ON THE DEVELOPMENT AND HOMOLOGY OF THE MAMMALIAN CEREBELLAR FISSURES.¹ By O. CHARNOCK BRADLEY, M.B., Professor of Anatomy, Royal Veterinary College, Edinburgh. (Plates XII.-XVI.)

PART I.

Very few serious attempts have been made to discover if there is any regular plan of arrangement of the fissures and lobes of the mammalian cerebellum. If we leave out of account those scattered descriptions of the cerebellum of a single animal, or of one or two animals—such, for instance, as Ganser's (1) classic and oft-quoted investigation into the anatomy of the brain of the mole, Krause's (2) monograph on the rabbit, and Miss Årnback-Christie-Linde's (3) paper on the brain of the shrew and bat; not to mention more of a like nature—we find that the literature on the comparative anatomy of the cerebellum can only be described as meagre. Undoubtedly the best work that has been done in the way of attempting to clear away morphological difficulties is that which has appeared from the pen of Stroud (4). Another paper worthy of mention in this connection is that of Kuithan (5), which appeared almost contemporaneously with Stroud's. These two writers stand practically alone, inasmuch as they did not rest satisfied with an examination of the adult brain, but demanded to know what embryology had to say. Stroud traced the development of the cerebellar fissures in the cat and in man; and Kuithan examined embryos of the sheep and man.

The latest attempt—as far as is known by the present writer—which has been made to establish the homology of the lobes of the cerebellum of mammals appears in the large work by Flatau and Jacobsohn (6) on the central nervous system. The value, great though it still remains, of this last piece of work is impaired by the fact that only adult material was used, and in many cases apparently second-hand descriptions were accepted.

¹ The work, of which the present paper is the outcome, was done by the writer as a Research Student of the University of Edinburgh.
The ideal method, in a question of this kind, appears to be a combination of the embryological and the comparative anatomical. Stroud recognised this, and suggested that it would be necessary to examine into the intrauterine history of every mammal—a colossal task, verily. This being beyond the compass of the powers of one man, he examined two animals embryologically, and gave a long list of adult animals which he stated he had compared with each other. Unfortunately his description of the adult cerebella, seemingly promised in his first paper, is not as yet forthcoming.

Kuithan did not attempt the examination of a series of adult cerebella, but contented himself with the consideration of the development of the fissures in sheep and in man.

In the case of Stroud, Kuithan, and Flatau and Jacobsohn the investigation was apparently begun with the determination to find, if possible, homologies to the lobes of the cerebellum of man. To the mind of the present writer this was a mistake. In questions of this sort the brain of man should be lost sight of as far as possible, since it is admitted to be an organ which has far outdistanced, in its evolution, the brain of the average mammal. It is only after many (if possible, all) mammals have been passed under review that man may be brought in to complete the list as the highest and most richly endowed.

Acting upon the conviction that the brain of man should not be taken as the standard, but that the simplest cerebella should form the starting-point, the present investigation was commenced with a search for the smoothest and least complicated mammalian cerebellum. This was discovered—thanks in part to the paper of Miss Ärnback-Christie-Linde—in the shrew and some of the bats. The shrew's was therefore taken as the initial cerebellum; and had it been possible, shrew embryos would have been examined with a view to noting the time and order of appearance of the various fissures. Owing to the difficulty of obtaining a sufficiency of shrews at all periods of intrauterine life, and because of the comparative ease with which rabbit embryos of all ages could be obtained, it was decided to start the embryological part of the investigation with the latter; and indeed the rabbit possibly served the purpose better than the shrew would have done, since the...
cerebellum of the adult is built on simple lines, and yet there are parts in it in miniature which attain considerable magnitude in the larger mammals.

Seeing that the rabbit has a cerebellum so very much more simple than, say, that of the carnivora or the ungulates, it seemed well that the development of the fissures in one of the larger animals should also be watched. For this purpose, because of the little difficulty in getting material, the pig was chosen. As it happened, I was able to command material at practically any stage of development, and therefore the ages of both the rabbit and the pig embryos were, with one or two exceptions, absolutely known.

In addition to the examination of the developmental history of the fissures in two mammals, as many kinds of adult cerebella as could be obtained have also been compared.

In this paper are stated the results of the investigation, starting with an account of the appearance of the fissures in the rabbit. Until the time arrives when it is necessary to summarise results, the fissures and lobes will be known by the simplest designations, viz., figures and letters, to the end that the mind may not be influenced by the use of terms which have acquired a certain fixed significance.

Rabbit.

20 *days embryo, 37 mm. long* (fig. 3).—When the entire brain of the rabbit is examined at this stage, the cerebellum appears as two fairly prominent lateral projections jutting out on each side just below the mid-brain. A narrow connecting band is also seen running transversely between the mid-brain and the medulla. No fissures are visible to the naked eye; and on making a sagittal microscopic section in the mesial plane, the contour is even except at the posterior lower part of the cerebellar lamina, where a curved hem-like portion is marked off by a shallow fissure (fig. 3, IV.). This fissure makes its first appearance about the 18th day (fig. 1). The hem-like edge of the lamina is continued laterally over the lateral recess of the ventricle, to become continuous with a similar lip belonging to the medulla (fig. 2). It is apparently the Rautenlippe (His).
21 days embryo, 42 mm. long (fig. 4).—At this stage the cerebellum is very similar in appearance, to the naked eye, to that of the preceding day. The middle portion is somewhat more obvious, but no other visible change has occurred. A mesial sagittal section presents an outline which may be roughly described as triangular, the base of the triangle looking towards the medulla and pons. The two other sides of the triangle constitute what it will be convenient to call the anterior and posterior slopes of the cerebellum. Such a section again shows the fissure mentioned in the description of the 20 days embryo, but it is now farther removed from the extreme edge of the lamina (fig. 4, IV.). There is also a faint indication of another fissure at the upper part of the anterior slope (fig. 4, II.). It may be noted also that the future anterior medullary velum is better marked, as a result of a slight forward growth of the anterior part of the cerebellar lamina.

22 days embryo, 50 mm. long (figs. 5, 6 and 7).—A distinct advance has been made in development. The cerebellum is still very obviously made up of two prominent lateral masses, connected by a slighter intermediate portion, but the disparity in volume of these three parts is not so evident (fig. 5). In addition to a mere growth in size, other important changes have taken place. On an examination with the naked eye, it is clear that a portion of each lateral projection is about to be differentiated from the main bulk of the mass. This is shown by faint fissures, or rather grooves, slightly indenting the surface (figs. 5 and 6). Moreover, on sagittal section, the fissure, faintly foreshadowed in the 21 days embryo at the upper part of the anterior slope, is unmistakably a definite entity, and cuts the anterior slope into two almost equal parts (fig. 7, II.). The fissure which was the first to appear is still farther from the edge of the lamina (fig. 7, IV.). Further, there is the promise of a third fissure, this being indicated at this stage by a depression on the posterior slope (fig. 7, III.).

At this stage there are therefore evidences of three transverse fissures cutting at least the mesial part of the cerebellum into four portions; and in addition, indication of a subsequent complication of the lateral part.

23 days embryo, 50 mm. long (figs. 8, 9 and 10).—There is
now undoubted evidence of the rudiments of the three parts of
the adult cerebellum. The central portion has increased
considerably in volume, and there are shallow antero-posterior
grooves marking off the future vermis and hemispheres.

The fissure on the posterior slope, which was not more than
hinted at in the 22 days embryo, is now sufficiently deep to
be visible by means of an ordinary pocket lens (fig. 8, III.). By
the same means two transverse fissures are distinguishable on
the anterior slope (fig. 9). The more superior corresponds to
that already noticed in the previous stage. The lower one of
the two is very shallow, and it is necessary to examine sections
in order to be definitely certain that it is in reality the rudiment
of a fissure.

Sagittal sections show three fissures, with the commencement
of a fourth. The deepest corresponds to the one on the anterior
slope of the 22 days cerebellum (fig. 10, II.).

In an embryo of 55 mm. in length, apparently some hours
older than the one now under consideration, four fissures can
be distinguished without any difficulty (fig. 11). It is desired
to call especial attention to this stage, for it is believed that
here we have the same number of fissures and lobes in the
vermis as belong to the simplest form of mammalian cerebellum.
Without applying any special names to these fissures and
lobes, and without anticipating the attempt, which will be
made later, to homologise them with similar features in the
cerebella of other mammals, let it suffice for the present to
designate the fissures as I., II., III. and IV., and the lobes as
A, B, C, D and E, in each case commencing the enumeration
anteriorly. Of the four fissures we may consider II. to stand
in the first place of morphologic importance. It appears at
an early date in all animals of which we have any embryo-
logical account. Moreover, it maintains its supremacy
of depth throughout the whole of embryonic life, and on
into the adult state. As has been pointed out by previous
writers, it is the deepest and most constant fissure of the
cerebellum.

In the hemisphere of the 23 days embryo a fissure is growing
inwards towards fissure III. of the vermis, and is consequently
dividing the most lateral part of the hemisphere into two some-
what unequal parts, the more posterior of which projects the more laterally.

24 days embryo, 59 mm. long (fig. 12).—To the naked eye the only change is one of increased size and greater distinctness of the fissures. In microscopic sections the fissures are obviously deeper than they were in the preceding stage, and there are indications of a future fissure in lobe A (fig. 12, c).

25 days embryo, 64 mm. long (figs. 13, 14 and 15).—The distinction of vermis and hemispheres is now very clear, and the fissures are more definite. Fissure I. is now of considerable depth, and extends completely across the vermis. Fissures II. and III. have invaded the groove marking vermis from hemisphere. The fissures indenting the lateral part of the hemispheres are deeper and approach fissure I. a little more closely. Two pairs of additional fissures can be distinguished in lobe C, these being in the groove between vermis and hemisphere; one pair on the anterior slope, the other on the posterior (fig. 13, a, fig. 14, b).

In sections, the fissure whose beginning was seen in lobe A of the 24 days cerebellum has attained some depth, and another fissure is forming below it. The former may be called, for the present, fissure c (fig. 15).

27 days embryo, 67 mm. long (figs. 16, 17 and 18).—All the fissures are deeper and much more lateral in extent. The outstanding projection of the hemisphere is now very sharply marked off from the rest of the hemisphere, and when the cerebellum is viewed from the front, is becoming separated from a smaller eminence which has developed in connection with the roof of the lateral recess of the ventricle. The upper and larger projection we shall henceforth speak of as the paraflocculus, and the lower as the flocculus (fig. 17). These terms were suggested by Stroud, and are useful as indicating that the two structures are not equivalent to the flocculus of man. They arise each in its own particular way. The paraflocculus is a part of the hemisphere proper. The flocculus, on the other hand, has developed in the same manner as lobe E, i.e. in close relationship to the Rautenlippe.

The two lateral fissures on the posterior slope of lobe C have now run together in the middle line, and constitute a single
transverse fissure cutting the lobe into two parts (fig. 16, a, fig. 18, a).

28 days (?) embryo, 67 mm. long (figs. 19, 20 and 21).—On the posterior slope the only change is one of depth and distinctness of the fissures, there being no additions. But when the cerebellum is viewed from the front, it is evident that development has here gone on more rapidly. Fissure II. is now in the form of a crescent, extending almost to the borders of the hemisphere. The fissures in the lateral parts of lobe C are also longer and deeper than in the stage described above. An additional fissure has made its appearance in lobe B. The paraflocculus and flocculus are separated by a still deeper depression, and the paraflocculus is more sharply separated from the rest of the hemisphere (fig. 20).

For the sake of subsequent description, we may indicate the fissure on the posterior slope which divides lobe C into two parts by the letter a (fig. 19, a, fig. 21, a). That this fissure, shallow though it is even in the adult rabbit, is of considerable morphologic importance, is brought out in the section of this paper which deals with the various adult cerebella.

At birth.—At the time when the rabbit is born, the cerebellum is not a replica in miniature of the adult organ, since development progresses rapidly for some days after birth.

The cerebellum at birth has its principal fissures of considerable depth, and some of its accessory fissures have begun to form (figs. 22 and 23). The paraflocculus is now completely surrounded by a fissure, with the exception of its posterior part, where there is no fissure, but merely a shallow depression. The flocculus is also completely bounded by a fissure, but as yet its surface is not sculptured by any lines. Fissure III. fades away in the groove or depression behind the paraflocculus, as also does fissure a (fig. 22). Even in the adult the lateral parts of these fissures are not deep.

2 days after birth.—After birth, as has been said, there is a fairly rapid change for a few days, until the cerebellum comes to resemble the adult organ.

At the end of the second day the exact connection of the paraflocculus with the vermis is more precisely indicated. Fissure III. has grown more laterally, and it is now evident
that the paraflocculus really belongs to lobe D. Lobe E can hardly be said to extend into the hemisphere at all, fissure IV. disappearing in the groove between vermis and hemisphere. In the earlier stages this lobe was continuous, without any fissure of demarcation with the posterior medullary velum; but from the 22nd day onwards it projects backwards more and more, and consequently a limiting fissure is formed.

\textit{Adult cerebellum} (figs. 24, 25, 26 and 28).—In giving a description of the adult cerebellum of any animal, it is both convenient and rational to take fissure II. as the dividing line between an interior and a posterior portion. In the cerebellum of the rabbit this fissure lies wholly in the anterior surface, a surface presenting a concavity into which the mid-brain fits. Fissure II. occupies a comparatively high position in the vermis, but slopes rapidly downwards and outwards across the hemisphere to its border. Its great depth is brought out best by making a sagittal section of the vermis (fig. 28, II.). Below this fissure lie some seven folia, the two uppermost of which are separated from the rest by a fairly deep fissure, which we have seen makes its appearance about the 23rd day of intrauterine life, and which has been referred to in the previous paragraphs as fissure I. This is the deepest fissure in that part of the vermis which lies anterior to fissure II. When traced outwards it is found to fail to reach the extreme lateral border of the hemisphere (fig. 24, I.). At a distance of two folia below fissure I. is fissure \textit{c} (as referred to in the embryonic cerebella), not quite so deep as the former, but reaching the lateral border. From the presence of fissure \textit{c} lobe \textit{A} is divided into two portions, which may be called lobule \textit{A}_1 below the fissure, and lobule \textit{A}_2 above it. In lobule \textit{A}_1 the folia do not extend farther in a lateral direction than to a line corresponding to the lateral limits of the vermis, \textit{i.e.} no hemisphere can be distinguished in this part of the cerebellum. The question of whether there is a lingula in the rabbit corresponding exactly to that of man is one which seems best answered in the negative. There are certainly no folia adherent to the anterior medullary velum.

The vermis and hemispheres behind fissure II. are divided into three lobes (C, D and E), corresponding to those first in-
dicated in the 22 days embryo. Lobe C of the vermis usually carries eight folia, the majority of which are not carried directly into the hemisphere. The fissures between these folia are for the most part shallow, but two of them go to a greater depth than the rest, and are held to be of greater importance. Not only are they deeper than the others, but they appear at an earlier period. A reference to the 25 days embryo shows the fore-runners of these fissures as two pairs of depressions; one on the anterior, the other on the posterior slope. In the adult brain the more anterior of the two occurs between folia 2 and 3 (counting from fissure II.), and on being traced into the hemisphere is seen to run for some distance parallel to fissure II., into which it ultimately opens. For more immediate purposes we shall speak of this fissure as fissure \(b \) (fig. 24, \(b \), fig. 28, \(b \)). An offshoot leaves it in the groove between vermis and hemisphere, and curves outwards and backwards to the border of the hemisphere.

The other deep fissure of lobe C separates folium 6 from folium 7, and corresponds to the fissure resulting from the union of the pair of grooves on the posterior slope which first appeared on the 25th day, and which met in the vermis two days later. This has already been referred to as fissure \(a \). In the adult it can be traced to the outermost limits of lobe C. If we recognise the fissures just mentioned as being of importance, it follows that lobe C must be looked upon as consisting of three portions or lobules. These, for the present, will be called lobules \(C_1 \), \(C_2 \) and \(C_3 \), starting the enumeration anteriorly.

The fissure between lobes C and D (fissure III.) is of moderate depth in the middle of the vermis (fig. 28, III.), but becomes very shallow at its lateral borders. In some specimens, however, there is not much difficulty in tracing its curved course outwards and upwards until it is lost in the deep fissure which separates the paraflocculus from the rest of the hemisphere. Lobe D is confined to the vermis, but in most specimens there is a low white ridge connecting it with the paraflocculus. Its surface is formed by three folia (sometimes a shallow fissure divides the lowest folium into two). Of the two fissures between these folia the lower is slightly the deeper, and the lower folium extends rather farther towards the hemisphere.
than the other two. These facts are mentioned because of the belief that lobe D of the rabbit corresponds to two lobules in more complicated cerebella.

Lobe E is entirely confined to the inferior aspect of the cerebellum, and, like lobe D, has no direct continuation into the hemisphere.

The paraflocculus projects markedly from the lateral part of the hemisphere, from which it is separated by a deep fissure in front and above, and by a depression behind. It is entirely enclosed in a special fossa formed by the temporal bone (lobulus petrosus). As has been seen in tracing its development, it is really a piece of the hemisphere which has been cut off from the rest. Its developmental connection with lobe D is a point upon which it is desired to lay emphasis.

The flocculus consists of two or three folia, seen best when the cerebellum is viewed from the front, and lying anterior to the paraflocculus (fig. 25). It is in contact with the lateral extremity of lobe B, from which it is separated by a fissure which contains the middle cerebellar peduncle (fig. 24).

Lepus timidus (fig. 27).—The differences between the cerebellum of the rabbit and that of the hare are not perhaps very great, but they seem sufficiently important to merit mention. Lobes A, B and C are practically identical with those of the rabbit. Lobe C has again eight folia in the vermis, and a fissure, a, deeper than the rest, separates folia 6 and 7. This fissure is much more definite in hemisphere of the hare than it is in the rabbit.

The most important differences exist in lobe D. Here the number of folia is at least four, as against three in the rabbit; and the uppermost of the four is more definitely joined to the paraflocculus by a ridge which is slightly foliated along its upper border as it approaches the paraflocculus. This fact is mentioned as being the ground upon which the statement, that in the adult rabbit lobe D is connected with the paraflocculus, is based. In many specimens of the rabbit's cerebellum the adult connection is obscure; therefore the evidence afforded by the brain of the hare is welcome.

Before passing to the consideration of the development of the much more complicated cerebellum of the pig, it is perhaps
well to describe those adult cerebella which are built on the same or similar lines as obtain in the rabbit.

Sorex vulgaris (fig. 29).—As previously stated, apparently the simplest form of mammalian cerebellum is found in the shrew and some of the bats. An examination of sagittal sections of the shrew's cerebellum shows that the vermis is divided into fine lobes by four fissures, i.e. that the numerical condition as found in the brain of a rabbit embryo of about 24 days is maintained into adult life. Fissure I. is of moderate depth, but does not extend much, if at all, beyond the vermis. Fissure II., on the other hand, is very deep, and passes far out into the hemisphere. Its importance as a morphologic entity probably stands out more plainly in the shrew, and some few animals with a similar simple cerebellum, than it does in many of those in which the fissures are more numerous.

Fissure III. is the shallowest of the fissures of the vermis, and does not invade the hemisphere, or at any rate only slightly. There is a fissure in the hemisphere occupying a corresponding position, but microscopic sections show that there is no union of the two. Fissure IV. very early disappears in a series of sections. There is a projection, from the lateral part of the hemisphere, enclosed in a cell in the temporal bone, and doubtless corresponding to the paraflocculus of the rabbit. It seems very doubtful if a flocculus proper is developed.

Erinaceus Europaeus (figs. 30, 31, 32, 33 and 34).—The hedgehog has a cerebellum which, in degree of complexity, may be considered to stand between that of the shrew and that of the rabbit. The vermis is divided into five lobes by four fissures, of which the second (fissure II.) is by far the deepest. This is visible in the vermis when the cerebellum is examined from above, but it leaves the dorsal to gain the anterior surface in the shallow groove which marks vermis from hemisphere. In the hemisphere it slopes rapidly downwards and outwards, in much the same manner as in the rabbit. Fissure I. is second in point of depth. Unlike the corresponding fissure in the rabbit, it reaches the borders of the hemispheres. Fissures III. and IV. are of moderate depth, and run into one another at the lateral boundary of the vermis.

Lobe A is, as a rule, beset by three folia, and, unlike the
corresponding lobe in the rabbit, is not divided by a fissure, c. Lobe B has never more than two folia, so far as can be gathered from an examination of some ten brains. Lobe C has five folia in the vermis, the four anterior of which are separated from the fifth by a fissure which corresponds to a in the brain of the rabbit, and which is continued into the hemisphere in a like manner. Lobe C, anterior to fissure a, becomes much expanded in the hemisphere, and its folia are increased in number. The folium behind fissure a retains its single character after its prolongation into the hemisphere (lobule C₃). Lobes D and E have each two folia, and are confined to the vermis.

The parafloculus is fairly well marked, but does not produce the projection (lobulus petrosus) which is so prominent in the rabbit. The floculus is rather smaller in the hedgehog than in the rabbit, but has approximately the same position and shape as in the latter animal. Sagittal sections show very clearly the close relationship of this lobule with the posterior medullary velum. As successive sections are examined in a direction away from the vermis, the velum is seen to become thickened by grey matter, which is directly continuous with the grey matter of the floculus.

Talpa Europaea (figs. 35, 36 and 37).—In the vermis of the cerebellum of the mole, the four fundamental fissures are easily distinguished. Fissure I. is relatively a slightly greater depth than in either the rabbit or the shrew. It is, as usual, limited to the anterior surface, and runs almost vertically downwards in the line of boundary between vermis and hemisphere. Fissure II. is of very considerable depth. Its course is very sinuous, beginning on the anterior surface of the vermis, then taking a sharp bend backwards over the anterior superior border of the cerebellum to gain the dorsal surface, where it again turns sharply forwards and outwards to once more become included in the anterior surface, down which it runs almost vertically. Fissure III. is more distinct than in the shrew. Fissure IV. is of about the same depth as in Sorex.

Lobe A is almost entirely in the vermis, though it expands a little in the lower part of the anterior surface. Its surface possesses two fissures, the lower of which is more pronounced,
and may possibly be comparable to fissure \(c \) of the rabbit; a fissure not represented in the shrew. Lobe \(B \) is constricted in the vermis, where it is constituted by a single folium; but, owing to the erratic course taken by fissure \(II. \), it expands considerably in the hemisphere. That part of lobe \(C \) which is included in the vermis is comparatively extensive. This lobe is constricted at the junction of vermis and hemisphere, to become again extensive in the hemisphere itself. There are a few shallow fissures in the vermis, but one of them is of slightly greater depth than the rest, and corresponds to fissure \(a. \) Lobule \(C_{3} \) consists of a narrow folium in the vermis, but expands in the hemisphere (fig. 35). This is a point of some moment, because in the more complicated cerebella, to be hereafter described, the expansion of this particular lobule in the hemisphere is a prominent feature. Lobes \(D \) and \(E \) are simple and call for no remark, except that a very thin and narrow band runs outwards and forwards from \(D \), but is entirely hidden by the bulk of the hemisphere. This band extends as far forwards as the base of the paraflocculus.

