II presented in the paper (Fig. 4a). The percentages of differentially bound transcripts in each class (shown in brackets for each class) were computed as ratios between the numbers of selected annotated transcripts in each RNA class and the total number of annotated transcripts in that class. As the pie chart only shows percentages, the actual numbers of transcripts are shown in Fig. 5.8.

Additionally, the percentage of differentially bound transcripts was computed out of the number of tested annotated transcripts in each RNA class rather than out of all annotated transcripts (numbers are shown in Fig. 5.8). This was important to examine as only a subset of transcripts, which passed various filtering during the normalisation procedure, was selected for testing with the algorithm. The pie chart in Fig. 5.7 shows the percentages of differentially bound transcripts in each class, computed as the ratio between the selected annotated transcripts and the tested annotated transcripts in that class.

When considering the proportions of transcripts with changing Xrn1 binding patterns out of all annotated transcripts available for each class, the largest changes were detected among the transport RNAs (tRNAs), ribosomal RNAs (rRNAs), small nuclear RNAs (snRNAs), and small nucleolar RNAs (snoRNAs). The changes associated with the tRNA class were especially prominent, with more than 100 transcripts selected as differentially bound by Xrn1 under stress. When considering only those transcripts in each class that were tested by the algorithm and computing the proportions of changing transcripts from those, large changes in Xrn1 binding were also observed among the cryptic unstable transcripts (CUTs). In general, the changes detected among the tested transcripts appeared to be fairly evenly spread between almost all classes, illustrating the diversity of Xrn1 as an interacting molecule.

Considerable changes in Xrn1 binding, demonstrated by the high numbers of selected targets, were also found among the Xrn1-sensitive unstable transcripts (XUTs), stable uncharacterised transcripts (SUTs), and anti-sense transcripts. Finally, the largest number of selected targets among all classes belonged to the class of protein-coding transcripts (298 transcripts), consistent with the role of Xrn1 in mRNA decay (Lebreton and Séraphin, 2008). The small percentage of the selected protein-coding transcripts could be potentially explained by either the selection of tested transcripts, the associated noise levels or the increased targeting of other RNA classes in stress response.
The results of the class-based differential binding analysis are supported by the suggested roles of Xrn1 in rapid degradation of mature tRNAs (Chernyakov et al., 2008) and in 5’-end processing of snoRNAs and rRNAs in yeast (Lee et al., 2003; Petfalski et al., 1998). Additionally, the characterisation of the Xrn1-dependent cryptic transcriptome previously described the XUTs, SUTs, and CUTs classes to have extensive interactions with Xrn1 (Van Dijk et al., 2011).

![Xrn1 targets](chart.png)

Figure 5.6: Percentages of RNA classes with detected changes in Xrn1 binding under stress. Numbers in brackets for each class indicate the percentage of the whole annotated class that was selected as targets showing differential Xrn1 binding. Numbers in slices of the chart (which sum to 100%) shows how big the differentially binding proportion of each class is compared to other classes.
Figure 5.7: Percentages of RNA classes with detected changes in Xrn1 binding under stress. Numbers in brackets for each class indicate the percentage of the tested class that was selected as targets showing differential Xrn1 binding. Numbers in slices of the chart (which sum to 100%) shows how big the differentially binding proportion of each class is compared to other classes.
5.7.6 Example binding patterns of Xrn1

Examples of stress-related Xrn1 regulation patterns included transient increase in binding. This increase happened very rapidly for some transcripts, within the first 5 minutes of stress induction. This is illustrated with the small nuclear RNA snR6 and the transcript YBR191W-A, an uncharacterised open reading frame (ORF), in top two rows of Fig. 5.9 (all curves in the figure show the polynomial fit to the data points for illustration purposes). These two transcripts, however, differed in the dynamics of their total abundance during nutrient stress. The abundance of snR6 was increasing during the first 15 minutes of the stress response and then remained roughly constant for the next 25 minutes, during which Xrn1 binding to snR6 reproducibly continued to increase. The interaction between YBR191W-A and Xrn1 showed a rapid increase in binding in both experimental replicates, however, varying in steepness (shown with blue and red curves). In both replicates, the change in Xrn1 binding was transient, reducing down to a steady value during the following 40 minutes. This behaviour was somewhat mirrored in the time-course of transcript abundance, which was going down during the first 5 minutes and then increasing again until around 15 minutes into the stress response. This example demonstrates that the change in Xrn1 regulation under stress was not simply the result of more transcripts present in the cell available for interaction.
The transcript abundance and its interaction with Xrn1 are undeniably tightly interconnected. More available transcript could result in increased binding with Xrn1, which in turn would lead to decreasing levels of the mature transcript. This relationship could be captured via dynamical modelling, which can be invaluably informed with the \(\chi \)CRAC technology. This will be further addressed in the final section of this chapter.

Another pattern of Xrn1 regulation included decreased interactions with transcripts. The decrease in binding varied in its duration. For the transfer RNA tD(GUC)l2, the nutrient shift led to a rapid decrease in Xrn1 binding during the first 5-8 minutes, followed by its recovery to a more stable level close to the initial condition (third row in Fig. 5.9). For another uncharacterised ORF YMR013W-A, the Xrn1 binding continued to decrease further into the adaptation response, following the initial rapid decline (last row in Fig. 5.9). The abundance of both of these transcripts was increasing for the first 15 minutes and reaching a more stable level after that. This once again demonstrates that changes in Xrn1 binding are not simply mirroring the increased or decreased presence of the transcript in the cell. Instead, Xrn1 regulation can act as a separate mechanism for controlling gene expression.

It should be noted that the differences between the Xrn1 binding time-series of the two experimental replicates are further amplified by the mismatching timepoints, at which the corresponding \(\chi \)CRAC experiments were performed. Specifically, the second replicate (shown in all plots in red) was only collected at 4 timepoints: 0, 4, 16, and 48 minutes after stress. Thus, it is possible that some very rapid interactions (during the first 4 minutes) or those taking place in the middle of the adaptation response (between 15 and 48 minutes after stress) would not be captured in the time-series of that experimental \(\chi \)CRAC replicate.
Figure 5.9: Examples of Xrn1 binding patterns. Top two transcripts demonstrate increase (and bottom two - decrease) in Xrn1 binding during stress. For each transcript, the Xrn1 binding time-series and the RNA-seq time-series in stress conditions are shown. Circles indicate time-series values, curves were plotted with polynomial regression. Blue and red curves show replicate time-series.
5.8 Poisson Regression Analysis of Nab3 and Pol II Time-series

In order to compare the outputs of the analyses using Gaussian and Poisson noise models, it was decided to perform the Poisson regression analysis on the raw counts of the Nab3 and Pol II datasets presented in the paper. The Pol II and Nab3 datasets were also examined for their coverage levels. Reads were mapped and raw counts were generated as described in the Methods section “Processing of raw sequencing data”, using the yeast genome annotation by Nagalakshmi et al.

The transcripts were selected for testing with the same normalisation procedure as described in Section 5.7.1, with the exception of generating the control time-series as real control data for Nab3 and Pol II binding was used instead. Briefly, the Nab3 and Pol II datasets were scaled such that the sum of counts was the same at each timepoint and the counts were linearly interpolated between non-equal timepoints. For the Nab3 analysis, the counts were normalised by the corresponding time-series of Pol II. Specifically, the control Nab3 time-series was normalised by the mean value of the Pol II control time-series, following the assumption that there should be no significant changes in the absence of stress. The stress time-series of Nab3 were normalised by the average time-course of the 3 Pol II stress replicates. This normalisation was performed in order to account for the co-transcriptional binding of Nab3. For both Nab3 and Pol II analyses, the resulting time-series were divided by their first value in each condition, ensuring that all time-series start at 1 a.u. at the timepoint of 0 minutes. Transcripts with too many zero values were excluded from the analysis as before.

The following sections examine the coverage levels of Pol II and Nab3 datasets, present the results of the Poisson regression analysis and compare them to the results obtained by the Gaussian regression analysis. In order to perform the comparison, the analysis using the Gaussian noise model was performed on the same raw count data, following the equivalent normalisation procedure as described above and in Section 5.7.1.

5.8.1 Nab3 Interacting Partners

After the normalisation procedure described above, 5134 Nab3-interacting transcripts were selected for differential binding testing. For these selected transcripts, the medians of mapped reads per timepoint were examined in each replicate (Fig. 5.10). The medians of the distributions corresponding to the control replicate and the stress replicate 2 were 17 reads and 19.5 reads, correspondingly. The median corresponding
5.8 Poisson Regression Analysis of Nab3 and Pol II Time-series

Figure 5.10: Boxplots of median values of mapped reads per Nab3 time-series of each transcript. Each boxplot corresponds to the specified experimental replicate. The bottom panel shows boxplots with removed outliers.

to the stress replicate 1 was lower (6 reads) and more comparable to the statistics of the Xrn1 datasets.

In order to perform the Poisson regression analysis for differential binding with Nab3, the time-series were normalised, rounded to integers, and filtered for zero values (the procedure was described in more detail in Section 5.7.5). Out of the 3163 transcripts selected for testing with the Poisson regression analysis, 731 were found to have significant changes in Nab3 binding under stress. 79% of these Nab3 regulatory targets were also selected by the Gaussian regression analysis, demonstrating a high degree of consensus of the two analyses on this dataset. Additionally, 153 transcripts were excluded from the Poisson regression analysis as they had at least one high count (> 100 reads) in the time-series. They were tested with the Gaussian regression...
algorithm, identifying 147 transcripts with significant changes in binding. Thus, 26% of all tested transcripts (878 out of 3316) demonstrated stress-related changes in Nab3 binding patterns.

The results of the Gaussian regression analysis on the Nab3 raw count data were less stringent compared to the Poisson regression, selecting 2931 targets. This is likely the result of the noise handling by the two observation models. Under the Gaussian model, the noise with equal variance is added to explain all measurements, regardless of their magnitude, whereas under the Poisson model, higher measurement values can have larger associated noise. Thus, under the Gaussian noise model, high counts outside of the expected noise bands will be very improbable. In the Gaussian regression analysis, the noise variance was empirically set based on the variance of the control time-series. Therefore, stress time-series counts higher than what was expected based on the control binding profile even in one replicate is likely to lead the algorithm to call the time-series significantly different. This is illustrated with the transcript EXG2, selected by the Gaussian regression analysis but not by the Poisson regression analysis (Fig. 5.11(a), 5.11(b)). Another disadvantage arises from working with normalised values that do not preserve the original scale of the raw counts. In the case of EXG2 and another transcript SIP3 (Fig. 5.11(c), 5.11(d)), involved in sterol transfer (both selected by the Gaussian model but not the Poisson), the majority of timepoints only have 1 or 2 mapped reads.

Setting the expected noise using the control time-series under the Gaussian model renders the algorithm unlikely to detect changes between time-series if the control time-course itself exhibits variation. While our assumption was that the time-series should be approximately unchanging in control conditions, it can be still beneficial for the algorithm to be stable against technical noise. This is illustrated with the cryptic unstable transcript CUT859, which was selected by the Poisson regression analysis but not the Gaussian regression analysis (Fig. 5.11(e), 5.11(f)). The transcript SPC2, belonging to a signalling complex, demonstrates an example binding profile selected by both analyses (Fig. 5.11(g), 5.11(h)).
Figure 5.11: Nab3 binding profiles of transcripts selected by the Gaussian and Poisson regression analyses. Circles indicate time-series values, curves were plotted with polynomial regression. Blue corresponds to the time-series in control conditions, black corresponds to the replicate time-series in stress conditions. On the x-axis, minutes since the nutrient shift are shown. On the y-axis, the cross-linking values are shown, transformed according to the normalisation procedure corresponding to the Gaussian or Poisson observation model.
5.8 Poisson Regression Analysis of NAB3 and Pol II time-series

5.8.2 Pol II interacting partners

The medians of mapped reads per timepoint were examined for the 7068 Pol II-interacting transcripts, selected for the differential binding testing with the normalisation procedure outlined at the beginning of this section. The median of the distribution for the Pol II control dataset was a reasonably high count of 20 reads (Fig. 5.12). In contrast, the medians for the 3 stress datasets were much lower: 4, 2, and 5 reads. As half of the considered transcripts had (in the worst case) 2 reads mapped on average at each timepoint, the Poisson distribution would provide a good candidate for modelling the likelihood of a measurement given the hidden function value, $p(y_i|f_i)$.
5.8 Poisson Regression Analysis of nab3 and Pol II Time-Series

Following the normalisation procedure for the Poisson noise model and removing the transcripts with high counts, 2732 out of 6034 tested transcripts were selected by the Poisson regression analysis as demonstrating significant changes in Pol II binding under stress. In contrast, the Gaussian regression analysis identified 1782 targets, of which 45% agreed between the two analyses. This lower percentage of the overlapping targets selected by both analyses, compared to the 79% overlap in the analysis of the Nab3 binding data, is consistent with the lower average coverage of the Pol II dataset that was especially evident for stress replicates.

