Novel Immunotherapies for EBV-Associated Cancers

Anna May Swanson

Doctor of Philosophy
The University of Edinburgh

2007
DECLARATION

I declare that all work included in this thesis is my own, except where otherwise stated. No part of this work has been, or will be, submitted for any other degree or professional qualification.

Anna May Swanson
2007
ABSTRACT

Epstein-Barr virus (EBV) is a gamma herpes virus persistently infecting over 90% of the adult population worldwide. It has been aetiologically linked to a number of human malignancies, including more than 90% of post transplant lymphoproliferative disease (PTLD), 50% of Hodgkin’s lymphoma (HL), virtually all undifferentiated nasopharyngeal carcinoma (NPC), and approximately 10% of gastric carcinoma (GC). As EBV infection in healthy individuals is mainly controlled by virus specific cytotoxic T lymphocytes (CTLs), we hypothesise that engineering T cells with chimeric T cell receptors (cTCRs) specific for EBV latent membrane proteins (LMPs) will confer on these cells the ability to target and kill the malignant cells of cancers associated with Epstein-Barr virus. Thus, the aim of this project was generate these engineered T cells and to set up a severe combined immunodeficient (SCID) mouse model in which to test their effectiveness.

Three EBV-infected cell lines derived from HL, NPC and GC gave rise to tumours in 11 of 12 (92%), 12 of 12 (100%) and 10 of 10 (100%) SCID mice respectively, when 1x10^7 cells were injected subcutaneously. Immunohistochemical analysis showed that the HL SCID tumours were CD4-, CD15-, CD20+, CD30+, consistent with a HL Reed-Sternberg cell phenotype, and NPC and GC SCID tumours expressed the epithelial cell marker cytokeratin. Furthermore, all tumours expressed EBV-encoded RNAs (EBERs) and LMP1. This was identical to parent cell line expression patterns, and hence growth in vivo did not affect cell phenotype.

T cells were successfully transduced with a retroviral vector encoding a CD19-specific cTCR (CD19-cTCR) with a mean transduction rate of 13%±6%. Transduced cells were cytotoxic for HL-derived L591 cells in vitro, with specific lysis of 24%±11% at an effector to target ratio of 20:1. This was significantly higher than specific lysis seen in mock transduced cells (p>0.05). At a tumour inoculation dose of 5x10^6, in vivo sc transfer of 5x10^7 CD19-cTCR transduced cells was able to prevent HL tumour development in 6 of 6 (100%) test mice, whereas 17 of 22 (77%) control mice and 2 of 3 (66%) mice treated with unmodified EBV-specific CTLs developed tumours. Moreover, iv transfer of 5x10^7 CD19-cTCR transduced cells mediated complete regression of HL SCID tumours in 3 out of 6 (50%) mice.

Phage display selection experiments to isolate a single chain antibody fragment (scFv) specific for viral LMPs for incorporation in a cTCR were performed. Linear, biotinylated and cyclised biotinylated peptides derived from the external reverse turn loops of LMP2 were used as target antigens. Despite extensive testing, no reactive clones specific for the peptides were identified.

The ability of CD19-cTCR transduced cells to specifically lyse HL cells in vitro, and clear tumour burden in vivo, supports a future role for engineered T cells in the treatment of HL. Despite the lack of success in isolating a scFv for LMP2, the use of viral antigen specific, cTCR redirected T cells remains in principle a valuable therapeutic alternative for EBV-associated malignancies. The SCID models for HL, NPC and GC will provide a useful preclinical tool for investigation of their efficacy in vivo.
ACKNOWLEDGEMENTS

To all the people whose contributions helped me on the way to completing this thesis, my heartfelt gratitude. Thanks go to my supervisor Ingo Johannessen, for his advice and support over the course of this PhD, and also for choosing me from halfway around the world and providing me with this wonderful opportunity. Thanks also to Dorothy Crawford, whose insightful comments and suggestions kept the project on track.

Karen McAulay – the Oracle – needs a special mention, for her patience in the face of countless questions and perpetual willingness to help, as does Simon Talbot for discussions on this, that, and everything else. The past and present members of the LCMV have been a constant source of support, both scientific and of the biscuit variety, and I am indebted to them for making my time in Edinburgh so enjoyable. Thursday lunchtime lab meetings were also a source of helpful suggestions and occasional stimulating discussion. A big thank you to my thesis buddy Phoebe Wingate, who celebrated with me when things went right, commiserated when things went wrong, and took me out for coffee when all else failed. I’m glad we made it to the end together.

I am grateful to Bill Smith, Christine Forrest and Anne Woolger in the EPU for all their efforts on my behalf, and also to Shonna Johnston for assistance with flow cytometry.

It goes without saying that I could not have undertaken this PhD without the support of my family. Eternal thanks to my parents - for showing me the world and pointing me in the right direction. Their unfailing love, support and interest always buoyed my spirits. And to Elizabeth, who has achieved so much and yet made me feel like I was doing something special.

Most especially I would like to acknowledge Sam. Everything I could need or want in a friend, he is. This thesis is testament to nothing so much as his belief in me, and his ability to draw out my best efforts. Thank you.
1 INTRODUCTION

1.1 Herpesviruses
1.1.1 Classification
1.1.2 Virus structure
1.1.3 Genome

1.2 Epstein-Barr virus
1.2.1 EBV genome
1.2.2 EBV encoded transcripts and proteins
1.2.2.1 EBV encoded latent proteins and RNAs
1.2.2.2 Latency programs
1.2.2.3 Lytic replication
1.2.3 EBV infection
1.2.3.1 Cell tropism
1.2.3.2 Infection of B cells
1.2.3.3 Infection of epithelial cells
1.2.4 EBV primary infection and persistence in vivo
1.2.5 The immune response to EBV
1.2.5.1 Humoral response to EBV infection
1.2.5.2 Cellular response to EBV infection

1.3 EBV and associated diseases
1.3.1 Infectious mononucleosis
1.3.2 Burkitt’s lymphoma
1.3.3 Hodgkin’s lymphoma
1.3.4 Nasopharyngeal carcinoma
1.3.5 Gastric carcinoma
1.3.6 EBV-associated malignancies in the immune compromised
1.3.7 Oral hairy leucoplakia

1.4 Animal models of EBV-associated malignancies
1.4.1 Non-human primates
1.4.2 Mouse models
1.4.2.1 Murine herpesvirus-68
1.4.2.2 Models in immunodeficient mice

1.5 Cancer immunotherapy
1.5.1 Antibody therapy
1.5.2 Cellular therapy
1.5.3 Engineered T cells

1.6 Antibody phage display
1.6.1 Background 47
1.6.2 Phage and phagemids 49
1.6.3 Antibody libraries 50
1.6.4 The process of selection 51
1.7 Project aims 52

2 MATERIALS AND METHODS 54

2.1 Materials 54
2.1.1 Equipment 54
2.1.2 Suppliers 56
2.1.3 Solutions 59

2.2 Tissue culture techniques 61
2.2.1 Maintenance of cell lines 61
2.2.2 Passaging adherent cell lines 62
2.2.3 Freezing and thawing cells 62
2.2.4 Cell separation by centrifugation 62
2.2.5 Cell separation by antibody-coated magnetic beads 62
2.2.6 Counting cells 63

2.3 DNA Extraction 63
2.3.1 Extraction of phagemid DNA from bacteria 63
2.3.2 Extraction of viral and genomic DNA from cell lines 64
2.3.3 Ethanol precipitation 64
2.3.4 Determination of DNA concentration 64

2.4 Molecular Techniques 65
2.4.1 Restriction digests 65
2.4.2 Standard PCR 65
2.4.3 Real time PCR 65
2.4.4 Agarose gel electrophoresis 66
2.4.5 DNA sequencing 67
2.4.6 HLA typing 67

2.5 Virus Techniques 67
2.5.1 Production and titration of EBV 67
2.5.2 In vitro infection with EBV 68
2.5.3 Production and titration of retrovirus 68

2.6 Phage library techniques 68
2.6.1 Phage libraries used 68
2.6.2 Growing E.coli TG1 70
2.6.3 Preparing helper phage KM13 70
2.6.4 Rescuing phage libraries 71
2.6.5 Selection on immunotubes 71
2.6.6 Amplifying selected phage 73
2.6.7 Rescuing monoclonal phage 73
2.6.8 Phage ELISA 74

2.7 Preparation of therapeutic cells 74
2.7.1 PBMC activation 74
2.7.2 Retrovirus transduction 75
2.7.3 Establishing an LCL 75
2.7.4 Reviving CTLs 75
4.3.3 Prophylactic immunotherapy of SCID NPC 131
4.4 Summary of results 132
4.5 Discussion 134

5 IDENTIFICATION OF LMP2-SPECIFIC scFv USING PHAGE DISPLAY 140

5.1 Standardisation experiments 140
5.1.1 Library characterisation 140
5.1.2 Selections with control phage 141
5.1.3 Selection with control targets 142

5.2 Panning the libraries 143
5.2.1 Target peptides 143
5.2.2 Selections using unmodified peptides 144
5.2.3 Selections using biotinylated peptides 147
5.2.4 Selections using biotinylated cyclised peptides 151
5.2.5 Selection protocols incorporating negative selection for streptavidin binders 155
5.2.6 Selections using streptavidin coated beads 157

5.3 Selection experiments using alternate libraries 159
5.3.1 ETH2Gold phage library 159
5.3.2 RotMar phage library 159

5.4 Summary of results 161
5.5 Discussion 162

6 FUTURE DIRECTIONS 170

References 176
LIST OF FIGURES

Figure 1.1: The herpesvirus virion. 3
Figure 1.2: BamHI fragments of the EBV genome. 5
Figure 1.3: The EBV episome. 6
Figure 1.4: Structure of LMP1. 10
Figure 1.5: The structure of LMP2. 12
Figure 1.6: Incidence of Hodgkin’s lymphoma. 26
Figure 1.7: Antibody molecule with Fab and scFv fragments. 39
Figure 1.8: Treatment using engineered T cells. 43
Figure 1.9: Two signal model of T cell activation. 45
Figure 1.10: Filamentous phage particle. 48
Figure 3.1: Haematoxylin and eosin staining of HL cell lines. 82
Figure 3.2: Haematoxylin and eosin staining of carcinoma cell lines. 83
Figure 3.3: Tumour growth curves of HL cell lines in SCID mice. 88
Figure 3.4: Tumour growth curves of carcinoma cell lines in SCID mice. 89
Figure 3.5: Haematoxylin and eosin staining of HL SCID tumours. 90
Figure 3.6: Haematoxylin and eosin staining of GC and NPC SCID tumours. 91
Figure 3.7: CD4 expression on HL SCID tumours. 92
Figure 3.8: CD15 expression on HL SCID tumours. 93
Figure 3.9: CD20 expression on HL SCID tumours. 94
Figure 3.10: CD30 expression on HL SCID tumours. 95
Figure 3.11: Cytokeratin expression in GC and NPC SCID tumours. 96
Figure 3.12: EBERs expression in HL, GC and NPC SCID tumours. 98
Figure 3.13: EBNA2 expression in EBV-positive SCID tumours. 99
Figure 3.14: LMP1 expression in EBV-positive SCID tumours. 100
Figure 3.15: BZLF1 expression in EBV-positive SCID tumours. 101
Figure 3.16: EBNA2 expression in the C666.1 NPC cell line. 106
Figure 4.1: CD19-cTCR virus titration. 111
Figure 4.2: Growth of PBMCs post transduction. 112
Figure 4.3: Transduction of fresh and frozen PBMCs with a CD19-cTCR. 113
Figure 4.4: Transduction rates of PBMCs with retroviral vectors. 113
Figure 4.5: Transgene expression over time. 114
Figure 4.6: Immunophenotype of PBMCs transduced with CD19-cTCR.

Figure 4.7: CD19 expression on 51Cr release assay target cell lines.

Figure 4.8: CD19 expression on SCID tumours.

Figure 4.9: Specific lysis of target cells by engineered T cells.

Figure 4.10: Percentage of NK cells in a population of CD19-cTCR transduced cells before and after CD56 separation.

Figure 4.11: Percentage of transduced cells before and after CD56 separation.

Figure 4.12: Effect of NK cells on in vitro cytotoxicity.

Figure 4.13: Percentage of transduced cells before and after CD34 separation.

Figure 4.14: Effect of transduced cell numbers on in vitro cytotoxicity.

Figure 4.15: Effect of freezing and thawing of CD19-cTCR transduced PBMCs on in vitro cytotoxicity.

Figure 4.16: In vitro cytotoxicity of EBV-specific CTLs against HLA best match target cell lines.

Figure 4.17: HL SCID tumour growth following prophylactic immunotherapy.

Figure 4.18: HL SCID tumour growth following immunotherapy.

Figure 4.19: Infiltration of CD8+ T cells in HL SCID tumours.

Figure 4.20: Tumour growth after prophylactic therapy of NPC SCID tumours with EBV-specific CTLs.

Figure 4.21: Infiltration of CD8+ cells in NPC SCID tumours.

Figure 5.1: scFv inserts in Libraries I+J.

Figure 5.2: Selection with control phage.

Figure 5.3: Library J selection using BSA and c-myc as targets.

Figure 5.4: Library I and J selections using pools of unmodified peptides as targets.

Figure 5.5: Specificity testing of clones from Library I and J selections using unmodified peptide pools.

Figure 5.6: Library selection using biotinylated, linear peptides.

Figure 5.7: Screening of clones from selections using biotinylated, linear peptides.

Figure 5.8: Library selection using biotinylated, cyclised peptides.

Figure 5.9: Screening of clones from selections using biotinylated, cyclised peptides.

Figure 5.10: scFv inserts and clone diversity in bc2.6 selected phage.
Figure 5.11: Library selection using biotinylated, cyclised peptides with negative selection for streptavidin binding phage. 156

Figure 5.12: Library selection using a biotinylated, cyclised peptide with streptavidin coated beads. 158

Figure 5.13: RotMar library selection using LMP2 peptide 2.5. 160

Figure 5.14: RotMar library selection using LMP1 peptide 1.2. 166
LIST OF TABLES

Table 1.1: Classification of herpes viruses, with human examples.
Table 1.2: EBV latent transcripts.
Table 1.3: EBV latency programs.
Table 1.4: Tumour associated antigens targeted by cTCR engineered T cells.
Table 1.5: Comparison of scFv and Fab formats in antibody phage display.
Table 1.6: Comparison of phage and phagemid systems for antibody display libraries.
Table 2.1: Media and cell lines used for tissue culture.
Table 2.2: Antibodies used in flow cytometric analysis.
Table 2.3: Antibodies used in immunohistochemistry.
Table 3.1: Viral load of HL cells after infection *in vitro* with EBV.
Table 3.2: Tumour incidence following sc inoculation of SCID mice with HL cell lines.
Table 3.3: Tumour incidence following sc inoculation of SCID mice with CG and NPC cell lines.
Table 3.4: Tumour incidence following ip inoculation of SCID mice with HL, GC and NPC cell lines.
Table 3.5: Cell surface phenotype of HL SCID tumours.
Table 3.6: Viral antigen expression in EBV-positive SCID tumours.
Table 4.1: HLA typing of target cell lines for immunotherapy, and best match donors.
Table 4.2: Mean specific lysis (%) of target cells by engineered T cells.
Table 4.3: Tumour incidence in HL SCID mice given prophylactic immunotherapy.
Table 4.4: Tumour incidence following sc inoculation of SCID mice with the NPC cell line C666.1 alone, or mixed with partially HLA matched, EBV-specific CTLs.
Table 5.1: Phage titres of Library J selection using BSA and c-myc as targets.
Table 5.2: Target peptides for phage library selections.
Table 5.3: Phage titres of Library I and J selections using pools of unmodified peptides.
Table 5.4: Phage titres of Library I and J selections using biotinylated, cyclised peptides.
Table 5.5: Phage titres and PCR screening of Library I+J selections using biotinylated, cyclised peptides with negative selection for streptavidin binding phage. 156

Table 5.6: Phage titres of Library I and J selections using streptavidin coated beads. 158

Table 5.7: Phage titres of ETH2Gold phage library selection. 159
ABBREVIATIONS

- **Negative**
+ **Positive**

aa Amino acid
A Absorbance
Ab Antibody
AIDS Acquired immune deficiency syndrome
AP Alkaline phosphotase
APC Antigen presenting cell
BART *BamHI* A rightwards transcript
BCR B cell receptor
BL Burkitt’s lymphoma
BMT Bone marrow transplant
bp Base pair
BSA Bovine serum albumin
CAIX Carboxy anhydrase IX
CAR Chimeric antigen receptor
CD Cluster of differentiation
CDR Complementarity determining region
CML Chronic myeloid leukaemia
CMV Cytomegalovirus
Cp EBV promoter C
Cr Chromium
CSB Cell separation buffer
CTAR C-terminal activation region
cTCR Chimeric T cell receptor
CTL Cytotoxic T lymphocyte
CTLA Cytotoxic T lymphocyte antigen
DC Dendritic cell
DMEM Dulbecco’s Modified Eagles Medium
DMSO Dimethyl sulfoxide
DNA Deoxyribonucleic acid
dsDNA Double-stranded deoxyribonucleic acid
EA Early antigen
EBER EBV-encoded small RNA
eBL Endemic Burkitt’s lymphoma
EBNA EBV nuclear antigen
EBV Epstein-Barr virus
E.coli *Escherichia coli*
EDTA Ethylenediaminetetraacetic acid
ELISA Enzyme-linked immunosorbant assay
Fab Fragment antigen binding
FAP Fibroblast activation protein
FDA Food and Drug Administration, USA
FBS Foetal bovine serum
FITC Fluorescein isothiocyanate
GC Gastric carcinoma
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFP</td>
<td>Green fluorescent protein</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>Granulocyte/macrophage colony-stimulating factor</td>
</tr>
<tr>
<td>GVHD</td>
<td>Graft versus host disease</td>
</tr>
<tr>
<td>GVL</td>
<td>Graft versus leukaemia</td>
</tr>
<tr>
<td>HBSS</td>
<td>Hank's buffered salt solution</td>
</tr>
<tr>
<td>HIV</td>
<td>Human immunodeficiency virus</td>
</tr>
<tr>
<td>HHV</td>
<td>Human herpes virus</td>
</tr>
<tr>
<td>HL</td>
<td>Hodgkin’s lymphoma</td>
</tr>
<tr>
<td>HLA</td>
<td>Human leukocyte antigen</td>
</tr>
<tr>
<td>HRP</td>
<td>Horse radish peroxidase</td>
</tr>
<tr>
<td>HRS</td>
<td>Hodgkin Reed-Sternberg</td>
</tr>
<tr>
<td>HSV-TK</td>
<td>Herpes simplex virus thymidine kinase</td>
</tr>
<tr>
<td>IHC</td>
<td>Immunohistochemistry</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunoglobulin</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>IM</td>
<td>Infectious mononucleosis</td>
</tr>
<tr>
<td>INF</td>
<td>Interferon</td>
</tr>
<tr>
<td>ip</td>
<td>Intraperitoneal</td>
</tr>
<tr>
<td>IR</td>
<td>Internal repeat</td>
</tr>
<tr>
<td>ISH</td>
<td>In situ hybridisation</td>
</tr>
<tr>
<td>ITAM</td>
<td>Immunoreceptor tyrosine-based activation motif</td>
</tr>
<tr>
<td>iv</td>
<td>Intravenous</td>
</tr>
<tr>
<td>kb</td>
<td>Kilobase</td>
</tr>
<tr>
<td>LC</td>
<td>Langerhans cell</td>
</tr>
<tr>
<td>LCL</td>
<td>Lymphoblastoid cell line</td>
</tr>
<tr>
<td>LCV</td>
<td>Lymphocryptovirus</td>
</tr>
<tr>
<td>LD</td>
<td>Lymphocyte depleted</td>
</tr>
<tr>
<td>LMP</td>
<td>Latent membrane protein</td>
</tr>
<tr>
<td>LP</td>
<td>Lymphocyte predominant</td>
</tr>
<tr>
<td>MA</td>
<td>Membrane antigen</td>
</tr>
<tr>
<td>mAb</td>
<td>Monoclonal antibody</td>
</tr>
<tr>
<td>MC</td>
<td>Mixed cellularity</td>
</tr>
<tr>
<td>MHC</td>
<td>Major histocompatibility complex</td>
</tr>
<tr>
<td>MPBS</td>
<td>2% Marvel skim milk powder in PBS</td>
</tr>
<tr>
<td>NBF</td>
<td>Neutral buffered formalin</td>
</tr>
<tr>
<td>NK</td>
<td>Natural killer</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometre</td>
</tr>
<tr>
<td>NPC</td>
<td>Nasopharyngeal carcinoma</td>
</tr>
<tr>
<td>NS</td>
<td>Nodular sclerosing</td>
</tr>
<tr>
<td>NTC</td>
<td>No template control</td>
</tr>
<tr>
<td>OD</td>
<td>Optical density</td>
</tr>
<tr>
<td>ORF</td>
<td>Open reading frame</td>
</tr>
<tr>
<td>oriLyt</td>
<td>EBV lytic origin of replication</td>
</tr>
<tr>
<td>oriP</td>
<td>EBV origin of replication</td>
</tr>
<tr>
<td>PBL</td>
<td>Peripheral blood leukocytes</td>
</tr>
<tr>
<td>PBMC</td>
<td>Peripheral blood mononuclear cell</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PE</td>
<td>Phycoerythrin</td>
</tr>
<tr>
<td>PEG</td>
<td>Polyethylene glycol</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>PSMA</td>
<td>Prostate-specific membrane antigen</td>
</tr>
<tr>
<td>PTLD</td>
<td>Post transplant lymphoproliferative disease</td>
</tr>
<tr>
<td>RBP</td>
<td>Recombinant signal binding protein</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>RPMI</td>
<td>Roswell Park Memorial Institute</td>
</tr>
<tr>
<td>SAP</td>
<td>SLAM-associated protein</td>
</tr>
<tr>
<td>sBL</td>
<td>Sporadic Burkitt’s lymphoma</td>
</tr>
<tr>
<td>sc</td>
<td>Subcutaneous</td>
</tr>
<tr>
<td>scFv</td>
<td>Single chain variable fragment</td>
</tr>
<tr>
<td>SCID</td>
<td>Severe combined immunodeficient</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SLAM</td>
<td>Signalling lymphocytic activation molecule</td>
</tr>
<tr>
<td>TAA</td>
<td>Tumour-associated antigen</td>
</tr>
<tr>
<td>TARC</td>
<td>Thymus and activation regulated chemokine</td>
</tr>
<tr>
<td>TBE</td>
<td>Tris borate EDTA</td>
</tr>
<tr>
<td>TBS</td>
<td>Tris buffered saline</td>
</tr>
<tr>
<td>TCR</td>
<td>T cell receptor</td>
</tr>
<tr>
<td>TGF</td>
<td>Transforming growth factor</td>
</tr>
<tr>
<td>Th</td>
<td>T helper</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumour necrosis factor</td>
</tr>
<tr>
<td>TNFR</td>
<td>Tumour necrosis factor receptor</td>
</tr>
<tr>
<td>TR</td>
<td>Terminal repeat</td>
</tr>
<tr>
<td>T regs</td>
<td>T regulatory cells</td>
</tr>
<tr>
<td>tu</td>
<td>Transducing unit</td>
</tr>
<tr>
<td>TY</td>
<td>Tryptone yeast</td>
</tr>
<tr>
<td>TYE</td>
<td>Tryptone yeast extract</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>V</td>
<td>Volts</td>
</tr>
<tr>
<td>VCA</td>
<td>Viral capsid antigen</td>
</tr>
<tr>
<td>VEGF</td>
<td>Vascular endothelial growth factor</td>
</tr>
<tr>
<td>V_H</td>
<td>Variable heavy</td>
</tr>
<tr>
<td>V_L</td>
<td>Variable light</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume per volume</td>
</tr>
<tr>
<td>Wp</td>
<td>EBV promoter W</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight per volume</td>
</tr>
<tr>
<td>XLP</td>
<td>X-linked lymphoproliferative disease</td>
</tr>
</tbody>
</table>
1 Introduction

1.1 Herpesviruses

The family *Herpesviridae* contains over 200 species of virus, isolated from a range of animal hosts as diverse as humans, birds, turtles and oysters, although the viruses are rarely capable of infecting more than one species. This wide distribution and narrow specificity suggests close co-evolution between virus and host. Indeed, herpesviruses are well adapted for survival within their natural host, with virus infection persisting for the life of the host and only very rare fatal illness. Infection in heterologous or immunodeficient hosts can however result in serious disease.

Inclusion within the herpesvirus family has historically been reliant on the architecture of the virion (see 1.1.2). All herpesviruses also share four principal biologic properties:

1. They encode enzymes used in their own nucleic acid metabolism, DNA synthesis and protein processing.
2. Viral DNA synthesis and capsid assembly occurs in the nucleus, and capsids acquire an envelope as they bud through the nuclear membrane.
3. The production of progeny virus during lytic replication invariably results in host cell death.
4. They are capable of latent infection in their natural hosts. Viral genomes in latently infected cells are maintained as circular episomes, and express a subset of viral genes (Roizman *et al.*, 1992).

Despite these common characteristics, herpesviruses also diverge with respect to their biologic characteristics. Host cell range, site and mechanism of latency, and length of replication cycle can all differ (Pellett & Roizman, 2007).

1.1.1 Classification

Herpesviridae is divided into three subfamilies, the *alpha-*, *beta-* and *gammaherpesvirinae*. This classification was based initially on biological
characteristics (Roizman et al., 1981), but more recent evaluation of gene content and sequence similarities has upheld the divisions (Roizman & Baines, 1991). Thus far eight human herpes viruses (HHV) have been identified, and are listed in Table 1.1, along with the biological properties that define the herpesvirus subfamilies.

<table>
<thead>
<tr>
<th>subfamily</th>
<th>growth cycle</th>
<th>cytopathology</th>
<th>site of latency</th>
<th>human herpesvirus number & common name</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha</td>
<td>short (~18hrs)</td>
<td>cytolytic</td>
<td>sensory neuron ganglia</td>
<td>1 Herpes simplex virus type 1</td>
</tr>
<tr>
<td>beta</td>
<td>long (~70hrs)</td>
<td>cytomegalic</td>
<td>salivary glands kidneys lymphocytes</td>
<td>2 Herpes simplex virus type 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>lymphoproliferative lymphoid tissue</td>
<td>3 Varicella-zoster virus</td>
</tr>
<tr>
<td>gamma</td>
<td>variable</td>
<td>lymphoproliferative</td>
<td>lymphocytes</td>
<td>4 Epstein-Barr virus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 Cytomegalovirus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6 Human herpesvirus 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7 Human herpesvirus 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8 Kaposi's sarcoma associated herpesvirus</td>
</tr>
</tbody>
</table>

1.1.2 Virus structure

All herpesviruses encode genetic information in a linear double-stranded DNA (dsDNA) genome, which is contained in the toroid-shaped core of the virion (Furlong et al., 1972). The surrounding protein coat is made up of 162 capsomeres, and the diameter of the icosahedral nucleocapsid is approximately 125nm (Pellett & Roizman, 2007). Each virion is enclosed in a host-cell derived envelope containing viral glycoproteins. Between the nucleocapsid and the envelope is an amorphous protein tegument, which may be of varying thickness and asymmetrical distribution. The diameter of complete herpesvirus virions range from 120 to 260nm, with variation largely due to the thickness of the tegument (Pellett & Roizman, 2007). A
schematic diagram illustrating common herpesvirus structural elements is shown in Figure 1.1 panel A.

Figure 1.1: The herpesvirus virion.
Schematic diagram of a mature herpesvirus particle, indicating the nucleocapsid, tegument, genome, and membrane of the virion (A). Also, an electron micrograph image (B) of a herpesvirus virion, with capsid [c] and envelope [e] clearly visible. Images from www.biografix.de (A) and www.virology.net (B).

1.1.3 Genome

Herpesvirus DNA is packaged as a linear molecule, but upon release from the capsid into the host cell nucleus immediately circularises and is maintained in the cell as a circular episome. Genomes range in size from 120 to 250 kilobase pairs (kb) and encode between 70 and 200 genes. Herpesviruses can contain terminal and/or internal repeated sequences, which may vary in copy number, and some family members undergo genome rearrangements resulting in DNA isomers, for example herpes simplex virus. The majority of herpesvirus genes consist of a single open reading frame, flanked by 5’ and 3’ nontranslated sequence, a promoter sequence upstream of a TATA box, and a 3’ polyadenylation signal. Most, although not all, are transcribed by RNA polymerase II and are unspliced. Approximately 40 ‘core’ genes are conserved across all herpesvirus subfamilies, and all herpesviruses encode at least one gene of host cell origin (Pellett & Roizman, 2007).

1.2 Epstein-Barr virus

Epstein-Barr virus (EBV) was first discovered in 1964 following culture of Burkitt’s lymphoma (BL) tumour material. In the 1950s, Dr Dennis Burkitt, a British surgeon working in East Africa, described a childhood malignancy that now bears his name (Burkitt, 1958). He noted a climatically restricted epidemiology for the disease across equatorial Africa, which led him to suggest a mosquito vector and consequently an infectious origin for the disease (Burkitt, 1962). This speculation caught the attention of British virologist Dr Anthony Epstein, who together with Yvonne Barr established the first BL-derived cell lines from tumour samples sent to them by Burkitt (Epstein & Barr, 1964). When examined by electron microscopy, herpesvirus-like particles were clearly present in a proportion of cells (Epstein et al, 1964). A similar electron micrograph is shown in Figure 1.1 panel B. EBV has a very narrow host range, as it is able to sustain persistent infection only in humans. However, it is transmitted with ease within the human population, with over 90% of adults being EBV seropositive (IARC, 1997).

Primary infection with EBV generally occurs in young children, and is normally asymptomatic, although infectious mononucleosis (IM) can result when primary infection is delayed until adolescence. EBV has also been aetiologically linked to a number of human malignancies, including BL, post transplant lymphoproliferative disease (PTLD), Hodgkin’s lymphoma (HL), nasopharyngeal carcinoma (NPC), and gastric carcinoma (GC). EBV disease associations are covered in more depth in section 1.3.

1.2.1 EBV genome

The EBV genome is 184kb in size, has a guanine-cytosine content of 60% and a characteristic set of repeat sequences. There are tandem reiterated 0.5kb terminal repeat (TR) sequences at both ends of the genome and the unique region is divided by four 3kb reiterated internal repeats (IR) (Kieff & Rickinson, 2007). The circular viral episome is formed by covalent linking of the TRs (Lindahl et al, 1976). Each cell infected with EBV contains multiple copies of the episome (Sugden et al, 1979).
The prototype EBV, a laboratory strain designated B95-8, was first isolated in 1973 (Miller et al., 1973) and fully sequenced in 1984 (Baer et al., 1984). Sequencing was carried out using a BamHI fragment library, and as a result genes, promoters, open reading frames (ORF) and polyadenylation sites are often named with reference to the restriction fragment in which transcription begins. For example, BZLF1 refers to a protein situated in the first (1) leftward (L) ORF (F) of the BamHI (B) Z fragment (Z) of the EBV genome. A genome map with BamHI fragments is shown in Figure 1.2.

![BamHI fragments of the EBV genome](image)

Figure 1.2: BamHI fragments of the EBV genome.
BamHI restriction endonuclease map of the B95-8 EBV genome. Fragments are named by size, with A being the largest and lowercase letters the smallest. Areas within the terminal repeats (TR) are designated Nhet due to the heterogeneity which results from the variable number of TRs in different virus isolates. Image adapted by permission from Macmillan Publishers Ltd: Young LS and Rickinson AB. Nature Reviews Cancer 4:757-768, copyright (2004).

EBV is subdivided into Types 1 and 2. Division is based on genome sequence, with differences in the regions encoding EBV nuclear antigens (EBNA)–LP, 2, 3A, 3B and 3C. Type 2 is more common in African populations, while Type 1 is more common in Western countries (Zimber et al., 1986), although both types are present worldwide. Type 1 EBV is more efficient than Type 2 at transforming lymphocytes in vitro (Rickinson et al., 1987), and delayed infection with Type 1 EBV was significantly more likely to result in IM than a Type 2 infection in a recent epidemiological study (Crawford et al., 2006).

1.2.2 EBV encoded transcripts and proteins

There are 84 major unique ORFs contained in the EBV genome (Baer et al., 1984). EBV is able to vary the combination of genes expressed in latent and lytic infection through the use of different gene promoters.
1.2.2.1 EBV encoded latent proteins and RNAs

Cells latently infected with EBV constitutively express up to nine viral proteins. These are six EBV nuclear antigens (EBNA1, EBNA2, EBNA3A, EBNA3B, EBNA3C, and EBNA-LP), and three latent membrane proteins (LMP1, LMP2A, and LMP2B). Also expressed are two types of viral-encoded, but non-translated RNA, BARTs (BamHI A rightwards transcripts) and EBERs (EBV-encoded RNA). Location of EBV latent genes and promoters on the viral episome is shown in Figure 1.3.

![Figure 1.3: The EBV episome.](image)

The double-stranded DNA episome of EBV, showing the location of latent antigens and promoters. Image adapted by permission from Macmillan Publishers Ltd: Young LS and Rickinson AB. Nature Reviews Cancer 4:757-768, copyright (2004).

The role and function of each latent antigen is summarised below and in Table 1.2, and reviewed in several references (Kuppers, 2003; Young & Murray, 2003; Young & Rickinson, 2004; Kieff & Rickinson, 2007).
Table 1.2: EBV latent transcripts.
The open reading frame (ORF), requirement for B cell transformation and main function of EBV antigens expressed during latency. Adapted from Johannessen & Crawford (1999) and Williams & Crawford (2006).

<table>
<thead>
<tr>
<th>protein</th>
<th>ORF</th>
<th>role in transformation</th>
<th>main function</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBNA1</td>
<td>BKRF1</td>
<td>yes</td>
<td>genome maintenance</td>
</tr>
<tr>
<td>EBNA2</td>
<td>BYRF1</td>
<td>yes</td>
<td>viral transactivator</td>
</tr>
<tr>
<td>EBNA3A</td>
<td>BLRF3/BERF1</td>
<td>yes</td>
<td>EBNA2 agonist, disrupts cell cycle</td>
</tr>
<tr>
<td>EBNA3B</td>
<td>BERF2A/B</td>
<td>no</td>
<td>EBNA2 agonist</td>
</tr>
<tr>
<td>EBNA3C</td>
<td>BERF3/4</td>
<td>yes</td>
<td>EBNA2 agonist, disrupts cell cycle</td>
</tr>
<tr>
<td>EBNA-LP</td>
<td>BWRF1</td>
<td>no</td>
<td>cooperates with EBNA2</td>
</tr>
<tr>
<td>LMP1</td>
<td>BNLF1</td>
<td>yes</td>
<td>viral oncogene, survival factor</td>
</tr>
<tr>
<td>LMP2A</td>
<td>BARF1/BNRF1</td>
<td>no</td>
<td>survival factor</td>
</tr>
<tr>
<td>LMP2B</td>
<td>BNRF1</td>
<td>no</td>
<td>survival factor</td>
</tr>
<tr>
<td>EBERs</td>
<td>BCRF1</td>
<td>no</td>
<td>not known</td>
</tr>
<tr>
<td>BARTs</td>
<td>BARF0</td>
<td>not known</td>
<td>not known</td>
</tr>
</tbody>
</table>

EBERs
Two small, non-polyadenylated RNA transcripts, EBER1 and EBER2, are expressed in all forms of EBV latency. They localise to the nucleus, with approximately 10^4 to 10^5 copies per cell (Howe & Steitz, 1986). EBERs are not essential for EBV transformation of B cells (Swaminathan et al., 1991), however expression in EBV-negative BL cell lines increases tumourigenicity, promotes cell survival and induces interleukin (IL)-10 expression and thus EBERs may play a role in the pathogenesis of some EBV-associated malignancies, such as BL (Komano et al., 1999; Kitagawa et al., 2000; Ruf et al., 2000).

EBNA1
EBNA1 is the only viral protein translated in all forms of latency (see 1.2.2.2), and also the only EBNA found during lytic infection (Reedman & Klein, 1973). The protein has four components: an internal glycine-alanine repeat flanked by two arginine-rich domains, and a carboxy-terminal DNA binding and dimerisation domain. The two arginine-rich domains facilitate the random association of EBNA1 with chromosomal DNA, whilst the carboxy-terminal binds in a sequence-specific manner to the EBV origin of replication (oriP). These interactions are essential for EBV episome maintenance and partitioning of viral DNA into daughter cells during...
mitosis (Yates et al, 1985; Lee et al, 1999). Expression of EBNA1 in the B cell compartment of transgenic mice leads to development of lymphomas, and thus EBNA1 can be considered a viral oncogene (Wilson et al, 1996). EBNA1 also interacts with certain viral promoters, and is thereby involved with transcriptional regulation of LMP1 and the EBNAs, including itself (Kieff & Rickinson, 2007).

Despite being expressed in all virus-infected cells and capable of raising an antibody response (Dillner et al, 1984), EBNA1 is a relatively poor target for cytotoxic T cells (CTL) (Rickinson & Moss, 1997). Generally, EBV-positive cells expressing only EBNA1 are resistant to CTL mediated lysis in vitro (Levitskaya et al, 1995) and CTL responses against EBNA1 are absent in vivo (Rickinson & Kieff, 2007). The internal glycine-alanine repeat inhibits degradation of the protein via the ubiquitin/proteosome pathway, which prevents endogenous presentation of EBNA1 peptides by major histocompatibility complex (MHC) class 1 to T cells (Levitskaya et al, 1997). However, EBNA1 processed exogenously is capable of eliciting a response from both cluster of differentiation (CD) 4+ and CD8+ T cells, and CTLs responsive to EBNA1 have been detected in EBV seropositive individuals (Blake et al, 1997; Voo et al, 2002).

EBNA2

EBNA2 is essential for the transformation of B cells into lymphoblastoid cell lines (LCL), inducing proliferation and blocking differentiation (Hammerschmidt & Sugden, 1989). It is a potent transactivator of both cellular and viral genes, upregulating expression of the B cell antigens CD21 and CD23 (Cordier et al, 1990; Wang et al, 1991), as well as LMP1 and LMP2 (Wang et al, 1990b; Zimber-Strobl et al, 1991). It also transactivates the viral promoter C (Cp), initiating the switch from promoter W (Wp) to Cp seen early in B cell infection, and thus plays a role in its own transcriptional regulation by this upregulation of its promoter (Puglielli et al, 1997). EBNA2 does not bind directly to the transcriptional elements, rather it interacts with the cellular sequence specific DNA binding protein recombinant signal binding protein (RBP)-Jk, which is partly responsible for targeting EBNA2 to promoters (Grossman et al, 1994).
EBNA3
The three members of the EBNA3 family, EBNA3A, 3B and 3C are encoded on tandemly located genes and appear to have a common origin. EBNA3A and 3C are essential for B cell transformation, while EBNA3B is not (Tomkinson et al, 1993). All three proteins are transcriptional regulators, binding RBP-Jκ and repressing the effects of EBNA2 upregulation (Le Roux et al, 1994; Robertson et al, 1996). EBNA3B also upregulates the cytoskeletal protein vimentin and the activation antigen CD40, but down regulates the BL associated antigen CD77 in BL cell lines (Silins & Sculley, 1994). EBNA3C upregulates CD21 and acts with EBNA2 to coactivate the LMP1 promoter (Allday & Farrell, 1994; Marshall & Sample, 1995). EBNA3A and 3C also repress activation of the Cp promoter (Cludts & Farrell, 1998; Radkov et al, 1999).

