The Influence of the Seasons on the Incidence of Certain Diseases

by

Philip Grierson Borrowman
M.B. & C.M.

Crief
'Ηπειρικὴν ὡστὶς βουλείται ὀρθῶς ζητεῖν, τάδε χρὴ ποιεῖν. πρῶτον μὲν ἑνθυμεῖσθαι τὰς ἔρας τοῦ ἔτεος. Ἡρμοκράτης.
The Influence of the Seasons on the Incidence of Certain Diseases

The deathrates for the various diseases, based on the Registrar General's returns, give us comparatively little information with regard to the seasonal incidence of these diseases. Many forms of disease, though fairly common, are seldom fatal, and so are not registered as the cause of death. In other cases, though the disease may ultimately prove fatal, the length of the illness varies so much that the date of death gives us little information as to the date of onset.

The influence of the Seasons on Mortality from different diseases was carefully studied and recorded by Dr. Buchan and Sir Allan Mitchel in their well known paper published in 1875 (1), but their influence on the production of outbreaks of the various diseases is more difficult to demonstrate. We may perhaps hope that a system of
notification, not merely of infectious diseases as at present, but of all
diseases may at some future
time be introduced into this country,
 Somewhat on the lines of the system
which I understand is in force in
Norway and Sweden; but at present
it is hardly possible (especially
for those of us who are engaged
in country practice, and so cut
off from ready access to libraries)
to collect reliable information on
this subject. There therefore
selected merely a few of those
diseases on the incidence of which
the seasons of the year seem to
have a well-marked effect; and I
propose to consider the seasonal
incidence of these diseases singly
and in groups. We shall look
first at some of the infectious
fevers.

Smallpox. Outbreaks of this
disease may occur at any time
of the year, but summer is the
time of least, and winter and
spring the season of greatest pro-
The present system of notification has not been in force long enough to include a sufficient number of outbreaks to enable us to generalize, and we are therefore on safer ground if we take the death-rate as the basis of our calculations, for in this case the death-rate is a pretty fair guide to the incidence of the disease.

The Registrar General for England in his annual Summary of Births and Deaths for 1890, gives a chart reproduced below (fig. 1.), but from which, for the sake of clearness I have omitted the weekly oscillations, shewing the death-rate from Small-pox for fifty years (1841 to 1890). In this chart which almost exactly corresponds with that of Buelan and Mitchell (3) the year begins with a death-rate slightly over twenty per cent above the average. At the end of January and beginning of
February, it is over thirty per cent above the average, and falls considerably, but not to normal, during March. In April and May it is again nearly thirty per cent above the average, but from this point it falls steadily till the end of September, when it reaches its minimum, and then rises again to the end of the year.

Fig. 1.
(Small box)

In the above table the red line represents the average number of cases of Small-pox notified to the Metropolitan Asylums Board in London during each month of the eleven years from 1890 to 1900. (4) This shows a maximum (35 per cent above the average) in May, and a minimum (26 per cent below...
normal) in October.

Dr. More of Dublin (5) quotes statistics from Sweden for 1852 to 1859 showing the greatest prevalence in May, 13.7 per cent of the total cases in the year — and the least prevalence in September, when only 3.9 per cent of all the cases occur. He also quotes Sir Ballard to show that Smallpox is much more prevalent when the mean temperature of the air is below 50° F.

Scarlet fever. This disease prevails all through the year, and epidemics may occur at any season — so much so that Dr. Bristowe (6) says "its prevalence seems independent of season" but the majority of writers hold strongly that the influence of the seasons is well marked.

On the following chart (Fig. 2) the red line represents the number of cases notified, and the black line, the deaths registered. The figures from which these curves are taken, as
regards the cases notified, from the fifteen report of the Statistical Commi-
mittee of the Metropolitan Asylums Board (7) referring to over 225,000
cases occurring in the years 1890 to
1900; and as regards the deaths
from the report for 1890 of the
Registrar General for England, and
it represents the average number
of deaths from Scarlet fever registered
in England in each month during
the thirty years from 1861 to 1890.

Fig. 2
(Scarlet fever)

In the two charts, each line represents five per cent above or below the monthly average throughout
the year. For the sake of
clarity, I have taken the monthly
rather than the weekly averages.
as given in the above mentioned report.