Additionally, 880 transcripts, which had at least one high count in their time-series, were processed with the Gaussian regression analysis, identifying 477 transcripts with significant changes in Pol II binding. Thus, 46% of all tested transcripts (3209 out of 6914) demonstrated changes in Pol II binding patterns during the adaptation response.

In order to further characterise the consensus between the two regression analyses, the coverage levels of the transcripts selected by both analyses were examined. As a Gaussian distribution provides an increasingly better approximation for a Poisson distribution as the Poisson rate grows, it could be plausible that the selections of the two regression analyses would agree on transcripts with higher coverage levels. Fig. 5.13 shows the histograms of the median coverage levels per gene for all genes that were tested with the Poisson regression analysis (left histogram) and for the consensus targets selected by both analyses (right histogram). It is evident from the histograms that the consensus targets span a similar range of coverage levels as does the set of the tested transcripts, with the majority of the consensus targets having a median coverage level of less than 10 reads per timepoint. Thus, a larger coverage level on average of a transcript was not enough to explain the consensus between the two observation models.

Another difference between the models comes with their ways of handling noise. As previously noted, under the Gaussian observation model, the variance of the noise parameter is defined using the variance of the control time-series. Thus, if the binding time-series in control conditions itself exhibited variation then it will be harder for the Gaussian regression analysis to detect changes between all time-series as equal noise is added to all measurements. To investigate the effect of the variation in transcript’s binding in control conditions on the models’ selections, I computed the variance of the control time-series for all transcripts that were tested with the Poisson regression analysis. Fig. 5.14 shows these variances on the log-scale, coloured in pink. On top of it, the green histogram shows the binding variances in control conditions for the targets selected by the Poisson regression analysis, while the overlapping targets selected by both analyses are shown in blue. The targets selected by the Poisson
5.8 Poisson Regression Analysis of nab3 and Pol II Time-series

Figure 5.13: Left: a histogram showing median coverage levels for all genes that were tested with the Poisson regression analysis for differential binding with Pol II under stress. The medians were computed across each time-series in control and stress conditions and then averaged across conditions for each gene. Right: a histogram showing median coverage levels for all genes that were selected by both Poisson and Gaussian regression analyses as differentially bound by Pol II under stress.

regression analysis demonstrate various variance levels of their control time-series, spanning the whole scale exhibited by all tested transcripts. In contrast, those targets that were also selected by the Gaussian regression analysis systematically have lower variance of their control binding profiles (Fig. 5.14 and Fig. 5.15). This demonstrates that the consensus between the Poisson and Gaussian regression analyses is affected by the combination of the transcript’s coverage level and the noise associated with its binding profile in control conditions. Similar analysis for the Nab3 dataset is provided in Section B.3 of Appendix B.

The examples in Fig. 5.16 illustrate the differences between the selections of the two regression analyses. Gaussian model analysis selects the transcript MTR10, involved in nuclear transport, while the Poisson regression analysis does not (Fig. 5.16(a), 5.16(b)). In one replicate, transcription of MTR10 is strongly increased, but in the other replicate, the changes are much closer to the control binding trace. In contrast, a metabolic transcript GLN4 is selected by the Poisson model, but not the Gaussian, likely due to the noise associated with the control time-series (Fig. 5.16(c), 5.16(d)). Finally, the ubiquitin gene transcript UBX6 provides an example selected by both analyses (Fig. 5.16(e), 5.16(f)).
Figure 5.14: A histogram showing the log-variance of time-series in control conditions for all genes that were tested with the Poisson regression analysis for differential binding with Pol II under stress (coloured in pink). Overlaid are shown the corresponding histograms for the targets selected by the Poisson regression analysis (in green) and for the targets selected by both analyses (in blue).

Figure 5.15: Further illustration of the distributions shown in Fig. 5.14. Left: variance of control time-series (shown on y-axis) for all tested transcripts (pink), for the transcripts selected by the Poisson regression analysis (green) and for the transcripts selected by both analyses (blue). X-axis indexes plotted transcripts. Right: boxplots of distributions of binding variance in control conditions for all tested transcripts, the transcripts selected by the Poisson regression analysis, and the transcripts selected by both analyses. Outliers are not shown.
5.8 Poisson Regression Analysis of Nab3 and Pol II Time-series

Figure 5.16: Pol II binding profiles of transcripts selected by the Gaussian and Poisson regression analyses. Circles indicate time-series values, curves were plotted with polynomial regression. Blue corresponds to the time-series in control conditions, black corresponds to the replicate time-series in stress conditions. On the x-axis, minutes since the nutrient shift are shown. On the y-axis, the cross-linking values are shown, transformed according to the normalisation procedure corresponding to the Gaussian or Poisson observation model.
5.9 Conclusions and outlook

In this chapter, I introduced an improved UV cross-linking protocol \(\chi \text{CRAC} \), which generates RNA-protein interaction maps at high temporal resolution (van Nues et al., 2017). I presented the algorithm for modelling \(\chi \text{CRAC} \) data and identifying target transcripts, which demonstrate significant changes in cross-linking profiles between conditions. This algorithm was applied in the context of studying the role of RNA degradation during nutrient stress.

First, we investigated the role of co-transcriptional degradation by mapping interactions of the yeast transcription termination factor Nab3. We detected widespread dynamic stress-related changes in Nab3 binding, often occurring within only a few minutes from the onset of the adaptation response. The changes in Nab3 were not a simple result of increased or decreased Pol II cross-linking, thus suggesting that transcription termination can provide a fast additional regulatory mechanism alongside transcriptional control.

It was then hypothesised that other RBPs influencing RNA expression could have similar dynamic behaviour in response to stress. This was investigated by analysing the cross-linking dynamics of the cytoplasmic degradation factor Xrn1. Closer examination of the Xrn1 dataset revealed that for many transcripts, a low number of reads was mapped at each timepoint. This motivated modifying the proposed algorithm to use a Poisson observation model and performing the analysis on raw sequencing counts. We found many transcripts (22% of all tested candidates) whose interaction patterns with Xrn1 was altered in response to stress, often involving fast and transient changes in binding. When testing for differential dynamic response, changes in overall transcript abundance was taken into account, exposing the control mechanism associated with the 5'-3' decay pathway.

The proposed algorithm aimed at testing transcripts for differential binding by the protein of interest is powerful not only in its ability to model longitudinal data rather than individual data points due to being based on the Gaussian Process model, but also in its flexibility to incorporate different noise models. I presented two versions of the algorithm using a Gaussian noise model and a Poisson noise model, correspondingly, and compared the outputs of both analyses.

The advantage of the analysis using Gaussian regression comes with the ability to exactly compute the marginal likelihood of the data under competing models, providing a very fast computational method suitable for testing thousands of transcripts in seconds. However, the assumption of the model might not be suitable for a dataset with low counts. I presented an approximate method for computing the marginal likelihood of the data when using a Poisson regression model. As the approximation
involves optimising parameters in order to recover the mean and variance of the approximating Gaussian, this method is slower (with 5000 transcripts taking \(\approx 12 \) minutes) and might fail to recover parameters for some transcripts. Other approaches for approximating the marginal likelihood are possible (apart from the Laplace’s method presented in this chapter), e.g. expectation propagation (Cseke and Heskes, 2011).

Transcripts with high counts in their time-series were tested with Gaussian regression analysis, facilitating a combined approach that uses different models on the corresponding parts of the dataset, filtered by the coverage levels. This emphasises the importance of ensuring the agreement between the modelled data and the underlying assumptions of the used model. The agreement between the models’ outputs was higher on the \(\chi \)CRAC datasets with larger coverage levels as the Gaussian distribution provides a reasonable approximation of the Poisson distribution as its rate increases.

The results obtained by the \(\chi \)CRAC data analysis suggested that the degradation process can act via different pathways and be highly dynamic, providing a versatile control mechanism of gene expression regulation. It is expected that applying \(\chi \)CRAC to individual nucleases or other RBPs mediating RNA expression will provide valuable insights in the determinants of transcription and degradation rates.

However, having collected interactions data from the main molecular actors of transcription and co-transcriptional and cytoplasmic degradation, we asked whether their dynamic behaviour is already enough to explain transcript abundance. Specifically, it would be of great interest to dissect the relative contributions of these pathways to the overall expression, uncovering the stress-specific regulation profile for each transcript. A useful metaphor to consider this idea uses the notion of “control knobs”, which together determine the abundance of a mature transcript (Fig. 5.17). Each knob corresponds to the production rate, measured by Pol II, co-transcriptional degradation rate, corresponding to Nab3, and cytoplasmic degradation rate, informed by Xrn1. The question is, can one recover the settings of these knobs that give rise to the abundance dynamics of each transcript?

These considerations motivated the conception of a dynamical model for RNA expression, which aims to explain transcript abundance using the binding patterns of Pol II, Nab3, and Xrn1. The theoretical formulation of the proposed model was devised by myself, David Schnoerr, Edward Wallace, and Guido Sanguinetti. David Schnoerr advised me on the early exploratory studies of simultaneous dynamical modelling of the RNA and proteins’ time-series. Further and ongoing work involving implementing the proposed model and applying it to the \(\chi \)CRAC and RNA-seq datasets is performed by David Schnoerr.
5.9.1 Modelling dynamics of RNA expression

We propose a dynamical model for RNA expression regulation under nutrient stress that aims to explain changes in a transcript’s abundance using the dynamics of its transcription and degradation rates, which are estimated from the χCRAC datasets. Specifically, all rates are modelled as time-dependent and the goal is to decompose the contributions to RNA expression from the nuclear and cytoplasmic degradation pathways. This decomposition would recover a stress-related regulation profile for each modelled transcript.

The need to combine various datasets quantifying RNA abundance (either for total RNA or specific populations bound by the protein of interest) in successive experiments as variables in a unified global model recapitulates the importance of carefully normalising the datasets in question. Apart from the within-sample normalisation strategies used in RNA-seq data analyses (such as normalisation for gene length and library size), between-sample normalisation needs to be additionally considered, which enables capturing changes in the composition of the probed RNA samples. An effective normalisation method was proposed by Robinson and Oshlack, which recovers scaling factors that account for the sampling properties of the compared RNA-seq datasets.