The paraflocculus is in the form of a rounded lobule, with fissured surface, connected with the hemisphere by a narrow neck, and enclosed in a fossa of the temporal bone. No flocculus can be made out with certainty.

Mus decumanus (figs. 38, 39, 40 and 41).—The cerebellum of the rat is decidedly more complicated than that organ in the mole or hedgehog, and approaches more nearly that of the rabbit. Fissures \(I. \) and \(II. \) resemble those of the rabbit, except that \(I. \) always reaches the margin of the hemisphere, and the central part of \(II. \) is visible of the dorsal surface. Fissures \(III. \) and \(IV. \) are also very similar to those of the rabbit's cerebellum.

Lobe \(A \) is divided into two parts by a fissure, \(c \), which is almost as deep as \(I. \). The upper part of this lobe (lobule \(A_{2} \)) has two folia; the lower part (lobule \(A_{1} \)) a variable number, separated by shallow fissures (fig. 41). Lobe \(B \) has two folia, and resembles the like lobe in the rabbit both in position and size. In lobe \(C \) there is a deep fissure, \(a \), cutting the vermis to almost the same depth as fissure \(III. \), and separating a single folium, which is continued into the hemisphere. The rest of lobe \(C \), which is contained in the vermis, has about three folia,
of which the most anterior is the largest. A definite fissure, \(b \), cannot be made out. The hemisphere part of lobe \(C \), anterior to fissure \(a \), is of considerable size. Lobes \(D \) and \(E \) are confined to the vermis, the former having three folia, the latter two.

The paraflocculus projects from the hemisphere by a narrow neck, and is received into a fossa in the temporal bone, the investment of bone being less close than in the rabbit. There is a small, simple flocculus lying anterior to the paraflocculus, and touching the lateral borders of lobes \(A \) and \(B \).

In the mouse (\textit{Mus musculus}) the cerebellum very closely resembles that of the rat. The paraflocculus has possibly a slightly narrower neck and is more closely invested by bone.

\textit{Arvicola amphibius} (figs. 42, 43 and 44).—The water-vole has a cerebellum which differs from that of the brown rat in minor points only. Its fissures are the same in number. As a rule, fissure \(I. \) does not quite reach the border of the hemisphere. Lobe \(A \) is divided by a fairly deep fissure, \(a \). Lobule \(A_2 \) has two folia, lobule \(A_1 \) only one. Lobe \(B \) is narrow (as in the rat), and possesses two folia in the vermis. The vermis portion of lobe \(C \) has six folia, fissure \(a \) separating the sixth from the rest. The sixth folium (constituting the central part of lobule \(C_2 \)) is continued into the hemisphere without either increase in size or accession of fissures. There is possibly a fissure, \(b \), placed between the 2nd and 3rd folia, and continued outwards and forwards into the anterior surface of the hemisphere.

Lobes \(D \) and \(E \) are limited to the vermis, \(D \) having two folia, \(E \) only one. The paraflocculus and flocculus are almost identical with those in the rat.

The cerebellum of the field-vole (\textit{Arvicola agrestis}, fig. 45) only differs from that of the water-vole inasmuch as its folia are fewer in number.

\textit{Pteropus poliocephalus} (figs. 46, 47, 48 and 49).—A sagittal section through the middle of the vermis of this large bat discloses an arrangement of lobes not very unlike that of the hedgehog. The number of lobes and fissures is the same, but the folia are somewhat more numerous. Fissure \(I. \) is rather shallow, but fissure \(II. \) is of great depth; of fissures \(III. \) and \(IV. \) there is nothing remarkable to note. Lobe \(A \) is small and carries about three folia. There is apparently no fissure \(c \). Lobe \(B \), on the
other hand, is large, and is provided with five or six folia. There are seven folia in the vermis in lobe C, the seventh of which is separated from those anterior to it by an unmistakable fissure a. This single folium of the vermis is connected with two folia in the hemisphere. In Talpa, lobule C₃ increased in size in the hemisphere, but did not acquire any intrinsic fissures. In Pteropus it also expands, and in addition is sculptured by a fissure. It seems good to call attention to this point, in the light of other facts presently to be set forth. Lobes D and E belong exclusively to the vermis; the former has three folia, the latter two.

A noteworthy development appears in the paraflocculus. It consists of two parts, an upper and a lower. In the cerebella to be described in the following pages, the morphologic importance of this feature of the paraflocculus will become evident. The lower portion of the paraflocculus of Pteropus consists of a lobulus petrosus; i.e. it projects into a bony fossa and has a narrow neck. Both portions of the paraflocculus are foliated (figs. 46 and 47). The flocculus is small, and divided into two by an almost vertical fissure, only seen when the cerebellum is viewed from the side.

It is interesting to notice the great difference in the cerebellum of the Megachiroptera as shown in Pteropus, and that of the Microchiroptera as exemplified in Vesperugo pipistrellus, described and figured by Miss Arnbäch-Christie-Linde (3). Vesperugo has a cerebellum not more complex than that of the shrew, whereas the cerebellum of Pteropus is as complex as that of the rabbit, or possibly more so.

Sciurus vulgaris (figs. 50, 51, 52 and 53).—The squirrel offers a most instructive degree of complexity in the fissures and lobes of its cerebellum, inasmuch as it exhibits a condition intermediate between the simpler forms, which have already been described, and those of a more complicated nature, still to be considered. For this reason the squirrel’s cerebellum is peculiarly serviceable to anyone desiring to establish homologies in the lobes and fissures of mammals in general.

Fissure I. in the squirrel, as in the rabbit, stands second in point of depth. Also, as in the rabbit, it fails to reach the margin of the hemisphere. Fissure II. is far and away the
deepest of all the fissures. It is visible in the vermis, on the
dorsal surface; but turning forwards abruptly, it runs down the
anterior surface of the hemisphere, with only a slight degree of
obliquity. Fissure III. is of considerable depth, and on reaching
the border of the vermis, turns at almost a right angle, and
runs nearly vertically downwards for some distance. Then,
curving outwards and afterwards forwards, it is traceable into
the deep fissure separating the paraflocculus from the hemi­
sphere (figs. 51 and 52, III.). Fissure IV. resembles the same
fissure in the rabbit, and offers no noteworthy feature.

The greatest interest centres itself in the lobes. Lobe A is
of considerable size, consists of five folia, and is indented by a
fissure, c, between the 2nd and 3rd folia. Another fissure, of a
depth almost equal to that of c, occurs at a distance of two folia
below the latter. Lobe B consists of three or four folia and is
not very noteworthy. Lobe C has five folia in the vermis. The
anterior four expand in the hemisphere, in the customary
manner, and are separated from the fifth by a fissure, a. The
fifth folium, instead of remaining as a single folium when traced
into the hemisphere, as in the rabbit, suddenly expands and
forms a not inconsiderable lobule, clearly differentiated from the
rest of lobe C by a continuation of fissure a (fig. 52). Lobe D
is relatively large and carries six folia. It is divided into two
approximately equal parts by a fissure of a depth only slightly,
if at all, inferior to that of fissure III. We shall refer to this
latest fissure as d in future descriptions, as its value as a
division between parts of the vermis is unquestionable (figs.
51, 52 and 53, d). That part of lobe D which lies above fissure
d (and which we may call lobule D₁) consists of two folia, which
becoming one, curves round the inferior border of lobule C₃, and
losing its grey cortex, gives place to a white ridge passing
directly to the upper part of the paraflocculus. That part of
lobe D inferior to fissure d (known in the succeeding descriptions
as lobule D₂) is not continued into the hemisphere. Lobe E is
comparatively small, and consists of only one definite folium.

The paraflocculus is large when compared with the similar
lobule of the cerebella already described, and presents the
appearance of a rounded foliated band which has been doubled
upon itself and placed with its long axis approximately in the
direction of the long axis of the head. The bend is in front (figs. 51 and 52). The flocculus is small and compressed. It lies below the paraflocculus, and can only be seen from the side or front of the cerebellum.

The points in the foregoing description to which it is desired to draw especial attention are as follows:—(1) The increasing complexity of lobe A as compared with the same lobe of all the other animals so far discussed. (2) The considerable expansion in the hemisphere of lobule C₃. (3) The division of lobe D into two parts by the fissure d, and the lateral continuation of the upper part (lobule D₁) of this lobe. (4) The arrangement of the paraflocculus in the form of two parallel portions, continuous with each other in front, and the connection of lobule D₁ with the upper portion of the paraflocculus.

The cerebella which remain to be described are all built on much more complicated lines than are those which have been passed under view in the foregoing sections. This being so the examination of the development of the fissures in an animal possessing a richly fissured and foliated cerebellum in adult life will greatly aid in the task of recognising homologies. Therefore pig embryos will be examined, with a view to noting the time and order of appearance of the various fissures.

(To be continued.)

REFERENCES.

(2) KRAUSE, Die Anatomie des Kaninchens, 1884.
In all the figures the same letters and figures are used for corresponding fissures or lobes. The application of the letters and figures is explained in the text.

p.m.v. (in figs. 1 and 3) = posterior medullary velum.

a.m.v. (in figs. 4 and 7) = anterior medullary velum.

ch.pl. (in figs. 1, 2 and 3) = choroid plexus.

All the sections (with the exception of that shown in fig. 2) are in the median plane and sagittal in direction.

Fig. 1. Rabbit embryo, 18 days, 21 mm. Mesial sagittal section through the cerebellar lamina.

Fig. 2. Same embryo. Sagittal section where the cerebellar lamina and the medulla are joining. lat. rec. = lateral recess.

Fig. 3. Rabbit embryo, 20 days, 37 mm. Mesial sagittal section through the cerebellar lamina.

Fig. 4. Rabbit embryo, 21 days, 42 mm. Mesial sagittal section.

Fig. 5. 22 days, 50 mm. Posterior view. x 2.

Fig. 6. 22 days, 50 mm. Left lateral view. x 2.

Fig. 7. 22 days, 50 mm. Mesial sagittal section.

Fig. 8. 23 days, 50 mm. Posterior view. x 2.

Fig. 9. 23 days, 50 mm. Anterior view. x 2.

Fig. 10. 23 days, 50 mm. Mesial sagittal section.

Fig. 11. 55 mm. Mesial sagittal section.

Fig. 12. 24 days, 59 mm. Mesial sagittal section.

Fig. 13. 25 days, 64 mm. Posterior view x 2.

Fig. 14. 25 days, 64 mm. Anterior view x 2.

Fig. 15. 25 days, 64 mm. Mesial sagittal section.

Fig. 16. 27 days, 67 mm. Posterior view. x 2.

Fig. 17. 27 days, 67 mm. Anterior view. x 2.

Fig. 18. 27 days, 67 mm. Mesial sagittal section.

Fig. 19. 28 days (?) 67 mm. Posterior view. x 2.

Fig. 20. 28 days (?) 67 mm. Anterior view. x 2.

Fig. 21. 28 days (?) 67 mm. Mesial sagittal section.

Fig. 22. Rabbit, 30 hours after birth. Posterior view. x 2.

Fig. 23. 30 hours after birth. Anterior view. x 2.

Fig. 24. Adult. Anterior surface. x 2.

Fig. 25. " Left lateral surface. x 2.

Fig. 26. " Posterior surface. x 2.

Fig. 27. Lepus timidus. Posterior view. x 2.

Fig. 28. Rabbit, adult. Mesial sagittal section.

Fig. 29. Sorex vulgaris. Mesial sagittal section.

Fig. 30. Erinaceus Europaeus. Mesial sagittal section.

Fig. 31. " Anterior surface. x 2.

Fig. 32. " Left lateral view. x 2.
THE MAMMALIAN CEREBELLAR FISSURES.

Fig. 33. Erinaceus Europaeus. Superior view. x 2.
Fig. 34. "", Posterior view. x 2.
Fig. 35. Talpa Europae. Superior-posterior view. x 2.
Fig. 36. "", Anterior surface. x 2.
Fig. 37. "", Mesial sagittal section.
Fig. 38. Mus domesticus. Posterior view. x 2.
Fig. 39. "", Superior view. x 2.
Fig. 40. "", Anterior surface. x 2.
Fig. 41. "", Mesial sagittal section.
Fig. 42. Arvicola amphibius. Superior surface. x 2.
Fig. 43. "", Anterior surface. x 2.
Fig. 44. "", Mesial sagittal section.
Fig. 45. Arvicola agrestis. Mesial sagittal section.
Fig. 46. Pteropus poliocephalus. Superior view. x 2.
Fig. 47. "", Posterior view. x 2.
Fig. 48. "", Anterior surface. x 2.
Fig. 49. "", Mesial sagittal section.
Fig. 50. Sciurus vulgaris. Anterior surface. x 2.
Fig. 51. "", Superior view. x 2.
Fig. 52. "", Posterior view. x 2.
Fig. 53. "", Mesial sagittal section.
Professor O. CHARNOCK BRADLEY on the Development and Homology of the Mammalian Cerebellar Fissures.
Professor O. Charnock Bradley on the Development and Homology of the Mammalian Cerebellar Fissures.
Professor O. CHARNOCK BRADLEY on the Development and Homology of the Mammalian Cerebellar Fissures.
Professor O. Charnock Bradley on the Development and Homology of the Mammalian Cerebellar Fissures.
Professor O. CHARKOCK BRADLEY on the Development and Homology of the Mammalian Cerebellar Fissures.
ON THE DEVELOPMENT AND HOMOLOGY OF THE MAMMALIAN CEREBELLAR FISSURES.¹ By O. Charnock Bradley, M.B., Professor of Anatomy, Royal Veterinary College, Edinburgh. (PLATES XVII.-XXIII.)

PART II.—PIG.

40 days embryo, 52 mm. long (figs. 54, 55 and 56).—At this stage the cerebellum of the pig embryo bears a certain likeness to that of the rabbit on the 20th day of gestation. No fissures are visible to the naked eye, but when sections are made and microscopically examined there is noticed a somewhat thin lip-like plate projecting from the lower posterior corner of the section of the cerebellar lamina (fig. 56). This is comparable in every respect to the same feature in the rabbit's brain on the 20th day, and there develops a homologous lobe in connection with it.

44 days embryo, 64 mm. long (figs. 57, 58 and 59).—Development has proceeded rapidly during the interval between the last stage and the present. A naked-eye examination shows a sufficiently clear distinction between the future vermis and hemispheres. There is also visible on the anterior slope a fissure (II.) of considerable length (fig. 58). Microscopic sagittal sections show fissure IV. as before, and fissure II. of some depth. There are also possibly faint indications of two other fissures in that part of the vermis lying between II. and IV. There is as yet no trace of a separation of a paraflocculus from the hemisphere.

48 days embryo, 80 mm. long (figs. 60, 61 and 62).—Develop-

¹ The work, of which the present paper is the outcome, was done by the writer as a Research Student of the University of Edinburgh.
ment has again progressed rapidly; indeed, it is something of a misfortune that a stage intermediate between 44 and 48 days could not be obtained. But though this is a misfortune, it is not one which offers any insuperable difficulty in the solution of the problem before us.

An examination of a 48 days cerebellum reveals a fissure (II) which is prolonged for some distance into the hemisphere. Below it the two other fissures are faintly marked. These develop into fissures I. and c. On the posterior slope there are two faint fissures in the vermis. Subsequent development shows that these become fissures III. and d. In the hemisphere there is an indication of a fissure, which, growing inwards from the lateral part of this portion of the cerebellum, ultimately demarcates the paraflocculus. Another faint foreshadowing of a fissure is also seen indenting the margin of the hemisphere anterior to the one just mentioned. This latter, growing inwards, ultimately forms part of fissure a (fig. 60, a).

Microscopic sections afford additional evidence as to the actuality of the faint depressions seen with the naked eye (fig. 62). They also show that a number of fissures are about to complicate that portion of lobe A which lies below fissure c (lobule A.). Lobe E has increased in volume, and is now, in consequence, sharply defined from the posterior medullary velum. A flocculus is becoming evident, and its development from the boundary of the lateral recess is clearly indicated. Its boundaries are not as yet rigidly set down, but it reveals itself as a thickening and bulging in the region in which, in the future, it is to become conspicuous (fig. 61).

Embryo, 86 mm. long.—In the cerebellum of an embryo of 86 mm. in length (of which the age is not certainly known, but is estimated at about 50 days) the anterior surface is quite richly fissured. Fissure II. now reaches the extreme margin of the hemisphere, and fissure I. almost does so. On the posterior slope, fissure a runs completely across the cerebellum, but is shallow at the junction of vermis and hemisphere. Fissure III. crosses the vermis and invades the groove between it and the hemisphere. The fissure which is about to cut off the paraflocculus is deep, and is growing inwards towards fissure III. of the vermis, with which it finally becomes continuous.
Fissure \(d\) is, if anything, rather longer than fissure III. The paraflocculus forms a distinct projection, and is now clearly separated from the flocculus. Sections show that lobe B is becoming divided by a shallow transverse fissure.

51 days embryo, 83 mm. long (figs. 63, 64 and 65).—The difference between this and the above stage is only one of depth of fissures.

55 days embryo, 100 mm. long (fig. 66).—To the naked eye the fissures have obviously deepened since the 51st day, but no new ones can be made out. Sections, however, show that fissure \(b\), has begun to invade that part of lobe C which is in the vermis. It seems likely that this fissure first made its appearance, on the anterior slope of the hemisphere, about the 48th day (fig. 61), and that the two parts gradually grew together in the vermis. It is interesting to notice at what an early period fissure \(a\) came into existence, and how comparatively late fissure \(b\) is in making its appearance in the vermis. This should be compared with the constancy of the former fissure in the cerebella of the type of the rabbit, and the inconstancy or difficulty of determination of fissure \(b\) in the cerebella of the same order of complexity.

The fissures in lobule \(A_1\) are now of considerable depth. Lobule \(A_2\) retains its comparatively small size. Lobe B is larger, and contains a moderately deep fissure, which is the forerunner of a like feature in the adult brain.

59 days embryo, 118 mm. long (figs. 67, 68 and 69).—As in the rabbit, the anterior part of the pig's cerebellum has advanced more rapidly than the posterior part during the earlier stages of development. By the 59th day the anterior surface is bearing a strong resemblance to the adult condition, but the posterior part is still comparatively simple. Fissure \(b\) is now of some depth and can readily be recognised by the unaided eye. Fissure \(a\) has gained considerably in depth. Fissure III. has become continuous with the lateral fissures, which, making an early appearance, first indicated the limits of the paraflocculus.

Fissure \(d\) is of great lateral extent, being indeed the longest fissure of the cerebellum at this stage (with the possible doubtful exception of fissure II., which has a curved course). Fissure \(d\), it should be noted, is growing forwards into the
paraflocculus, which is, by it, being divided into an upper and a lower part, connected together in front (fig. 67). It is desired to emphasise the fact that there is a strong, well marked connection between lobe D and the paraflocculus. This connection at this stage is not confined to the part of lobe D above fissure a (lobule D₁), but belongs to the entire lobe. Nothing could show more clearly that the paraflocculus and lobe D are parts of one and the same morphologic unit. This point is illustrated much better in the pig than it was in the rabbit.

The paraflocculus has enlarged, and its anterior surface shows signs of foliation (fig. 68).

65 days embryo, 132 mm. long (figs. 70, 71, 72, 73 and 74).—The anterior surface has now very closely approached the adult condition, both in its external appearance and also in those features which can only be adequately appreciated by means of sagittal sections.

Fissure II. is of great depth, its lowest part being not far removed from the summit of the roof of the 4th ventricle (fig. 74). Lobe B shows definite evidence of its future bipartite condition. Lobule A₁ has now lost its former arrangement of indefinitely arranged folia, and has collected them into three sub-lobules such as are found in the adult brain. Fissure b is now of some depth, and fissure a makes an important landmark on the posterior slope. Fissure c is deeper than fissure III., and both parts of lobe D are becoming foliated (fig. 74). Lobe E remains relatively small and simple, but is now separated from the posterior medullary velum by a conspicuous fissure.

The paraflocculus is now divided into two parts, both of which are now foliated. The whole lobule now closely resembles the same lobule in the adult squirrel. The division into two parts has obviously been brought about by an extension in a forward direction of fissure d. This extension was beginning in the previous stage. The upper part of the paraflocculus is connected with lobule D₁ by a rounded non-foliated ridge. The connection between lobule D₂ and the lower half of the paraflocculus has almost become obliterated, but it should be kept in mind that such a connection did at
one time exist. The flocculus is small and, to the naked eye, not yet provided with folia. On examining microscopic sections, however, slight fissures are found to exist.

70 days embryo, 150 mm. long (fig. 75).—Except in richness of foliation, no marked change has occurred in that part of the cerebellum which is anterior to fissure II. The posterior portion of the organ, however, has now entered into a more active phase of development, and is rapidly assuming the adult appearance. That part of lobe C which is anterior to fissure a (lobules C_1 and C_2) has grown considerably in a lateral direction. Further, the vermis portion has also grown so much in an antero-posterior direction that it can no longer be accommodated in the strict mesial plane, but has become distorted by being thrust over to one side. Fissure b is now a very important feature. It extends all the way across the cerebellum. Lobule C_3 has also altered considerably in appearance. It no longer forms a band of practically uniform width, running from one margin of the cerebellum to the other. It now fails to extend as far laterally as the more anterior part of lobe C. Its vermis portion has increased in volume in a sagittal direction, and, like that part of the vermis immediately in front of it, is now distorted by being pushed to one side. The hemisphere portions, too, have enlarged in a sagittal direction, and are now in the form of rounded masses, connected with the vermis by a comparatively narrow isthmus. This lobule has therefore come to resemble that of the squirrel.

The two parts of lobe D have also enlarged, and their folia are more numerous. The connection between lobule D_1 and the corresponding part of the paraflocculus is still smooth. Lobe E remains small, and to the naked eye appears to have no connection with the flocculus beyond that established by means of the posterior medullary velum. But microscopic sections show that there is still a low smooth ridge running between the two structures.

The paraflocculus has not increased much in size, and, because of the lateral expansion of lobe C, is now not so prominent a feature on the lateral surface of the hemisphere. The flocculus is still small, and to the naked eye smooth.

Embryo, 165 mm. long, age unknown (figs. 76, 77, 78, 79
and 80).—This is the last embryonic stage which it is necessary to examine, as it brings us within a short distance of the condition of the adult cerebellum. Lobule A_1 is now certainly composed of three sub-lobules, the uppermost of which has beyond doubt an extension into the hemisphere. One single small folium still adheres to the anterior medullary velum, and therefore may possibly be looked upon as an attenuated example of a lingula. Lobule A_2 is relatively small, and has a rather shallow fissure dividing it into two parts. Fissure II. begins on the dorsal surface of the vermis; curving forwards at the lateral boundary of the vermis, it runs obliquely down the anterior surface. Lobe B is divided into upper and lower portions by a fairly deep fissure, whose advent has been noted in earlier stages. Lobe C has again made great advances. So much is this the case that lobule C_2 is very considerably distorted. Lobule C_3 is now clearly divided into three parts—one in the vermis and one in each hemisphere—connected by narrow bands. The connection between lobule D_1 and the upper part of the paraflocculus is becoming slightly marked by fissures, and has become in part hidden by the posterior extremity of lobe C.

The paraflocculus is now quite complicated, from the presence of numerous folia; but there is no difficulty in recognising its constitution as two tiers. The flocculus is now foliated.

