Histological Changes in the Kidney.

Produced by

The Action of Drugs.

Thesis submitted for the Degree of

Doctor of Medicine

in the University of Edinburgh

by

William Kinnear M. A. (St. And.) 1884.

M. B. C.M. (Edin.) 1888.

1901.
HISTOLOGICAL CHANGES IN THE KIDNEY
PRODUCED BY
THE ACTION OF DRUGS.

Introductory.

Apart from physiological investigations numerous researches both pathological and pharmacological have been made on the action of drugs on the kidneys. These organs, being the main excretory glands of the body, occupy a peculiar position with regard to the action of drugs. Every or nearly every substance absorbed into the blood is excreted wholly or in part by them, consequently they are not unfrequently acted upon, and, if the substance be present in large amount, they may undergo considerable change.

Some particular drugs, especially of the irritant class, have a marked influence, and in large doses cause congestion and inflammation; but others, whose predominant action is elsewhere, frequently affect the kidneys also. It is not difficult to understand why this is so. At the present day the tendency is to regard the action of drugs, broadly speaking, as a general one, and doubtless in the majority of instances this is in the main correct; for once a drug is in solution in the blood it bathes all tissues alike, and the difference between the fundamental living basis of different cells is not so great that the majority of drugs can demonstrate it.
In other words the selective action of most drugs simply means preponderating effect. When excessive doses of drugs are given their action becomes widely diffuse, they tend to become protoplasmic poisons and affect most of the tissues. The kidneys owing to their position are readily affected; but it must be admitted that they possess a peculiarly resistant structure. The renal cells may however, if Albrechts' investigations are correct, be modified by comparatively simple means, for after the injection of strong saccharine solutions into the intestine he found distinct changes in the renal cells on the following day.

PATHOLOGICAL CHANGES PRODUCED BY DRUGS IN THE KIDNEY.

Speaking generally the pathological change produced by poisons in the cells of the kidney is necrosis; cloudy and fatty degeneration hitherto believed to be common are comparatively rare or late in appearing. The renal cells lose their contour, the protoplasmic-contents especially around the nucleus--break up and disappear, the nucleus itself diminishes in staining power and becomes eccentric in position, and later the whole cellular contents decompose and disappear.

In my own investigations these changes are most obvious in the Digitalis specimens, and they are also to be seen in their very early stages in the specimen (The numbers refer to references at the end).
obtained from the animal killed with Ethylidene Urethane.

It is not always the cells of the convoluted tubules that are mainly affected. The glomeruli in some cases are the parts that have undergone the most marked change, while in chronic intoxications, as in plumbism, alcoholism, &c., the interstitial tissue is the most obviously affected. To a certain extent the changes produced are dependent upon the dose and the length of time the kidney is acted upon.

Cantharidin, for instance, in large doses rapidly produces a glomerulitis, while in small continued doses it produces distinct interstitial changes.

Other drugs -- e.g., Bichromate of Potassium -- producing primarily changes in the cells of the convoluted tubules also produce interstitial changes when given in small doses over a long period. Others again -- e.g., Aloin -- seem to act upon the three parts in a more uniform manner.

The number of substances producing changes in the kidney is large. All the heavy metallic salts in toxic doses produce kidney lesions, some of them of a more or less specific character and the large class of irritants is especially active in causing inflammation of this organ. Of these the volatile oils and the allied resins are of most importance. Many substances belonging to the simpler members of the aromatic group are also fairly active, -- Naphthalin and its hydroxyl-derivative Naphthol seem to be especially powerful in causing acute nephritis when
administered for some time, as are also the anthracene derivatives found in some vegetable purgatives.

The so-called blood poisons, too, seem to have some influence on the kidney but it is doubtful if this is independent of their purely irritant action.

Hitherto no classification of the pathological effects of the action of drugs on the kidney has been possible. In the main this is probably due to the absence of special investigations in this department for although much work with single drugs has been done by pharmacologists and pathologists the question of dose and other conditions in the separate investigations are too varied to serve for this purpose.

One thing however is apparent and that is that substances closely allied chemically may produce very different effects upon the kidney. Besides the inflammatory changes -- the glomerulitis, the necrotic changes in the cells, and the interstitial changes -- the kidney may undergo others; thus Phosphorus poisoning produces fatty degeneration of the renal cells, and as a result of Oxalate poisoning crystals of Calcium Oxalate may be deposited in them. But perhaps the most interesting is the calcification resulting from the administration of certain salts -- Mercury, Bismuth, and Chromium -- and also occurring, it is said, after Aloin and Glycerin. This subject has excited considerable interest and quite recently it has been re-investigated by Dockray and Karvonen independently.
CALCIFICATION OF KIDNEY. -- HISTORY.