EBNA-LP
The EBNA leader protein (LP) is so named as its coding sequence is included as the leader of each EBNA mRNA transcript (see Figure 1.3). It is not absolutely required for B cell transformation, but it does contribute to the efficient outgrowth of LCLs (Allan et al, 1992). EBNA-LP also interacts with EBNA2, coactivating the Cp and LMP1 promoters (Harada & Kieff, 1997).

LMP1
The major transforming protein of EBV, LMP1 is essential for EBV-induced transformation of B lymphocytes in vitro (Kaye et al, 1993). It is an integral membrane protein with a short amino terminal domain, six hydrophobic transmembrane domains joined by short reverse turns, and a 200 amino acid (aa) carboxy terminus signalling domain (Figure 1.4). The signalling domain contains two functional sequences known as C-terminal activation regions (CTARs), identified by their ability to activate the nuclear factor (NF)-κB pathway (Huen et al, 1995). LMP1 post-translationally inserts into cell membranes, primarily the plasma membrane (Hennessy et al, 1984). Both terminal domains are cytoplasmic, and at least one of the three outer reverse turn loops is exposed on the cell surface (Liebowitz et al, 1986). The protein self-aggregates in the plasma membrane, which appears to be a property of the multiple transmembrane domains, often forming into a single cap-like structure (Liebowitz et al, 1986).
Functional studies have shown LMP1 operates as a member of the tumour necrosis factor receptor (TNFR) superfamily. It resembles CD40, another member of the TNFR superfamily, and is able to partially substitute for CD40 in vivo, providing activation and differentiation signals to B cells (Uchida et al, 1999). LMP1 constitutively activates several downstream signalling pathways including the NF-κB pathway, JNK/AP-1, p38/MAPK, and JAK/STAT pathways. It is activation of the NF-κB pathway which contributes to many of the phenotypic consequences of LMP1 expression, such as upregulation of cell surface adhesion molecules (CD11a/CD18, CD54, CD58) and activation antigens (CD21, CD23, CD40) (Wang et al, 1990a), and induction of anti-apoptotic proteins (bcl-2, A20) (Henderson et al, 1991). LMP1 also downregulates the pro-apoptotic genes such as Bax (Dirmeier et al, 2005) and
upregulates cytokine production (IL-6, IL-8, IL-10) (Eliopoulos et al., 1999). The LMP1 transmembrane domains, for homoaggregation, and at least one of the two CTARs within the carboxy terminus signalling domain, are required for NF-κB activation (Huen et al., 1995; Floettmann & Rowe, 1997). LMP1 also affects the growth of EBV infected epithelial cells, inhibiting differentiation and inducing morphological changes in some cell lines (Dawson et al., 1990; Fahraeus et al., 1990), although it was able to induce tumourigenicity without inhibiting differentiation in others (Nicholson et al., 1997). Expression of LMP1 in the skin of transgenic mice also induced epidermal hyperplasia and altered keratin gene expression (Wilson et al., 1990).

LMP1 is transcribed in lytic as well as latent infection. During late lytic infection a truncated LMP1 containing only the last two transmembrane and the intracellular carboxy terminus domain is also transcribed (Hudson et al., 1985). This truncated protein does not have the transforming ability of full length LMP1 (Baichwal & Sugden, 1989). Detection of truncated but not full length LMP1 in pure virus preparations and also immediately after infection suggests it is incorporated into virions and thus may have a role to play in newly infected cells (Erickson & Martin, 1997). It has also been suggested that LMP1 functions in the maintenance of latency in vivo, as it has been shown to bind the viral transactivating lytic protein BZLF-1 in cells that do not express EBNA2 (Adler et al., 2002).

LMP2

The LMP2 gene spans the fused terminal repeats of the EBV episome, and thus can only be transcribed when the genome is circularised (Laux et al., 1988). It encodes two distinct proteins, LMP2A and LMP2B, which share 12 hydrophobic transmembrane domains and a 27 aa cytoplasmic carboxy terminal domain (Figure 1.5). LMP2A also contains a 119 aa amino terminal cytoplasmic domain not found in LMP2B (Sample et al., 1989). Neither LMP2A nor LMP2B are essential for B cell transformation in vitro, although LMP2A is transforming in epithelial cells (Scholle et al., 2000). Both LMP2s are under the transcriptional control of EBNA2, although cellular factors can substitute in its absence.
Figure 1.5: The structure of LMP2.
Schematic of LMP2, showing orientation within a cell membrane. LMP2 has twelve hydrophobic transmembrane domains joined by short reverse turns, six of which are extracellular. The amino-terminal cytoplasmic signalling domain is unique to LMP2A, and not present in LMP2B. It contains an immunoreceptor tyrosine-based activation motif (ITAM) which binds lyn and syk tyrosine kinases. Tyrosine residues in the amino-terminal domain are indicated by circles. The sequences highlighted in red were used as target peptides in phage display selections (see Table 5.2). Image adapted by permission from Macmillan Publishers Ltd: Young LS and Rickinson AB. Nature Reviews Cancer 4:757-768, copyright (2004).

The amino terminal cytoplasmic domain unique to LMP2A contains an immunoreceptor tyrosine-based activation motif (ITAM) (Miller et al, 1994). The ITAM binds lyn and syk tyrosine kinases, sequestering them from the B cell receptor (BCR) and thus inhibiting antigen stimulated B cell activation and consequently EBV progression into lytic replication (Miller et al, 1995). In the absence of the BCR, LMP2A can mimic its actions and provide growth and survival signals to B cells (Caldwell et al, 1998; Mancao & Hammerschmidt, 2007). LMP2 forms aggregates in the plasma membrane of B cells, co-localising with LMP1 (Longnecker & Kieff, 1990). It has been suggested that the function of LMP2B may be to modulate spacing of the LMP2A signalling domains in these plasma membrane aggregates (Longnecker & Miller, 1996).

BARTs
Highly spliced polyadenylated RNAs known as BARTs are abundantly expressed during EBV latency. Their function remains unclear, but they have been identified in
NPC (Hitt et al, 1989), BL (Tao et al, 1998) and HL (Deacon et al, 1993), as well as in latently infected healthy individuals (Chang et al, 1999) and thus may play a role in viral persistence. BARTs contain three ORFs which could potentially encode protein, but reports on translation of BARTs are inconsistent.

1.2.2.2 Latency programs
Latent infection with EBV is characterised by differential expression of latent proteins, which result from the use of alternative promoters. These expression patterns are termed the latency I or latency program, latency II or default program, and latency III or growth program, and are characteristic of certain EBV-associated diseases (Rowe et al, 1992). Latent infection of B cell in healthy seropositive individuals is designated latency program 0. EBV antigen expression, promoter usage and disease associations are shown in Table 1.3.

Table 1.3: EBV latency programs.
The gene expression patterns, EBNA1 promoter and human diseases associated with EBV latency programs. Adapted from Crawford (2001), Rickinson & Kieff (2007), and Straathof et al (2003). [*variable EBNA1 expression in healthy seropositive individuals; **expression of LMP2A observed in a proportion of GC cases]

<table>
<thead>
<tr>
<th>Latency program</th>
<th>genes expressed</th>
<th>EBNA1 promoter</th>
<th>disease association</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latency 0</td>
<td>EBERs</td>
<td>Qp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EBNA1*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMP2A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BARTs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latency I</td>
<td>EBERs</td>
<td>Qp</td>
<td>Burkitt's lymphoma</td>
</tr>
<tr>
<td>latency</td>
<td>EBNA1</td>
<td></td>
<td>Gastric carcinoma</td>
</tr>
<tr>
<td></td>
<td>BARTs</td>
<td></td>
<td>**</td>
</tr>
<tr>
<td>Latency II</td>
<td>EBERs</td>
<td>Qp</td>
<td>Hodgkin's lymphoma</td>
</tr>
<tr>
<td>default</td>
<td>EBNA1</td>
<td></td>
<td>Nasopharyngeal carcinoma</td>
</tr>
<tr>
<td></td>
<td>LMP1 and/or</td>
<td></td>
<td>T cell lymphomas</td>
</tr>
<tr>
<td></td>
<td>LMP2A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BARTs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latency III</td>
<td>EBERs</td>
<td>Cp/Wp</td>
<td>Lymphoblastoid cell lines in vitro</td>
</tr>
<tr>
<td>growth</td>
<td>EBNA1</td>
<td></td>
<td>Infectious mononucleosis</td>
</tr>
<tr>
<td></td>
<td>EBNA2</td>
<td></td>
<td>Post transplant lymphoproliferative disease</td>
</tr>
<tr>
<td></td>
<td>EBNA3A, 3B, 3C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMP1, 2A, 2B</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EBNA-LP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BARTs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.2.2.3 Lytic replication

The exact conditions needed *in vivo* to initiate a switch from latent to lytic infection remain unclear. *In vitro*, around 2 to 10% of cells in LCL cultures spontaneously enter the lytic cycle (Henle & Henle, 1966). Lytic replication *in vitro* can also be induced by surface immunoglobulin (Ig) crosslinking or phorbol ester treatment. During lytic replication, the EBV genome is amplified 100- to 1000-fold (Hammerschmidt & Sugden, 1988) and progeny virus is released, resulting in host cell death.

EBV lytic replication is controlled by a separate set of genes to those involved with latency. These are expressed consecutively, in groups of immediate early, early and late genes, as outlined below.

Immediate early genes

Immediate early gene products are required for transactivation of lytic replication (Cox *et al.*, 1990). The two principle immediate early genes are BZLF1 and BRLF1. Their gene products, the proteins ZEBRA and Rta, coordinately upregulate expression from early EBV promoters (Chevallier-Greco *et al.*, 1986). ZEBRA also binds to the lytic origin of replication (oriLyt), inducing viral replication, and can downregulate the latency III promoter Cp (Kenney *et al.*, 1989). Rta activates transcription of the viral DNA polymerase, BALF5 (Liu *et al.*, 1996).

Early genes

EBV early genes encode at least 30 proteins, most of which are enzymes involved in genome replication. BALF2 is a DNA binding protein important in viral DNA replication (Fixman *et al.*, 1992). BHRF1 has homology to the cellular bcl-2 gene, and potentially works to prevent apoptosis in lytic infection (Henderson *et al.*, 1993). The viral DNA polymerase, which is essential for lytic replication of the EBV genome, is also an early gene (Hammerschmidt & Sugden, 1988). Detection of serum antibodies against immediate early and early proteins is used in the diagnosis of IM. Gene products include those of BZLF1, BALF2 and BHRF1, which are collectively termed early antigen (EA).
Late genes

The EBV late genes encode structural glycoproteins as well as proteins involved in cleavage of the progeny virus DNA concatamers, and packaging, envelopment and egress of virions. The major viral structural proteins are the gp350/220 (from ORF BLLF1), and the gp85/25/42 (from ORFs BKRF2, BZLF2 and BXLF2) complexes. These proteins are also involved in attachment and entry of the virion to the host cell, with gp350/220 facilitating virion attachment to B cells via CD21 (Tanner et al., 1987), and gp85/25/42 mediating viral fusion via human leukocyte antigen (HLA) class II molecules (Li et al., 1995). Detection of serum antibodies against viral capsid antigen (VCA), and membrane antigen (MA), are also used in the diagnosis of IM. VCA is comprised of a range of virus nucleocapsid proteins, while antibodies against MA are generally specific for gp350, and to a lesser extent gp220 and gp85.

1.2.3 EBV infection

1.2.3.1 Cell tropism

In a healthy human host, EBV exhibits a distinct cell tropism, infecting lymphocytes. Lymphocyte infection is generally found in B cells, and although EBV infection of T and natural killer (NK) cells has been seen it is generally restricted to disease states (Kanegane et al., 1996; Kanegane et al., 1998). There is also evidence for EBV infection of monocytes and macrophages (Shimakage et al., 1999; Savard et al., 2000). Circulating infected B cells are rare in healthy carriers, with between 1 and 50 EBV-positive cells per million B cells (Khan et al., 1996), and are generally of the memory phenotype, that is surface Ig-positive but surface IgD-negative (Babcock et al., 1998).

Definitive proof for EBV infection of epithelial cells in healthy individuals has yet to be found. Evidence supporting a role for epithelial infection by EBV includes the presence of viral DNA, mRNA and protein in explant cultures of tonsils from healthy seropositive individuals (Pegtel et al., 2004), and the presence of EBV genomes in dysplastic epithelial cells adjacent to gastric adenocarcinomas (Shibata & Weiss, 1992). The presence of EBV in NPC cells and oral hairy leucoplasia (OHL) lesions demonstrates that EBV is capable of epithelial infection under certain conditions.
(Klein et al., 1974; Greenspan et al., 1985). *In vitro*, primary epithelial cells are generally EBV resistant, although some cell lines can be infected.

1.2.3.2 Infection of B cells

EBV preferentially infects resting B cells, attaching to cells via CD21, also known as the C3d complement receptor or complement receptor 2 (Fingeroth et al., 1984; Weis et al., 1984). The EBV envelope glycoprotein complex gp350/220 acts as the CD21 ligand (Nemerow et al., 1987). Monoclonal antibodies to CD21 block viral infection (Fingeroth et al., 1984), however EBV BLLF1-deletion mutants which lack gp350/220 are infectious, albeit with reduced efficiency, indicating that gp350/220-CD21 binding is not essential for infection with EBV (Janz et al., 2000). The heterotrimer of gp85/25/42 mediates fusion of the virus envelope with the cell membrane (Li et al., 1995). Gp42 is an essential component of the trimer, and its association with HLA Class II molecules as coreceptors for fusion plays a critical role in infection (Spriggs et al., 1996; Wang & Hutt-Fletcher, 1998; Haan et al., 2000). *In vitro* infection of B cells with EBV results in the establishment of LCLs, which are continually cycling and capable of proliferating indefinitely (Pope et al., 1968; Steel et al., 1977; Tosato et al., 1985).

Circularisation of the EBV genome occurs around 12-16 hours post infection when measured during *in vitro* experiments (Kieff & Rickinson, 2007). Of the multiple linear copies released into the cell, only one copy is circularised, resulting in a clonal population of infected cells (Sugden et al., 1979). Infection drives the resting B cell into G1, then S-phase, and the circular episome is replicated whilst linear copies are lost. EBNA2 and EBNA-LP are the first viral genes to be expressed, with gene products detectable by about 12 hours post infection (Alfieri et al., 1991). Initially, EBNA2 is under the control of the Wp promoter, but a switch to Cp occurs at around 36 hours, concurrent with expression of the remaining EBNAs and LMP1 (Woisetschlaeger et al., 1989; Woisetschlaeger et al., 1990). LMP2A and 2B are not detected for up to 70 hours post infection, the time when EBERs transcripts also reach substantial levels (Alfieri et al., 1991).
Infection of primary B cells with EBV also results in a range of phenotypic changes, similar to those seen with antigen activation of cells, including cell clumping, increased villous projections and increased vimentin expression. There is also upregulation of the cell surface antigens CD21, CD23, CD39, CD40, CD44, and HLA class II; increase in the production of cytokines IL-6, IL-8 and IL-10; and increased expression of the adhesion molecules CD11a/CD18 (LFA-1), CD54 (ICAM-1), and CD58 (LFA-3) (Wang et al., 1988; Eliopoulos et al., 1999; Kieff & Rickinson, 2007).

1.2.3.3 Infection of epithelial cells

Epithelial cells generally do not express CD21, nor do they have HLA class II molecules on their surface. Therefore, entry of EBV into epithelial cells is evidently via a different method to B cells, although the exact mechanism remains unclear. Using recombinant EBV carrying a neomycin resistant gene, both CD21-dependent and -independent infection of epithelial cell lines has been shown in vitro (Yoshiyama et al., 1997; Fingeroth et al., 1999). Infection is reliant on gp85/25 complexes, which do not include the gp42 component essential for B cell infection (Li et al., 1995; Molesworth et al., 2000). Interaction between the viral BMRF2 protein and β1 or α5β1 on the basolateral surface of epithelial cells has also been suggested as an alternative CD21-independent mediator of viral entry (Tugizov et al., 2003). In vitro, efficient cell to cell infection from EBV-infected LCLs to epithelial cell lines derived from a range of carcinomas has been described (Imai et al., 1998), as has transfer of virus from B cell membranes to epithelial cells (Shannon-Lowe et al., 2006). This process requires cell to cell contact and is CD21-independent, although induction of CD21 expression enhanced infection efficiency (Chang et al., 1999). Once the initial infection is achieved, it is possible that cell to cell spread amongst epithelial cells occurs (Tugizov et al., 2003).

1.2.4 EBV primary infection and persistence in vivo

EBV infection usually occurs via the oral route, with infectious virus particles shed in saliva (Gerber et al., 1972). Primary infection generally occurs in young children, with seroprevalence increasing with age until over 90% of adults are seropositive.
Chapter 1

Introduction

Primary infection is normally asymptomatic, although a self-limiting disease, IM, occurs in 25-50% of cases where primary infection occurs in adolescence (Niederman et al, 1970; Sawyer et al, 1971; Crawford et al, 2006). In IM, primary infection is brought under control by a strong CD8+ CTL response to both latent and lytic antigens (Khanna & Burrows, 2000). The production of EBV-specific antibodies also helps limit the spread of infectious virus. These immune responses are not able to completely eliminate EBV from the body, and a persistent latent infection is established.

The identity of the EBV primary target cell and reservoirs of persistent infection in vivo remain controversial. Two hypothetical cycles of infection have been proposed, and are outlined below.

B cell hypothesis

EBV enters the host in saliva and infects naïve B cells. Waldeyer’s ring is a band of lymphoid tissue in the throat comprising the palatine, lingual and pharyngeal tonsils. Here the epithelium of the oropharynx dips deeply into the underlying lymphoid tissue to form structures known as crypts, where the epithelial layer is not so tightly knit together and lymphoid cells are able to infiltrate (Perry & Whyte, 1998). This allows EBV in saliva direct access to B cells as a primary target for infection (Faulkner et al, 2000; Macsween & Crawford, 2003). Infected naïve B cells undergo clonal expansion and express a latency III phenotype (Babcock et al, 2000; Babcock & Thorley-Lawson, 2000). After expansion, cells take on some of the characteristics of germinal centre B cells, expressing the germinal centre-specific marker CD10 and an EBV latency II phenotype (Babcock et al, 2000). Under normal conditions, uninfected naïve B cells progress to become germinal centre B cells following antigen-mediated activation, whereupon a minority receive the two survival signals required for transition into memory B cells (Liu & Arpin, 1997). These B cell survival signals are delivered firstly through the BCR via antigen mediated receptor cross-linking, and secondly through the interaction of CD40 on the B cell with CD40 ligand (CD154) on the surface of T helper cells, which are brought together by MHC class II antigen presentation by the B cell. Cells which fail to receive the second survival signal from a helper T cell die by apoptosis. In the absence of antigen, EBV provides infected B cells with these activation and survival signals via LMP1.
(replacing CD40) and LMP2 (replacing the BCR) (Caldwell et al., 1998; Kilger et al., 1998). The infected cells then differentiate into memory B cells, the long term reservoir for EBV. Memory B cells are naturally long-lived, allowing the virus to persist for extended periods, with EBNA1 the only viral protein expressed (Hochberg et al., 2004). This latency 0 phenotype prevents detection of infected cells by EBV-specific T cells. Antigen-specific differentiation of EBV infected memory cells into plasma cells causes the virus to progress into lytic phase (Crawford & Ando, 1986; Laichalk & Thorley-Lawson, 2005), resulting in progeny virus, and subsequent infection of naïve B cells to replenish the virus-infected pool (Thorley-Lawson & Gross, 2004). Latently infected memory B cells activated by antigen can also recirculate back to Waldeyer’s ring. The infectious progeny virions released there are thus in a position not only to infect bystander naïve B cells, but also exit to the saliva for transmission. The resistance of individuals with X-linked agammaglobulinaemia, who lack Bruton’s thymidine kinase and consequently functional B cells, to EBV infection (Faulkner et al., 1999), lends further support for the hypothesis that B cells are both the site of primary as well as persistent infection.

Epithelial cell hypothesis

EBV enters the host in saliva and infects epithelial cells of the oropharynx. Lytic replication results in the spread of infection to B cells present beneath the epithelium. The cycle of infection then continues as outlined in the B cell hypothesis above. Later, infection of the epithelial cells by virus released from plasma cells provides an exit to the saliva for transmission. Corroborating evidence for epithelial to B cell and B cell to epithelial cell EBV infection is provided by the finding that EBV produced in B cells is ‘epithelial cell tropic’ and EBV produced in epithelial cells is ‘B cell tropic’, that is they more efficiently infect the opposite cell type (Borza & Hutt-Fletcher, 2002). To elaborate, EBV infection of B cells requires the three part complex of viral glycoproteins gp85/25/42 to bind to HLA class II, whilst infection of epithelial cells requires only gp85/25 two part complex (Li et al., 1995). Each virion carries both three-part and two-part complexes, but virions produced by B cells carry relatively more two-part complexes and virions produced by epithelial cells carry relatively more three-part complexes, resulting in greater infection efficiency for the opposite cell type (Borza & Hutt-Fletcher, 2002). *Ex vivo*, cultures of resected tonsils have been shown capable of latent infection (Pegtel et al, 2004).
Additionally, chronic low level oro/nasopharyngeal virus shedding is seen in healthy EBV seropositive individuals (Yao et al., 1985), which may not be produced by B cells as they yield relatively little infectious virus, thus supporting a role for epithelial infection in amplification of virus to enhance transmission.

A role for other cell types in EBV cycle of infection

Two recent studies have proposed a role for additional cell types in the EBV cycle of infection. In *ex vivo* experiments, Tugizov et al. (2007) showed that monocytes infected with EBV *in vitro* were able to facilitate the spread of EBV infection to epithelial cells in 9 of 14 tongue and buccal explant cultures, compared with infection of 1 of 20 explants incubated with cell free virus, with EBV-positive langerhans cells (LC) and activated macrophages/LC detected in close proximity to the infected epithelial cells (Tugizov et al., 2007). EBV DNA was also detected in CD14+ peripheral blood monocytes of 69% of human immunodeficiency virus (HIV) patients and 47% of healthy volunteers. Furthermore, EBV-infected LCs with a latency 0 or reactivation phenotype were observed *in vivo*, albeit rarely, in oral biopsy tissue from HIV patients (Walling et al., 2007). Therefore, since circulating monocyte/macrophage/LCs can migrate to tissue sites including the oral mucosa, these cells may serve as a vehicle for virus transfer between the memory B cell reservoir in the blood compartment and the oral epithelium from whence virus is shed in saliva for transmission.

1.2.5 The immune response to EBV

As the majority of people are EBV seropositive, yet seroconvert silently and sustain an asymptomatic persistent infection, it is clear that the immune system must play an important role in maintaining the balance between virus and host. This key role for the immune system is supported by the presentation of immunocompromised patients with severe EBV-associated disease, such as PTLD. As seroconversion usually goes unnoticed, information on primary infection is principally drawn from the study of IM, and what is known about primary infection in children tends to suggest a broadly similar immune response (Pedneault et al., 1996). In IM, EBV elicits both a humoral and cellular response.
1.2.5.1 Humoral response to EBV infection

The humoral response to primary EBV infection is characterised by detectable IgM and IgG to VCA and EA, detectable IgM but relatively weak IgG to MA, and the absence of IgG to EBNA (Moss et al., 2001). The composition of VCA, EA and MA is covered in section 1.2.2.3. Antibodies to gp350/220 within the MA complex are neutralising (Thorley-Lawson & Geilinger, 1980). The pattern of antibody expression changes during convalescent IM and for healthy EBV carriers, with stable IgG titres to EBNA, VCA and MA, but undetectable or weak IgG to EA (Moss et al., 2001). Approximately 85% of IM patients also have transient serum heterophile antibodies. Heterophile antibodies are IgM molecules reactive with antigens of an unrelated species. In the case of IM, these are antibodies specific for EBV which cross react with epitopes found on equine, ovine and bovine erythrocytes. Detection of heterophile antibodies reactive with horse erythrocytes is the basis of the IM monospot diagnostic test. These heterophile antibodies may be the product of EBV infected B cells (Garzelli et al., 1984). EBV specific antibodies could serve to prevent virus superinfection or halt further virus transmission (Thorley-Lawson & Poodry, 1982; Yao et al., 1991).

1.2.5.2 Cellular response to EBV infection

NK cells

Higher NK cell numbers have been correlated with lower viral load in IM patients, leading to the suggestion that NK cells may play a role in resolution of primary infection with EBV (Williams et al., 2005). However, of themselves NK cells are not sufficient to control initial infection, as shown by outgrowth of EBV-positive lesions in primary infection of immunocompromised post transplant patients who retain NK function.

CD8+ T cells

The CD8+ cytotoxic T cell response to EBV infection is characterised by an antigen driven proliferation of CD8+ T cells displaying an activated phenotype (Callan et al., 1996). In IM, these cells are present in both the circulation and the tissues in very high numbers. During acute infection as represented by IM, the CD8+ T cells primarily recognise immediate early and early lytic antigens, whilst cells specific for
latent antigens are relatively few (Steven et al, 1997; Hislop et al, 2002). The CD8+ T cell response evolves as infection progresses, with numbers of cells specific for lytic antigen dropping as primary infection is resolved, while the numbers of cells specific for latent antigen increase with the establishment of persistent infection (Hislop et al, 2002). The immune response to latent antigens is dominated by clones specific for the EBNA3A, 3B and 3C proteins (Khanna et al, 1992; Murray et al, 1992). The long-term memory T cell compartment maintains cells specific for both EBV lytic and latent epitopes, with lytic antigen specific cells typically more abundant than those specific for latent antigen (Tan et al, 1999). EBNA3 immunodominance is preserved amongst those cells specific for latent antigens.

CD4+ T cells

Although the CD4+ T cell response to EBV infection is less well characterised than that of CD8+ T cells, CD4+ cells specific for both lytic and latent antigens have been shown in IM patients, secreting interferon (INF)-γ in a T helper (Th)-like manner (Precopio et al, 2003). There is distinct divergence in the capacity of different EBV latent proteins to elicit a CD4+ T cell response, with EBNA1 and EBNA3C the most immunogenic ahead of LMP1 and LMP2 (Leen et al, 2001). That is, PBMCs from a higher proportion of EBV-seropositive donors secreted INF-γ in response to peptide stimulation. This is in contrast to the CD8+ cell response, where EBNA3C is the most immunogenic, followed by EBNA1, LMP2 and LMP1 in decreasing order (Leen et al, 2001). In addition to their T-helper role, CD4+ cells may also contribute a cytotoxic response, as they have been shown capable of inducing EBV-specific lysis via Fas/FasL interaction (Paludan et al, 2002) or granulysin secretion (Sun et al, 2002). CD4+ T memory cells are less frequent and of a narrower specific range than their CD8+ counterparts (Leen et al, 2001).

1.3 EBV and associated diseases

Although the majority of EBV-infected individuals exhibit no EBV-related illness, primary EBV infection can result in IM and EBV has also been linked with a number of lymphoid and epithelial malignancies. Despite the ubiquitous nature of the virus, EBV-associated malignancies are relatively rare and frequently geographically restricted, indicating that infection is not the only necessary factor in tumourigenesis.
With increases in the number of iatrogenically immunosuppressed transplant and HIV patients there has been a concomitant rise in EBV-associated disease in this setting. A number of these EBV-associated diseases are discussed in the following sections.

1.3.1 Infectious mononucleosis

IM is a self-limiting lymphoproliferative disease which occurs during primary EBV infection of adolescents and young adults. In Western countries, early studies estimated that IM developed in approximately 50% of cases where primary infection was delayed until adolescence (Niederman et al, 1970; Sawyer et al, 1971), although a more recent study has put this figure closer to 25% (Crawford et al, 2006). In developing nations, IM is a relatively rare condition, as virtually all children are infected with EBV by the age of two (de-The et al, 1978).

Symptoms of IM can include fever, pharyngitis, lymphadenopathy, general malaise and fatigue, and vary in severity from patient to patient. The illness is usually self-resolving within two to four weeks, although fatigue may persist during the convalescent period for up to six months. In rare cases, a chronic IM can develop (Okano et al, 1991). Massive lymphocytosis is characteristic of IM, and the proliferating cells are predominantly activated CD8+ T cells, although there is also an expansion of infected B cells (Klein et al, 1976; Callan et al, 1996). These activated T cells are found in tissues throughout the body, and release proinflammatory cytokines including IL-1, IL-6, and TNF-α (Foss et al, 1994), which are thought to result in the immunopathological clinical manifestation of IM.

It is not known why primary EBV infection in adolescence can result in IM when virtually all childhood infections are asymptomatic. One possible explanation is that the dose of virus received via the oral route is much higher in adolescents. This elevated initial exposure results in the numbers of infected B cells exceeding some threshold limit, driving antigen induced T cell proliferation to the point where resulting cytokine levels become pathogenic (Rickinson & Kieff, 2007).
1.3.2 Burkitt’s lymphoma

BL typically presents as a tumour of the jaw, although other sites including the ovaries, mammary glands, liver, intestine, and kidneys are not uncommon. Two forms of BL have been described, endemic BL (eBL) and sporadic BL (sBL). eBL is found in equatorial Africa and Papua New Guinea, is EBV associated in 96% of cases, and is one of the most common childhood cancers in equatorial Africa. sBL occurs worldwide with an incidence that is at least 50-fold less than eBL, and an EBV association which falls anywhere between 20 to 70%, depending on the region surveyed (Rickinson & Kieff, 2007).

BL tumours consist of rapidly proliferating cells of B cell origin, which phenotypically resemble germinal centre B cells, and sporadic infiltrating macrophages, resulting in a characteristic ‘starry sky’ histology (Gregory et al, 1987). In EBV-associated BL, the virus is present in all malignant cells in multiple episomal copies, and is clonal, suggesting EBV infection is an early event in tumourigenesis (Neri et al, 1991). BL cells display a type I latency, with EBV gene expression limited to EBNA1, EBERs and BARTs. The oncogenic potential of EBNA1 remains a topic of contention, but a possible role in BL cell survival has been suggested (Kennedy et al, 2003). EBERs may also contribute to the pathogenesis of BL, as they have been reported to induce IL-10 (Kitagawa et al, 2000) and mediate INF-α resistance (Nanbo et al, 2002), potentially supporting tumour growth and survival (Ogden et al, 2005).

Three key factors in the tumourigenesis of eBL have been identified: EBV infection, c-myc translocation, and malaria. All BL tumour cells contain one of three chromosomal translocations which result in constitutive expression of c-myc, leading to cellular proliferation without differentiation (Rickinson & Kieff, 2007). BL has long been linked with malaria, beginning with Dennis Burkitt himself. Areas of high incidence of holoendemic malaria and eBL in Africa coincide, and where malaria prevalence has fallen due to mosquito eradication, so has the occurrence of eBL (Crawford, 2001). Current theories propose that both malarial stimulation of infected B cells and inhibition of EBV-specific CTLs contribute to the pathogenesis of eBL. Supporting these hypotheses, children with acute malaria have up to five times
more circulating EBV infected cells than those with convalescent malaria (Lam et al., 1991), and acute malarial infection results in T cell immune suppression (Whittle et al., 1984).

BL is highly sensitive to chemotherapy, with disease free survival rates of 80% after effective treatment. Surgery is rarely necessary to remove tumour bulk. More recently, chemotherapy in combination with the chimeric monoclonal antibody (mAb) Rituximab, which is specific for the B cell antigen CD20 expressed in BL, has been advocated by the Children’s Oncology Group (Giulino et al., 2007).

1.3.3 Hodgkin’s lymphoma

HL is the most common lymphoma of young people in industrialised countries. It has four subtypes; nodular sclerosing (NS), mixed cellularity (MC), and lymphocyte depleted (LD), collectively known as classical HL, and the clinically separate entity lymphocyte predominant (LP) HL. Worldwide, EBV is more likely to be associated with classical rather than LP HL, with around 50% of classical HL EBV-associated in western countries (Rickinson & Kieff, 2007). Within classical HL, it is more commonly associated with the MC and LD rather than the NS subtype (Rickinson & Kieff, 2007). IM has also been shown to be a risk factor for HL (Glaser & Jarrett, 1996).

Incidence of classical HL has traditionally been described as bimodal, with peaks in children and older adults, although this depiction may be somewhat simplistic and subject to regional variations, for example the childhood peak occurs later in affluent compared to non-affluent societies (Macfarlane et al., 1995). To more accurately reflect these geographical deviations, a four-disease model of classical HL has been proposed (Figure 1.6; Jarrett, 2006). Based on the age at diagnosis, tumour EBV association and history of IM, classical HL is divided into four subgroups, each with peak of incidence in a different age group, three of which are EBV-associated (peaks a, b, c in Figure 1.6). Of these three EBV-associated peaks, the first subgroup (a) is composed of early childhood disease, which generally occurs before the age of 10 years, and accounts for the majority of childhood cases in developing countries. The second peak (b) represents disease in young adults, which is associated with previous
IM. The final EBV-associated subgroup (c) represents disease in older adults, with HL generally occurring after 55 years of age. The largest subgroup is EBV-negative HL, and accounts for the young adult peak in developed countries. The height and shape of each peak will vary according to the country from which the data are collected.

Figure 1.6: Incidence of Hodgkin’s lymphoma.
Four disease model of classical HL, divided on the basis of age, EBV-association and history of IM. Subgroups are childhood (a), early adulthood (b), late adulthood (c), and EBV-negative (d). Adapted from Jarrett (2006).

HL is unusual histologically, as less than 2% of the tumour is made up of the malignant mononuclear Hodgkin or multi-nuclear Reed-Sternberg cells (collectively referred to as HRS cells), with the remaining tumour bulk consisting of non-neoplastic infiltrating lymphocytes. As with BL, EBV in HL is clonal, indicating that infection occurs early in tumourigenesis (Anagnostopoulos *et al*, 1989). When present, the virus is carried in HRS cells (Wu *et al*, 1990), with every malignant cell EBV-positive, even in cases with multiple lesions (Rickinson & Kieff, 2007). Rearrangement of Ig genes indicates that these HRS cells are derived from germinal centre B cells (Kanzler *et al*, 1996b). A proportion show obvious ‘crippling’ mutations in rearranged Ig genes, which under normal conditions should have resulted in apoptosis in the germinal centre, and EBV may play a role in the rescue of these cells (Kanzler *et al*, 1996b). HRS cells display an EBV latency II phenotype, and the expression of LMP1 and LMP2A may promote survival in the pre-apoptotic germinal centre cells. LMP1 likely contributes to the survival and proliferation of
HRS cells through activation of NF-κB (Bargou et al., 1997). Although LMP2A has been shown to provide growth and survival signals to B cells (Caldwell et al., 1998), its ability to do this in HL is uncertain, as HRS cells have down-regulated many of the components involved in the BCR signalling pathway (Schwering et al., 2003).

HL is one of the most treatable adult cancers, with about 80% of patients achieving complete remission, although around one third of patients do relapse. Most treatment strategies involve combinations of chemotherapy and radiotherapy, with Rituximab an option for refractive or recurrent disease, as a proportion of HRS cells express CD20 (Klimm et al., 2005).

1.3.4 Nasopharyngeal carcinoma

In contrast to BL and HL, NPC is of epithelial origin and specifically is a tumour of the nasopharyngeal squamous epithelium. Although NPC occurs worldwide, incidence is low except amongst the Inuit peoples, in southeast Asia, and most especially in southern China, where it occurs in up to 3 in 10000 people (Lopes et al., 2003). Incidence remains high in males of Cantonese descent irrespective of location, suggesting genetic factors contribute to disease aetiology (Lopes et al., 2003). A number of potential environmental cofactors, such as a diet high in salted fish, have also been identified (Armstrong et al., 1998).

There are two broadly defined NPC subtypes; differentiated (keratinized), and undifferentiated/poorly differentiated (non-keratinized) NPC. EBV is found in virtually all undifferentiated NPC tumours, but the association with differentiated NPC remains controversial (Rickinson & Kieff, 2007). Undifferentiated NPC lesions are composed of EBV-positive carcinoma cells with a prominent EBV-negative non-neoplastic lymphocyte infiltration (Klein et al., 1974). Interactions between these cell types may be important for tumour growth, as tumour cells and infiltrating lymphocytes express molecules, for example CD40 on tumour cells and CD40 ligand on T cells, allowing them to exchange signals involved in cell activation and proliferation (Agathanggelou et al., 1995).
As with BL and HL, EBV in NPC is clonal, indicating infection occurs prior to expansion of malignant cells (Raab-Traub & Flynn, 1986). However, pre-malignant genetic events in the absence of EBV infection have also been found, potentially predisposing cells to EBV infection (Lo & Huang, 2002), which is in agreement with data showing that epithelial cells unable to differentiate preferentially support stable EBV infection (Knox et al., 1996). To what extent EBV influences the outgrowth of malignant cells remains unclear. At a transcriptional level, NPC displays an EBV latency II phenotype, but this is not maintained through to the level of protein expression. The EBNA1 protein is readily detectable in NPC (Young et al., 1988), while LMP1 protein expression is variable, being detected only in around 35% cases (Young et al., 1988). Expression of LMP2A has been confirmed by PCR in 94% of NPC tumours and 46% of NPC tumours by immunohistochemistry (Brooks et al., 1992; Heussinger et al., 2004). NPC patients are also the only group to reproducibly show a serum antibody response to the LMP2 (Frech et al., 1990; Lennette et al., 1995).

NPC is radiosensitive, and radiotherapy controls disease in 80% of early stage cases. However, early stage tumours often go undetected and treatment of late stage NPC is less reliable and frequently results in refractory or recurrent disease (Wei & Sham, 2005). EBV DNA in serum correlates with tumour burden, and can be used to monitor for disease relapse (Lo et al., 1999a; Lo et al., 1999b), as can serum concentration of IgA specific for VCA (Chien et al., 2001).

1.3.5 Gastric carcinoma

Approximately 10% of gastric carcinomas worldwide are EBV-associated. However, as GC is one of the most common carcinomas the absolute incidence is considerable, with estimates exceeding 50000 cases per year. Both typical adenocarcinomas and carcinoma with prominent lymphocyte infiltration, such as seen in NPC, have been associated with EBV (Shibata & Weiss, 1992; Nakamura et al., 1994).

EBV-associated GC has traditionally been classified as expressing a type I latency. However, although EBNA1 is the only latent protein consistently expressed, LMP2
transcripts have also been detected in a proportion of cases (Imai et al, 1994; Sugiura et al, 1996). EBV in GC is clonal (Imai et al, 1994), with almost 100% of cells containing the EBV episome (Zur Hausen et al, 2004), suggesting EBV infection is an early event in tumourigenesis. However, conflicting reports of the presence of EBV in preneoplastic dysplastic mucosa means the role of EBV in tumourigenesis has yet to be fully elucidated (Takada, 2000; Zur Hausen et al, 2004).