In examining the above curves we notice that in January the number of cases notified is 19 per cent below the average, and in February it falls to 32 per cent, which is the minimum for the year. From this point it rises steadily, reaching the average in June. In July it is 12 per cent above the average, and drops again in August to 7 per cent. It is interesting to notice that there is a similar slight drop in August in the number of cases notified in Edinburgh. From August the number of cases rises to 46 per cent above the average in October (the maximum for the year) and then steadily declines, crossing the mean line in December.

Thus we see that the incidence of Scarlet fever is below the average during the first half of the year, and above the
Average in the second half, with an absolute minimum in February and an absolute maximum in October.

The death-rate follows a very similar course, but a little later than the notifications, which is of course what we should expect. The year begins with a death-rate just below the mean line, and it reaches its minimum (32 per cent) in March, and remains almost stationary till June, when it rises rapidly and steadily, without any drop in August as in the case of the notifications, till it reaches the maximum (60 per cent) at the end of October, and then falls again to the average at the end of the year.

It is interesting to note that while the notifications reach the average in June, the deaths do not do so till August, and also that the death-rate reaches a higher point (60 per cent) in October than the notifications (46 per cent).
but remains much lower during May, June, and July, tending to show that scarlet fever is a more fatal disease when it occurs in Autumn than in Early Summer.

The curves of scarlet fever mortality given by Dr. Buchanan and Sir Arthur Mitchell (5) based on the figures for the thirty years from 1845 to 1874 is almost identical with the one I have given above.

Measles attains its maximum death rate at two periods of the year, June and December, of which the latter is the higher. The minima occurs in February and September, the autumn fall being greater than in spring. This is well shown by the black line in fig. 3 which is taken from the Annual Summary of the Registrar General for England for 1870, the weekly oscillations being omitted.

Dr. Whitelegg (9) says that the interval between epidemics is
this country is usually about two years, but frequently six months longer or shorter, time elapses between them. He points out also that there are epidemic waves of longer interval (about twenty years) with a high mortality, and that in Sweden and Norway six or seven years usually elapse between successive outbreaks.

Dr. Harvey littlejohn (2) says that the average interval between the six epidemics which occurred in Edinburgh between 1880 and 1890 was twenty months.

Dr. J.T. Moor (3) believes that a mean temperature above 58.6°F is not favourable to the spread of the disease, and that a mean temperature below 52°F is equally inimical to its prevalence.

Measles has been notified in Edinburgh since 1879, and in his annual report as Medical Officer of Health for the year
1900, Sir Henry Littlejohn gives an extremely interesting table showing the number of cases notified in each quarter during twenty-one years. The monthly incidence in England is shown in the following chart (Fig. 3) in which the red line shows the average number of cases notified in each month during the four years 1898 to 1901. The figures are taken from Sir H. Littlejohn's Annual Reports.

Fig. 3
(Measles)

The blue line represents similar figures.
for the ten years from 1880 to 1889 and is copied from Dr. Harvey Dillejohn's table (2). I believe the monthly figures for the intervening years, 1890 to 1897, have not been published.

The black line shows the death rate and is taken from the Annual Summary of the Registrar General for 1890, and represents the figures for fifty years from 1841 to 1890.

From this table it would appear that the summer wave of measles occurs earlier in Edinburgh than in England, the greatest prevalence seeming to be in March and April. This, however, as Sir Henry Dillejohn points out (3) is due to the epidemics which occurred in 1899, 1900 and 1901, and have upset all previous experience.

Erysipelas. Watson Cheyne (4) says February and November are the months when this disease is
most Common. These are
months associated with Con-
siderable changes of temperature
and, on the whole, are cold
and damp. The prevalence
of the disease at these times
may also be accounted for by
overcrowding in ill ventilated
rooms, and want of exercise,
which commonly occur at
these seasons.

Professor Osler (67) says the
disease is particularly prevalent
in Spring and that the Epi-
sisal cases wards in the Philadel-
phian Hospital are usually empty
except in Spring and Autumn.