Following a similar idea, we define a Poisson observation model, which relates the raw χCRAC counts (\(\hat{\pi} \) for Pol II, \(\hat{\nu} \) for Nab3, \(\hat{\chi} \) for Xrn1) and RNA-seq counts (\(\hat{\rho} \)) to the hidden variables that represent the true numbers of transcripts interacting with the corresponding protein (\(\pi \), \(\nu \), \(\chi \)). Those true numbers and the true total cellular amount of RNA (\(\rho \)) are assumed to be independent of the library size and gene length. Below, the subscript \(t \) indicates minutes after the nutrient shift, \(g \) corresponds...
to the modelled gene and l_g indicates its length, and s specifies the index of an experimental replicate.

\[
\hat{\pi}_{gst} \sim \text{Pois}(\alpha_{\pi st}\pi_{gt}l_g) \\
\hat{\nu}_{gst} \sim \text{Pois}(\alpha_{\nu st}\nu_{gt}l_g) \\
\hat{\chi}_{gst} \sim \text{Pois}(\alpha_{\chi st}\chi_{gt}l_g) \\
\hat{\rho}_{gst} \sim \text{Pois}(\alpha_{\rho st}\rho_{gt}l_g)
\] (5.30-5.33)

In order to estimate the scaling factors α which would normalise sequencing counts between different χCRAC and RNA-seq experiments, we made the following simplifying assumption: the total number of molecules of each protein species interacting with transcripts stays constant in time (Eqs. 5.34, 5.35, 5.36). This assumption, while proving useful for our modelling strategy, finds support in the experimental data assessing the efficiency of protein recovery in χCRAC experiments. Fig. 3b in the paper shows that comparable amounts of Nab3 were recovered in experiments at different times after the shift. Similarly and for simplicity, we also assume that the true total cellular amount of all transcripts also does not change with time (Eq. 5.37).

\[
P = \sum_g \pi_{gt} \\
N = \sum_g \nu_{gt} \\
X = \sum_g \chi_{gt} \\
R = \sum_g \rho_{gt}
\] (5.34-5.37)

We can then use this assumption to estimate the scaling factor for each sequencing dataset up to a constant, taking the expectation of the sum of the measured counts normalised to gene length, over all genes. The scaling factor is then proportional to that sum. Eqs. 5.38 and 5.39 show how to estimate the scaling factor $\alpha_{\pi st}$ for the dataset corresponding to the s-th replicate of the Pol II χCRAC experiment collected at t minutes after the shift. Other scaling factors can be estimated similarly.
Having estimated the scaling factors, the posterior distributions over the hidden variables \(\pi_t, \nu_t, \chi_t \) can be inferred with Gaussian Process regression using e.g. the Laplace’s method to approximate the Poisson likelihood and the global constants. The global protein constants \(P, N, X \) can be optimised iteratively by maximising marginal likelihoods and inferring the posterior distributions.

The means of these posterior distributions can then be used to solve the ordinary differential equation (introduced in Section 3.3 of Chapter 3), which captures the relationship between the number of transcripts participating in transcription and degradation processes and the change in RNA abundance (Eq. 5.40). Here, the scaling factors \(A, B, C \) transform the posterior means \(\pi_t, \nu_t, \chi_t \) into reaction fluxes governing RNA expression. Each term in Eq. 5.40 corresponds to the rate of turnover of transcript molecules through the corresponding transcription or degradation pathway, regulated by Pol II, Nab3 or Xrn1. For simplification, we assume that the rate \(A \pi_t \) encapsulates both the process of generating nascent transcripts and the process of their maturation. The term \(B \nu_t \) describes the rate at which nascent transcripts are terminated via NNS regulation and \(C \chi_t \) corresponds to degradation of mature transcripts. Their combined effort determines the rate of change of the total cellular amount of transcript.

\[
\frac{d}{dt} \rho_t = A \pi_t - B \nu_t - C \chi_t \quad (5.40)
\]

Other choices for the form of the differential equation are possible; one considered example includes non-linearly combining \(\pi_t \) and \(\nu_t \) in an effort to reflect the effect of co-transcriptional degradation on transcription. This choice presents modelling complications such as non-linear data transformation and is complicated to justify biologically due to combining measurements from different populations of transcripts. Thus, we opted for a simple linear model, which facilitates straight-forward separation of pathways’ contributions.

The parameters \(A, B, C \) can be globally optimised for all transcripts by maximising the product of marginal likelihoods \(p(\hat{\rho}_0, ..., \hat{\rho}_T) \) over all transcripts and replicates, where timepoints range between 0 and \(T \) minutes. Alternatively, \(A, B, C \) could be
optimised independently for each transcript to see whether different genes cluster around similar parameter values, which control the contributions of the individual RBPs. Locally fitting parameters should be handled with care to prevent overfitting. The proposed model provides the means for deconvolving the contributions of transcriptional control and two separate degradation pathways to regulating RNA expression in stress response. The model allows extensions to more RBPs of interest, thereby investigating the roles of molecular actors shaping gene expression.
DISCUSSION

In this PhD project, I developed computational methods for the analysis and modelling of experimental data elucidating central aspects of RNA biology. RNA is intimately involved in all processes within the cell, facilitating the flow of genetic information and playing important regulatory roles in post-transcriptional control. Most, if not all of the RNA regulatory capabilities are affected by either (or both) its complex structural repertoire or its vast and dynamic interactome. The methods I developed are concerned with the analysis of next-generation sequencing data obtained in the context of probing RNA structure or its interactions with RNA-binding proteins.

6.1 MODELLING RNA STRUCTURE PROBING DATA

RNA structure can be indirectly probed with structure probing experiments, which arose and have been rapidly developing in the last decade. In these experiments, parts of the RNA molecule become chemically modified depending on the structural properties of those parts. A commonly used type of structure probing assays relies on the drop-off of a dedicated enzyme (reverse transcriptase, RT) at the chemically modified nucleotide positions. The enzyme implements reverse transcription of the probed RNAs into their complementary DNA fragments. Thus, the sequencing experiment generates a collection of DNA fragments of variable lengths, where the shorter length arises from the enzyme’s drop-off, which could bear structural information (typically indicating a flexible single-stranded region).

The complexity is introduced through the stochasticity of the process as the enzyme can terminate randomly. To account for this, a control experiment is typically performed, sequencing transcripts that have not been in contact with the reagent implementing structure-dependent chemical modification. Additionally, the modification efficiency depends on the chemical concentration; determining the precise concentration level of the chemical reagent that is required for a successful structure probing experiment is a laborious task. Finally, other factors may influence the binding of the chemical to the transcript, especially probed *in vivo*, e.g. local presence of interacting proteins, multiple possible structural conformations of the same transcript or processes within the cell that dynamically affect the transcript’s structure.
It is clear that such complicated interacting factors that introduce noise to the system have to be adequately taken into account. Despite this observation, only a few models for RNA structure probing data exist that handle the associated noise. Most methods simply subtract the numbers of modified nucleotides between the control and treated experiments, and thus are unable to model the biological variability of the probed process.

I developed BUM-HMM (beta-uniform mixture hidden Markov model), discussed in Chapter 4, which quantifies the variability of the enzyme’s drop-off rate that arises by chance at each nucleotide position and uses that to compute the probability of chemical modification at each position in treated experiments. The method relies on multiple experimental replicates and assumes no parametric form for the distribution of observations given the true hidden values. The strength of the method comes with the choice of modelling empirical p-values instead of the actual observations, for which a statistically justified model can be used. The method was validated on known structures, demonstrating good agreement and a highly informative output by generating information about more positions than the existing methods. The method’s output, while directly interpretable due to its probabilistic nature, proved to be useful for constraining structure prediction algorithms. Finally, the output remained highly consistent as the coverage of the data set was decreased in simulation studies, demonstrating valuable robustness to variations in coverage-related experimental conditions.

6.1.1 Future work

The BUM-HMM method can be extended in the following directions. The improvements on the existing functionalities could include modifications to parameter inference. The method presently features an EM optimisation of the shape parameters for the Beta distribution component of the mixture model. During validation experiments, it was found that the default parameter values gave good performance, while the optimisation appeared vulnerable to local optima. Further investigation of the parameter space and the effects the data have on it could provide insights in how to constrain the search space. Additionally, the transition probabilities of the HMM are currently inferred from empirical data; these parameters could also be optimised. However, this would also require analyses examining the robustness of the optimisation. As the true transition probability values are unknown, these analyses would be limited to simulation studies, where the lack of understanding of the underlying process could cast doubts on how representative the simulated data is of real measurements.
Another extension is concerned with data imputation, an idea briefly considered during the BUM-HMM development. Many nucleotide positions in structure probing data were assigned a value of 0 RT drop-off events, leading to a drop-off rate of 0, even if the numbers of mapped reads at these positions were positive. These positions were excluded from the analysis due to the definition of the variability measure LDR used within the model (the log-ratio of drop-off rates). A data imputation strategy could be considered, which would estimate the expected drop-off count from data or according to an observation model. The problem with parametric assumptions lies with their potential inability to generalise to technological modifications, e.g. the model by Aviran et al. and random-priming experiments. However, the model’s formulation has since been modified to support this type of data (Li et al., 2017), so perhaps a similar model could be used for imputation. An empirical imputation strategy could estimate drop-off counts in control conditions from the coverage at each position and potentially, its neighbouring sequence. Such a strategy would, however, not apply to the data in treated conditions as it does not account for the structure-dependent stops.

Apart from data transformations, the underlying model itself could be extended to answer different biological questions. One such extension involves comparing structural properties between two datasets corresponding to different conditions (such as temperature). This would amount to modelling the hidden state not as a binary variable (taking values to be in a modified or unmodified state) but instead as a variable with 4 states: unmodified in condition 1 but modified in condition 2, modified in condition 1 but unmodified in condition 2 or unmodified/modified in both conditions. This would also enable the probing of dynamic changes in RNA structure if the datasets were collected at various temporal stages.

Another extension involves data integration. An obvious source of information, useful for inferring the structural state of a nucleotide, is its interaction status with other molecules. Methods mapping RNA-protein interactions can provide such information. In order to integrate it in the context of BUM-HMM, interaction sites must be recovered; a challenging problem in itself, recently addressed with Bayesian approaches (Drewe-Boss et al., 2017; Krakau et al., 2017). The two measurements, derived from structure probing and cross-linking experiments, could be combined to inform a single latent variable, representing the underlying RNA structure. Integrating various types of RNA-protein interaction data could enable one to study various aspects of changes in RNA structure. Examples of these are cross-linking data of proteins known to participate in different developmental stages or time-series cross-linking data collected in temporally successive experiments.
6.2 MODELLING DYNAMICS OF RNA-PROTEIN INTERACTIONS

One of the most prevalent experimental technologies to probe the RNA interactome is UV cross-linking, which creates bonds between RNA and proteins in close proximity and isolates the interaction partners for sequencing. The time it took to irradiate the cells to facilitate cross-linking used to be a rate-limiting step of the technology, rendering fast RNA-protein interactions impossible to detect experimentally. This limitation was addressed with a novel improvement of an existing cross-linking method called χCRAC (van Nues et al., 2017), which can generate interaction maps at a high temporal resolution of up to 1 minute.

χCRAC was applied to the proteins involved in different degradation pathways, creating rapid time-series of cross-linking events during the adaptation response of yeast cells to glucose starvation. I developed a non-parametric Bayesian method, discussed in Chapter 5, which identifies transcripts with significant changes in dynamic binding patterns to the protein of interest between different biological conditions. Using this method, we were able to investigate the role of the transcription termination factor Nab3 and the cytoplasmic degradation factor Xrn1 in stress response. We found that these proteins changed their binding to a large fraction of the transcriptome, often transiently and early into the stress response. These changes were not just a consequence of the increased amounts of transcribed RNA or mature transcripts available for interaction with Nab3 and Xrn1. Our results suggested that degradation processes play a regulatory role in shaping gene expression, particularly at the early stages of stress response. It follows that modelling the degradation rate as constant, as often done when explaining the dynamics of RNA expression, might not be enough to capture the changes to transcript abundance brought by the kinetics of decay during stress.

6.2.1 Future work

The current implementation of the algorithm testing for differential binding response uses a squared exponential kernel for defining the prior covariance of the hidden process. This covariance includes two hyperparameters that are currently fixed in a data-driven way. Specifically, the value of the lengthscale hyperparameter is set globally across all transcripts (reflecting our expectation based on the experimental design) and the value of the amplitude is computed heuristically from the time-series of each transcript. As we note in the Methods section of the paper (van Nues et al., 2017), presented in Chapter 5, a fully Bayesian treatment would involve integrating these parameters out when computing the marginal likelihood of the data under both mod-
6.2 MODELLING DYNAMICS OF RNA-PROTEIN INTERACTIONS

...
observation model to handle the noise associated with the measurements. In general, RNA-seq normalisation remains a challenging problem to be addressed.