The subject was first noted by Pavy in 1861, and later was investigated by Saikowsky who found that after doses of Corrosive Sublimate an infiltration of the straight tubules with a deposit of calcareous salts took place. He also found that hypodermic injection of the poison gave the best results and that the longer the animal lived the greater was the calcareous deposit.

For many years afterwards the action of Mercury in this direction was almost alternately denied and confirmed. Rosenbach produced calcification in only about one-third of his experiments; Balogh and Lazarevic and Schlesinger failed to produce it at all; Heilborn found it in the straight tubules, as also did Jablonowsky and Doleris and Butte. It has also been found in man. Prévost in a fatal case of poisoning by Mercuric Nitrate in a man aged 73 found it in the straight tubules of the kidney, and afterwards he obtained the same result experimentally in various animals. He lays great stress on the effect of Mercury on the bones in which the metal was nearly always found and in some investigations with Frutiger he says that the weight of the bones was notably diminished. He therefore concluded that the lime salts found in the kidneys were derived from the bones.

It was thus thoroughly established that Mercury produced a calcareous deposit in the kidney and it
now became the object of investigations to determine the cause and nature of the process. As early as 1880 Litten produced calcification of the kidney by ligature of the renal artery, which was removed after two hours. The sudden anaemia produced by the ligature caused necrosis of the cells and then the removal of the ligature allowed blood and lymph to be freely supplied to those cells and thereby it was thought calcification was produced. He maintained that as long as the cells were alive no calcification could occur; he also affirmed that only in cells killed by anaemia could calcification take place. These experiments were confirmed by Grawitz and Israel, and by Von Werra. Klemperer in giving the results of his experiments accepted Litten's theory. He said that Mercury first produced a necrosis of the epithelium of the convoluted tubules which was due to an arterial anaemia caused by the formation of thrombi in the capillaries, and that after the cells were necrosed they retained the lime salts contained in the blood and lymph passing through them; he thus disagreed with Prévost's theory that the lime salts were derived from the bones. He attributed the irregular manner in which the deposits occur to the supposition that they were in the areas supplied by the thrombosed capillaries.

Klemperer altogether disagreed with Kaufmann's anaemic necrosis theory. He found that Mercury quickly produced an inflammatory process which
finally resulted in necrosis of the cells, this was
accompanied by a calcareous deposit commencing in
casts filling up the straight tubules and gradually
spreading to the convoluted tubules. He held that
the necrosis of the cells was due to the direct act-
ion of the Mercury upon them while they were excreting
it. Round the necrotic areas the epithelium was not
normal, as one would expect under the anaemic necrosis
theory, but more or less cloudy and swollen; capillary
thrombosis was never observed. Klemperer also dis-
agreed with Prevost's theory of the origin of the de-
posit of lime as he could find no marked increase of
degenerative changes are due to the direct action of
the mercury on the individual cells. Heidckain:26
"The cells being dead an active secretion of lime is
"not to be thought of, and I would rather attribute it
"to an increased diffusive power. The necrosis has
probably excreted by their cells, and hence is due,
changed the constitution of the epithelium in such a
way that it allows more lime to be diffused than be-
fore".

Falckenberg23 and Leutert also rejected Kaufmann's
theory. Leutert24 in a long and elaborate paper ex-
pressed his views as follows:-

(I) The cells were acted upon directly by the mercury,
and were altered as regards their lime-secreting power.

(II) The calcareous changes are due to an impregnation
of lime salts and not to an increased discharge of
tissue fluids, or a precipitation of these salts, previously held in
solution, by a physico-chemical change supervening in
the cell protoplasm;
(III) Part of the lime is deposited in the altered but still living cells which remain attached to the basement membrane, part is secreted in the lumina of the tubules and is precipitated on the various organic casts there, being unable to escape.

(IV) If the living calcified cells die they become detached from the basement membrane and either lie free in the lumina of the tubules or run together to form a second set of lime casts.

Dockray, who made many experiments on rabbits and rats, is also strongly of opinion that the primary degenerative changes are due to the direct action of the mercury on the individual cells. Heidenhain has shown that the convoluted tubules are the active secretory portion of the kidney; the mercury is probably excreted by their cells, and hence is due, Dockray thinks, the preponderating amount of necrosis and subsequent calcification in the cells of these tubules.