Buchan and Mitchell (67) say
that the deaths from Erysipelas
are above the average from the
middle of September to the end
of March, and below the
average for the rest of the
year. The maximum is at
the end of November.
Enteric fever. It is generally admitted that although this disease occurs at all seasons of the year, it is much more common in autumn and much rarer in spring than at other times. Professor Oliver (7) says that of 1381 cases treated during twelve years in Toronto General Hospital, 761 occurred in August, September, and October. Dr. Sir Mort (8) says that in Dublin Enteric fever increases in March towards the end of July, becomes epidemic in September, continues till the end of February, and then declines to its minimum at the beginning of May.

The following table (Fig. 4) is based on the number of cases (over 2000) notified in London in the eleven years from 1890 to 1900 (9). The curve is a very even one, showing a rapid decrease from the normal rate at the beginning of the year.
till February and then slower till April, when it reaches the minimum - 42 per cent below the average. From this point the rise is steady though not very rapid till July, when it increases very rapidly and without any break till October, and reaches the maximum (77 per cent) in November, falling again very rapidly to the end of the year. This curve may be taken as representing pretty accurately the incidence of enteric fever in London, but Dr. O'Sullivan (20) states that the figures for the whole of England
bring out the maximum in October instead of November.
The black line in fig. 4 shows the deaths registered in twenty-two years, 1869 to 1890. (21) This agrees very closely with the curve given by Dr. Buchan and Sir A. Mitchell (22) except that the curve in fig. 4 rises about the mean line a little later, and goes higher (30 per cent) than theirs (35 per cent), but as their curve was based on only six years' figures it is not of so much value as their curves for other diseases which are based on thirty years' figures.

Diarrhoea of Children. The effect of the seasons on the incidence of this disease is perhaps more marked and more constant than of any other. Mr. D. Starrett (23) has shown the essential factor in causing the extraordinary rise in the number of cases, and in the infant death rate which occurs
Every Summer seems to be the temperature of the air. As says that in Melbourne, New York, Berlin, and Dresden when the mean time: temperature rises to about 60°F dia: these becomes epidemic, and that when near this point, a difference of 1° or 2° has a marked influence in increasing the number of cases. Dr. Ballard (24) states, and Dr. Eustace Smith (25) and Dr. Moore (26) agree with him, that the mortality begins to run up when the Subsoil temperature at four feet below the surface rises permanently to 56°F. Other meteorological conditions, such as humidity, Subsoil water, winds, etc. do not seem to have any constant effect on the prevalence of this disease.

Buchan and Mitchell's Curve (27) remains steady at about 70 per cent below the average monthly rate from the beginning of the year till June when it suddenly
begins to rise, and continues to do so till, at the beginning of August, it reaches 300 per cent above the average, and then falls again almost as quickly, reaching its former low level in November.

Dr. Moore (28) gives the figures for twenty years in Dublin, which do not show anything like such a high rise (only 15 per cent above the normal) but it is quite as abrupt. It occurs nearly a month later than in London.

The following diagram (Fig 5) based on 1719 cases brought to the outpatient department of the Sick Childrens Hospital in Edinburgh (29) in six years, 1872 to 1878 shows the same abrupt rise in August. This is well marked in each of the six years. In five of these years the numbers fall again in September, but in one year, 1878, they rise in September to the highest point (125 cases) reached in any one month in the whole series. This makes
The percentage for September much higher than it would otherwise be.

Fig. 5
(Diarrhoea of Children)

On the other side of the Atlantic it seems the epidemic occurs earlier in the summer than in this country. Professor Osler says the rise begins in May, attains its maximum in July and gradually sinks through August and September.
Acute Rheumatism. There can be little doubt that the incidence of acute Rheumatism is much affected by the season of the year, but the season is not the same in every place. Dr. Church [31] says all the collected statistics show fluctuations in the curves of its frequency during the various months of the year, which appear fairly constant in the localities where the statistics are compiled, but present great discrepancies when compared with those drawn up in other places. Dr. Newsholme [52] gives the maxima and minima at Christiania, Stockholm, Helsingfor, Berlin and Munich, but these do not coincide with what is observed in this country, nor with one another. Osler [33] says that in America and Canada the largest number of cases occur in Spring. The incidence of this disease in London is shown by the figures compiled by Dr. Gabbet referring to 2000
Cases admitted to the London Hospital in the years 1873 to 1881, and by Dr. Phillips of 1998 cases in St. Bartholomew's Hospital in 1882 to 1893. These figures are quoted by Dr. Church (34) who puts them in a tabular form. The following table, calculated from the combined figures (3998 cases admitted during twenty years) shows that there is a