In the differential equation, which describes the rate of change of transcript abundance, we include multiplicative factors for variables modelling the proteins of interest. A question remains whether these factors, aimed to transform the true binding response of each protein at a given time into a rate of transcription or degradation, should be optimised globally for all transcripts or on a per-transcript basis. If a good global fit exists, the first option would recover a common scale for the χCRAC technology, whereas the latter choice would attempt to characterise the gene-specific efficiencies for transcription and degradation. Further, non-linear forms of differential equations could be explored as they might be better suited to capture the interaction between the binding of Pol II and Nab3.

The literature characterising the previously measured transcription or degradation rates could be useful for both validating the model and potentially constraining the various optimisations within the analysis. However, this relies on the assumption that the reported range of rates is representative of the regulation processes studied within the model. Further, considering individual case studies of genes with well-characterised regulation profiles under stress can provide a validation strategy for the method. However, it is important to note that one of the aims of the model seeks to collectively describe the behaviour of many transcripts in terms of the pathways contributing to expression regulation. The metric for expressing the “goodness of fit” of the model to different transcripts also remains an open question; the percentage of the explained variance of transcript abundance is one candidate. The proposed model provides the flexibility to include the binding profiles of other proteins affecting gene expression. The relative contribution of each included pathway could be quantified using the optimised parameter values and the inferred cross-linking profiles included in the differential equation.

In general, methods for modelling stochastic dynamical processes, which underlie major biological events in the cell (e.g. modelling transcriptional control in single cells (Suter et al., 2011)), do not progress as fast as experimental data become available that directly or indirectly illuminate these processes. The analyses outlined and proposed in Chapter 5 of this thesis, made possible by the availability of the highly temporally resolved χCRAC data, take another step in the direction of the important field of dynamical modelling in RNA biology.
APPENDIX
APPENDIX A

Appendix A provides the definitions for the transition probabilities used in the BUM-HMM method and the Supplementary Figures and Tables for the paper “Robust statistical modeling improves sensitivity of high-throughput RNA structure probing experiments”, presented in Chapter 4.

A.1 TRANSITION PROBABILITIES

Transition probabilities were defined through empirically derived lengths of single- and double-stranded stretches of nucleotides. The model assumes expected uninterrupted stretches of 20 double-stranded (or constrained) nucleotides and 5 single-stranded (or flexible) nucleotides.

Below, h_t corresponds to the hidden state at the nucleotide position t, which can take the value U, corresponding to the unmodified true state, or the value M, corresponding to the modified true state.

\[
p(h_{t+1} = U|h_t = U) = \frac{19}{20} = 0.95 \quad (A.1)
\]
\[
p(h_{t+1} = M|h_t = U) = \frac{1}{20} = 0.05 \quad (A.2)
\]
\[
p(h_{t+1} = M|h_t = M) = \frac{4}{5} = 0.8 \quad (A.3)
\]
\[
p(h_{t+1} = U|h_t = M) = \frac{1}{5} = 0.2 \quad (A.4)
\]
Chemically probed RNAs were reverse transcribed with an oligonucleotide containing a random hexamer and an Illumina compatible sequence for PCR amplification. Subsequently, adapters were ligated to the 3’ end of cDNAs that contained six random nucleotides and a six nucleotide barcode followed by another random nucleotide. The latter was introduced to minimize sequence bias representation introduced during the CircLigase ligation reaction. The six random nucleotides were used to eliminate potential PCR duplicates. Indexing barcodes were added to the 3’ adapter sequence by PCR. The in-read barcodes in the 5’ end of the PCR product were processed using pyBarcodeFilter.py and reads were collapsed using pyFastqDuplicateRemover.py from the pyCRAC package.

Supplementary Figure 2

Coverage- and sequence-dependent biases were identified in the transcriptome data set.

(a, b) Presence of a coverage-dependent bias, reflected by the dependency between the LDR and the mean coverage at each nucleotide position in a pair of control replicate samples, for all such pairs, computed from the yeast transcriptome-wide data set on both strands. (c, d) Same dependency plotted as in (a, b) after applying a bias-correcting strategy to the LDRs. (e, f) Presence of a sequence-dependent bias, reflected by differing null distributions of LDRs. Each boxplot represents the null distribution (y-axis shows LDR) computed only for the nucleotide positions corresponding to a given trinucleotide pattern (indicated on the x-axis).

Nature Methods: doi:10.1038/nmeth.4068
Supplementary Figure 3

Distributions of empirical \(P \) values for the transcriptome data set closely follow the Beta-Uniform distribution on both strands.

The histograms show the distributions of empirical \(P \) values associated with LDRs between all combinations of treatment and control samples on the transcriptome data set for both strands.
Supplementary Figure 4

BUM-HMM correctly identifies many flexible A's and C's as modified nucleotides.

Secondary structures of the 18S ribosomal RNA with bases colored according to the reactivity score or posterior probability at the corresponding nucleotide position, generated by BUM-HMM, ∆TCR, Mod-seq, and structure-seq analysis pipelines on the data set using a DMS probe.
Supplementary Figure 5

(a) SCM4

(b) RPL37A

(c) RPL19B

Nature Methods: doi:10.1038/nmeth.4068
Using BUM-HMM output as constraints results in more consistent secondary structure prediction across different methods.

(a) Distribution of Hamming distances between the structures predicted for SCM4 by Fold ($n=20$) and by MaxExpect ($n=3$ with sequence, $n=1$ with BUM-HMM) when using only sequence (blue) and when adding the BUM-HMM output as constraints (red). (b, c) Same as in (a), for RPL37A (b) and RPL19B (c) (with Fold, $n=20$ structures were generated, with MaxExpect, $n=1$ structure).
Supplementary Figure 6

BUM-HMM retains good accuracy at 18S secondary structure reconstruction at lower coverage levels.

Agreement with the 18S crystal structure of the posterior probabilities generated by BUM-HMM on data sets with progressively lower mean coverage (shown on the x-axis), synthesized from the DMS data set for the 18S ribosomal RNA. Agreement was measured with the AUC statistic (shown on the y-axis) between the binary ‘ground truth’ matrix derived from the crystal structure and the generated probabilities for each synthetic data set. The subsets of 2 million, 1 million, 100,000, 30,000, 20,000, 10,000, and 1,000 reads (corresponding to 7 progressively reducing coverage levels) were randomly selected from the full data set 10 times for each coverage level. The error bars quantify the variability in the agreement of the BUM-HMM predictions with the crystal structure across these 10 selections for each coverage level.
The ΔTCR algorithm produces very high numbers in regions with low coverage.

Shown is a genome browser image of a gene (YHB1) with an FPKM of 190. The red-dotted box shows a region near the 3' end of the gene where there is low coverage. The top two panels show the ΔTCR output, with the second panel displaying the same data but scaled to a maximum ΔTCR value of 0.025. The third panel shows the BUM-HMM posterior probabilities for the same region. The last four panels show the cDNA coverage over the gene from the two control RNA sequencing data and the two NAI treated sequencing data.
18S DMS data

<table>
<thead>
<tr>
<th>Sample</th>
<th>Total reads</th>
<th>Total aligned</th>
<th>Paired reads</th>
<th>Pairs aligned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control 1</td>
<td>7298504</td>
<td>7281982</td>
<td>3649252</td>
<td>2832740</td>
</tr>
<tr>
<td>Control 2</td>
<td>6746926</td>
<td>6541815</td>
<td>3373463</td>
<td>2800015</td>
</tr>
<tr>
<td>Control 3</td>
<td>2518768</td>
<td>25044042</td>
<td>12593384</td>
<td>12363010</td>
</tr>
<tr>
<td>DMS 1</td>
<td>15961436</td>
<td>15922997</td>
<td>7980718</td>
<td>7340656</td>
</tr>
<tr>
<td>DMS 2</td>
<td>13876274</td>
<td>13406913</td>
<td>6938137</td>
<td>6478171</td>
</tr>
<tr>
<td>DMS 3</td>
<td>35111510</td>
<td>34672845</td>
<td>17555755</td>
<td>17083033</td>
</tr>
</tbody>
</table>

18S 1M7 data

<table>
<thead>
<tr>
<th>Sample</th>
<th>Total reads</th>
<th>Total aligned</th>
<th>Paired reads</th>
<th>Pairs aligned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control 1</td>
<td>13578078</td>
<td>13238681</td>
<td>6789039</td>
<td>6227292</td>
</tr>
<tr>
<td>Control 2</td>
<td>7585196</td>
<td>7461105</td>
<td>3792598</td>
<td>3706939</td>
</tr>
<tr>
<td>Control 3</td>
<td>6765306</td>
<td>6559927</td>
<td>3382653</td>
<td>2807798</td>
</tr>
<tr>
<td>1M7 1</td>
<td>12737362</td>
<td>12475601</td>
<td>6368681</td>
<td>6204239</td>
</tr>
<tr>
<td>1M7 2</td>
<td>5668572</td>
<td>5668568</td>
<td>3305227</td>
<td>2821236</td>
</tr>
<tr>
<td>1M7 3</td>
<td>10713590</td>
<td>10444647</td>
<td>5356795</td>
<td>4995539</td>
</tr>
</tbody>
</table>

Transcriptome data

<table>
<thead>
<tr>
<th>Sample</th>
<th>Total reads</th>
<th>Total aligned</th>
<th>Paired reads</th>
<th>Pairs aligned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control 1</td>
<td>77562940</td>
<td>76077320</td>
<td>38781470</td>
<td>36597927</td>
</tr>
<tr>
<td>Control 2</td>
<td>83454506</td>
<td>82021191</td>
<td>41727253</td>
<td>39975802</td>
</tr>
<tr>
<td>NAI 1</td>
<td>99164982</td>
<td>97509211</td>
<td>49582491</td>
<td>46831503</td>
</tr>
<tr>
<td>NAI 2</td>
<td>115420404</td>
<td>112932454</td>
<td>57710202</td>
<td>54645707</td>
</tr>
</tbody>
</table>

Supplementary Table 1: Overview of paired cDNA reads analyzed from each data set. All raw sequencing data have been collapsed before aligning to the reference sequences to remove potential PCR duplicates. Only properly paired reads were considered for the analyses.
Structure recovery of 18S rRNA on the 1M7 data set

<table>
<thead>
<tr>
<th>Method</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUM-HMM</td>
<td>0.59</td>
</tr>
<tr>
<td>ΔTCR</td>
<td>0.62</td>
</tr>
<tr>
<td>Structure-seq</td>
<td>0.59</td>
</tr>
<tr>
<td>Mod-seq</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Supplementary Table 2: Accuracy of reconstructing secondary structure of 18S ribosomal RNA from the 1M7 data set for all methods, measured with the AUC statistic against the known crystal structure of the rRNA.
APPENDIX B

Appendix B provides the derivations for computing the marginal likelihood under the Gaussian and Poisson observation models and the Supplementary Information for the paper “Kinetic CRAC uncovers a role for Nab3 in determining gene expression profiles during stress”, presented in Chapter 5.

