Candidate's Thesis for Degree of Doctor of Medicine.

Subject. "Some considerations to be taken by a Medical Officer of Health in the construction of a Fever Hospital for a town or district of 50,000 inhabitants, the population being on the increase."

Since the construction of a Hospital for infectious diseases is so frequently required at the present day, it seems a Medical Officer of Health may be called upon to help the Local Authority of the district in which he may reside with suggestions upon the erection of such a Hospital. I have ventured to think that the subject embraced under the above title will not be unsuitable for discussion in a Thesis for the degree of Doctor of Medicine by a candidate holding a Diploma of Public Health.

The first question perhaps to consider..."
is the size of hospital & number of beds required for the above population? To
decide this, it will be necessary to know
what diseases are to be treated in it.
There can be no question with regard
to the desirability of admitting Scarlet
fever, diptheria, typhus & I think enteric
fever also.
At present a large proportion of enteric
fever cases are treated in the wards
of general hospitals or at home.
It would be much better if all cases of
this fever occurring among the poorer
classes should be treated in an Infectious
Hospital. That they should be removed
from their own homes to some place where
they can be nursed with due antiseptic
precautions, there can be no doubt; for it
is impossible for the untrained attendant,
as usually found in the houses of the poor,
to nurse these cases with sufficient
cleanliness to avoid great risks of
contracting the disease. In Stafford
where the complaint has been endemic
for many years, we frequently see many
Another instance of the very probable spread of enteric fever from the patient to an attendant has just been brought to my knowledge. The district trained nurse of the town in which I now reside attends to three cases of enteric fever in the same house. But three weeks afterwards attending to these cases, she herself contracts the disease. She lives in a different part of the town from these patients. She uses pure drinking water but had, as far as I can learn, neglected to thoroughly disinfect her hands after attending to the cases.
of the members of a family attacked with it one after the other; this can often be proved to be due to the fact that the victims have been infected by drinking impure water from the same shallow well; but in some cases it has appeared far more probable that the first case or two have contracted the fever from drinking bad water & that the rest of the family have contracted it from attending on those who have it already.*

On the question of treating enteric fever in a general ward of a hospital two opinions may be held: although most authorities & indeed general custom sanction its treatment there, for my own part, I strongly suggest that enteric patients should, if possible be isolated. For though probably the germs of the disease only leave the body in the feces, yet when the latter, as is so frequently the case, are passed involuntarily on to the drawn sheet, it is not within the bounds of possibility that some few of the germs will pass.
into the air + reach other patients? in this way I believe may be accounted for a case which has come under my own observation, where a patient treated in the same ward as several enteric fever cases, contracted that disease, although I know that every precaution as to cleanliness + disinfectants had been taken.

Should an epidemic of cholera attack the district all the available room may be given up to accommodate patients suffering from so severe a malady; but should this disease spread + last for some length of time, the whole hospital might, as soon as the patients with other fevers could be sent home, be given up to its treatment.

With regard to smallpox, most authorities are of opinion that this disease should be isolated in a special hospital to itself. To quote the well known case of the fall of the hospital where a large number of smallpox cases were treated
in 1854-1855. In this instance the homes round the hospital were attacked in large numbers with the disease, in direct proportion to their distance from the hospital, those further away being least attacked, a larger & larger number being infected the nearer the zone was to the hospital, which acted as a focus of infection. Attached to the Stafford General Infirmary is a wing, the walls of which are continuous with the general block, the separation between the wing & the block being merely by closed doors; until 1866 this was used for the accommodation of seven patients including Smallpox. About the year 1865 there was an outbreak in the town & a dozen or so Smallpox patients were treated at a time in this fever block; it was not long before many of the patients in the general wards were attacked with the disease, which however did not stay its progress here, but by the lines of route in which it spread in the country round Stafford & by the persons
it attacked, it was conclusively proved that it spread to the out-patients attending the Hospital and was by them conveyed round the country side.