His general conclusions are:

(I) That calcification is a pathological process which may occur in necrobiotic or necrosed cells or tissues, provided that they are supplied with a nutritive fluid of one kind or another which contains lime salts in solution;

(II) That this process of calcification, or, more correctly speaking, calcareous impregnation, consists of a precipitation of these salts, previously held in solution, by a physico-chemical change supervening in the cell protoplasm;
(III). That a chemical change has occurred is proved by the alkaline reaction of the cell, and this alkalinity is probably due to the diminution or absence of metabolism setting free an insufficient amount of Carbonic Acid; and

(IV). That whilst this physicochemical change will elucidate many points in connection with this process of calcification, yet it will not explain all the facts, and we must still admit that death involves the loss of many vital functions of which as yet we know nothing.

Karvonen's experiments with mercury gave similar results; he found that there was first a necrosis of the cortical tubules, especially of the convoluted ones, with abundant formation of casts, and then calcification of the tubular epithelium and of these casts; interstitial nephritis was usually also present. Chronic cases interstitial changes were far more marked. I have already stated that other substances besides Mercury have been shown to produce calcification of the kidney. Litten caused it by ligature of the renal artery. Kabierske found crystals in the kidney -- probably composed of salts of lime -- after the administration of Potassium Bichromate; this was also observed by Neuberger. Gottschalk found that aloes produced changes similar to those caused by mercury. -- first necrosis and then calcification of the convoluted tubules chiefly; this was again confirmed by Neuberger.
Cohn* and Mürset also noticed epithelial necrosis after aloe but do not mention the presence of calcification.

Bismuth Subnitrate was observed by Langhans to produce calcification of the kidney preceded by glomerular nephritis; Neuberger has also observed this.

Affanassiew by injecting glycerin directly into the kidney of a rabbit succeeded in producing calcification. Kober after very chronic poisoning with manganese lasting several months found calcification of the kidneys.

Charcot and Gombault experimenting with lead, found in acute cases both in the convoluted and in the straight tubules a cloudy swelling of the protoplasm along with a proliferation of the nuclei, and in these altered cells calcareous matters were present. In chronic cases interstitial changes were far more marked. Prévost and Binet repeated and corroborated these experiments.

Phosphorus was found by Ziegler and Oblonowsky to produce fatty degeneration of the epithelium of the convoluted tubules, but they saw no calcification. This however has been observed after phosphorus poisoning by Paltau, Neuberger, and Leutert who again saw no fatty degeneration. And this coincides with what Dockray and other observers have pointed out, namely that fatty degeneration cannot co-exist with calcification because in the latter condition the cells have an alkaline reaction.
Calcification requires some time for development, but although comparatively common it does not always follow that a substance which produces necrosis of the secretory cells will produce calcification also. In the only case of subacute poisoning (viz. digitalis) I have investigated, although there was necrosis of the cells no trace of calcification was to be seen.

ERRATIC DISTRIBUTION OF PATHOLOGICAL LESIONS.

A marked peculiarity of the action of drugs upon the kidney is the somewhat erratic distribution of the pathological areas in certain cases. This is mainly seen when the substance has been acting for a short time only. Certain areas of the kidney seem to be more affected than others and this has been attributed to differences in the blood supply — some of the smaller arteries being more contracted than others and thus leading to a lessened supply of the poison to these parts. Whether this is the primal cause or not it appears to be due to a difference in functional activity of different parts of the kidney at one and the same time. The condition is well seen in the arrangement of the calcified parts of one of Dockray's specimens in the possession of Professor Marshall which I have examined. It is also noteworthy in one of my specimens, -- the kidney of a guinea-pig subjected to digitalis poisoning with digitalis. (Fig. 1.). This is interesting in that the poisoning was what we might term chronic --
digitalis in large doses had been repeatedly given — and not acute. Chronic poisoning in the great majority of cases gives rise to a more uniform appearance in the pathological changes. Professor Marshall, St. Andrews University, nearly all of them were obtained from animals poisoned by large doses (acute) of drugs. After death the kidneys and other tissues were hardened in Müller's fluid or in alcohol, and were subsequently cut on a freezing microtome or after embedding in paraffin. As staining agents Haemalum and Eosin or Orange were used and in the Müller-hardened specimens Oxalic acid was also employed.