B.1 DERIVATIONS FOR COMPUTING THE MARGINAL LIKELIHOOD UNDER THE GAUSSIAN OBSERVATION MODEL

b.1.1 Completing the square

Under the exponent in Eq. 5.14 (this and the following equations are given in Chapter 5), the terms quadratic in \(f \) are:

\[
-\frac{1}{2} \left(f^T K^{-1} f + \frac{1}{\sigma^2} \sum_{k=1}^{M} f^T I_N f \right) \quad (B.1)
\]

Equating these terms to the quadratic term from Eq. 5.15, we can compute the expression for the inverse covariance (or precision) \(C^{-1} \) as given in Eq. B.4:

\[
-\frac{1}{2} \left(f^T K^{-1} f + \frac{1}{\sigma^2} \sum_{k=1}^{M} f^T I_N f \right) = -\frac{1}{2} f^T C^{-1} f \quad (B.2)
\]

\[
f^T \left(K^{-1} + \sum_{k=1}^{M} \frac{1}{\sigma^2} \right) f = f^T C^{-1} f \quad (B.3)
\]

\[
C^{-1} = K^{-1} + \frac{M}{\sigma^2} I_N \quad (B.4)
\]

Similarly, equating the linear term in \(f \) under the exponent in Eq. 5.14 to the linear term of the general quadratic form from Eq. 5.15 enables us to compute the expression for \(\mu \) as given in Eq. B.7:
\[-\frac{1}{2\sigma^2} \sum_{k=1}^{M} (-2f^T I_N y^k) = f^T C^{-1} \mu \]
(B.5)

\[f^T \left(\frac{1}{\sigma^2} \sum_{k=1}^{M} I_N y^k \right) = f^T C^{-1} \mu \]
(B.6)

\[\mu = \frac{C}{\sigma^2} \sum_{k=1}^{M} y^k \]
(B.7)

We now have to add and subtract the \(-\frac{1}{2} \mu^T C^{-1} \mu\) term from the expression under the exponent in Eq. 5.14 in order to complete the square with respect to \(f\). This term, quadratic in \(\mu\), simplifies to the expression shown in Eq. B.8, using our results in Eqs. B.7 and B.4:

\[-\frac{1}{2} \mu^T C^{-1} \mu = -\frac{1}{2} \left(\frac{C}{\sigma^2} \sum_{k=1}^{M} y^k \right)^T C^{-1} \left(\frac{C}{\sigma^2} \sum_{k=1}^{M} y^k \right) =
\]

\[-\frac{1}{2\sigma^2} \left(\sum_{k=1}^{M} y^k \right)^T C \sum_{k=1}^{M} y^k =
\]

\[-\frac{1}{2\sigma^4} (y^1 + ... + y^M)^T C (y^1 + ... + y^M) \]
(B.8)

Now, adding and subtracting it from the expression under the exponent of the integral yields:

\[\sum_{k=1}^{M} \left(\frac{1}{2\sigma^2} (y^k - f)^T I_N (y^k - f) \right) - \frac{1}{2} f^T K^{-1} f -
\]

\[-\frac{1}{2\sigma^4} \left(\sum_{k=1}^{M} y^k \right)^T C \sum_{k=1}^{M} y^k + \frac{1}{2\sigma^2} \left(\sum_{k=1}^{M} y^k \right)^T C \sum_{k=1}^{M} y^k =
\]

\[= -\frac{1}{2\sigma^2} \sum_{k=1}^{M} (y^k)^T I_N y^k + \frac{1}{2\sigma^4} \left(\sum_{k=1}^{M} y^k \right)^T C \sum_{k=1}^{M} y^k -
\]

\[-\frac{1}{2} (f - \mu)^T C^{-1} (f - \mu) \]
(B.9)

b.1.2 Evaluating the integral

We can now take the terms not containing \(f\) outside of the integral. And thus, the integral evaluates to the following expression:
\[
\int \exp \left(-\frac{1}{2\sigma^2} \sum_{k=1}^{M} (y^k)^T I_N y^k + \frac{1}{2\sigma^2} \left(\sum_{k=1}^{M} y^k \right)^T C \left(\sum_{k=1}^{M} y^k \right) - \frac{1}{2} (f - \mu)^T C^{-1} (f - \mu) \right) df = \]
\[
= \exp \left(-\frac{1}{2\sigma^2} \sum_{k=1}^{M} (y^k)^T I_N y^k + \frac{1}{2\sigma^2} \left(\sum_{k=1}^{M} y^k \right)^T C \left(\sum_{k=1}^{M} y^k \right) - \frac{1}{2} (f - \mu)^T C^{-1} (f - \mu) \right) \cdot \int \exp \left(-\frac{1}{2} (f - \mu)^T C^{-1} (f - \mu) \right) df = \]
\[
= \exp \left(-\frac{1}{2\sigma^2} \sum_{k=1}^{M} (y^k)^T I_N y^k + \frac{1}{2\sigma^2} \left(\sum_{k=1}^{M} y^k \right)^T C \left(\sum_{k=1}^{M} y^k \right) - \frac{1}{2} (f - \mu)^T C^{-1} (f - \mu) \right) \sqrt{(2\pi)^N |C|} \]
\]

Finally, the expression for the marginal likelihood of the data \(y \) is given by:

\[
p(y) = \frac{1}{(\sqrt{2\pi\sigma})^{NM}} \cdot \frac{1}{(\sqrt{2\pi})^{N |K|}} \cdot \exp \left(-\frac{1}{2\sigma^2} \sum_{k=1}^{M} (y^k)^T I_N y^k + \frac{1}{2\sigma^2} \left(\sum_{k=1}^{M} y^k \right)^T C \left(\sum_{k=1}^{M} y^k \right) - \frac{1}{2} (f - \mu)^T C^{-1} (f - \mu) \right) \sqrt{(2\pi)^N |C|} \]

\[\text{(B.10)}\]

B.1.3 Log-marginal likelihood

The term \(\sqrt{|C|/|K|} \) appears in the expression for the marginal likelihood of the data. Using the properties of a determinant, we get:

\[
\frac{|C|}{|K|} = |C| \cdot |K|^{-1} = |C| \cdot |K^{-1}| = |CK^{-1}| \]

\[\text{(B.12)}\]

Using the definition of \(C \), we can write down the expression for the matrix \(CK^{-1} \):

\[
\begin{align*}
CK^{-1} &= \left(K^{-1} + \frac{M}{\sigma^2} I_N \right)^{-1} \cdot K^{-1} = \left(I_N + \frac{M}{\sigma^2} K \right)^{-1} \\
&= \left(\frac{M}{\sigma^2} \left(\frac{\sigma^2}{M} I_N + K \right) \right)^{-1} = \frac{\sigma^2}{M} \left(\frac{\sigma^2}{M} I_N + K \right)^{-1}
\end{align*}
\]

\[\text{(B.13)}\]
Using the properties of a determinant, we can write down the expression for the determinant of CK^{-1}:

$$|CK^{-1}| = \left| \frac{\sigma^2}{M} \left(\frac{\sigma^2}{M} \cdot I_N + K \right)^{-1} \right| = \left(\frac{\sigma^2}{M} \right)^N \left| \frac{\sigma^2}{M} \cdot I_N + K \right|^{-1}$$ \hfill (B.14)

In the expression for the log-marginal likelihood, the term $|CK^{-1}|$ appears under the squared root and its logarithm is given by:

$$\log \sqrt{|CK^{-1}|} = \frac{1}{2} \log \left(\left(\frac{\sigma^2}{M} \right)^N \left| \frac{\sigma^2}{M} \cdot I_N + K \right|^{-1} \right) =$$

$$= N \log \sigma - \frac{N}{2} \log M - \frac{1}{2} \log \left| \frac{\sigma^2}{M} \cdot I_N + K \right|$$ \hfill (B.15)

B.2 Derivations for Computing the Marginal Likelihood under the Poisson Observation Model

b.2.1 Approximating the integral with Laplace’s method

The integral in Eq. 5.25 can be approximated as a Gaussian distribution using Laplace’s method (MacKay, 2003). This method approximates any single-mode distribution with a Gaussian distribution with the mean set as its mode and the variance computed using the curvature at the mode.

Let’s assume $P(x)$ to be an unnormalised density with the mode at x_0. Its normalisation constant is given by

$$Z = \int P(x)dx$$ \hfill (B.16)

Using Taylor expansion of $\log P(x)$ at $x = x_0$, $P(x)$ can be approximated as an unnormalised Gaussian with the mean x_0 and variance c^2:

$$P(x) \approx P(x_0) \exp \left(-\frac{1}{2c^2}(x - x_0)^2 \right) ,$$ \hfill (B.17)

where $c^2 = \frac{1}{-\frac{d^2}{dx^2} \log P(x_0)}$ \hfill (B.18)

And the normalising constant Z, to which the integral evaluates, is given by:
\[Z = \int P(x) \, dx \approx P(x_0) \int \exp \left(-\frac{1}{2c^2} (x - x_0)^2 \right) \, dx = P(x_0) \cdot \sqrt{2\pi} \] \quad (B.19)

Or, generalising to K dimensions with the covariance \(C \), \[Z \approx P(x_0) \cdot \sqrt{(2\pi)^K |C|}. \]

Thus, the integral of interest from Eq. 5.25 can be approximated by recovering the mode \(x_0 \) of the expression under the integral (which gives the mean of the approximating Gaussian) and the inverse of the negative Hessian of the log-expression evaluated at \(x_0 \) (which gives the covariance of the approximating Gaussian).

B.3 Investigation of the Consensus Between the Differential Binding Analyses with Different Noise Models on the nab3 Dataset

The figures below illustrate the same analysis for the Nab3 \(\chi \)CRAC dataset as presented for Pol II in Section 5.8.2 (Chapter 5). Fig. B.1 shows the median coverage levels of the transcripts selected by both analyses in comparison to those of all transcripts tested with the Poisson regression analysis. Fig. B.2 shows the log-variance of the control time-series for all transcripts that were tested with the Poisson regression analysis and compares it with the corresponding log-variance of the Poisson-selected targets and the transcripts selected by both analyses.

Figure B.1: Left: a histogram showing median coverage levels for all genes that were tested with the Poisson regression analysis for differential binding with Nab3 under stress. The medians were computed across each time-series in control and stress conditions and then averaged across conditions for each gene. 4 genes had a median coverage > 500 and are not shown. Right: a histogram showing median coverage levels for all genes that were selected by both Poisson and Gaussian regression analyses as differentially bound by Nab3 under stress.
Figure B.2: A histogram showing the log-variance of time-series in control conditions for all genes that were tested with the Poisson regression analysis for differential binding with Nab3 under stress (coloured in pink). Overlaid are shown the corresponding histograms for the targets selected by the Poisson regression analysis (in green) and for the targets selected by both analyses (in blue).
Supplementary note 1

Rapid nuclear depletion of Nab3 using the anchor-away system

To rapidly deplete Nab3 from the nucleus we used the anchor-away system. Nab3 was fused to the FKBP12 rapamycin-binding domain (FRB) and depleted from the nucleus by rapamycin treatment, which forms a very stable complex with Nab3-FRB and the nuclear r-protein RPL13A-FKBP12 fusion associated with ribosome assembly intermediates, which are exported to the cytoplasm. Strains expressing Nab3-FRB grew comparable to the parental strain, but failed to grow in the presence of rapamycin (Supplementary Fig. 5a) A one-hour rapamycin treatment was sufficient to detect 3'-extended snR13 species, which are known to accumulate in NNS mutants (Supplementary Fig. 5b). To measure changes in transcription profiles, we performed Pol II χCRAC on Nab3 depleted cells. This revealed an accumulation of 3'-extended CUTS and snoRNAs, both under normal (glucose) and stress (no glucose) conditions (Supplementary Fig. 6a; Nab3-FRB data). Importantly, when we incubated the parental strain with rapamycin for one hour, we did not observe these changes in snoRNA and CUT transcriptional profiles (Supplementary Fig. 6a; Nab3 data). NRD1 transcript levels are auto-regulated by NNS-dependent attenuation of transcription. In the rapamycin treated nab3::FRB cells, we observed a higher density of Pol II downstream of the Nab3 binding sites, suggesting NNS-dependent attenuation of NRD1 is strongly diminished (Supplementary Fig. 6b; Nab3-FRB data). Increased Pol II transcription could also be detected downstream of the snR13 gene in the Nab3 depleted cells, consistent with a defect in Nab3-dependent transcription termination (Supplementary Fig. 6c). Again, these changes in Pol II distribution were not observed in the rapamycin treated parental
strain (Nab3 panels), demonstrating that these changes are a direct result of Nab3 depletion.

We conclude that with our Nab3 depletion conditions we can faithfully reproduce previously published work.