(Acute Rheumatism)

<table>
<thead>
<tr>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

steady fall from the normal in January to the minimum (25 per cent under the average) in March, from which point the curve rises pretty steadily till it reaches the normal in the beginning of August, and then more rapidly to the maximum (38 per cent above the average) in October, and falls again to the
End of the year.

Pneumonia. Dr. Eustace Smith (35) holds that in seasons when the temperature is changeable and the weather damp, the disease is more common than at times when the temperature is uniformly high or low, but Dr. Pyr Smith (36) considers that cold and dry winds have more effect in causing Pneumonia. Dr. Burney (37) drew attention to the fact that Pneumonia is common during the prevalence of winds, especially in spring, from any quarter, and he points out that winds are carriers of dust as well as abstractors of heat, the latter action predisposing the individual to the action of the bacteria in the dust. Dr. Herringham (38) made careful investigation into the connection between meteorological conditions and the incidence of Pneumonia in London in 1893, and he concluded that
the three conditions which seemed to have most effect in causing this disease were first, sudden variations of temperature; second, low relative humidity; and third, the prevalence of east winds. These conditions were in operation from the end of March to the end of June, in which period nearly as many cases occurred as during all the rest of the year put together. Professor Osler (9) says that statistics, every where show that more persons are attacked from December to May than in summer and autumn, and Ulrich Stitz's statistics of 5705 cases in Munich which give 32 per cent in winter, 36.5 per cent in spring, 15.3 per cent in summer and 13.7 per cent in autumn. He also points out (40) that in Montreal the sudden changes characteristic of March, April and May are more productive of pneumonia than the steady cold of January.
Dr. Moore (41) quotes Hirsch’s figures for a large number of places in Europe and America. His average for all the places mentioned, compared with Sitz’s are as follows:

<table>
<thead>
<tr>
<th>Season</th>
<th>Hirsch</th>
<th>Sitz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring (March to May)</td>
<td>34.7</td>
<td>36.8</td>
</tr>
<tr>
<td>Summer (June to August)</td>
<td>18.2</td>
<td>15.3</td>
</tr>
<tr>
<td>Autumn (Sept. to Nov.)</td>
<td>18.3</td>
<td>15.7</td>
</tr>
<tr>
<td>Winter (Dec. to Feb.)</td>
<td>29.4</td>
<td>32.6</td>
</tr>
</tbody>
</table>

Dr. Maquaire (42) noted in Manchester a tendency to an increase in the number of cases of Pneumonia in March and April and again in October. This he said corresponded to a great extent with what had been described in Munich, and there it had been shown that not only was cold a factor in producing Pneumonia, but that there was a distinct and inverse ratio between the amount of Pneumonia in the town, and the amount of moisture in the atmosphere; the more moisture the less Pneumonia and vice versa.
Dr. More and Dr. Grimeshaw (43) distinguish very sharply between ordinary and pathogenic Pneumonia, and say that whereas the ordinary form is specially prevalent during a continuance of cold, dry weather with high winds and extreme variations of temperature, pathogenic Pneumonia reaches its maximum during tolerably warm weather accompanied with a dry air and deficient rainfall, hot sun and rapid evaporation. My own experience in this matter is somewhat exceptional. During the years I practiced in the East of India, when for several months every year the conditions are typically those which produce Pneumonia, viz: high, cold and dry winds with clear and frequent variations of temperature, I did not find that the disease was specially prevalent during the continuance of these conditions. This may be due to the fact
that the East winds blow from the sea, and consequently are not laden with bacteria to the extent they would be if they traveled over land.

The chart rate from Pneumonia as shown in Buchanan and Ritchie, Chart (44) gives a steady curve, varying little from year to year. It starts in January about 80 per cent above the average, falls slowly till the end of March, crosses the mean line in April, reaches the minimum in August, and rises rapidly during October and November.