Adult cerebellum (figs. 81, 82, 83 and 84).—Having traced the development of the fissures and lobes up to an advanced stage, it does not seem necessary to give an additional detailed description of the adult organ. It will suffice to briefly indicate the changes which have occurred since the 165 mm. stage.

The cerebellum anterior to fissure II. has not undergone any radical change. It has taken additional folia upon itself, but that is all. In the posterior part of the cerebellum more decided changes have occurred. Fissure b is now very distinct crossing vermis and hemisphere, and reaching the border of the latter. A further displacement of the vermis portion of lobe C has taken place, so that in the adult brain fissure a is decidedly oblique. The connections between the vermis and hemisphere portions of lobule C_3 have become very much reduced. The upper part of lobe D has shared in the general distortion of
this region of the vermis. Its connection with the paraflocculus now consists of a transversely foliated ridge (fig. 83). Lobule D₂ has merely increased in size and become more thickly foliated. Lobe E remains very small and inconspicuous (fig. 84).

In many cerebella the paraflocculus has become a somewhat jumbled collection of folia, but in most brains it has retained a closer resemblance to its earlier condition. There is usually little difficulty in tracing its two-tiered character, but it appears as though the lower tier had been turned forwards at its posterior end. The flocculus in the adult is in the form of a row of vertically placed folia, and runs in an antero-posterior direction, immediately below the paraflocculus. Its extremities only are visible when the cerebellum is looked at from before or from behind.

Having now learnt the characters of the fissures and lobes in the pig, we are in a position to examine those cerebella which are constructed after a similar plan.

M mustela furo (figs. 85, 86, 87 and 88).—In this animal is a good example of the backward retreat that fissure II. makes in some of the more complex cerebella. The vermis is about equally voluminous in front of and behind this fissure, this being the result of an increase in the number of lobules in the more anterior section of the vermis.

Lobe A is divided into two slightly unequal parts by a fissure, c, which is almost entirely visible when the cerebellum is looked at from the front, and which reaches the margin of the hemisphere. Lobule A₁ is divided into two parts, each carrying two or three folia. Lobule A₂ is also divided into two portions, but the fissure is not so deep as that in lobule A₁. Lobe B is cut by a curved fissure which almost reaches its lateral boundaries. It will be seen that lobes A and B are very similar to the corresponding lobes in the pig, except that the lower component of A is divided into two instead of three sub-lobules.

Lobe C forms a very considerable constituent of the hemisphere. It has fissures a and b, but the lobules in the vermis between a and b and a and III. are comparatively simple; i.e. they are not developed to such an extent that their accommodation necessitates distortion of the vermis. The connection between vermis and hemisphere segments of lobule C₃ is very
narrow, as in the pig, and partly or wholly concealed. Lobes D and E are confined to the vermis; and D is divided into two lobules by a fissure, d.

The paraflocculus is arranged in the form of two tiers of folia joined together anteriorly. From the lower tier a lobulus petrosus projects for some distance. The connection between paraflocculus and lobe D cannot be made out in the adult. It is somewhat difficult to satisfactorily distinguish a flocculus, but it is apparently present, and visible when the cerebellum is viewed from the side or from behind.

Mustela erminea and M. vulgaris have both been examined, but they so closely resemble M. furo that no further description is necessary.

Moles taxus (figs. 89, 90, 91 and 92)._As compared with lobe B, lobe A is smaller in the badger than it is in the pig. Only a comparatively small portion of it is visible on the anterior surface of the cerebellum. Lobule A₂ is also small. Below fissure c there are two groups of folia, that group lying more inferiorly being further partially divided.

Lobe B is large, and divided by a deep fissure into upper and lower lobules, each of which is again somewhat deeply indented by a fissure (fig. 92).

In lobe C, fissure b extends to the border of the hemisphere, as it does in the pig (fig. 90). Lobule C₂ consists of a vermis portion, whose folia—unlike those of the pig—run transversely; and a hemisphere part, considerably removed from the vermis, because of the large development of those parts of lobule C₃ which belong to the hemisphere. The three segments of lobule C₃ are very unequal in size, the hemisphere portions being very extensive. There is practically no distortion of lobule C₃ in the vermis (fig. 91). Lobes D and E call for no special remark. The double character of the paraflocculus is very evident, the two portions being arranged in an oblique plane, and very clearly continuous in front (figs. 89 and 90). The connection between paraflocculus and vermis is very difficult to establish.

In the brain examined, a very prominent lobulus petrosus was present on the right side, and was received into a fossa formed by the temporal bone. On the left side the corresponding lobule was curved forwards underneath the lower part of the
paraflocculus (fig. 89). The question arises as to the possibility of the lobulus petrosus always representing the posterior extremity of the lower portion of the paraflocculus. This may be the case. If we accept this as being a true interpretation of the facts, then we should consider that, as the paraflocculus increases in size in different animals, it tends to press forwards, since the lobulus petrosus is often found in cerebella having small paraflocculi.

The flocculus consists of a single folium lying between the lateral recess of the ventricle and the most posterior part of the paraflocculus.

Canis familiaris (figs. 93, 94, 95 and 96).—The anterior part of the cerebellum of the dog does not differ very materially in the arrangement of its fissures and the disposition of its lobes from the corresponding part of the badger's cerebellum. In lobes C and D, however, there are differences of sufficient magnitude to warrant mention. Fissure II is present in a position very similar to that of the badger. It can readily be followed across the vermis and hemisphere to the border of the latter, running almost parallel to fissure II. Lobule C₂ has a very considerably distorted vermis portion, and its hemisphere dependencies show several fissures of some depth, which give the impression that it consists of several distinct sub-lobules. The central segment of lobule C₃ is also much twisted, and on superficial examination appears to have no connection with those vertically elongated masses which form its hemisphere segments. On opening up the groove between vermis and hemisphere, however, the connection can be distinguished. The displacement and sinuosity of the vermis in lobules C₂ and C₃ only appears after birth. In a new-born dog the vermis is perfectly straight and its folia entirely transverse.

Lobule D is connected to the upper part of the paraflocculus by a low white ridge, which can only be discovered by removing the lowest and most posterior part of lobe C. The rest of lobe D and lobe E call for no remark.

The paraflocculus is relatively larger than that of the badger, to which it bears a close resemblance in the manner in which its two tiers are arranged. It has not, however, a lobulus petrosus; or, at any rate, there is not more than the merest
attempt at the formation of one, this occurring at the posterior end of the lower tier, and being only occasionally present. The flocculus is small and consists of a few folia, placed, under cover of the paraflocculus, at the most anterior limit of the lateral recess of the ventricle (fig. 95).

Canis vulpes (figs. 97, 98 and 99).—The general shape of the cerebellum of the fox is very different from that found in the dog. The fox's cerebellum has a greater vertical height in comparison with its antero-posterior diameter. Its anterior surface is depressed for the reception of the corpora quadrigemina, and its posterior surface is also concave from above downwards. The posterior concavity is rendered all the more obvious because of the backward projection of lobe D over the medulla. This projection is confined to lobule D₂, and is so great that this lobule can be seen very distinctly when the cerebellum is viewed from above. These differences being recognised, the cerebellum of the fox otherwise resembles that of the dog. The only points to which it seems necessary to draw attention are two, as follows: The vermis in the region of lobules C₁ and C₃ is possibly a little shorter in an antero-posterior direction, and somewhat less distorted in form. The lower part of the paraflocculus carries a definite lobulus petrosus (figs. 97 and 98).

The flocculus is small in the fox, and only just visible from behind (fig. 98).

Felis domestica (figs. 100, 101 and 102).—In the domestic cat the anterior part of the cerebellum is so similar to the same portion in the dog, both as regards its superficial characters and also its appearance in sections, that no detailed description is needed. The most important features are those presented by the organ when viewed from behind. Several cerebella of the cat have been examined, and in all a very striking character is the extreme to which the distortion of the central portions of lobules C₂ and C₃ is carried (figs. 100 and 101). In the brain from which the figures were made this distortion is very marked, possibly more so than is the case in the average cerebellum; but they serve to show to what lengths this twisting of the vermis may go. It will be observed that lobules C₃ and C₂ are arranged in the form of an S-shaped curve, the bends of
which are very abrupt. This curvature of the vermis is con-
tinued into lobe D, but here its bends are not so sudden (fig.
101). There can be little doubt that this exaggerated dis-
placement of the vermis is to be interpreted as meaning that,
in the cat, lobes C and D are relatively more developed (so
far as those parts of them which belong to the vermis are con-
cerned) than is the case in the other mammals examined. The
lateral parts of lobule C3 are relatively smaller in the cat than
in the dog, badger, or fox (fig. 101). They do not extend so
far downwards as to blot out the connection between para-
flocculus and the vermis. This connection is in the form of
one or two folia, resting upon the medulla below, and in con-
tact with the lowest part of lobule C3 above.

The paraflocculus resembles that structure in the dog. There
is considerable difficulty in distinguishing a flocculus with any
degree of certainty in the adult animal. That it is present is
undoubted from the observations made by Stroud on its
development. But its clear definition in the embryo appears
to become obscured at a later date.

Goat and Sheep (figs. 103, 104 and 105).—In many respects
the cerebellum of ungulates departs, in the way of details,
from the plan found in those carnivora just described.

When viewed from the front, the cerebella of the goat and
sheep show fissures e, I., II. and b very distinctly (fig. 103), all
of these reaching the margins of the hemisphere. Fissure e
crosses the vermis almost perfectly transversely. Lobule A1
has only a very imperfectly developed hemisphere portion; in-
deed it is doubtful if the hemispheres can be considered to
extend into this region. Fissure I., possibly a little shallower
than e, has a curved direction. Fissure II. is very acutely
curved, as in the dog. Lobule A2 and lobe B are almost entirely
confined to the vermis, their lateral prolongations being very
small. Indeed, in this region it is difficult to set definite bounds
between the vermis and the hemispheres. There is some
amount of lateral displacement, with consequent curvature, in
the vermis in lobules C2 and C3, but this is not greater in
amount than that found in the dog.

In the sheep and goat, and in ungulates generally, the lateral
divisions of lobule C3 are not nearly so large as they are in the
carnivora. In the carnivora their uppermost ends are commonly visible, either on one or both sides, when the cerebellum is regarded from the front. This has never been found to obtain in those ungulates which have been examined for the purposes of this research. Again, these lobules do not reach so far down as to touch the medulla, other than in exceptional cases. The result of this vertical abbreviation is to allow of the connection of the paraflocculus to be traced directly to the vermis, as is the case in the simpler forms of cerebellum (fig. 104). As we have seen, this connection is easily made out in the adult pig. In the sheep and goat, however, it is not quite so evident on a superficial examination; it is necessary to open up the groove between vermis and hemisphere.

The form of lobule D₁ is somewhat peculiar in both the sheep and goat (fig. 104). It has a central, well developed portion in the vermis, and smaller offshoots reaching into the hemispheres, a constriction of greater or less tenuity intervening.

Lobe E is of larger size than in the pig and the carnivora. The paraflocculus and flocculus resemble those parts of the cerebellum of the pig.

Bos taurus (fig. 106).—In the cerebellum of the cow, although the same lines are followed as in the sheep and goat, the arrangement of fissures appears at first sight to be very complicated. This remark applies only to the superior and posterior views, as lobes A and B and lobule C₁ are almost identical in form with those parts in the average carnivore or ungulate brain. It may be added that it is impossible to make out any hemisphere in lobe A. Even in lobe B the hemisphere is very attenuated.

On closely examining the posterior part of the cerebellum, it is found that the complexity is more apparent than real, and is due to a distortion which rivals that of the cat's vermis. Apart from this disturbance of form, there is little to which special attention need be directed. It may be mentioned, however, that the lateral parts of lobule C₃ commonly extend farther in a downward direction than obtains in the sheep and goat, this extension bringing them almost or quite in contact with the medulla. Not infrequently lobe E is so large and projects so far backwards as to be visible as one or two folia on the posterior aspect of the cerebellum.
Equus caballus (figs. 107, 108 and 109).—A very striking feature in the horse’s cerebellum is the comparatively posterior position of fissure II. Fissures c, I, II, and b are distinct and deep. Fissure e is of very considerable depth, and fissure I. is almost as deep as fissure II. (fig. 109). It should be noted—as distinguishing the cerebellum of the horse from that of the sheep and goat, and especially from that of the cow—that lobe A is certainly, though not very strongly, continued into the hemisphere.

The posterior part of the horse’s cerebellum shows one or two points of interest and importance. As in the ungulates already mentioned, the lateral parts of lobule C2 are small as compared with the carnivora. In the horse their connections with the vermis are not difficult to follow. There is, further, no difficulty in making out the connecting link between lobule D1 and the paraflocculus (fig. 108).

In some specimens lobule D2 is continued into the hemisphere for a short distance, but this continuation has only once been found on both sides in the same brain. Its presence, though inconstant, is interesting, as being apparently the remains of that undoubted connection which we have seen to exist between lobule D2 and the lower part of the paraflocculus during the embryonic life of the pig. In the majority of animals all trace of this primitive unity is lost as the brain grows into its adult form; but in some, possibly in man, evidences remain.

Lobule E is, if anything, smaller in the horse than it is in the sheep, goat and cow. The paraflocculus shows its two-tier character more clearly than in the other ungulates examined, in this respect resembling the paraflocculus of the carnivora. It should be remembered that in ungulates generally the lower tier shows a tendency to curve forwards at its posterior end. This is so well marked in the horse that there are practically three tiers produced. In an earlier part of this paper the suggestion has been thrown out that possibly the lobulus petrosus of the rabbit, etc. represents only the posterior extremity of the lower part of the paraflocculus of more complex cerebella. It may be asked, further, whether in those animals like the horse, in which the paraflocculus turns forwards at its posterior end, this
recurved extremity may not be equivalent to a lobulus petrosus, unenclosed in a special fossa of bone. The supposition that this may be so is strengthened when the condition found in the badger is taken into account. In the cerebellum of *Moles taxus*, of which a description has already been given, on one side a lobulus petrosus was found; but on the other side the corresponding part of the paraflocculus was turned forwards underneath the lower tier.

The flocculus is usually easily distinguished in the horse, and is visible from the side and from behind. In some specimens a distinct white ridge, independent of the posterior medullary velum, passes from the flocculus to lobe E of the vermis. This ridge is indicated on the left side of fig. 108. It has not been met with elsewhere than in the horse—possibly because an insufficient number of cerebella have been examined—but its occurrence in this animal is of importance, as showing evidence, in the adult, of the embryonic unity of the structures between which it passes.

Equus asinus.—The cerebellum of the donkey is so like that of the horse in all but the merest details that an extended description is not necessary. It may perhaps be well to say that lobule C₂ in the hemisphere carries several fairly deep fissures, whose presence give the surface a complex appearance. Lobule D₁ shows the tendency, remarked in the sheep and goat, to extend into the hemispheres in the form of lateral appendages. The connection of this lobule with the paraflocculus is not so superficially evident as it is in the horse. The flocculus of the donkey has a greater antero-posterior extent than is the case in the horse.

In the foregoing pages the steps by which the fissures, and consequent lobes and lobules, of the cerebellum came into existence have been traced in two mammals. It has also been sought to discover the simplest form of mammalian cerebellum, and this having been done, to endeavour to recognise, in the complex as well as in the simpler forms, a likeness to this elementary pattern. Apparently the cerebellum in which the fissures are fewest and the lobes smoothest belongs to the shrew and the smaller bats. In the shrew there are four
fissures only; and of these only one (the second, i.e. II.) extends through both vermis and hemisphere. The remaining three do not belong to the hemisphere, being confined to the vermis or its immediate neighbourhood.

In following the development of the cerebellum of the rabbit, it was found that this five-lobed and four-fissured stage was reproduced. But in the adult rabbit the number of fissures is increased. In the development of the pig, it appears possible that the five-lobed condition may obtain in its simple form for a time, but it quickly gives place to a much greater complex of fissures.

In both rabbit and pig fissure IV. was the first to appear, and this in association with the Rautenlippe, which, continuing round the lateral recess of the ventricle, blends with the Rautenlippe of the medulla. The association of fissure IV. originally seems beyond doubt. But as development goes on it becomes more and more removed from the edge of the cerebellar lamina, because of the growth of lobe E and the flocculus.

In both rabbit and pig the second fissure to develop is fissure II., which has been recognised by several writers to be of paramount importance, and which is declared by both Stroud and Kuithan to be the first fissure visible in the developing cerebellum.

The next fissures, in point of time of appearance and importance as dividing lines of the cerebellum, are fissure III. and those demarcating the paraflocculus from the rest of the hemisphere. These three are in reality the three elements of one and the same fissure, which, becoming continuous, they ultimately form.

By the presence of the above mentioned fissures, the cerebellum becomes divided transversely (but not completely as yet) into four unequal portions. (1) A part anterior to fissure II.; this becoming itself divided later into lobes A and B by fissure I. (2) Lobe C, lying between fissure II. and fissure III., with its lateral elements. (3) Lobe D, to which the paraflocculus belongs. And (4) lobe E, of which the flocculus is an outlying dependency.

Fissure I., separating lobes A and B, appears shortly after fissure III. in the rabbit, and somewhere about the same time in the pig. The other fissures, which are formed either at the same time
as some of the above (as in the pig), or at a somewhat later date (as in the rabbit), may be considered as of secondary importance, and have no representatives in the simplest type of mammalian cerebellum.

In those adult cerebella which have been examined, there is quite clearly a common pattern running through the whole series. But in many of them there are interwoven into this fundamental pattern subsidiary ornaments, which tend, in a measure at least, to obscure the simplicity of the cerebellum which has been taken as the starting-point. In all the cerebella the five fundamental lobes can be recognised, and their individual peculiarities and tendencies may be summarised as follows:—

Lobe A, in all but the very simplest forms, is divided into two unequal parts by fissure c. This fissure is wanting in the shrew and indefinite in the hedgehog, but is constant in all others. Lobule A₁ in the higher forms consists of three sublobules. In some there are apparently only two of these divisions. It is possible that this complexity of the lobule may be indicated even in the rabbit. Lobule A₂ is always smaller than lobule A₁, and is generally provided with a moderately deep fissure, whose precursor may possibly be shown in the rabbit.

In the higher forms lobe B is divided into two parts, each of which may be again divided. In the rabbit and hedgehog it carries two folia, separated by a moderately deep fissure.

Lobe C consists of three lobules, separated by fissures a and b. Of these two fissures a is held to be much the more important morphologically, because of its earlier appearance in the embryo and its more constant character in the adult. These two fissures apparently develop in a manner peculiarly their own. They both begin in the hemisphere, and grow towards the middle line.

Lobule C₃ must be considered as standing definitely apart from the rest of lobe C. Its differentiation is early, especially in the pig, and in all the adult animals described, from the squirrel upwards, its individuality is very strongly asserted.

Even in the rabbit there is an attempt at a division of lobe D, but this is not accomplished until the squirrel is reached.
In the higher forms the division is embryonic and early. In the pig, fissure d appears about the same time as fissures III. and I. Particular attention has been called to the development of fissure d because of its forward extension and invasion of the paraflocculus, which is, as a result, divided into two parts, as is the rest of lobe D to which it belongs. Subsequent development may obscure the continuity of the paraflocculus with lobule D_1, or, on the other hand, the connection may persist into adult life (e.g. in the horse). The connection of the paraflocculus with lobule D_2 is always lost in the adult, but there may remain slight traces, such as are found in the horse.

The embryonic continuity of lobe E and the flocculus, and their morphologic unity, have already been commented upon. This continuity early disappears, and there is usually no trace of it apart from the posterior medullary velum. But in the horse at least, as has been noted, some evidence may exist even in the adult.

The various fissures and lobes have been distinguished, up to this, by letters and figures only. It would have been easy to employ terms such as those used in human anatomy, but—as Oliver Wendell Holmes has expressed it—words, from occupying for a long time the same place in language, become 'polarized.' So, in order to trammel the mind as little as possible, it was thought better to avoid those terms which would call up certain fixed and long-rooted conceptions.

The purpose of keeping the judgment as unbiassed as possible being now served, the letters and figures may give place to terms such as are commonly employed. In order to do this, the notion of the plan of the mammalian cerebellum, which has been gained from the descriptions given herein, must be applied to the cerebellum of man. Using the technicalities as employed by Schäfer in Quain's Anatomy, the letters and figures may be transmuted as follows:

There can be little doubt that fissure II. corresponds to sulcus preclivalis, fissure III. to sulcus postpyramidalis, and fissure IV. to sulcus postnodularis. Fissures a and b correspond respectively to sulci horizontalis magnus and postclivalis, and fissure d is equivalent to sulcus prepyramidalis. That sulcus horizontalis magnus should not be employed, as is done in human anatomy,
to divide the cerebellum into two primary parts, is evident, and has been pointed out and insisted upon by Stroud. The comparative method clearly shows that sulcus preclivalis (*fureal sulcus* of Stroud) forms the real and fundamental dividing line.

In that part of the cerebellum which falls anterior to fissure II. (sulcus preclivalis), difficulties arise in the use of human anatomical terms. For *sulcus postcentralis* of the human anatomist corresponds to fissure e; a fissure secondary both in point of time of appearance in the embryo and in morphologic value. In the current descriptions of the human brain, as given in this country, no sulcus is mentioned as equivalent to fissure I. The result is that the culmen of human anatomy includes lobe B and lobule A₂. Lobule A₂ probably corresponds to the "ascending part of the monticulus" of some German writers (Flatau and Jacobsohn, for instance), but I am not certain that the expression is used for lobule A₂ alone or always.

The following table shows the parts in the human brain corresponding to the various divisions of the mammalian cerebellum as described in this paper.

<table>
<thead>
<tr>
<th>Fissures</th>
<th>Lobes</th>
</tr>
</thead>
<tbody>
<tr>
<td>c. Sulcus postcentralis</td>
<td>Lobus centralis</td>
</tr>
<tr>
<td>I. (Not named by Schäfer)</td>
<td>Lobus culminis</td>
</tr>
<tr>
<td>II. Sulcus preclivalis</td>
<td>Lobus clivi</td>
</tr>
<tr>
<td>b. Sulcus postclivalis</td>
<td>Lobus cacuminis</td>
</tr>
<tr>
<td>a. Sulcus horizontalis magnus</td>
<td>Lobus tuberis</td>
</tr>
<tr>
<td>III. Sulcus postpyramidalis</td>
<td>Lobus pyramidis</td>
</tr>
<tr>
<td>d. Sulcus prepyramidalis</td>
<td>Lobus uvulae</td>
</tr>
<tr>
<td>IV. Sulcus postnodularis</td>
<td>Lobus noduli</td>
</tr>
</tbody>
</table>

It will be observed that I have only examined the cerebella of placental mammals. Lack of suitable material has precluded a first-hand investigation of Monotremes and Marsupials. But,
judging from the descriptions and figures given by Ziehen (7), it is clear that the scheme, as elaborated in the foregoing pages, will apply to Marsupials at least. These mammals evidently fall into the group of animals in which the cerebellum follows the simpler type. Whether Monotremes also can be included in this group is not so obvious from the descriptions available. It seems not unlikely that their cerebella belong to a group separate from the rest of the mammalia.