An interdisciplinary approach is used in the treatment of GC, utilising a combination of surgery, chemotherapy and radiotherapy. However, patient outcome remains poor, with frequent disease progression and tumour metastases.

1.3.6 EBV-associated malignancies in the immune compromised

PTLD

The lymphoproliferative disorders that arise post transplant, collectively known as post transplant lymphoproliferative disease (PTLD), are a heterogeneous collection of disorders principally of B cell origin (Hopwood & Crawford, 2000), although T- and NK-derived tumours have also been observed (Nalesnik, 2001). About 90% of PTLD tumours are EBV-positive (Crawford, 2001). The key risk factors for development of PTLD are iatrogenic T cell immunosuppression and primary EBV infection post transplant, with around 50% PTLD associated with a primary EBV infection (Thomas et al, 1990). PTLD occurs in up to 10% of all transplant patients, but rates of incidence vary greatly depending on the organ being transplanted, EBV status of the donor and recipient, and choice of immunosuppressive regimen (Burns & Crawford, 2004). PTLD is most likely to occur within one year of transplant, when immunosuppressive therapy is highest, with tumours developing after one year associated with poorer prognosis (Williams & Crawford, 2006). PTLD in bone marrow transplant (BMT) recipients is generally of donor origin, while PTLD in solid organ recipients is of recipient origin.

PTLD tumours usually exhibit a latency III phenotype, although other more restricted patterns have been reported (Young et al, 1989a; Cen et al, 1993). Decreasing immunosuppressive treatment can lead to an increase in the EBV-specific immune response and tumour regression, at least in early stage disease, and
this evidence, together with the expression of a full range of latent proteins indicates a reliance on EBV to drive the proliferation of malignant cells (Hopwood & Crawford, 2000). EBV in PTLD can be polyclonal, but is generally oligo- or monoclonal, with PTLD arising later than one year post transplant more likely to be monoclonal (Hanto et al., 1989). The EBV genome is not necessarily found in all cells within the tumour mass, as infiltrating EBV-negative non-neoplastic lymphocytes often contribute a substantial proportion (Perera et al., 1998). Unlike other EBV-associated diseases, the malignant cells of PTLD are able to arise from various points in the B cell differentiation pathway and derivation can include naïve and memory B cells, as well as post-germinal centre B cells with mutations which would normally lead to apoptosis (Timms et al., 2003).

First line treatment for solid organ PTLD is reduction in immunosuppression (Gottschalk et al., 2005). This is particularly effective against polyclonal tumours, however it is difficult to sustain given the often grave consequences of graft loss, so disease relapse is common. Response rates to reduction of immunosuppression vary from 25 to 63% in adults and 40 to 86% in children (Gottschalk et al., 2005; Taylor et al., 2005). Chemotherapy had been the second line treatment of choice until the advent of Rituximab, and combination of the two is now generally used with response rates up to 100% (Gottschalk et al., 2005). Individually, use of chemotherapy is complicated by increased severity in side-effects due to immune suppression (Oertel et al., 2003), and Rituximab monotherapy can lead to CD20-tumour outgrowth (Verschuuren et al., 2002). Rituximab alone is the first line treatment for BMT PTLD. Trials of cellular therapy using EBV-specific CTLs for refractive disease have shown promising results in both bone marrow and solid organ PTLD (Rooney et al., 1995; Haque et al., 2007).

X-linked lymphoproliferative disease

Individuals with a rare genetic disease, X-linked lymphoproliferative (XLP) disease, carry a mutation or deletion in a gene that appears to be important in T and B-cell homeostasis after viral infection (Coffey et al., 1998; Sayos et al., 1998). The gene product, SLAM-associated protein (SAP), is expressed in activated T and NK cells, and interacts with the signalling lymphocytic activation molecule (SLAM) protein, a member of the Ig superfamily expressed on T, B and dendritic cells (Sayos et al,
In healthy individuals, it is thought that the SAP/SLAM interaction acts to maintain equilibrium in Th1/Th2 cytokine production (Williams & Crawford, 2006). Similar to the situation in IM, EBV infection in XLP individuals leads to a massive proliferation of EBV-infected B cells and a concomitant rise in CTLs. Unlike IM, the CTLs of XLP patients apparently cannot limit this B cell expansion, and the resulting cytokine response, primarily of Th1 cytokines such as INF-γ, is thought to result in the extensive organ damage seen in such patients (Williams & Crawford, 2006). Over 50% of XLP patients die in this acute phase, and the majority of survivors go on to develop lymphomas or hypogammaglobulinemia.

AIDS-related lymphomas

The immune deficiency which results from HIV infection means HIV/acquired immune deficiency syndrome (AIDS) patients are at high risk for the development of lymphoproliferative diseases. Like PTLD, AIDS-related lymphomas are a heterogeneous group of disorders. AIDS-related central nervous system lymphomas derive from post germinal centre B cells and almost always contain EBV, while 30 to 50% of peripheral lymphomas are EBV-associated (MacMahon et al, 1991). BL in HIV patients is an AIDS-defining illness, but has a less than 50% association with EBV (Hamilton-Dutoit et al, 1993). HL also occurs in HIV-infected individuals, with HIV-positive individuals 3 to 7 times more likely to develop HL, and more than 90% of HIV-HL is EBV-associated (Audouin et al, 1992; Glaser et al, 2003).

1.3.7 Oral hairy leucoplasia

Oral hairy leucoplasia (OHL) is unique amongst EBV-associated disorders in that it alone results from lytic virus replication, confirming that EBV can infect and replicate in non-malignant epithelial cells, at least in an immune compromised setting (Greenspan et al, 1985). Benign lesions occur in the superficial layers of the tongue epithelium, with EBV DNA, lytic and some latent proteins found in more differentiated but not basal epithelial cells (Thomas et al, 1991). OHL occurs in the immune suppressed, especially late stage AIDS patients, although it has also been seen rarely in non-immunosuppressed individuals (Lozada-Nur et al, 1994). Treatment is with the antiviral aciclovir, and results in complete clearance of lesions, attesting to the importance of lytic replication in lesion formation (Greenspan et al,
1.4 Animal models of EBV-associated malignancies

Although the majority of in vivo data collected on EBV have been from latently infected healthy virus carriers, or those with abnormal responses to virus as in IM, there are also a number of animal models available for the study of EBV infection and associated diseases.

1.4.1 Non-human primates

As mentioned previously, herpesviruses generally have a very narrow host range, and initial attempts to study the pathogenesis of EBV by virus inoculation of old world primates revealed little evidence of infection (Frank et al., 1976). This was most likely due to presence of cross-reactive immunity to endogenous lymphocryptoviruses (LCVs) (the gammaherpesvirinae genus of which EBV is the human representative), or species specific restriction for LCV-induced B cell transformation (Frank et al., 1976; Moghaddam et al., 1998).

EBV infection of new world primates has proved more successful in providing models for human infection. EBV infection causes an IM-like illness in the common marmoset (Callithrix jacchus), with lymphoproliferation and a viral antibody response (Wedderburn et al., 1984). Persistent infection ensues, as shown by oropharyngeal virus shedding and EBERs latent transcripts detectable in PBMCs (Cox et al., 1996; Farrell et al., 1997). Infection does not result in the development of lymphomas, and differs from the human disease in that there is limited B cell involvement (Emini et al., 1986). Conversely, EBV infection of the cotton-top tamarin (Sagunius oedipus) causes acute B cell lymphoproliferation, with PTLD-like tumours displaying a latency III phenotype (Shope et al., 1973; Young et al., 1989b). This model has been used for the testing of EBV vaccines (Epstein et al., 1985). However, it is not a wholly accurate representation of the human condition, as disease has a rapid onset, lymphoproliferation occurs in 100% of animals infected,
and those which survive this initial disease do not become persistently or latently infected (Shope et al, 1973).

Primate models using simian gammaherpesvirus have also been explored. Old world primate endogenous LCVs share a number of common features with EBV including the ability to transform B cells, and their genomes can be arranged collinearly with EBV and show a large degree of homogeneity (Wang et al, 2001). Also, the functional mechanisms of latent genes appear to be largely preserved. Rhesus macaques are naturally immune to EBV, but infection via the oral route with a rhesus LCV results in an infection with many similarities to EBV infection in humans, such as lymphadenopathy, latent infection in PBMCs, and persistent virus shedding in oropharyngeal secretions (Moghaddam et al, 1997). Co-infection of EBV and simian immunodeficiency virus (SIV) in macaque can also result in the development of B cell lymphomas containing EBV latent transcripts, analogous to the development of EBV-related lymphomas in AIDS patients (Pingel et al, 1997).

The drawbacks to use of non-human primates in the study of EBV infection and associated disease are as for any use of such animals. The high expense, specialist facilities, endangered status, and requirement for a high level of security ensure that only limited researchers can afford their use, and then usually only in small numbers. Additionally, primate biology is not as well understood as that of other species, particularly the mouse, and development of transgenic animals is cumbersome. Thus, murine models have been more extensively used, and in particular the SCID mouse.

1.4.2 Mouse models

1.4.2.1 Murine herpesvirus-68

Originally isolated in 1980 from the bank vole (Blaskovic et al, 1980), murine herpesvirus-68 (MHV-68) was later classified a gammaherpesvirus based on sequence analysis (Efstatthiou et al, 1990). Its ability to cause both productive and latent infection in laboratory mice analogous to EBV infection provided the first small animal model for studying immunity and pathogenesis of a gammaherpesvirus
in its natural host (Sunil-Chandra et al., 1992a; Sunil-Chandra et al., 1992b). However, for the investigation of novel cancer therapies SCID mouse models of EBV-associated malignancies are more appropriate, providing as they do human cells as targets, and so have been more widely used in this application.

1.4.2.2 Models in immunodeficient mice

In 1983, a CB17 mouse mutant was described which lacked functional T and B cells (Bosma et al., 1983). The SCID gene was later found to encode the Prkdc protein kinase, a component of the recombinase enzyme system needed for dsDNA break repair, which is also essential for correct joining of the V(D)J sequences in B and T cell receptors during lymphocyte maturation (Schuler et al., 1986; Fulop & Phillips, 1990). Improper joining leads to non-functional receptors and a block in differentiation. The immunodeficiency is somewhat ‘leaky’, with 2 to 23% of SCID mice developing a limited number of functional T and B cells (Bosma et al., 1988). CB17 SCID mice do have functional NK cells (Dorshkind et al., 1985), although development of new SCID strains has led to animals with reduced NK activity, for example non-obese diabetic-SCID mice (Shultz et al., 1995).

The first immunodeficient mouse model of cancer was developed in 1977, when athymic nude mice (which lack functional T cells) were shown to support the growth of solid human tumours (Fogh et al., 1977). SCID mice also accept xenotransplantation of human cells and tissues, and SCID mice engrafted with cell lines derived from a vast array of human malignancies have been used as in vivo models for tumour biology, growth, angiogenesis and metastasis, as well as to test novel cancer therapies. Modelling for EBV-associated disease began when human-SCID chimeras (hu-PBL-SCID) were developed by grafting SCID mice with human PBMCs for studying human immune function (Mosier et al., 1988). It was noted that the chimeras often developed EBV-positive lymphomas of B cell origin if the donors were EBV seropositive, (Mosier et al., 1988). These tumours were subsequently shown to be immunoblastic lymphomas phenotypically identical to PTLD tumours (Rowe et al., 1991). Since then additional SCID models of PTLD have been developed, using LCLs administered by subcutaneous (sc) or intraperitoneal (ip) injection to give rise to tumours (Rowe et al., 1991; Lacerda et al., 1996).
With respect to EBV-associated malignancies, several HL cell lines, albeit mostly EBV-negative, also form tumours when administered by sc or ip injection in CB17 SCID mice (von Kalle et al., 1992). Models of HL with metastasising disease have been established using sc or intravenous (iv) inoculation of HL-derived cell lines (Winkler et al., 1994). Xenotransplantation models of EBV-associated NPC and GC are also available (Cheung et al., 1999; Oh et al., 2007). The use of xenotransplantation SCID mouse models in the testing of novel cancer therapies is well established, and yet some debate remains as to their actual worth, given the variable power of such models to accurately predict how humans will respond to the treatment in the clinic (Sausville & Burger, 2006). The major drawback of murine xenograft models is that, with regard to genetics and histology, the mouse tumours are not always representative of the respective human tumour. An alternative is genetically engineered mouse models, where tumours are histologically and genetically accurate models of human cancer and like the human situation are heterogeneous with regard to frequency, latency, and growth. Indeed, there is a transgenic model of BL in the mouse (Kovalchuk et al., 2000). However, BL is unique amongst EBV-associated malignancies in having the well defined genetic mutations needed for the deliberate establishment of a transgenic model. Thus, for the time being at least, the advantages of xenotransplantation - synchronized, easily observable tumours with a high degree of predictability and rapidity of tumour formation, which makes them easy to use – means that it is the preclinical model of choice for the testing of novel therapies against EBV-associated cancer.

1.5 Cancer immunotherapy

Most cancer patients are treated by a combination of surgery, radiation and/or chemotherapy. The term cancer encompasses such a broad spectrum of conditions that it is difficult to treat with a uniform therapy regimen. Complications also arise with conventional treatment of metastatic disease. Immunotherapy of cancer has developed to overcome the limitations of conventional therapy, such as associated toxicities and refractory disease. The human immune system is exceptionally specific once a suitable target is found, and can also provide long term protective memory against disease relapse after initial burden is cleared. The main strategies of
cancer immunotherapy aim at exploiting the potential of tumour-specific antibodies and cellular immune effector mechanisms.

1.5.1 Antibody therapy

The first therapeutic mAb, Orthoclone OKT3, was licensed for clinical use in the 1980s (OrthoGroup, 1985). It was a mouse antibody specific for human CD3 used to treat transplant rejection. Since then, advances such as humanisation, chimerisation and labelling have led to a proliferation in the clinical applications of antibodies. In 2007 there were nine antibody based therapies for the treatment of cancer licensed by the American Food and Drug Agency (FDA), for such diverse malignancies as breast cancer, lymphoma, leukaemia, and colon cancer (FDA Orange Book, 2007), and five antibody based therapies for the treatment of cancer licensed in the UK (British National Formulary, 2007).

Monoclonal antibodies can be directed towards a number of cancer-associated antigens, including vascular growth factors, tumour-associated stroma, host immune checkpoints, and tumour cell surface antigens. Targeting vascular growth factors, for example, can inhibit angiogenesis and prevent tumour growth. Alone, one vascular endothelial growth factor (VEGF)-specific mAb had little direct anti-tumour activity but in combination with chemotherapy it prevented neovascularisation and improved survival in patients with metastatic colon cancer (Hurwitz et al., 2004). The tumour stroma may also contain components which differ from those in healthy tissue. The fibroblast activation protein (FAP) found on tumour-associated fibroblasts is thought to play a role in tumour formation and metastasis. Whilst a phase I trial of a mAb to FAP in combination with radiotherapy did not result in an objective tumour response, encouragingly the mAb did localise to the tumour site with no uptake by organs, showing successful tumour targeting (Scott et al., 2003). Therapeutic antibodies may also have a role to play in immunomodulation, targeting host cells and proteins that act as inhibitory checkpoints in the immune system. Cytotoxic T lymphocyte antigen (CTLA)-4 is expressed mainly on CD4+ T cells and acts as a CD28 antagonist, regulating activation signal 2 to CD8+ T cells (Thompson & Allison, 1997). CTLA-4 antibody blockade has been used to enhance anti-tumour immunity in patients previously treated with anti-cancer vaccines, such as irradiated
tumour cells, dendritic cells engineered to express tumour-associated antigens (TAA), or TAA peptides alone (Hodi et al, 2003; Phan et al, 2003).

Two of the best known mAbs currently available for the treatment of cancer in the UK are Herceptin, for use in breast cancer, and Rituximab, for the treatment of B cell lymphomas. Herceptin is a humanised IgG1 mAb directed against the extracellular domain of the HER2/neu protein, a member of the epidermal growth factor receptor family. HER2/neu is overexpressed in around 30% of breast cancers (Slamon et al, 1987). In combination with chemotherapy, treatment with Herceptin has shown a 52% improvement in event-free survival at three years compared with chemotherapy alone in breast cancer patients (Romond et al, 2005). Expression level of HER2/neu is critical to the efficacy of Herceptin, with tumours expressing relatively lower levels of HER2/neu being generally unresponsive to antibody treatment (Vogel et al, 2002). Rituximab is also a humanised IgG1 mAb, which targets the mature B cell surface antigen CD20. The mechanism of Rituximab is complex, and includes induction of apoptosis, inhibition of cell growth, complement mediated cell lysis, sensitisation of cells to chemotherapy and radiotherapy, and induction of antibody-dependant cellular cytotoxicity (Smith, 2003). In clinical trials for low grade previously treated B-cell lymphoma, overall response rates of Rituximab alone are around 50% (Berinstein et al, 1998; McLaughlin et al, 1998; Piro et al, 1999), and it is now regularly used alone or in combination with other therapies for the treatment of non-Hodgkin’s lymphoma (NHL) and other B cell lymphomas including HL and PTLD, as well as rheumatoid arthritis.

Antibodies also have the potential to deliver cytotoxic agents to tumour cells (Wu & Senter, 2005). Generally, this requires the antibody to bind to a target which will result in the internalisation of the antibody and conjugate, and is likely to be most effective in diffuse malignancies or individual tumours of small volume. The most common conjugate, radioisotopes, can be used for tumour imaging, especially occult tumour deposits, in addition to treatment. In a trial comparing Rituximab with a radiolabelled mAb also specific for CD20 in lymphoma patients whose disease had worsened after chemotherapy, overall response rates were 34% and 80% respectively, with complete response 20% and 34% respectively (Gordon et al, 2004). A variety of small molecule toxins have also been linked to mAb, including
the antibiotic calicheamicin, and these conjugated molecules are collectively known as immunotoxins. In a trial for patients with recurrent acute myeloid leukaemia, treatment with a CD33-specific calicheamicin conjugated antibody resulted in an overall response rate of 26%, with a 13% complete response rate (Larson et al., 2005). Agents undergoing clinical development for cancer therapy include additional radioisotopes and toxins, as well as drug, cytokine and enzyme alternatives (Wu & Senter, 2005; Shaw et al., 2007).

One of the major challenges of antibody drug delivery for cancer therapy is low penetration of antibodies into solid tumours (Jain, 2001). In comparison with whole antibodies (Figure 1.7 A), antibody fragments such as Fab (fragment antigen binding – that section of an antibody which contains the antigen binding site after proteolysis of the molecule; Figure 1.7 B) or scFv (single chain variable fragment – antibody variable heavy [VH] and variable light [VL] domains connected by a short DNA sequence encoding a flexible peptide linker; Figure 1.7 C) potentially offer better tumour penetration whilst retaining full antibody binding specificity (Hudson & Souriau, 2003). Additionally, these smaller molecules are more rapidly cleared from the blood, minimising the opportunity for therapeutic side-effects (Holliger & Hudson, 2005). In a phase I trial, an enzyme-linked scFv specific for the oncofetal antigen carcino-embryonic antigen (CEA) expressed on a variety of adenocarcinomas localised to tumour sites, with the enzyme used converting a subsequently administered prodrug to the active form (Mayer et al., 2006). The treatment was well tolerated in patients, and a 10% reduction in tumour diameter was seen in one patient by computed tomography imaging.

Fab and scFv fragments are monovalent, which may lead to sub-optimal target affinity and tumour retention. However they do have the potential to be engineered into dimeric, trimeric or tetrameric molecules in order to increase functional affinity. scFv di-, tri-, and tetramers (Figure 1.7 D,E,F, respectively) can be constructed by shortening the peptide linker joining the VH and VL domains, facilitating self-assembly. The multimers combine the levels of tumour penetration and blood clearance seen with the monomers, with the tumour retention as a result of higher avidity seen in full antibody molecules (Holliger & Hudson, 2005). Similarly, Fab dimers with improved avidity and stability can also be engineered, usually by
chemical conjugation (Figure 1.7, G) A Fab dimer also specific for CEA has been shown to localise to tumours and deliver radioisotopes in a preclinical trial for colorectal cancer (Casey et al, 2002). Alternatively, molecules with multiple specificities can be engineered (Figure 1.7 D,G), with the potential to cross-link two different antigens or localise effector molecules to specific targets.

![Figure 1.7: Antibody molecule with Fab and scFv fragments.](image)

Schematic representation of an intact antibody molecule (IgG; A) together with antibody fragments Fab (B) and scFv (C). The engineered recombinant fragments scFv dimer (D), trimer (E), and tetramer (F), and a Fab dimer (G) are also shown. Variable domains are represented by coloured ovals with antigen-binding sites indicated by dots. Constant domains are represented by uncoloured ovals. Colours also represent different specificities in the scFv and Fab dimmers (D,G). Image reprinted by permission from Macmillan Publishers Ltd: Hudson PJ and Souriau C. Nature Medicine 9:129-134, copyright (2003).

The engineering of antibodies to produce scFv as outlined above has generally been performed in a human or murine setting. From a therapeutic standpoint, human derivatives are currently superior as they have a lower immunogenicity, although as research continues it may eventually be possible to identify and remove
immunogenic epitopes on molecules. Nevertheless, in recent years much interest has focused on the immunoglobulin-like molecules of the camelids (camels and llamas) and cartilaginous fish (wobbegong and nurse sharks) species, which have evolved naturally single-domain variable regions. The requirement for relatively short complementarity determining regions (CDR) (short amino acid sequences within the variable domains of an antibody which come into contact with antigen during antibody-antigen interactions) in human and murine antibodies limits target antigens to predominantly flat or concave topologies (Hudson & Souriau, 2003). Camelid and shark variable domains can stably incorporate longer CDR loops, and are thus also able to access convex surfaces or cavities (Dooley & Flajnik, 2005). Examples of these include the binding sites of enzymes and narrow cavities in surface antigens of viruses which have evolved to bind their cognate receptor while remaining generally inaccessible to intact antibodies and thus immunosilent (Holliger & Hudson, 2005). This makes antibody fragments derived from camelid and shark variable domains potentially very useful as targeting agents, especially against pathogenic organisms. Their inherent stability and solubility currently suit them to in vitro diagnostic use until methods for reducing their immunogenicity in humans can adapt them for therapeutic use.

Although mAb therapy has many promising applications in cancer therapy, cancer is a diverse range of illnesses, and what is applicable in one setting may not be appropriate in another. Harnessing the cellular immune system may provide effective therapies where antibodies alone cannot. The role of the cellular immune response in cancer immunotherapy, with particular emphasis given to CD8+ CTLs, is outlined in the next section.

1.5.2 Cellular therapy

To date, the majority of clinical cellular immunotherapy has been directed against viruses, specifically CMV and EBV. In pioneering work, Riddell et al (1992) prophylactically administered CMV-specific CTL clones derived from donor peripheral blood mononuclear cells (PBMCs) to a small number of at risk BMT patients, who were protected from CMV-related disease. The first treatment of virus-associated cancer occurred soon after, when donor PBMCs were used to treat
EBV-associated PTLD in BMT patients (Papadopoulos et al, 1994). Three of five patients responded well to therapy, however all three also developed graft versus host disease (GVHD). The following year, 10 BMT patients were infused with donor derived polyclonal EBV-specific CTLs (Rooney et al, 1995). Three patients with EBV-related lymphoproliferation responded to treatment, and EBV DNA in PBMCs fell to normal levels. None of the remaining seven patients developed PTLD. Preparation of virus-specific cells ex vivo appeared to deplete the alloreactive T cells seen in the earlier trial, and GVHD was not observed in any patient (Papadopoulos et al, 1994; Rooney et al, 1995). In an extended trial by the same group, EBV-specific CTLs prevented development of PTLD in all of 39 treated patients compared with seven of 61 (11.5%) controls, and five of six (83.3%) patients treated for overt lymphoma achieved complete remission (Rooney et al, 1998). In a trial of 33 solid organ transplant patients, EBV-specific CTLs have also been used to successfully treat PTLD, with an overall response rate of 52% (Haque et al, 2007). Donor PBMCs are not usually available in this setting, so allogeneic or autologous strategies for EBV-specific CTL manufacture have been established for the treatment of PTLD (Haque et al, 1998; Khanna et al, 1999). Cellular therapy has also been tested against other EBV-associated cancers including HL and NPC. However, as these tumours arise in immunocompetent hosts and express a more restricted pattern of viral antigens, they are less responsive to EBV-specific therapy. In small-scale trials, three of six patients with refractory NPC and three of 11 relapsed HL patients achieved a measurable response to treatment with EBV-specific CTLs (Bollard et al, 2004; Straathof et al, 2005a).

With respect to cancers not associated with viral infection, early therapies using donor PBMCs re-induced remission in BMT patients with relapsed chronic myeloid leukaemia (CML) (Kolb et al, 1990). This is a graft versus leukaemia (GVL) effect and not transferable for general cancer therapy, although it showed proof of principle that the immune system could combat tumours. However, the majority of TAA are weakly immunogenic self-antigens and natural T cells against these antigens are low in frequency, have low T cell receptor (TCR) avidity or are anergic, and thus a more robust cellular therapy is needed (Tey et al, 2006). To this end, leukaemia-specific CTLs have been generated from PBMCs by loading dendritic cells with antigen derived from whole leukaemic blasts, capable of lysing tumour cells in vitro
(Montagna et al., 2001). Anti-leukaemic CTLs have also been shown to mediate tumour regression of CML in vivo (Falkenburg et al., 1999). In the autologous setting, CTLs specific for melan-A peptide could be generated from the PBMCs of melanoma patients using dendritic cells pulsed with tumour peptide epitopes as antigen presenting cells (APCs), and clinical responses were seen in some patients (Meidenbauer et al., 2003). However, this approach is limited to patients carrying the HLA haplotype required to bind the previously defined immunogenic epitope. Alternatively, lines of tumour infiltrating lymphocytes (TILs) can be cultured from individual patients and screened for specific clones reactive with autologous tumours cells, which can then be re-infused into the patient. In one trial of metastatic melanoma refractory to standard therapies, objective responses to TIL therapy were seen in six of 13 patients, and mixed responses in four others (Dudley et al., 2002).

The strategies mentioned above are highly labour intensive and clinical trials of cancer cellular immunotherapy have, virus-associated malignancies aside, shown modest and variable response rates. Effective therapies require T cells to persist, expand, traffic and home to tumours and mediate effector function. One approach to target weakly immunogenic TAA is to engineer T cell specificity by gene modification, which will be covered in the next section.

1.5.3 Engineered T cells

There are two strategies by which T cells can be genetically engineered with a defined tumour specificity, or ‘re-targeted’. The α and β chains of a TCR define a T cells antigen specificity, and thus the first approach is simply to transfer native α and β TCR chains with the required specificity into T cells HLA matched with the target. This has been accomplished with TCRs specific for TAA, and engineered cells (those containing the transferred genes) against TAAs such as the melan-A protein expressed in melanoma are capable of in vitro antigen-specific anti-tumour activity (Clay et al., 1999). The strategy by which engineered T cells are employed in the treatment of patients is outlined in Figure 1.8. The first clinical trial using transferred native TCRs resulted in tumour regression in two of 15 patients with progressive metastatic melanoma (Morgan et al., 2006). Issues associated with this method include mispairing of the introduced and endogenous α and β TCR chains and low
surface expression of the introduced TCR (Morgan et al, 2006). Steps to overcome these limitations are being undertaken, including modification of the introduced TCR chains to prevent mispairing and potentially also increase surface expression (Cohen et al, 2007). However, as each TCR is specific for a peptide-MHC complex, this therapy remains restricted to patients that share both MHC allele and tumour antigen.

The second strategy by which T cells can be re-targeted is by transfer of a chimeric TCR (cTCR), also known as a chimeric antigen receptor (CAR) or ‘t-body’ (Eshhar et al, 1993). These molecules generally contain an antibody based external domain such as a scFv (see Figure 1.7), and the internal domain of a TCR for signal transduction and T cell activation (Eshhar et al, 2001). They are expressed on the surface of the T cell as a single gene-encoded homodimer, enabling MHC-independent recognition of native TAA. Cells engineered with cTCRs specific for a range of TAA, including CD19, CD30, HER2/neu and prostate-specific membrane

Figure 1.8: Treatment using engineered T cells.
An outline of the process by which T cells are taken from a suitable cancer patient, engineered to express tumour-specific cTCRs, expanded and re-infused into the patient as treatment. Adapted with permission from the ATTACK Project website (www.attack-cancer.org).
antigen (PSMA), have been shown capable of specific tumour cell lysis \textit{in vitro} (Gong \textit{et al}, 1999; Haynes \textit{et al}, 2002; Cheadle \textit{et al}, 2005; Savoldo \textit{et al}, 2007), and are listed with other TAAs targeted by cTCRs in Table 1.4.

<table>
<thead>
<tr>
<th>targeted antigen</th>
<th>target cells</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD20</td>
<td>B cell lymphoma</td>
<td>Jensen \textit{et al} (2003b)</td>
</tr>
<tr>
<td>CD30</td>
<td>Hodgkin's lymphoma</td>
<td>Hombach \textit{et al} (2001)</td>
</tr>
<tr>
<td>CD171</td>
<td>neuroblastoma</td>
<td>Park \textit{et al} (2007)</td>
</tr>
<tr>
<td>CEA</td>
<td>gastrointestinal tumours</td>
<td>Gilham \textit{et al} (2002)</td>
</tr>
<tr>
<td>FBP</td>
<td>ovarian carcinoma</td>
<td>Kershaw \textit{et al} (2002)</td>
</tr>
<tr>
<td>ErbB-2 carboxy anhydrase IX</td>
<td>breast, ovarian carcinoma</td>
<td>Haynes \textit{et al} (2002)</td>
</tr>
<tr>
<td>NCAM</td>
<td>neuroblastoma</td>
<td>Gilham \textit{et al} (2002)</td>
</tr>
<tr>
<td>PSMA</td>
<td>prostate cancer</td>
<td>Gong \textit{et al} (1999)</td>
</tr>
</tbody>
</table>

Table 1.4: Tumour associated antigens targeted by cTCR engineered T cells.
[FBP; folate-binding protein; CEA; carcino-embryonic antigen; NCAM; neural cell adhesion molecule; PSMA; prostate-specific membrane antigen]

Engineering chimeric receptors for T cells is still an evolving field, and technical challenges remain to be resolved. One problem involves the binding of engineered cells to targets. The scFv-TAA association must be specific yet permit disengagement for efficient killing of multiple target cells (Kalergis \textit{et al}, 2001). Thus, to allow serial killing as well as to limit potential cross-reactivity with healthy tissue, scFv and target antigens must be chosen with care. Another challenge is the optimal transduction of signals through the cTCR. Early cTCR constructs contained the intracellular CD3\(\zeta\) moiety, which delivered a potent signal 1 to the engineered cell upon antigen binding, but the downregulation of T cell costimulation molecules on most tumours result in a lack of signal 2, leading to apoptosis or anergy of the engineered cell (Maher & Davies, 2004). The two signal model of T cell activation is illustrated in Figure 1.9. Initial research focused on incorporating CD28 into the cTCR, fusing the signalling domain of this costimulatory protein in series with the CD3\(\zeta\) domain, to create receptors capable of delivering both signal 1 and signal 2 for T cell activation (Finney \textit{et al}, 1998; Eshhar \textit{et al}, 2001; Maher \textit{et al}, 2002). Additional activation signal domains including Ick tyrosine kinase and OX40 are now also being investigated (Geiger \textit{et al}, 2001; Pule \textit{et al}, 2005).
Binding of a native TCR to its cognate peptide/MHC complex results in the phosphorylation of ITAMs within the intracellular CD3 molecules, and transduction of an activation signal via Lyk and Fyn kinases recruited primarily to CD3-ζ (Pitcher & van Oers, 2003). How precisely peptide/MHC binding induces this transduction remains unclear, although several factors are thought to play a role, including conformational changes in the TCR and receptor aggregation. The TCR/CD3-ε complex undergoes a conformational change that uncovers a proline-rich sequence in the CD3-ε cytoplasmic tail, allowing it to bind the ubiquitously expressed adapter protein Nck, which may recruit further effector molecules to the CD3 ITAMs (Buday, 1999; Gil et al, 2002). Aggregation of TCR complexes following multimeric peptide/MHC binding brings individual CD3 cytoplasmic domains into close proximity, facilitating transphosphorylation of the ITAMs (Minguet et al, 2007). Aggregation of receptors also draws the membranes of target and effector cells together, excluding large molecules such as CD45 with its intracellular phosphotases, allowing CD3 ITAMs to remain phosphorylated (Rudolph et al, 2006). Correspondingly, the BCR (which incorporates surface-bound antibody) also transduces signals using a combination of conformational changes and aggregation. It is likely signal transduction by cTCRs is accomplished in a similar way to native T cells.
TCRs, utilising the aggregation of receptors, although if conformational change plays a role it has yet to be elucidated, as cTCRs do not incorporate CD3-ε.

With the inclusion of a second signal, engineered T cells can be repeatedly activated by antigen *in vitro*, with each round of stimulation resulting in specific lysis of target cells and IL-2 driven proliferation (Maher *et al.*, 2002). Engineered T cells have also been shown capable of controlling tumour growth in animal models (Haynes *et al.*, 2002; Brentjens *et al.*, 2003). Recent phase I clinical studies have proved the therapy well tolerated for the treatment of metastatic ovarian cancer and neuroblastoma (Kershaw *et al.*, 2006; Park *et al.*, 2007). Although tumour regression was not observed, bearing in mind the heavy and refractory disease burden of patients in such trials, these were overall positive results. Persistence of therapeutic cells *in vivo* remains an issue; both trials saw rapid clearing of cells carrying cTCRs, as measured by vector specific PCR of PBMCs. It should be noted that neither of the cTCRs used carried a domain for signal 2 transduction within the TCR. However, the cells used to treat ovarian cancer patients were alloreactive via their native TCR, due to engineered PBMCs being co-cultured with irradiated allogenic PMBCs prior to cTCR transduction, as it had been shown that this strategy provided proliferation signals in response to subsequent immunisation with allogeneic PBMCs (Kershaw *et al.*, 2002).

One issue likely to affect further development of cTCR engineered T cell is the vector used to transport the receptor into cells. Currently, the majority of research is carried out using retroviral vectors. However, as seen in a gene therapy trial for X-linked severe combined immune deficiency (SCID), this carries the risk of viral insertional mutagenesis and subsequent cellular transformation (Hacein-Bey-Abina *et al.*, 2003). Experimental results indicate that lentiviral vectors are less prone to insertional mutagenesis than retroviral vectors, at least in mouse models (Montini *et al.*, 2006), and as such are an alternative option, although a large amount of *in vivo* data needs to be collected to more accurately determine their overall safety. A further option is the inclusion of conditional suicide genes in the vector. An example is herpes simplex virus thymidine kinase (HSV-TK), which has been used in phase II trials for BMT patients with relapsed haematological malignancies receiving infusions of donor lymphocyte transduced with HSV-TK (Ciceri *et al.*, 2007).
Tumour regression was concurrent with GVHD, which abated after ganciclovir administration tripped the suicide switch. This approach would guard against potential inappropriate responses to therapy.

Research into cTCR engineered T cells is still in its infancy, but it is a field with vast potential for application in the therapy of cancer. Although there are many issues still to address, it holds great promise for treatments applicable to refractory or recurrent malignancies.

1.6 Antibody phage display

1.6.1 Background

Antibodies have such a wide range of applications, medically and scientifically, that their use has become near ubiquitous in biotechnology. Beyond the treatment of cancer, antibody technology has been exploited for diagnostic testing, in vivo radioimaging, labelling of cells for experimental purposes, and treatment of non-malignant illnesses, to name but a few examples. In the early period of their use, serum containing polyclonal antibodies was collected from immunised animals. With the advent of hybridoma technology it was possible to reliably produce mAbs (Kohler & Milstein, 1975). However, there remained a number of limitations to hybridoma technology. As animals still needed to be immunised in the initial stage, it was not possible to produce antibodies against toxic, pathogenic, non-immunogenic or some self antigens (Winter & Milstein, 1991). Importantly for clinical uses, the antibody molecule was murine, leading to the generation of human anti-mouse antibodies in patients, especially with repeated dosing. Generation of hybridomas was also costly and time consuming. In groundbreaking work, Dr George Smith established a method by which polypeptides could be presented on the surface of filamentous phage, a virus able to infect the common laboratory bacteria E.coli and capable of replication and assembly without host cell lysis (Smith, 1985). This method was subsequently adapted for antibody presentation (McCafferty et al, 1990).

The filamentous phage particle has a thread-like shape approximately 6.5 nm in diameter and 1 µm in length (Paschke, 2006). Its circular single-stranded DNA
genome is encased in a cylindrical protein coat, predominantly composed of the major coat protein, pVIII. At one end, the phage particle incorporates about five copies of the minor coat proteins pVII and pIX. At the other end, three to five molecules of the remaining minor coat proteins pIII and pVI are displayed. A schematic diagram of a filamentous phage is shown in Figure 1.10. Antibodies displayed on filamentous phage are not entire IgG molecules, but rather scFv or Fab antibody fragments (see Figure 1.7). A comparison of Fab and scFv formats for antibody phage display is given in Table 1.5.

![Schematic of a filamentous phage particle](image)

Figure 1.10: Filamentous phage particle.
Schematic of a filamentous phage particle, showing the major coat protein pVIII encasing the single-stranded DNA genome, with minor proteins pIII, pVI, pVII and pIX incorporated into the coat at either tip. Image adapted from Paschke M. Applied Microbiology and Biotechnology 70:2-11, copyright (2006), with kind permission from Springer Science and Business Media.

<table>
<thead>
<tr>
<th></th>
<th>scFv</th>
<th>Fab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Better tolerated by bacteria</td>
<td>More difficult to synthesise</td>
<td></td>
</tr>
<tr>
<td>Less likely to be degraded</td>
<td>More likely to be degraded</td>
<td></td>
</tr>
<tr>
<td>Can form dimers</td>
<td>No dimerisation</td>
<td></td>
</tr>
<tr>
<td>Single protein molecule</td>
<td>Two protein molecules</td>
<td></td>
</tr>
<tr>
<td>Peptide linker can shorten</td>
<td>No such problems</td>
<td></td>
</tr>
<tr>
<td>Less stable</td>
<td>More stable</td>
<td></td>
</tr>
<tr>
<td>A fraction of expressed scFv can be non-functional</td>
<td>Tends to be more functional</td>
<td>DNA insert >1500 bp</td>
</tr>
<tr>
<td>DNA insert 700 bp</td>
<td>DNA insert >1500 bp</td>
<td></td>
</tr>
</tbody>
</table>
1.6.2 Phage and phagemids

The principle underlying all phage display systems is the physical linkage of a polypeptide's phenotype to its corresponding genotype. For antibody phage display, antibody fragments are fused to a minor coat protein, usually pIII. The C terminus of the pIII protein inserts into the coat, and is essential for the structural integrity of the phage, whilst the antibody fragment is presented on the surface of the phage particle. As the genetic information encoding the fusion protein is contained in the phage genome packaged inside the phage particle, identification of a desirable clone by fragment binding allows simultaneous recovery of the gene encoding the selected antibody fragment. These fragments can then be cloned into vectors encoding intact Ig molecules, or alternative targeted immunotherapy frameworks, such as chimeric receptors (Willemsen et al., 2001; Nagy et al., 2002).