From the above examples we would expect that if smallpox were treated in a part of an ordinary Infectious Hospital, the patients suffering from other diseases in other parts of the Hospital would run great danger of contracting smallpox; this disease should therefore be treated in an entirely separate building. Some towns are already possessed of such a Hospital as a permanent structure, others erect a temporary one when they require it.

Newcastle, a town with 145,000 inhabitants, has a special smallpox Hospital with 24 beds; for our town or district of 50,000 population we might erect a permanent structure with 10 beds, with ground attached sufficient to erect further accommodation in case of an epidemic outbreak for another ten cases. Many Local
Authorities would not be willing to incur the expense of a permanent smallpox hospital, but under any circumstances the Medical Officer of Health should strongly insist upon at least a temporary building situated well out of the town, to which a smallpox patient or two and their attendants might be sent in an emergency.

In the Returns of the Registrar General the annual mortality per thousand of population from the seven principal zymotic diseases from 1871 to 1880 averaged as follows:

- Smallpox: 2.36 per thousand
- Scarlet fever: 1.71
- Diphtheria: 1.91
- Enteric (formerly Typhus): 4.54
- Typhus: 4.84
- Measles: 3.78
- Whooping cough: 5.12
- Malaria: 9.35

Total: 3.382 per thousand.
There seven diseases may be placed into 2 groups
(a) those more usually treated in hospital
(b) those nearly always treated at home

(a) annual mortality (b) annual mortality
Smallpox 236 Measles 378
Scarlet fever 716 Whooping cough 512
Diphtheria 121 Incarcerated diseases 935
Fever 484
Total 1835
Total 1557 per thousand

We find from this division that the three diseases not treated in hospital have a larger annual mortality for the 10 years than those often treated in hospital.

We will now compare the annual average mortality from 1851-1860 with that from 1851-1857

<table>
<thead>
<tr>
<th></th>
<th>1851-60</th>
<th>1851-67</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smallpox</td>
<td>221</td>
<td>59</td>
</tr>
<tr>
<td>Measles</td>
<td>876</td>
<td>380</td>
</tr>
<tr>
<td>Scarlet fever</td>
<td>709</td>
<td>154</td>
</tr>
<tr>
<td>Diphtheria</td>
<td>908</td>
<td>254</td>
</tr>
<tr>
<td>Fever</td>
<td>412</td>
<td>439</td>
</tr>
<tr>
<td>Whooping cough</td>
<td>563</td>
<td>449</td>
</tr>
<tr>
<td>Incarcerated diseases</td>
<td>6080</td>
<td>712</td>
</tr>
</tbody>
</table>

Three of the four diseases which have
to a much larger extent been treated in infectious diseases' hospitals from 1851-57 than from 1851-1860.

Smallpox, scarlet fever & fever, the last named including typhoid, typhus & ill defined forms of fever, have a marked decrease of death rate during the latter group of years, smallpox having decreased 74 per cent, scarlet fever 57 p. c., & fever 72 p. c.; whereas those which have always been almost exclusively treated at home, viz. measles, whooping cough & diarrhoea have no very greatly altered mortality to show between the 2 periods, measles having during the latter series of years increased 6 per cent, whooping cough decreased 11 p. c. & diarrhoeal diseases decreased 34 p. c.

From these statistics it will be seen that isolation in infectious diseases' hospitals has probably greatly helped to reduce the mortality & therefore in all probability the number of cases in proportion to population of smallpox,
Scarlet Fever & Fever.

To account for the discrepancy occurring in diphtheria, which instead of decreasing as might have been expected, has increased 4 to 6 per cent. Two reasons may be given, first that diphtheria is more often correctly diagnosed than formerly, at one time being often misinterpreted forscarlet fever. Secondly because this disease, like other epidemics, has periods or waves of greater epidemic prevalence, & during the last few years we have been subject to one of these periods.

To account for the decrease of diarrhœal mortality, we may adduce the great improvements during the last 30 years in sanitary arrangements of every description.