Supplementary note 2

Nab3 and regulation of ENO1 transcription initiation

As shown in a schematic overview of ENO1 transcription-regulation (not to scale; Supplementary Fig. 12), two CUTs are detected upstream of the gene, which is activated by two upstream activating sequences (UAS1, UAS2) that bind multiple factors\(^4\)-\(^6\). ENO1 also contains an upstream repressor sequence element (URS) in the promoter, located between -226 and -125 bp from the TSS. This URS has a directionality as reverting this element relieves inhibition of ENO1 expression when cells are grown on glucose\(^7\). Experimental evidence has been published for three URS-binding factors: i) Reb1, that associates with a region not essential for, but enhancing URS function\(^8\) and binds the UAS2 as well\(^4,8\). Deletion of Reb1 had no major effect on ENO1 expression\(^9,10\); ii) the BUF-complex, consisting of Rfa1 and Rfa2 – which participate in yeast DNA replication as ssDNA binding proteins – that recognizes the repressor-of-CAR1-like sequence (TaGCCaCCTC) at the 5’ end of the region essential for URS activity\(^11,12\). Repression is possibly mediated by Ume6\(^13\), which recruits histone deacetylase Rpd3p and chromatin-remodeling factor Isw2p\(^14\). Long-range DNA-looping via Ume6 is associated with transcriptional repression\(^15\). Although Ume6 had no influence, Isw2 was found to downregulate ENO1 expression\(^9,10\) and can repress...
transcription of cryptic RNAs16. iii) The basic-domain helix-loop-helix (bHLH) protein Sgc1 (Tye7) binds to the E-box motif (CAnnTG) in the 3’ region of the URS17, possibly as a (hetero) dimer18, and, depending on surrounding sequences, could bend DNA19. Sgc1, like Gcr1, Gcr2 and Rap1, down-regulates ENO19,10. In cells expressing the dominant SGC1-1 allele (E→Q, ten residues upstream of the bHLH DNA-binding/dimerization domain), ENO1 mRNA levels become comparable to those of ENO2 in wild-type cells20 during growth in glucose.

As shown in Supplementary Fig. 8c and Fig. 6d, we observed increased Nab3 binding to RNAs overlapping the region spanning the TATA-box, a long pyrimidine-rich region including three Nab3 binding motifs (UCUU; CUUG) and up to the TSS when cells were grown on glucose, but significantly less so after removal of the carbon source. These products increased in number after depletion of Nab3 (Fig. 6e) and carry poly-A tails (Fig. 6d), indicative for poly-adenylation by the TRAMP-complex and needed for degradation by the exosome. The 5’UTR-derived products also overlap the two CUTs, that are only observed in the absence of exosome components21,22. CUT166, which initiates from the 5’ end of the URS has also been detected by CRAC using Cbc1, a component of the cap-binding complex23 and by transcript isoform sequencing (TIFseq)24 (Supplementary Fig. 8).

The role of the URS and the associated protein factors suggest that these are the primary regulators of ENO1 transcription by controlling productive transcription initiation from its TSS, ~40 nt upstream of the ATG. They appear to do this (possibly indirectly), by stimulation of CUT166 transcription, but not by promoting alternative TSS choice. For cells growing on glucose we did not observe (also after depleting Nab3) a marked
change in the distribution of Pol II; all the associated RNAs had their 5' end around the mapped TSS25,26 as confirmed by TIFseq24 (Supplemental Fig. 8). Furthermore, after removal of glucose, the levels of transcripts derived from the 5'UTR did not alter over time (also when Nab3 had been depleted; Fig. 6e), whereas those reflective of ENO1 transcription increased more than 2-fold (Fig. 6f). Overall, our data suggest that Pol II still finds the TSS but that under repressive conditions this happens slowly.

Formation of productive transcription initiation complexes at the ENO1 TSS appear impeded on glucose. This is corroborated by mapping of pre-initiation complexes (PICs) of general transcription factors and Pol II27, which – compared to ENO2 – are not very abundant for ENO1 around the respective TATA boxes and also locate around the TSS of CUT166 in the URS (Supplementary Fig. 8c). Their low abundance is reflected in the low levels of transcription on glucose which after depletion of Nab3 only enhance slightly (Fig. 6e-f), in line with reduced NNS activity on the 5'UTR RNAs and the 5' end of the ENO1 transcript. Protein factors involved with transcription initiation shape the DNA28. When repressive factors like Sgc1, that bind the URS just upstream of the TATA-box, would counteract this, formation of a productive transcription initiation complex would be delayed and thereby the association of Pol II with the TSS. When repression of ENO1 is lifted, although transcription of CUT166 still occurs, formation of an active transcription initiation complex at the TSS of ENO1 is promoted. This could be realized by the release of repressive factors such as Sgc1. The level of induced transcription increases so rapidly that NNS-guided degradation – although increasing as well according to enhanced Nab3-crosslinking – does not have an overall impact on steady state levels. Possibly, NNS-mediated termination of transcripts will
happen on Pol II complexes that are slowed down or do not elongate properly, so that ongoing ENO1 transcription will not be affected.

Supplementary Methods

Yeast strains and media

Saccharomyces cerevisiae strain BY4741 (MATa; *his3Δ1; leu2Δ0; met15Δ0; ura3Δ0) was used as the main parental strain. The HTP (HIS6-TEV-2xProtA) carboxyl-tagged strains (Calmodulin binding peptide-TEV-2xProtA) were generated by PCR as described. Strains used in this study are listed in Supplementary Table 1. For the anchor away experiments we fused Nab3 to the FRB domain and integrated a HTP-tag at the 3' end of the Rpo21 gene in the HHY168 strain. Rapamycin was added to the media at a final concentration of 1 µg/ml. For the glucose deprivation experiments, strains were grown in synthetic medium lacking tryptophan (Formedium) in the presence (SD-TRP) or absence of glucose (S-TRP). For the PAR-CLIP experiments, cells were grown in synthetic glucose-containing medium lacking tryptophan and uracil (SD-URA-TRP). Strains carrying changes in cross-linked Nab3-motifs were generated by site-directed mutagenesis in two steps using the Delitto-Perfetto system; first a small deletion was generated covering the YBR085C-A Nab3 motifs by insertion of the cassette from plasmid pGSHU, which was then replaced by a gBlock (Integrated DNA Technologies) containing the mutations. Resultant strains were checked by sequencing and for normal growth on glycerol.
Western blot analyses

Western blot analysis was performed using the polyclonal rabbit anti-TAP antibody from Thermo Fisher (CAB1001), which recognizes the spacer between the TEV cleavage site and the six histidines. Blots were incubated with the antibody (1:5000 dilution) in blocking buffer (5% nonfat milk powder, 0.1% Tween-20 and phosphate buffer saline (PBS)) for one hour at room temperature (diluted 1:5000 in blocking buffer. Following two five minute washes with PBS-0.1% Tween, the blots were then incubated with goat anti-rabbit antibodies (Thermo Fisher (31466) 1:5000 in blocking buffer) for one hour at room temperature. Proteins were visualized using the Pearce enhanced chemiluminescence solutions as described by the manufacturer’s procedures.

Quantitative RT-PCR

Cells were grown in SD-TRP to an OD_{600} of 0.4, harvested by filtration and then shifted to S-TRP. Cells were harvested before the shift (0) and 20, 40 minutes after the shift. RNA was extracted using the Guanidium thiocyanate method or the masterpure yeast RNA purification kit (Epicentre) and quantitative RT-PCR was carried out using the Agilent Brilliant III SYBR master mix, using oligonucleotides listed in Supplementary Table 3. In an end-volume of 10 μl, 12 μg total RNA was treated with 2 units Turbo DNAsel (Ambion, ThermoFisher) in the presence of 4 units RNAsin (Promega) at 37°C for 1 hour, followed by 15 min. at 65°C to inactivate the enzyme. After addition of 2.5 μl 2.5 μM reverse PCR primers the nucleic acids are denatured at 85°C for 3 min and then cooled on ice for 5 min. Of the annealed RNA/oligo mixture, 5 μl is added to a tube
containing 5 μl 2*RT-mix (100 u Superscript III reverse transcriptase (Invitrogen), 2 μl 5xFirstStrandBuffer, 0.5 μl 0.1 M DTT, 1.5 μl 5 mM dNTP mix, 1 u RNAsin, H_{2}O to 5 μl) and another 5 μl to a 2*NoRT-mix (as 2*RT mix but with H_{2}O replacing the enzyme) and incubated for 90 min at 55°C. The enzyme is inactivated for 20 min at 65°C and RNA/cDNA hybrids are resolved by digestion with 5 units RNAse H for 30 min at 37°C. The mixture is diluted by adding 200 μl H_{2}O and 3 μl is added to 7 μl QPCR mix (3 μl water with 1μM of each primer, 4 μl 2*Brilliant III SYBR master) and amplified on a LightCycler 96 or 480 (Roche): 1 cycle 95°C; 40 cycles (plate reading at end of each cycle) 95°C 5s; 60°C 10s; 72°C 15s. A melt curve was generated by ramping to 95°C (0.11; 5/°C) with continuous reading. QPCR reactions on each plate were done in triplicate.

Northern blot analysis

Total RNA was resolved on a 1.25% Agarose Bis-Tris (pH 7) gel and transferred to nitrocellulose. Northern blotting was performed using UltraHyb hybridization buffer according to the manufacturer’s procedures (Ambion). The snR13 oligo sequence used for hybridization is provided in Supplementary Table 3.
Supplementary Tables

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>BY4741</td>
<td>MATa; his3Δ1; leu2Δ0; met15Δ0; ura3Δ0</td>
<td>29</td>
</tr>
<tr>
<td>HHY168</td>
<td>MATα; tor1-1; fpr1::NAT RPL13A-2×FKBP12::TRP</td>
<td>1</td>
</tr>
<tr>
<td>HHY110</td>
<td>MATα; tor1-1; fpr1::NAT PMA1-2×FKBP12::TRP</td>
<td>1</td>
</tr>
<tr>
<td>YSG882</td>
<td>As BY4741 but with nab3::HTP::K.I.URA3</td>
<td>This study</td>
</tr>
<tr>
<td>YSG1013</td>
<td>As BY4741 but with rpo21::HTP::K.I.URA3</td>
<td>This study</td>
</tr>
<tr>
<td>YSG1010</td>
<td>As HHY110 but with rpo21::HTP::K.I.URA3</td>
<td>This study</td>
</tr>
<tr>
<td>YSG1042</td>
<td>As HHY168 but with nab3::FRB::KAN and rpo21::HTP::K.I.URA3</td>
<td>This study</td>
</tr>
<tr>
<td>YSG1051</td>
<td>As BY4741 but with allele YBR085C*-B1547</td>
<td>This study</td>
</tr>
</tbody>
</table>

Supplementary Table 1. *Saccharomyces cerevisiae* strains used in this study
<table>
<thead>
<tr>
<th>5' adapters</th>
<th>Sequence (5'-3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>L5Aa</td>
<td>invdTTACACrGrArGrCrUrCrUrCrGrArUrCrUrNrNrUrArArGrCrN</td>
</tr>
<tr>
<td>L5Ab</td>
<td>invdTTACACrGrArGrCrUrCrUrCrGrArUrCrUrNrNrUrArArGrCrN</td>
</tr>
<tr>
<td>L5Ac</td>
<td>invdTTACACrGrArGrCrUrCrUrCrGrArUrCrUrNrNrUrCrArGrCrN</td>
</tr>
<tr>
<td>L5Ad</td>
<td>invdTTACACrGrArGrCrUrCrUrCrGrArUrCrUrNrNrUrGrArGrCrN</td>
</tr>
<tr>
<td>L5Ba</td>
<td>invdTTACACrGrArGrCrUrCrUrCrGrArUrCrUrNrNrUrArArGrCrN</td>
</tr>
<tr>
<td>L5Bb</td>
<td>invdTTACACrGrArGrCrUrCrUrCrGrArUrCrUrNrNrUrGrArGrCrN</td>
</tr>
<tr>
<td>L5Bc</td>
<td>invdTTACACrGrArGrCrUrCrUrCrGrArUrCrUrNrNrUrCrArGrCrN</td>
</tr>
<tr>
<td>L5Bd</td>
<td>invdTTACACrGrArGrCrUrCrUrCrGrArUrCrUrNrNrUrGrArGrCrN</td>
</tr>
<tr>
<td>L5Ca</td>
<td>invdTTACACrGrArGrCrUrCrUrCrGrArUrCrUrNrNrUrArArGrCrN</td>
</tr>
<tr>
<td>L5Cb</td>
<td>invdTTACACrGrArGrCrUrCrUrCrGrArUrCrUrNrNrUrGrArGrCrN</td>
</tr>
<tr>
<td>L5Cc</td>
<td>invdTTACACrGrArGrCrUrCrUrCrGrArUrCrUrNrNrUrArArGrCrN</td>
</tr>
<tr>
<td>L5Cd</td>
<td>invdTTACACrGrArGrCrUrCrUrCrGrArUrCrUrNrNrUrGrArGrCrN</td>
</tr>
<tr>
<td>L5Da</td>
<td>invdTTACACrGrArGrCrUrCrUrCrGrArUrCrUrNrNrUrArArGrCrN</td>
</tr>
<tr>
<td>L5Db</td>
<td>invdTTACACrGrArGrCrUrCrUrCrGrArUrCrUrNrNrUrGrArGrCrN</td>
</tr>
<tr>
<td>L5Dc</td>
<td>invdTTACACrGrArGrCrUrCrUrCrGrArUrCrUrNrNrUrArArGrCrN</td>
</tr>
<tr>
<td>L5Dd</td>
<td>invdTTACACrGrArGrCrUrCrUrCrGrArUrCrUrNrNrUrGrArGrCrN</td>
</tr>
<tr>
<td>L5Ea</td>
<td>invdTTACACrGrArGrCrUrCrUrCrGrArUrCrUrNrNrUrArArGrCrN</td>
</tr>
<tr>
<td>L5Eb</td>
<td>invdTTACACrGrArGrCrUrCrUrCrGrArUrCrUrNrNrUrGrArGrCrN</td>
</tr>
<tr>
<td>L5Ec</td>
<td>invdTTACACrGrArGrCrUrCrUrCrGrArUrCrUrNrNrUrArArGrCrN</td>
</tr>
<tr>
<td>L5Ed</td>
<td>invdTTACACrGrArGrCrUrCrUrCrGrArUrCrUrNrNrUrGrArGrCrN</td>
</tr>
</tbody>
</table>