Bronchitis. Damp and cold combined, according to Dr. Eustace Smith (45), especially where great variations of temperature occur, are fruitful causes of Cataract disorders. Dr. Ewart (46) says although sudden change to cold winds, especially north east winds are marked by a large increase of Bronchitis, it does not a/
year that these cases of bronchitis were brought on by exposure to strong winds, particularly those from the north and east. So largely tied to this use of bronchitis as might be supposed, and he gives some figures to show this.

The seasonal incidence of bronchitis in Edinburgh is illustrated by the following curve, based on 2058 cases brought to the outpatient dept.

![Graph showing the seasonal incidence of bronchitis](image)

Department of the Sick Children's Hospital in the years 1892 to 1898. From this it will be seen that by far the greatest number of cases occur in October and November, and...
that the numbers in January and February are actually below the average. It is curious that there should be such a marked rise in August. This occurs in each of the six years except one, 1874.

The deathrate in London, as shown by Buchanan and Mitchell (48), has its minimum in Summer (August). It begins to rise in September, and goes up very rapidly from the middle of October to the first week of December. It attains its absolute maximum in the second week of January, after which it falls slowly to the end of March; from this date the fall is rapid, passing the mean line at the end of April, till it reaches the minimum in Summer.

Dr. Moor (49) gives curves of the deathrate from Bronchitis in Dublin and London for 1876 to 1885, and he going out
that in both cities there is a curious dip in the death curve from the seventh to the tenth week of the year, for which he gives the following reasons: first, the recession by death at the beginning of the year of those individuals who were most susceptible to bronchitis. Secondly, the acclimatization of the surviving population to the continued cold of winter. And thirdly, the prevalence of south west winds and often stormy weather towards the close of January and early in February. With the setting in of the searching east winds of early spring, the death curve again rises at the beginning of March.

Chorea. There has been much discussion on the relation of Rheumatica to Chorea, and the point is not definitely settled. Most authorities maintain that Rheumatica is an important factor in the causation of the
disease. The seasonal incidence of Chorea is as different as possible from that of Rheumatism, but it does not follow that because the maximum incidence of one disease corresponds in season with the minimum of the other, that there is no connection between them.

Sir William Gowers (58) and Dr. R. S. Russell (57) quote Dr. Morris Lewis' figures with reference to the seasonal incidence of Chorea in Philadelphia, which may be represented by the following curve, from which it is seen.

Fig. 8

(Chorea)
that the number of cases is above the average from February to August, the maximum being in March — and below the average during the rest of the year, with a minimum in November.

Sir W. Gowers (63) says Patnam failed to trace any influence exerted by season in Boston, but that, in this country, the incidence in each quarter of the year is — first quarter, 33 per cent, second quarter 25 per cent, third quarter 20 per cent and fourth quarter 27 per cent. These figures differ from those of Lewis in making the minimum incidence occur during the third instead of the fourth quarter of the year.

Gowers (63) considers that a more distinct relation to season is seen in the occurrence of the disease, but the cases which he cites are not very conclusive on this point.
Dr. Morris Lewis (55) made a careful investigation into the relation between meteorological conditions and the incidence of cholera, but did not find that temperature, humidity, or barometrical variations had any influence on the number of cases; but he did find some correspondence between the prevalence of the disease, and the number of cloudy and especially of stormy days.

Dr. Wm. Mitchell (55) also makes the same assertion.

Icthyosis. In some years many cases of this disease are met with, while in other years there are hardly any. In those years when it is present nearly all the cases occur between December and April.

In adults, Frankel-Stockmar (58) found that out of 52 cases connected with pregnancy, lactation, and the puerperal
state, 39 occurred from January to April. In Vienna, among shoemakers and tailors, who seem to be peculiarly subject to this disease, the epidemics occur chiefly in March and April. (57)

In children, the disease occurs more frequently than among adults in this country. In New York there was almost an epidemic of poliomyelitis in young children in the first part of 1889. In the beginning of the following year there was a similar outbreak in Prague. Of 150 cases in children, Frankl-Stechewitz found that the majority occurred in February, March, and April.