There are two genetic systems used in antibody phage display, the first being phage vectors and the second phagemid vectors. The properties of each system are outlined in Table 1.6. In phage vectors, the antibody-pIII fusion gene is inserted directly into the phage genome (McCafferty et al., 1990). The major advantage of this is that all copies of the pIII protein contain the antibody fragment. However, the disadvantages are consequent low transduction efficiency and a negative selection pressure on phage carrying the fusion product, as replication and pIII expression is linked to the genome. In the second method, the antibody-pIII fusion gene is contained in a phagemid vector (Hoogenboom et al., 1991). A phagemid is a plasmid that bears a phage-derived origin of replication in addition to its plasmid origin of replication. The additional proteins necessary for replication and packaging of the phagemid vector into a phage particle are encoded in a second ‘helper’ phage, with which the bacteria are superinfected, a process known as ‘phage rescue’. The helper phage is also able to replicate itself, and thus two types of phage particles are produced carrying either phagemid or helper phage DNA. The fraction of phage containing the helper phage genome can be reduced significantly by using a helper phage with a defective origin of replication or packaging signal, leading to preferential packaging of the phagemid DNA over the helper phage genome (Russel et al., 1986). Wildtype pIII expressed by the helper phage is also preferentially incorporated into the phage particle. This can lead to the production of ‘bald phage’ which display no antibody
fragments. The frequency of bald phage can be reduced using helper phage with mutated, trypsin-sensitive pIII protein (Kristensen & Winter, 1998). The cleaved pIII molecule is non-infectious, preventing bald phage being amplified during rescue.

Table 1.6: Comparison of phage and phagemid systems for antibody display libraries.

<table>
<thead>
<tr>
<th></th>
<th>phage</th>
<th>phagemid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three to five copies of antibody per phage</td>
<td>Only 1–10% of phagemids have one copy of the displayed antibody</td>
<td></td>
</tr>
<tr>
<td>Difficult to transfect and make DNA</td>
<td>Easy to handle</td>
<td></td>
</tr>
<tr>
<td>Faster to select and easier to use</td>
<td>Slower to select (helper phage needed)</td>
<td></td>
</tr>
<tr>
<td>Must subclone to make soluble Ab</td>
<td>Soluble Ab made directly</td>
<td></td>
</tr>
<tr>
<td>Phenotypic and genotypic homogeneity</td>
<td>Phenotypic and genotypic heterogeneity</td>
<td></td>
</tr>
<tr>
<td>Genetically less stable (deletions)</td>
<td>More stable genetically</td>
<td></td>
</tr>
<tr>
<td>Greater diversity of antibodies selected</td>
<td>Lower diversity of antibodies selected</td>
<td></td>
</tr>
<tr>
<td>Lower affinity antibodies also selected due to avidity effects</td>
<td>Higher affinity antibodies selected due to monomeric display</td>
<td></td>
</tr>
<tr>
<td>Not suitable for affinity maturation due to avidity effects</td>
<td>Better for affinity maturation</td>
<td></td>
</tr>
</tbody>
</table>

1.6.3 Antibody libraries

Antibody phage libraries are divided into four categories depending on the type and source of the antibody fragment: immune, naïve, semi- and fully-synthetic. Immune libraries are constructed using B cells from an immunised animal or immune patient, and are thus pre-enriched for antigen-specific clones, making it possible to isolate high affinity antibodies from relatively small libraries. The disadvantage of immune libraries is that they require immunogenicity of the target antigen in either humans or animals, and immunisation and library construction is required for each antigen.

Naïve libraries, as the name suggests, are constructed using PBMCs or splenocytes from unimmunised animals or human donors. The libraries are constructed using antibody V_H and V_L domains, which are amplified from cytoplasmic RNA (as B cells are highly enriched in Ig mRNA) or synthesised de novo. The two variable domains
are combinatorially assembled to create a large and diverse array of antibodies. Semi-synthetic libraries are derived from unrearranged V-genes from germline B cells, or from a single antibody framework, with at least one CDR genetically randomised, while fully synthetic libraries use a single framework with randomly integrated CDR cassettes. The greatest advantage of synthetic libraries is the ability to isolate antibodies specific for self antigens, which is not always possible with immune or naïve libraries.

Naïve, semi-synthetic and fully synthetic libraries are collectively known as ‘single pot’ libraries, as they are not be biased towards any particular antigen, and theoretically contain antibody fragments which will bind to virtually every antigen. Thus one library can be used for the isolation of high affinity clones against multiple targets. Libraries with a theoretical diversity of up to \(10^{10}\) independent clones have been generated (Paschke, 2006).

1.6.4 The process of selection

Selection from phage display libraries is a cyclic process of discriminating enrichment and amplification. The phage library is exposed to antigen, allowing specific phage to bind to their targets. Antigen-bound phage are then recovered and subsequently amplified by infection in *E.coli*. This process is known as ‘panning’, in the same sense that historically prospectors panned for gold. The amplified phage population is then subjected to the next round of panning. Generally, two to four rounds of panning are completed before the selected phage are individually analyzed to identify specific binders. If affinity for the antigen is sufficiently high for the intended purpose, the selected antibody fragment can be used directly in immunotherapy applications. Otherwise, affinity maturation techniques, for example site-specific or combinatorial mutagenesis of the CDRs, can be used to enhance the binding properties of the fragment (Wu *et al*, 1998; Boder *et al*, 2000).

An extensive range of methodologies exists for the isolating of specific clones from phage libraries (Bradbury & Marks, 2004). At its most basic, selection involves immobilisation of the protein antigen on a solid base such as an immunotube or ELISA plate. More complex variations on this theme include the fixing of whole
cells to solid supports or enrichment on tissue sections (de Kruif et al., 1995). Another alternative is biotinylation of the antigen, allowing retrieval of phage/antigen using streptavidin coated magnetic beads for example. Phage can also be selected on whole cells grown in monolayers or in solution, with cells lysed to release internalised specific binders (Griffiths et al., 1993). Alternatively, phage selection on whole cells can be performed by fluorescence associated cell sorting (FACS), using labelled monoclonal antibodies specific for the phage particle and a selectable marker co-expressed on target cells within a heterogeneous population (de Kruif et al., 1995).

Over the course of successive rounds of panning, several assays can be employed to monitor selection. These include polyclonal enzyme-linked immunosorbant assays (ELISA), which measure the increases in specific binders, PCR screening, which monitors selection pressure by examining the presence of antibody fragment inserts, and restriction mapping of the antibody fragments, which assesses diversity within the phage population. The analysis of target specificity in individual clones at the end of selection can also be assayed in several ways. Monoclonal phage ELISA is often used in the first instance as it is a rapid and relatively sensitive test. Following this initial screen, other assays can be employed, including sequencing of antibody fragments, and expression of soluble antibody fragments from the phage vector. The majority of phage libraries are engineered so that soluble expression of antibody fragments includes a peptide tag such as myc or Flag, to facilitate the use of soluble fragments in screening ELISAs, FACS, Western blots or immunohistochemistry.

1.7 Project aims

EBV-associated malignancies have been successfully treated using virus-targeted immunotherapy. However, the majority of EBV-associated malignancies display a restricted set of viral latent antigens, and there remain a proportion of patients who respond to neither conventional nor experimental therapies.
The aim of this project was to investigate the following hypothesis:

‘Engineering with a chimeric T cell receptor directed against the Epstein-Barr virus latent membrane 2 will confer upon T cells the ability to target and kill the malignant cells of cancers associated with Epstein-Barr virus.’

In order to test this hypothesis, three main projects were undertaken: (1) SCID mouse models for EBV-associated HL, NPC and GC were set up to provide a framework in which to test engineered cells; (2) PBMCs were engineered with a cTCR specific for the B cell antigen CD19, and their effect against HL derived cell lines examined, and (3) a novel scFv specific for the extracellular sections of EBV LMP2 was sought from phage display libraries, for incorporation in a cTCR and eventual use as an alternative therapy for EBV-associated malignancies.
2 Materials and Methods

2.1 Materials

2.1.1 Equipment

Automatic pipettor ‘Pipetboy acu’, Integra Biosciences
 ‘Powerpette plus’, Jencons

Balances fine: ‘AE163’, Mettler
 medium: ‘BP310P’, Sartorius
 gross: ‘EK-200G’, AND

Centrifuges ‘1-15K’, Scientific Laboratory Supplies
 ‘3K18C’, Sigma Laboratory Centrifuges
 ‘Falcon 6/300’, MSE
 ‘J2-21’, Beckman Coulter
 ‘Micro Centaur’, MSE
 ‘Mistral 3000E’, MSE
 ‘Mistral 3000i’, MSE

Flow cytometers ‘FACScan’, Becton Dickinson
 ‘FACSCalibur’, Becton Dickinson

Fume hood Lynwood Installations

Gamma counter ‘1480 Wizard’, Perkin Elmer

Gel Documentation System UVP transilluminator and camera with a ‘UP-D895’ Synoptics printer and UVP ‘Labworks Image Acquisition and Analysis’ software
<table>
<thead>
<tr>
<th>Equipment</th>
<th>Brand/Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gel electrophoresis system</td>
<td>Scotlab tank with Stratagene ‘Feather Volt 500’ power pack</td>
</tr>
<tr>
<td>Haemocytometer</td>
<td>Scientific Laboratory Supplies</td>
</tr>
<tr>
<td>Heating block</td>
<td>‘DB.3’, Techne</td>
</tr>
<tr>
<td>Histology Image Capture</td>
<td>‘BX51’ Olympus microscope with Polaroid ‘PDMC-2’ camera and ‘DMC le’ software</td>
</tr>
<tr>
<td>Humidity chamber</td>
<td>Sandrest</td>
</tr>
<tr>
<td>Incubators</td>
<td>30°C: Hearson</td>
</tr>
<tr>
<td></td>
<td>37°C: Gallenkamp, Sandrest</td>
</tr>
<tr>
<td></td>
<td>37°C humidified: Leec, Forma Scientific</td>
</tr>
<tr>
<td></td>
<td>37°C shaking: ‘4536’, Forma Scientific</td>
</tr>
<tr>
<td></td>
<td>55°C: Hybaid</td>
</tr>
<tr>
<td>Microbiological safety cabinets (Class II)</td>
<td>Medical Air Technology</td>
</tr>
<tr>
<td></td>
<td>Envair</td>
</tr>
<tr>
<td></td>
<td>Arromight Biosciences</td>
</tr>
<tr>
<td>Microscopes</td>
<td>‘Laborlux K’, Leitz</td>
</tr>
<tr>
<td></td>
<td>‘TMS’, Nikon</td>
</tr>
<tr>
<td>Microwave</td>
<td>‘SM18’, Proline</td>
</tr>
<tr>
<td>PCR machine</td>
<td>‘T3 Thermocycler’, Biometra</td>
</tr>
<tr>
<td>pH meter</td>
<td>‘HI 8521’, Hanna Instruments</td>
</tr>
<tr>
<td>Pipettes</td>
<td>‘Pipetman’, Gilson</td>
</tr>
<tr>
<td></td>
<td>‘Nichipet’, Nichiryo</td>
</tr>
<tr>
<td>Plate reader</td>
<td>‘MRX’, Dynex Technologies</td>
</tr>
</tbody>
</table>
Materials and Methods

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Model/Brand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real time PCR machine</td>
<td>‘R-3000’, Rotor-Gene</td>
</tr>
<tr>
<td>Refrigeration</td>
<td>4°C: Electrolux</td>
</tr>
<tr>
<td></td>
<td>-20°C: Labcold</td>
</tr>
<tr>
<td></td>
<td>-70°C: ‘Ultra 85’, Assab</td>
</tr>
<tr>
<td>Roller Mixer</td>
<td>‘SRT1’, Stuart Scientific</td>
</tr>
<tr>
<td>Shakers</td>
<td>‘Orbital shaker’, Denly</td>
</tr>
<tr>
<td></td>
<td>‘R/100/TW’, Luckham</td>
</tr>
<tr>
<td>Spectrophotometer</td>
<td>‘GeneQuant II’, Pharmacia Biotech</td>
</tr>
<tr>
<td></td>
<td>‘CE 272’, Cecil Instruments</td>
</tr>
<tr>
<td>Stirrer</td>
<td>‘Magnetic Stirrer Hotplate’, Stuart Scientific</td>
</tr>
<tr>
<td>Vortex</td>
<td>‘MS2 Minishaker’, IKA</td>
</tr>
<tr>
<td>Waterbaths</td>
<td>Clifton</td>
</tr>
<tr>
<td></td>
<td>Grant Instruments</td>
</tr>
</tbody>
</table>

2.1.2 Suppliers

<table>
<thead>
<tr>
<th>Supplier</th>
<th>Address/Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>AbD Serotec</td>
<td>Endeavour House, Kidlington, Oxford, OX5 1GE, UK. www.ab-direct.com</td>
</tr>
<tr>
<td>Barloworld Scientific</td>
<td>Beacon Road, Stone, ST15 0SA, UK. www.barloworld-scientific.com</td>
</tr>
<tr>
<td>Becton Dickinson</td>
<td>21 Between Towns Road, Cowley, Oxford, OX4 3LY, UK. www.bdeurope.com</td>
</tr>
<tr>
<td>Company</td>
<td>Address</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Clonetec</td>
<td>2 Avenue du President Kennedy, 78100</td>
</tr>
<tr>
<td></td>
<td>Saint-Germain-en-Laye, France.</td>
</tr>
<tr>
<td>Dako</td>
<td>Denmark House, Angel Drive, Ely, CB7 4ET, UK.</td>
</tr>
<tr>
<td>Fisher Scientific</td>
<td>Bishop Meadow Rd, Loughborough, LE11 5RG, UK.</td>
</tr>
<tr>
<td>GE Healthcare</td>
<td>Amersham Place, Little Chalfont, HP7 9NA, UK.</td>
</tr>
<tr>
<td>Geneservice Ltd</td>
<td>Cambridge Science Park, Milton Road, Cambridge, CB4 0FE, UK.</td>
</tr>
<tr>
<td>Invitrogen</td>
<td>Inchinnan Business Park, 3 Fountain Drive, Paisley, PA4 9RF, UK.</td>
</tr>
<tr>
<td>Marligen Biosciences</td>
<td>Stirling Road, High Wycombe, HP12 3ST, UK.</td>
</tr>
<tr>
<td>Miltenyi Biotec</td>
<td>Almac House GU24 9DR Surrey, UK.</td>
</tr>
<tr>
<td>New England Biolabs</td>
<td>75-77 Knowl Piece, Wilbury Way, Hitchen, SG4 0TY, UK.</td>
</tr>
<tr>
<td>Brand</td>
<td>Details</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Nunc Brand</td>
<td>Supplied by Fisher Scientific.</td>
</tr>
<tr>
<td>Perbio</td>
<td>Unit 9, Atley Way, North Nelson Industrial Estate, Cramlington, NE23 1WA, UK.</td>
</tr>
<tr>
<td></td>
<td>www.perbio.com</td>
</tr>
<tr>
<td>Promega</td>
<td>Delta House, Southampton Science Park, Southampton, SO16 7NS, UK.</td>
</tr>
<tr>
<td></td>
<td>www.promega.com/uk</td>
</tr>
<tr>
<td>Qiagen</td>
<td>Qiagen House, Fleming Way, Crawley, RH10 9NQ, UK.</td>
</tr>
<tr>
<td></td>
<td>www1.qiagen.com</td>
</tr>
<tr>
<td>Sigma Aldrich</td>
<td>The Old Brickyard, New Road, Gillingham, SP8 4XT, UK.</td>
</tr>
<tr>
<td></td>
<td>www.sigmaaldrich.com</td>
</tr>
<tr>
<td>StemCell Technologies</td>
<td>60 rue des Berges, Miniparc Polytec, batiment Tramontane Grenoble 38000, France.</td>
</tr>
<tr>
<td></td>
<td>www.stemcell.com</td>
</tr>
<tr>
<td>Thistle Scientific</td>
<td>DFDS House, Goldie Road, Uddingston, G71 6NZ, UK.</td>
</tr>
<tr>
<td></td>
<td>www.thistlescientific.co.uk</td>
</tr>
<tr>
<td>UDP</td>
<td>Amber Park, Berristow Lane, South Normanton, DE55 2FH, UK.</td>
</tr>
<tr>
<td></td>
<td>www.udg.co.uk</td>
</tr>
<tr>
<td>Vector Laboratories</td>
<td>3 Accent Park, Bakewell Road, Peterborough PE2 6XS, UK.</td>
</tr>
<tr>
<td></td>
<td>www.vectorlabs.com</td>
</tr>
</tbody>
</table>
2.1.3 Solutions

CBS

PBS with:
2% FBS
1 mM EDTA

H-top agar

1% (w/v) tryptone
0.8% (w/v) NaCl
0.6% (w/v) bacto-agar

Minimal agar

7.6 mM (NH₄)₂SO₄
0.1% (w/v) dextrose
1.7 mM Na₃C₆H₅O₇·2H₂O
1.5% (w/v) bacto-agar
1 mM MgSO₄
0.0005% (w/v) Thiamine-HCl
33.1 mM KH₂PO₄
60.1 mM K₂HPO₄

PBS pH 7.4

137 mM NaCl
2.7 mM KCl
4.3 mM Na₂HPO₄
1.4 mM KH₂PO₄
<table>
<thead>
<tr>
<th>Solution</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBSA</td>
<td>PBS with: 1% w/v BSA, 0.1% w/v sodium azide, 0.2% w/v EDTA</td>
</tr>
<tr>
<td>TBE buffer pH 8.3</td>
<td>0.44M Tris, 0.44M Boric acid, 12mM EDTA</td>
</tr>
<tr>
<td>TBS</td>
<td>25mM Tris, 137mM NaCl, 27.7µM KCl</td>
</tr>
<tr>
<td>2xTY medium</td>
<td>1.6% (w/v) tryptone, 1% (w/v) yeast extract, 0.5% (w/v) NaCl</td>
</tr>
<tr>
<td>2xTY AG</td>
<td>2xTY medium with: 100µg/ml ampicillin, 1% (w/v) glucose</td>
</tr>
<tr>
<td>2xTY AKG</td>
<td>2xTY medium with: 100µg/ml ampicillin, 50µg/ml kanamycin, 0.1% (w/v) glucose</td>
</tr>
<tr>
<td>TYE agar</td>
<td>1% (w/v) tryptone, 0.5% (w/v) yeast extract, 0.8% (w/v) NaCl, 1.5% (w/v) bacto-agar</td>
</tr>
<tr>
<td>TYE AG</td>
<td>TYE agar with: 100µg/ml ampicillin, 1% (w/v) glucose</td>
</tr>
</tbody>
</table>
2.2 Tissue culture techniques

2.2.1 Maintenance of cell lines

Cell lines were cultured in sterile plastic-ware and maintained at 37°C in 5% humidified CO$_2$ in the appropriate medium as listed in Table 2.1.

Table 2.1: Media and cell lines used for tissue culture.

<table>
<thead>
<tr>
<th>Culture medium</th>
<th>Media</th>
<th>Supplements</th>
<th>Cell lines</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>complete medium-20</td>
<td>RPMI</td>
<td>FBS to 20% (v/v) 2mM L-glutamine 100U/ml penicillin 100U/ml streptomycin</td>
<td>CTLs HDLM2 L540 L591 PG13</td>
<td>(Drexler et al., 1986) (Diehl et al., 1981) (Diehl et al., 1982) (Miller et al., 1991)</td>
</tr>
<tr>
<td>complete medium-10</td>
<td>RPMI</td>
<td>FBS to 10% (v/v) 2mM L-glutamine 100U/ml penicillin 100U/ml streptomycin</td>
<td>AGS B95-8 K562 L1236 LCLs NUGC3 Raji</td>
<td>(Barranco et al., 1983) (Miller et al., 1972) (Lozzo & Lozzo, 1975) (Wolf et al., 1996)</td>
</tr>
<tr>
<td>complete medium-8</td>
<td>RPMI</td>
<td>FBS to 8% (v/v) 2mM L-glutamine 100U/ml penicillin 100U/ml streptomycin</td>
<td>C666.1</td>
<td>(Cheung et al., 1999)</td>
</tr>
<tr>
<td>DMEM</td>
<td>DMEM</td>
<td>FBS to 10% (v/v) 2mM L-glutamine 100U/ml penicillin 100U/ml streptomycin</td>
<td>HT1080</td>
<td>(Rasheed et al., 1974)</td>
</tr>
</tbody>
</table>

Cell lines HDLM2, L1236, L540 and L591 were a gift from Professor Ruth Jarrett, LRF Virus Centre, University of Glasgow; AGS and NUGC3 a gift from Professor Kenzo Takada, Institute for Genetic Medicine, Hokkaido University, Japan; and C666.1 a gift from Professor Paul Farrell, School of Medicine, Imperial College, London, UK. RPMI, DME, L-glutamine, penicillin, and streptomycin were supplied by Invitrogen. FBS was supplied by Perbio. Plastics for cell culture were supplied by Barloworld Scientific, Becton Dickinson, Fisher Scientific and Greiner Bio-One.
2.2.2 Passaging adherent cell lines

Culture medium was removed from the cell monolayer and cells were washed with 0.02% versene (0.5mM EDTA, 0.001% phenol red in PBS) then incubated with a 1:1 solution of versene and 0.25% (w/v) trypsin (Invitrogen) at 37°C until the cells detached from the plastic. The cells were either seeded directly into a new culture flask, or centrifuged at 180g for 7 minutes and the resulting pellet resuspended in fresh medium and seeded into a new flask.

2.2.3 Freezing and thawing cells

For long term storage of cell lines, viable cells were centrifuged at 180g for 7 minutes and resuspended in freeze medium (70% RPMI, 20% FBS and 10% DMSO) at cell concentrations between 5x10^6 and 2x10^7 cells/ml. Volumes of 1ml were aliquoted into cryovials and placed in a cryo 1°C freezing container (VWR) for overnight slow freezing at -70°C before being transferred to liquid nitrogen.

Frozen cell lines were thawed quickly in a 37°C incubator and washed twice by centrifugation in Hank's buffered salt solution (HBSS) (Invitrogen), or in RPMI with 20% FBS for CTLs and transduced cells, at 180g for 7 min. Pelleted cells were resuspended at the appropriate concentration and media for the line.

2.2.4 Cell separation by centrifugation

Ficoll-hypaque density centrifugation was used to separate PBMCs from whole blood and to remove dead cells from cultures. Cell suspensions were layered into an equal volume of Histopaque-1077 (Sigma) and centrifuged at 600g and 4°C for 20 minutes. Viable cells were removed from the Histopaque/medium interface and resuspended in HBSS (Invitrogen) and centrifuged at 180g for 7 minutes. Cell pellets were resuspended in an appropriate volume of media or buffer, as required.

2.2.5 Cell separation by antibody-coated magnetic beads

EasySep systems (StemCell Technologies) were used to separate cell populations on the basis of cell surface antigen expression, following the manufacturer’s
instructions. Briefly, cells were washed in cell separation buffer (CSB) at 180g for 7 minutes and resuspended at 1x10^8 cells/ml in CSB. The appropriate EasySep positive selection cocktail (bi-specific tetrameric antibody complexes directed against the selection antigen and dextran) was added at a concentration of 100µL/ml cells for CD56 selection and 200µL/ml cells for CD34 selection, and the mixture incubated for 15 minutes at room temperature. Nanoparticles (magnetic dextran iron particles in water) were added at a concentration of 50µL/ml, and the mixture incubated for 10 minutes at room temperature. Total volume was brought to 2.5ml with CBS and the tube placed in an EasySep magnetic for 5 minutes. The supernatant was poured off, the tube removed from the magnet, 2.5ml CSB added to the remaining cells, and the tube placed back in the magnet. The separations were repeated a total of 4 times for CD34 selection and 3 times for CD56 selection. Both the positively selected fraction and the depleted fraction were retained, counted, and resuspended at 1x10^6 cells/ml in complete medium-20 for further culture.

2.2.6 Counting cells

An aliquot of cells was diluted 1:1 with 0.4% (w/v) trypan blue (Sigma) and applied to a haemocytometer. Stained and unstained cells were counted to determine the percentage of viable cells and total cell number.

2.3 DNA Extraction

2.3.1 Extraction of phagemid DNA from bacteria

Single colonies of bacteria infected with phage growing on agar plates or clones stored in 15% glycerol at -70°C were inoculated into 5ml 2xTY AG and incubated overnight, shaking at 37°C. An aliquot of 1ml was pelleted by centrifugation at 11600g for 5 minutes and the DNA extracted using the Rapid Plasmid Miniprep System (Marligen Bioscience Inc) according to the manufacturer’s instructions. Briefly, the cells were resuspended in 250µl buffer G1, to which 250µl Buffer G2 was added to lyse the bacteria and the mixture incubated for 5 minutes at room temperature. Following lysis, 350µl Buffer M3 was added, the tube inverted several times and centrifuged at 12000g for 10 minutes. The supernatant was applied to a
spin cartridge which was subsequently centrifuged at 12000g for 1 minute. The cartridge was washed with 700µl Buffer G4 at 12000g for 1 minute and the DNA eluted by addition of 50µl H2O, incubation at room temperature for 1 minute and centrifugation at 12000g for 2 minutes. DNA was stored at -20°C.

2.3.2 Extraction of viral and genomic DNA from cell lines

DNA from cultured cells was extracted using a QIAamp DNA Mini Kit (Qiagen) according to the manufacturer’s instructions. Briefly, 2-5x10^6 cells were pelleted by centrifugation at 180g for 7 minutes and resuspended in 200µl PBS. To this was added 20µl Proteinase K (600mAU/ml) and 200µl Buffer AL. The solution was vortexed for 15 seconds then incubated at 56°C for 10 minutes. 200µl ethanol was added and the mixture vortexed again for 15 seconds. The mixture was applied to a spin column which was subsequently centrifuged at 6000g for 1 minute. The column was washed with 500µl Buffer AW1 at 6000g for 1 minute, followed by 500µl Buffer AW2 at 20000g for 3 minutes, and the DNA eluted by addition of 50µl H2O, incubation at room temperature for 1 minute and centrifugation at 6000g for 1 minute. DNA was stored at -20°C.

2.3.3 Ethanol precipitation

0.1 volume 3M NaOAc (Sigma) pH 4.6 and 2.5 volumes 95% (v/v) ethanol at -20°C (Sigma) were added to 1 volume DNA. The mixture was vortexed, incubated on ice for 20 minutes then centrifuged for 30 minutes at 13000g and 4°C. The pellet was rinsed in 70% (v/v) ethanol then centrifuged for 15 minutes at 13000g and 4°C. The supernatant was aspirated and the DNA pellet air dried for 1 hour before resuspension in H2O and storage at -20°C.

2.3.4 Determination of DNA concentration

DNA concentration was measured using a spectrophotometer, with water used to reset the machine. The OD_{260} of the DNA was measured and the concentration calculated using the following formula:

\[
\text{DNA concentration (µg/ml) = OD_{260} x dilution factor x 50}
\]
2.4 Molecular Techniques

2.4.1 Restriction digests

PCR amplified phagemid DNA was digested with the restriction enzyme BstNI (New England Biolabs), at approximately 1 unit per µg DNA, in the supplied reaction buffer with 100µg/ml BSA, in a total volume of 24µl. Reactions were incubated at 60°C for 2 hours and visualised on a 2% (w/v) agarose gel.

2.4.2 Standard PCR

Standard PCR was used to screen phage clones for the presence of 935 bp full length inserts, as per the supplier’s instructions (Geneservice). The reaction mix contained 1.5mM Mg\(^{2+}\) (Promega), 200µM dNTPs (GE Healthcare), 10pmoles of each primer, 10µl 5x Green GoTaq Flexi Buffer (Promega), 1.5U GoTaq Flexi DNA Polymerase (Promega) and DNA in a final volume of 50µl. DNA was added either to a total amount of approximately 50ng, or as bacteria picked directly from an agar plate. A negative reaction with dH\(_2\)O in place of template DNA was included in all runs.

Primers (synthesised by Sigma) were:

LMB3: 5’ - CAGGAAACAGCTATGAC - 3’ and
pHEN seq: 5’ - CTATGCGGCCCCATTCA - 3’.

PCR were carried out on a T2 Thermocycler (Biometra). The reaction consisted of an initial denaturation step (95°C, 2 minutes), followed by 30 cycles of denaturation (95°C, 30 seconds), annealing (55°C, 30 seconds) and elongation (72°C, 2 minutes). A final elongation step (72°C, 5 minutes) was followed by cooling to 4°C before visualisation on a 2% (w/v) agarose gel.

2.4.3 Real time PCR

Real time PCR was used to assay EBV viral load (Leung et al, 2002). After DNA extraction a section of the viral polymerase was amplified and the levels of product determined using a 6-carboxyfluorescein (FAM) and 6-carboxy-tetramethylrhodamine (TAMRA) dual-labelled fluorogenic hybridisation probe. A
section of the housekeeping gene β-globin was also amplified from each sample in order to normalise DNA calculations. The reaction mix contained 3mM Mg\(^{2+}\) (Promega), 200µM dNTPs (GE Healthcare), 100pmoles each primer, 200pmol probe, PCR reaction buffer (10mM Tris-HCl pH 9.0, 50mM KCl, 0.1% TritonX), 1.25U Taq DNA polymerase (Promega), 275ng TaqStart antibody (Clonetec) and 1µg DNA in a volume of 25µl. A negative reaction with dH\(_2\)O in place of template DNA was included in all runs.

Oligonucleotides for the EBV polymerase amplification were;

- forward: 5’ - AGTCCTTCTTTGGCTACTCTGTTGAC - 3’,
- reverse: 5’ - CTTTGGCGCGGATCCTC - 3’, and
- probe: 5’ - FAM-CATCAAGAAGCTGCTGGCGGCC-TAMRA - 3’.

Primers for β-globin amplification were;

- forward: 5’ - GGCACCCCTAAGGTGAAGGC - 3’,
- reverse: 5’ - GGTGAGCCAGGCCATCACTA - 3’ and
- probe: 5’ - FAM-CATGGCAAGAAAGTGCTCGGTGCCT-TAMRA - 3’.

All oligonucleotides for real time PCR were synthesised by Sigma. All PCRs were carried out on an R-3000 Real Time Thermal Cycler (Rotor-Gene). The reaction consisted of an initial denaturation step (95°C, 10 minutes), followed by 60 cycles of denaturation (95°C, 20 seconds) and annealing and elongation (58°C 60 sec). An initial standard curve was generated from serially diluted DNA extracted from Raji cells, which contain approximately 50 copies of the EBV genome per cell (Glaser & Nonoyama, 1974), and imported during analysis for calculation of DNA copy number. Several standards of known copy number were amplified during each run for comparison with the imported curve.

2.4.4 Agarose gel electrophoresis

Agarose was dissolved in the appropriate volume of TBE buffer by heating in a microwave. Ethidium bromide to a final concentration of 100µg/l was added to the molten gel to allow visualisation of the DNA. Samples were loaded into the set gel,
and run at 100V in TBE for 1 hour. The nucleic acid bands were visualised on a UV transilluminator.

2.4.5 DNA sequencing

Between 300-500ng of DNA was resuspended in nuclease-free water to a total volume of 5µl. Samples were sent to Jill Lovell at the School of Biological Sciences Sequencing Service, University of Edinburgh, for sequencing using the BigDye Terminator Cycle Sequencing System and an ABI Sequencer (Applied Biosystems).

2.4.6 HLA typing

DNA was resuspended in nuclease-free water to a final concentration of 100-300µg/ml. Samples were sent to Professor Anthony Dodi, the Anthony Nolan Bone Marrow Trust, Royal Free Hospital, London, UK, for HLA typing at the A, B or C loci, and Karen Stewart at the Scottish National Blood Transfusion Service Tissue Typing Laboratory, Royal Infirmary, Edinburgh, UK, for typing at the A, B, C, DR and DQ loci.

2.5 Virus Techniques

2.5.1 Production and titration of EBV

B95-8 cultures in complete medium-10 were grown to appropriate volumes, and then culture vessels sealed and incubated at 37°C to drive virus into the lytic phase. After 7-10 days, supernatant was centrifuged at 490g for 10 minutes then passed through a 0.8µ filter. The virus stock was used immediately or stored at -70°C. For titration, 10-fold dilutions of the virus stock was added to 2x10^6 EBV negative PBMCs in complete medium-10, which were then transferred to 10 replicate wells per dilution in a 96-well flat bottomed culture plate at 2x10^5 cells per well. Cells were incubated at 37°C in 5% humidified CO₂ for four weeks, with additional media added to the plates as necessary. After four weeks, each dilution was scored for outgrowth of transformed cells, with the lowest dilution having ≥50% positive wells taken as the virus titre.
2.5.2 In vitro infection with EBV
For infection of the EBV-negative HL cell lines HDLM2, KMH2, L1236, and L540, a pellet of 10^7 cells was resuspended in 100µL virus preparation and the volume made up to 1ml in culture medium, before incubation at 37ºC in 5% humidified CO$_2$ for 1 hour. Cells were washed with HBSS then plated at a density of 2×10^6 cells per well in a 24-well plate for continuing culture. Samples were collected at 3, 14, and where necessary 49 days post infection for DNA extraction.

2.5.3 Production and titration of retrovirus
PG13 producer cell lines (Miller et al, 1991) for a retrovirus encoding either a chimeric TCR specific for CD19 with a truncated CD34 molecule as a marker of transduction, or the empty vector with green fluorescent protein (GFP) as a marker of transduction, were provided by Dr Eleanor Cheadle, Paterson Institute for Cancer Research, University of Manchester (Cheadle et al, 2005). As a cell monolayer approached 70% confluence the supernatant was aspirated and fresh media added. After overnight incubation at 37ºC the supernatant was passed through a 0.45µ filter and used immediately or stored at -70ºC. For titration, 10-fold dilutions of the virus stock and approximately 4µg/ml polybrene (Sigma) was added to HT1080 cells which had been seeded 24 hours previously in a 24-well culture plate at a density of 1×10^4 cells per well. Cells and virus were incubated overnight at 37ºC, then the virus was removed and fresh media added. Following a further 5 days incubation the cells were harvested and stained with anti-CD34-fluorescein isothiocyanate (FITC) for FACS analysis. The titre was calculated as follows;

\[
titre (tu/ml) = \frac{\text{frequency positive cells (\%) x initial cell number x dilution factor}}{100}
\]

2.6 Phage library techniques

2.6.1 Phage libraries used
Tomlinson I+J
The Tomlinson phage library is in phagemid/scFv format, with a diversity of 2.8×10^8 (Goeltz et al, 2002). It is a synthetic library based on a single human framework for
V_H (V3-23/DP-47 and J_H4b) and V_κ (O12/O2/DPK9 and J_κ1). The canonical structure encoded by this structure is the most common in the human antibody repertoire. pIT2 was used as the phagemid vector. The CDR3 of the heavy chain was designed to be as short as possible while still forming an antigen binding surface. Side-chain diversity was incorporated in CDR3 and CDR2 regions in both V_H and V_κ at positions which make contacts to the antigens. CDR1 regions were kept constant. Additional diversity was generated by PCR using partially degenerate primers designed to introduce random sequences into the V_H and V_κ CDR3 loops. The library was preselected on Protein A and Protein L, favouring the retention of functional scFv. HIS6 and myc tags were included for the identification of soluble scFv. The Tomlinson I+J human single fold scFv phage libraries were supplied by Geneservice Ltd. Included with the libraries were control clones specific for ubiquitin and BSA, T-phage resistant E.coli strain TG1 for phage propagation and KM13 helper phage (Kristensen & Winter, 1998) for library rescue.

ETH2Gold

The ETH2Gold phage library is in phagemid/scFv format, with a diversity of 3x10⁹ (Silacci et al, 2005). It is a synthetic library, and uses one V_H and two V_κ regions for the scFv framework (DP47/DPL16 and DP47/DPK22). pHEN1 was used as the phagemid vector. Diversity was generated by PCR using partially degenerate primers designed to introduce random sequences into the V_H and V_κ or V_λ CDR3 loops. The library was preselected on Protein A and Protein L, favouring the retention of functional scFv. A myc tag was included for the identification of soluble scFv.

RotMar

The RotMar library was constructed using an identical method as the de Haard library (de Haard et al, 1999). It is in phagemid/Fab format, with a diversity of 5.36x10⁹. The RotMar is a naïve library, with PBL from two donors and spleen from two donors used as a source of RNA for amplification of V_H and V_L regions. Primers were designed as to allow amplification of all commonly used V-gene segments. V_H and V_L regions were combined by cloning V_H regions into a vector already containing V_L. 70% of clones contain a κ light chain and 30% a λ light
pCES1 was used as the phagemid vector. A single CH1 domain was used. HIS6 and myc tags were included for the identification of soluble Fab.

2.6.2 Growing *E. coli* TG1

Frozen TG1 stock in 15% glycerol was streaked onto minimal agar plates and incubated 24-48 hours at 37°C. Single colonies were picked into 5ml 2xTY medium and grown shaking overnight at 37°C. The overnight culture was diluted 1:100 in fresh 2xTY medium and grown shaking at 37°C until the OD at 600nm (OD$_{600}$) reached 0.4-0.5, and the bacteria were in an exponential growth phase.

2.6.3 Preparing helper phage KM13

TG1 at an OD$_{600}$ of 0.4-0.5 was added to 100-fold dilutions of the KM13 helper phage. After incubation at 37°C in a waterbath for 30 minutes, cultures were added to molten H-top agar at 42°C and the mixture immediately poured onto pre-warmed TYE plates, then incubated overnight at 37°C. A small plaque was picked into 5ml fresh TG1 at an OD$_{600}$ of 0.4-0.5 and the culture grown shaking at 37°C for 2 hours. The culture was then diluted 1:100 in fresh 2xTY medium and grown shaking at 37°C. After 1 hour, kanamycin was added to a final concentration of 50µg/ml to select for bacteria infected with helper phage, as KM13 carries a kanamycin resistance gene, and the culture grown shaking overnight at 30°C. The overnight culture was centrifuged at 10800g for 15 minutes and one part polyethylene glycol (PEG)/NaCl (20% (w/v) PEG 6000 in 2.5M NaCl) added to four parts of the supernatant to precipitate the helper phage. The mixture was incubated on ice for 1 hour, then the helper phage pelleted by centrifugation at 10800g for 30 minutes. The phage was resuspended in PBS and the precipitation repeated. The resuspended helper phage was then centrifuged at 11600g for 10 minutes to remove any bacterial debris, and stored at 4°C for the short term or -70°C in 15% glycerol for the long term. To titre the helper phage stock, TG1 at an OD$_{600}$ of 0.4-0.5 was added to 100-fold dilutions of phage, as well as 100-fold dilutions of phage which had been treated with 1mg/ml trypsin (Sigma) for 30 minutes at 37°C. Following incubation at 37°C in a waterbath for 30 minutes, cultures were plated in H-top agar as above, and then incubated overnight at 37°C. If the titre of the trypsin-treated phage was 10^5-10^8.
lower than the titre of the non-trypsin treated phage, the preparation was deemed acceptable.