At this point, I wish to give my chief reason for entering into the above statements, this is "Can the mortality of measles, whooping cough & epidemic diarrhœa be lessened by isolation of the diseases in an infectious hospital & if so, would their isolation be
practicable?"

In the first place let us look upon these diseases collectively, all three occur chiefly in infants and young children, and further, the younger the child the greater is the mortality, 50% of the total mortality from diarrhoea being in infants under 2 years old, 75% of that from whooping cough, 60% of that from measles occurring at the same age. Children so young would be with difficulty separated from their mothers and when separated no easy matter to nurse in large numbers.

With regard to epidemic diarrhoea. Whitelegg says that this disease is sometimes highly infectious through the motions. That isolation and disinfection of the motions might tend to prevent the spread of the disease is probable, but the difficulty of diagnosing the epidemic form of the complaint and its short duration would make it very difficult to allow of the removal of patients to
an Infectious Hospital? & I think we may safely predict that very few cases of this disease will ever find their way into an Infectious diseases Hospital, at any rate for many years to come.

With regard to the isolation of measles & whooping cough great difficulties arise. Both have a long incubation period: 12 days for measles & 14 for whooping cough. After this measles has an insidious stage of 3 days & whooping cough if at least a week; during this insidious stage both diseases are highly infectious, but being impossible to be diagnosed with certainty at this stage, could not be isolated then. Further, both diseases occur frequently in extensive epidemics which would very soon tax the accommodations of the Fever Hospital, if taking all the cases in, in its utmost.

The best way, while I can see of mitigating either of these 2 diseases would be to have the earliest cases of an outbreak isolated in the Infectious Hospital & to have...
the rest of the children in the houses in which the disease had occurred, sent into quarantine in the country. For this object compulsory notification of infectious diseases would have to be extended to measles and whooping cough. It would be no easy matter to find Local Authorities who would incur the expense of isolating these two diseases and of putting their brothers and sisters of those affected into quarantine; possibly we shall see these things done in the future. The period of quarantine as advised by the Association of Medical Officers of Schools for those who have been in contact with measles is 16 days, and whooping cough 21 days.

To conclude. Scarlet fever, diphtheria, enteric fever, typhus, and possibly a few cases of epidemic diarrhoea, of measles and whooping cough are to be admitted to our proposed hospital, smallpox having a special hospital to itself.
As to the number of beds in the Hospital—Many of the recent Infection Hospitals have one bed to every 2,000 of the population as in the Heathcote Hospital, Leamington London possesses about 3780 available fever beds, taking the population as five million we get one bed for every 1351 of population; this number has proved very inadequate of late years. In the same way there is a fever hospital of 105 beds for 145,000 of population, that is one bed for every 1382 of population. In Birmingham the Hospital has 180 beds for a population of 400,000, that is one bed for every 2222, which has proved insufficient for the purpose.

It is most essential to build a hospital with sufficient accommodation, for when once the number of cases has got beyond the available accommodation many cases are obliged to be treated at home, there are so many more faces of infection for further spreading. An old doctor told me the other day that he thought partial isolation worse than useless, especially...
en scarlet fever, for said he: "If there be no isolation or attempt at isolation the disease spreads everywhere in an epidemic manner for a few months, having exhausted all its energies upon every available victim; it dies out of the district is almost entirely, free from the disease for some years afterwards; but on the other hand, partial isolation, while preventing the disease from spreading everywhere, allows it to continue in a semi-epidemic form for years." Most feasible have watched the result of partial isolation of scarlet fever in London during the last year or two, but I should hardly conjecture that very many have been pleased with the results as to date. Many authorities, among them Whitelegg (Hygiene & Public Health, page 351) recommend one bed to every thousand of population as the model standard; this proportion has frequently proved to be unnecessarily high in the past, but now that compulsory notification has become fairly general, I do not
consider that it would be excessive for London & other large cities. London has at present 1 bed to 1,501 population, this proportion not being high enough. When an epidemic breaks out there is special difficulty of procuring suitable extra temporary accommodation in London for it, because of the scarcity of available land; the same difficulty arises in other large cities in the country & in smaller towns the land is more readily obtainable in an emergency & the permanent accommodation or at any rate permanently provided land need not be so great extensive. Many Local Authorities would be very unwilling to provide 1 bed for every thousand of population, 1 bed to 2,000 pop. would probably be insufficient. I would therefore insist upon some compromise between 1 to 2,000 & 1 to 1,000, say 1 bed 400 beds for our population of 50,000. Permanent arrangements for the temporary erection of huts to accommodate, let us say 16 more.
The general plan of the hospital should now be considered. I have annexed to this thesis drawings of a scheme which I propose as a suitable one for the purpose. The ward blocks are of two stories; the administration block would probably have to be of three if it were only to occupy the space marked out for it in the diagram.