In carrying out the work of this investigation, so much assistance, in the form of material, has been afforded by so many persons, that it is impossible to make suitable acknowledgment without going to considerable length. Let it suffice to say, that my debt of gratitude is not to be computed from the extent of the avowal here made. Much of the microscopic work has been done in the Physiological Laboratory of the University of Edinburgh, where, through the courtesy of Professor Schäfer and his assistants, every facility that could be wished for has been afforded.

REFERENCE.

PLATES XVII.-XXIII.

EXPLANATION OF FIGURES.

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>View</th>
<th>Magnification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 54</td>
<td>Pig embryo, 40 days, 52 mm.</td>
<td>Posterior view.</td>
<td>× 2</td>
</tr>
<tr>
<td>Fig. 55</td>
<td></td>
<td>Left lateral view.</td>
<td>× 2</td>
</tr>
<tr>
<td>Fig. 56</td>
<td></td>
<td>Mesial sagittal section</td>
<td></td>
</tr>
<tr>
<td>Fig. 57</td>
<td></td>
<td>Posterior view.</td>
<td>× 2</td>
</tr>
<tr>
<td>Fig. 58</td>
<td></td>
<td>Anterior view.</td>
<td>× 2</td>
</tr>
<tr>
<td>Fig. 59</td>
<td></td>
<td>Mesial sagittal section</td>
<td></td>
</tr>
<tr>
<td>Fig. 60</td>
<td></td>
<td>Posterior view.</td>
<td>× 2</td>
</tr>
<tr>
<td>Fig. 61</td>
<td></td>
<td>Anterior view.</td>
<td>× 2</td>
</tr>
<tr>
<td>Fig. 62</td>
<td></td>
<td>Mesial sagittal section</td>
<td></td>
</tr>
<tr>
<td>Fig. 63</td>
<td></td>
<td>Posterior view.</td>
<td>× 2</td>
</tr>
<tr>
<td>Fig. 64</td>
<td></td>
<td>Anterior view.</td>
<td>× 2</td>
</tr>
</tbody>
</table>
Fig. 65. Pig embryo, 51 days, 88 mm. Mesial sagittal section.
Fig. 66. Pig embryo, 55 days, 100 mm. Mesial sagittal section.
Fig. 67. Pig embryo, 59 days, 118 mm. Superior posterior view.
Fig. 68. Pig embryo, 59 days, 118 mm. Anterior view. × 2.
Fig. 69. Pig embryo, 59 days, 118 mm. Mesial sagittal section.
Fig. 70. Pig embryo, 65 days, 132 mm. Posterior view. × 2.
Fig. 71. Pig embryo, 65 days, 132 mm. Superior view. × 2.
Fig. 72. Pig embryo, 65 days, 132 mm. Anterior view. × 2.
Fig. 73. Pig embryo, 65 days, 132 mm. Left lateral view. × 2.
Fig. 74. Pig embryo, 65 days, 132 mm. Mesial sagittal section.
Fig. 75. Pig embryo, 70 days, 150 mm. Superior view. × 2.
Fig. 76. Pig embryo, 165 mm. Posterior view. × 2.
Fig. 77. Pig embryo, 165 mm. Superior view. × 2.
Fig. 78. Pig embryo, 165 mm. Left lateral view. × 2.
Fig. 79. Pig embryo, 165 mm. Anterior view. × 2.
Fig. 80. Pig embryo, 165 mm. Mesial sagittal section.
Fig. 81. Pig, adult. Anterior surface. × 1.
Fig. 82. Pig, adult. Superior view. × 1.
Fig. 83. Pig, adult. Posterior view. × 1.
Fig. 84. Mustela furo. Anterior surface. × 1.
Fig. 85. Mustela furo. Superior view. × 2.
Fig. 86. Mustela furo. Posterior view. × 2.
Fig. 87. Mustela furo. Mesial sagittal section.
Fig. 88. Meles taxus. Anterior surface. × 1.
Fig. 89. Meles taxus. Superior view. × 1.
Fig. 90. Meles taxus. Posterior view. × 1.
Fig. 91. Meles taxus. Mesial sagittal section.
Fig. 92. Canis familiaris. Anterior surface. × 1.
Fig. 93. Canis familiaris. Superior view. × 1.
Fig. 94. Canis familiaris. Inferior surface. × 1.
Fig. 95. Canis familiaris. Mesial sagittal section.
Fig. 96. Canis lupus. Superior view. × 1.
Fig. 97. Canis lupus. Posterior view. × 1.
Fig. 98. Canis lupus. Mesial sagittal section.
Fig. 99. Cat. Superior view. × 1.
Fig. 100. Cat. Posterior view. × 1.
Fig. 101. Cat. Mesial sagittal section. × 1.
Fig. 102. Ovis aries. Anterior view. × 1.
Fig. 103. Ovis aries. Posterior view. × 1.
Fig. 104. Ovis aries. Mesial sagittal section. × 1.
Fig. 105. Goat. Superior view. × 1.
Fig. 106. Bos taurus. Mesial sagittal section. × ½.
Fig. 107. Equus caballus. Anterior superior view. × ½.
Fig. 108. Equus caballus. Posterior view. × ½.
Fig. 109. Equus caballus. Mesial sagittal section. × ½.
Professor O. CHARNOCK BRADLEY on the Development and Homology of the Mammalian Cerebellar Fissures.
Professor O. CHARNOCK BRADLEY on the Development and Homology of the Mammalian Cerebellar Fissures.
Professor O. Charnock Bradley on the Development and Homology of the Mammalian Cerebellar Fissures.
Professor O. Charnock Bradley on the Development and Homology of the Mammalian Cerebellar Fissures.
Professor O. CHARNOCK BRADLEY on the Development and Homology of the Mammalian Cerebellar Fissures.
Professor O. CHARNOCK BRADLEY on the Development and Homology of the Mammalian Cerebellar Fissures.
Professor O. CHARNOCK BRADLEY on the Development and Homology of the Mammalian Cerebellar Fissures.
UNIVERSITY of EDINBURGH.

"GOODSIR" MEMORIAL FELLOWSHIP COMPETITION.

II.

THE MAMMALIAN CEREBELLUM: ITS LOBES AND FISSURES.
THE MAMMALIAN CEREBELLUM: ITS LOBES AND FISSURES.

By O. Charnock Bradley, M.B., Ch.B., (Edin).

"Weitere Bausteine zu einer rationellen Eintheilung der Kleinhirn-Oberfläche (in Man) muss die vergleichende Anatomie liefern". (Schwalbe).

"Unfortunately, the subject of cerebellar morphology is almost a terra incognitae, If Pouchet found reason, in his time to deplore the obscurity which anatomists had allowed to enshroud the comparative anatomy of this important organ, we at the present day have infinitely more reason to bemoan our ignorance, Our ignorance of cerebellar morphology seems to-day greater than ever". (Elliot Smith. 1898).

To assert, that the great stumbling block in the path of one investigating the functions of the Mammalian Cerebellum, is a want of proper understanding of the homologies of the various
lobes in different animals, is probably not overstating the case. It is certainly possible that the discrepancies and lack of harmony in the results obtained by physiologists in experimentation on animals are due to the operations having been performed on parts of the cerebellum that are not homologous. It is hardly claiming too much to say that results obtained by experiment on the lower animals can only be translated into terms of Human Physiology when it can be definitely stated that the region excised, or otherwise interfered with, corresponds to a precise region of the human cerebellum. Unless this can be done, experimental results may have a doubtful value as throwing a certain and clear light upon the functions of the human organ. This contention may be illustrated by a supposed example. Given the desire, on the part of an investigator, to arrive at some conclusion regarding the role played by the Flocculus of Man in the physiology of the cerebellum, experiments will be made upon the so-called "Flocculus" of one of the lower mammals. If the rabbit—to take a likely example—be selected as the animal suitable for experimentation, the results obtained may quite possibly be fallacious. And for the reason that the projecting part of the rabbit's cerebellum, which is frequently called "Flocculus", is not the homologue of the flocculus of Man, but an entirely different structure, having a widely different developmental history, and, one might therefore expect, a different physiologic status. Again, it would be difficult to come to any accurate conclusion regarding the function of the "Tonsil" of the cerebellum of Man from experiments upon the dog; since this structure does not exist in the latter animal. Therefore, on account of the benefit which may possibly accrue to Physiology—and through Physiology, to Medicine—if for no other reason, a better understanding of the homologies of the parts of the mammalian cerebellum should be sought. The human cerebellum is so complex that, as stated by Schwalbe in the words which stand at the head of this paper, a rational division of it can only be founded upon the Comparative Anatomy of the organ. But under this term of Comparative Anatomy we must include developmental history; for "embryology is the true torch-bearer for all research into the organic body", and results obtained by the examination of the adult cerebella of various mammals must be illuminated by the light of Development. If Embryology is not taken into account, the conclusions arrived at from the study of Comparative Anatomy, as the term is, even now, frequently understood, may be productive of misconception.

In connection with the subject of homologies it cannot be too strongly insisted upon that the human brain must not be taken as the type. That this has been done by writers in the past, has been the cause of many errors and much misunderstanding. The employment of terms current in text-books on
Human Anatomy must also be deprecated. For, though these terms have a definite meaning as applied to certain areas of the surface of the cerebellum of Man, they have little if any meaning when translated to the cerebellum of mammals in general. Further, the division of the human cerebellum into lobi and lobules as recognised by the human anatomist, is based upon purely empirical grounds. The futility of using the human brain as a type is clearly evident if it be placed side by side with that, say, of a rodent or an insectivore. It is well, then, in desiring to establish homologies, to put the human organ on one side as something which, in its evolution, has strayed far from the average degree of complexity.

So far as I am aware, no attempt worthy the name was made to establish the morphology of the cerebellum upon a rational basis before the year 1895, when STRoud (1) published a paper dealing with the development of that organ in the Cat and Man. As the result of his investigations Stroud came to the conclusion that there is a fundamental plan after which the cerebella of all mammals are formed. He recognised certain very important features which are constantly present. Among other points he discounted the use of the Sulcus horizontalis magnus as the essential line of division of the cerebellum into two parts, and emphasised the importance of a much deeper and absolutely constant fissure which is equivalent to that found in the human brain separating the Culmen from the Clivus, and to which he gave the name of Sulcus furcalis. That part of the cerebellum in front of the Sulcus furcalis he called the pre-ramus, and to that part posterior to the sulcus he applied the name of post-ramus.

Each of the lateral parts of the post-ramus he designated Pileum, consisting of a post-pileum and a pre-pileum separated by an inter-pilear sulcus (in the cat) or a peduncular sulcus (in Man). In Man the pre-pileum is formed by the Clivus and its lateral prolongations. In the cat it consists of the Clivus, Caecumen and Tuber, and their lateral prolongations. It seems a pity that some more uniform division could not have been resolved upon.

A very important fact, which was brought out by Stroud's investigations, was the lack of correspondence between the human flocculus and the so-called flocculus of the majority of mammals. It was shown that the flocculus of Man is present in the lower mammals, but only forms part, and a comparatively insignificant part, of the lobe lying at the side of the cerebellum of the cat. To the major part of this lobe the name of Paraflocculus was given. The value of this discovery can hardly be overstated.

Almost contemporaneously with the publication of Stroud's paper, appeared one in which KUIThan (2) traced the development of the cerebellum in the sheep and Man. Here again the morphologic importance of the constant deep fissure,
called sulcus furcalis by Stroud, was pointed out. From its early appearance during development, Kuithan named the fissure the Sulcus primarius cerebelli. From the circumstance that the sulcus primarius is the deepest fissure in the vermis, while the Sulcus horizontalis magnus is the deepest in the hemisphere, Kuithan proposed to divide the mammalian cerebellum into three lobes of which these two fissures would form the boundary lines. The Anterior Lobe (vorderlappen) would, by this method of division, consist of Lobi centralis, and culminis; the Middle Lobe (mittelelappen) would include Lobi clivi, and cacuminis; and the Posterior Lobe (unterlappen), Lobi tuberis, pyramidis, uvulae, and noduli. This is a variation of the division suggested by SCHWALBE in his description of the human cerebellum. Schwabe also divided the cerebellum into three lobes, but his middle lobe consisted of Lobi cacuminis, clivi and tuberis; and this recognition of the three parts as constituting one single lobe is supported by embryological evidence, as will be shown later. Kuithan does not appear to have grasped the significance of the parafo~culus and flocculus, for he simply names the upper part of the parafo~culus of the sheep, the "vermis lateralis", and makes no suggestion regarding its homology. He says nothing of these structures in Man. Kuithan further falls into the error, into which so many others have fallen, of allowing his ideas to be governed by what he knows to be the condition of things in Man. His endeavours seem to have been largely in the direction of showing that the cerebellum of the sheep contains the same divisions as does that of Man. Although this circumstance marred his publication considerably, the residual value is very great.

In 1897, ZIEHEN made a valuable contribution to the literature of the subject in an elaborate paper on the brain of Monotre~mes and Marsupials. But he treated his subject from the purely descriptive side, and did not venture into the field of speculation as to homologies. He did, however, recognise a fissure which he named the Sulcus horizontalis magnus on the assumption that it corresponded to the fissure bearing that name in Man; and he calls attention to Sulci cerebelli superior anterior and posterior, the former of which is obviously the homologue of the Sulcus furcalis (Stroud) and Sulcus primarius cerebelli (Kuithan). He further calls attention to the connection of the "Lobus flocculi" with the rest of the cerebellum, but does not draw any distinction between a parafo~culus and a flocculus. He appears to fall into error in giving the name of "Flocculus" to a projecting part of his "lobus flocculi" which, doubtless, corresponds to the Lobulus petrosus to which especial attention will be asked subsequently.

In 1899 G. ELLIOT SMITH, in his elaborate description of the brain of the Edentates, struck out an entirely new line in his manner of dealing with the cerebellum. He recognised the individuality of the lobus flocculi, which is separated
from the rest of the cerebellum by a deep limiting fissure for which he suggested the name of *Fissura flocculi* (Parafloccular sulcus of Stroud). He follows Stroud in dividing the Lobus flocculi into two parts, a flocculus and a paraflocculus; the latter being subdivided into upper and lower portions -Paraflocculus dorsalis and Paraflocculus ventralis. After the Lobus flocculi has been subtracted from the cerebellum, Elliot Smith considers the residuum to consist of three azygous lobes separated from each other by two fissures; a *Fissura prima*, "A fissure of the greatest morphological importance, ranking in this respect with the fissura flocculi only", and a *Fissura secunda*. The fissura prima corresponds to Stroud's sulcus furcalis; the fissura secunda separates lobes apparently homologous with the Pyramid and Uvula of Man. The lobes separated by these fissures are named Lobus anticus, Lobus centralis and Lobus posticus. The lateral part of the Lobus centralis is named the Area crescens, "for it will be found that in the higher mammals it is the exuberant increase of this part of the cerebellum which is the main factor in the evolutionary process". A point of very considerable importance was clearly stated in this paper; this being the recognition of the connection of the "pyramid" with the caudal extremity of the upper part of the paraflocculus. It was also stated that the area crescens can be subdivided into three portions lying the one behind the other. It is perhaps only fair to point out that the term "pyramid" was only used tentatively. "In the meantime" says the writer, "I shall use the term pyramid with the reservation that the validity of its homology with the similarly-named part of the cerebellum in Man remains to be proved. This point can be satisfactorily settled only by embryological investigation, and neither Kúithan nor Stroud has attempted to solve the problem." In this publication the cerebella of Orycteropus, Myrmecophaga, Tamandua, Bradypus, Chaloepus, Manis, Xenurus, Dasypus, and Chlamydophorus are considered.

The monumental work published in 1899 by Flatau & Jacobschon (6) on the comparative anatomy of the central nervous system of mammals contains a large mass of material descriptive of the cerebellum. The writers, like those previously quoted, recognise the deep and constant Sulcus superior anterior (Ziehen) as being the true dividing line by which the cerebellum is separated into two parts. Their descriptions, however, painstaking and praiseworthy though they are, have all the end in view of finding in the average mammalian cerebellum representatives of the lobes of the human structure. This, as is inevitable, leads to misconceptions; as an example of which may be mentioned the confusion of paraflocculus and flocculus with Lobulus biventer and Tonsil.

In the early part of 1902 the present writer embodied the results of a somewhat extended investigation, on the development and homologies of the mammalian cerebellar fissures, in a
paper which has been recently published (7). The investigation had been carried out on the following lines. The simplest form of cerebellum known to the writer was taken as the starting-point, and the parts of this simple form sought for in the more highly developed and elaborated cerebella; this method being considered more rational than that of assuming that the simpler forms must contain, in a simplified condition, the divisions of the more complicated brains. The simplest workable type of cerebellum was found to be one in which a mesial sagittal section shows five lobes separated from each other by four fissures. In order to avoid confusion, no pre-existing names were applied to these lobes and fissures; but the simplest method of designating them - that of letters and figures - was employed. The five lobes were called A, B, C, D, and E, commencing with the most anterior, or nearer with the one nearest to the anterior medullary velum. The fissures were similarly enumerated as I, II, III, and IV. Of these four fissures II was found to be constantly the deepest, and therefore corresponded to the Sulcus furcalis of Stroud, the Sulcus primarius cerebelli of Kuyt, and the Fissura prima of Elliot Smith. Embryological evidence was sought in an animal in which the five lobes were comparatively simple, viz. in the rabbit. It was found that the fissures appeared in this animal in the following order: IV, II, III, I. Concurrently with the appearance of fissure II, a pair of depressions - one growing inwards from each lateral border of the cerebellum - started to cut off the future paraflocculus from the main mass of the future hemisphere. These two fissures finally united fissure III; thus indicating that the paraflocculus was the most lateral part of lobe E. Lobe E began its existence in intimate association with what was to become the posterior medullary velum, and the flocculus did the same at the most lateral part of the pontine flexure. Thus the flocculus was held to be an outlying territory of lobe E. The next fissure found in a mesial section was one involving lobe A. This fissure was named g. As a consequence of the presence of this secondary sulcus, lobe A was subdivided into lobule A1, the more inferior part, and lobule A2, the part above fissure g.

Shortly after the advent of fissure g, a pair of sulci became apparent in the lateral (hemisphere) portions of lobe C. These were known as fissures a and b - a being the more posterior. The two halves of fissure a gradually approached each other in the middle line and finally fused; the two portions of fissure b doing the same a little later. Lobe C was now subdivided into three locules, viz. C1, C2, and C3; the enumeration being from before backwards.

The constancy of these fissures was established by the examination of a number of cerebella differing only very slightly from that of the rabbit. Very important modifications
were found in the cerebellum of the squirrel, which, as a consequence, served as a connecting link between the simpler and the more complex cerebella. The modifications consisted in the antero-posterior expansion of the hemisphere portion of lobule Q2; of the appearance of a fissure (named g) which divided lobe D into lobule D1 and lobule D2; and of an increase in size of the paraflocculus and an arrangement of its folia in two tiers (paraflocculus dorsalis and ventralis of Elliot Smith), the upper of which was found to be connected with lobule D1.

Next the development of the cerebellum of the pig was traced. This was found to follow the same main lines as that organ in the rabbit, but additional important evidence was discovered. The most striking point, and the one to which most weight was attached, was the evident connection, at one stage of development, of the two portions of the paraflocculus with the two portions of lobe D. Indeed it was clear that the paraflocculus was divided into two parts by the lateral growth of fissure g. The connection between paraflocculus dorsalis and lobule D1 persisted into adult life; but that between paraflocculus ventralis and lobule D2 disappeared in the later stages of intra-uterine development. It was obvious however that, not only is the paraflocculus as a whole a part of lobe D, but that the two parts of the paraflocculus belong to the two parts of lobe D each to each.

From the examination of a number of adult cerebella taken from different animals it was found that the disappearance of the connection between lobule D2 and paraflocculus ventralis was the rule; but in one specimen of the horse's cerebellum traces of the original connection of the various parts were found. In many animals the continuity of lobule D1 also becomes faint, but on the other hand, it may persist, and does so in many.

Since the above conclusions were put into writing Elliot Smith and Louis Bolk have made additions to the literature. The short paper by Elliot Smith (8) is mainly a condensation of what he has already said in his monograph on the brain in the Edentates. He adheres to his original statement of the division of the mammalian cerebellum into two floccular lobes and a large inter-floccular mass subdivided by two sulci into three azygos lobes—anterior, middle and posterior. No exception whatever can be taken to the importance attached to his Fissura prima. As has been previously stated, it is the Furcal sulcus of Stroud and the Fissura primarius of Kuithan, and its morphologic status is beyond question. But there are several objections to placing the Fissura secunda on the same level. There seems little doubt that this sulcus is the homologue of my fissure g. Now fissure g, I am persuaded, does not exist in the lower, i.e., simpler, forms of cerebella. Nor is it a fundamental fissure in the higher forms, as emoryological evidence shows. It is only an inter-
lobular fissure*, and owes its importance mainly to the fact that it divides lobe D into two portions linked together at the oral end of the paraflocculus, as Elliot Smith's diagram and description admit. Further, there does not appear to be sufficient distinction made between flocculus and paraflocculus. That such distinction should be made is indicated by the difference in the development of the two structures. There is indeed a danger that the name of "loous flocculi", as applied to the two structures, may lead the reader into error. It would be better to always speak of them separately and distinctly as flocculus and paraflocculus; though, it must be admitted, that their close relation to each other makes a collective name very convenient.

As a consequence of exalting the Fissura secunda into a sulcus of primary value, the nodulus and uvula (central portions of lobe E and lobule D2) are thrown together as constituting the "posterior lobe", which is stated to be connected with the flocculus. As has been previously remarked, development appears to indicate pretty clearly that the flocculus belongs to lobe E alone; and no adult cerebellum that I have examined has demonstrated any other connection. This is another reason for clearly distinguishing flocculus from paraflocculus.

The anterior lobe comes in for slight attention in the paper now under review. Nor is a great deal said of it in the memoir on the Edentate brain, although, in a figure illustrating a mesial sagittal section of the cerebellum of Orycteropus (fig. 29) two fissures are marked with the letters e and f which appear to correspond very closely with my fissures 1 and 2 respectively.

Apart from these points which suggest matters for discussion and controversy, this recent paper from the pen of Elliot Smith is valuable to a degree not commensurate with its brevity.

Another paper which has made its appearance within the last few months is one by Professor LOUIS BOLK (9). As an expression of opinion by so eminent an authority, it would demand attention even were its contents less striking than they are. Being, however, a communication in which the mammalian cerebellum is viewed from an entirely new stand-point, it claims our close examination. Bolk commences by condemning that method of description of a cerebellum which takes the human brain for its type, and points out how such a method is a fount of error.

* It will be convenient to speak of fissures I, II, III and IV as inter-lobar (since they separate the primary lobes of the cerebellum); and fissures a, b, c, and d', as infra-lobular. Any additional fissures may well be called infra-lobular.
He therefore sets aside the human organ and the orthodox description of it, referring to it only in the later part of his paper. He states that, with the exception of the Monotremes, he has examined the cerebellum in several representatives of all the orders of Mammalia. In this communication it is his intention to set forth his idea of the structural type (Bautypus) as exemplified in the cerebellum of Lemur albifrons. He seeks, further, to observe the more important variations in different animals, and finally to answer the question: How does the human cerebellum stand with regard to that of other animals, and in what direction has it specially developed? His present statement is to be regarded as preliminary only. In the course of correspondence he informs me that he hopes to publish his observations in extenso in the course of the coming Summer.

