Fig. 1.
Early stage of formation of the Corpus Luteum
(Human)

a. Cavity, occupied by fibrin & shed epithelium
b. Remains of follicular epithelium - membrana granulosa
c. Lutein cells arising from interstitial cells of the theca interna
d. Young blood vessels
e. Theca externa, showing fibrous ingrowth.
Fig. 11.

a. Cavity; b, remains of epithelium; c, Lutein cells in the Theca Interna.

Fig. III.

Lettering as in Fig. 11. A large amount of the follicular epithelium is shed.
Fig. 4.

a, cavity; b, remains of follicular epithelium; c, lutein cells in theca interna; d, theca interna; e, newly formed vessels.

Fig. 5.

Lettering as in Fig. 4.
Plate IV.

Fig. 6.

a, cavity; b, deep layers of follicular epithelium; c, lutein cells in the Theca interna

d, d.

Fig. 7.

c, Lutein cells forming in the internal theca (cell division apparent)
d, Theca interna, showing ingrowth of fibrous tissue
Plate V.

Human Corpus Luteum
Two days after menstruation completed.

Fig. 8.

a. cavity.
b. remains of folds. epitelium
c. cells from theca interna forming lutecial cells
d. blood vessel.
Fig. 1.
Blood pressure: cat. Effect of 2 c.c. of a 3% solution of nucleoprotein of corpus luteum.

Fig. 2.
Large rabbit: action of 2 c.c. of saline extract of corpus luteum.

Fig. 3.
Cat: Effect of nucleoprotein (corpus luteum).

Fig. 4.
Large rabbit: action of saline extract of corpus luteum.
Plate VII.

Frog Heart.

Fig. 1.
action of nucleo-protein (1 in 1000) of corpus luteum.
(In all the tracings, the time marker indicates 10 Seconds)

Fig. 2.
effect of a "Ringer" extract of fresh corpus luteum.

Fig. 3.
action of a "Ringer" extract of fresh corpus luteum.
Fig. 4.
Effect of nucleo-protein (1 in 1000) of the corpus luteum.

Fig. 5.
Effect of 1 in 1000 nucleo-protein, corpus luteum (original tracing inserted in place of photograph which does not show well.

Fig. 6.
Action of nucleo-protein (1 in 1000) of the snail liver.
Plate IX.

(The actual tracings are inserted here as the photographic did not show well.)

Fig. 7.
Effect of nucleoproteins (1 in 1000) from the corpus luteum of pregnancy (Eosin).

Fig. 8.
Effect of nucleoproteins of the corpus luteum free from lecithin & cholesterol.

Fig. 9.
as in Fig. 8.
Plate X.

Fig. 10.
As in Figs. 8 and 9.

Fig. 11.
Effect of an etherial extract of the corpus allatum.

Fig. 12.
Action of an alcoholic extract.
Plate XI.

Intestinal movements

Fig. 1.
Frog intestine – nucleo-protein of oxpan intestine

Fig. 2.
Frog Intestine – same effect as in Fig. 1.

Fig. 3.
Longitudinal strips from intestine of the cat
Action of nucleo-protein of the oxpan intestine
Fig. 1.
Strip from uterus of the Son - Effect of nucleoprotein of the Corpus Luteum.

Fig. 2.
Strip from Son's uterus - Same action as in Fig. 1.

Fig. 3.
Strip from Rabbit's uterus - Effect of nucleoprotein (20 cc) of the Corpus Luteum.
Fig. 4.
Circular strip from the Rabbit uterus (pregnant) - effect of nucleo-protein of the corpus luteum.

Fig. 5.
Strip from the Cow's uterus - action of nucleo-protein of the Corpus Luteum.

Fig. 6.
Portion of Uterine Cervix (Cow) - effect of nucleo-protein of the Ovary.
Fig. 7.
Strip from Uterus of the Sow:— Effect of
1. 2 c.c. “Ringer” extract of fresh corpus luteum.
2. Incomplete extract of corpus luteum of pregnancy.
3. 2 c.c. nucleoprotein of the corpus luteum (not pregnant).

Fig. 8.
Strip from Uterus of Sheep:— Action of 2 c.c. “Ringer” extract of fresh corpus luteum (Sow).

Fig. 9.
Strip from Uterus of Sheep:— Effect of 2 c.c. nucleoprotein of the corpus luteum.
Plate XV.

Fig. 10.
Strip from pregnant uterus (Cor). Effect of 2 c.c. of the protamine of the infusion of the uterus of pregnancy.

Fig. 10A.
Rhythmic contractions from the cornu of the uterus of the sow.

Fig. 11.
Corpus of sows uterus. Effect of Ringer’s extract of fetus corpus luteum.
Fig. 12.

Corpus (guinea pig) - action of nucleoprotein from the corpus lutenum of pregnancy.

Fig. 13.

(Fig. 12, continued)

Fig. 14.

Corpus (young sow) - effect of nucleoprotein of corpus luteum
Fig. 15.
Corns (cat) - Effect of 1) nucleo-protein of the liver (cat) 2) do do do (ovary) 3) "Ringer" extract of the thymus gland.

Fig. 16.
Corns (cat) - Effect of albumen or globulin of corpus luteum and do nucleo-protein of the corpus luteum.

Fig. 17.
Corns (guinea pig) - Action of 20 c.c. nucleo-protein of the corpus luteum of frequency.
Fig. 18.
Corpus (Cat) - Action of nucleoproteids of the corpus luteum.

Fig. 19.
Corpus (Early pregnancy) Rabbit - Influence of a Ringer's extract of the fresh corpus luteum.

Fig. 20.
Corpus (Foming sheep) - Action of nucleoproteids of the corpus luteum.
Fig. 21.
Whole Uterus (Cat) — effect of nucleo-proteids of the Corpus Luteum

Fig. 22.
Whole Uterus (Guinea-pig) — effect of 1) nucleo-proteids of liver.
2) " " corpus luteum

Fig. 23.
Whole Uterus (Cat) — action of 1) nucleo-proteids of the liver.
2) " " corpus luteum
Fig. 24
Whole uterus (Guinea-pig) -
effect of
1) nucleoprotein from liver
2) - - ovary
3) - - corpus luteum

Fig. 25
Whole uterus (cat) -
Action of nucleoprotein of the corpus luteum.

Fig. 26
Whole uterus (Guinea-pig) -
Action of nucleoprotein from the corpus luteum of pregnancy.
Plate XXI.

Whole Uterus (early pregnancy) Rabbit.

Fig. 27. Action of nucleo-protein of corpus luteum.

Uterus in Site

Fig. 28. Uterus of the Cat. — Effect of nucleo-protein of the corpus luteum.

Fig. 29. Uterus of the Rabbit — Action of nucleo-protein of the corpus luteum.
Plate XXII.

Fig. 30.
Continuation of Fig. 29.
- action of nucleo-proteids
- adrenalin

Fig. 31.
Urine of the Rabbit
- Influence of nucleo-proteids of liver (I)
- corpus lutenum (II)

Fig. 32.
(Fig. 31, continued)
- increased action from nucleo-proteids of
corpus lutenum
Fig. 33.
(Fig 32 continued)
- increased action from nucleos protein of the corpus luteum & from its perch extract.

Fig. 34.
Uterus of the cat.
- effect of nucleos protein (Corpus Luteum)

Fig. 35.
Uterus of Rabbit - early pregancy:
- effect of
 I or II alcoholic extract (Corpus Luteum)
Fig. 36.

Fig. 35 continued - increased uterine action from two parts Ringer extract.

Fig. 37.

Fig. 36 continued.

Fig. 38.

Fig. 37 continued.