That the administration block should be centrally situated needs no discussion as it tends to materially to the convenience of nursing & attendance. We will suppose that this block faces south.

It generally happens that one epidemic or at most two are prevalent in a district at one & the same time. Of the forty beds in the hospital I propose that 24 be given up to the prevailing epidemic, that 8 be reserved for the next disease in order of prevalence & that there be 8 wards for isolating other fevers.

On each side of the administrative
Block is a covered way which should be open at the sides, connecting it with ward blocks which I have called A and B.

To block B there is a second covered way which should also be open at the sides; this leads directly to a flight of steps going to the upper storey of block A where I have placed the isolation wards.

To go more into detail - Block A is of two stories, contains 24 beds (and should be used to accommodate the chief prevailing epidemic, which would be in the great majority of cases the scarlet fever (not taking into account smallpox, measles or whooping cough).

The upper floor (diagram II block A) contains 2 wards with 8 beds in each, one for males and the other for females. The cubic space per bed should be not less than 2000 cubic feet. There is a duty room between the 2 wards with a window-into each; the windows not to be directly opposite
one another to prevent patients seeing into one ward from the other. On the ground floor (Block A) the space corresponding to the S bedded ward on the upper floor is divided into two, the one nearer to the lobby being used as a day room, the further one containing four beds for convalescents. The advantage of day rooms, one for males & one for females is obvious, although many fever hospitals are without them. There are always so many scarlet fever patients able to leave their beds & go into a day room, & it is so much pleasanter & healthier for them to do so if able during part of the day. In cases of great epidemic pressure beds might be put up in these day rooms to accommodate 4 more patients each. Upon the upper floor a opening out of the hall rooms are balconies on the male & one on the female side; these should be covered with glass & will allow the patients to get a sun bath upon the second floor (Block A) under the balconies are dressing rooms.
with doors into the open air. The object of having these is to allow patients who have had their final Carbolic bath to get out of the hospital without having to go through the wards again to collect a fresh stock of germs.

The ground floor of Block B contains 2 wards, one male & one female, 4 beds in each. These would generally be occupied by patients suffering either from enteric fever or from diphtheria. Enteric fever patients require more space than scarlets; they are generally far more ill & for a longer time in bed. There should be 3000 cubic feet per bed in these wards, especially would this be advisable for delirious enterics with their mottos inscribed under them & requiring frequent changing to keep them & the air of the room sweet.

The upper floor of block B is approached by a separate way from the administration block. Than is the ground floor. Steps placed outside this block add to
This floor has a nurses’ duty room in the centre opening from the lobby. This room should contain all the necessary apparatus for cooking, which might be necessary should we have to isolate typhus cases in this block. There are 2 single wards & one double bedded ward on each side. Supposing it to be necessary to isolate a couple of nurses with, say, one or two typhus patients: the patients might be put into one of the double bedded wards & the nurses sleep in the single bedded wards. Cases with doubtful diagnosis upon admission could be placed in one or other of the single bedded wards.