2.6.4 Rescuing phage libraries

Phage libraries in TG1 were grown in 2xTY with 100µg/ml ampicillin to select for bacteria infected with phage clones, which carry an ampicillin resistance gene, and 1% (w/v) glucose as the scFv gene is under the control of a lacZ promoter and the glucose inhibits expression of soluble scFv fragments. For library rescue, phage stock in TG1 was grown shaking at 37°C until the OD$_{600}$ reached 0.4-0.5. A 10-fold excess of KM13 was added to an aliquot of the library large enough to ensure library diversity was not compromised and incubated without shaking in a 37°C waterbath for 30 minutes. The bacteria were pelleted by centrifugation at 3000g for 10 minutes, resuspended in 2xTY AKG, and grown shaking overnight at 30°C. The overnight culture was centrifuged at 3300g for 30 minutes and one part PEG/NaCl added to four parts of the supernatant to precipitate the phage. The mixture was incubated on ice for 1 hour, then the phage pelleted by centrifugation at 3300g for 30 minutes. The phage was resuspended in PBS, centrifuged at 11600g for 10 minutes to remove any bacterial debris, and then stored at 4°C for the short term or at -70°C in 15% glycerol for the long term. To titre library stock, TG1 at an OD$_{600}$ of 0.4-0.5 was added to 100-fold dilutions of phage. After incubation at 37°C in a waterbath for 30 minutes, cultures were spotted onto TYE AG plates and incubated overnight at 37°C.

2.6.5 Selection on immunotubes

In early selection experiments, immunotubes (Nunc) were coated directly with the peptide being used as capture antigen. In later experiments, immunotubes were coated with either streptavidin or avidin and biotinylated peptides added subsequently. Finally, a negative selection step was incorporated into the protocol in which the phage were passed through two immunotubes coated with streptavidin or avidin, added to the biotinylated peptide in solution and then the mixture applied to a third immunotube coated with streptavidin or avidin. All peptides were manufactured by Thistle Scientific. Protocols for selection were as follows:
1. **Unmodified peptides**

Immunotubes were coated overnight at 4°C with 100µg/ml peptide in PBS. The following day the tubes were washed three times with PBS and blocked for 2 hours at room temperature with 2% marvel skim milk powder in PBS (MPBS). The tubes were washed three times with PBS, phage in MPBS was added and the tubes incubated at room temperature for 1 hour rolling and 1 hour standing. The tubes were washed 10 (round 1) or 20 (rounds 2 and 3) times with PBS containing 0.1% Tween 20 (PBS-Tween) and the phage eluted using 1mg/ml trypsin and a rolling incubation for 10 minutes at room temperature.

2. **Biotinylated peptides**

Immunotubes were coated overnight at 4°C with 500ng/ml streptavidin or avidin in 0.1M NaHCO₃ pH 8.2. Streptavidin was used in rounds 1 and 3, avidin in round 2. The following day the tubes were washed twice with PBS and twice with PBS-Tween and blocked for 2 hours at room temperature with MPBS. The tubes were washed twice with PBS and twice with PBS-Tween, 100µg/ml biotinylated peptide in MPBS was added and the tubes incubated for 1 hour at room temperature. Tubes were washed twice with PBS and twice with PBS-Tween, phage in MPBS was added and the tubes incubated at room temperature for 1 hour rolling and 1 hour standing. The tubes were washed 5 and 5 (round 1) or 10 and 10 (rounds 2 and 3) times with PBS-Tween 20 and PBS and the phage eluted using 1mg/ml trypsin and a rolling incubation for 10 minutes at room temperature.

3. **Biotinylated peptides with negative selection**

Immunotubes were coated overnight at 4°C with 500ng/ml streptavidin or avidin in 0.1M NaHCO₃ pH 8.2. Streptavidin was used in round 1, avidin in round 2. The following day the tubes were washed twice with PBS and twice with PBS-Tween and blocked for 2 hours at room temperature with MPBS. The tubes were washed twice with PBS and twice with PBS-Tween, phage in MPBS added and the tube incubated rolling for 15 minutes. The phage mixture was then decanted into a fresh coated tube and incubated standing for 15 minutes. The phage mixture was next added to 100µg/ml biotinylated peptide in MPBS and incubated 1 hour shaking and 1 hour standing at room temperature. The phage-peptide mixture was decanted in to a final fresh coated tube and incubated 15 minutes rolling and 15 minutes standing.
tubes were washed 5 and 5 (round 1) or 10 and 10 (round 2) times with PBS and PBS-Tween and the phage eluted using 1mg/ml trypsin and a rolling incubation for 10 minutes at room temperature.

In the above protocols, eluted phage was rescued by addition of TG1 at an OD$_{600}$ of 0.4-0.5. After incubation in a 37°C waterbath for 30 minutes, 10-fold dilutions of the culture were spotted onto TYE AG plates to titre the selection output and the remaining bacteria pelleted by centrifugation at 11600g, resuspended in a small volume of 2xTY and spread on a BioAssay dish (Nunc) containing TYE AG (round 1 only) or TYE AG plate. Titre plates were incubated overnight at 37°C, pellet plates incubated overnight at 30°C.

2.6.6 Amplifying selected phage

After overnight growth of pellet plates, 2xTY with 15% glycerol was added to plates and the cells loosened with a disposable spreader then collected into a tube. Aliquots of the harvested bacteria were added to 2xTY AG until the OD$_{600}$ reached approximately 0.1, then the culture grown shaking at 37°C until an OD$_{600}$ of 0.4-0.5 was reached. A 10-fold excess of KM13 was added to an aliquot of the culture and incubated without shaking in a 37°C waterbath for 30 minutes. The bacteria were pelleted by centrifugation at 3000g for 10 minutes, resuspended in 2xTY AKG and grown shaking overnight at 30°C. The overnight culture was centrifuged at 3300g for 30 minutes and one part PEG/NaCl added to four parts of the supernatant to precipitate the phage. The mixture was incubated on ice for 1 hour and then the phage pelleted by centrifugation at 3300g for 30 minutes. The pellet was resuspended in PBS, centrifuged at 11600g for 10 minutes to remove any bacterial debris, and then stored at 4°C for the short term or -70°C in 15% glycerol for the long term.

2.6.7 Rescuing monoclonal phage

Phage eluted from selection tubes was rescued by addition of TG1 at an OD$_{600}$ of 0.4-0.5. After incubation at 37°C in a waterbath for 30 minutes, 10-fold dilutions of the culture were spread onto TYE AG plates to titre the selection output and ensure
well separated colonies, then incubated overnight at 37°C. Individual colonies were inoculated into 2xTY AG in 96-well flat bottomed plates (Nunc) and grown shaking overnight at 37°C. The next day 5µl of the culture was transferred to fresh 2xTY AG in 96-well plates and grown shaking at 37°C. After 2 hours, 10^9 KM13 per well were added and the cultures shaken at 37°C for a further hour. The plates were then centrifuged at 1800g for 10 minutes, the supernatant aspirated, and the bacterial pellet resuspended in 2xTY AKG before being incubated shaking overnight at 30°C. The next day, the plate was centrifuged at 770g for 10 minutes and the supernatant reserved for analysis by ELISA.

2.6.8 Phage ELISA
Coating and blocking of the 96-well assay plate (Nunc) was carried out using the same concentration of target antigen and identical conditions to those used for coating and blocking the immunotubes during the selection of the phage to be assayed. Once this was complete, phage in 2% MPBS was added and the plate incubated for 1 hour at room temperature. Generally, 10µl PEG precipitated polyclonal phage (see 2.6.6) or 50µl monoclonal phage supernatant (see 2.6.7) was used. The phage solution was then discarded and the plate washed twice with PBS-Tween and twice with PBS. A 1:5000 dilution of HRP-anti-M13 (GE Healthcare) in 2% MPBS was then added and the plate incubated for 1 hour at room temperature, then washed twice with PBS-Tween and twice with PBS. A substrate solution of 100µg/ml 3,3’,5,5’-tetramethylbenzidine (Sigma) in 100mM sodium acetate pH 6.0 with 0.006% (v/v) hydrogen peroxide was added to each well and the plate incubated for 10 minutes at room temperature before the reaction was stopped with 1M sulphuric acid and the $OD_{(450-650)}$ for each well read.

2.7 Preparation of therapeutic cells
2.7.1 PBMC activation
Fresh or frozen PBMCs were washed twice by centrifugation in RPMI, first at 800g for 8 min, then 400g for 7 min. Pelleted cells were resuspended at $1x10^6$ cells/ml in complete medium-20 supplemented with 1µg/ml anti-CD3 (Becton Dickinson) and
1µg/ml anti-CD28 (Becton, Dickinson), and incubated at 37°C in 5% humidified CO₂ for 72 hours.

2.7.2 Retrovirus transduction
Activated PBMCs were resuspended in undiluted supernatant from a PG13 retrovirus producer cell line (see 2.5.3). 6µg/ml polybrene (Sigma) was added to the suspension, which was then centrifuged at 1200g and 4°C for 3 hours. Transduced cells were resuspended at approximately 5x10^5 cells/ml in complete medium-20 supplemented with 100IU/ml IL-2 (UDG) and incubated overnight at 37°C in 5% humidified CO₂. Transduction was repeated the following day. Transduced cells were cultured for up to 2 weeks in complete medium-20, with IL-2 to a concentration of 100IU/ml added to the culture three times a week.

2.7.3 Establishing an LCL
PBMCs were resuspended in undiluted EBV preparation (see 2.5.1) and incubated at 37°C with occasional agitation. After 1 hour the suspension was centrifuged at 180g for 7 minutes, the pellet resuspended at 2x10^6 cells/ml in complete medium-10 supplemented with 1µg/ml cyclosporin A (Sigma), and the cells seeded into a 48-well plate. Culture plates were incubated at 37°C in 5% humidified CO₂ until outgrowth of immortalised clones signalled establishment of a cell line.

2.7.4 Reviving CTLs
All CTLs and HLA matched LCLs were sourced from a cell bank created in our laboratory (Wilkie et al, 2004). Frozen CTLs were thawed and washed twice by centrifugation in complete medium-20 at 180g for 7 min. Pelleted cells were resuspended at 2x10^6 cells/ml in complete medium-20 supplemented with 20U/ml IL-2 and incubated at 37°C in 5% humidified CO₂ overnight before use.
2.7.5 Flow cytometric analysis

Cells to be analysed were added to polystyrene round bottom tubes (Becton Dickinson) and washed twice in PBSA (1% w/v BSA, 0.1% w/v sodium azide, 0.2% w/v EDTA) by centrifugation at 120g for 5 minutes. The supernatant was decanted and cells resuspended in residual liquid. 10µL of the appropriate antibody (see Table 2.2) was added and the tubes incubated for 20 minutes at 4°C in the dark. Cells were washed twice in PBSA then resuspended in 1x CellFix (Becton Dickinson) and stored at 4°C in the dark for up to one week until FACS evaluation on either a FACScan (Becton Dickinson) or FACSCalibur (Becton Dickinson) flow cytometer. At least 10000 events were acquired for each sample. Data was subsequently analysed using the CellQuest software.

Table 2.2: Antibodies used in flow cytometric analysis.

<table>
<thead>
<tr>
<th>antibody</th>
<th>clone</th>
<th>isotype</th>
<th>conjugate</th>
<th>supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4</td>
<td>RPA-T4</td>
<td>IgG1, κ</td>
<td>PE</td>
<td>Becton Dickinson</td>
</tr>
<tr>
<td>CD8</td>
<td>RPA-T8</td>
<td>IgG1, κ</td>
<td>PE</td>
<td>Becton Dickinson</td>
</tr>
<tr>
<td>CD19</td>
<td>HIB19</td>
<td>IgG1, κ</td>
<td>PE</td>
<td>Becton Dickinson</td>
</tr>
<tr>
<td>CD34</td>
<td>581</td>
<td>IgG1, κ</td>
<td>FITC</td>
<td>Becton Dickinson</td>
</tr>
<tr>
<td>CD56</td>
<td>B159</td>
<td>IgG1, κ</td>
<td>PE</td>
<td>Becton Dickinson</td>
</tr>
</tbody>
</table>

2.7.6 Chromium release assay

Cytotoxic activity in vitro was measured using a standard chromium (Cr) release assay (Haque et al., 1998). Cells from each target cell line were labelled with ⁵¹Cr for 1 hour at 37°C before plating with effector cells at an effector:target ratio of 20:1, 10:1 and 5:1. After incubation at 37°C for 4 hours the release of ⁵¹Cr from lysed cells was measured on a gamma counter. Spontaneous release was calculated by incubating target cells without effector cells, and maximum release calculated by incubating target cells with 1% Triton-X (Sigma). Percent specific lysis was calculated as follows:

\[
\% \text{ specific lysis} = \frac{(\text{test release} - \text{spontaneous release})}{(\text{maximum release} - \text{spontaneous release})} \times 100
\]
2.8 Animal Models

CB17 SCID mice (Bosma et al, 1983) were maintained in a specific pathogen free unit and housed in microinsulator caging. Procedures were carried out under Project Licences 60/2766 and 60/3530, and Personal Licence 60/10062.

2.8.1 Tumour induction in SCID mice

Cells for injection were washed once in HBSS then resuspended in complete medium-10. A volume of 100µl was administered for each injection. Mice injected by the subcutaneous (sc) route received injections in one or both flanks. Mice injected by the intraperitoneal (ip) route received one injection in the abdomen. For tumour prophylaxis or treatment, intravenous (iv) injections of cells were given into a tail vein.

2.8.2 Monitoring tumour growth and collection of samples

Mice were observed three times a week for illness or tumour formation. Upon showing signs of illness, appearance of skin necrosis at the tumour site, tumour growth exceeding 18mm in any plane, or at a predetermined time point, mice were culled by cervical dislocation and examined post mortem. Any macroscopic tumour tissue or organs of interest were removed and samples fixed in neutral buffered formalin (NBF).

2.9 Immunohistochemistry

2.9.1 Preparation of slides

To create slides of cultured cells, approximately 1x10^8 cells were washed in HBSS at 180g for 7 minutes and then fixed in 5ml NBF for 2 hours at room temperature. Fixed cells were pelleted at 180g for 7 minutes and resuspended in cooled 2% (w/v) agarose in PBS.

Cell pellets and mouse tissue fixed in NBF were embedded in paraffin wax blocks. Sections of 6µm were cut from the blocks and mounted on polysine coated
microscope slides (VWR). This work was carried out by Mrs Grace Grant, School of Biomedical Sciences, University of Edinburgh.

2.9.2 Rehydration of sections
Paraffin wax-embedded sections were dewaxed by immersion in xylene for 5 minutes, and then rehydrated by sequential immersion in 100%, 90%, 70%, and 30% (v/v) ethanol for 5 minutes each. The slides were washed in distilled water for 5 minutes and left to air dry.

2.9.3 Antibody retrieval
Dewaxed slides were immersed in Target Retrieval Solution (Dako) in a coplin jar which had been preheated to approximately 95°C for 20 minutes. The entire jar was removed to the bench and allowed to cool for a further 20 minutes. The slides were then washed twice with distilled water and left to air dry.

2.9.4 Antibody staining using AP
Visualisation of antibody staining using alkaline phosphotase (AP) was performed using the EnVision Detection System (Dako) according to the manufacturer’s instructions. Briefly, after dewaxing and antibody retrieval, sections were incubated with primary mouse anti-human mAb (see Table 2.3) at the appropriate dilution for 30 minutes at room temperature. Antibodies were diluted in block buffer (0.05mol/l Tris-HCl pH7.2-7.6, 1% w/v BSA). Slides were washed twice in TBS, and then incubated with an AP-labelled polymer specific for mouse immunoglobulin for 30 minutes at room temperature. The slides were washed again with TBS, and then the AP label developed using a Fast Red solution (naphtol AS-Mx phosphate in Tris buffer) with levamisole to inhibit endogenous AP. The slides were then washed twice in distilled water and counterstained with Gill’s formula haematoxylin (Vector Laboratories) for 5 minutes before mounting with Faramount aqueous mounting medium (Dako).
Table 2.3: Antibodies used in immunohistochemistry.

<table>
<thead>
<tr>
<th>antibody</th>
<th>clone</th>
<th>isotype</th>
<th>dilution</th>
<th>supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>BZLF1</td>
<td>BZ.1</td>
<td>IgG, κ</td>
<td>1:20</td>
<td>Dako</td>
</tr>
<tr>
<td>CD4</td>
<td>4B12</td>
<td>IgG, κ</td>
<td>1:20</td>
<td>Vision BioSystems</td>
</tr>
<tr>
<td>CD8</td>
<td>1A5</td>
<td>IgG, κ</td>
<td>1:20</td>
<td>Vision BioSystems</td>
</tr>
<tr>
<td>CD15</td>
<td>HI98</td>
<td>IgM, κ</td>
<td>1:150</td>
<td>Becton Dickinson</td>
</tr>
<tr>
<td>CD19</td>
<td>LE-CD19</td>
<td>IgG, κ</td>
<td>1:200</td>
<td>AbD Serotec</td>
</tr>
<tr>
<td>CD20</td>
<td>L26</td>
<td>IgG₂₅, κ</td>
<td>1:400</td>
<td>Dako</td>
</tr>
<tr>
<td>CD30</td>
<td>BerH8</td>
<td>IgG, κ</td>
<td>1:150</td>
<td>Becton Dickinson</td>
</tr>
<tr>
<td>cytokeratin</td>
<td>AE1/AE3</td>
<td>IgG, κ</td>
<td>1:100</td>
<td>Dako</td>
</tr>
<tr>
<td>EBNA2</td>
<td>PE2</td>
<td>IgG, κ</td>
<td>1:25</td>
<td>Dako</td>
</tr>
<tr>
<td>LMP1</td>
<td>CS.1-4</td>
<td>IgG, κ</td>
<td>1:100</td>
<td>Dako</td>
</tr>
</tbody>
</table>

2.9.5 Antibody staining using HRP

Visualisation of antibody staining using horse radish peroxidase (HRP) was performed using the Novolink Polymer Detection System (Vision BioSystems) according to the manufacturer’s instructions. Briefly, after dewaxing and antibody retrieval, sections were incubated with a peroxidase block for 5 minutes to neutralise endogenous peroxidases, washed twice with TBS, incubated with a protein block for 5 minutes, washed twice with TBS and then incubated with primary mouse anti-human mAb (see Table 2.3) at the appropriate dilution for 30 minutes at room temperature. Antibodies were diluted in Antibody Dilutant (Dako). Slides were washed twice in TBS, then incubated with a post primary block for 30 minutes, washed twice again in TBS, then incubated with a HRP-labelled polymer specific for mouse immunoglobulin for 30 minutes at room temperature. The slides were washed twice with TBS, and then the HRP label developed using a 1.74% 3,3-diaminobenzidine (DAB) solution. The slides were then washed twice in distilled water and counterstained with haematoxylin for five minutes before mounting with Faramount.

2.9.6 EBER in situ hybridisation

EBER ISH was carried out using a PNA ISH Detection Kit (Dako). Dewaxed slides were rehydrated by sequential immersion in 100%, and 95% ethanol and double processed water (Sigma) for 5 minutes each. Sections were then incubated with
15µg/ml Proteinase K (Sigma) in 50mM Tris-HCl pH 7.6 for 30 minutes at 37°C in a humidity chamber, then washed twice in double processed water and dehydrated by immersion in 95% ethanol for 10 seconds. An EBV (EBER) PNA Probe (Dako) labelled with FITC was added to each section, covered with a coverslip, and incubated at 55°C for 3 hours in a humidity chamber. Coverslips were removed during immersion in the supplied stringent wash solution for 25 minutes at 55°C. Slides were washed once in TBS, and then incubated for 30 minutes at room temperature with the supplied AP-labelled anti-FITC detection antibody, before being washed twice with TBS and twice with distilled water. AP was developed using a 5-bromo-4-chloro-3-indolylphosphate/nitroblue tetrazolium (BCP/NBT) Alkaline Phosphotase Substrate Kit (Vector Laboratories), with slides being incubated with substrate solution for 45 minutes at room temperature in a humidity chamber, and then washed in 100mM Tris-HCl pH 9.5 and running tap water. Sections were counterstained with haematoxylin for five minutes before mounting with Faramount.

2.9.7 Haematoxylin and eosin staining

Dewaxed and rehydrated slides were immersed in haematoxylin for 10 minutes, washed with running tap water for 5 minutes, immersed in 1% w/v eosin Y (Sigma) for 15 minutes then washed again in running tap water for 5 minutes. Sections were mounted with Vectamount permanent mounting medium (Vector). Histological examination was assisted by Dr Christopher Bellamy, Department of Pathology, Royal Infirmary, Edinburgh.

2.10 Statistical analysis

Data is presented as mean ± standard deviation (SD). The non-parametric Mann Whitney t test was used to compare levels of specific lysis in chromium release assays. Fisher’s exact test for comparison of proportions, and Wilcoxon rank sum test for comparison of two groups, was used to analyse immunotherapy data. In all cases, P<0.05 was accepted as indicating a significant difference. Tests were carried out using Prism 4.0 for Windows (GraphPad Software, San Diego California USA).
3 Animal Models for EBV-Associated Malignancies

The modelling of human diseases in animals provides researchers with essential tools for studying disease pathogenesis and offers valuable insight into the mechanism and effect of new treatments. Small animal models, especially murine, are routinely used to test novel cellular therapies (Brentjens et al, 2003; Zeng et al, 2005; Savoldo et al, 2007). In vitro techniques such as the chromium release assay are able to test the effector mechanism of therapeutic cells, as will be seen in Chapter 4. In vivo models are able to investigate other characteristics, such as the ability of cells to traffic to tumour sites and exert an effect over an extended period of time. These abilities are essential if therapeutic cells are to be effective in a patient setting. Thus, in order to test our hypothesis that engineered T cells could target and kill the malignant cells of cancers associated with EBV, an in vivo model was desirable. To provide in vivo models for HL, NPC and GC, SCID mice were inoculated sc with cell lines derived from these EBV-associated malignancies. The cell lines and resulting SCID tumours were evaluated for histology, immunophenotype, viral gene expression and growth characteristic for comparison with parent tumours.

3.1 Histology of cell lines

In order to characterise the HL (HDLM2, L1236, L540, L591), NPC (C666.1) and GC (AGS, NUGC3, NUGC3-EBV) cell lines (see Table 2.1) prior to use in vivo, cells from in vitro culture were pelleted, fixed in NBF, and embedded in 2% w/v agarose. Sections were mounted on slides and stained with haematoxylin and eosin to examine cell morphology. Photomicrographs of HL cell lines are shown in Figure 3.1 and NPC and GC cell lines in Figure 3.2.
Chapter 3

Animal Models for EBV-Associated Malignancies

Figure 3.1: Haematoxylin and eosin staining of HL cell lines.
HL cell lines HDLM2 (A) and L1236 (B) at x200 magnification, and L540 (C) and L591 (D) at x400 magnification, with blue nuclear and pink cytoplasmic staining.

Histologically, the four HL cell lines (HDLM2, L1236, L540, L591) displayed a pleiomorphic phenotype in culture (Figure 3.1). The majority of cells were small and lymphoid in appearance, with occasional, large, bi- and multi-nuclear blastoid cells, which is consistent with a HRS cell phenotype. The carcinoma cell lines (AGS, NUGC3, NUGC3-EBV, C666.1) were also pleiomorphic in culture, with an undifferentiated malignant phenotype (Figure 3.2).
Figure 3.2: Haematoxylin and eosin staining of carcinoma cell lines. GC lines AGS (A), NUGC3 (B) and NUGC3-EBV (C) at x400 magnification, and NPC line C666.1 (D) at x200 magnification, with blue nuclear and pink cytoplasmic staining.

3.2 In vitro infection of EBV-negative HL cell lines

As L591 is the only naturally EBV-positive HL cell line (Diehl et al., 1982), an attempt was made to infect the remaining HL cell lines (HDLM2, L1236, L540) with EBV in vitro, with the aim of expanding the available range of EBV-positive targets for later use in SCID mice. Cells were incubated with EBV for one hour at 37°C in 5% humidified CO₂ and then maintained in culture (see 2.2.1), with samples taken at 3, 14, and 49 days post infection for DNA extraction. Real time PCR was used to assay viral load (see 2.4.3; Leung et al., 2002). An EBV-positive L591 sample and a no template control (NTC) were included.

DNA from L591 cells was amplified by PCR, and no product was present in the NTC sample. The three cell lines (HDLM2, L1236, L540) were infected with EBV, showing DNA amplification on at least one time point. However, the infection was transient in all three cell lines, with no EBV DNA detected at 14 (L540) or 49
(HDLM2, L1236) days post infection (Table 3.1). Therefore, L591 remained the only EBV-positive HL in the following experiments.

<table>
<thead>
<tr>
<th>cell line</th>
<th>time point (days)</th>
<th>EBV copies/10^6 cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>L591</td>
<td>-</td>
<td>3.5x10^6</td>
</tr>
<tr>
<td>HDLM-2</td>
<td>3</td>
<td>2.3x10^5</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1.5x10^4</td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>0</td>
</tr>
<tr>
<td>L1236</td>
<td>3</td>
<td>5.6x10^5</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>5.4x10^4</td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>0</td>
</tr>
<tr>
<td>L540</td>
<td>3</td>
<td>1x10^2</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0</td>
</tr>
</tbody>
</table>

3.3 Tumour outgrowth

To set up animal models for EBV-associated malignancies, a panel of four HL cell lines (HDLM2, L1236, L540, L591), one NPC cell line (C666.1) and four GC cell lines (AGS, AGS-EBV, NUGC3, NUGC3-EBV) were used (see Table 2.1). SCID mice were injected sc into the flank with 1x10^7 cells and monitored for tumour formation and subsequent growth (see 2.8.1 and 2.8.2). Additional cell doses of 5x10^6, 2x10^6 and 1x10^6 were used for the L591, NUGC3-EBV and C666.1 cell lines to determine optimum cell dose for tumour formation.

3.3.1 Time to tumour onset

Time to onset following sc injection was defined as the day at which tumours became macroscopically apparent. Experiments were terminated at a predetermined time limit of 100 days (Johannessen et al, 2000).
All four HL cell lines tested formed tumours in SCID mice (Table 3.2). At a dose of 1×10^7 cells, at least 80% of mice injected with HDLM2, L1236, L540, or L591 developed tumours, with median time to tumour onset ranging between 14 days for L1236 and 44 days for HDLM2. As the only EBV-positive HL cell line, L591 was selected for further titration experiments to determine the minimum dose required for reliable engraftment.

Table 3.2: Tumour incidence following sc inoculation of SCID mice with HL cell lines.

<table>
<thead>
<tr>
<th>cell line</th>
<th>cell dose</th>
<th>number of tumours/site injected (%)</th>
<th>time to tumour onset median (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDLM2</td>
<td>1×10^7</td>
<td>8 / 10 (80)</td>
<td>44 (41-53)</td>
</tr>
<tr>
<td>L1236</td>
<td>1×10^7</td>
<td>9 / 10 (90)</td>
<td>14 (14-20)</td>
</tr>
<tr>
<td>L540</td>
<td>1×10^7</td>
<td>11 / 12 (92)</td>
<td>22 (19-44)</td>
</tr>
<tr>
<td>L591</td>
<td>1×10^7</td>
<td>11 / 12 (92)</td>
<td>28 (14-37)</td>
</tr>
<tr>
<td></td>
<td>5×10^6</td>
<td>17 / 22 (77)</td>
<td>20 (16-28)</td>
</tr>
<tr>
<td></td>
<td>2×10^6</td>
<td>9 / 16 (56)</td>
<td>32 (32-54)</td>
</tr>
</tbody>
</table>

In the L591 titration experiment, a cell dose of 2×10^6 did not result in reliable tumour formation, as tumour outgrowth was seen in only 9 of 16 cases (56%). Although engraftment rates dropped from 11 of 12 (92%) to 17 of 22 (77%) between doses of 1×10^7 and 5×10^6 respectively, there was a narrower range in time to tumour onset, 14-37 days compared with 16-28 days. This allowed for more accurate estimations of time to tumour formation and hence facilitating the planning of immunotherapy experiments. Thus it was decided that a dose 5×10^6 cells per injection would be used in immunotherapy experiments.

Next, the ability of carcinoma cell lines (AGS, AGS-EBV, NUGC3, NUGC3-EBV, C666.1) to cause tumour outgrowth in SCID mice was assessed. All carcinoma cell lines formed tumours in SCID mice, with the exception of AGS-EBV (Table 3.3). At least 70% of mice injected with AGS, NUGC3, NUGC3-EBV, or C666.1 at a dose of 1×10^7 cells developed tumours, with median time to tumour onset ranging between 8 days for C666.1 and 71 days for AGS. As the sole EBV-positive representatives for their respective tumours, NUGC3-EBV for GC and C666.1 for NPC were selected.
for further titration experiments to determine the minimum dose required for reliable engraftment.

In titration experiments with NUGC3-EBV and C666.1, cell doses of 1×10^6 cells and 2×10^6 respectively resulted in tumour formation in 100% of mice. The range in time to tumour onset remained relatively narrow at 23-26 days for NUGC3-EBV and 17-24 days for C666.1. Thus it was decided that a dose 1×10^6 cells per injection for NUGC3-EBV, and 2×10^6 cells per injection for C666.1, would be used in immunotherapy experiments.

<table>
<thead>
<tr>
<th>cell line</th>
<th>cell dose</th>
<th>number of tumours/ sites injected (%)</th>
<th>time to tumour onset median</th>
<th>range</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGS</td>
<td>1×10^7</td>
<td>7 / 10 (70)</td>
<td>71</td>
<td>60-95</td>
</tr>
<tr>
<td>AGS-EBV</td>
<td>1×10^7</td>
<td>0 / 10 (0)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NUGC3</td>
<td>1×10^7</td>
<td>10 / 10 (100)</td>
<td>21</td>
<td>18-21</td>
</tr>
<tr>
<td>NUGC3-EBV</td>
<td>1×10^7</td>
<td>12 / 12 (100)</td>
<td>18</td>
<td>11-18</td>
</tr>
<tr>
<td></td>
<td>5×10^6</td>
<td>4 / 4 (100)</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2×10^6</td>
<td>4 / 4 (100)</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>1×10^6</td>
<td>4 / 4 (100)</td>
<td>25</td>
<td>23-26</td>
</tr>
<tr>
<td>C666.1</td>
<td>1×10^7</td>
<td>10 / 10 (100)</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>5×10^6</td>
<td>4 / 4 (100)</td>
<td>17</td>
<td>17-21</td>
</tr>
<tr>
<td></td>
<td>2×10^6</td>
<td>4 / 4 (100)</td>
<td>23</td>
<td>17-24</td>
</tr>
</tbody>
</table>

In order to assess the suitability of ip tumours to model EBV-associated malignancies in SCID mice, a study of tumour engraftment via ip administration was undertaken. All cell lines (HDLM2, L1236, L540, L591, AGS, AGS-EBV, NUGC3, NUGC3-EBV, C666.1) were injected at a dose of 1×10^7 cells per mouse. Time to onset was defined as time from injection of cells to termination of mice showing signs of distress (hunched back, poor grooming, lethargy, panting).

Although each group contained only three mice, engraftment rates were generally poor compared with sc injection, with L1236 alone engrafting in 100% of mice
L540 and NUGC3 engrafted in 2 of 3 mice (67%), L591, AGS, NUGC3-EBV, and C666.1 engrafted in 1 of 3 mice (33%), and HDLM2 and AGS-EBV injected mice did not develop tumours. In light of these results, and due to difficulty in determining tumour onset before mortality (as death rapidly followed initial clinical symptoms of illness, usually within 8 hours), it was decided not to pursue this model any further.

<table>
<thead>
<tr>
<th>cell line</th>
<th>derivation</th>
<th>number of tumours/number of mice (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDLM2</td>
<td>HL</td>
<td>0 / 3 (0)</td>
</tr>
<tr>
<td>L1236</td>
<td></td>
<td>3 / 3 (100)</td>
</tr>
<tr>
<td>L540</td>
<td></td>
<td>2 / 3 (67)</td>
</tr>
<tr>
<td>L591</td>
<td></td>
<td>1 / 3 (33)</td>
</tr>
<tr>
<td>AGS</td>
<td>GC</td>
<td>1 / 3 (33)</td>
</tr>
<tr>
<td>AGS-EBV</td>
<td></td>
<td>0 / 3 (0)</td>
</tr>
<tr>
<td>NUGC3</td>
<td></td>
<td>2 / 3 (67)</td>
</tr>
<tr>
<td>NUGC3-EBV</td>
<td></td>
<td>1 / 3 (33)</td>
</tr>
<tr>
<td>C666.1</td>
<td>NPC</td>
<td>1 / 3 (33)</td>
</tr>
</tbody>
</table>

3.3.2 Growth rate

Following sc tumour onset, SCID mice from the experiments in 3.3.1 were followed over time to monitor tumour growth and assess suitability for use as EBV-associated malignancy models for testing immunotherapies. Tumours were measured in the cranial/caudal and ventral/dorsal planes, with tumour size taken as the product of these two measurements (Haynes et al, 2002). Experiments were terminated upon tumours exceeding 18mm in any plane, in order to sample tumour tissue, or when the pre-set time limit of 100 days was reached.

Once established, all HL tumours (HDLM2, L1236, L540, L591) continued to increase in size over time. Growth curves from mice injected sc with 1×10^7 cells are shown in Figure 3.3. There were no cases of complete spontaneous tumour regression. After a delayed onset compared to other cell lines, HDLM2 tumours
grew very slowly, with only one tumour exceeding 10mm in length prior to the 100 day time point. In light of this it was decided that HDLM2 was not a suitable *in vivo* model, as differences in growth rate between treated and untreated groups could be difficult to discern. In comparison, L1236 and L540 tumours engrafted earlier and displayed much faster growth, capable of doubling tumour size in an average of 2 or 5 days respectively. This rapid growth rate, especially in L1236 tumours, contributed to the decision not to pursue these cell lines for further modelling, as therapeutic cells might not be capable of an effective response in such a short time frame. L591 tumours displayed slow but constant growth, and as such were deemed most suitable for future use, as therapeutic cells would be given sufficient time to mount an effective response against tumour cells, and differences in tumour growth rate between treated and control animals could be detected.

Figure 3.3: Tumour growth curves of HL cell lines in SCID mice.

Cell lines HDLM2 (A), L1236 (B), L540 (C) and L591 (D) were injected sc at a dose of 1×10^7. Each line represents an individual tumour.
Once engrafted, all tumours from carcinoma cell lines (AGS, NUGC3, NUGC3-EBV, C666.1) continued to increase in size over time. Growth curves from mice injected with 1×10^7 cells are shown in Figure 3.4. There were no cases of complete spontaneous tumour regression. Tumours in mice injected with AGS cells developed tumours after a long period of time, with a wide range of onset, 60-95 days post injection. This model was subsequently deemed not suitable for further modelling due to the consequent difficulty in planning immunotherapy experiments. NUGC3, NUGC3-EBV, and C666.1 all engrafted early after inoculation, at a median of 21, 18 and 8 days post inoculation, respectively. Growth was also rapid, with tumours from all three cell lines capable of doubling in size in an average of 4 days, leading to the decision to titrate cell dose (Table 3.3).

Figure 3.4: Tumour growth curves of carcinoma cell lines in SCID mice. GC cell lines AGS (A), NUGC3 (B), and NUGC3-EBV (D), and NPC cell line C666.1 (C) were injected sc at a dose of 1×10^7. Each line represents an individual tumour.
3.4 Characterisation of HL, NPC and CG SCID tumours

To characterise HL, NPC and GC SCID malignancies, samples of tumours were fixed in NBF and embedded in paraffin wax. Sections were stained with haematoxylin and eosin for histological analysis. HL tumours were immunostained with a panel of mAbs for cell surface markers to differentiate between tumour types and confirm parent cell line identity. NPC and GC tumours were immunostained for cytokeratin to demonstrate epithelial derivation. Finally, tumours were immunostained for a range of EBV latent and lytic antigens to verify EBV infection and latency state.

3.4.1 Histology

Sections of tumours derived from EBV-positive tumour cell lines were stained with haematoxylin and eosin to determine the histology of the tumours. Photomicrographs of HL tumours are shown in Figure 3.5, and GC and NPC in Figure 3.6.

![Figure 3.5: Haematoxylin and eosin staining of HL SCID tumours.
HL cell lines HDLM2 (A), L1236 (B), L540 (C) and L591 (D) at x200 magnification, with blue nuclear and pink cytoplasmic staining.](image)
Three of the HL cell lines (HDLM2, L1236, L540) gave rise to relatively homogeneous tumours, despite cells in culture displaying a more heterogeneous phenotype, with haematoxylin and eosin staining of sections showing sheets of blast cells (Figure 3.5 panels A,B,C). Tumours derived from L591 cells retained their culture heterogeneity, with sections showing a polymorphic population of large bi- and multi-nuclear blast cells, again consistent with a HRS cell phenotype (Figure 3.5 panel D). Tumours derived from carcinoma cell lines (AGS, NUGC3, NUGC3-EBV, C666.1) showed sheets of undifferentiated malignant cells (Figure 3.6).

3.4.2 Immunophenotype

In order to characterise the cell surface phenotype of SCID tumours derived from HL cell lines (HDLM2, L1236, L540, L591), immunostaining for a panel of human CD antigens was performed. Panel mAb were directed against: CD4 (T-lineage antigen),
CD15 (myeloid/HL-associated antigen), CD20 (B-cell marker), and CD30 (activation/HL-associated antigen). Antibodies were selected for their combined ability to differentiate between tumour types and confirm parent cell line identity. At least five tumours derived from each cell line were evaluated. Expression was assessed on a qualitative basis, and positively stained cells were not quantitated.

Figure 3.7: CD4 expression on HL SCID tumours.
HL tumours derived from HDLM2 (C), L1236 (D), L540 (E) and L591 (F) at x200 magnification, stained for CD4 expression. AP detection system shows positive red membrane staining (B,D). HRP detection system shows positive brown membrane staining (C). Negative control was GC SCID tumour (A), positive control was a CTL line (B). Black arrows indicate areas of positive staining (C,D), or single positive cells (B). Sections were counterstained with haematoxylin.
Expression of CD4 was seen in sections of HDLM2 and L1236 tumours, but not L540 or L591 tumours (Figure 3.7). Expression of CD15 was seen in sections of HDLM2 and L540 tumours, but not L1236 or L591 tumours (Figure 3.8). L591 alone expressed CD20 (Figure 3.9), while all tumours expressed CD30 (Figure 3.10). A summary of these results is shown in Table 3.5. The immunophenotype of tumours was consistent with that of the parental cell line.