Dr. John Pirie (57) gives details of 16 cases brought to the Sick Children Hospital, Edinburgh during the first four months of 1892. This was a most unusual number, only two or three cases a year had occurred previously. He found out (50) that during those months there were unusually persistent northerly and
Earthly winds of an anti-
"cyclonic character."

It is a little curious that so
few writers on this subject seem
to consider the season of the year
as an etiological factor. For
instance Sir W. R. Rivers (61) in
writing of the causes of Tetany,
makes no reference to the season.
Professor Stewart of McGill Uni-
versity (62) gives four classes of
causes, but season is not one
of them. Dr. B. Bramwell (63)
considers infantile Tetany merely
a manifestation of Rickets, while
in other patients he thinks it
probably due to a deficiency of
Thyroid secretion.

Poliomyelitis Anterior Acuta
occurs almost exclusively during
the hotter months of the year. At
these times it takes almost an
epidemic form. For instance
Medici (64) reports 29 cases oc-
curring in Stockholm between
9th August and 23rd September.
Caversley records an epidemic of 132 cases in 1894. It began in the early summer, which was said locally to be unusually hot and dry. The outbreak reached its maximum about 1st August, and ended early in October. He also states that during this time some of the lower animals (horses, dogs, and fowls) suffered in a similar manner.

Gowers (66) quotes Sinker to the effect that four fifths of the cases occur between May and September, and he cites his own cases which show an enormous increase during June, July, August and September.

Dr. Starr (67) gives a table showing the months of onset in 53 cases recorded by Barton, 235 cases by Sinker, 70 by Gowers and 94 by himself. The figures of these different observers agree in a marked way, and show but the totals into the form of a curve (fig. 9) which shows
the very rapid rise from May to August and the equally abrupt fall from August to November.

Fig. 9

Poliomyelitis Anterior Acuta

![Graph showing the incidence of poliomyelitis](image)

Spasmodus Nutans. Dr. John Howard (68)

points out that this curious affection
is mainly if not entirely due to defective light in the house, and consequently occurs much most commonly in the darkest months of the year; and he gives a chart, copied below, (Fig. 10) showing that in the cases recorded by other observers, and much

Fig. 10

(Spasmodus Nitans)

<table>
<thead>
<tr>
<th>July</th>
<th>Aug</th>
<th>Sept</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Jan</th>
<th>Feb</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

= cases reported by Dr. Thomson
= cases previously reported

now markedly in his own cases, by far the greatest number of cases occur in January, and that from
March to September hardly any cases are met with.

We thus see that each of these diseases is specially prevalent at certain seasons, and that the curve of incidence for each year, though of course not always the same, is fairly constant.

The curves for the various diseases have each their own special features; for instance, those for Smallpox, Scarlet fever and Measles are so different from each other as three curves can be: that for Smallpox being above the average during the first half of the year, and below it during the second half, whereas Scarlet fever shows the exact converse of this, while Measles shows two waves, with maxima in Summer and Winter, and minima in Autumn and Spring.

Certain diseases which have apparently no connection with each other pathologically or
Otherwise, shows a curious simile in their seasonal incidence. If we look for instance at the
curves for Scarlet Fever, Influenza, and Acute Rheumatism, we find
that the number of cases of each
of these diseases falls during the
first two or three months of the
year, remains low during the
early Summer, rises rapidly
during the hot months, attaining
its maximum about October, and
falls again to the end of the year.
Again the curve for Poliomyelitis
anterior acute shows a curious re-
simblance to that for Diarrhoea,
in suddenly running up to a
great height in August.
Buchan and Mitchell (69) show
that the death rates in certain
classes of diseases have very
similar curves; for instance
in the case of nearly all dis-
cases of the Digestive System
there is a marked increase in
the deaths in Summer, while
the curve is much below the
Average during winter: that the maximum number of deaths from diseases of the nervous system occurs in March and April; that the curves for diseases of the kidneys show an alliance with that for rheumatism; and that all diseases of the respiratory system have essentially the same curve, being much more fatal in winter than in summer. I have not been able to obtain definite statistical information as to the incidence of a sufficient number of diseases to enable me to generalize in the way Buchanan and Mitchell were able to do from the data at hand. I am therefore inclined to think that however useful and interesting it may be to know the common time of onset of individuals diseases, the arrangement of them in groups based on their seasonal incidence in contrast distinction to their death rates is not at present of much
practical values

(1) Account of the history of the

(2) Buchanan and McDonald, loc cit infra

(3) Homes in the

(4) Report 1906, vol 1

(5) For more ref. A. Homes in the

(6) B. R. A. Homes in the

(7) Practice of Architecture, 4th ed.