Many authors have recommended an isolation block entirely separated from the other buildings of the hospital. But smallpox not being admitted, I maintain that the isolation wards as situated in the plan, would be sufficiently separated from the rest of the building to prevent the conveyance of contagion from them to the other wards of the building.
special advantages of the suggested position of the ward would be their conveniently handy position in relation to the administration block; further but not so importantly this position would help to maintain the symmetry of the hospital.

A special feature may at this juncture be made of the likely combinations of infectious disease prevalent in the district at once or the same time.

Firstly it perhaps the most likely combination would be a considerable number of Scarlet fever cases, to be put into Block A if a few cases of Enteric fever, which would be placed on the ground floor of Block B (8 beds), the wards for isolation being occupied by an occasional case of Diphtheria. A few cases of measles & whooping cough might be accommodated also in the isolation wards; two children under five could be put into one bed if necessary, one at
at the foot & the other at the
head of the bed. One of the double
bedded isolation wards has 6000
cubic feet & I believe that 1500
cubic feet would be amply sufficient
for a child suffering from measles
or whooping cough & those from children
suffering from one of these two diseases
might be put into one of these wards.

(2) Another likely combination might be
an epidemic of diphtheria to be put into
block A, a few cases of scarlet
fever to be accommodated on the ground
floor of block B; & occasional cases
of enteric, to be placed in the isolation
wards. A third combination might be epidemic
of scarlet fever & enteric fever simultaneously.

In such an event the scarlet fever
cases might be placed in block A,
the enteric next into block B & part of the
ground floor + part of the
isolation wards as well, be avai

the overflow of enteric if necessary to be accommodated by the nearest General Hospital.

As mentioned before there should be a space for the erection of a temporary hospital building during times of large epidemics. Several methods have at different times been suggested to provide this accommodation. In Stafford there is a wooden structure to hold the overflow of Scarlet Fever cases. In Birmingham the smallpox cases are treated in wooden huts. There are several objections to a building of wood—it would take a fortnight or longer to erect & render fit for reception of patients. This would be a great drawback in a sudden outbreak, were it not already erected; & where it is erected already it requires far more repair than a stone or brick building.

A second plan is one which would appear preferable, would be to lay down at the time the rest of the
The Hospital is constructed a solid concrete flooring, upon which might be erected in the time of emergency, huts or tents. In the plan I have placed a concrete flooring suitable for 16 beds, 180 to 200 feet per bed, behind the laundry block, as near as conveniently possible to the administration block.

There are now in the market the materials for erecting huts in a few hours, the huts being composed of numbered sheets of waterproof material to be fixed to a framework. After the subsidence of the epidemic these huts can be taken to pieces and stored in an outhouse ready for some future occasion.

The Outbuildings are placed in one block in many small Infectious Hospitals, as for instance the Heathcote Infectious Hospital, Hemington, but serious objections might with reason I think be offered to having the mortuary so close for proximity to the laundry & outhouse. It would therefore be a better plan to have the mortuary...
at some distance from the laundry.

In the plan I have placed the mortuary and disinfecting chamber in close proximity to one another; there would be no necessity of doing this; it might be better to place the mortuary altogether by itself. Many people, however, would probably like to place the disinfecting apparatus in the laundry block; the convenience of having it so to the nurses and washerwoman if placing it there is very apparent, but I am of opinion that the advantages of placing it well away from the hospital building outweigh the objections. If it be placed as in the diagram to the north of the other buildings, the flue attached to the apparatus can be made to ventilate the drains & sewers by connecting ventilating shafts from them with the flue from the furnace in the disinfecting chamber. Secondly, it would be possible for the town or district to let their disinfecting done by sending carts with the things to
be disinfect to the hospital; it likewise infections rubbish to be destroyed. There is no ambulance shed attacked defective in the diagram; should it be convenient to the Corporation or other local Authority, one could be placed near the disinfecting chamber.

The disinfection might be well carried out by means of the well known Washington Lyon’s steam disinfection. This method is especially useful for disinfecting woollen clothes, such as blankets which would be spoiled by much burning if not properly disinfected by heat air.