DIGITALIS.

The largest number of experiments were made on digitalis poisoned animals to some of which nitro-glycerin had also been given as an antidote. Although this substance probably has an action on tissues apart from its special effect on blood vessels it did not seem likely that the doses given in these experiments, being very small and in all except a few cases given once only, would exert much influence in this direction, and this proved to be the case. The tissue changes found in the number examined showed a marked similarity whether nitro-glycerin had been given or not. Professor Marshall tells me however that in experiments where the urine was being collected immediately after the injection of the drug — as
PERSONAL EXPERIMENTS.

The kidney specimens I have examined were kindly placed at my disposal by Professor Marshall, St. Andrews University. Nearly all of them were obtained from animals poisoned by large doses (acute) of drugs. After death the kidneys and other tissues were hardened in Müller's fluid or in alcohol, and were subsequently cut on a freezing microtome or after embedding in paraffin. As staining agents Haemalum and Eosin or Orange were used and in the Müller-hardened specimens Osmic acid was also employed.

DIGITALIS.

The largest number of experiments were made on digitalis poisoned animals to some of which nitro-glycerin had also been given as an antidote. Although this substance probably has an action on tissues apart from its special effect on blood vessels it did not seem likely that the doses given in these experiments, being very small and in all except a few cases given once only, would exert much influence in this direction, and this proved to be the case. The tissue changes found in the number examined showed a marked similarity whether nitro-glycerin had been given or not. Professor Marshall tells me however that in experiments where the urine was being collected immediately after the injection of the drugs - as
when a cannula was introduced into the bladder --
blood tended to appear more abundantly when a vaso-
dilator like nitro-glycerin was given with or before
the digitalis than when the digitalis was given alone.
Perhaps this may be explained by the fact that the
dilated vessels allowed a greater quantity of digit-
alis to pass through the kidney and act as an irrit-
ant. But whatever the explanation may be, the real
changes were undoubtedly due to digitalis poisoning
and not to nitro-glycerin.

The preparation used in the experiments was
French digitalin, on account of its purity and because
it is more soluble in weak alcohol than is digitoxin.

History.
I have been unable to find any literature bearing
upon this subject. In 1897 Hare and Coplin investi-
gated the changes produced in the pig's heart by
means of long continued administration of small doses
of digitalis but this has no bearing upon my own
research.

EXPERIMENTS.
Experiment I. Guinea-pig, 480g.
.4 c.c. 2% digitalin (.83g. per Kg. bodyweight) +
1 c.c. 1 in 500 nitroglycerin + 6 c.c. H₂O injected
into right side.
After 25' weakness noticed which gradually increased
After 45' respirations deeper with tonic convulsions.
After 62', the breathing having almost stopped, 1 c.c.
1 in 500 nitroglycerin was injected; breathing improved for \(\frac{1}{2} \)". Died in 64'.

P. M.
Heart. Auricles and right ventricle dilated; left ventricle contained blood.

Other organs apparently normal.

Microscopic Examination of Kidneys.

Well marked patchy staining. In the unstained tubules no definite formation to be made out at all, nuclei in them slightly stained. Stained tubules show granular appearance, their nuclei seem to be fairly normal. Glomeruli somewhat shrivelled but less distinctly so than in subsequent specimens. Blood corpuscles not markedly shrivelled.

Experiment II. Guinea-pig, 560g.

.47 c.c. 2% digitalin (.8g per Kg body weight) + 1.53 c.c. \(\text{H}_2\text{O} \) injected into left side.

After 25' weakness noticed, gradually increasing.

After 30' inspirations fuller, passing into inspiratory dyspnoea after 60'.

Died after 82'.

P. M.
Heart. Auricles dilated; ventricles contained blood. Rest of animal apparently normal.
Microscopic Examination of Kidneys.

Staining patchy. Some tubules more distinctly stained than adjoining ones. Most of the nuclei irregular; protoplasm granular. Halo around nucleus in a few instances in the badly stained patches. In the well stained patches no distinct granulation of protoplasm is shown; no halo round nuclei which are somewhat irregular.

Degenerative changes of the cells not so marked as in subsequent specimens. See Fig. I. p.37.

Experiment III. Guinea-pig. 462g.

.4 c.c. 2% digitalin (.87g. per Kg body weight)+ 4.6 c.c. H2O injected.

After 14' weakness and tremors noticed, weakness gradually increased.