3' adapter | Sequence (5'-3') |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>App-PE</td>
<td>App-NAGATCGGAAGAGACACAG</td>
</tr>
</tbody>
</table>

RT primer | Sequence (5'-3') |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PE-RT</td>
<td>CAGACGTTGCTTCCGATC</td>
</tr>
</tbody>
</table>

PCR primers | Sequence (5'-3') |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward primer:</td>
<td>AATGATACGGCCACACGAGAGATCTACCTACCTTCTCATACAGCCTCTCTCCGATCT</td>
</tr>
<tr>
<td>Reverse indexing primers:</td>
<td></td>
</tr>
<tr>
<td>BC1</td>
<td>CAAGCAGAAGACGCGCCTACACGAGATCAGTGTGACTGAGTTGACAGCTGCTTCCGATCT</td>
</tr>
<tr>
<td>BC2</td>
<td>CAAGCAGAAGACGCGCCTACACGAGATCAGTGTGACTGAGTTGACAGCTGCTTCCGATCT</td>
</tr>
<tr>
<td>BC3</td>
<td>CAAGCAGAAGACGCGCCTACACGAGATCAGTGTGACTGAGTTGACAGCTGCTTCCGATCT</td>
</tr>
<tr>
<td>BC4</td>
<td>CAAGCAGAAGACGCGCCTACACGAGATCAGTGTGACTGAGTTGACAGCTGCTTCCGATCT</td>
</tr>
<tr>
<td>BC5</td>
<td>CAAGCAGAAGACGCGCCTACACGAGATCAGTGTGACTGAGTTGACAGCTGCTTCCGATCT</td>
</tr>
<tr>
<td>BC6</td>
<td>CAAGCAGAAGACGCGCCTACACGAGATCAGTGTGACTGAGTTGACAGCTGCTTCCGATCT</td>
</tr>
<tr>
<td>BC7</td>
<td>CAAGCAGAAGACGCGCCTACACGAGATCAGTGTGACTGAGTTGACAGCTGCTTCCGATCT</td>
</tr>
<tr>
<td>BC8</td>
<td>CAAGCAGAAGACGCGCCTACACGAGATCAGTGTGACTGAGTTGACAGCTGCTTCCGATCT</td>
</tr>
<tr>
<td>BC9</td>
<td>CAAGCAGAAGACGCGCCTACACGAGATCAGTGTGACTGAGTTGACAGCTGCTTCCGATCT</td>
</tr>
<tr>
<td>BC10</td>
<td>CAAGCAGAAGACGCGCCTACACGAGATCAGTGTGACTGAGTTGACAGCTGCTTCCGATCT</td>
</tr>
</tbody>
</table>

Supplementary Table 2 - Oligonucleotides for γCRAC library preparation.

Lowercase ‘r’ indicates RNA nucleotides, ‘rN’ indicate random RNA nucleotides and blue sequences are barcodes.
<table>
<thead>
<tr>
<th>qPCR primer</th>
<th>Sequence (5'-3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT1-exon2-F</td>
<td>TGTTTTGGATTCGGGTGATGG</td>
</tr>
<tr>
<td>ACT1-exon2-R</td>
<td>ACCGGCCAAATCGATTCTCA</td>
</tr>
<tr>
<td>PIC2-qFwd</td>
<td>CGCTGCAATTCCTCGCTGAT</td>
</tr>
<tr>
<td>PIC2-qRev</td>
<td>TTGCAAAAGGGCGGCGATAG</td>
</tr>
<tr>
<td>NRD1-qFwd</td>
<td>TCCAGCCAAACGCAAGCAG</td>
</tr>
<tr>
<td>NRD1-qRev</td>
<td>TGATGCGGCTTGGGAGGTG</td>
</tr>
<tr>
<td>MAL33-qFwd</td>
<td>CGACCCTCGACTTTCTTTGG</td>
</tr>
<tr>
<td>MAL33-qRev</td>
<td>GACTCCGTAGCCAAACGATCA</td>
</tr>
<tr>
<td>IMD3-qFwd</td>
<td>TCCAATGGACACCGTGACAG</td>
</tr>
<tr>
<td>IMD3-qRev</td>
<td>GTCAAGCTGGCTCTCTGGGTA</td>
</tr>
<tr>
<td>EN01-5UTR-Fwd</td>
<td>CTGTGGGCTTTGTTGGGCA</td>
</tr>
<tr>
<td>EN01-5UTR-Rev</td>
<td>AGGGATTACAAGAGAGATTTTACAGAAAGGAA</td>
</tr>
<tr>
<td>EN01-Fwd</td>
<td>TGCCCGCTGCTGAAAAAGAAT</td>
</tr>
<tr>
<td>EN01-Rev</td>
<td>GCTGGGAAACCACCGTCA</td>
</tr>
<tr>
<td>YBR085C-A-Fwd</td>
<td>CGACAGTCAGTTGGTGACAGGA</td>
</tr>
<tr>
<td>YBR085C-A-Rev</td>
<td>CGAATGCTGGCCTCTCTTT</td>
</tr>
<tr>
<td>TY1-2Fwd</td>
<td>AGCCTACACAGCTCTCGACAT</td>
</tr>
<tr>
<td>TY1-2Rev</td>
<td>TGCTGTTTCTCGATCCCTTTG</td>
</tr>
<tr>
<td>TY1-3Fwd</td>
<td>CGCCCTGAGACACTCAGC</td>
</tr>
<tr>
<td>TY1-3Rev</td>
<td>GGTGAGTTAACATTTTGGTGTTG</td>
</tr>
<tr>
<td>TY1-4Fwd</td>
<td>CACCTGGGCACAATACAG</td>
</tr>
<tr>
<td>TY1-4Rev</td>
<td>AGATCCTCAGGGATATAGCAG</td>
</tr>
<tr>
<td>TY2-1Fwd</td>
<td>TCGCAGATCTCCAAACACGA</td>
</tr>
<tr>
<td>TY2-1Rev</td>
<td>TGCTGGCTTTGCTGCTCTTG</td>
</tr>
<tr>
<td>TY2-3Fwd</td>
<td>AAACGTCACTCGATATACACC</td>
</tr>
<tr>
<td>TY2-3Rev</td>
<td>TCGATGGGATCGGGAAGAAGGT</td>
</tr>
<tr>
<td>TY2-4Fwd</td>
<td>CTGAGTCACCTCAGCTGACATCCAT</td>
</tr>
<tr>
<td>TY2-4Rev</td>
<td>TTCTGATGTTAAGGTGTGGTGTTGGTGAAGA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Northern primer</th>
<th>Sequence (5'-3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>snr13_Northern</td>
<td>GCCAAACAGCAACTCGAGCCAAATGCACTCATATTTCA</td>
</tr>
</tbody>
</table>

Supplementary Table 3 - Oligonucleotides used for qRT-PCR and Northern blot analysis
<table>
<thead>
<tr>
<th>Glucose*</th>
<th>No Glucose (4 minutes)</th>
<th>No Glucose (18 minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUP1-1</td>
<td>AHA1</td>
<td>ACA1</td>
</tr>
<tr>
<td>FLX1 (snR68)</td>
<td>ARG82</td>
<td>BAP3</td>
</tr>
<tr>
<td>GRE3</td>
<td>ATP1</td>
<td>GUT2</td>
</tr>
<tr>
<td>HEM4 (snR5)</td>
<td>DIP5</td>
<td>MAL31</td>
</tr>
<tr>
<td>HIS1</td>
<td>ECL1</td>
<td>MAL33</td>
</tr>
<tr>
<td>ICT1</td>
<td>ERO1</td>
<td>NRD1</td>
</tr>
<tr>
<td>IMD2</td>
<td>GNP1</td>
<td>PIC2</td>
</tr>
<tr>
<td>IMD3</td>
<td>GRE3</td>
<td>RHO5</td>
</tr>
<tr>
<td>NRD1</td>
<td>GUT2</td>
<td>UIP4</td>
</tr>
<tr>
<td>SEN2 (snR79)</td>
<td>HIS4</td>
<td>YLR171W</td>
</tr>
<tr>
<td>TRS31 (snR13)‡</td>
<td>NRD1</td>
<td>YLR410W-B</td>
</tr>
<tr>
<td>URA8</td>
<td>RPN4</td>
<td>YOR059C</td>
</tr>
<tr>
<td>YCL007C (snR43)</td>
<td>TRS31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>URA8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WTM1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>YAR010C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>YTM1</td>
<td></td>
</tr>
</tbody>
</table>

* Genes in italics might be identified due to transcripts originating from a preceding snoRNA gene (in brackets) that is not properly terminated in absence of Nab3.

‡ See also Supplementary Fig. 5b (Northern blot probed for snR13) and Supplementary Fig. 6c.

Supplementary Table 4 - List of genes controlled by Nab3 attenuation
Supplementary Figure 1. The Vari-X-linker

Picture of the latest Vari-X-linker prototype. Cells are poured into the machine on the top of the unit where the sample enters the UV-irradiation chamber. Sample is UV irradiated from both sides and irradiation length can be controlled via a shutter system. Indicated are some of the features of the machine. The machine can be loaded with 254nm and 365 nm lamps, which can easily be swapped. The cells can be extracted by attaching a pump to the tube connected to the valve. The cells are loaded into the UV chamber on the top of the unit. Separate UV sensors were built in for 254nm and 365mm lamps, which shows at what percentage of the maximum output the lamps are. The machine also has a tilting mechanism to allow the bag in the UV chamber to empty completely.
Supplementary Figure 2. Ty1 and Ty2 transcript levels do not significantly change during UV irradiation.

Cells were cross-linked in the Megatron (100 seconds) and the Vari-X-linker (12 seconds) and qRT-PCR was performed with three different primer sets on total RNA to measure levels three variants of Ty1 and Ty2 retrotransposons. Transcript levels were normalized to those of the ACT1 gene (y-axis). Error bars indicate s.d. from four experimental replicates.
Supplementary Figure 3. T4 RNA ligase has preference for specific nucleotide donor-acceptor nucleotide combinations.