The clothes being put into an inner chamber is well steamed & to prevent any deposit of the steam as water upon the clothes there is a second chamber surrounding the inner containing steam which keeps the inner chamber at a heat sufficient to prevent deposition of steam on it.

The heating in a large hospital is
often carried out by means of numerous coils of hot water pipes. As the hospital now under discussion is built in small wards in two blocks at some distance from one another, the initial cost of hot water pipes would be very great and the difficulty of keeping the heat of these wards by means of so complicated an apparatus at the required standard (about Fahrenheit 60°) would be very considerable. The Local Authority would hardly think fit to agree to such a method. We would therefore propose that the heating of the wards be effected by a stove placed in the centre of the wards containing 6 to 4 beds respectively (that the smaller ones containing 2 to 1 beds respectively be provided with open fire).

As to the ventilation: Coming in near the level of the floor and running along under it is to be seen in the plan an air inlet. The shaft containing the air opens into an air chamber placed at
the back of the stove; when there
is a fire in the latter the air in the
chamber at the back of the stove is heated
just before entering the room.
The outlets near the ceiling, two on each
side of the room in the large wards,
might have gas jets placed in them
to aid the upflow of gas as if found
necessary. The windows should of course
wherever possible be placed upon both
eves of the ward at one between each
bed. The sills 2½ feet or so if the
window to separate from the lower
part made to swing inwards
turning upon a hinge at its base. The
lower part of the window should also
be made to swing.

Before continuing with a short description
of the bath rooms & water closets, I must
make some remarks about these subjects
often being more or less dependent upon
each in relation with one another. I
refer to the site for the projected hospital
to its water supply to its drainage.
As to the Site — The Hospital Buildings will spread over a large part of two acres. We should add at least two more acres for recreation ground. Six acres for the whole extent of the grounds would not be too much if the Local Authority could be persuaded into such liberality. The grounds should be surrounded by a high brick wall, or if not forthcoming from its expense, at least with a close wooden fence.

There are often great difficulties in finding a suitable site & when found a still greater obstacle arises in obtaining possession of the ground, so many owners refusing to sell the land for the required purpose on account of the consequent depression of the rest of the land upon the erection of a Fever Hospital in the vicinity.

That the site should be on elevated ground & upon dry soil, such as sand, sandstone, gravel or chalk goes without saying. Attention should
be directed to see that the site should be well above the sub-soil water to ensure its dryness.

The water supply should be obtained from the town supply if possible. A well, particularly a shallow one, would often be a source of danger near a fever hospital; disinfect in whatever way we may, how is it possible to guard against a few stray germs finding their way into the well? I once there being so potent a source of infection as to necessitate closing of the well and a change of water supply with great expense and inconvenience at some date perhaps long subsequent to the construction of the hospital. There would probably be no need for the advising Medical Officer of the all to quote the following instance of immunity to his Local Sanitary Authority — in connection with the Stafford General Infirmary there was from the year 1766 when the hospital was built a shallow well supplying the
whole household until 1 year 9
ago.

Drinking water; 20 yards away, there
has been as long as anyone can
remember about [Staford], a man sewer
running down towards the river; this
sewer has frequently been known to leak.

Enteric fever has been endemic in the
town as long as any rate as it has
been recognized. It is diagnosed as a special
fever, but strange to say there has
never been a serious outbreak among
the inmates of the house.

It is supposed that we can get a fresh
water supply, we may next point out
how the sewage is to be disposed of.

The arrangement of the sewers will naturally
depend upon the slope of the land and to a
large extent. In the annexed plan
Diagram I) the land is supposed to
slope downward from the present
of the disinfection chamber; the
ventilating shaft of the sewers opening
into the flue of the disinfection chimney
might be called for convenience the
head of the drainage system of our hospital. From thence a sewer extends, one on each side of the chamber, taking a course, one to the south west & the other to the south east until they reach a position to the west of the south ward block & to the east of the east ward block respectively, when they run due south. Manholes are placed in their course where necessary. The further course of the sewer would depend much on circumstances. It might be run by the two large sewers in the plan into the nearest main sewer of the district. Should the latter run into a river, the inhabitants on the bank of the river will not be long in expressing their dissatisfaction at receiving sewer gasses into their midst as soon as they hear of this method of disposal.