(8) 1878, cap 176

(9) A. R. A. Homes in the

(10) Buchanan and McDonald, loc cit

(11) Homes in the

(12) A. R. A. Homes in the

(13) J. M. Luck, British Isles

(14) B. R. A. Homes in the

(15) Smith, Victorian Houses

(16) Buchanan and McDonald, loc cit

(17) J. M. Luck, British Isles

(18) Buchanan and McDonald, loc cit
(11) Dr. W. Moore loc. cit. p. 357.
(12) Dr. Harvey Littlejohn, loc. cit. Table facing p. 28.
(13) Sir Henry Littlejohn, Annual report for 1907 p 41.
(14) W. Wilson Cheyne MD. (Alberto System of Medicine Vol I. p 614
(15) Professor Osler. Principles and Practice of Medicine 1892 p 111.
(17) Professor Osler, loc. cit. p 3.
(18) Dr. W. M. Monc. loc. cit. p 380.
(20) Dr. Otisfeld, Alberto. System of Medicine Vol I pp 806-807
(21) Annual Summary of the Registrar General for England 1890.
(22) Buchanan and Mitchell loc. cit. p 197.
(23) R. R. Stowell MD. Australian Medical Journal Feb 4 March 1895
(26) Dr. Monc. loc. cit. p 366.
(27) Buchanan and Mitchell loc. cit. p 199.
(28) Dr. Monc. loc. cit. p 370.
(29) Edinburgh Hospital Reports.
Tables at end of Vols 1 to 7.

30) Professor Osler, loc. cit. p. 391
31) Allbutt's System of Medicine Vol. III

32) Hilroy lectures, British Medical Journal, 9 March 1895, p. 528
33) Professor Osler, loc. cit. p. 270
35) Dr. Eustace Smith, loc. cit. p. 446
36) Allbutt's System of Medicine Vol. V, p. 117
37) Dr. Burney Ys, British Medical Journal 28 June 1884 p. 1246.
38) Dr. Herringsham, British Medical Journal 12 May 1874 p. 1013.
39) Prof. Osler, loc. cit. p. 511
40) Dr. Dr. 5 p. 512
41) Dr. Moore loc. cit. p. 396
43) Dublin Journal of Medical Science May 1875.
45) Dr. Eustace Smith loc. cit. p. 508
47) Edinburgh Hospital Reports
(49) Dr. Moore loc. cit. pp 400-401
(50) Sir W.R. Gowers. Disease of
the Nervous System, 2nd Edition
Vol. II. p 574.
(51) Albeeus System of Medicine
Vol. VII. p 831.
(53) Ibid. p 608
(54) Poly Clinic Jan 1887
(55) Quoted in Editorial, British
Medical Journal 9 Feb 1887 p 320.
(56) Frankl Hochsandt, Quoted by Ricie
Russell, Albeeus System of Medicine
Vol. VIII. p 49.
(57) Ibid. p 51.
(58) Ibid. p 52.
(59) Dr. Pirec, Edinburgh Hospital
(60) Ibid. p 410.
(61) Sir W.R. Gowers. Disease of the
II. p 699 15 seq.
(62) Breslaukter Retrospekt Vol. CI
 p 152
(63) British Medical Journal, 1 June
1895, p. 1197.
(64) Medicinal quoted by Prof. Oser
Principles and Practice of Medicine,
p. 831.
(65) Journal of American Medical
Association 4 January 1890, p. 1.
(66) Grant, Diseases of Nervous Sys.
(67) Dr. Starr, Albinus, System of
(68) Scottish Medical and Surgical
Journal July 1900, p. 7.
(69) Buchanan and Mitchell, loc.
cit: p. 238 et seq.

F. G. B.