Figure 3.8: CD15 expression on HL SCID tumours.
HL tumours derived from HDLM2 (C), L1236 (D), L540 (E) and L591 (F) at x200 magnification, stained for CD15 expression. AP detection system shows positive red membrane staining (B,E). HRP detection system shows positive brown membrane staining (C). Negative control was GC SCID tumour (A), positive control was human tonsil (B). Black arrows indicate individual positive cells. Sections were counterstained with haematoxylin.
Figure 3.9: CD20 expression on HL SCID tumours.
HL tumours derived from HDLM2 (C), L1236 (D), L540 (E) and L591 (F) at x200 magnification, stained for CD20 expression. AP detection system shows positive red membrane staining (B,F). Negative control was GC SCID tumour (A), positive control was an LCL (B). Sections were counterstained with haematoxylin.
Figure 3.10: CD30 expression on HL SCID tumours.
HL tumours derived from HDLM2 (C), L1236 (D), L540 (E) and L591 (F) at x200 magnification, stained for CD30 expression. AP detection system shows positive red membrane staining (B,D,E,F). HRP detection system shows positive brown membrane staining (C). Negative control was GC SCID tumour (A), positive control was a CTL line (B). Sections were counterstained with haematoxylin.

Table 3.5: Cell surface phenotype of HL SCID tumours.

<table>
<thead>
<tr>
<th>SCID tumour</th>
<th>antigen expression</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CD4</td>
</tr>
<tr>
<td>HDLM2</td>
<td>+</td>
</tr>
<tr>
<td>L1236</td>
<td>+</td>
</tr>
<tr>
<td>L540</td>
<td>-</td>
</tr>
<tr>
<td>L591</td>
<td>-</td>
</tr>
</tbody>
</table>
In order to confirm epithelial origin, SCID tumours derived from GC cell lines AGS, NUGC3 and NUGC3-EBV, and NPC cell line C666.1 were stained for human cytokeratin of both Type I and II (Woodcock-Mitchell et al, 1982). As shown in Figure 3.11, all tumours expressed cytokeratin.

Figure 3.11: Cytokeratin expression in GC and NPC SCID tumours.
GC tumours derived from AGS (C), NUGC3 (D), and NUGC3-EBV (E), and NPC tumour derived from C666.1 (F) at x200 magnification, stained for cytokeratin expression. AP detection system shows positive red cytoplasmic staining (B,C,D,E,F). Negative control was a T cell lymphoma SCID tumour (A), positive control was NUGC3 cell line (B). Sections were counterstained with haematoxylin.
3.4.3 EBV infection

To confirm the EBV status of cell lines (L1236, L540, L591, NUGC3-EBV, C666.1), tumour sections were probed for EBERs expression using *in situ* hybridisation. At least five tumours derived from each cell line were evaluated. Results are shown in Figure 3.12.

The EBV-positive cell lines L591, NUGC3-EBV and C666.1 expressed EBERs, with characteristic nuclear staining evident in 100% of tumour cells (Figure 3.12). The EBV-negative cell lines L1236 and L540 showed no EBERs expression.

In order to assess the level of latent and lytic replication in the infected cells, tumours derived from the EBV-positive cell lines (L591, NUGC3-EBV, C666.1) were subsequently immunostained for three EBV latent and lytic antigens. Antigens were EBNA2, expressed in latency III, LMP1, expressed in latency II and III, and the immediate early lytic protein BZLF1. At least three tumours derived from each cell line were evaluated. Expression was assessed on a qualitative basis, and positively stained cells were not quantitated.

EBNA2 protein was expressed in L591 and C666.1 tumours, but not NUGC3-EBV tumours (Figure 3.13). All three tumour types expressed the latent protein LMP1 (Figure 3.14), although this was only seen in 1 of 3 (33%) NUGC3-EBV tumours. BZLF1 was not expressed at all in NUGC3-EBV or C666.1 tumours, but the occasional BZLF1-positive cell was observed in L591 tumours (Figure 3.15). A summary of these results is shown in Table 3.6.
Figure 3.12: EBERs expression in HL, GC and NPC SCID tumours.
HL tumours derived from L1236 (C), L540 (D), and L591 (E), and GC derived NUGC3-EBV (F), and NPC derived C666.1 (G), all at x200 magnification, probed by in situ hybridisation for EBERs expression. AP and BCP/NBT detection system shows positive black nuclear staining (B,E,F,G). Negative control is human bowel lymphoma with negative control probe (A), positive control is human bowel lymphoma with EBERs probe (B). Sections were counterstained with haematoxylin.
Figure 3.13: EBNA2 expression in EBV-positive SCID tumours.
HL cell line L591 (C), GC cell line NUGC3-EBV (D), and NPC cell line C666.1 (E), at magnification x200, stained for EBNA2 expression. HRP detection system shows positive brown nuclear staining (B,C,E). Negative control was EBV-negative HL SCID tumour (A), positive control was LCL (B). Black arrows indicate areas of positive staining. Sections were counterstained with haematoxylin.
Figure 3.14: LMP1 expression in EBV-positive SCID tumours.
HL cell line L591 (C), GC cell line NUGC3-EBV (D), and NPC cell line C666.1 (E), at magnification x200, stained for LMP1 expression. HRP detection system shows positive brown membrane staining (B,C,D,E). Negative control was EBV-negative HL SCID tumour (A), positive control was LCL (B). Black arrows indicate individual positive cells. Sections were counterstained with haematoxylin.
Figure 3.15: BZLF1 expression in EBV-positive SCID tumours.
HL cell line L591 (C), GC cell line NUGC3-EBV (D), and NPC cell line C666.1 (E), at magnification x200, stained for BZLF1 expression. HRP detection system shows positive brown cytoplasmic staining (B,C). Negative control was EBV-negative HL SCID tumour (A), positive control was LCL (B). Black arrows indicate individual positive cells. Sections were counterstained with haematoxylin.

Table 3.6: Viral antigen expression in EBV-positive SCID tumours.
(+): rare positive cells -/+: expression in 1 of 3 samples

<table>
<thead>
<tr>
<th>SCID tumour</th>
<th>human derivation</th>
<th>EBNA2</th>
<th>LMP1</th>
<th>BZLF1</th>
</tr>
</thead>
<tbody>
<tr>
<td>L591</td>
<td>HL</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
</tr>
<tr>
<td>NUGC3-EBV</td>
<td>GC</td>
<td>-</td>
<td>-/+</td>
<td>-</td>
</tr>
<tr>
<td>C666.1</td>
<td>NPC</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>
3.5 Summary of results

Hodgkin’s lymphoma cell lines

In vitro:

- Cell lines (HDLM2, L1236, L540, L591) displayed a heterogeneous phenotype in culture. The majority of cells were small and lymphoid in appearance. Occasional large bi- and multi-nuclear blastoid cells, consistent with a HRS cell phenotype, were also present.

- Three EBV-negative cell lines (HDLM2, L1236, L540) were infected with EBV *in vitro*. However, infection was not sustained.

In vivo:

- HL cell lines (HDLM2, L1236, L540, L591) injected sc in SCID mice formed tumours which displayed sustained growth over time.

- Titration of the L591 cell line determined that 5×10^6 cells was the minimum cell number for consistent sc tumour formation, and this dose was used in subsequent immunotherapy experiments.

- Injection of cell lines ip in SCID mice resulted in poor outgrowth of tumours. Furthermore, it was difficult to determine tumour onset *in vivo*. This model was not utilized in further experiments.

- Histology of sc SCID tumours derived from three HL cell lines (HDLM2, L1236, L540) showed homogeneous sheets of blast cells. SCID tumours derived from L591 consisted of a heterogeneous population of large bi- and multi-nuclear blast cells, consistent with a HRS cell phenotype.

- The immunophenotype of sc SCID tumours derived from HL cell lines (HDLM2, L1236, L540, L591) was consistent with that of parental cell lines.

- EBER ISH of L591 sc SCID tumours confirmed EBV infection, with immunostaining showing a viral latency III gene expression pattern.
Carcinoma cell lines

In vitro:

- Cell lines (AGS, NUGC3, NUGC3-EBV, C666.1) were a pleomorphic population in culture, displaying an undifferentiated malignant phenotype.

In vivo:

- Cell lines (AGS, NUGC3, NUGC3-EBV, C666.1) injected sc in SCID mice formed tumours which displayed sustained growth over time, with the exception of one cell line (AGS-EBV) which did not form tumours in vivo.
- Titration of the NUGC3-EBV and C666.1 cell lines determined that 1×10^6 and 2×10^6 cells, respectively, were the minimum cell dose for consistent sc tumour formation, and these doses were used in subsequent immunotherapy experiments.
- Histology of sc SCID tumours derived from carcinoma cell lines (AGS, NUGC3, NUGC3-EBV, C666.1) showed sheets of undifferentiated malignant cells.
- Immunostaining for cytokeratin in SCID tumours derived from carcinoma cell lines (AGS, NUGC3, NUGC3-EBV, C666.1) confirmed their epithelial origin.
- EBER ISH of NUGC3-EBV and C666.1 sc SCID tumours confirmed EBV infection, with immunostaining showing a viral latency II/I expression pattern for NUGC3-EBV and latency III for C666.1.

3.6 Discussion

Although much information can be gathered from in vitro experiments, investigations into the safety and efficacy of new therapeutic agents are best carried out using relevant in vivo models. Interactions between agent and subject are complex and not always predictable, therefore testing in a situation akin to that of the clinic is likely to provide a more accurate view of therapeutic effect and limit unforeseen events. Thus, the initial aim of the project was to establish mouse models of the EBV-associated malignancies HL, NPC and GC in which to test novel immunotherapies.
The malignant cells of HL, the HRS cells, have a heterogeneous phenotype both morphologically and immunophenotypically (Gruss & Kadin, 1996). Reed-Sternberg cells are multi-nucleated, while Hodgkin cells are mono-nucleated. The antigenic profile of HRS cells varies between tumours, although a panel of antigens common to most primary HRS cells has been identified. This panel includes the surface antigens CD15, CD25, CD30, CD40, CD54, CD70, CD71, MHC class II and the nuclear proliferation antigen Ki-67 (Gruss & Kadin, 1996). No individual cell line is able to model all possible manifestations of a HRS cell, and thus a panel of HL cell lines was assembled in order to represent more accurately the clinical situation. As the bulk of a HL tumour consists of infiltrating lymphocytes with only a small proportion of HRS cells, attempts to propagate HRS cell lines in vitro have often resulted in the outgrowth of EBV-positive LCLs rather than true HRS cell lines. This situation can also occur in vivo, as SCID mice implanted with HL lymph node biopsy samples can develop EBV-positive tumours derived from virus infected B cells rather than HRS cells (Meggetto et al, 1996). Equally, it is possible that during initial attempts to propagate HL samples in vitro, EBV-positive HRS cell lines may have been discarded, as EBV infection of a cell line was considered a contamination in the past. Given the difficulties encountered in establishment of these early HL cell lines, it is now virtually impossible to prove that three lines used in the current project (HDLM2, L540, L591) are derived from HRS cells. Nevertheless, they display characteristics not inconsistent with HRS cells, including expression of cell surface markers from the panel common to primary HRS listed above, polynuclearity and morphological heterogeneity (Drexler, 1993), and continue to be used widely as cell lines representative of HL (Baumforth et al, 2005; Savoldo et al, 2007). Furthermore, the L1236 cell line has been identified definitively as being derived from HRS cells, as identical Ig gene rearrangement sequences were demonstrated in L1236 cells and HRS cells in the bone marrow of the patient from whom the cell line was established originally (Kanzler et al, 1996a).

To test EBV-targeted immunotherapies, EBV-positive cell lines are required. Three EBV-negative HL cell lines (HDLM2, L1236, L540) were initially infected with the B95-8 laboratory strain of the virus. Although none of these cell lines express the EBV receptor CD21 (Diehl et al, 1981; Drexler et al, 1989; Kis et al, 2005), it has been shown that CD21 is not absolutely required for EBV infection of either B
lymphocytes or epithelial cells (Janz et al., 2000). The cell lines harboured EBV DNA as demonstrated by PCR three days after in vitro infection (Table 3.1). However, EBV copy number declined over time until EBV DNA could no longer be amplified from the infected cells. This is in line with other reports of transient EBV infection in susceptible cell lines, including the HL-derived KMH2 cell line (Kis et al., 2005). As these cells are already transformed, there is not likely to be any survival advantage accorded by EBV infection in vitro and so negative selection pressure may cause EBV-positive cells to be lost from culture.

For lasting EBV infection of cell lines in vitro, recombinant EBV carrying a selectable marker is generally used until stably infected sublines are established (Shimizu et al., 1996; Imai et al., 1998; Baumforth et al., 2005; Kis et al., 2005). One such HL cell line (KMH2-EBV), and two GC cell lines (AGS-EBV, NUGC3-EBV), were acquired together with their parent lines (Shimizu et al., 1996; Imai et al., 1998; Kis et al., 2005). At a dose of 1×10^7 cells, sc injection of KMH2 or KMH2-EBV in SCID mice resulted in tumour formation on 4 of 10 (40%) and 0 of 5 (0%) occasions, respectively. In light of this poor rate of tumour outgrowth no further experiments were performed with the KMH2 cell lines. As stated in the project aims, the original intention was to model EBV-associated malignancies so as to have a framework within which to test novel LMP2-targeted therapies. The generation of target cell lines expressing a range of EBV latent antigens more reflective of the restricted virus gene expression characteristic of HL is an ongoing issue for researchers developing EBV-targeted therapies for HL. Cell lines currently used are LCLs expressing the full set of latent antigens, or EBV-negative cell lines transduced with recombinant vaccinia constructs encoding individual EBV genes (Murray et al., 1990; Murray et al., 1992). Interestingly, the in vitro infected subline of the AGS GC cell line also failed to form tumours in SCID mice, while 70% AGS injections gave rise to tumours (Table 3.3). In the NUGC3 GC setting, the EBV infected subline and the EBV-negative parent were equally as efficient in forming tumours. The SCID model is known to be ‘leaky’, that is 2 to 23% of mice develop some functional T and B cells in addition to their native NK cell activity (Bosma et al., 1988). It is possible that infection with recombinant EBV caused the KMH2 and AGS cell lines to become more ‘visible’ to the residual SCID immune system, although why this should occur in only two of three cell lines is not clear. However, the low level
immune function, if present, is unlikely to affect the SCID models in which tumour formation was observed, as no spontaneous tumour regression was seen in any case.

EBER ISH confirmed EBV infection in three cell lines; L591 derived from HL, NUGC3-EBV from GC and C666.1 from NPC (Figure 3.12). EBV-associated HL expresses a latency II phenotype, which is not seen in L591. In contrast, the observed EBV expression pattern for L591 is type III (Vockerodt et al., 2002), with positive immunostaining seen for EBNA2 (Table 3.6). As such, it more closely resembles an LCL, and the presence of occasional lytically infected cells as detected by BZLF1 immunostaining supported this.

![Figure 3.16: EBNA2 expression in the C666.1 NPC cell line.](image)

NPC cell line C666.1, at magnification x400, without primary antibody (C) and stained for EBNA2 expression (D). HRP detection system shows positive brown nuclear staining (B,D). Negative control was EBV-negative HL SCID tumour (A), positive control was LCL (B). Sections were counterstained with haematoxylin.

Tumours derived from C666.1 were also positive for EBNA2 expression by immunohistochemistry, which is also not consistent with the expected latency II EBV expression pattern of NPC, and contradicts the findings of the laboratory in
which the cell line was established (Cheung et al, 1999). A drift from latency I to latency III expression has been seen in some BL cell lines after prolonged in vitro culture, and a similar event may have occurred here. Immunostaining of C666.1 cells embedded in agarose confirmed EBNA2 expression in the NPC cell line (Figure 3.16).

In some respects, the discrepancy between EBV latency phenotypes in HL and NPC models compared with the in vivo human situation does not affect the use of these models for testing targeted cellular therapies. That is, provided expression levels of the target protein remain largely unaffected by changes in latency state. As will be discussed in Chapter 4, cells engineered with a CD19-specific cTCR were tested using EBV-positive HL cells as targets. Expression of CD19 was the only requirement of these targets, and the presence of EBV antigens extraneous. If the therapeutic cells target EBV proteins, the issue may become more complicated. However, expression of the full range of EBV latent antigens does not prevent lysis of LCLs by CTLs specific for the subdominant viral protein LMP2 (Lalonde et al, 2007). Again, as expression of the target protein is the only requirement, until in vitro and in vivo model systems with restricted viral gene expression analogous to EBV latency II are developed, models with full EBV latent antigen expression will remain useful for testing novel targeted therapies.

In conclusion, the SCID models of HL, NPC and GC characterised here will be useful in the future for pre-clinical testing of novel immunotherapies, in particular those targeting EBV within the cancerous cell. Within the scope of this project, the HL SCID model provided a framework within which to gauge the ability of CD19-specific engineered T cells to prevent or treat CD19 positive HL tumours.
In recent years, immunotherapy with infusions of allogeneic, EBV-specific CTLs has been used to successfully treat PTLD tumours (Haque et al, 2002). However, the EBV infected cells of HL, NPC and GC lack expression of immunodominant viral antigens, and similar therapies in these malignancies have resulted in a less potent CTL anti-tumour response (Bollard et al, 2004; Straathof et al, 2005a). To increase CTL effectiveness, T cells can be genetically engineered to express cTCR directed against tumour antigens.

The overall aim of this project was to engineer a cTCR specific for the EBV LMP2 protein. As cTCRs are modular, generally the scFv extracellular portion from an existing cTCR is exchanged for a new scFv as a starting point for the engineering of cTCRs with novel specificity. To this end, whilst a suitable scFv specific for LMP2 was being sought (see Chapter 5), the cytotoxic potential of a cTCR specific for the B cell signalling molecule CD19 was assessed. Additionally, HRS cells can express CD19, so T cells engineered with a CD19-specific cTCR could in the future be used for treatment of HL.

CD19-specific cTCR (CD19-cTCR) engineered T cells have been shown to specifically lyse the CD19+ve Raji BL cell line, as well as non-Hodgkin’s lymphoma (NHL) lymph node tumour biopsy cells in vitro (Cheadle et al, 2005), but have not been tested on HL cells. The aim of these experiments was to engineer T cells to express this CD19-cTCR, kindly supplied by Dr Eleanor Cheadle, and to test their effectiveness against HL cells in vitro and in the HL SCID model established in Chapter 3.
4.1 Engineering therapeutic T cells

To engineer T cells, a retroviral vector encoding the CD19-cTCR was centrifuged with PBMCs previously activated with anti-CD3 and -CD28, for three hours at 4°C on two sequential days, then cultured in media supplemented with IL-2 for up to 14 days (see 2.7.1 and 2.7.2). As the vector expression cassette contained a truncated CD34 gene (a haematopoietic stem cell marker not expressed on any other cell types utilized in these experiments), CD34 expression was used as a surrogate marker of transduction and hence also cTCR expression. PBMCs were also transduced with mock virus containing the vector backbone with GFP substituted for the CD19-cTCR expression cassette as a negative control.

4.1.1 PBMC donors

All frozen PBMCs used to generate CD19-cTCR T cells were sourced from a cell bank created in our laboratory, as were unmodified EBV-specific CTLs and matched LCLs (Wilkie et al., 2004). It was planned that therapy with unmodified CTLs would be used as a comparison standard for treatment with engineered T cells. In order to select the best match donor from the bank, HLA typing of cell lines was carried out at the Anthony Nolan Bone Marrow Trust, London, UK, or the Scottish National Blood Transfusion Service Tissue Typing Laboratory, Edinburgh, UK (see 2.4.6).

Tissue typing results are shown in Table 4.1. After typing, donor A was selected for L591, with matching loci A1 and B35; donor B was selected for NUGC3, with matching loci A24 and B52; and donor C was selected for C666.1, with matching locus B57. However, in addition to the HLA Class I, CTL-C and C666.1 also had a HLA Class II locus in common, DR1. Donor D was selected as a complete mismatch for L591 cells, with no common alleles at the loci typed.
Table 4.1: HLA typing of target cell lines for immunotherapy, and best match donors.

<table>
<thead>
<tr>
<th>HLA type</th>
<th>cell line</th>
<th>donor A</th>
<th>donor B</th>
<th>donor C</th>
<th>donor D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L591</td>
<td>A1 A3 B8 B35</td>
<td>A24 B52</td>
<td>A1 A2 B8 B57 DR1 DR7</td>
<td>A11 A24 B18 B44</td>
</tr>
<tr>
<td></td>
<td>NUGC3</td>
<td>A24 B52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C666.1</td>
<td>* B57 B58 DR1 DR3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* no specific product determinable.

4.1.2 Virus titration

The first CD19-cTCR virus preparation collected from the PG13 producer cell line was titred on HT1080 cells in duplicate wells of a 24-well tissue culture plate. Cells were incubated overnight with neat, 1:10, 1:100, and 1:1000 dilutions of virus and transduction was assessed by FACS using an anti-CD34 antibody after five days culture (Figure 4.1).

At a 1:10 dilution, 38% of cells expressed CD34 (Figure 4.1), which equated to a titre of 1.9x10^5 tu/ml. This figure was in line with previous virus preparations both in our laboratory and that of Dr Cheadle. For transduction of PBMCs, 15ml of undiluted PG13 supernatant was used per 2x10^6 PBMCs, and thus the multiplicity of infection (MOI) was approximately 1.5.
Figure 4.1: CD19-cTCR virus titration.
FACS plots of CD19-cTCR titration on HT1080 cells, showing CD34 expression as a marker of transduction, with undiluted (B), 1:10 (C), 1:100 (D), and 1:1000 (E) dilutions of virus, and a virus free negative control (A).

4.1.3 Transduction of fresh and frozen PBMCs

In order to assess if frozen stocks of PBMCs could be used to generate engineered T cells, the transduction rates between fresh and frozen PBMCs were compared. A total of 6×10^6 cells from each source were transduced with virus or media in place of
virus (subsequently designated untransduced), then cultured for 13 days (see 2.7.2). Cell viability and absolute live cell number in the total culture volume were assessed at 4, 8, 11 and 13 days post transduction (Figure 4.2).

At all time points in the four cultures cell viability remained above 75%. There was no apparent difference in cell expansion between any of the cultures, with final absolute live cell number on day 13 slightly higher for fresh cells (untransduced \(5.1 \times 10^8\); CD19cTCR \(5.7 \times 10^8\)) compared with frozen cells (untransduced \(2.8 \times 10^8\); CD19cTCR \(3 \times 10^8\)) (Figure 4.2).

![Figure 4.2: Growth of PBMCs post transduction.](image)

Absolute live cell numbers of PBMCs after transduction with a retrovirus encoding a CD19-specific cTCR, or untransduced PBMCs subjected to the transduction protocol with culture medium in place of virus.

After 11 days in culture, the level of transduction in fresh and frozen cultures was assessed by anti-CD34 FACS analysis. Fresh and frozen PBMCs gave very similar transduction rates, with 18% of fresh PBMCs expressing CD34, compared with 19% frozen PBMCs (Figure 4.3). In light of these results, frozen PBMCs were used in subsequent transductions as the bank provided a more convenient and uncomplicated source of PBMCs than colleagues.
Chapter 4 Immunotherapy Using Engineered T Cells

4.1.4 Transduction rates of CD19-cTCR and GFP virus

In total, transduction experiments with two viruses (GFP and CD19-cTCR) and three donors (donors A and D, and fresh PBMCs from a colleague) were completed, with mean transduction rates of 5%±3% for the GFP virus and 13%±6% for the CD19-cTCR virus. Results are shown in Figure 4.4. Transduction rates for individual experiments ranged from 2-8% for the GFP virus and 6-20% for the CD19-cTCR virus. Cells from some of these experiments were subsequently used for in vivo studies (see 4.3.1 and 4.3.2).

<table>
<thead>
<tr>
<th>A</th>
<th>virus</th>
<th>GFP</th>
<th>CD19-cTCR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>transduced</td>
<td>2.3</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td>cells (%)</td>
<td>3.3</td>
<td>7.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.3</td>
<td>8.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.1</td>
<td>17.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18.9</td>
<td>20.3</td>
</tr>
<tr>
<td>mean</td>
<td></td>
<td>4.7</td>
<td>13.27</td>
</tr>
<tr>
<td>SD</td>
<td></td>
<td>2.5</td>
<td>6.39</td>
</tr>
</tbody>
</table>

Figure 4.4: Transduction rates of PBMCs with retroviral vectors.
The transduction rates of retroviral vectors containing GFP or a CD19-cTCR in PBMCs, assayed by FACS analysis of GFP or CD34 expression. A table of results from all experiments (A) and a graphical summary with mean±SD (B) is shown.
4.1.5 Transgene expression over time

Extended culture of transduced T cells may result in loss of transgene expression and hence reduced efficacy of T cell therapy (Eshhar et al, 2001; Morgan et al, 2006). In order to assess the optimum time frame for use of PBMCs transduced with CD19-cTCR, expression of the GFP and CD19-cTCR transgenes was assayed at days 2, 4, 6, 9, 10 and 11 post transduction using FACS analysis.

Expression of GFP continued to increase over the entire measurement period, from 1.4% to 3.4% of total cells (Figure 4.5). In contrast, expression of CD34 as a marker for CD19-cTCR expression peaked on day nine at 9.0% then fell slightly over the following two days to 8.6% of total cells on day 11. In light of these results, transduced cells were cultured for between 10 and 14 post transduction before use in cytotoxicity experiments or in vivo models.

![Figure 4.5: Transgene expression over time.](image)

Level of transgene expression over an 11 day culture period in PBMCs transduced with a retroviral vector containing GFP or CD19-cTCR, as assessed by FACS analysis.
4.1.6 Immunophenotype of transduced PBMCs

In order to define cell subpopulations within the CD19-cTCR transduced cell culture, expression of cell surface antigens was assayed by FACS. CD4 and CD8 immunostaining was used to determine T cell subsets, CD19 immunostaining was used to detect B cells, and CD56 immunostaining was used to identify NK cells. The results of four transduction experiments using PBMCs from donors A and D are shown in Figure 4.6.

CD8+ T cells made up 57%±6% of the total population, and CD4+ T cells 39%±4% (Figure 4.6). Less than 1% of cultured cells expressed CD19. CD56+ NK cells comprised 14%±4% of the total population.

<table>
<thead>
<tr>
<th>antigen</th>
<th>CD4 (%)</th>
<th>CD8 (%)</th>
<th>CD19 (%)</th>
<th>CD56 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>positive cells</td>
<td>34.0</td>
<td>61.0</td>
<td>0.37</td>
<td>16.6</td>
</tr>
<tr>
<td>negative cells</td>
<td>36.4</td>
<td>61.0</td>
<td>0.00</td>
<td>18.1</td>
</tr>
<tr>
<td>mean</td>
<td>38.7</td>
<td>57.1</td>
<td>0.10</td>
<td>14.1</td>
</tr>
<tr>
<td>SD</td>
<td>4.4</td>
<td>6.2</td>
<td>0.18</td>
<td>3.8</td>
</tr>
</tbody>
</table>

Figure 4.6: Immunophenotype of PBMCs transduced with CD19-cTCR.
Expression of cell surface antigens CD4, CD8, CD19 and CD56 on PBMCs transduced with CD19-cTCR, assayed by FACS analysis. A table of results from all experiments (A) and a graphical summary (B) is shown.

4.2 In vitro killing by engineered T cells

To gauge the cytotoxic potential of T cells engineered with CD19-cTCR, standard 4 hour \(^{51}\text{Cr}\) release assays were performed (Haque et al., 1998). The targets used in these assays were L591, donor A derived LCL, L1236, and NK cell sensitive K562. CD19 expression on target cells was assessed using flow cytometry. Briefly, target cells were labelled with \(^{51}\text{Cr}\) then incubated with effector cells (PBMCs from donor A or D transduced with GFP [mock] or CD19-cTCR virus) at effector to target ratios of 20:1, 10:1 and 5:1. After 4 hours, the amount of \(^{51}\text{Cr}\) released from lysed cells was measured on a gamma counter, and the level of specific lysis calculated, as described in 2.7.6.
4.2.1 CD19 expression on target cell lines

In order to confirm the expression of CD19 on the target cell lines (L591, donor A derived LCL, L1236, K562), FACS analysis was carried out prior to performing 51Cr release assays (Figure 4.7). Immunostaining of SCID tumours resulting from sc injection of L591 and LCLs was used to verify maintenance of expression patterns *in vivo* (Figure 4.8).

Both the HL cell line L591 and donor A LCLs expressed CD19, as analysed by FACS, with 100% and 80% of cells respectively staining positive (Figure 4.7). SCID tumours derived from L591 and LCLs also expressed CD19 (Figure 4.8). Neither the K562 nor the L1236 cell line expressed CD19. Consequently, in 51Cr release assays the K562 cell line was used as a control for levels of NK cell killing, and L1236 was used as a negative control.

![Figure 4.7: CD19 expression on 51Cr release assay target cell lines.](image)

FACS analysis shows expression of CD19 on the HL cell line L591 (A) and an LCL (B), but no expression on the NK sensitive K562 (C) or HL L1236 (D) cell lines.
Figure 4.8: CD19 expression on SCID tumours.
Tumours derived from HL L591 (C) and an LCL (D) at x200 magnification, stained for CD19 expression. HRP detection system shows positive brown membrane staining (B,C,D). Negative control was GC derived SCID tumour (A). Positive control was human tonsil (B). Sections were counterstained with haematoxylin.

4.2.2 Chromium release assays using engineered T cells

For each transduction experiment the cytotoxicity of CD19-cTCR transduced PBMCs, and mock GFP transduced PBMCs was assessed using a 51Cr release assay. L591 and donor A LCLs were used as target cell lines, with K562 and L1236 as control targets. The effector to target ratios used were 20:1, 10:1 and 5:1. Results shown are from five (L591, LCL, K562) and three (L1236) experiments (Figure 4.9).

Specific lysis was seen at all effector to target ratios against L591 and LCLs. At an effector to target ratio of 20:1, PBMCs expressing CD19-cTCR lysed the target cells at a significantly higher rate than mock transduced PBMCs (Figure 4.9). Specific lysis for L591 target cells was 24%±11% (range 12-35%) for CD19-cTCR transduced cells compared with 5%±3% (range 2-9%) for mock-transduced cells.
(Mann Whitney, p=0.0079), and for LCLs was 29%±13% (range 12-44%) for CD19-cTCR transduced cells compared with 3%±2% (range 1-6%) for mock-transduced cells (Mann Whitney, p=0.0079). This significant difference between CD19-cTCR and mock transduced cells continued at effector to target ratios of 10:1 and 5:1 for both L591 and LCL target cell lines. Mean % specific lysis and Mann Whitney p values are shown in Table 4.2.

Figure 4.9: Specific lysis of target cells by engineered T cells.
Cytotoxicity of CD19-cTCR transduced PBMCs and mock GFP transduced PBMCs in an in vitro 51Cr release assay, against target cell lines L591 (A), donor A derived LCLs (B), K562 (C) and L1236 (D). Specific lysis was seen against L591 and LCLs (A,B), but not K562 and L1236 (C,D). Bars show mean±SD for five (A,B,C) and three (D) experiments.

There was no significant difference in the ability of mock or CD19-cTCR transduced cells to lyse the K562 or L1236 target cell lines, with both effector lines capable of high levels of cytotoxicity (Figure 4.9). Specific lysis at an effector to target ratio of 20:1 for K562 target cells was 39%±15% (range 25-57%) for CD19-cTCR transduced cells, compared with 35%±16% (range 18-53%) for mock-transduced cells (Mann Whitney, p=0.8413); and for L1236 was 52%±11% (range 40-50%) for CD19-cTCR transduced cells, compared with 44%±10% (range 32-51%) for mock-transduced cells (Mann Whitney, p=0.4000). This non-significance between CD19-
cTCR and mock transduced cells continued at effector to target ratios of 10:1 and 5:1 for both K562 and L1236 target cell lines. Mean % specific lysis and Mann Whitney p values are shown in Table 4.2. Given the similarities in the patterns of specific lysis of L12356 and K562, which is an NK sensitive target, and the presence of NK cells in transduced cultures (mean 14.1% of total population CD56+, Figure 4.6), the effect of NK activity on in vitro cytotoxicity was examined.

<table>
<thead>
<tr>
<th>effector:target ratio</th>
<th>effector cells</th>
<th>20:1</th>
<th>10:1</th>
<th>5:1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mock CD19-cTCR</td>
<td>mock CD19-cTCR</td>
<td>mock CD19-cTCR</td>
<td></td>
</tr>
<tr>
<td>L591</td>
<td>5</td>
<td>24</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>p=0.0079*</td>
<td>p=0.0079*</td>
<td>p=0.0079*</td>
<td></td>
</tr>
<tr>
<td>LCL</td>
<td>3</td>
<td>29</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>p=0.0079*</td>
<td>p=0.0079*</td>
<td>p=0.0079*</td>
<td></td>
</tr>
<tr>
<td>K562</td>
<td>35</td>
<td>39</td>
<td>21</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>p=0.8413</td>
<td>p=0.6905</td>
<td>p=0.6905</td>
<td></td>
</tr>
<tr>
<td>L1236</td>
<td>44</td>
<td>52</td>
<td>30</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>p=0.4000</td>
<td>p=0.7000</td>
<td>p=0.4000</td>
<td></td>
</tr>
</tbody>
</table>

4.2.3 Effect of NK cells on in vitro cytotoxicity

To assess the role of CD56+ NK cells in the 51Cr release assays, a depletion experiment was performed. CD56+ cells were separated from a population of donor A PBMCs transduced with CD19-cTCR three days previously using anti-CD56 coated magnetic beads. Enriched and depleted fractions were maintained in culture for a further seven days and the number of CD56+ cells remaining in each fraction was then analysed by FACS (Figure 4.10). The cytotoxic potential of each fraction, as well as unfractionated CD19-cTCR transduced cells and GFP mock transduced cells, was then assessed by 51Cr release assay.
Before separation, CD56+ cells made up 18% of the total population (Figure 4.10). After separation, the NK-depleted fraction contained 11% CD56+ cells, and the NK-enriched population 73% CD56+ cells.

Figure 4.10: Percentage of NK cells in a population of CD19-cTCR transduced cells before and after CD56 separation. FACS analysis in PBMCs transduced with CD19-cTCR (B) and following CD56-depletion (C) or CD56-enrichment (D). Unstained cells are shown in (A).

The number of transduced cells before separation was 8%. This number remained the same in the NK-depleted fraction, but was reduced in the NK-enriched fractions to 3% (Figure 4.11).
Figure 4.11: Percentage of transduced cells before and after CD56 separation. FACS analysis of CD34 expression as a marker of transduction in PBMCs transduced with CD19-cTCR (B) and following CD56-depletion (C) or CD56-enrichment (D). Unstained cells are shown in (A).

In a 51Cr release assay, specific lysis of K562 and L1236 was dramatically reduced when CD56+ cells were depleted from the effector cell population, and increased when CD56+ cells were enriched at all effector to target ratios (Figure 4.12). Specific lysis at an effector to target ratio of 20:1 for K562 target cells was 52% for CD19-cTCR transduced cells, compared with 53% for mock-transduced cells; and for L1236 was 40% for CD19-cTCR transduced cells, compared with 47% for mock-transduced cells; whilst for CD56-depleted and CD56-enriched populations it was 9% and 78% for K562 and 20% and 82% for L1236, respectively. Killing of L591 and LCL targets was minimally affected. This suggests that NK cells are principally responsible for the high levels of L1236 killing observed previously (see 4.2.2).
Chapter 4 Immunotherapy Using Engineered T Cells

4.2.4 Selection of CD34+ transduced cells

The final fraction of cells expressing the CD34 transgene after transduction with the CD19-cTCR vector ranged from 6-20% (see 4.1.4). With such low transduction efficiencies in some experiments, it was decided to enrich a population of CD19-cTCR transduced cells using the truncated CD34 molecule as a selection marker. This would increase the fraction of cells expressing CD19-cTCR and potentially also enhance specific lysis of L591 cells. CD34+ cells were selected from a population of PBMCs which had been transduced with the CD19-cTCR vector nine days earlier, using anti-CD34 coated magnetic beads. CD34-enriched and CD34-depleted fractions were cultured overnight, then the number of CD34+ cells remaining in each fraction as well as in unfractionated CD19-cTCR transduced cells was analysed by FACS (Figure 4.13). The cytotoxic potential of each fraction, unfractionated CD19-cTCR transduced cells, and GFP mock transduced cells was then assessed by 51Cr release assay (Figure 4.14).
Before separation, CD34+ cells made up 8% of the total population (Figure 4.13). After separation, the transduced CD34-depleted fraction contained 1% CD34+ cells, and the transduced CD34-enriched population contained 82% CD34+ cells.

In a 51Cr release assay, specific lysis of L591 and LCL cell lines was increased when number of transduced cells increased (Figure 4.14). When the percentage of CD34+ cells in CD19-cTCR transduced cells, the CD34-depleted fraction, and the CD34-enriched fraction was 8%, 1% and 82%, respectively, specific lysis at an effector to target ratio of 20:1 of L591 cells was 12%, 10%, and 21%, respectively, while specific lysis of LCLs was 12%, 7%, and 41%, respectively. In contrast, specific lysis of the NK target K562 cell line decreased when the number of transduced effector cells increased. With CD19-cTCR transduced cells, the CD34-depleted fraction, and the CD34-enriched fraction as effectors, specific lysis at an effector to target ratio of 20:1 was 57%, 47% and 10% respectively (Figure 4.14). Thus,
increasing the fraction of cells specific for CD19 enhanced specific lysis of L591 and LCL target cells.

Figure 4.14: Effect of transduced cell numbers on in vitro cytotoxicity.
51Cr release assays using mock, transduced, transduced CD34-depleted and transduced CD34-enriched effector cells at effector to target ratios of 20:1 (A), 10:1 (B) and 5:1 (C) show lysis of L591 and LCL but not NK target K562 is dependent on cells transduced with CD19-cTCR.

4.2.5 Freezing and thawing of transduced cells

In order to assess whether frozen stocks of CD19-cTCR transduced PBMCs could be utilised, an experiment was conducted to test if specific lysis was affected by the freeze/thawing process. Cells were frozen and stored at -70°C for nine days, then thawed and cultured overnight in complete medium-20 supplemented with IL-2. A test sample where IL-2 in the overnight culture medium was replaced with the activation antibodies anti-CD3 and -CD28 was also included. Results of a 51Cr release assay are shown in Figure 4.15.

Although specific lysis of L591 cells fell slightly after freezing from 16% to 13%, in LCLs specific lysis remained steady at 21% and 20%; suggesting that storage of transduced cells is a viable option (Figure 4.15). Freeze/thawing seemed to inhibit the
ability of NK cells to lyse their K562 targets with specific lysis falling from 52% before freezing to 19% after thawing. Reactivation with anti-CD3 and -CD28 increased the specific lysis of all three targets to 31%, 39% and 78% for L591, LCL and K562 respectively. These results were consistent for an effector to target ratio of 10:1 (Figure 4.15 panel B). At an effector to target ratio of 5:1 (Figure 4.15 panel C), specific lysis was below 8% for targets L591 and LCL and all effectors except restimulated frozen cells, where it was 17% and 18% respectively. For K562, target lysis at an effector to target ratio of 5:1 was as for higher effector to target ratios, with similar levels seen with mock transduced and freshly transduced effector cells, and a reduction or increase in lysis for frozen and restimulated cells, respectively. Restimulation with anti-CD3 and -CD28 appears therefore, to enhance NK as well as T cell activity, and thus is not suitable for improving specific activity of T cells in ex vivo mixed cultures when NK activity is not also desired.