After 30' heart beats irregular with uncountable pulse; respirations gasping.

After 34' respiration stopped, but an occasional heart beat.

After 36' heart stopped.

P. M.

Heart. Auricles and right ventricle dilated; left ventricle slightly dilated.

Other organs apparently normal.
Microscopic Examination of Kidneys

Some of the tubules totally denuded of their cells with nothing but basement membrane left.

Very marked cellular degeneration.

Glomeruli markedly wrinkled but not contracted.

Experiment IV. Guinea-pig. 462g.

0.4 c.c. 2% digitalin (.87g. per Kg. bodyweight) + 4.6 c.c. 1 in 1000 nitroglycerin injected.

After 14' weakness noticed.
After 17' rigors with head on one side.

After 25' dyspnoea; 5 c.c. 1 in 1000 nitroglycerin injected; heart irregular, beating in periods of 5, with 2 - 4 beats missed.

Other organs apparently normal.

Died after 30'.

P. M. Heart. Auricles and right ventricle much dilated

left ventricle fairly so. 461g.

Other organs apparently normal. 1 in 1000 nitroglycerin injected.

Microscopic Examination of Kidneys.

Marked degeneration of cells. Cells and nuclei present a somewhat coagulated appearance. Tubules in some places represented only by a network, while adjacent tubules are practically unaffected. Glomeruli somewhat shrivelled.

A preparation, stained with Haemalum only, shows dilatation of capillaries in parts, with the blood corpuscles wrinkled and contracted.

Pulse now beating in groups of 3 - 4.

After 106' pulse irregular, beating 8-90 there was then an interval, breathing lab.
Experiment V. Guinea-pig. 452g.

.2 c.c. 2% digitalin + 4.8 c.c. H₂O injected.

After 45' considerable weakness noticed with somewhat laboured respiration.

After 85' slight clonic convulsions.

After 90' pulse very irregular, breathing irregular and slow, conjunctival reflex gone.

After 91' breathing stopped.

After 93' Heart stopped.

P. M. Heart. All the chambers, especially the right ventricle, dilated.

Intestine. Half of small intestine pink and filled with slightly red gelatinous mass.

Other organs apparently normal.

Microscopic Examination of Kidneys.

See next case.

Experiment VI. Guinea-pig. 451g.

.2 c.c. 2% digitalin + 4.8 c.c. 1 in 1000 nitroglycerin injected.

After 45' slight weakness noticed which increased until after 60' the animal was quite collapsed and 5 c.c 1 in 1000 nitroglycerin were injected.

After 65' it was better, though weaker than before the injection, and occasionally made a rush.

After 72' it fell off the table. It then got gradually weaker and after 95' lay flat on venter but still tried to walk.

Pulse now beating in groups of 3 - 4.

After 106' pulse irregular, beating 8-20 times and then an interval; breathing bad.
After 110' pulse very irregular and feeble; gasping breathing. Died after 117'.

P. M. Heart dilated.

Intestine. First half of small intestine pinkish and filled with yellow gelatinous stuff. Other organs seemed normal.

Microscopic Examination of Kidneys.

In these last two cases the conditions were very much alike.

Glomeruli wrinkled and contracted. Very marked degeneration of tubular cells, in parts nothing of them remains but a coarse network.

Nuclei shrivelled and embedded in the protoplasm remaining at the base of the cells; they present a somewhat coagulated appearance, chromatin being collected peripherally.

Blood vessels dilated.

Experiment VII. Guinea-pig. 546g. 1 c.c. 2% digitalin + 4.9 c.c. H₂O injected.

This had practically no effect.

Four days afterwards. 0.15 c.c. 2% digitalin + 4.85 c.c. H₂O injected.

After 1 hour appreciable weakness noticed which gradually increased for another hour; the animal then got gradually stronger until 3 hours after the injection it was quite well again.

Next day. 0.175 c.c. 2% digitalin + 4.825 c.c. H₂O injected.
After 50' weakness noticed which gradually increased, but after 2 hours the animal began to get stronger again and became quite well.

Six days afterwards. '175 c.c. 2% digitalin + 4.825 c.c. 1 in 1000 nitroglycerin injected.

After 25' shivering and weakness noticed, the weakness increasing.

After two hours heart irregular and some inspiratory dyspnoea.

After 2 1/2 hours heart began to beat more forcibly, though irregularly, and the strength to improve till after 5 hours the animal was pretty well.