(a) Adapter strategy. Both 5’ and 3’ adapters contain a random nucleotide at the termini that ligate to the cDNA (red colored and green colored “N”). The blue “A” in the sequence indicates the first nucleotide of the cDNA that ligates to the 5’ adapter. The purple “B” indicates the last nucleotide that ligates to the 3’ adapter. All adapter sequences are provided in Supplementary Table 2.
(b-c) T4 RNA ligase has a preference for specific nucleotide combinations. The violin plots show the distribution of donor-acceptor nucleotides found in a Pol II χCRAC dataset using the L5D and L5E series of 5′ adapters. The data show that T4 RNA ligase has a clear preference for specific donor-acceptor nucleotide combination, with an A being the preferred nucleotide at the 5′ end of cDNAs. The variability in some of the data points indicates that the surrounding nucleotides can influence the ligation efficiency. However, there was not a specific 5′ adapter barcode sequence that showed significantly better or worse ligation efficiencies. The violin plot in (c) shows that the truncated T4 RNA ligase (NEB) has a strong preference for a G or a C at the 5′ end of the 3′ adapter sequence, although GC and CC combinations are less enriched.
Supplementary Figure 4. CRAC generates highly reproducible data.
The scatter plots show the pairwise comparison of Pol II (left) and Nab3 (right) biological replicates for each time point (0-20 min). All datasets were log2 transformed before Pearson correlations were calculated. Pearson’s R correlations between the time-points are shown in the top left corner.
Supplementary Figure 5. The Nab3-FRB strain can be effectively used to deplete Nab3 from the nucleus.

(a) Cells expressing Nab3-FRB die on plates with rapamycin. Shown is a serial dilution assay where growth of the parental strain (HHY168³) is compared to the strain expressing Nab3-FRB. Cells were spotted on YPD and YPD supplemented with rapamycin (1 µg/µl). The results show that rapamycin treatment of the nab3::frb strain is lethal.
(b) Northern blot analysis of 3’ extended snR13 species during a rapamycin time-course. The HHY168 nab3::FRB strain was grown in YPD to exponential phase. Cells were harvested shortly at exponential phase (t=0). Subsequently, rapamycin was added to a final concentration of 1µg/ml and cells were harvested 15, 30, 60, 90 and 120 minutes after adding the drug. Total RNA was extracted and resolved on a 1.25% agarose gel. Ribosomal RNAs (25S and 18S) were detected by SyBr safe staining. After transferring the RNA to a nitrocellulose membrane, the blot was probed with an anti-sense snR13 oligonucleotide (Supplementary Table 2). After about 60 minutes of rapamycin treatment the amount of 3’ extended snR13 species reached its maximum level. Therefore, for subsequent depletion experiments a 60-minute rapamycin incubation was used.
B.4 supplementary information for paper 2

(a) snoRNAs

- Nab3-FRB
 - Average frequency over nucleotides from 3’end
 - Glucose and noglucose conditions
- Nab3
 - Average frequency over nucleotides from 3’end
 - Glucose and noglucose conditions

(b) Chromosome XIV

- Nab3-HTP
- Rpo21-HTP
- Nab3
- Ethanol and rapamycin conditions

(c) Chromosome IV

- Nab3-HTP
- Rpo21-HTP
- Nab3
- Ethanol and rapamycin conditions
Supplementary Figure 6. Nuclear depletion of Nab3 results in the accumulation of 3’ extended CUTs and snoRNAs.

(a) Distribution of reads that mapped to CUTs and snoRNAs around the 3’ end of the features (x-axis). Cells expressing the FRB-tagged Nab3 and the parental strain (Nab3) were grown in glucose to exponential phase and rapidly shifted to medium lacking glucose. Cells were harvested before the shift (glucose panels) or 14 (Nab3) to 18 minutes (Nab3-FRB) after the shift (no glucose panels). Reads mapped to each features were divided over 400 bins (1nt per bin) and for each bin the fraction of total reads that mapped to each bin was calculated. These numbers were then averaged (y-axis) to generate the plots. The reads for the rapamycin treated cells are represented as a blue line, whereas the reads for the ethanol (control) experiment are represented as a red line. The results show an increase in read density downstream of the annotated 3’ ends of CUTs and snoRNAs in rapamycin treated nab3::frb cells (but not the parental strain), indicative of defects in transcription termination.

(b-c) Nab3-dependent termination of known targets are detectable in Pol II χCRAC experiments. Shown are genome browser images of the Nrd1 and snR13 genes. On the y-axis the number of reads per million mapped reads (RPM) is plotted. The top track shows the Nab3 cross-linking data, the second and third tracks show the Pol II cross-linking data in the ethanol and rapamycin treated nab3::frb rpo21::HTP strain, respectively. The fourth and fifth track shows the results from the ethanol and rapamycin treated rpo21::HTP anchor-away strain.
B.4 supplementary information for paper 2

Chromosome XII

Chromosome IV
Supplementary Figure 7. Nab3 terminates anti-sense divergent cuts

Genome browser images for the SSA2 and HSP78 region showing Pol II χCRAC data from the solvent (ethanol; black), rapamycin treated cells (blue) and data from a Nab3 χCRAC experiment (red) for both strands. On the y-axis of each track the reads per million (RPM) mapped reads is plotted. The time points at which cells were harvested (in minutes) is indicated left of each track.
Supplementary Figure 8. Cryptic transcription upstream of ENO1

(a) Genome browser snapshot of Pol II (blue), Nab3 (green) and cap-binding complex protein Cbc1 (black) CRAC data. The Cbc1 CRAC data was obtained from23.

(b) Transcription can initiate upstream of the ENO1 promoter. Genome browser snapshot of Cbc1 CRAC and transcription isoform sequencing data (TIFseq24). The first track shows the Cbc1 CRAC data. The second track shows the log2 of the cumulative density of all isoforms (red). The third track shows some of the transcript isoforms that mapped to ENO1. The position of the annotated ENO1 TSS, Nab3 binding sites, ENO1 TATA box and the TSS of the upstream CUT is shown in the fourth track.

(c) Chip-exo sequencing data of Pol II transcription factors27 for ENO1 and the orthologous ENO2. The y-axis shows the read density and the names of individual transcription factors (TFs). The x-axis shows the nucleotides away from the ENO1 or ENO2 transcription start site (TSS). Individual TSSs for CUT166 and ENO1 or ENO2 are indicated with dashed lines. Note the at least 10-fold scale differences between ENO2 and ENO1 TF-data, reflecting the difference of transcription on glucose.
Supplementary Figure 9. Nab3 regulates the induction of stress-responsive protein-coding genes during glucose deprivation.

(a-f) Genome browser image showing the Pol II χCRAC from the solvent (ethanol; black), rapamycin treated cells (blue) and data from a Nab3 χCRAC experiment (red) for selected genes. On the y-axis of each track the reads per million (RPM) mapped reads are shown. The time points at which cells were harvested (in minutes) is indicated left of each track.
Supplementary Figure 10. The changes in Pol II transcription profiles are not induced by the drug rapamycin itself.

Shown are genome browser images of CRAC data generated using the anchor-away strain expressing an HTP-tagged Rpo21. Cells were grown in glucose to exponential phase and incubated with ethanol (-) or rapamycin (RAP; +) for one hour. A fraction of the cells was harvested (glucose samples) and the rest was shifted to medium lacking glucose for 14 minutes. These data demonstrate that the drug rapamycin does not influence Pol II transcription of these genes.

Supplementary Figure 11. Nab3 regulates the expression of Ty3 retrotransposons during glucose deprivation.

Violin plots showing the Ty3 and Ty4 pol II FPKM distribution from the nab::frb Rpo21-HTP χCRAC data generated in the presence of solvent (ethanol) or rapamycin. Shown are the averaged data from two independent experiments. Time (min) indicates the number of minutes in medium lacking glucose.
Supplementary Figure 12. Regulation of ENO1 transcription is controlled by a repressive element.

Schematic overview of the ENO1 promoter and control of transcription in the presence or absence of glucose. See Supplementary note 2 for details.
Supplementary Figure 14. Uncropped images.
Uncropped images of films or phosphoimager scans show in Figure 3b. The red boxes indicate the cropped regions.
Supplementary Figure 14. Uncropped images.

Uncropped images of films or phosphoimager scans show in Figure 3b. The red boxes indicate the cropped regions.
Supplementary References

32. Storici, F. & Resnick, M. A. The delitto perfetto approach to in vivo site-directed mutagenesis and chromosome rearrangements with synthetic oligonucleotides in...
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Illustration of an Illumina sequencing experiment</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Examples of RNA structure</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>Illustration of the basic principle of CLIP</td>
<td>20</td>
</tr>
<tr>
<td>3.1</td>
<td>Graphical model of an HMM</td>
<td>27</td>
</tr>
<tr>
<td>4.1</td>
<td>Toy example of RNA structure probing data</td>
<td>40</td>
</tr>
<tr>
<td>4.2</td>
<td>Distributions of empirical p-values for the transcriptome dataset closely follow the Beta-Uniform distribution on both strands</td>
<td>44</td>
</tr>
<tr>
<td>4.3</td>
<td>Coverage- and sequence-dependent biases were identified in the transcriptome dataset</td>
<td>57</td>
</tr>
<tr>
<td>5.1</td>
<td>Transcription and degradation mechanisms in yeast</td>
<td>73</td>
</tr>
<tr>
<td>5.2</td>
<td>Experimental design of χCRAC experiments</td>
<td>74</td>
</tr>
<tr>
<td>5.3</td>
<td>Cartoon illustration of GP-based testing for differential binding response</td>
<td>76</td>
</tr>
<tr>
<td>5.4</td>
<td>Corrected figures 4a,b</td>
<td>103</td>
</tr>
<tr>
<td>5.5</td>
<td>Statistics of Xrn1 χCRAC time-series</td>
<td>105</td>
</tr>
<tr>
<td>5.6</td>
<td>RNA classes with detected changes in Xrn1 binding under stress</td>
<td>111</td>
</tr>
<tr>
<td>5.7</td>
<td>RNA classes with detected changes in Xrn1 binding under stress</td>
<td>112</td>
</tr>
<tr>
<td>5.8</td>
<td>Numbers of transcripts in RNA classes with changes in Xrn1 binding</td>
<td>113</td>
</tr>
<tr>
<td>5.9</td>
<td>Examples of Xrn1 binding patterns</td>
<td>115</td>
</tr>
<tr>
<td>5.10</td>
<td>Statistics of Nab3 χCRAC time-series</td>
<td>117</td>
</tr>
<tr>
<td>5.11</td>
<td>Comparison of Nab3 binding profiles selected by Gaussian and Poisson regression analyses</td>
<td>119</td>
</tr>
<tr>
<td>5.12</td>
<td>Statistics of Pol II χCRAC time-series</td>
<td>120</td>
</tr>
<tr>
<td>5.13</td>
<td>Median coverage levels of tested genes and genes selected by both Pol II differential binding analyses</td>
<td>122</td>
</tr>
<tr>
<td>5.14</td>
<td>Variance of Pol II binding time-series in control conditions for tested transcripts, Poisson-selected targets, and overlapping targets</td>
<td>123</td>
</tr>
<tr>
<td>5.15</td>
<td>Further illustration of the variance of binding time-series in control conditions</td>
<td>123</td>
</tr>
<tr>
<td>5.16</td>
<td>Comparison of Pol II binding profiles selected by Gaussian and Poisson regression analyses</td>
<td>124</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Figure 5.17</td>
<td>Cartoon motivation for dynamical model of RNA expression</td>
<td>127</td>
</tr>
<tr>
<td>Figure B.1</td>
<td>Median coverage levels of tested genes and genes selected by both Nab3 differential binding analyses</td>
<td>155</td>
</tr>
<tr>
<td>Figure B.2</td>
<td>Variance of Nab3 binding time-series in control conditions for tested transcripts, Poisson-selected targets, and overlapping targets</td>
<td>156</td>
</tr>
</tbody>
</table>

COLOPHON

This document was typeset using the typographical look-and-feel classicthesis developed by André Miede. The style was inspired by Robert Bringhurst’s seminal book on typography “The Elements of Typographic Style”. classicthesis is available for both \LaTeX{} and LyX:

\url{http://code.google.com/p/classicthesis/}

Happy users of classicthesis usually send a real postcard to the author, a collection of postcards received so far is featured here:

\url{http://postcards.miede.de/}

Final Version as of February 21, 2018 (classicthesis version 1.0).