Figure 4.15: Effect of freezing and thawing of CD19-cTCR transduced PBMCs on in vitro cytotoxicity.

51Cr release assays using mock, fresh CD19-cTCR transduced, frozen and thawed CD19-cTCR transduced, and frozen, thawed restimulated CD19-cTCR transduced PBMCs at effector to target ratios of 20:1 (A), 10:1 (B) and 5:1 (C) show freeze/thawing had no effect on the L591, LCL or K562 target cell lines. Reactivation increased lysis in a non-specific manner.
4.2.6 EBV-specific CTLs

\(^{51}\)Cr release assays were performed in order to gauge the ability of EBV-specific CTLs generated from PBMCs of donors A, B and C (CTL-A, -B, -C) to lyse their respective matched targets, (HL - L591, GC - NUGC3-EBV and NPC - C666.1 [see 4.1.1]). Effector to target ratios of 20:1, 10:1 and 5:1 were used, and autologous LCLs and K562 were also employed as targets.

![Figure 4.16: In vitro cytotoxicity of EBV-specific CTLs against HLA best match target cell lines.](image)

All three CTL lines showed cytotoxicity against autologous LCLs, with specific lysis at all effector to target ratios above 40%, 16%, and 39% for CTL-A, CTL-B and CTL-C, respectively (Figure 4.16). Matched CTLs showed little or no cytotoxicity against carcinoma cell lines NUGC3-EBV and C666.1, with specific lysis not exceeding 2% at any effector to target ratio. In comparison, L591 cells were lysed by matched CTLs, with specific lysis of 14%, 12%, and 11% at effector to target
ratios of 20:1, 10:1 and 5:1, respectively. As mentioned previously (see 1.2.2.2), the restricted viral antigen expression seen in GC, HL and NPC (Table 1.3) protects tumour cells from targeting by T cells when compared with autologous EBV-infected cells expressing the full range of latent antigens, and this data supports that observation.

4.3 Immunotherapy of tumours in vivo

In parallel experiments, prevention of tumour formation by EBV-specific CTLs and engineered T cells was evaluated in the SCID mouse model described in Chapter 3. Two strategies were tested: a prophylactic strategy where EBV-specific CTLs were injected simultaneously with tumour cells lines, either with both tumour and therapeutic cells sc, or with tumour cells sc and therapeutic cells iv; and a treatment strategy with administration of therapeutic cells iv after sc tumour onset.

4.3.1 Prophylactic immunotherapy of SCID HL

To assess the ability of therapeutic cells to prevent tumour formation in the L591 HL in vivo model, three strategies were tested. Firstly, 5x10^6 L591 cells were injected sc into three SCID mice simultaneously with 3.5x10^7 CTL-A. Secondly, 5x10^6 L591 cells were injected sc into six SCID mice simultaneously with 5x10^7 PBMCs transduced with CD19-cTCR. Finally, 5x10^7 PBMCs transduced with CD19-cTCR were injected iv into five SCID mice coincident with sc injection of 5x10^6 L591. Time to onset and subsequent tumour growth was monitored.

Results of prophylactic therapy of SCID HL are shown in Table 4.3. Administration of CTL-A sc or CD19-cTCR transduced cells iv made no significant difference to tumour formation, with 2 of 3 (67%) CTL-A treated mice (Fisher’s exact, p=1.0) and 4 of 6 (67%) iv administered CD19-cTCR treated mice (Fisher’s exact, p=0.6219) developing tumours. None of 6 (0%) mice administered CD19-cTCR sc developed tumours, which was a significant effect (Fisher’s exact, p=0.001). Median time to tumour in untreated mice was 20 days, compared with 29 days in iv administered CD19-cTCR treated mice, which was not a significant difference (Wilcoxon rank sum test, p=0.0625).
Table 4.3: Tumour incidence in HL SCID mice given prophylactic immunotherapy.
Tumour formation following sc injection of HL L591 cells and coincident treatment with
CTL-A administered sc, or CD19-cTCR transduced PBMCs administered sc or iv.
[* indicates significant effect p=0.001]

<table>
<thead>
<tr>
<th>treatment cells</th>
<th>cell line</th>
<th>cell number</th>
<th>route</th>
<th>number of tumours/ time to tumour onset (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>untreated</td>
<td>-</td>
<td>-</td>
<td>17 / 22 (77) 20 16-28</td>
</tr>
<tr>
<td>CTL-A</td>
<td>3.5x10^7</td>
<td>sc</td>
<td></td>
<td>2 / 3 (67) 27 26-28</td>
</tr>
<tr>
<td>CD19-cTCR</td>
<td>5x10^7</td>
<td>sc</td>
<td></td>
<td>0 / 6* (0) - -</td>
</tr>
<tr>
<td>CD19-cTCR</td>
<td>5x10^7</td>
<td>iv</td>
<td></td>
<td>4 / 6 (67) 29 21-33</td>
</tr>
</tbody>
</table>

Tumour growth in untreated, sc administered CTL-A treated mice and iv administered CD19-cTCR transduced PBMC treated mice is shown in Figure 4.17. Tumours in sc administered CTL-A treated mice showed sustained growth from time of onset until termination of the experiment at day 70. Of the four iv administered CD19-cTCR transduced PBMC treated mice which developed tumours, three showed sustained tumour growth, and one had completely cleared tumour burden by day 64 post L591 injection.

![Figure 4.17: HL SCID tumour growth following prophylactic immunotherapy.](image)

Prophylactic immunotherapy with either EBV-specific CTLs or CD19-cTCR transduced PBMCs did not prevent formation of sc HL tumours in SCID mice. Each line represents an individual mouse.
4.3.2 Immunotherapy of established HL SCID tumours

The ability of PBMCs transduced with CD19-cTCR to treat established sc L591 tumours was also tested. Six tumour-bearing SCID mice were injected iv with 5×10^7 PBMCs transduced with CD19-cTCR between three and nine days after tumour formation, and subsequent tumour growth observed (Figure 4.18).

Three mice were culled prior to the conclusion of the experiment due to tumour necrosis. These lesions displayed sustained tumour growth up to time of culling. The remaining three mice had completely cleared their tumour burden by 65, 69 and 83 days post L591 injection (Figure 4.18). This was a significant effect when compared with 17 untreated mice with established tumours from doses of 5×10^6 and 2×10^6 L591 cells who showed no tumour regression (Fisher’s exact, $p=0.011$). In a time course experiment to confirm trafficking of transduced cells to tumours, five tumour-bearing SCID mice were injected iv with 5×10^7 PBMCs transduced with a CD19-cTCR. At each of 1, 4, 7, 11, and 18 days post treatment a single mouse was culled and immunohistochemistry performed on tumour sections. An anti-CD8 antibody was used as an indirect marker to detect CD19-cTCR cells infiltrating the tumours. Infiltrating cell presence was assessed on a qualitative basis, and positively stained cells were not quantitated. CD8+ cells were seen in tumours on day 11 and 18 post treatment, but not days 1, 4 or 7 (Figure 4.19).

Figure 4.18: HL SCID tumour growth following immunotherapy.

Tumour growth curves of SCID mice bearing sc tumours derived from HL L591 cells treated with CD19-cTCR transduced PBMCs, showing complete regression in three of six mice. Each line represents an individual mouse.
Figure 4.19: Infiltration of CD8+ T cells in HL SCID tumours.
Immunostaining showing CD8+ cells in L591 tumours treated with CD19-cTCR
transduced PBMCs at days 11 (F) and 18 (G), but not days 1 (C), 4 (D) or 7 (E) post
treatment. HRP detection system shows positive brown membrane staining (B,F,G).
Negative control was GC derived SCID tumour (A). Positive control was a CTL line
(B). Black arrows indicate individual positive cells. Sections were counterstained with
haematoxylin.
4.3.3 Prophylactic immunotherapy of SCID NPC

To assess the ability of donor C CTLs to prevent tumour formation in vivo, 2x10^6 C666.1 cells were mixed with 4.5x10^7 CTL-C and injected sc into five SCID mice. Time to tumour formation and subsequent tumour growth was observed.

Treatment with CTLs did not prevent C666.1 tumour formation as 5 of 5 (100%) mice injected developed tumours (Table 4.4). Median time to tumour in untreated mice was 19 days, compared with 13 days in treated mice, which was not a significant difference (Wilcoxon rank sum test, p=0.25). All tumours showed sustained growth from time of onset until termination of the experiment (Figure 4.20).

Table 4.4: Tumour incidence following sc inoculation of SCID mice with the NPC cell line C666.1 alone, or mixed with partially HLA matched, EBV-specific CTLs.

<table>
<thead>
<tr>
<th>cell line</th>
<th>cell dose</th>
<th>CTL dose</th>
<th>number of tumours/number of mice (%)</th>
<th>time to tumour onset (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C666.1</td>
<td>2x10^6</td>
<td>-</td>
<td>7 / 7 (100)</td>
<td>19</td>
</tr>
<tr>
<td>C666.1</td>
<td>2x10^6</td>
<td>4.5x10^7</td>
<td>5 / 5 (100)</td>
<td>13</td>
</tr>
</tbody>
</table>

Figure 4.20: Tumour growth after prophylactic therapy of NPC SCID tumours with EBV-specific CTLs. Tumour growth curves of sc injected C666.1 cells in SCID mice, with and without partially matched, EBV-specific CTLs. Each line represents an individual mouse.
Mice were culled at day 34 post injection and immunohistochemistry performed on tumour sections. An anti-CD8 antibody was used as a direct marker of tumour infiltrating CTLs. Infiltrating cell presence was assessed on a qualitative basis, and positively stained cells were not quantitated. In 5 of 5 treated mice (100%), but 0 of 3 untreated mice (0%), CD8+ cells were present in the tumour (Figure 4.21).

Figure 4.21: Infiltration of CD8+ cells in NPC SCID tumours. Immunostaining showing CD8+ cells in C666.1 tumours treated with partially HLA matched, EBV-specific CTLs (D), which are not present in untreated tumours (C). HRP detection system shows positive brown membrane staining (B,D). Negative control is GC derived SCID tumour (A). Positive control is a CTL line (B). Sections were counterstained with haematoxylin.

4.4 Summary of results

- Activated PBMCs were transduced with a retroviral vector encoding a cTCR specific for CD19. Mean transduction rate was 13%±6%, with a range of 6-20%.

- Optimum transgene expression levels were achieved between 9 and 11 days post transduction.
• 48-60% of cells in CD19-cTCR transduced cultures were CD8+ T cells, with 34-44% of the population CD4+ T cells. CD56+ NK cells made up 10-18% of the total culture.

• Transduced T cells were able to kill CD19+ L591 and LCLs at a significantly higher rate than mock transduced T cells.

• The CD56+ NK cell fraction within the transduced population was responsible for high levels of lysis of the CD19- L1236 and K562 target cells when both transduced and mock transduced effector cells were used.

• CD34-enrichment of transduced cells enhanced specific lysis of L591 and LCL target cells, but not K562 target cells.

• Freezing had a minimal effect on the ability of transduced cells to lyse L591 and LCL target cells.

• Reactivation of transduced cells improved lysis of L591 and LCL target cells, as well as lysis of K562 target cells.

• EBV-specific HLA matched CTL lines lysed autologous LCLs and the HL cell line L591, but not the GC cell line NUGC3-EBV or the NPC cell line C666.1.

• HLA matched CTLs administered sc or CD19-cTCR transduced cells administered iv did not significantly halt sc outgrowth of L591 cells in SCID mice.

• CD19-cTCR transduced cells administered sc were able to completely prevent L591 tumour formation in SCID mice, which was a significant treatment effect (p=0.001).

• CD19-cTCR transduced cells administered iv to SCID mice with established sc L591 tumours were able to mediate complete tumour regression in 50% of cases, which was a significant treatment effect (p=0.011).

• HLA matched CTLs administered sc did not prevent tumour formation in SCID mice injected with C666.1 cells.

• CD19-cTCR transduced T cells in L591 injected mice and EBV-specific CTLs in C666.1 injected mice were able to traffic to the tumours.
4.5 Discussion

In addition to the HL cell killing observed in the current project, CD19-specific cTCR expressing T cells have shown cytotoxic potential against B cell NHL, B-CLL and B-ALL (Brentjens et al., 2003; Cooper et al., 2003; Cheadle et al., 2005). In contrast to B cell NHL, expression of CD19 is not consistently observed in HL, although a variable percentage of classical HL biopsies (0 to 75%) and cell lines (20 to 30%) express the marker (Herbst et al., 1989; Schmid et al., 1991; Drexler, 1992; Drexler, 1993). Thus, a proportion of HL patients are eligible for treatment with CD19-specific therapies. This project demonstrated that activated PBMCs transduced with a retroviral vector express a cTCR specific for CD19, are capable of specific lysis of CD19+ target cells in an in vitro cytotoxicity assay, and can mediate tumour regression in an in vivo model of HL.

It has been reported previously that transgene expression in therapeutic T cells decreases after 10 to 14 days in vitro culture (Eshhar et al., 2001). Transgene expression levels were measured for 11 days post transduction, and peak expression was not seen immediately following transduction, but instead increased steadily over the first nine days and then remained relatively stable on days 10 and 11 when the experiment was terminated (Figure 4.5). This indicates that there may be a window of opportunity for therapeutic use of such cells, when transgene expression is at its height. An additional consideration when planning treatment using therapeutic cells is the time required to expand cells in vitro in order to obtain sufficient numbers for therapeutic use. Delayed treatment resulting from the initial use of conventional therapy may reduce impact of the therapeutic cells in some cases. Thus, in order to best meet requirements for large numbers of cells available on demand, the ability of therapeutic cells to withstand storage at -70°C with their cytotoxic potential intact was tested. The freeze/thawing process had minimal effect on the ability of transduced cells to lyse CD19+ target cells (Figure 4.15), and thus it may be possible to either store a patient’s own cells that have been transduced and expanded against possible need, or create a bank of allogeneic therapeutic cells available on a best HLA match basis (to prevent host killing of the therapeutic cells).

Levels of retrovirus transduction varied between 6-20%, with a mean 13±6% cells expressing CD34 as a marker of transduction (Figure 4.4). This was slightly lower
than the mean 27%±12% (range 12-43%) transduction rates reported by our collaborators using the same virus construct (Cheadle et al, 2005). However, fresh virus was made for each transduction experiment, and although every effort was made to standardise virus production techniques, titrations were not routinely performed. It is therefore possible that the disparity in transduction rates was partly a result of variations in virus concentration.

Increasing the fraction of transduced cells in the total population by selection with anti-CD34 coated magnetic beads improved levels of specific lysis (Figure 4.14), however it was not a simple relationship between number of CD34+ cells and level of specific lysis. Others have also observed that levels of T cell transduction do not correlate with absolute levels of target cell lysis (Cheadle et al, 2005). It may not be necessary to achieve expression of the cTCR on as many as the 82% of cells seen after CD34 selection (Figure 4.13), and optimisation to improve transduction rates may suffice. The bearing of low transduction rates and specific lysis in 51Cr release assays on the in vivo effect of engineered cells is unclear. A recent trial using EBV-specific CTLs to treat PTLD showed no correlation between levels of specific lysis as measured by 51Cr release assays and tumour response (Haque et al, 2007). Equally, such a correlation was not observed in experiments investigating CTL treatment in SCID models of PTLD (personal communication, Dr Ingolfur Johannessen). It remains to be seen if the weighted importance of in vitro results is maintained when the therapeutic cells are directed against a single epitope via a cTCR compared with the multiple specificities of the CTLs used in previous trials.

As reactivation has been shown to counteract the loss of transgene expression over time during in vitro culture (Eshhar et al, 2001), thawed cells were reactivated with anti-CD3 (to provide activation signal 1) and anti-CD28 (signal 2) antibodies to offset the potential detrimental effect of freeze/thawing on cTCR expression. Reactivation improved levels of specific lysis above and beyond those seen with unfrozen effector cells for both L591 and LCL target cells (Figure 4.15). Therefore, incubation of therapeutic cells with anti-CD3 and anti-CD28 antibodies immediately prior to administration may improve anti-tumour effects. Additionally, as similar increases in lysis were also seen for the K562 NK target cell line, NK cells may need to be removed prior to reactivation.
Much work has been done to discover the optimum combination of activation and stimulation signals for T cells in order to enhance their cytotoxic effect. Culture medium for CTLs is generally supplemented with IL-2 for T cell survival and proliferation (Morgan et al., 1976; Miyazaki et al., 1995), but other cytokines have been used both individually and in combination to achieve peak T cell activation and proliferation, including IL-7, IL-15 and IL-21 (Schluns et al., 2000; Brentjens et al., 2003; Zeng et al., 2005). Where CTLs have been engineered to express cTCRs, other techniques to enhance T cell activation have also been tested, such as restimulation of engineered cells through their endogenous TCR. This has applications not only when tumour cells express both the cTCR target (TAA) and the native TCR target (viral antigen) (Savoldo et al., 2007), but also where engineered APC presenting the native TCR target can be co-administered with the therapeutic T cells (Cooper et al., 2005). As the exact rules governing signal propagation through cTCRs have not yet been fully deciphered, additional attention has been given to providing improved signal 1 and 2 transduction from within the cTCR itself. Addition of lck tyrosine kinase or OX40 signalling domains to cTCR constructs already containing CD28 and ζ moieties did not compromise the effector function of engineered cells, and may improve long term proliferation and activation of engineered T cells (Geiger et al., 2001; Pule et al., 2005).

The persistence and proliferation of engineered T cells in vivo is advantageous in cellular immunotherapy. Therapeutic cells should ideally have immediate effect in reducing tumour burden and also be able to localise to metastatic cells and protect against disease relapse. The conditions used to activate T cells are crucial in determining therapeutic outcome (Brentjens et al., 2003). Until the optimum culture environment for engineered T cells is established, an alternative approach entails in vivo proliferation of administered T cells rather than reliance on ex vivo expansion. For the treatment of cancer, administration of an excess of therapeutic cells risks tumour lysis syndrome, which results from the rapid destruction of malignant cells and consequent release of intracellular ions, nucleic acids, proteins and their metabolites into the extracellular space, overwhelming the body's normal homeostatic mechanisms and potentially leading to life-threatening complications such as renal failure, arrhythmias, and seizures. In contrast, a paucity of transferred cells risks inadequate clinical response. Cells capable of expanding in the patient to
meet individual need are therefore a major asset. Such *in vivo* expansion may also clarify why tumours in the SCID treatment model continued to increase in size for up to 10 days after infusion of engineered cells before beginning to regress (Figure 4.18), and why CD8+ T cells were not detectable in tumours by immunostaining until day 11 post infusion (Figure 4.19). Although the engineered cells used to treat established SCID tumours had the highest transduction levels seen during this project, the transduced cells still needed to traffic to the tumour site and expand before reaching sufficient numbers to effect a clinical response. Cells engineered with a CD19-specific cTCR were able to effect complete tumour regression in 50% of SCID mice carrying an established HL tumour, a significant treatment effect (*p*=0.011) (Figure 4.18). The animals which did not respond to treatment were culled due to necrosis of the skin at the tumour site, as opposed to excessive tumour growth. It is possible that a more rapid treatment effect may avoid this complication. Delays in tumour regression have been observed in other cellular therapy models. During experiments in which *Rag*−/− mice (targeted mutations of the recombination-activating genes result in mice with complete ablation of functional T and B cells) bearing murine thymomas engineered to express the influenza epitope NP(366-374) were treated with NP(366-374)-specific engineered T cells, tumour growth continued for an average of eight days following T cell administration before initiation of regression (Kessels *et al*, 2001). Increasing the number of transduced cells, either by improving transduction rates or manually enriching transduced cells based on a selectable marker may produce a more immediate effect. This could in turn improve overall treatment responses in the SCID HL model.

Immunophenotyping of activated PBMC cultures following transduction with a CD19-cTCR revealed a population of predominately CD8+ T cells (mean 57%±6%), with CD4+ T cells contributing the next largest fraction (39%±4%) (Figure 4.6). Addition of IL-2 to the culture medium, which is standard procedure for *in vitro* culture of T cells, does tend to favour the establishment of majority CD8+ CTL lines (Wilkie *et al*, 2004). B cells constituted less than 1% of the total population. A substantial fraction of NK cells was also detected in all cultures tested, averaging 14%±4% of the total population. This is consistent with CTL lines at early time points in their development into specific effectors (Vanhoutte, 2006). High levels of K562 lysis mediated by NK cells has also been seen in PBMCs transduced with an
unmodified LMP2-specific TCR (Orentas et al, 2001). For patient use, CTL expansion *in vitro* involves multiple rounds of antigenic stimulation, which increases cell line specificity but also has the effect of substantially decreasing the NK fraction (Wilkie et al, 2004; Comoli et al, 2005; Straathof et al, 2005a). It has also been shown previously that transduction does not alter the CD3, CD4, CD8 or CD56 immunophenotype of CTL lines (Savoldo et al, 2007).

The presence of NK cells in the therapeutic cell cultures is interesting in light of their involvement in the lysis of the HL L1236 cell line in 51Cr release assays (Figure 4.12). As mentioned previously, the L1236 cell line has been definitively identified as derived from EBV-negative HRS cells (Kanzler et al, 1996a). However, in their native HL environment HRS cells utilise a number of mechanisms to avoid killing by NK cells. The extensive inflammatory infiltrate characteristic of classical HL consists primarily of Th2 and T regulatory cells (T$_{regs}$) and is generally devoid of Th1 cells, CD8+ T cells and NK cells (Poppema, 2005). HRS cells appear to maintain this composition by the secretion of Th2 type chemokines such as the thymus and activation regulated chemokine (TARC) (van den Berg et al, 1999), as well as cytokines that inhibit Th1 responses for example IL-10 (Herbst et al, 1996), leading to a decreased anti-tumour immune response. An association between areas in the HLA class I region of the genome and EBV-positive HL suggests polymorphisms in this area may affect proper EBV peptide presentation to CD8+ T cells facilitating immune escape (Diepstra et al, 2005). HRS cells in EBV-negative HL can lose HLA class I expression, thus escaping CTL detection but potentially becoming NK targets. However, expression of HLA-G in HL has been associated with EBV-negative, MHC class I-negative status (Poppema, 2005), and HLA-G expression has been implicated in evasion of CTL- and NK cell-mediated cytotoxicity (Carosella et al, 2003). L1236 was derived from a patient with EBV-negative HL, and FACS analysis indicates surface expression of HLA class I (Wolf et al, 1996). Thus, NK-mediated killing occurs through an alternative mechanism, possibly indicating a role for NK cells in cellular immunotherapy of HL. Although NK cells are inhibited by self-HLA molecules, they hold cytotoxic potential for cancer cells (Ruggeri et al, 2002), and NK cells expressing cTCRs are capable of specific lysis of leukaemia cells *in vitro* (Imai et al, 2005).
In conclusion, the results presented in this chapter showing the ability of CD19-cTCR engineered T cells to specifically lyse CD19+ HL target cells supports the central hypothesis of this thesis, and is in line with the data of others in the field (Brentjens et al., 2003; Cooper et al., 2003; Cheadle et al., 2005). Given these encouraging results, it is to be hoped that phase I trials of CD19-cTCR engineered T cells will soon commence, with a view to CD19-cTCR engineered T cells becoming a future treatment option for CD19+ leukaemia and lymphoma patients who relapse or are refractory to conventional therapies.
5 Identification of LMP2-Specific scFv Using Phage Display

In Chapter 4, T cells were redirected against HL cells with a cTCR specific for the B cell marker CD19. Due to the modular nature of cTCR construction, the CD19-specific scFv could potentially be replaced with a scFv specific for any cell surface antigen. To utilise this feature, a scFv specific for LMP2 was required, as the EBV latent protein was selected as a suitable target for redirecting T cells to EBV-associated malignancies. Antibody phage display technology was chosen as the method by which to isolate this LMP2-specific scFv. Phage libraries displaying antibody fragments have been used to select scFv or Fab specific for a range of targets. Indeed, a TNFα-specific antibody derived from a fragment isolated by phage display has been approved for use in autoimmune arthritis (Hoogenboom, 2005). Therefore, scFv specific for the extracellular peptide loops of LMP2 (Figure 1.5) were sought for the creation of an LMP2-specific cTCR to direct T cells against EBV-associated malignancies. Initially, selections were performed using the Tomlinson I+J human single fold scFv phage library, although later experiments employed the ETH2Gold scFv and RotMar Fab libraries.

5.1 Standardisation experiments

5.1.1 Library characterisation

Initially, frozen aliquots of the Tomlinson I+J libraries (Geneservices) were thawed and amplified to create working stocks. To confirm the presence of full length scFv inserts, 10 clones from each library were screened using PCR. Agarose gel electrophoresis of the PCR products is shown in Figure 5.1.

For Library I, three reactions amplified no product and the remaining seven of 10 reactions amplified full length inserts, with bands of the expected 935 bp size. For Library J, one reaction amplified no product and the remaining nine of 10 reactions
amplified full length inserts. There were no reactions which resulted in bands of 329 bp, the size of PCR product amplified from clones lacking a scFv insert.

![Figure 5.1: scFv inserts in Libraries I+J.](image)

PCR screening of Library I and Library J clones (clones 1-10 in lanes 1-10) showed all clones which amplified products were of the expected 935 bp full length size. No product was amplified from the no template control (-). Positive control was unselected library phage (+).

5.1.2 Selections with control phage

Next, test selections using controls supplied with the Tomlinson I+J libraries were carried out to ensure the phage display technology worked in our hands. Controls were TG1 bacteria infected with a polyclonal phage population which had been subjected to one round of selection against either BSA or ubiquitin by the supplier. Phage was made from the control aliquots, and a second round of selection performed using 100μg/ml BSA or ubiquitin as target. Polyclonal phage ELISA was used to assess enrichment of specific phage.

Both BSA and ubiquitin selections showed enrichment of specific phage (Figure 5.2). Absorbance (A) increased by at least two-fold in both populations, as was expected
from the supplier’s instructions. There was minimal binding of phage to the non-selection antigen.

![Image](image1.png)

Figure 5.2: Selection with control phage. Polyclonal ELISA analysis of one round of phage selection using previously selected phage controls for BSA (A) and ubiquitin (B).

5.1.3 Selection with control targets

Test selection using a target protein (BSA) and peptide (c-myc) to which monoclonal antibodies have been produced (Apple et al, 1984; Evan et al, 1985) were also performed to verify that the unselected libraries could be enriched for specific clones. BSA and c-myc at 100µg/ml were used for three rounds of selection with Library J, with a polyclonal ELISA for assessment of specific phage enrichment.

For selection with BSA, after three rounds of panning a polyclonal ELISA showed the absorbance of phage bound to BSA was almost three-fold higher than the absorbance of the same phage population bound to the control antigen (Figure 5.3). There was also an enrichment of binders for c-myc, with absorbance increasing over the three rounds from 0.36 to 1.57. However, there was also a concomitant increase of phage binding to the control antigen, with a rise in absorbance from 0.15 in round 1 to 1.30 in round 3. Phage titres between the two selections were comparable, with no increase in phage output compared to controls (Table 5.1). Therefore, Tomlinson J could be enriched for clones specific for BSA but not c-myc.
Chapter 5 Identification of LMP2-Specific scFv Using Phage Display

Figure 5.3: Library J selection using BSA and c-myc as targets. Polyclonal ELISA analysis of three rounds of Library J phage selection using BSA and c-myc as targets. ELISA controls are BSA specific phage and unselected Library J phage.

<table>
<thead>
<tr>
<th>target</th>
<th>round</th>
<th>phage titre input</th>
<th>output</th>
<th>control</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSA</td>
<td>1</td>
<td>1×10^{13}</td>
<td>2.1×10^7</td>
<td>9.1×10^6</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.1×10^{10}</td>
<td>1.5×10^8</td>
<td>1.6×10^8</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.9×10^{10}</td>
<td>6.8×10^9</td>
<td>9.2×10^9</td>
</tr>
<tr>
<td>c-myc</td>
<td>1</td>
<td>1×10^{13}</td>
<td>6.2×10^6</td>
<td>9.1×10^6</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.5×10^{10}</td>
<td>6.4×10^7</td>
<td>1.4×10^8</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.6×10^{10}</td>
<td>4.4×10^9</td>
<td>4.8×10^9</td>
</tr>
</tbody>
</table>

5.2 Panning the libraries

5.2.1 Target peptides

In order to identify target LMP2 peptides, the Swiss-Prot database at the Swiss Institute of Bioinformatics was searched (www.expasy.org). Input of LMP2 as the
keyword yielded sequence from Epstein Barr virus strain B95-8 (entry name: LMP2_EBV; primary accession number: P13285; reference: Baer et al., 1984). The feature aligner tool in Swiss-Prot gave six potential extracellular domains. These were compared with published sequence annotated with potential transmembrane domains (Sample et al., 1989). One extracellular sequence of four aa was discarded as too short to use for phage selection, as antibody epitopes are generally five to eight aa. The remaining five sequences were used to synthesise the peptides shown in Table 5.2 and indicated in Figure 1.5. To create the biotinylated (designated b) and biotinylated cyclised (designated bc) peptides, sequences were lengthened by three to six aa using the flanking protein sequences.

Table 5.2: Target peptides for phage library selections.
Peptides used as targets for phage library selections, together with label, configuration, sequence, length, and aa position in the LMP2 protein sequence from EBV B95-8 (Baer et al., 1984). [* designates point of cyclisation]

<table>
<thead>
<tr>
<th>label</th>
<th>configuration and sequence</th>
<th>length</th>
<th>aa position</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>SCFTASVS</td>
<td>8</td>
<td>142-149</td>
</tr>
<tr>
<td>b2.1</td>
<td>biotin-ßAlaßAla-AASCFTASVSTV</td>
<td>12</td>
<td>140-151</td>
</tr>
<tr>
<td>bc2.1</td>
<td>biotin-ßAlaßAla-QAASCFTASVSTVK</td>
<td>14</td>
<td>140-151</td>
</tr>
<tr>
<td>2.2</td>
<td>RIEDPPFNS</td>
<td>9</td>
<td>199-207</td>
</tr>
<tr>
<td>b2.2</td>
<td>biotin-ßAlaßAla-TWRIEDPPFNSLL</td>
<td>13</td>
<td>197-209</td>
</tr>
<tr>
<td>bc2.2</td>
<td>biotin-ßAlaßAla-QTWRIEDPPFNSLLK</td>
<td>15</td>
<td>197-209</td>
</tr>
<tr>
<td>2.3</td>
<td>DAVLQLSP</td>
<td>8</td>
<td>260-267</td>
</tr>
<tr>
<td>b2.3</td>
<td>biotin-ßAlaßAla-lVDAVLQLSPL</td>
<td>11</td>
<td>258-268</td>
</tr>
<tr>
<td>bc2.3</td>
<td>biotin-ßAlaßAla-QlVDAVLQLSPLK</td>
<td>13</td>
<td>258-268</td>
</tr>
<tr>
<td>2.5</td>
<td>SILQTNFKSLSSTEFIPN</td>
<td>18</td>
<td>374-391</td>
</tr>
<tr>
<td>b2.5</td>
<td>biotin-ßAlaßAla-SILQTNFKSLSSTEFIPN</td>
<td>18</td>
<td>374-391</td>
</tr>
<tr>
<td>bc2.5</td>
<td>biotin-ßAlaßAla-QSILQTNFKSLSSTEFIPNK</td>
<td>20</td>
<td>374-391</td>
</tr>
<tr>
<td>2.6</td>
<td>SNTLLSA</td>
<td>7</td>
<td>444-450</td>
</tr>
<tr>
<td>b2.6</td>
<td>biotin-ßAlaßAla-VMSNTLLSAWI</td>
<td>11</td>
<td>442-452</td>
</tr>
<tr>
<td>bc2.6</td>
<td>biotin-ßAlaßAla-QVMSNTLLSAWIK</td>
<td>13</td>
<td>442-452</td>
</tr>
</tbody>
</table>

5.2.2 Selections using unmodified peptides
Using the peptide panel (Table 5.2), two pools of unmodified peptides were used for the selection of Library I and Library J in parallel. Pool 1 contained peptides 2.1, 2.2 and 2.3, while pool 2 contained peptides 2.5 and 2.6. Three rounds of selection were
performed, with peptides at a final concentration of 100µg/ml. Polyclonal phage ELISA was used for assessment of specific phage enrichment, and monoclonal phage ELISA was used for screening of individual clone specificity.

Phage panned on pool 1 but not pool 2 showed a slight enrichment of binders by polyclonal ELISA (A=0.62) (Figure 5.4). However, this enrichment did not appear to be specific for the peptides as phage also bound to BSA (A=0.42). Phage titres for neither pool showed any increase in phage output compared to control (Table 5.3).

Figure 5.4: Library I and J selections using pools of unmodified peptides as targets. Polyclonal phage ELISA analysis of three rounds of Library I and J selection using peptide pools of 2.1, 2.2 and 2.3 (A) or 2.5 and 2.6 (B) as targets. ELISA controls are BSA specific phage and unselected Library phage.
Monoclonal ELISA screening was performed on 80 round three output clones from each of the four selections. This yielded two clones with higher absorbance on target peptide compared with BSA. Clone G11 was from pool 1 and Library J selection, with absorbances of 2.13 on the peptides and 1.49 on BSA. Clone H10 was from pool 2 and Library J selection, with absorbances of 0.33 on the peptides and 0.16 on BSA. These clones were rescued, and their specificity tested by phage ELISA using BSA, ubiquitin, individual peptides and human serum as targets (Figure 5.5).

Clone G11 bound to all targets tested with absorbances greater than 2.0, except for BSA, against which it had an absorbance of 1.5 (Figure 5.5 panel B). On the individual antigens, clone H10 bound most strongly to peptide 2.5 (A=0.87), although it bound more strongly still to human sera (A=1.26) (Figure 5.5 panel C). The BSA positive control bound only to BSA of the individual antigens (A=2.77), although it did also bind though less strongly to human sera (A=1.12). Therefore neither clone H10 nor clone G11 was specific for any LMP2 peptide.
Figure 5.5: Specificity testing of clones from Library I and J selections using unmodified peptide pools.
BSA control (A), and two clones from the third round of Library J phage selection using pools of peptides 2.1, 2.2 and 2.3 (B) or 2.5 and 2.6 (C) as target antigens.

5.2.3 Selections using biotinylated peptides

To make peptides more available to phage during the panning process, sequences were lengthened slightly and biotinylated (Table 5.1). The biotin tag would adhere to streptavidin or avidin pre-coated immunotubes, leaving peptides free for phage binding. Immunotubes were coated with 500ng/ml streptavidin or avidin, and 100µg/ml biotinylated peptide bound to this. Individual peptides b2.1, b2.2, b2.3, and b2.5 (Table 5.2) were used for three rounds of selection of Library I and Library J in parallel. Polyclonal phage ELISA was used for assessment of specific phage enrichment, and monoclonal phage ELISA for screening of individual clone specificity. A polyclonal phage population binding, but not specific, to streptavidin
was used as a positive control for ELISAs with streptavidin. Selections in this section were performed by Mr Matthew Seah (University of Edinburgh).

Selection experiments using Library I and Library J and peptides b2.1 and b2.2 showed enrichment of binders in a non-peptide-specific manner (Figure 5.6). After three rounds of selection, similar levels of absorbance were seen for phage binding to streptavidin and peptide (target), compared with streptavidin alone (control): Library I selected on peptide b2.1 - target A=1.91, control A=1.85; J+b2.1 - target A=1.20, control A=1.14; I+b2.2 - target A=2.37, control A=2.23; J+b2.2 - target A=1.84, control A=1.65. Peptide b2.3 also showed non-peptide-specific enrichment with Library I by round 3 (target A=2.65, control A=2.65), but no increase in binders with Library J. Peptide b2.5 showed no increase in binders with Library J. By round three with Library I, peptide b2.5 appears to have a substantial increase in specific peptide binders (target A=2.50, control A=0.10); however in this ELISA the no phage (A=1.45) and unselected Library I (A=1.12) also appeared reactive with the target peptides.

Monoclonal phage ELISA analysis was performed on the round three outputs shown in Figure 5.6. Results from the Library I and b2.5 screenings, which are representative of those seen for all library/peptide combinations, are shown in Figure 5.7. Target peptides b2.1, b2.2, b2.3, and b2.5 had 47, 80, 44 and 51 clones respectively positive for target binding in the screen, however all clones also bound to streptavidin alone. Therefore, no clone specific for biotinylated, linear LMP2 peptides was isolated from the Tomlinson I and J libraries.
Figure 5.6: Library selection using biotinylated, linear peptides. Polyclonal ELISA analysis of three rounds of Library I and J selection using biotinylated, linear peptides 2.1 (A,B), 2.2 (C,D), 2.3 (E,F) and 2.5 (G,H) as targets.
Figure 5.7: Screening of clones from selections using biotinylated, linear peptides.
Monoclonal ELISA screening of 80 clones from the third round output of Library I selection using biotinylated linear peptide b2.5 as a target.
5.2.4 Selections using biotinylated cyclised peptides

As the extracellular sequences of LMP2 in their natural configuration will be looped to allow insertion of the flanking domains into the cell membrane, the biotinylated peptides were cyclised in an effort to mimic this conformation. Individual peptides bc2.1, bc2.2, bc2.3, bc2.5 and bc2.6 (Table 5.2) were used for three rounds of selection of Library I or Library J. Polyclonal phage ELISA was used for assessment of specific phage enrichment, and monoclonal phage ELISA for screening of individual clone specificity.

Figure 5.8: Library selection using biotinylated, cyclised peptides.
Polyclonal ELISA analysis of three rounds of selection using Library J and biotinylated, cyclised peptides 2.1 (A), 2.2 (B), 2.3 (C), 2.5 (E) and 2.6 (F), or Library I and 2.5 (D) as targets.
Chapter 5 Identification of LMP2-Specific scFv Using Phage Display

Selection experiments with all combinations of Library and peptide showed enrichment of binders in a non-peptide-specific manner (Figure 5.8). After three rounds, similar levels of absorbance were seen for phage binding to streptavidin and peptide (target), compared with streptavidin alone (control): Library J selected on peptide b2.1 - target A=1.71, control A=1.90; J+b2.2 - target A=2.01, control A=2.00; J+b2.3 - target A=1.72, control A=1.71; I+b2.5 - target A=2.50, control A=2.48; J+b2.5 - target A=2.54, control A=2.53; J+b2.6 - target A=2.09, control A=1.79. Phage titres for all combinations of Library and peptide showed no increase in phage output compared to controls (Table 5.4). However, the overall titre of both phage output and control did rise dramatically in the second and third rounds for all selections. If no selection was occurring, then the titres for both control and phage output would remain at the lower levels seen in the first round. If the selection was specific for the target peptides, there would be an increase in the phage output titres but no increase in the control titres. As there is an increase in both phage output and control titres, this suggests that selection pressure is resulting in the retention of strongly binding non-specific phage.