Bolk divides the cerebellum into two lobes - Lobus anterior and posterior - by the Sulcus primarius cerebelli (Kuithan). He refuses to recognize the division into a vermis and two hemispheres as based upon firm morphologic ground, since he denies the existence of paramedian sulci in the anterior lobe in any of the cerebella he has examined with the possible exception of the Cetaceans. The two lobes are different in several respects, but chiefly in their method of growth. The superficial expansion of the anterior lobe is greatest in the middle line, the growth intensity (Wachstum intensität) becoming gradually smaller in a lateral direction. Like Elliot Smith, Bolk does not subdivide the anterior lobe, at any rate in the present paper. The posterior lobe is divided into two portions: a Lobulus simplex and a Lobulus complicatus. Of these the former has characteristics which ally it with the Lobus anterior. Its folia are arranged transversely and there are no paramedian sulci. Moreover, its growth centre is in the middle line. Sulci paramediani are present in the Lobulus complicatus, and divide it into a Lobulus medianus posterior and two Lobuli laterales posteriores; the former corresponding to the inferior vermis of Human Anatomy. There are three growth centres in the posterior lobe, one in the middle line and two lateral. The presence of these centres and their influence upon the surface anatomy is emphasized, and held to be of great importance. The transverse expansion energy of the middle centre (i.e. of the Lobulus medianus posterior) is very limited. The bilateral centres are likewise of small activity in a direction at right angles to their long axes, but in a sagittal direction they are even more active than the median centre. As a consequence the Lobuli laterales posteriores become considerably curved in brains such as that of Lemur albifrons. In the simpler brains the sagittal line of growth is not such as to produce distortion. The curvatures of the Lobuli laterales posteriores, where they exist, produce the Lobulus ansiiformis, the Lobulus paramedianus and the Formatio vermicularis. The paraflocculus and flocculus constitute the last.
It is difficult to criticise Bolk's paper seeing that it is of the nature of a preliminary statement. One will be in a better position to agree or disagree with him when his theses are expanded. As the case stands at present, there are several points which appear decidable. In the first place the recognition of two lobes only in the cerebellum may be simple as a method of division of the whole organ, but it is one which may be considered inconvenient and insufficient for purposes of description. This is made evident in Bolk's paper. He finds it necessary to divide the posterior lobe into two parts (Lobuli simplex and complicatus). A vermis may not always be very evident in the anterior lobe, indeed in many instances it is impossible to distinguish a vermis and two lateral hemispheres in this region, but a vermis is always a very obvious part of the posterior region. And it cannot be denied that a division into a vermis and two hemispheres is a convenience, if not a necessity, for purposes of description of the surface anatomy of the cerebellum. Though the paramedian sulci may be shallow anteriorly still, in the majority of animals, their presence can be made out. Bolk's own figure of the cerebellum of the Lemur (Fig. 1) shows this. At the same time it should not be forgotten that the paramedian sulci are quite secondary objects, as their late appearance indicates.

In his consideration of the Lobulus complicatus Bolk appears to pay too much attention to the adult condition, and relegates the simple transverse arrangement of the fissures to too secondary a place, though he certainly does not overlook it. Indeed he mentions the fact that originally each part of the posterior lobe consisted of two lateral portions and a connecting middle link. But, unless the embryonic condition be employed as a basis for the division of the adult organ, there is great danger of falling into error when the comparison of cerebella of different, especially widely different, animals is attempted. This contention is illustrated by, what the present writer considers to be, a mistake made by Bolk in comparing his Lobulus paramedianus with the human "Tonsil".

As an explanation of the mode of production of the complex arrangement of the lobules of the posterior lobe, Bolk's arguments are ingenious and to the point. But the fact that the complexity is secondary must not be lost sight of. In another paper (on the cerebellum of some New-World Monkeys(10)), speaking of the posterior lobe, Bolk says that the circumstance, that in Hapale and Midas the lateral parts are joined to the corresponding middle portions by means of low ridges, leads one to suppose that in the posterior, as in the anterior lobe, the sulci originally ran uninterruptedly from one border of the cerebellum to the other. Therefore, he asserts, one must consider that the genesis of the sulci paramediani is secondary, and of quite another nature from that of the interlamellar fissures. On this point, no
one, who has examined the brain in embryos, will express doubt.

In his second paper Bolk considers the cerebellum of Hapale, Midas, Chrysothrix, Mycetes, Cebus and Ateles, which he arranges in this order as being one in which the gradual growth of complexity of lobes among the New World Monkeys is best indicated. The whole paper is practically the application of his division of the cerebellum, as previously explained, to a series of concrete examples.

In the large work on Human Anatomy at present appearing under the editorship of Professor von Bardeleben, ZIEHEN(11) describes the anatomy of the cerebellum at considerable length. He divides the cerebellum of Man into the following eight Lobuli cerebelli, as shown below.

1. Lingula cerebelli.
 --------------- Sulcus postlingualis.
2. Lobulus centralis.
 --------------- S. Postcentralis (cerebelli).
 a. Culmen.
 --------------- S. superior anterior.
 b. Declive.
 --------------- S. superior posterior.
4. Foliwm vermis.
 --------------- S. horizontalis.
5. Tubcr vermis.
 --------------- S. inferior posterior.
6. Pyramis.
 --------------- S. inferior anterior.
7. Uvula.
 --------------- S. praevularis.
8. Nodule.

It is interesting to note that, though he recognises the importance of the Sulcus superior anterior, Ziehen still considers Culmen and Declive to be parts of one Lobulus cerebelli.

A very elaborate description of the lobules of the human cerebellum follows; after which comes a section devoted to the comparative anatomy. Here sundry new names are suggested.

The term Lobulus Appendens is used as it was in the monograph on the brain of Monotremes and Marsupials; that is, it is applied to the Declive and Tuberc vermis in those forms in which these overhang the Culmen, e.g. in Rodentia. Ziehen's Lobulus eruciformis is found in the hemisphere and corresponds"without doubt to the Lobuli semilunares superior and inferior (of Man)". It is in the form of a worm-like complex in the Carnivora. The term Lobulus palpi-formis is used to indicate a finger-like lobule lying anterior to the L. eruciformis, and is evident in Ungulates. Under the name Tabula is included the parafl occulus and flocculus, at any rate of some animals; and it is suggested that it may correspond, in part at least, to the "Tonsil".
In those animals in which the lobules of the vermis are apparently fewer than in Man (e.g. the Rodents), the lobes in the posterior part of the cerebellum are considered either as Tuber vermis and Pyramid (including Uvula and Nodule) or, as appears more likely to our author, as Pyramid and Uvula (including Nodule). These conclusions are certainly not borne out by my own investigations. It has been shown elsewhere that there is good ground for supposing that in the comparatively simple cerebellum (of the raccoon, for example) it is the pyramid and uvula which are combined (lobe D) owing to the failure of a fissure d. This matter has been touched upon in an earlier paragraph dealing with the conclusions of Professor Elliot Smith; the points there mentioned may be held good in the present instance.

Ziehen is doubtful regarding the homology of the small lobule found below the Lobulus petrosus of Rodents. This lobule I have endeavoured to homologise with the flocculus.

There are other points to which attention might be directed, but the above will suffice to show the trend of Ziehen's admirable contribution to the literature; a contribution which would have been even more valuable had it had an embryological basis, and had the brain of Man been used as a goal and not as a starting-point.

Ziehen's latest paper consists of a description of the brain of Tarsius, Nycticebus and Galeopithecus (12). The cerebella in these animals appear to be very similar to those of the Rodents. It is perhaps worthy of remark that in the figure illustrating the mesial sagittal section of the cerebellum of Tarsius spectrum (fig. 5) five lobes are indicated; these being a lobulus centralis, culmen, lobulus impenens, pyramis and a lobule stated to represent the combined uvula and nodule. This last lobe is perfectly simple; but the "pyramis" is divided into two nearly equal parts by a moderately deep fissure.

The above may be taken as including all those publications which can be said to have a direct bearing upon what is to follow. It appeared out of place to discuss monographs and shorter statements which made their appearance earlier than 1895; or papers, in which the cerebellum has been incidentally mentioned, published since that date.

In the following pages is contained an expansion of the writer's previous research. Some additional embryonic material has been investigated, and the examination of adult cerebella has been continued. The same methods, as those used in the earlier work, have been followed. The brains of embryos have been carefully exposed and sketched in outline; all the fissures visible to the naked eye, or by means of an ordinary pocket lens, being introduced in their proper relative positions in the
sketch. Then the whole cerebellum, or rather more than half of it where its size was considerable, was embedded in paraffin and serial sagittal sections cut. These sections have been worked through, outline drawings being made wherever alterations in the fissures were encountered. In this way the first outline sketch of the surface of the cerebellum has been checked. The smaller adult cerebella have been treated in the same way. And in the larger organs microscopic sections have been made wherever the naked-eye examination left any doubt as to the connections of the lobules or the continuity of the fissures.

Sheep Embryos.

Although the development of the cerebellar fissures of the Sheep has already been described by Kuithan [2] there are still certain points, upon which he is silent, which appear to require study. It is a matter for regret that as full a series of embryos of the sheep, as have been already described of the pig, could not be procured. But the breaks in the series, as procured, can be filled, partially at least, by the material described by Kuithan.

68 m.m. embryo. (Fig. 1). At this stage the cerebellum of the sheep presents much the same appearance to the naked eye as does that of the pig of a somewhat similar size (44 days. 64 m.m. See Figs. 57, 58, and 59 of paper No. 1.). It is very difficult to make out any fissures without the aid of a lens; and even by such assistance fissure II is not conspicuous. Microscopic sections however remove any doubt as to the existence of II; and, further, reveal the presence of two shallow depressions which turn out later to be the beginnings of fissures IV and g. Kuithan’s figure of a section of the cerebellar lamina of a 6 c.m. embryo gives a very similar picture to that presented by the present specimen. On examining a series of sections, beginning in the middle line, all three fissures are soon found to disappear; fissure II being the last to do so, as was to be expected. In sections of the lateral part of the cerebellum there is a faint fissure which may possibly be the initiation of g; subsequent development lending support to this supposition.

87 m.m. embryo. (Figs. 2 & 3). There is already the indication of a vermis and two hemispheres. Fissure II is easily visible on the surface, and extends for a considerable distance, in a slightly curved direction, across the cerebellum. Posteriorly the fissure II two depressions can be detected with the naked eye when the cerebellum is undisturbed; and there is a third hidden between this structure and the medulla. These three sulci are IV, g and III; the last being very shallow. Fissures IV and g cross the whole of what we may term the vermis, and appear to be invading the hemisphere. Fissure III does not extend so far laterally. Sections show unmistakably that fissure IV is continued to the very lateral boundary of the cerebellum, where it curves
forwards and downwards to circumscribe the anlage of the flocculus. This arrangement is one which has been met with in both pig and rabbit. There are clear indications of the separation of the para-flocculus; that part which now represents it standing out prominently from the side of the cerebellum, limited by a fissure which curves round its anterior end. The fissure tentatively named g in the previous embryo, is now sufficiently deep to be visible by means of a pocket lens. It is in the form of a slight indentation of that folded mass of the lateral part of the cerebellum which lies between fissure H and the future paraflocculus (Fig. 2). Fissures I and g have appeared in front of, or rather below, fissure H. The greater importance of I is shown by its being a little deeper than g, and extending considerably farther laterally.

100 m.m. embryo. (Figs. 4, 5 & 6). In the posterior part of the cerebellum matters have not advanced much since the 87 m.m. stage. Fissures H, g, and III are certainly deeper, but little more can be said for them. With the exception of IV, they do not extend very far into the hemispheres. The paraflocculus is possibly rather more distinctly defined than in the previous specimen. Fissure g is much the same as it was before. Posterior to fissure H, therefore, development is now slow. But, as one expects from what has been found in other animals, that part in front of H has become very active in its development. Fissures I and g are easily detected. Their depth, as shown in sections, is greater than it was in the 87 m.m. embryo; I still extending farther in a lateral direction than g.

114 m.m. embryo. (Figs. 7, 8 & 9). Great progress has been made, but more especially in the more anterior region. Fissure II now clearly reaches the margin of the cerebellum; and the margin in this district is sharply defined. Fissures I and g are very obvious; and sections show that lobule A is complicated by subsidiary (intralocular) fissures. The posterior part of the cerebellum is also entering upon a period of activity. Fissures III and g are not much longer (relatively) than before, but they are certainly deeper. Fissure g is now complete, that is it runs across the entire cerebellum. Since the last stage a fissure p has made its appearance; having begun, so far as one can judge, in the middle line. The flocculus and paraflocculus are very distinct; but the latter is still a simple rounded projection from the side of the cerebellum, that is, it has not as yet begun to divide into dorsal and ventral portions. It is fortunate that a stage, such as is illustrated by this embryo, was procurable; for here all the fissures are firmly sketched in, the details only being lacking. It is further fortunate because the next older specimen is one in which many, if not most, of the details are added.

163 m.m. embryo. (Figs. 10 & 11). Viewed from the front, this cerebellum presents features strikingly like those found in the adult. The foliation is abundant, and the main fissures are deep. It is upon the posterior part that attention will be more particularly bestowed; because here, though development...
has proceeded a considerable distance towards the adult condition, the more primitive characters of the lobes are not yet lost, their original transverse disposition being still unobscured. Lobule Q1 contains two folia in the vermis, but these are reduced to one in the hemisphere. Lobule Q2 has become quite characteristic. In the vermis it is composed of two folia. In the paramedian sulcus the intralobular fissure disappears, and the lobule becomes constricted. In the hemisphere there is a notable indication of that expansion in a sagittal direction with which one is so familiar; this part of the lobule has three folia.

Lobule Q3 is, in the main, very like Q2. It has two folia in the vermis; there is a constriction in the region of the paramedian sulcus; there is an expansion in the hemisphere. Lobule Q1 has also certain features of great value. It has two folia in the vermis. These are reduced in the paramedian sulcus; and then the lobule, curving under the lower border of lobule Q3, becomes directly, and beyond question, continuous with the dorsal paraflocculus; the connecting ridge being transversely foliated. Lobule D2 is large, but cannot be said to pass outside the limits of the vermis.

Lobe E in this embryo, and in those younger, is relatively large. If serial sections are examined, it is found to extend very considerably beyond the vermis. It disappears for a short time, and then reappears as the flocculus; which is also relatively large in sheep embryos.

The paraflocculus is divided into dorsal and ventral halves, but how the division has been effected is not clear. Unfortunately Kuithan is silent upon this point. He, apparently, does not recognize the true nature of the paraflocculus, for he names part of it the "vermis lateralis". At this period the paraflocculus has proceeded so towards the adult condition as to be beset with transverse folia, especially in its dorsal portion.

Although the adult cerebellum of the sheep has been already described (See paper No. I. Page 231. Figs. 103 & 104) it may not be out of place to revert to it here. Concerning the anterior part of it, there is nothing to be said, because the adult features are recognizable at an early period in the embryo. It is to the region behind fissure 11 that attention is asked. Lobule Q1 does not undergo any radical change in the later stages of development; but lobules Q2 and Q3 alter very markedly. In the 163 mm. embryo it has been seen that lobule Q2 is constricted in the paramedian sulcus, and is of a greater antero-posterior diameter in the hemisphere than in the vermis. These features are exaggerated in the adult. The vermis grows so largely in a sagittal direction that distortion is produced. The same remarks apply to lobule Q3, except that the constrictions are even more marked, while the distortion in the vermis is little or nothing. These peculiarities in the development of lobe Q will be more fully considered in connection with calf embryos, for in the Ox the sagittal expansion is much greater, so far as the vermis is concerned, than in the sheep.
Lobules D1 and D2 retain their embryonic condition, a foliated ridge joining the former to the dorsal paraflocculus. Lobes E in the adult, as in the embryo, is relatively well developed (cf. Fig. 105 of paper No. 1. The sheep is like the Goat); but, unlike the condition in the embryo, it does not pass the boundaries of the vermis.

The paraflocculus and flocculus of the adult call for no remark, as the 163 m.m. embryo prepares one for the condition in the future.

Calf Embryos.

Three calf embryos have been obtained which, because of their stages of development, add considerably to the evidence in support of some of the statements previously made.

138 m.m. embryo. (Figs. 12, 13 & 14.) The cerebellum has already become divided into vermis and hemispheres by shallow paramedian sulci. All the main fissures are present in the vermis, and many of them extend all the way across the cerebellum. As was found in the embryos of other animals examined, the anterior portion has proceeded farther in development than the posterior. Fissure II can readily be detected on the surface; and, when sections are made, it is seen that it is of great depth, and that its sides are foliated. Fissure I and g can also be clearly defined when the surface is inspected. Lobe A is comparatively simple; but lobe B is divided into two parts by a fairly deep fissure which runs across the central portion of the cerebellum. In lobe C there is very unmistakable evidence of a fissure g, which runs a sinuous course across both vermis and hemisphere. It is interesting to note that fissure p is also complete and, as seen in sections, very much deeper than g. Further, it seems necessary to call attention to the fact that p is very close to II; there being but one folium intervening. Unfortunately this embryo is too old to exhibit the method of commencement of fissures a and p. Fissures III and g are present, but are almost entirely confined to the vermis. There are shallow sulci marking off the paraflocculus, but the more anterior is scarcely to be made out except in microscopic sections. It is important to notice that the paraflocculus is being divided into upper and lower portions by a depression which is deepest anteriorly (Fig. 13); and which therefore has presumably begun its development in front, and is now growing backwards. The position of the future flocculus is marked by a comparatively slight bulging at the extreme lateral part of the pontine flexure. Lobe E is small in the middle line but becomes a little larger laterally. Its appearance suggests that peculiarity of development from the border of the cerebellar lamina which has been observed in the rabbit and pig.

150 m.m. embryo. (Figs. 15 & 16.) Little need be said of the condition of the parts in front of fissure II. Fissure g and l are both of considerable depth, and numerous intralobular fissures have developed. Lobe Q is now completely divided into
its three lobules. Fissure \(\Pi \) has retreated from fissure \(\Pi \) to some extent, and is of much greater depth than \(\Pi \), as was found in the previous embryo. Fissure \(\Pi \) is complete, and, along with fissure \(\Pi \), bounds a very characteristic lobe \(Q \) which shows the sagittal expansion which has been found in other animals. Fissure \(\Omega \) is more extensive than in the 158 m.m. embryo but, even now, does not reach very far into the hemisphere. It is still some little distance short of joining the fissure which has been previously described as dividing the paraflocculus into dorsal and ventral parts. Indeed it appears as though the latter fissure is growing towards \(\Omega \) rather than that \(\Omega \) is extending much laterally. The dorsal paraflocculus is showing signs of developing fissures. Fissure \(IV \) is of considerable depth and very sharply defines lobe \(D \), with its lateral parts, from lobe \(E \) and its connection with the flocculus.

175 m.m. embryo. (Figs. 17, 18, 19 & 20). This specimen shows a fairly great advance in development. There is now no difficulty in distinguishing a vermis and two lateral hemispheres in all parts of the cerebellum with the possible exception of the most anterior. The anterior surface is well foliated and its main fissures of good depth. But, even at this stage, the lateral limits of lobes \(A \) and \(B \) are indefinite (Fig. 19). This may possibly be associated with the remarkably small lateral expansion of these lobes in the adult (Fig. 21). Lobules \(Q_1 \) and \(Q_2 \), on the other hand, have very clear lateral boundaries. Once more it is to be noted that fissure \(\Omega \) is relatively very deep and comparatively close to fissure \(\Pi \). Lobule \(Q_1 \) is consequently narrow in a sagittal direction. Lobule \(Q_2 \) is well developed in the vermis and in the hemispheres; and is beginning to show a decided constriction in the region of the paramedian sulcus. The vermis portion of lobule \(Q_2 \) remains small, and still consists of only one folium. Its lateral segments have increased unmistakably in a sagittal direction, and have become foliated. As a consequence of the lateral growth of lobule \(Q_2 \) (which now extends as far out as the paraflocculus) lobule \(Q_2 \) appears dwarfed in its transverse diameter. Fissure \(\Omega \) is of good depth in the vermis, but rapidly becomes shallow in the paramedian sulcus. Though there is no direct evidence to be obtained from the present material, there can be little doubt, arguing from analogy, that it will ultimately become continuous with the fissure which appeared in the earliest embryo, and which now divides the paraflocculus into two very distinct portions. The characteristic growth of lobule \(Q_2 \) has resulted in a very clear definition of the paraflocculus. The dorsal paraflocculus carries two distinct fissures; but the ventral paraflocculus is still perfectly simple. Both the central part of lobe \(E \) and also the flocculus are small; this being in remarkable contrast to what was found in the sheep.

It is very interesting to compare this cerebellum with that of the adult animal (Figs. 21, 22 & 23). Lobes \(A \) and \(B \) apparently do not alter much in the later stages of devel-
opment; out the lobes behind fissure II undergo a remarkable alteration in form. In lobule Q1 the change is merely one of increase in size, with a resulting backward displacement of fissure P. In lobule Q2 there is a great increase in size in the hemisphere, accompanied by an alteration in the direction of the intralobular fissures; and so considerable a growth in the vermis that this part of the lobule is bent upon itself, and even then occupies so much room that the central segment of lobule Q3 is crowded over to one side (Figs. 22 & 23). The middle portion of fissure a ran in an almost perfectly sagittal direction in the specimen from which the figures were drawn. The three portions of lobule Q3 also expand in an antero-posterior direction. As just stated, this lobule is crowded out of the vermis, and therefore comes to lie in, what was once, the paramedian sulcus. Those portions of the lobule which form parts of the hemispheres are connected with the vermis by very much constricted, but still quite obvious, bridges. Lobe P shares in this antero-posterior development, and, consequently, its lobules present a sinuous appearance in the vermis; their folia being thrown out of the transverse direction completely. The connection between dorsal paraflocculus and lobule Q1 is maintained in the adult state; but is, to a certain extent, obscured by the growth of lobule Q2. The paraflocculus in the adult animal is rather smaller than is usually found in Ungulates; and its arrangement in dorsal and ventral portions is not so clear as in the embryos described. It is evident that lobe P must develop considerably after the stage illustrated by the 175 m.m. embryo; for in the adult it is large and richly foliated, usually extending so far backwards as to be visible when the cerebellum is examined from behind (Fig. 23). The flocculus also increases markedly in size.

It is hardly possible to conceive of a cerebellum that illustrates Bolk's conception of "growth-centres" more perfectly than that of the Ox. Here the "growth-centre" in the vermis expands in a sagittal, but not in a transverse, direction. This expansion is so great that the whole vermis behind fissure P is thrown into a number of billowing coils. Bolk's bilateral "growth-centres" are also illustrated, but not in so striking a manner as that in the vermis.

HORSE EMBRYO.