Next day. .175 c.c. 2% digitalin in 2 c.c. saline solution injected.

Weakness after 1 hour, but animal could move about.

Quite well after 3 hours.

Two days afterwards. .175 c.c. 2% digitalin + 1.5 c.c. saline solution injected.

Animal a little out of sorts but never really bad.

Next day the same amount of digitalin and saline solution was injected with the result that the animal was merely a little weaker than it was the day before.

For the next 40 days the same dose was repeated daily, each day with less effect.

Then for two days it got .18 c.c. 2% digitalin each day, and for another two days .19 c.c. each day with very little effect.

Then after a day's interval .2 c.c. 2% digitalin was injected.
After 20' animal perceptibly weaker and cyanosed.
After 40' still weaker but could run about.
After 1 hour it could walk but was shivering and re-
ained about the same all day.
Next day. .21 c.c. 2% digitalin+saline sol. to 2
c.c. were injected and the animal died in 12 hours.
This animal had digitalin injected 17 times during a
period extending over 27 days.
P. M.
Weight now 460g.

Absence of fat in body cavities.

Heart. Right ventricle dilated; left ventricle midway
between diastole and systole; dilatation of auricles
doubtful.

Lungs. Congested in places.

Liver. Dark in colour; gall-bladder contained pale
bile.

Spleen. Contracted and bloodless.

Stomach. Fairly distended with flatus and a pale
yellow shreddy material in a pale acid fluid; on
emptying and washing out there were long shreds of
mucous membrane. Punctiform haemorrhages on lesser
curvature. Large portion of greater curvature devoid
of mucous membrane.

Intestines. Duodenum normal.

Jejunum. Upper portion congested.

Ileum and large intestine normal.

Kidneys. Pale. Left injected, small haemorrhage
on surface. Right congested.

Bladder. Contracted.

Brain etc. Normal.
Microscopic Examination of Kidneys.

Glomeruli contracted. Vacuolisation of cells everywhere very well marked, the protoplasm being almost entirely gone. Nuclei small and somewhat irregular in contour. These changes in the cells more marked along the straight tubules. Blood pigment in lumen. Marked dilatation of larger vessels in some parts. A few apparent haemorrhages.

See Fig. II.

Experiment VIII. Guinea-pig 505g.
.1 c.c. 2% digitalin+4.9 c.c. 1 in 1000 nitroglycerin injected. This produced no effect.

Four days afterwards .15 c.c. 2% digitalin+4.85 c.c. 1 in 1000 nitroglycerin injected.

After 1 hour weakness observed, but after another hour the animal began to improve and after 3 hours was quite well.

Next day. .175 c.c. 2% digitalin+4.825 c.c. 1 in 1000 nitroglycerin injected.

After 50' weakness observed which gradually increased.

After 2°5' heart irregular; convulsions.

Died after 2°23'.

P. M.

Heart. Auricles dilated; ventricles moderately so, the left being the more contracted.

Mesenteric veins dilated.

Other organs apparently normal.
Microscopic Examination of Kidneys.

Glomeruli present a slightly shrivelled appearance but no distinct contraction.

Nuclei generally slightly contracted and show a slight halo round them.

A few dilated vessels.

Experiment IX. Guinea-pig. 176g.

.63 c.c. 2% digitalin injected.

After 19' feeble tremors noticed.

After 41' strong action of bowels.

After 48' tetanic spasm of hind legs; pulse irregular.

Died after 67 minutes.

P.M. Haemorrhagic congestion at point of injection.

Heart. Left ventricle in systole.

Lungs. Pale.

Spleen. Very pale.

Liver. Somewhat pale. Blood from liver showed irregularities in contour of red blood corpuscles, many being mulberry-like.

Stomach. Pale.

Kidneys. Rather pale if anything.

Microscopic Examination of Kidneys.

Some glomeruli contracted, some dilated.

Nuclei somewhat irregularly shaped.

Experiment X. Guinea-pig. 162g.

.56 c.c. 2% digitalin + .5 c.c. 1% Caffein injected.

After 16' very feeble tremors with irregular pulse.

After 30' animal very ill and could not move.

After 35' tetanic twitchings of hind legs.

Died after 40'.
Slight haemorrhage at point of injection.

Organs anaemic except liver and kidneys.

Blood corpuscles markedly crenate.

Microscopic Examination of Kidneys.

Glomeruli contracted in many places.

General mass of tubular epithelium not markedly altered.