Table 5.4: Phage titres of Library I and J selections using biotinylated, cyclised peptides.

<table>
<thead>
<tr>
<th>Library + target</th>
<th>round</th>
<th>input</th>
<th>phage titre</th>
<th>control</th>
<th>Library + target</th>
<th>round</th>
<th>input</th>
<th>phage titre</th>
<th>control</th>
</tr>
</thead>
<tbody>
<tr>
<td>J+bc2.1</td>
<td>1</td>
<td>1x10^12</td>
<td>4x10^3</td>
<td>4x10^4</td>
<td>J+bc2.2</td>
<td>1</td>
<td>1x10^12</td>
<td>2.4x10^4</td>
<td>4x10^4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>7.5x10^10</td>
<td>4x10^8</td>
<td>2.8x10^9</td>
<td></td>
<td>2</td>
<td>4x10^9</td>
<td>1x10^9</td>
<td>8x10^9</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.3x10^10</td>
<td>5.2x10^8</td>
<td>7.6x10^9</td>
<td></td>
<td>3</td>
<td>9.6x10^9</td>
<td>1x10^9</td>
<td>8x10^9</td>
</tr>
<tr>
<td>J+bc2.3</td>
<td>1</td>
<td>1x10^12</td>
<td>1.8x10^5</td>
<td>5.2x10^5</td>
<td>I+bc2.5</td>
<td>1</td>
<td>1x10^12</td>
<td>1.2x10^5</td>
<td>2x10^5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.8x10^10</td>
<td>1.8x10^8</td>
<td>3.2x10^9</td>
<td></td>
<td>2</td>
<td>3.5x10^10</td>
<td>2x10^7</td>
<td>2.5x10^4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.2x10^10</td>
<td>4.4x10^8</td>
<td>1.1x10^10</td>
<td></td>
<td>3</td>
<td>5x10^10</td>
<td>8.4x10^8</td>
<td>3.6x10^9</td>
</tr>
<tr>
<td>J+bc2.5</td>
<td>1</td>
<td>1x10^12</td>
<td>1.3x10^6</td>
<td>3.6x10^5</td>
<td>J+bc2.6</td>
<td>1</td>
<td>1x10^12</td>
<td>1.2x10^5</td>
<td>5.2x10^5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>9.6x10^9</td>
<td>1.4x10^6</td>
<td>3x10^8</td>
<td></td>
<td>2</td>
<td>3x10^10</td>
<td>1.6x10^6</td>
<td>1.2x10^9</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.7x10^10</td>
<td>2.4x10^8</td>
<td>5x10^8</td>
<td></td>
<td>3</td>
<td>1.7x10^10</td>
<td>4.8x10^8</td>
<td>2.6x10^10</td>
</tr>
</tbody>
</table>

Monoclonal phage ELISA analysis was performed on the round three outputs shown in Figure 5.8. Results from the Library J and bc2.6 screenings, which are representative of those seen for all library/peptide combinations, are shown in Figure 5.9. Target peptides bc2.1, bc2.2, bc2.3, bc2.5, and bc2.6 had 20, 45, 23, 7, and 17
clones respectively with A>0.5 for peptide binding in the screen, however all clones also bound to streptavidin alone. Therefore, no clone specific for biotinylated, cyclised LMP2 peptides was isolated from the Tomlinson I and J phage libraries.

Figure 5.9: Screening of clones from selections using biotinylated, cyclised peptides. Monoclonal ELISA screening of 80 clones from the third round output of Library J selection using biotinylated cyclised peptide 2.6 as a target. Clones labelled a-j were taken for further analysis.
In light of the above results, 10 clones (designated a-j) were selected at random from the monoclonal screening of Library J and bc2.6 for further analysis of clone diversity. Clones were screened by PCR for full length inserts (Figure 5.10 panel A). Restriction enzyme digest fingerprinting of the PCR products was used as an indication of clone diversity (Figure 5.10 panel B), and sequencing reactions of the V_H and V_L regions of each of the clones were also performed.

DNA from all 10 clones amplified PCR products of the expected 935bp size, indicating full length scFv inserts, although clone g also had a second band of roughly equal intensity at approximately 700 bp (Figure 5.10 panel A). Nine of the 10 clones (a-h, j) had identical fingerprints, with clone i alone being unique. The secondary band from the clone g PCR did not distinguish its fingerprint from clones a-f, h and j.

Figure 5.10: scFv inserts and clone diversity in bc2.6 selected phage. PCR screening for full length inserts (A) and restriction enzyme digest fingerprinting for diversity (B) of 10 clones (a-j) from the third round of Library J selection using biotinylated cyclised peptide bc2.6 as target antigen. PCR negative control (-) contained no template DNA and positive control (+) was unselected Library J phage.

154
Sequence alignment of nine clones identified four which were identical (a, c, h, j), while the remaining five were unique (b, d, e, f, i). The overrepresentation of a single clone after three rounds of panning suggests some form of selection is occurring, in line with the data from the selection titres. The sequence of clone g was of poor quality, presumably due to interference from the second PCR band, and hence was excluded from analysis.

5.2.5 Selection protocols incorporating negative selection for streptavidin binders

In order to discourage binding of streptavidin-specific clones, a negative selection step was incorporated at the beginning of each round of panning (see 2.6.5). Individual peptides bc2.1, bc2.2, bc2.3 and bc2.6 were used for two rounds of selection of a premixed population of Library I+J. Polyclonal phage ELISA was used for assessment of specific phage enrichment, and monoclonal phage ELISA for screening of individual clone specificity.

Selection experiments with all peptides showed enrichment of binders in a non-peptide-specific manner (Figure 5.11). After two rounds, similar levels of absorbance were seen for phage binding to streptavidin and peptide (target), compared with streptavidin alone (control) for bc2.2 (target A=0.95, control A=1.14), bc2.3 (target A=1.04, control A=1.12), and bc2.6 (target A=0.53, control A=0.47) and a higher level of absorbance for streptavidin alone compare to streptavidin and peptide for bc2.1 (target A=0.90, control A=1.66). Phage titres for all combinations of Library and peptide showed no increase in phage output compared to controls, and there was no enrichment of clones containing full length inserts (Table 5.5).
Figure 5.11: Library selection using biotinylated, cyclised peptides with negative selection for streptavidin binding phage.
Polyclonal ELISA analysis of two rounds of phage selection using Library I+J and biotinylated, cyclised peptide 2.1 (A), 2.2 (B), 2.3 (C), or 2.6 (D) as targets.

Table 5.5: Phage titres and PCR screening of Library I+J selections using biotinylated, cyclised peptides with negative selection for streptavidin binding phage.

<table>
<thead>
<tr>
<th>target</th>
<th>round</th>
<th>input</th>
<th>phage titre</th>
<th>PCR screening</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>output</td>
<td>inserts / clones</td>
</tr>
<tr>
<td>bc2.1</td>
<td>1</td>
<td>1x10^{12}</td>
<td>8x10^{3}</td>
<td>2x10^{4}</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.2x10^{9}</td>
<td>1.4x10^{9}</td>
<td>8 / 8 (100%)</td>
</tr>
<tr>
<td>bc2.2</td>
<td>1</td>
<td>1x10^{12}</td>
<td>1.6x10^{4}</td>
<td>2x10^{4}</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.4x10^{6}</td>
<td>2.1x10^{8}</td>
<td>5 / 10 (50%)</td>
</tr>
<tr>
<td>bc2.3</td>
<td>1</td>
<td>1x10^{12}</td>
<td>8x10^{3}</td>
<td>8x10^{3}</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>8.4x10^{7}</td>
<td>1x10^{8}</td>
<td>3 / 8 (38%)</td>
</tr>
<tr>
<td>bc2.6</td>
<td>1</td>
<td>1x10^{12}</td>
<td>4x10^{3}</td>
<td>8x10^{3}</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.2x10^{8}</td>
<td>1.5x10^{8}</td>
<td>5 / 9 (56%)</td>
</tr>
</tbody>
</table>
Monoclonal phage ELISA analysis was performed on the round three outputs shown in Figure 5.11. No individual clone from selections on bc2.2, bc2.3, and b2.6 had an A>0.5 for either streptavidin alone or streptavidin and peptide. Nine clones from bc2.1 selections had A>0.5 on streptavidin and peptide, however all clones also bound to streptavidin alone. Therefore, although incorporating a negative selection step for streptavidin binders did appear to reduce the overall number of streptavidin binding phage in monoclonal ELISA analysis of selection, it did not appear to encourage selective enrichment of LMP2 binding phage, and no phage clone specific for biotinylated, cyclised LMP2 peptides was isolated.

5.2.6 Selections using streptavidin coated beads

In a parallel experiment also aimed at reducing the enrichment of streptavidin binding phage, selections using streptavidin-coated beads in place of immunotubes were performed. A µMACS Streptavidin Kit for Phage Display (Miltenyi Biotec) was used according to the manufacturer’s instructions, with peptide bc2.5 as target for two rounds of Library I and Library J selection. Polyclonal phage ELISA was used for assessment of specific phage enrichment, and monoclonal phage ELISA for screening of individual clone specificity.

For Library I, selection using streptavidin coated beads had the effect of removing all binding phage, while the results for Library J once again showed enrichment in a non-peptide-specific manner (Figure 5.12). Similar levels of absorbance were seen after two rounds of selection for phage binding to streptavidin and peptide compared with streptavidin alone (peptide A=1.06, control A=1.24). Phage titres for the two libraries were also similar (Table 5.6).

Monoclonal ELISA analysis was performed on 80 round two output clones from each Library I and Library J selection. No individual clone showed an A>0.5 for either streptavidin alone or streptavidin and peptide bc2.5.
Figure 5.12: Library selection using a biotinylated, cyclised peptide with streptavidin coated beads.
Polyclonal ELISA analysis of two rounds of Library I or Library J selection using streptavidin coated beads and biotinylated, cyclised peptide 2.5 as target.

<p>| Table 5.6: Phage titres of Library I and J selections using streptavidin coated beads. |
|--|-----------------|------------------|-----------------|</p>
<table>
<thead>
<tr>
<th>Library</th>
<th>round</th>
<th>phage titre input</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td>1×10^{11}</td>
<td>4×10^{3}</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.8×10^{10}</td>
<td>1.6×10^{7}</td>
</tr>
<tr>
<td>J</td>
<td>1</td>
<td>1×10^{11}</td>
<td>3.6×10^{4}</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.6×10^{10}</td>
<td>9.6×10^{6}</td>
</tr>
</tbody>
</table>
5.3 Selection experiments using alternate libraries

To test if phage libraries other than the Tomlinson I+J would yield specific clones after selection with LMP2 peptides, two new libraries were examined. Like the Tomlinson I+J, the ETH2Gold is a scFv phage library with a diversity of 3×10^9 (Silacci et al., 2005). The RotMar library is in Fab format with a diversity of 5.36×10^9.

5.3.1 ETH2Gold phage library

Selections using peptide bc2.1 and the ETH2Gold library were performed by Ms Lynda Robson at UCL, London, UK. After three rounds of selection, phage titres and PCR screening showed no specific enrichment of peptide binders compared with controls (Table 5.7).

<table>
<thead>
<tr>
<th>target</th>
<th>round</th>
<th>phage titre</th>
<th>PCR screening</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>input</td>
<td>output</td>
</tr>
<tr>
<td>2.1</td>
<td>1</td>
<td>2×10^{12}</td>
<td>3.3×10^4</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3×10^{12}</td>
<td>1.3×10^4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4.5×10^{12}</td>
<td>1×10^7</td>
</tr>
</tbody>
</table>

5.3.2 RotMar phage library

Selections using peptide bc2.5 were performed by Ms Karen McAulay (University of Edinburgh) and Dr Reno Debets (Erasmus-Daniel den Hoed Cancer Centre) at the Erasmus-Daniel den Hoed Cancer Centre, Rotterdam, Netherlands. After three rounds of selection monoclonal ELISA showed enrichment of binders in a non-peptide specific manner (Figure 5.13). Of the 96 clones screened, 70 had A>0.5, however all clones also bound to the streptavidin-bcLMP1 complex, and thus no phage clone specific for biotinylated, cyclised LMP2 peptide 2.5 was isolated from the RotMar library.
Figure 5.13: RotMar library selection using LMP2 peptide 2.5.
Monoclonal ELISA analysis of the third round output of RotMar phage library selection using biotinylated cyclised peptide 2.5 as target. bcLMP1 is the non-target peptide ELISA control.
5.4 Summary of results

- PCR screening showed at least 70% of Tomlinson I clones and 90% of Tomlinson J clones contained full length scFv inserts.

- After one round of selection, Tomlinson I+J were enriched for clones specific against target proteins BSA and ubiquitin.

- After three rounds of selection, Tomlinson J was enriched for clones specific for the target protein BSA. Enrichment for target peptide c-myc was non-specific.

- There was a small increase in the number of binding clones after three rounds of selection using pool 1 peptides and Library J, but no enrichment using pool 1 and Library I, or pool 2 and either library. Enrichment was not specific for the peptides when assessed by polyclonal ELISA.

- Two clones isolated from round 3 pool 1 and Library J selection displayed higher absorbance on target peptide compared with BSA in a monoclonal ELISA. Upon further analysis, one clone was non-specific and the other of low affinity for the target peptide.

- There was an increase in binding clones after three rounds of selection in 6 of 8 combinations using biotinylated linear peptides and Libraries I and J in parallel. Enrichment was not specific for the peptides when assessed by polyclonal or monoclonal ELISA.

- There was an increase in binding clones after three rounds of selection in all combinations using biotinylated cyclised peptides and Library I or J. Enrichment was not specific for the peptides when assessed by polyclonal or monoclonal ELISA.

- Of nine clones isolated from a round 3 Library J selection with a biotinylated cyclised peptide, all contained full length inserts; four represented a single clone, whilst the remaining five were unique.

- There was a comparatively small increase in binding clones after two rounds in all selections incorporating a negative selection step and using biotinylated cyclised peptides with Library I+J. Enrichment was not specific for the peptides when assessed by polyclonal or monoclonal ELISA.
• There was a small increase in binding clones after two rounds of selection using streptavidin coated beads and a biotinylated cyclised peptide with Library I and J in parallel. Enrichment was not specific for the peptides when assessed by polyclonal ELISA.

• There was no enrichment of specific clones after three rounds of selection using a biotinylated cyclised peptide and the ETH2Gold scFv Library when assessed by PCR.

• There was no enrichment of specific clones after three rounds of selection using a biotinylated cyclised peptide and the RotMar Fab Library when assessed by polyclonal ELISA.

5.5 Discussion

LMP2 was chosen as the target for phage display selections for two reasons; firstly, it is a membrane protein with external loops available for targeting via a cTCR, and secondly, it is expressed in the EBV latency II phenotype characteristic of HL and NPC as well as in a proportion of GC cases. Peptides identical in sequence to the extracellular loops of LMP2 were used as targets rather than cells expressing LMP2 as advice received had highlighted the difficulties of panning on whole cells (personal communication, Sir Gregory Winter, MRC Laboratory of Molecular Biology, Cambridge, UK). The abundance of antigens present on any cell means that a huge number of clones would need to be screened to identify LMP2-specific binders. Even using a panel of LMP2-positive and -negative cell lines over multiple rounds of positive and negative selection, it would be extremely difficult to isolate LMP2 specific binders. Peptides were used in preference to whole purified protein as computer modelling to predict antigenic sequences within the LMP2 protein returned predominantly transmembrane and intracellular hits (http://bio.dfci.harvard.edu/Tools/antigenic.pl). This suggested that selection using whole protein might result in the selective enrichment of clones binding to those domains, with clones specific for the external loop sequences lost over progressive rounds of selection. A scFv format was selected for the phage library, as the Tomlinson I+J library was readily available as the time this project commenced. Also, the scFv configuration was the format most relevant for cTCR construction, which was the anticipated initial use for the selected clone.
Standardisation experiments demonstrated that the Tomlinson libraries were functioning correctly. By PCR screening, at least 70% of Tomlinson I and 90% of Tomlinson J clones contained full length scFv inserts (Figure 5.1). The library specification sheet gave 96% and 88% as the percentage of full length clones in I and J respectively, thus the results were as expected. The remaining clones did not amplify any product, full length or otherwise. It is possible that the clones do contain full length inserts, and that the lack of product was a result of sub-optimal PCR conditions. One possibility is that insufficient DNA was added to the reaction mix when bacteria were picked directly from agar plates. Three rounds of selection using Library J and BSA as a target protein confirmed that the library could be enriched for phage specific for a target protein (Figure 5.3). At this point it was decided that 0.5A would be the level beneath which phage binding in an ELISA would be classed as background. This was the approximate absorbance value of the third round BSA-selected phage population binding to c-myc in a polyclonal ELISA (Figure 5.3).

An increase in binding clones was observed during selections using c-myc as target (Figure 5.3); however, phage also bound to BSA control wells in the polyclonal ELISA. As the c-myc epitope is 10 aa long and a mAb for c-myc is commercially available, c-myc was chosen as a target to test if the library was capable of selection against short peptides. In retrospect, this was not a good choice of target as phage in the Tomlinson libraries carry a myc tag for detection, purification or immobilisation of the scFv. Thus, it is possible that phage specific for myc would bind to other phage during panning, greatly reducing the selection pressure necessary for specific enrichment. However, this was not appreciated at the time, and selection experiments using a more appropriate peptide target were not performed. Given the slight but visible difference between control and test wells in the polyclonal ELISA it was decided to continue with the peptide approach (Figure 5.3).

Selections using pooled, unmodified peptides and the Tomlinson libraries in parallel did not result in a high enrichment of binding clones. Only two potential clones with clear differences in absorbance when binding to target compared with BSA were identified by monoclonal ELISA: clones G11 and H10. Upon rescue and further analysis, clone G11 proved to be an equally strong binder against the all three pool
peptides when each was assayed individually (Figure 5.5). It also returned high absorbances against ubiquitin, human sera and to a slightly lesser extent BSA, demonstrating that it was not specific for target peptides. Clone H10 bound specifically to peptide 2.5 but not 2.6 or BSA. However, it was also reactive against ubiquitin and human sera (Figure 5.5). Additionally, although the phage used in the ELISA had been PEG-precipitated and was therefore of high concentration, absorbance was still relatively low (peptide 2.5, A=0.87), suggesting a weak affinity for peptide 2.5. As high affinity scFv show better tumour delivery (at least in antibody format; Adams et al, 1998), no further analysis of H10 was performed.

Biotinylating peptides had the effect of increasing ‘background’ phage in selections using both linear and cyclised peptides (Figure 5.6 and Figure 5.8). That is, overall more binding phage were rescued during rounds of selection, as evidenced by increased absorbance levels in polyclonal ELISAs. However, these phage were reactive with both target peptides and the streptavidin used to adhere biotinylated peptides to immunotubes and ELISA plates. One polyclonal ELISA showed increased absorbance on target peptide compared to streptavidin (Library I and b2.5, Figure 5.6 panel G), although the no phage and unselected Library I controls also had raised absorbance. Thus, the most likely explanation for the ELISA results is cross-contamination with other samples, either in the sample aliquots or ELISA wells. Subsequent monoclonal ELISA analysis confirmed this was not a true positive result, as no specific individual clones were isolated from the 80 clones tested.

Sequence analysis of nine clones from a selection using Library J and bc2.6 showed that while five clones were unique, the remaining four clones selected represented a single scFv (see 5.2.4). This overrepresentation of a single clone after three rounds of panning, together with the high titres returned on both phage output and control tubes in the second and third rounds (Table 5.4), suggests some form of selection is occurring, possibly on an epitope common to avidin and streptavidin. Avidin was used to bind target peptide in round 2 and streptavidin was used in rounds 1 and 3. Restriction enzyme digests were also used prior to sequencing as an initial screen for clone diversity (Figure 5.10 panel B). In retrospect this was not an appropriate choice as the Tomlinson library is based on a single antibody framework, with sequence diversity engineered only in the CDR3 and CDR2 regions. Thus BstNI cleavage
sites are not likely to vary even between clones with different specificities. Restriction enzyme digests are better suited to screening naïve libraries.

Some background is expected when using phage display, that is, rescue of phage clones not specific for the target may occur. Only a minority of phage particles display scFv. In the Tomlinson system, it is between 1 in 10 and 1 in 100 (Jensen et al., 2003a). However, these phage would be expected to be non-binders in monoclonal ELISAs given that they have no ligand with which to bind to targets. Some of the background yet binding clones may be reactive to the milk powder contained in the blocking buffer used for both ELISAs and panning. The problem of the streptavidin reactive background generally seen when using biotinylated target may have been compounded in this case by the lack of specific phage, with streptavidin reactive phage enriched over multiple rounds of selection as there was no competing enrichment of target-specific phage.

It remains an open question as to why LMP2 loops were unable to select out specific scFv. Although the peptides were comparatively short, they were long enough to be a target. With the c-myc epitope, only 10 aa are needed for specificity. The Tomlinson I+J are relatively old phage libraries, and newer, larger and therefore more diverse libraries are currently being constructed, such as the ETH2Gold and RotMar libraries. A major difference between the Tomlinson and ETH2Gold libraries compared with the RotMar library, is that the RotMar is a naïve library. This means that diversity is incorporated over the entire antibody fragment and not just in the CDR regions where antibody residues directly contact the antigen. Indeed, the Tomlinson and ETH use the same V\textsubscript{H} framework (DP47). This may affect the size and shape of the antigen binding cleft of the antibody, with consequences for the range of targets able to be bound. As with the Tomlinson selections, panning using the ETH2Gold library and bc2.1 did not isolate peptide-specific clones (Figure 5.7). However, although a similar result was seen using the RotMar library and bc2.5 (Figure 5.13), parallel selections using a biotinylated cyclised LMP1 extracellular loop peptide (bcLMP1.2) were also performed, and these selections did result in specific enrichment (Figure 5.14). The bcLMP1 sequence is biotin-ßAlaßAla-LIALWNLHGQAFL (Figure 1.4). Of the 96 clones screened after three rounds of selection, 72 specific clones were identified (peptide A>0.24, control A<0.1).
Figure 5.14: RotMar library selection using LMP1 peptide 1.2.
Monoclonal ELISA analysis of the third round output of RotMar phage library selection using biotinylated cyclised peptide LMP1.2 as target. bc2.5 is the non-target peptide ELISA control.
In addition to differences in library construction, the RotMar library is also in Fab format, compared to the scFv format of the Tomlinson and ETH2Gold libraries. Rather than a single recombinant antibody fragment fused to the pIII protein, the RotMar Fab library has only the antibody heavy chain fused to pIII. The antibody light chain is expressed as a separate molecule, which is secreted into the \textit{E.coli} periplasm where it can pair with the heavy chain. Fabs tend to be expressed at lower levels on phage than scFv, leading to a lower display frequency and lower fraction of avid phage. Therefore, selections using Fab are governed more by affinity (the binding strength of an antigenic determinant to a single antigen-binding site) than avidity (the sum total binding strength of an antigenic particle to an antigen-binding molecule). Also, Fab do not form multimers when expressed as soluble fragments, in contrast with scFv which do tend to multimerise. Thus, Fab libraries are easier to use with respect to downstream affinity assays such as using surface plasmon resonance technology as crude protein fractions can be utilised without the need for purification. Also, and for the same reason, they are a better option when panning for fragments to be incorporated into whole antibody molecules.

Only one peptide each from LMP1 and LMP2 were used to screen the RotMar library (Figure 5.13 and Figure 5.14), so it is possible that a Fab specific for an LMP2 loop may yet be isolated. Logically, there is no reason why the LMP2 loops shouldn’t retrieve specific scFv. LMP1 and LMP2 loops have been used previously to isolate Fab fragments from the de Haard library (personal communication, Professor Jaap Middeldorp; de Haard \textit{et al}, 1999). Other possibilities for target manipulation which could be explored include synthesising peptide repeats to make targets longer, and branching peptides to display multiple copies of the same target or combinations of targets. The use of whole cells expressing LMP2 as targets has been discussed previously, and remains an option, albeit a difficult one. Colleagues in our laboratory are currently conducting further analysis on the LMP1 clones isolated in Rotterdam, and transferring the RotMar library to Edinburgh in order to continue selections using LMP1 and LMP2 peptides as targets. Initial results are encouraging, however further work evaluating the specificity and affinity of isolated clones is ongoing.
On a technical note, selections in our laboratory are now conducted using commercially available streptavidin coated beads to immobilise biotinylated targets, rather than the immunotube method described here. Although selections using streptavidin coated beads and a biotinylated cyclised peptide with Library I and J in parallel did not result in the isolation of an LMP2 specific clone during this project (Figure 5.12), this was a single experiment using only one peptide with no opportunity for optimisation or standardisation. As commercially available streptavidin coated beads undergo quality assurance testing prior to release from the supplier, this format reduces variability in streptavidin concentrations across selection experiments with obvious implications for the reliability of target concentration (personal communication, Dr Reno Debets). An additional advantage of this method is that it allows selections to be performed in smaller volumes than the immunotube format. This facilitates the binding of target and specific clone, which is presumably of low frequency in the initial library population, by bringing them into closer proximity.

In light of the unsuccessful nature of selections performed with the Tomlinson libraries and LMP2 peptides, an evaluation of the approach taken is warranted. The advantage of using the loop peptide targets is that they are able to be easily and relatively cheaply synthesised, and any phage binding to them is specific for the extracellular rather than intracellular or transmembrane portions of the LMP2 molecule, as required for cTCR construction. Conversely, the whole protein is considerably more difficult and expensive to synthesise or purify, and as it is a membrane protein it would not be in its native conformation. The major drawback to peptide selections is that in general they are not as successful those using whole protein targets. Also, scFv phage specific for peptides, or indeed whole purified proteins, do not necessarily bind targets in their native conformation and environment. ELISA screening using soluble scFv or Fab rather than fragments expressed on the surface of phage may give a more accurate indication of functionality, and in retrospect this assay should have been performed in the library control experiments (5.1.2 and 5.1.3). Nevertheless, as a starting point peptide targets were a reasonable choice.

With the benefit of additional time, it would have been interesting to also attempt selections on whole cells. Vaccinia constructs could have been assembled containing
LMP2, and the addition of a selectable marker would have allowed subtractive selection using FACS. With hindsight, a switch from the peptide target approach to whole cell selections, or to using a naïve library, should possibly been taken earlier. However given the time limits inherent in the project there is no guarantee that this would have led to the isolation of LMP2-specific scFv. Had a robust monoclonal antibody for LMP2 been available, the need for these selections may have been obviated, and the LMP2-specific scFv could have been obtained from this source. However, this lack is another argument for searching for LMP2-specific antibody fragments by phage display, as a specific LMP2 antibody would be a useful tool in EBV research.
6 Future Directions

“The history of cancer research has been a history of curing cancer in the mouse. We have cured mice of cancer for decades, and it simply didn’t work in humans.”

- Dr Richard Klausner
 former director, US National Cancer Institute
 Los Angeles Times, 6th May 1998

The above quote has been both a goal and a goad throughout this project. As yet, no mouse model has been a good predictor of the human response to immunotherapy (June, 2007) although the SCID model of PTLD is a possible exception. The divergent responses seen when using CTLA4-specific antibody blockade are one example highlighting the differences between the mouse and human situations. In mice, treatment is well tolerated and induces anti-tumour responses when administered in combination with a granulocyte/macrophage colony-stimulating factor (GM-CSF)-expressing tumour cell vaccine in a murine melanoma model (van Elsas et al., 1999). Although anti-tumour responses have also observed in humans, they were often accompanied by serious autoimmunity (Attia et al., 2005; Blansfield et al., 2005). The recent media furore which accompanied the hospitalisation of six men in Northwick Park as a result of a phase I immunotherapy trial also underscores the differences between model systems and the human situation (Suntharalingam et al., 2006). In this case the model animal was the rat, and a novel therapeutic anti-CD28 mAb (TGN1412) was well tolerated in this setting (Beyersdorf et al., 2005). Prior to the trial, the mAb was also tested on human PMBCs in vitro, as well as in cynomolgus macaques in vivo (whose CD28 molecule shares 100% homology with the intra- and extracellular domains of human CD28), with no adverse effects (Hanke, 2006). In fact, it was anticipated the antibody would preferentially expand Tregs (defined by a CD4+CD25high phenotype) and be useful in the treatment of autoimmune disease. Instead, antibody administration initiated a rapid release of proinflammatory cytokines, a so called ‘cytokine storm’, leading to multiple organ failure in all six patients, although all eventually recovered (Suntharalingam et al., 2006). Whilst this is an extreme case, it emphasises the need for caution in
immunotherapy, as many aspects of the immune system have yet to be fully understood. Nonetheless, returning to the quote, curing cancer in a mouse is a considerable achievement. It provides proof-of-principle for novel therapies, and yet it falls short of the aim of the majority of cancer research, which is of course curing cancer in humans.

Evaluation of novel therapeutic agents requires complex, biologically relevant models in which to study interactions between agent and subject. Technical and ethical constraints limit the use of humans as test subjects, and consequently animals fill this niche. Current guidance from the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH), to which the European Union is a signatory, requires evaluation of preclinical data collected from animal experiments prior to the commencement of human trials. Non-human primates most closely represent human biology, yet they do not absolutely mimic the human situation, and as mentioned previously, the specialist requirements, high expense and adverse public attitude towards primate research means it is not feasible for large scale research in the UK. Due to their lack of functional T and B lymphocytes, SCID mice can be engrafted with human tissue. Such humanised animals are a useful tool in which to study the effects of targeted therapies for cancer, providing as it does the actual target cells in a microenvironment more akin to human malignancy than in vitro culture. Additionally, mouse models are relatively inexpensive and used on such a wide scale that mouse biology is well understood in comparison with other mammalian models (Hughes, 2003). Thus, the SCID models of HL, NPC and GC set up during this project may be valuable in future investigations of cancer therapy.

As a viral antigen associated with a number of tumours, some attention has been focused on LMP2 as a CTL target for immunotherapy of EBV-positive tumours. However, LCL-stimulated CTL cultures from healthy EBV-positive individuals usually contain less than 1% T cells recognizing LMP2A (Bollard et al, 2004). Although only subdominant and no immunodominant LMP2 specificities have been identified so far, these CTLs may still be immunologically relevant. Sun et al (2007) used an INF-γ capture assay to enrich CTL cultures for LMP2A-specific effector cells. In vitro, these polyclonal populations were able to specifically lyse fibroblasts.
expressing LMP2A as well as LCLs expressing the full range of EBV latent antigens, and release Th1 cytokines such as INF-γ and GM-CSF following antigen stimulation (Sun et al., 2007). Bollard et al. (2007) used an alternative method to enrich CTL populations for LMP2A-specific cells. Rather than use conventional EBV-positive LCLs for stimulation and expansion of CTLs, PBMCs were initially stimulated with dendritic cells engineered to express LMP2A from an adenovirus vector, with LCLs overexpressing LMP2A from the same vector used in subsequent stimulations. This approach resulted in a polyclonal population of LMP2A-specific CTLs, which were able to mediate four complete and one partial response, with one non-responder, in the six patients with relapsed HL or NHL treated using the LMP2A-specific cells (Bollard et al., 2007). This result validates the use of cellular therapies directed against LMP2 for the treatment of EBV-associated malignancies. However, a major disadvantage of the Bollard protocol is that the therapeutic CTLs are generated using PBMCs from the patient’s own blood to derive the dendritic cells (DC), LCLs and T cells required. This means that the delay between decision to treat and actual therapy is prolonged, the patient must have LMP2 reactive T cells present in the periphery, and ideally PBMCs should not be numerically or functionally defective as a result of disease or treatment. One advantage of the cTCR approach undertaken in this project is that whilst a patient’s PBMCs could be used as a T cell source if time and facilities permit (as outlined in Figure 1.8), a bank of best match CTLs transduced with the cTCR and expanded to clinically relevant numbers could also be created and stored, reducing treatment delay and obviating the need for functional patient cells.

Although immunotherapy using cTCRs to direct T cells against cancer cells has great potential, there are a number of issues which need to be addressed in order to facilitate the transfer of treatment from animal models into the clinic. Three phase I clinical trials using cTCR engineered T cells have been undertaken to date, and these studies have highlighted some of the key issues needing to be addressed by researchers in the engineered cellular immunotherapy field. The first study investigated cells targeting FBP found on ovarian cancers (Kershaw et al., 2006), and the second examined cells directed against the L1-cell adhesion molecule (CD171), which is overexpressed by neuroblastoma cells (Park et al., 2007). Both treatment regimes were well tolerated by patients. However, T cell persistence was poor and no clinical benefits were observed. Clinical responses have been correlated with T
cell persistence in vivo, at least in adoptive therapy of melanoma using unmodified melan-A-specific T cells, suggesting that persistence of therapeutic cells is crucial for successful treatment (Meidenbauer et al., 2003). Neither of the cTCRs used in the trials conducted by Kershaw et al or Park et al included a co-stimulatory domain. The lag time between laboratory and clinical studies can be as much as 10 years, making incorporation of the latest research unfeasible, and thus evaluation of safety was the main issue under investigation. Therefore, as there were no adverse events, the results of the trials are encouraging and pave the way for future trials using more advanced cTCRs incorporating co-stimulatory domains for improved T cell persistence and therapeutic efficacy. The third cTCR trial targeted carboxy anhydrase IX (CAIX), which is overexpressed in more than 90% of primary renal carcinoma (Lamers et al., 2006). Unfortunately, this trial was halted as a result of unexpected hepatic toxicity, most likely due to the engineered T-cells trafficking to and exerting cytotoxic effect against CAIX-expressing epithelial cells lining the bile ducts. Whilst this is an encouraging display of T cell migration and effect, it emphasises the need for careful selection of target antigens. Lamers et al (2006) also saw development of anti-scFv antibodies in patients, a situation which may need to be taken into consideration for future studies, although the mAb source of the scFv was in this case murine, and hence likely to be more immunogenic in patients than a fully human scFv. Taken together, the studies demonstrate that engineered T cells are capable of trafficking to and killing cells expressing the target antigen. When targets are carefully chosen, treatment is well tolerated by patients. However, safety and efficacy in vivo are areas in which more research is required.

A number of avenues are being explored to make T cells more efficacious, especially with regards to activation of therapeutic cells. The benefits of IL-2 on anti-tumour effect when co-administered systemically alongside tumour-specific T cells have long been known (Cheever et al., 1982). However, in the patient setting systemic IL-2 administration is toxic, and when used in conjunction with MART1, melan-A-specific or gp100-specific CTLs for the treatment of melanoma, minimal clinical benefits were observed (Yee et al., 2002). For a more specific IL-2 mediated T cell stimulation in vivo, therapeutic T cells could be transduced with a gene encoding IL-2. In vitro, this resulted in constitutive IL-2 expression and prolonged viability of T cells specific for a melanoma antigen in the absence of exogenous IL-2 (Liu &
Rosenberg, 2001). Alternatively, a chimeric GM-CSF/IL-2 receptor could be used, where stimulation of T cells results in GM-CSF secretion and initiation of an autocrine T cell growth loop (Cheng et al., 2002). Tumours may also secret or induce secretion of inhibitory cytokines, for example transforming growth factor (TGF)-β, creating a tumour microenvironment which prevents anti-tumour immune responses, as is the case in HL (Newcom & Gu, 1995; Gruss & Kadin, 1996). One strategy to defend therapeutic cells against tumour inhibitory factors is engineering them with a dominant negative TGF-βII receptor (Bollard et al., 2002). This has been shown to protect EBV-specific CTLs from TGF-β-mediated inhibition, whilst their phenotype, growth characteristic and ability to specifically lyse EBV-positive cells remained unaffected (Bollard et al., 2002).

As mentioned previously, safety is a major concern when designing engineered T cells for therapy. Although there has been no evidence so far of insertional mutagenesis in clinical testing of cells engineered using viral vectors, as seen with the CAIX-targeted trial mentioned above, cross-reactivity with healthy tissue is a real risk. Also, given the interest in the incorporation of additional costimulatory moieties intended to enhance T cell proliferation and persistence, uncontrolled lymphoproliferation is also a possibility. To guard against these and other unforeseen adverse events, inclusion of suicide genes is a prudent option. HSV-TK has been used for this, where expression of HSV-TK results in the phosphorylation of the non-toxic prodrug, ganciclovir. The active, phosphorylated analogue is incorporated into the DNA cells causing death by apoptosis. However, as it is a viral protein HSK-TK can provoke an immune response against therapeutic cells, greatly reducing efficacy (Ciceri et al., 2007). Thus, recent work has investigated the engineering of suicide genes using endogenous proteins such as caspase 9 (Tey et al., 2007). In the inducible caspase 9 system, administration of a synthetic drug (a chemical inducer of dimerisation) results in cross-linking and activation of the suicide gene product and subsequent apoptosis of the engineered cell (Straathof et al., 2005b).

Although this project has focused on the use of CD8+ CTLs as therapy, CD4+ T cell subsets also have an important role to play in vivo. The function of T\textsubscript{regs} in cancer immunity has yet to be fully elucidated. T\textsubscript{regs} are, however, enriched in TILs and
PBMCs of cancer patients, suggesting they contribute to the suppression of antitumour immune responses (Woo et al, 2001; Griffiths et al, 2007). CD4+ cells, nonetheless, are required together with CD8+ cells to generate an effective response in vivo (Dudley et al, 2001; Einsele et al, 2002), as well as for initiation and maintenance of CD8 memory (Bevan, 2004). Therefore, depletion of the entire CD4+ T cell subset from therapeutic populations is not an option. Further research is required to find a balance between CD4+ T cell help and suppression of CTL responses. Recent reports point to lymphodepletion prior to adoptive immunotherapy as a promising strategy in the clinic (Rosenberg & Dudley, 2004). The reasons why this approach enhances the efficacy of therapeutic T cells are not entirely clear. One possibility is that the creation of immune ‘space’ reduces competition between native and introduced cells for stimulatory cytokines, alternatively the removal of Tregs may reduce suppression of anti-tumour immunity (Wrzesinski & Restifo, 2005).

With so many alternatives potentially able to improve the efficacy of engineered T cells, the biggest challenge facing scientists is ascertaining which options are useful and complementary, and subsequently incorporating these into treatment regimes. Cancer immunotherapy treatments will need to be multifactorial in order to fully harness the enormously complex human immune system. However, there is much yet to be learned with regard to gene modified T cells, and hopefully the understanding gained will lead to superior and more effective therapies.
REFERENCES

Li, Q., Turk, S. M. & Hutt-Fletcher, L. M. (1995). The Epstein-Barr virus (EBV) BZLF2 gene product associates with the gH and gL homologs of EBV and

Herpesvirus Study Group, the International Committee on Taxonomy of Viruses. *Intervirology* **16**, 201-17.

Vogel, C. L., Cobleigh, M. A., Tripathy, D., Gutheil, J. C., Harris, L. N., Fehrenbacher, L., Slamon, D. J., Murphy, M., Novotny, W. F., Burchmore,