Not many months ago, the Local Authority of Stafford proposed to erect a new fever hospital in a position above the town; immediately many of the worthies of the district began
to make complaint, saying that the sewage from the four houses would have to run right through the middle of the town, and that however perfect and model the sewers of Stafford might be, yet that a few seams might escape from the sewers into the houses of the town, when at any time there sewers might leak.

Perhaps the best plan for the disposal of the sewage would be that the sewers end in a sub-irrigation system, each of the two sewers being kept clean by bone ash. The two sewers would be kept clean by the bone ash. The bone ash would be removed by day into the earth or burned in the Corporation destructor at least once a week. The remainder of the sewage should be carried on into a sub-irrigation system of loosely placed agricultural pipes, placed about a foot underground. A flush tank should be placed in connection with each of the two sewers to see that they did not get choked up at any time.
The water closets & bath rooms should be built out at the ends of the ward blocks & separate from them by a short passage. Besides the baths in the Bath rooms upon each floor, it would be advisable to have movable baths one in each block. This might be very useful to enteric fever patients when requiring cold baths to reduce their temperature. I have already discussed the room for dressing after having a disinfecting bath placed at the further end of the Bath room.

The number of water closets & bath rooms might appear to be extravagant, but what is more important than cleanliness & thorough disinfecting arrangement in a Fever Hospital.

With regard to the Staff. I believe that most medical men would be of opinion that a Resident Medical Officer would not at ordinary times be a necessity & that the daily visit of a medical man from the district who should be paid a salary, would...
be sufficient. Should however a severe outbreak of enteric fever have to be treated in the hospital or more especially if there were much diphtheria in the building calling it may be for an immediate tracheotomy at any time, a home physician might be engaged temporarily to attend to them. The matron should be a nurse who has had at least 3 years training in a large hospital. She might be expected to have besides her usual duties to perform to take extra duty for a short period if the usual nursing staff proved insufficient for an emergency. One other nurse besides the matron should have had three years training, so as to be capable of taking entire charge during the temporary absence of the matron. As to the number of nurses there would necessarily be some fluctuation in the number required due to the varying amount of disease in the hospital. A very good plan is one allowing not only of some fluctuation in the number of nurses employed but also allowing...
The nurses in the nearest General Hospital to get a short fever training, is to make an arrangement with the Matron & authorities of the Local General Hospital to send a few of their nurses at a time to undergo 3 months or so fever training. Fever nurses are well paid as a rule, but in spite of this, the monotony & isolation of the life will often prevent the more capable among nurses from easily being able to obtain good posts elsewhere from afflicting them a post in a fever hospital. It has been found in Stafford that a good nurse undergoing a three years training in the General Hospital is rather uncertain than otherwise to get three months fever training & to have signed for it in their General Certificate at the end of the three years. A general man of all work would be required to live in the premises. He might live in the administration block or in a cottage within the grounds.

It would be an architect's office to enter
into the initial cost of the hospital buildings. It has been suggested to me that reckoning the cost of everything included, the erection would cost about £5,000, with the price of the land extra.

I believe that I have now considered most of the more important questions which would be likely to present themselves to a Medical Officer of Health having to give advice to a Local Authority upon the erection of a Fever Hospital for a population of 50,000. Many other details of minor importance might arise; many of which would however have special relation to local peculiarities, it could not accurately be discussed unless such peculiarities were known.

George Temple Tate
M.B.; C.M. Edin. 1888
D.P.H. Camb. 1891
George Temple Tate's Thesis

Address: 59 Westgate
Mansfield
Notts.