No distinct lumen in most tubules and cell borders not well defined. Tendency to vacuolisation in cells, especially round nuclei which are mostly irregularly shaped. Nuclei and basement membrane distinct. A few tubules unstained and yellowish, fairly sharply marked off from surrounding tubules. Many vessels distended with blood; small haemorrhage in one part.

Microscopically there have been observed extensive cloudy swelling of the epithelium, the nuclei still retaining its staining power, nuclei of the epithelium, calcified infarction of the convoluted tubules; yellowish pigment flakes particularly in the straight tubules; degeneration, and in many cases disintegration, of the cells of the convoluted tubules, the protoplasm, especially round the nucleus, tending to break up and in some cases to disappear entirely, and the nuclei to lose their contour and become irregularly shaped. The cells of the straight tubules are not usually distinctly affected. The blood vessels apart from the glomerular tufts, are dilated in most parts of the kidney and occasionally slight haemorrhages are to be seen.
In one case (Experiment VII) curiously enough it was found that repeated dosage of nearly toxic amounts day by day did not lead to death; on the contrary by gradual increments the toxic dose was slightly exceeded before death occurred. In this case exactly similar changes were found in the Kidneys to those in the others and not to an appreciably greater extent.

SULPHONAL.

History.

It has been found that prolonged administration of this drug often causes albuminuria with tube casts, and after a few doses haemorrhages in the kidney have been noticed.

Microscopically there have been observed extensive cloudy swelling of the epithelium, the nucleus still retaining its staining power; necrosis of the epithelium; calcareous infarction of the convoluted tubules; yellow pigment flakes particularly in the straight tubules but also in the convoluted tubules, and white and disintegrating red corpuscles in them.

Haematoporphyrinuria, so frequently obtained in man, does not usually occur in animals poisoned by Sulphonal; Neubauer38 however found it in rabbits after large doses, and Stokvis39 also obtained it, but Kast and Weiss40 did not.
Experiment XI. Rabbit, 1460g.

4.3g. sulphonal (3g. per Kg. body weight) suspended in mucilage injected into stomach.

After 30' slight depression observed, quickly becoming more marked.

After three hours corneal reflex still present.

Died during the night.

P. M. Nothing distinctly abnormal.

Microscopic Examination of Kidneys.

Glomerular capsules well filled.

Some vascular dilatation, but less than that observed after chloral.

Cells of convoluted tubules slightly swollen in parts, nuclei large and rounded.

TETRONAL.

History.

The effects produced by this drug have been found to be almost identical with those produced by sulphonal.

Experiment XII. Rabbit 1990g.

5.97g. tetronal (3g. per Kg. body weight) suspended in mucilage injected into stomach.

After 30' slight weakness and depression noticed, which gradually increased.

Died after 45 hours.

P. M. Haemorrhagic infiltration of upper lobe of left lung and adjacent part of lower lobe.

No other distinct macroscopic change.
Microscopic Examination of Kidneys.

Cortex markedly congested.

Glomerular capsules well filled.

Renal cells in some parts swollen.

Capillaries markedly dilated all over; some appear to have burst into the interstitial tissue.

CHLORAL HYDRATE.

History.

The kidney has been found to undergo the same degenerative changes as the rest of the tissues after the continued administration of this drug. An explanation of these has been sought for in the increased acidity of the urine, chloral being excreted as urocholoralic acid.

Experiment XIII. Rabbit, 1260g.

1g. chloral solution per Kg. body weight injected into stomach.

After 9' signs of intoxication on movement.

After 16' asleep.

After 30' completely under the influence of the drug; heart markedly dilated.

Stomach, Severe inflammation with haemorrhagic conjunctival reflex gone.

After 18½ hours markedly comatose with an occasional respiratory gasp (7-8 per minute).

Died after 20 hours.

Microscopic Examination of Kidneys.

Stomach somewhat congested, with 3 or 4 small ecchymoses.

Renal cells swollen, hardly any lumen to be seen in some of them.

Other organs apparently normal.
Microscopic Examination of Kidneys.

Glomerular capsules well filled, a few slightly contracted.

Dilatation of vessels in many parts, and in a few places small haemorrhages into the surrounding tissue.

No definite cellular change; nuclei rounded and well marked.

After 30' asleep.

After 8 hours cremal reflex disappeared.

Died after 9 hours.

BROMAL HYDRATE.

History.

I have found no previous record of the effect of this drug on the kidneys.

Experiment XIV. Rabbit 870g.