18 weeks old. (Figs. 24, 25 & 26). I have only been able to get one embryo which shows the method of development of the fissures in the equine cerebellum. But this happens to be of a stage to which great interest is attached. There is no difficulty in distinguishing a vermis and two lateral hemispheres, even in the anterior region. Fissures Q and I are well developed; the latter being only second to fissure II in point of depth (Fig. 26). No better specimen could be desired to support the assertion that fissure I is of fundamental importance. This fissure evidently continues of great depth from the time of the
18 weeks embryo onwards. For in the adult animal it is only slightly shallower than fissure II (see Fig. 109 of paper No. I). Lobule A1 is becoming divided into its permanent three subdivisions. There is a fairly deep indentation of the surface of lobule A2 which, no doubt, corresponds to the deeper of two intralobular fissures met with in the adult brain. Lobe B is relatively as extensive as in the adult, and has already become subdivided. Fissure II is as pronounced as one would expect it to be at so advanced a period. Lobe C is comparatively large and consists of three expanded portion separated by faint constrictions in the paramedian sulci. In it are two fissures which may possibly correspond to fissures b and a. Fissure b(?) crosses the entire cerebellum, and the element of doubt which attaches to it, as regards homology, is not so great as that concerning fissure a(?). Fissure a(?) is present, as a shallow depression, in the vermis but does not cross the paramedian sulci. There is a fissure running from the border of each hemisphere towards fissure a(?), but not joining it. If this be indeed fissure a—and older material is needed to remove all doubt—then it either develops somewhat differently in the horse from what has been found in the embryos of the pig and sheep, or else a phase of its growth has been caught in this specimen which has been missed in the others. The former view seems the more probable. Fissure III, though not of any great depth, is complete. Lobe D presents the most interesting feature in this cerebellum. Those portions of it which will ultimately become paraflocculi form very prominent projections from the sides of the cerebellum. They are, as yet, perfectly simple; but it is evident that fissure d is gradually growing into them in the manner in which it develops in the pig's brain. From the material examined we may conclude that the dorsal and ventral portions of the paraflocculus are separated off from the primarily single mass in at least two distinct ways. On the one hand, fissure d may extend laterally; as in the pig and horse. On the other hand, an independent fissure may appear in the most lateral part of this region of the hemisphere and grow towards fissure d, with which it finally unites. The latter method is found in the Ox, and possibly also in the Sheep. Concerning lobe E one need only remark that it is fairly large in the vermis; and that the flocculus is as yet small and inconspicuous. An examination of the adult cerebellum shows that, though there is some distortion produced by the growth in a sagittal direction of lobules C2 and C3 in the vermis, this is not nearly so marked as in the Ox, nor does it involve lobe D. The connection between lobule D1 and the paraflocculus dorsalis is always distinct in the adult.
Opportunity has only been afforded me of examining the cerebellum of one Marsupial, and that is probably not to be considered as very typical of the group. But the cerebellum of the Opossum, which I have, has been found to furnish several points of interest. A first glance at the cerebellum of Didelphis shows one an organ very similar to that found in some of the Rodents. There is the same comparative simplicity, and the same prominent Lobulus petrosus. In lobe A no paramedian sulci can be even imagined. A fissure g is present cutting off a simple, undivided lobe A1. Lobe A2 is larger than the preceding and is subdivided into two parts, each of which has two folia on the surface. Fissure II is deep; transverse in direction in the vermis; curving sharply downwards and forwards on reaching the paramedian sulcus, and running in a sagittal direction in the sulcus. Lobe B, as the result of the course of fissure II, presents a four-sided area on the surface. This lobe is relatively larger than it is in most animals, and is subdivided by a fissure running almost parallel with II. Lobe C is a veritable lobulus incompend, in the sense in which the term is used by Ziehen. It is very much greater in its antero-posterior diameter in the hemispheres than in the vermis. Whether a fissure b is present is open to question; but there can be little doubt of the actuality of fissure a, which, running a curved course much as it does in the rabbit, cuts off a distinct lobe C3. This lobe consists of two folia in the vermis, but is reduced to one in the hemisphere. At first sight it appeared as though lobe C3 was continuous with the paraflocculus; but this was found not to be the case. Fissure III passes for a considerable distance into the substance of the cerebellum and runs a course similar to that of fissure a. Lobe D is subdivided by a fissure d which sections show to be even deeper than III. Lobule D1 has one folium only; lobule D2 has two. Fissure IV and lobe E do not offer anything of interest so far as a naked-eye examination is concerned. It being considered advisable to make perfectly certain regarding the arrangement of lobule C3, lobe D and lobe E, serial sections were made and examined microscopically. The facts thus adduced were found to repay the trouble. In the vermis these three parts were found to consist of six folia, which may be numbered as follows:- 1 and 2 belong to lobule C3; 3 belongs to lobule D1; 4 and 5 are parts of lobule D2; and 6 is lobe E. In tracing the various folia in a lateral direction the following was observed. Folia 1 and 2, and 4 and 5, blended with each other; i.e. lobule C3 and lobule D2 were reduced to one folium each. Then folium 3 gradually became less and less prominent, and finally disappeared. Then folia 4 and 5 terminated, giving place to a wide sulcus the bottom of which was formed of white matter. Folium 6 was next greatly reduced in size and came to consist of a small ridge of grey matter. Now, grey matter began to appear at the bottom of
the sulcus left after folia 4 and 5 had come to an end. This was found to become the paraflocculus. At the same time folium 6 began to increase in size. Folia 1 and 2 diminished rapidly and finally, after becoming detached from the rest of the hemisphere, ended. Folium 6 was ultimately traced into the flocculus. To sum up. Lobule C\textsubscript{3} ends at the border of the hemisphere. The whole of lobe D soon comes to an end when the limits of the vermis are passed. Lobe E however is directly continuous, as a grey ridge, with the flocculus. This last fact adds considerabaly to the strength of the assertion that the flocculus is a part of lobe E, and of nothing else. The paraflocculus begins to appear in the depths of the sulcus left by the disappearance of lobe D. This would lead one to suspect the original connection of these two parts of the cerebellum, even if one had no other evidence.

To the naked eye the paraflocculus consists of several folia and carries a very distinct Lobulus petrosus, which is closely invested by bone. The flocculus consists of one folium, and its identity is only rendered clear by microscopic sections. It expands to a certain extent as it passes forwards.

PTEROPUS MED'US & XANTHARPYIA (ROUSETTUS) COLLARIS.

The cerebella of these two fruit-eating Bats have been examined; and are found to be very similar to that of Pteropus poliocephalus (See page 126, and Figs 46, 47, 48 and 49 of paper No. 1). In describing the cerebellum of P. poliocephalus I said that "there is apparently no fissure g". The new material leads me to think that this is possibly not the case. It is quite likely that the fissure marked j in the figures should be called g; and that the fissure two folia distant above it should be indicated as deeper and labelled j. This is a point, however, upon which further observation of embryos, if possible- seems necessary before anything definite can be said. The specimen of P. poliocephalus which I investigated before may not be quite typical; or there may be slight differences in the fruit-eating Bats.

HERPESTES MUNGO. (Figs. 31, 32, 33 & 34). In some respects the cerebellum of the mongoose departs from the truly carnivore type. Its anterior portion presents nothing very remarkable; there being the usual fissures and lobules, disposed in the customary manner. If we take the deepest and most continuous fissure in Lobe C to be fissure p, then lobule C\textsubscript{1} is remarkably small. It consists of three folia in the vermis, but these become two in the left hemisphere, and only one in the right. There can be little doubt regarding the presence of a fissure a in the hemisphere, where it is placed in a position usual among the Carnivora. But this fissure cannot be traced with certainty into the vermis; though there is a sulcus, at a distance of two folia above fissure III, with which it may be connected. Lobule C\textsubscript{2} is of moderate size in the vermis, but becomes constricted, in a marked degree, at the paramedian sulcus. Lobule C\textsubscript{3} has very
typical carnivore characters in the hemisphere. In this region it is developed into a row of folia, running practically vertically and reaching the medulla. Lobule D, is rather small, and both it and lobule D2 are limited to the vermis. There is nothing remarkable about lobe E.

The paraflocculus of the mongoose departs to a certain extent from what may be considered the type. A superficial examination would lead to the conclusion that there is but one row of folia. On looking more closely into it, however, two rows are disclosed; that is to say there are really a paraflocculus dorsalis and a paraflocculus ventralis. But the ventral portion is small and extends backwards for only a short distance, tailing away in the interval between the flocculus and the dorsal paraflocculus. A lobulus petrosus, of some size, is carried by the ventral paraflocculus; out, instead of springing from the most posterior end of the paraflocculus, it is attached towards the anterior end.

The flocculus is rather larger relatively than is mostly found in the Carnivora. Its anterior end is broad and composed of two or three folia. These fuse to form a single grey ridge which passes inwards to become continuous with lobe E in the vermis. The connection of this ridge with the posterior medullary velum is intimate.

Procyon lotor. (Figs. 35, 36, 37 & 38). The cerebellum of the raccoon resembles, in its general features, that organ in the moderately large carnivora. A detailed description of all its parts is perhaps not called for, since the figures in illustration of this cerebellum speak for themselves. But there are some points to which it is deemed advisable to direct attention. Fissures G and I and lobe A are very like these features in other cerebella. The large size of lobe B, however, is remarkable; as is also its almost entire inclusion in the vermis because of the curved boundary formed by fissure II. Lobe C is of great interest. The identity of fissure G is within the bounds of doubt. If the fissure marked B in the figures is really homologous with the boundary between lobules G1 and G2 in other animals, then one at once notices its asymmetrical arrangement. Lobule G2 shows, in a marked degree, the characteristic sagittal expansion in the hemisphere, with the result that its folia run in several different directions. Fissure A is very decided in the hemisphere, but when traced mesially it becomes lost in the depths of fissure III. From this it follows that one cannot distinguish with any certainty a lobule G3 in the vermis; though sections show a fissure which may at one time have been part of A. Lobule G3 in the hemisphere is comparatively small, consisting of a curved row of some half dozen folia, against which the dorsal paraflocculus abuts. The remainder of the lobes do not depart to any very great extent from the customary arrangement. But it should be noted that lobule D1 is continued into the hemisphere as two folia, one
of which, the upper, is the larger and touches the dorsal paraflocculus. Lobule D2 is confined to the vermis. The paraflocculus is composed of the usual dorsal and ventral portions. The dorsal paraflocculus is much the larger and extends backward to a considerable amount. So far as this specimen is concerned, one might easily omit the mistake of supposing that the dorsal paraflocculus is a continuation of lobule C3. In short, there is an appearance typical of the Lobulus ansiformis of Bolk. So far as a naked-eye examination goes, there is no connection of lobule D1 with the dorsal paraflocculus; though we feel fairly safe in asserting that such a connection was originally present, and that the coiled row of folia, which Bolk calls the Lobulus ansiformis, is of secondary development. The ventral paraflocculus is small and does not reach so posterior a level as does the dorsal paraflocculus. The flocculus, as is often the case in the Carnivora, is small and consists of one folium only; it is mainly hidden by the paraflocculus, between which and the roots of the 7th. and 8th. cranial nerves it lies. Its attachment to the lateral part of the posterior medullary velum is a very close one.

LIVERRA GIVETTA. (Figs. 39, 40, 41 & 42). In this cerebellum there is certainly no paramedian sulcus anterior to fissure II; therefore it affords an excellent example in support of Bolk’s refusal to recognise a vermis. The fissures in this region being numerous, and all of approximately the same depth, it is impossible to decide with certainty upon fissures I and Q. Still a fissure J can be tentatively fixed upon, from an observation of the arrangement of the rays of white matter in a mesial section. Lobes A and B have a relatively great antero-posterior diameter, which, no doubt, makes up for their comparatively small transverse width. This exuberance of sagittal development causes fissure II to be placed far back in the vermis.

Lobe Q is very singular. Fissures P and Q cannot be distinguished; nor can the different lobules be determined upon from the disposition of the folia. The most anterior part of the lobe certainly resembles lobule Q1 as we are accustomed to see it. But its boundaries are not clear. It is, however, in the posterior part of the lobe that the most noteworthy features are found. There is the customary narrowing of the lobe at the paramedian sulcus, and the consequent reduction in number of the intralobular fissures. But these fissures are remarkable for the way in which they join together just as the paramedian sulcus is reached. In the hemisphere the fissures mostly fade away, as they pass inwards, without joining each other.

In lobe Q the paramedian sulci are much shallower than is often found to be the case in the cerebellum of a carnivore of this size. Lobule D1 has three folia in the vermis. But in the hemisphere the lowest folium is very slender and soon fades away. Between lobes Q and Q1, and close to the paramedian
sulcus, is an uncertain area on each side (dotted in Fig. 41). It is connected, quite distinctly, with both lobe C and lobe D1; and it is impossible to decide to which it really belongs, though its position makes one think that it represents lobe C5. Whether this is an accidental variation, or the usual arrangement in Viverra civetta, can only be decided from the examination of more specimens. It may, however, be at once stated that Viverra malaccensis does not offer a similar enigma (Fig. 43).

There is nothing peculiar in lobe D2. It belongs exclusively to the vermis. Lobe E is fairly large, and is interesting because it shows a condition only occasionally met with. A grey lamina extends for some distance outwards from it, running under lobe D1. This lamina or folium is attached to the posterior medullary velum and reaches nearly to the posterior end of the flocculus, which is also attached to the velum.

The paraflocculus is very ordinary. It is composed of the usual two parts, the ventral of which carries a lobulus petrosus at its posterior end. The flocculus is mainly concealed. At its anterior end it consists of two folia, one above the other. The upper folium is small; the lower extends as far back as the posterior end of the dorsal paraflocculus, and is then continued by a very narrow ridge to the grey lamina or folium projecting from lobe E. This should be remembered in connection with what has already been said to obtain microscopically in Didelphis and macroscopically in Herpestes, and with what is yet to be remarked in Cebus.

Viverra Malaccensis. (Fig. 43). This merits special mention because of the particulars in which it differs from the cerebellum of V. civetta. Lobes A and B are the same in both animals; and there is the same difficulty experienced in determining which are the primary fissure anterior to D1. It is in lobe C that the chief differences reside. One feels again the same hesitation in deciding upon a fissure Fl, but fissure a can be more readily recognised. Its position in the hemisphere is clear, as it forms the upper boundary of a very typical lobe C3 in this area. And it can be traced, though not very easily, across the vermis. Lobe C2 shows that bending upon itself which has been frequently seen, and the radiation of its folia from a deep sulcus which has arisen secondarily as the result of the bending. Lobe C3, as said above, is fairly typical. Its lateral extent is inconsiderable. In the hemisphere it consists of a vertical row of about four transverse folia; and in the paramedian sulcus it is narrow. There is no uncertain area such as was met with in V. civetta. As in the larger animal, there is no difficulty in observing the connection of the three parts of lobule D1. There is no continuation of either lobe D2 or lobe E beyond the vermis.

The paraflocculus is like that of V. civetta; and the flocculus is small. There is no attempt at continuity of
nerve matter between flocculus and lobe E.

PHOCA VITULINA. (Figs. 44, 45, 46 & 47). With the possible exception of the Cetaceans, no mammal has so puzzling a cerebellum as that of the Seal. At first sight it presents an apparently inextricable tangle of fissures and coiling lobes. Beside it the cerebellum of Man appears comparatively simple; for in Man the fissures do run transversely in the main, but in the Seal their course is in all directions. A closer examination shows that the labyrinth occurs in the hemispheres, the vermis being almost perfectly straight-forward.

Taking the organ as a whole, it may be described as decidedly flattened from above to below. This is perhaps best indicated by the actual measurements of the vermis of a cerebellum after being preserved in a solution of formalin followed by alcohol. In the particular specimen from which the accompanying figures were made, the vermis measured 37 m.m. from before to behind, and 25 m.m. from above to below. These figures are approximately equal to those given by Flatau and Jacobsohn (6, p. 330), who mention the dimensions of the vermis as being 4'0 c.m. by 2'4 c.m. This vertical flattening is even more pronounced in the hemisphere, which slopes somewhat rapidly downwards and outwards from the vermis (Fig. 45). The hemisphere, further, has a greater antero-posterior diameter than the vermis, since it projects farther forwards, (Fig. 44). There is a deep and moderately wide notch in the anterior border ("Incisura cerebelli anterior"), but no corresponding notch behind. The vermis appears narrow; but this appearance is doubtless fictitious, and produced by the great expansion of the hemispheres. Anterior to fissure 11 there are really no paramedian sulci; but posterior to this fissure the sulci are deep. If we except fissures 2 and 9 which are rather doubtful, there is little difficulty in recognising the various customary fissures, lobes and lobules in the vermis. There is certainly a deep fissure in lobe 9 which one feels inclined to call 8; but its identity is lost as soon as it reaches the paramedian sulcus. There is also a moderately deep fissure anterior to 8; but it is by means certain that this is fissure 9.

Unlike the vermis, the hemispheres present many, instead of few, difficulties. Lobe A and B are comparatively simple; the latter forming the bottom of the notch already mentioned as existing in the anterior border of the cerebellum. Lobule C is only slightly more difficult to recognise than A and B. But the remaining lobules give rise to much hesitation, as they are very confused, and deep fissures are plentiful. It is well nigh impossible to follow the fissures of the vermis into the hemispheres; indeed, in some case it is quite impossible to do so with certainty. The following statements are put forth, therefore, as appearing to me possibilities and probabilities, not as matters of certitude. It is difficult to see how we can be positive regard
The homologies in this particular region of the Seal's cerebellum, until someone has been fortunate enough to get an embryo or embryos of an age when the fissures and lobes are simple.

It appears feasible that the large lobules, which project forwards and form the lateral boundary of the notch already spoken of, are lobules C2. They occur as a double row of folia connected anteriorly; and one can easily imagine that the originally few and transverse folia have increased so enormously in number that the lobule has become bent upon itself. This would demonstrate the much exaggerated activity in a sagittal direction of Bolk's lateral "growth-centre". If the above supposition is correct, then the lobule, which is placed posterior to the large double row of folia, is lobule C3. One can speak a little more confidently of lobule D1. It consists of an extremely well developed vermis portion, and two rows of transverse folia in each hemisphere; the three parts being moderately well connected together, i.e. the paramedian sulci are not so deep here as in some other places. Lobule D2 and lobe E do not extend into the hemisphere. At first sight the paraflocculus appears to be too enormous to correspond to the paraflocculus of other mammals, but a close examination of it leaves one little option. The doubt that the whole of it is the homologue of the paraflocculus in the rest of the mammals is small. The dorsal paraflocculus is much larger than the ventral, and consists of a number of radiating masses of folia. From a point a little in front of the middle of its lower surface springs a lobulus petrosus. The ventral paraflocculus is very much smaller, and lies along the side of the medulla oblongata immediately behind the pons (Fig. 46). The flocculus cannot be seen until the ventral paraflocculus, above which it lies, is removed. It is moderately large and is composed of a row of folia.

The above account differs in some points from that given by Flatau and Jacossohn, but it is one which seems best fitted to bring the cerebellum of the Seal into line with that of other mammals.

THE CEREBELLUM IN PRIMATES.

The brains of Hapale jacchus, Cebus capucinus, Macacus rhesus (two specimens), Cynopithecus niger and Cercocebus fuliginosus have been examined. The description of the cerebellum of the first named had better be given separately, as it forms a simple starting point in the consideration of the cerebellum in the other Primates. The other specimens will be described together, since they do not differ sufficiently widely to justify individual consideration.

Hapale jacchus (Figs. 48, 49, 50 & 51). At the very first glance one is struck with the remarkable simplicity of this cerebellum. It is certainly not a simplicity of so severe a type
as that met with in some other small mammals, but it is sufficiently pronounced to call for remark. Paramedian sulci are exceedingly faint in lobes A, B and C. In the remaining lobes they are easily recognisable, but not deep. The number of folia in the vermis is small enough to allow one to speak of the different lobes in this region as being composed of a certain number.

Fissure I is very easily recognised in mesial sections. Its depth is about as great as that of any other fissure with the exception of fissure II. Lobe A consists of five folia; three of which go to lobule AI; the remaining two to lobule A2. Fissure C is undoubted. It is difficult to say if lobe A assists in the formation of the hemisphere, owing to the doubtful character of the paramedian sulci at this point.

Fissure II is placed farther back than one would expect in view of the comparative simplicity of the cerebellum as a whole. Consequently lobe B is relatively large in the vermis, but becomes much more restricted in the hemisphere owing to the course of fissure I in a downward and forward direction. Lobe B consists of five folia in the vermis; but this number is reduced in the hemisphere. Only one, or possibly two, of the intralobular fissures is what Eick would describe as "complete", i.e. runs completely across the cerebellum.

Lobe C calls for a somewhat detailed description. It consists of four folia in the vermis; but in the hemisphere-following the customary behaviour of this lobe-its folia are more numerous. Three of the folia pass outwards and forwards to the border of the cerebellum without undergoing any alteration. The fourth folium is connected with several short folia which are arranged in a radiating manner; their centre of radiation being towards the middle line. This increase in number of the folia, with a corresponding increase in the size of lobe C, is what we have been led to expect; but the point to which attention is asked is the comparative simplicity of their arrangement in a cerebellum in which, as will be shown immediately, certain points are much better developed than is customary in cerebella with a simple lobe C. Neither fissure A nor B can be determined; though serial sections through the whole of one half of the cerebellum have been made and examined microscopically, in order to settle this and some other particulars to be presently detailed.

Lobe D is divided into its two lobules by a very distinct fissure d. Lobule D1 consists of two folia in both vermis and hemisphere; there being no difficulty in determining the connection of the two districts, owing to the comparative shallowness of the paramedian sulcus. Lobule D2 also carries two folia, but does not reach the hemisphere.

Lobe E is likewise composed of two folia—or one compound folium—and microscopic sections show that it entirely disappears at the limits of the vermis, and a white area takes its place. Considerable difficulty has been experienced in arriving at any conclusion as to the line of separation of flocculus and
Parafloccus. There is a well developed and clearly defined lobulus petrosus which, attached to the cerebellum by a narrow neck, is closely surrounded by a capsule of bone. In addition there are five folia lying anterior to the point of attachment of the lobulus petrosus; and it becomes a question as to how many, if any, of these belong to the parafloccus. Unfortunately Bolk (10) affords no assistance, since he does not mention these folia in the text of his paper, nor do they appear in his text-figures. In fig. 2, Taf. II, he apparently shows two of them, but here they are simply labelled "Form-Ver." (Formatio vermicularis). An examination of serial microscopic sections leads one to conclude that, as in the rabbit, these folia anterior to the lobulus petrosus all belong to the flocculus. In looking over sections beginning in the middle line, it is first noticed that a trace of grey matter appears in the small area of white matter which has been left on the disappearance of lobule 22 and lobe 2. This gradually increases until it becomes a veritable folium which ultimately divides into two, an upper and a lower, to the former of which the lobulus petrosus is attached. There can be little doubt that this is the parafloccus; and, incidentally, it may be remarked that its mesial commencement lies far under lobule D1, i.e. it commences within measurable distance of the vermis. No microscopic connection can be traced between the parafloccus, as just described, and the five folia in the anterior part of the cerebellum. They are therefore held to constitute the flocculus, which, as in the rabbit, is far removed from the vermis. This is a point, however, upon which embryology may have much to say.

Cebus capucinus, Macacus rhesus, Cynopithecus niger and Cercocebus fuliginosus.

(Figs. 52 to 64 inclusive).