.14g. bromal hydrate (.5g per Kg bodyweight) given in water per os.

After 45' slight weakness noticed; animal lay on venter.

No distinct narcosis but became weaker and died after 140'.

P. M.

Heart markedly dilated.

Stomach. Severe inflammation with haemorrhagic infiltration.

Internal organs (liver, spleen, &c.) dark and congested.

Microscopic Examination of Kidneys.

Distinct congestion practically all over.

Glomerular capsules very well filled.

Renal cells swollen, hardly any lumen to be seen in some of them.
ETHYLIDENE URETHANE.

History.

No previous history found.

Experiment XV. Rabbit 720g.

1.8g. ethylidene urethane (2.5g per Kg. bodyweight) suspended in mucilage injected into stomach.

After 15' weak and depressed.

After 30' asleep.

After 2 hours corneal reflex disappeared.

Died after 9 hours.

P.M.

Bladder has numerous small petechiae, and urine contains blood corpuscles.

Other organs apparently normal.

Microscopic Examination of Kidneys.

Marked congestion.

Glomerular capsules full.

Cells generally speaking rather swollen; examined with oil immersion they show a curiously vacuolated appearance, especially around the nuclei.

ETHYL LACTATE.

History.

No previous history found.

Experiment XVI. Rabbit, 570g.

2.3g (4g per Kg bodyweight) ethyl lactate in 15 c.c. H₂O given per os.

After 1 hour weak and apparently sleepy.

After 1°20' fell on its side when it attempted to move.

Died after 2 hours.
P. M.

No obvious changes.

Microscopic Examination of Kidneys.

Slightly contracted glomerular tufts.

Capillaries dilated towards medulla and outlet of tubules.

Cells swollen.

PILOCARPINE.

History.

No changes in the kidney, as far as I am aware, have been described, notwithstanding the large amount of histological work done in connection with this drug.

Experiment XVII. Rat.

0.02g pilocarpine (as NO₅) (3 c.c. 6% pilocarpine) solution injected into peritoneal cavity.

After 2' weakness and depression, with deeper respiration noticed.

After 3' distinct salivation, gradually increasing.

After 4' pupils contracted; slight tremors which soon became more marked.

After 12' dyspnoea mostly inspiratory; pupils less contracted.

After 32' salivation very marked, respirations deeper and slower; lay with chin on ground.

After 52' somewhat better.

After 67' salivation less; dyspnoea passing away.

After 92' no salivation; very much better.

After 142' almost normal. Killed.
P. M.
Submaxillary glands pale and enlarged.

Microscopic Examination of Kidneys.

Nothing abnormal.

The substances investigated in these experiments are not linked by any chemical or therapeutical connection but have been taken as types of drugs in constant use. The experiments show that in doses just toxic most of the substances exert a distinct action on the kidney, thus supporting to some extent the view of a general action of poisons.

Of the drugs investigated digitalis produces the most marked effects and these have been sufficiently described. From its composition we might expect ethylidene urethane to produce kidney lesions but it would have been difficult to conjecture the influence of bromal hydrate except from its somewhat irritant effect. The negative result from pilocarpine is probably due to the fact that, notwithstanding the comparatively large dose, the effect was slight and transient and the animal was not killed until an hour after the symptoms had passed away.

It is perhaps necessary to add that microscopic examination of the kidneys of normal animals was made and that in all cases normal and pathological tissues were compared.
References.

5. Eliaschoff: Virchow's Archiv. vol. 94 p. 323.

8. Weigert: Virchow's Archiv. vol. 70 v. 72

9. Posner: Virchow's Archiv. vol. 79

14. Pavy: Guy's Hospital Reports, 1861.

17. Prévost et Frutiger: "Etude expérimentale relative à l'intoxication par le mercure. Calcification des reins parallèle à la de calcification des os". Revue médicale de la Suisse romande. 1883.

36. Baltauf: "Ueber Phosphorvergiftung".
37. Hare: Therapeutic Gazette, 1897, p. 800.
 Bd. XLIII. S 456.
 621. (Cf. also Vanderlinden et De Buck:
 Arch. de Pharmacodyn: Vol. I p. 431.)
Fig. I.

Drawn with Abbe camera from guinea-pig (Experiment II). Leitz objective 1/4; ocular III. (X 110)
Fig II.

Drawn with Abbe camera from guinea pig (Experiment VII). Leitz objective 1/6; ocular III. (X 390).