These cerebella will be described together as their resemblance is very great. Indeed Cynopithecus and Cercocebus so closely resemble one another that one set of figures will serve equally well for either the one or the other. In the anterior part of the cerebellum there is little to note. Until lobe G is reached, the lobes, lobules and fissures are not unlike those already met with in animals with a cerebellum of about the same level of complexity. And it may be further asserted that in all four Monkeys the corresponding parts are of about the same relative size and disposition. It is in the region which lies behind fissure II that the main features of interest are encountered.

Lobe G is marked by a pronounced antero-posterior increase in the hemisphere. With the exception of Cebus, there is little difficulty found in recognising fissure g, which cuts the vermis fairly deeply and curves downwards and forwards to the margin of the hemisphere. Lobule CI, thus bounded posteriorly, is of about equal antero-posterior diameter throughout, and its intralobular fissures run approximately parallel. It is a per-
fectly good exhibition of Bolk's *lobulus simplex*. In *Cebus*, however, it is difficult to decide upon a sulcus posterior such as is figured and described by Bolk (10, fig. 13). In the other monkeys the deepest fissure in the vermis in lobe G can be traced as a continuous and deep sulcus to the margin of the hemisphere, as has been said. But in the specimen of *Cebus*, examined for the purpose of this paper, the deepest fissure in the vermis is neither deep nor continuous in the hemisphere. Judging from the condition as described by Bolk, I can only concluded that my specimen was one illustrating the subsidiary morphologic position of the fissure.

Lobule G2 is not quite the same in all the specimens. On the contrary, with the exception of Cynopithecus and Cercocebus, where the similarity is striking, the differences are such as to be noteworthy. In *Cebus*, as noted above, fissure b cannot be determined; therefore the exact extent of lobule G2 cannot be defined. In *Macacus* lobule G2 has apparently no existence in the vermis, because fissure a runs into fissure g in the paramedian sulcus. That part of it which does exist, however, has the same form as the hemisphere portion of lobule G2 in other monkeys, i.e. it consists of a number of folia arranged in the manner of a half-opened fan, the handle of the fan being directed towards the vermis.

The fissures between the folia all disappear before reaching either fissure g or fissure b, with the exception of one which arrives at the apex of the triangle, and therefore opens into the conjoint fissure a + b (Fig. 58). In *Cercocebus* and Cynopithecus fissure g is deep in the hemisphere, but in the vermis is traceable into a shallow interfoliar sulcus in the depths of fissure III (Fig. 64). Lobule G2 in the vermis is, therefore, present and of some size.

In the hemisphere it need only be noted that it is relatively larger than in *Macacus*. It has the same radial arrangement as in the latter animal, and there is the same fissure running inwards towards the point to which a' and b' converge. It should be noticed that there is a very narrow link on each side connecting the three parts of lobule G2; this being invisible from the surface.

Lobule G3 in *Cebus* and *Macacus* consists of a narrow part in the vermis, continued into a much larger portion in each hemisphere; there being a slight constriction in the paramedian sulci, but not such as to obscure the continuity of the lobule. In *Cercocebus* and Cynopithecus, owing to the peculiarity of fissure a, lobule G3 can hardly be said to form a part of the vermis. The most that can be affirmed regarding it being that it is represented by three or four folia on the anterior wall of fissure III. In the hemisphere, however, the lobule is large and resembles the homologous part in the other cerebellas.

In all the specimens lobules D1 and D2 are very similar. Lobule D1 is largely developed in the hemisphere, and there is little difficulty in tracing its connections with the vermis. This is very easily done in *Cebus*, owing to the compar-
ative lack of depth of the paramedian sulcus (Fig. 54). Lobule D2 belongs entirely to the vermis. In order to ascertain if there was any continuation whatever beyond the vermis, microscopic sections of this region in Cercopithecus have been made. It was found that lobule D2 ends somewhat abruptly and gives place to a considerable stretch of white matter which underlies lobule D1 in the mesial part of the hemisphere.

In all but Cebus lobe E also ends at the level of the paramedian sulcus. In Cebus, however, the lowest folium is continued outwards undiminished in size underneath lobule D1 (Fig. 55). It proceeds laterally for some distance and then fades away, giving place, as it appears, to the posterior medullary velum to which it has been previously adherent.

The same general arrangement of the paraflocculus and flocculus obtains in all the monkeys examined. The paraflocculus consists of a single row of transverse folia, which turns downwards a little in front and appears to be continuous with the flocculus (Figs. 52, 57 & 61). This appearance would lead to the description of the paraflocculus as composed of dorsal and ventral parts, and to the statement that the flocculus is wanting, were it not for two circumstances which cannot be put on one side unconsidered. The one is, that there is a deep sulcus separating the anterior end of the flocculus from the down-turned anterior end of the paraflocculus. When this is opened up the folia of the paraflocculus are found to be continued for a short distance into it. Again, the flocculus is closely related to, and in part adherent to, the lateral prolongation of the posterior medullary velum. This is remarkably well shown in Cebus, where, owing to the lateral extension of lobe E (as described above), there is a very little interval between the flocculus and lobe E (Fig. 55).

The paraflocculus carries a lobulus petrosus springing from its lateral face close to its anterior end. The extent to which the paraflocculus proceeds backwards and inwards varies to a certain extent. In Cebus lobule D1 passes onto the inferior surface of the hemisphere, and, consequently, sets a limit to the paraflocculus. In Macacus, Cercopithecus and Cynopithecus, however, the paraflocculus is continued unarrested in a mesial direction until it almost reaches the vermis. But it is not fused with any part of the vermis, as microscopic sections show, and for this reason the name paraflocculus is applied to the whole of it however nearly it may approach the middle line.

THE HUMAN CEREBELLUM.

Thanks to the kindness of Professor D.J. Cunningham, I have been enabled to examine a number of human foetal cerebella. Although several of them are of approximately the same age, and none of them are illustrative of the earliest stages of development of the lobes and fissures, there are at least four of them
which throw light upon some of the problems of the development of the fissures in Man. The remainder have been of the greatest use in enabling me to check my results, and in showing in what manner some of the fissures are liable to variation. Seeing that the cerebella had been separated (along with the pons and medulla) from the rest of the brain, no definite idea could be formed as to age of the embryo from which any one had been taken. This is perhaps not of very great importance; and the cerebella to be mentioned here may be known by means of numbers.

In investigating this embryonic material, the usual plan of making serial sections was not considered necessary, as the cerebella were all sufficiently large to be easily handled in entirety, and the fissures were of such depth as to offer no difficulty in tracing them with the naked eye. Had the material been younger microscopic preparations would have been essential.

In cerebellum No. 1. (Figs. 65, 66, 67, 68 & 69) the anterior part of the organ is already provided with a fairly numerous set of folia. In the posterior part the fissure are less numerous; and it is in this region that especial attention will be bestowed, for the reason that here are located the lobes and lobules concerning which there is most difficulty in arriving at conclusions regarding homologies. In all parts of the organ a distinction can readily be made of a vermis and two hemispheres; this being the more easily done in the posterior district. When the cerebellum is viewed from the front (Fig. 65), fissures 2, 11, and b can be at once recognised; their disposition being very similar to that in the adult brain. Special attention is called to the appearance presented by a mesial sagittal section (Fig. 69). A noteworthy feature here is the large size of what would doubtless have become the "lingula". Further, the depth of fissure 1 is to be noted; since this, as previously tentatively stated (7), is not recognised by the human anatomist as a fissure of any importance in the division of the vermis into parts. Between fissures g and 1 there is only one folium visible when the surface is examined; this folium being even narrower in the hemisphere than in the vermis. That part of the organ which lies posterior to fissure 11 is of great interest; chiefly because, as already said, its development is not so far advanced. Appearances seem to point to the development of fissure g as having been from two lateral halves which have gradually grown towards the middle line. These two halves, in this particular specimen, seem to have missed arriving at exactly the same point in the middle line, with the result that they overlap to some extent (Fig. 66). In a mesial section the fissure is double, appearing as two shallow depressions (Fig. 69). Fissure g is still in the form of two halves which are approaching each other in the vermis. Kuhlman (2) has shown that this is the manner in which this particular fissure develops in Man. It is of considerable importance to notice that it is of some depth in the hemisphere even at this early stage. It will be observed that fissures g and b develope
in Man in the same manner as has been found in the pig, rabbit and sheep. Fissure III has obviously commenced its development in the middle line (cf. Kuytman). It is deep in the vermis but gradually becomes shallower as it curves outwards and downwards into the hemisphere, to disappear finally before reaching the margin of the cerebellum (Fig. 67). Fissure g is as deep as III in the vermis, and in each hemisphere is continuous with a curved groove which reaches the border of the organ. It is well to remark that fissure g is very shallow in the paramedian sulcus.

Lobe E is small and confined to the vermis. A simple, unfoliated flocculus is visible when the cerebellum is looked at from behind or from the side (Figs. 67 & 68). Younger material is needed to show its method of development. There are no paraflocculi in this specimen.

A few intralobular fissures have appeared in the vermis in lobules D1 and D2; and that part of the hemisphere which lies between fissures a and d is marked by a groove which begins at the border of the cerebellum and, passing for some distance towards the middle line, becomes gradually less deep until it finally ends before reaching the vermis (Fig. 67). There seems to be little doubt that the last-mentioned fissure ultimately becomes continuous with III and so completes the separation of lobe C from lobe D. If this supposition is correct, and there seems every reason for believing it to be so, the similarity of the manner of development of fissure III in its entirety in Man and in the rabbit, pig, sheep and calf is very striking.

Cerebellum No. II. (Fig. 70), in addition to showing further development of the fissures and lobes, is interesting since it illustrates an asymmetry in lobe C. It will be observed (Fig. 70) that fissure p of the left side is continuous with fissure q of the right; and a of the left and b of the right half of the cerebellum cross the middle line to terminate in the opposite hemisphere. If any instance were needed in support of the contention that these fissures are of secondary importance merely, this tendency to irregularity of disposition might be cited in this cerebellum the posterior portion has developed very considerably as compared with the same region in No. 1. Fissure III is now complete, forming a series of graceful curves, of which that in the vermis is the most acute and has its convexity looking upwards. Fissure d and lobule D2 have not altered very materially from their condition in the preceding specimen. The vermis portion of lobule D2 has become more foliated, but its hemisphere segments are still smooth. The flocculus has become foliated in the interval between the two stages. There is a paraflocculus on one side only, and this is much smaller than the flocculus. Its connections cannot be traced with any amount of satisfaction; it being quite clear that only in much younger specimens can the origin of paraflocculus and flocculus be determined beyond question.

Looking at this cerebellum as a whole, it is observ-
ed that there has been a more pronounced growth in the hemisphere than in the vermis. This growth has taken place more particularly in lobules G3 and D1; lobule D2, as previously stated, being still unfoliated in the hemisphere. As a consequence of this marked local development, the hemispheres project farther posteriorly than the vermis, and overhang the medulla to a greater degree than they did in cerebellum No. I. The paramedian sulcus is deepest and best marked in lobule D1, and it will be noticed that the connection between the three parts of lobule D1 has become very narrow.

In cerebellum No. III (Figs. 71, 72 & 73) there is a marked resemblance to the adult organ. There is now a fairly pronounced vertical flattening. On inspecting the cerebellum from above, fissures I, II and g are seen to run uninterruptedly across the surface; and lobes A and B and lobule Q1 are now noticed to carry many folia. Fissure g is still in the form of two lateral halves, which approach each other in the middle line but have not yet fused (Figs. 71 & 72). As a consequence there is still a portion of the vermis common to lobules c2 and c3. This common connection is of only small antero-posterior diameter, as indeed was the case in the younger specimens, and as persists into adult life. Lobule c2 is relatively small and its intralobular fissures are few. Lobule c3 in the hemisphere has again grown at a rapid rate, as compared with the surrounding lobules. There is little to remark regarding fissures III and g. They present much the same features as have been mentioned in connection with cerebellum No. II; their depth, of course, being greater. Lobule D1 has not grown so rapidly as appeared to have been the case in the interval between No. I and No. II. The connecting link between that part of it which lies in the vermis and its more lateral segments is narrow (as in No. II) and consists of a single folium. Lobule D2 has not grown in a manner which calls for remark; and those portions of it which are placed lateral to the paramedian sulci are still smooth. A small and simple paraflocculus is present on both sides (Fig. 73). The folcculus does not appear to have made any noteworthy progress.

The external features of cerebellum No. IV. (Fig. 74) are very similar to those of No. III. There are rather more intralobular fissures; but the lobes, in the main, present no additional points of interest. It should be noted that the two halves of fissure g have at length joined in the middle line. This is obvious in mesial sagittal section (Fig. 74). Attention is again directed to fissure i as presented in section. Its depth in the middle line is considerable, being not much less than that of fissure g. The importance of this fissure is once again insisted upon.

The only other foetal cerebellum (No. V) to which any reference is necessary is useful as affording evidence of the parts of the adult organ formed from the various lobes in the younger specimens. This cerebellum has arrived at such a stage that it, at one and the same time, resembles No. IV and also the fully developed structure. Its approaching identity with the adult condition removes any necessity for a detailed description. It will
suffice to indicate what changes occur in the transition from the foetal to the adult condition. It may be said, in general terms, that the most striking alteration in the form of the whole organ is produced by a growth of the hemispheres out of proportion to that of the vermis (Figs. 75, 76 & 77). This we have seen to begin in the comparatively early stages illustrated by the material the description of which is given above; it becomes still more evident in later stages. As the consequence of this disproportionate growth, the vermis becomes a comparatively insignificant part of the human cerebellum, and the mesial connections of the corresponding lobules in the two hemispheres is relatively reduced in a sagittal direction. This character of development is not equally marked in all regions. In lobes A and B it is very inconspicuous. In lobe C it is decidedly obvious; and particularly so in lobule Q3. The development of the hemispheres within this lobule is so great, and the fissures which cut its surface are so deep, that human anatomists have found it expedient to divide it into three parts. This enormous growth in lobe C is very characteristic of the human brain. Indeed, Belk has said (9) that "the distinguishing feature of the human cerebellum depends upon, what may almost be called, the monstrous development of the Crus_prae- of the Lobulus_anterior" (i.e. Lobuli semilunares superior and inferior and gracilis), with the corresponding reduction of other parts to which attention will be directed later. The lateral portions of lobule Q1 also share in this developmental activity, but to a smaller extent. Lobule Q2 does not become nearly so conspicuous a focus of growth. Because of the great backward projection of the hemispheres in the region of lobe C, the vermis appears to sink into the depths of a narrow valley bounded by the steep heights of the hemispheres. For the same reason the lateral portions of lobe Q are constrained to form part of the sides of the valley. That part of lobule Q2 which contributes to the formation of the hemisphere, is, indeed, so confined by the masses lying lateral to it that its growth has to take place in a sagittal direction. In the adult brain, it is found to consist of two rows of folia - or rather one row doubled upon itself - radiating out from what Ziehen (11) describes as the Fossa_axialis.

Throughout the whole of the present paper, and also in the one which has preceded it, the various lobes and fissures of the cerebellum have been known by numbers or by letters. This plan has been followed with the intention of avoiding the use of terms such as those employed in Human Anatomy, for instance - which would, in any degree, hamper us in our endeavour to approach the subject without preconceived ideas. It would have been easy to adopt some other method of nomenclature, but it was not considered desirable to do so. Two main plans were open to us. In the first place, names already in existence might have been taken either all from the same source or culled from the various writers who have contributed to the literature on the cerebellum, as they seemed most
applicable for purposes of description. The objection to the proce-
ding is stated above. On the other hand, new names might have
been coined. But there was a great reluctance to do this, since
a nomenclature, unless it is generally accepted, only serves as a
source of annoyance and embarrassment to a subsequent worker in the
same field. It seemed a pity to compose a series of Latin-like
or Greek-like names which will, in all likelihood, be certainly
rejected by some, probably many, possibly all, anatomists. After
all the making of names is not the most important duty of the morp-
holgist; and if I have succeeded in pointing out the corresponding
parts in the various mammalian cerebella with which this communi-
cation and its predecessor are concerned, I shall be pleased to leave
the question of nomenclature to some future occasion.

In only one instance am I tempted to depart from the
plan originally laid down, and that in connection with the human
brain. Here it may perhaps be serviceable to translate the con-
cclusions arrived at, and as stated in the preceding paragraphs,
into terms more readily appreciated by the Human Anatomist.

Fissure c, then is the Sulcus_postcentralis of Man,
and therefore forms the posterior (upper) limit of the Lobus_cen-
tralis (locule A1). Fissure I is not recognised as being of any
great importance, and is therefore unnamed in books on Human Anatomy.
That it should not be relegated to a subordinate place, has, it is
hoped, been made clear both by embryological evidence and also by
the testimony of Comparative Anatomy. Lobule A2 is considered, in
the text-books, as a part of the Lobus_culminis, though there are
not lacking those who consider this lobe to be composed of two parts.
Lobe B constitutes the upper portion of the Lobus_culminis. Fiss-
ure 11 is the Sulcus_proclivalis; fissure b is the Sulcus_postclivi-
alis; fissure i the Sulcus_horizontalis_magnus; and fissure III the
Sulcus_postpyramidalis. Lobe G, therefore, comprises a very large
proportion of the human cerebellum. Its lobule G1 is the Lobus
olivii, consisting of the Clivus_monticuli and its Loboli_lunati_post-
eriore. Lobule G2 is the Lobus_pacuminis with its diminutive
Polium_pacuminis in the vermis and its much expanded Lobus_posteri-
superior in the hemisphere. To this, and to lobule CS, as has al-
ready been said, the human cerebellum owes not a little of its dist-
inguishing characteristics. Lobule CS is the Lobus_tubergis, with
a vermis segment, the Tuber_valvulae, and the enormously developed
appendages in the hemisphere which anatomists have found it nece-
sary to subdivide into Lobus_semilunaris_interior, Lobulus_gracilis
anterior and Lobulus_gracilis_posterior. The Sulci_posteriarcricillae
and intragracillae, being confined to Man and the anthropoid apes,
have found no place in the foregoing descriptions. They are of
no interest as forming the boundaries of primary subdivisions of
the cerebellum. Not only are they limited to one zoological locality,
so to speak, but, in those animals in which they do occur, they are
tardy in their appearance in the embryo.

There are doubtless those who will object to the
somewhat cavalier treatment which the Sulcus_horizontalis_magnus
has received. But here again both Embryology and Comparative Anatomy support the contention that it is not a primary fissure. In the simplest cerebella it is not represented at all; and in those cerebella in which it is present in the adult, it develops comparatively late, and begins in the hemisphere. In Man himself, as has been shown, it is the latest interlobular fissure to complete its growth. Even when it has reached maturity its behaviour in the vermis is liable to considerable irregularity. Undoubtedly it is one of the deepest fissures in the hemisphere of the adult cerebellum, but this fact counts for little. The depth to which a fissure extends in the hemisphere of Man is, so to speak, an accident of position. If a fissure happens to be placed in a portion of the hemisphere in which growth is great, the depth of that fissure is naturally great. The Sulcus horizontalis magnus is such a fissure. Since the vermis of Man is not subject to local exuberance of growth, it is much more rational to judge of the importance of a fissure by its depth in this part of the cerebellum. The sulcus horizontalis is comparatively shallow in the vermis. Furthermore, mere depth is not always a safe guide in the cataloguing of fissures in the order of their importance.

In lobe P of the human cerebellum are found points of primary importance to the morphologist. Lobule D1 consists of the Pyramis and its Lobuli oiventrales, constituting the Lobus pyramidis. Lobule D2 is the Lobus urulae, with its Urula in the vermis and the Tonsil in the hemispheres. That part of lobe D which is so well developed in the majority of mammals, and which has come to be known as the paraflocculus, is either unrepresented in Man or, when present, of small size. But, on the other hand, that connection between the paraflocculus and lobule D1 in the vermis (Pyramis), which is always comparatively small and often apparently absent in the lower mammals, is largely developed in Man, forming that very considerable lobule, the Lobulus biventer. And again, that continuation of lobule D2 into the paraflocculus which apparently has only an existence in the embryo in the lower mammals, is persistent in Man as the Tonsil. Lobe E is the Lobus noduli (Nodulus and Flocculus) which, though subjected to some variation in size in different mammals, does not show such extreme degrees of fluctuation as are found in many of the other lobes.

No mention has been made above of the "lingula" of the human cerebellum; and this because it is not considered to be a distinct and separate lobe of the cerebellum. It must be admitted that a very prevalent idea, as expressed in many text-books on Human Anatomy, is that the "lingula" stands on the same level of importance as the "nodulus"; and that these two structures should be further held of equal status since they are similarly related to the anterior and posterior medullary vela respectively. But such assertions are not supported by Comparative Anatomy. The "nodulus" is always present in mammals (Meta- and eu-therian, at any rate); but the "lingula" is not so constant. In the smaller animals with simple cerebella, there is no trace of grey mat-
ter on the dorsal surface of the anterior velum. In the larger mammals this condition also largely obtains; and even when there is an invasion of the velum by grey matter it is usually very small in amount. For example, in the Monkeys examined, with the exception of Hapale, the velum appeared to spring from the edge of a folium of grey matter, instead of from the central mass of white matter as is most frequently found to be its mode of attachment to the cerebellum. Certainly so far as one can judge from descriptions, a "lingula" of some size is found in the common Seal and the Cetaceans. But in these animals we have instances of cerebella which belong to an aberrant type, so to speak. A "lingula" may be encountered in one specimen and not in another taken from the same species of animal. The sheep afford an example of this variability. Even where a "lingula" is accepted as being always present, as in Man, for example, it is liable to great variation in size. There is certainly a degree of variability in the size of the "nodulus", but this is not nearly so marked as it is in connection with the "lingula".

Further, the development of the anterior and posterior velum and their adjacent parts of the cerebellum is not quite the same. The anterior velum is produced as the result of the upward and forward growth of the cerebellar lamina, which produces a thinning, so to speak, of the roof of the neural tube. The posterior velum is originally a thin non-nervous membrane attached to the sharp margin of the cerebellar lamina. It becomes folded inwards towards the cavity of the fourth ventricle as a consequence of the pontine flexure. It is readily conceivable that in the development of the anterior velum there may be an incomplete obliteration of those neuroblasts which go to form the grey matter of the cerebellar cortex. But the "nodulus" grows in connection with the posterior edge of the cerebellar lamina itself, and makes its appearance at an early stage.

From these considerations, it seems not unreasonable to conclude that the "lingula" is an overflow of the grey matter onto the velum, and, therefore, does not form one of the fundamental lobes of the cerebellum.

Having now signified the homologies of the human lobes and fissures in the terms of the human anatomist, I shall revert to the provisional use of numbers and letters.

THE CEREBELLUM OF PRIMATES IN GENERAL.

Whatever opinion one may hold regarding the inclusion or exclusion of the Lemuroidea in or from the order of Primates, there can be no doubt that, so far as the cerebellum is concerned, the Lemurs do not range alongside the Anthropoidea. Judging from the figures and descriptions of the cerebellum of Lemur aliofrons as given by Bolk (9), this structure is fashioned after the plan commonly found among the Carnivora, and, therefore, presents features which are widely different from those of corresponding parts
in the brain of the Marmosets, Monkeys, Apes and Man. In many respects the cerebellum of the Anthropoidea stands apart from that of the rest of Mammalia; and, from the Hapalidae upwards, forms a graded series of forms culminating in Man. It may be useful to summarise some of these gradations.

In the Hapalidae the lobes are simple and of few folia; and the general direction of the fissures is transverse, i.e. there is none of that marked local obliquity so commonly met with in most cerebella. Lobe C can hardly be said to be subdivided at all. This circumstance, were it not relieved by an attempt at the obliquity just mentioned, would bring the lobe down to the level of the corresponding part in the Rodents, Insectivores &c. Another remarkable feature is the small size of the paraflocculus (that is, if the statements set forth upon this point in a previous part of this paper are substantiated by further research).

In all the monkeys examined, as well as in those described by Bolk (10), there is no possibility of overlooking fissure 1. In most monkeys lobule A2 is, relatively speaking, small; whereas lobe E is well developed. In lobe C we find a gradual increase in size as we ascend from Hapale; this increase being mainly, but not entirely, in a sagittal direction. Associated with this expansion in the hemisphere is a relative diminution in the vermis posterior to fissure p; and an arrangement in the hemisphere of the folia belonging to lobules D2 and E2 in a radiating manner.

The characteristic feature of lobule D1 is the constancy and size of those parts of it which belong to the hemispheres. So far as the Marmosets and Monkeys are concerned, there is nothing very striking in the form, size or disposition of lobule D2. In all of them, of which we have any account, this lobe is similar to that of mammals belonging to other orders. There is, therefore, a remarkable difference between this lobe in the Monkeys and in the Apes. From Stroud's observations on the Ape Cerebellum (13), it appears that, in the Chimpanzee, Orang and Gorilla at any rate, there is a lateral continuation of Lobule D2 as in Man; but in these animals it "is a relatively small tetragonal mass". It would be very interesting to find some Monkey in which this condition, but on a smaller scale, were present; for then the gradations up to Man would be complete in this region of the cerebellum.

The fairly uniform size of the flocculus and lobe E in general in the different Monkeys is noteworthy. In no order of Mammalia is there any very great variation in size of these parts but in Monkeys and Apes (Stroud) the variation is even less than might be reasonably expected in a group of animals differing widely from each other in certain respects. In Monkeys, too, the paraflocculus is fairly uniform, and is peculiar in all of them in consisting of only one well developed row of folia. It becomes a nice question to decide as to which part of the paraflocculus
(dorsalis or ventralis), as met with in the majority of mammals, this single paraflocculus corresponds. Without further evidence the matter is one for speculation pure and simple. Though microscopic sections have been made and the examination, both naked-eye and microscopic, carefully conducted, no connection of the paraflocculus with the vermis could be discovered. So far as the adult material at my disposal goes, the paraflocculus appears to be quite independent of any other part. Seeing, however, that in those animals with a paraflocculus dorsalis and ventralis, the lobulus petrosus generally springs from the posterior end of the ventral paraflocculus, whereas in the Monkeys it springs from the anterior end of the single paraflocculus, it might be contended that this single row of folia corresponds to dorsal and ventral paraflocculus straightened out instead of being bent sharply upon each other. This, however, purely a piece of guesswork, and one can only wait for further light to be thrown upon the question by subsequent investigation. The point is interesting.

In the Apes Stroud found that the paraflocculus was variable. In a Gorilla he describes it as "very large and almost entirely exposed". In two Orangs "it is small and concealed on the left side, only the tip showing on the right side". And in a Chimpanzee it "is small and concealed on the left side; the tip is visible on the right side". The paraflocculus of the Apes, therefore, forms a link between the well developed lobe of the Monkeys and the small insignificant and inconstant structure in Man, which is generally referred to as the "accessory flocculus".

ARBOVITAE CEREBELLI.

It has become a practice— not invariable, but certainly common— for those who write on the cerebellum to devote some attention to the figure presented when sagittal sections (particularly in the middle line of the vermis) are made. It is obvious that the form assumed by the white substance will vary considerably, depending upon the depth of the primary fissures, and the number, depth and disposition of the subsidiary fissures. For this reason the appearance of the Arbor vitae cerebelli differs considerably in different animals; presenting the least intricacy in those brains in which the cerebellar fissures are few, and the looes and lobules simple. For example, in the smaller bats the rays proceeding from the central white mass are only five in number, and each ray is undivided. In the larger cerebella the rays are much more numerous and sometimes very copiously branched. Moreover, not only does the form of the Arbor vitae differ in different species of animal, but there is also variation to be observed in different animals of the same species. For these reasons it is difficult to arrive at any precise conclusion as to the absolutely typical form of Arbor for any one class or even species of animal unless one is fortunate enough to be able to examine numerous specimens of that order or species. Bearing this in mind, it is
with a certain amount of reserve that one speaks of the form and definite arrangement of the branches of the Arbor vitae cerebelli in any given animal. At the same time certain general statements may be made as to their disposition in the average mammalian cerebellum.

In all cerebella the central mass of white matter is divided more or less into two parts by the fastigium cutting it from below and fissure II indenting it from above (Fig. 79). The degree of division is far from being constant; nor is the result of the division always the same. In probably the majority of animals the more anterior piece of white matter is the larger and more compact. The posterior part has a greater tendency to be drawn out in an antero-posterior direction. Springing from the anterior and posterior portions of the white mass are two strong main branches which pass upwards into lobes B and G respectively. To these two branches Ziehen (11) has applied the names of Truncus verticalis (to the anterior) and Truncus horizontalis (to the posterior). It is unfortunate that these names do not indicate the direction of the branches in all, or even in most, mammals. Most frequently they are both more or less vertical.

In all but the simplest forms there are five prominent branches in addition to the two just mentioned. So that in the average mammalian cerebellum seven rays of white matter may be looked for radiating out from the central mass. These seven rays pass into the following lobes and lobules. The lowest of the anterior branches passes into lobule A1; and is very frequently not a single ray but rather two or three. The next ray passes into lobule A2 and arises either from the central mass directly, or from the third branch. Not infrequently it is difficult to decide whether these two branches arise from a common point, or if the third branch gives origin to the second. The third branch—which is one of the two main and constant rays—is always thick. It forms the core of lobe G; and very often divides into two (sometimes more) parts. The fourth branch is usually the strongest of all the seven. It curves upwards into lobe Q; and, in all cases except where this lobe is incompletely, or not at all subdivided, divides into three rays—one for each lobe. The fifth branch arises in one of four ways. It may leave the central white mass independently; it may arise in common with the fourth branch; or it may spring from this branch; or it may have a common point of origin with the sixth branch. Whatever its mode of origin, its destination is lobule D1. The sixth branch mostly arises directly and independently; but, as said above, it may share a common origin with the fifth. It runs into Lobule D2. The last branch is always the smallest. Indeed, in the simplest forms it is nothing more than a small projection from the white centre. It forms the centre of lobe E.

Seeing that there is such diversity of form in the hemispheres of different animals, it would be exceedingly difficult
to make any serviceable general remarks regarding the arrangement of the white matter in this part of the cerebellum.

GENERAL SUMMARY.

It may be well to summarise the results set forth in this paper and in the one which has been already published, and to state briefly the conclusions at which one has arrived. Though these conclusions may—and most likely will—require modification in the light thrown upon the various questions by subsequent research, it cannot be said that they are based upon altogether scanty information. In addition to the examination of embryos of different ages and from several mammals, the hypotheses have been put to the test upon the cerebella of the following adult animals:

Marsupialia.
- Didelphis azarae.

Ungulata.
- Sus domesticus (several specimens).
- Capra (dom.).
- Ovis aries (numerous specimens).
- Bos taurus (several specimens).
- Equus caballus (numerous specimens).
 ... asinus.

Rodentia.
- Sciurus vulgaris (three specimens).
- Arvicola amphibius (two specimens).
 ... agrestis (several specimens).
- Mus decumanus.
 ... musculus.
- Lepus cuniculus (several specimens).
 ... timidus.

Carnivora.
- Felis domestica (several specimens).
- Viverra civetta.
 ... malaccensis.
- Herpestes mungo.
- Canis familiaris (numerous specimens).
 ... vulpes.
- Procyon lotor.
- Meles taxus.
- Mustela furo (several specimens).
 ... erminea (two specimens).
 ... vulgaris (several specimens).
- Phoca vitulina.

Insectivora.
- Erinaceus europaeus (numerous specimens).
- Sorex vulgaris (several specimens).
- Talpa europaea (numerous specimens).

Chiroptera.
- Pteropus poliocephalus.
Pteropus medius.
Xantharpyia (Rousettus) collaris.
Plecotus auritus.
Primates.
Hapale jacchus.
Cebus capucinus.
Macacus rhesus.
Cynopithecus niger.
Cercopithecus fuliginosus.
Homo.

From the examination of the above material it is again made clear—if this were in any way necessary, after the work done by Stroud, Kuithan, Elliot Smith, Flatau and Jacobsohn and Ziehen—that in all mammalian cerebella, from the simplest upwards to Man himself, there is one transverse fissure of preeminent importance. Its future status is foreshadowed at an early period in development, and is attained to and maintained in all adult forms. Were it not that it is to a degree inconvenient to do so, the cerebellum might be described as consisting of two lobes separated by this fissure. Largely for the sake of convenience, but also and mainly from the consideration of the Comparative Anatomy of the mammalian cerebellum, it is better to recognise five lobes. Each of these has its own characteristics, and, in a series of cerebella, is found to undergo modifications along certain lines. The lobe in which variation is least marked is the most posterior or 5. The greatest amount of diversity of form occurs in lobes 3 and 4; lobes 2 and 6 changing somewhat, but to a less extent. Lobe 2, in all but the simplest cerebella, is divided into two parts by a transverse interlobular fissure. Lobule 22, the lower of these subdivisions, may remain simple or, in the higher forms, be in its turn composed of more or less independent parts, generally two or three in number. Lobule 21, the upper part of lobe 2, is generally the smaller, and frequently remains unsegmented. The deep fissure in lobe 5 has been known as 9 throughout these communications: its importance has been recognised for long by human anatomists. Fissure 1, which separates lobes 2 and 3, has not been accorded the attention to which, it appears to me, it is entitled. Lobe 7 varies in different animals within certain limits; but these limits are fairly well defined. In all the small Bats, for example it is a single, undivided folium. It increases in size pari passu with the increase in the other lobes; until it is found to be subdivided by deep sulci. Examples of the commencing division of the lobe are supplied by the Squirrel and the Opossum. In these animals, not to multiply instances, the lobe is found to be crossed transversely by a fissure which divides into two practically equal parts. When there is dissimilarity in size, the advantage nearly always rests with the more posterior division. In Phoca the division is very clear. In forms more complex than the Opossum and Squirrel the two portions of lobe 7 are themselves divided. This is also well exemplified in Phoca. Lobes 2 and 3 differ
from the remaining lobes in the shallowness of their paramedian sulci; and in their small transverse expansion. These points have been emphasised by Bolk, and are excellently demonstrated in some of the Ungulates (Bos, for example). The embryology of lobes A and B is also different from that of lobes C, D and E. In the earlier stages they lag behind in development; then comes a period of activity in which they outdistance the posterior lobes, and so come to resemble the adult lobes while C, D and E are still comparatively rudimentary.

Lobe C occupies a developmental and anatomical position peculiarly its own. Even in the simpler forms its surpassing importance is obvious; for, even here, the great antero-posterior diameter of the hemisphere is evident. In higher forms it is clearly divided into three lobules by two fissures -a and b. These two fissures are not of equal consequence. From what has been seen in the embryos examined, a probably always (horse excepted?) begins its existence in the hemisphere and grows into the vermis. Fissure p seems to begin either in the hemisphere (rabbit and pig) or in the vermis (sheep and man?), and nearly always becomes complete, i.e., grows across the whole cerebellum. It is highly probable that fissure a frequently remains as two lateral segments, which do not join in the vermis; or, if they do, their union is apparently later than the conjunction of the two parts of fissure p. The human embryo illustrates this point. Again, even when fissure a is complete, it may not cut the vermis very deeply. These peculiarities of fissure a are better exemplified in the higher forms. In the simpler type, e.g., Opossum, it is much more continuous and obvious than p. These variations, and the potentiality for irregularity, demonstrate the secondary importance of fissures a and p. Lobule QI apparently corresponds to Bolk's Lobulus simplex, and does all that Bolk claims for it. It is unmistakably of a like constitution with lobes A and B; but it differs from them in its greater lateral extent. Lobules G2 and G3 are peculiar in possessing a remarkable power of growing in a sagittal direction; especially in the hemispheres. Upon this peculiarity depend the most striking differences in a series of mammalian cerebella. For this reason Elliot Smith has given the name of Area_crescens to the lateral part of his Lobus_centralis (lobe C). Sagittal expansion is also possible in the vermis; but it is generally smaller in amount than in the hemisphere. Phoca may be used as an illustration of the possible exuberant expansion of the hemisphere; and Bos as an example of a similar growth, but to a less extent, in the vermis.

The two lobules which compose lobe D have different characters. Lobule D2 is much the simpler. It is usually limited to the vermis except in the very highest forms (Apes and Man), and does not show any sagittal expansion such as will produce distortion of the vermis. Lobule D1 may be confined to the vermis, but is frequently continued into the hemisphere (as shown in Monkeys, Apes and Man, in the greatest degree). When lobule D1 has
a segment in the hemisphere, this is generally connected with the
dorsal paraflocculus. This connection is clearly indicated in the
Ungulates. In Monkeys, though lobule Di in the hemisphere is lar-
ge, its continuity with the paraflocculus is not obvious; the para-
flocculus frequently passing under Di from which it is separated
by a sulcus of some depth.

Lobe E is subject to some modification in size; but
the variation is not remarkably great. Its continuation into the
hemisphere is not of common occurrence; but in Cebus and Viverra
civetta it is so continued. And in Didelphis and Herpestes the
continuation of its grey cortex reaches as far out as the flocculus.
Like the central part of lobe E, the flocculus does not vary to
any great extent. It appears to reach its lowest point in some
of the Carnivora.

The paraflocculus offers one of the most interesting
features in the whole cerebellum. The difference in its size
in different mammals is very striking. In its most highly devel-
oped condition it is composed of two rows of folia, to which may,
or may not, be added a lobulus petrosus. The lobulus petrosus
in such cases is generally attached to the posterior end of the
ventral paraflocculus; but there are exceptions to this rule,
as, for instance, in Phoca. In Herpestes, it has been seen,
that the ventral paraflocculus is small and carries the lobulus pet-
rosus towards its anterior end. The peculiarity of the paraflocc-
ulus in the Monkeys has been already commented upon. In the
Apes it shows various stages of diminution; and in Man it has
totally disappeared in many, if not most, cases. It is very
clear that the last word has not been said with regard to this
peculiar fraction of the cerebellum.

Although these papers the paraflocculus and flocc-
ulus have been described by themselves in the accounts of the
various cerebellae, this has been done merely for the sake of con-
venience. It is perhaps well to repeat the assertion that the
paraflocculus belongs to lobe D, and the flocculus to lobe E (Fig.
78). Both embryology and comparative anatomy demonstrate this.
The apparent separation of the two structures depends solely upon
secondary development. They are apparently crowded to one side,
and their connections with the vermis weakened or broken down,
by the great development of the superposed parts of the hemisphere.
REFERENCES

(2) KUITHAN, W. "Die Entwicklung des Kleinhirns bei Säugetieren". Münchener medicinische Abhandlungen. VII, Reihe. 6, Heft. 1895.

(4) SCHWALBE. "Lehrbuch der Neurologie". Erlangen. 1881.

FIGURES illustrating

THE MAMMALIAN CEREBELLM: its lobes and fissures.

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Animal</th>
<th>Section Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Sheep embryo</td>
<td>68 mm, mesial sagittal section.</td>
</tr>
<tr>
<td>2.</td>
<td>Sheep embryo</td>
<td>87 mm, posterior view, x.4.</td>
</tr>
<tr>
<td>3.</td>
<td>Sheep embryo</td>
<td>Mesial sagittal section.</td>
</tr>
<tr>
<td>4.</td>
<td>Sheep embryo</td>
<td>100 mm, superior-posterior view, x.4.</td>
</tr>
<tr>
<td>5.</td>
<td>Sheep embryo</td>
<td>Anterior view, x.4.</td>
</tr>
<tr>
<td>6.</td>
<td>Sheep embryo</td>
<td>Mesial sagittal section.</td>
</tr>
<tr>
<td>7.</td>
<td>Sheep embryo</td>
<td>114 mm, superior-posterior view, x.4.</td>
</tr>
<tr>
<td>8.</td>
<td>Sheep embryo</td>
<td>Mesial sagittal section.</td>
</tr>
<tr>
<td>9.</td>
<td>Sheep embryo</td>
<td>165 mm, superior-posterior view, x.4.</td>
</tr>
<tr>
<td>10.</td>
<td>Sheep embryo</td>
<td>Mesial sagittal section.</td>
</tr>
<tr>
<td>11.</td>
<td>Sheep embryo</td>
<td>188 mm, superior-posterior view, x.4.</td>
</tr>
<tr>
<td>12.</td>
<td>Calf embryo</td>
<td>138 mm, superior-posterior view, x.4.</td>
</tr>
<tr>
<td>13.</td>
<td>Calf embryo</td>
<td>Left lateral view, x.4.</td>
</tr>
<tr>
<td>15.</td>
<td>Calf embryo</td>
<td>150 mm, superior-posterior view, x.4.</td>
</tr>
<tr>
<td>16.</td>
<td>Calf embryo</td>
<td>Left lateral view, x.4.</td>
</tr>
<tr>
<td>17.</td>
<td>Calf embryo</td>
<td>175 mm, superior view, x.4.</td>
</tr>
<tr>
<td>18.</td>
<td>Calf embryo</td>
<td>Posterior view, x.4.</td>
</tr>
<tr>
<td>19.</td>
<td>Calf embryo</td>
<td>Anterior view, x.4.</td>
</tr>
<tr>
<td>20.</td>
<td>Calf embryo</td>
<td>Mesial sagittal section.</td>
</tr>
<tr>
<td>22.</td>
<td>Bos taurus</td>
<td>Posterior view, x.4.</td>
</tr>
<tr>
<td>23.</td>
<td>Bos taurus</td>
<td>Anterior view, x.4.</td>
</tr>
<tr>
<td>24.</td>
<td>Boreo embryo</td>
<td>188 mm, superior-posterior view, x.4.</td>
</tr>
<tr>
<td>25.</td>
<td>Boreo embryo</td>
<td>Superior view, x.4.</td>
</tr>
<tr>
<td>26.</td>
<td>Boreo embryo</td>
<td>Anterior view, x.4.</td>
</tr>
<tr>
<td>27.</td>
<td>Didelphis azarae</td>
<td>Superior view, x.4.</td>
</tr>
<tr>
<td>28.</td>
<td>Didelphis azarae</td>
<td>Anterior view, x.4.</td>
</tr>
<tr>
<td>29.</td>
<td>Didelphis azarae</td>
<td>Mesial sagittal section.</td>
</tr>
<tr>
<td>30.</td>
<td>Didelphis azarae</td>
<td>Anterior view, x.4.</td>
</tr>
<tr>
<td>31.</td>
<td>Herpestes mungo</td>
<td>Superior view, x.4.</td>
</tr>
<tr>
<td>32.</td>
<td>Herpestes mungo</td>
<td>Posterior view, x.4.</td>
</tr>
<tr>
<td>33.</td>
<td>Herpestes mungo</td>
<td>Mesial sagittal section, x.4.</td>
</tr>
<tr>
<td>34.</td>
<td>Procyon lotor</td>
<td>Superior view, x.4.</td>
</tr>
<tr>
<td>35.</td>
<td>Procyon lotor</td>
<td>Posterior view, x.4.</td>
</tr>
<tr>
<td>36.</td>
<td>Procyon lotor</td>
<td>Superior view, x.4.</td>
</tr>
<tr>
<td>37.</td>
<td>Procyon lotor</td>
<td>Posterior view, x.4.</td>
</tr>
<tr>
<td>38.</td>
<td>Procyon lotor</td>
<td>Mesial sagittal section, x.4.</td>
</tr>
<tr>
<td>39.</td>
<td>Viverra civetta</td>
<td>Superior view, x.4.</td>
</tr>
<tr>
<td>40.</td>
<td>Viverra civetta</td>
<td>Superior view, x.4.</td>
</tr>
</tbody>
</table>

Fig. 41. Viverra civetta.

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Animal</th>
<th>Section Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.</td>
<td>Viverra civetta</td>
<td>Mesial sagittal section, x.4.</td>
</tr>
<tr>
<td>43.</td>
<td>Malacacinsis</td>
<td>Posterior view, x.4.</td>
</tr>
<tr>
<td>44.</td>
<td>Phoca vitulina</td>
<td>Superior view, x.1.</td>
</tr>
<tr>
<td>45.</td>
<td>Phoca vitulina</td>
<td>Posterior view, x.1.</td>
</tr>
<tr>
<td>46.</td>
<td>Phoca vitulina</td>
<td>Inferior view, x.1.</td>
</tr>
<tr>
<td>47.</td>
<td>Phoca vitulina</td>
<td>Mesial sagittal section, x.8.</td>
</tr>
<tr>
<td>48.</td>
<td>Papale javus</td>
<td>Superior view, x.4.</td>
</tr>
<tr>
<td>49.</td>
<td>Papale javus</td>
<td>Posterior view, x.4.</td>
</tr>
<tr>
<td>50.</td>
<td>Papale javus</td>
<td>Left lateral view, x.4.</td>
</tr>
<tr>
<td>51.</td>
<td>Papale javus</td>
<td>Mesial sagittal section, x.7.</td>
</tr>
<tr>
<td>52.</td>
<td>Cebus capucinus</td>
<td>Anterior view, x.2.</td>
</tr>
<tr>
<td>53.</td>
<td>Cebus capucinus</td>
<td>Superior view, x.8.</td>
</tr>
<tr>
<td>54.</td>
<td>Cebus capucinus</td>
<td>Posterior view, x.8.</td>
</tr>
<tr>
<td>55.</td>
<td>Cebus capucinus</td>
<td>Inferior surface, left half, x.8.</td>
</tr>
<tr>
<td>56.</td>
<td>Cebus capucinus</td>
<td>Superior view, x.8.</td>
</tr>
<tr>
<td>57.</td>
<td>Macacus rhesus</td>
<td>Superior view, x.4.</td>
</tr>
<tr>
<td>58.</td>
<td>Macacus rhesus</td>
<td>Posterior view, x.4.</td>
</tr>
<tr>
<td>59.</td>
<td>Macacus rhesus</td>
<td>Posterior view, x.4.</td>
</tr>
<tr>
<td>60.</td>
<td>Macacus rhesus</td>
<td>Mesial sagittal section, x.8.</td>
</tr>
<tr>
<td>61.</td>
<td>Cercocebus fuliginosus</td>
<td>Anterior view, x.2.</td>
</tr>
<tr>
<td>62.</td>
<td>Cercocebus fuliginosus</td>
<td>Superior view, x.8.</td>
</tr>
<tr>
<td>63.</td>
<td>Cercocebus fuliginosus</td>
<td>Posterior view, x.8.</td>
</tr>
<tr>
<td>64.</td>
<td>Cercocebus fuliginosus</td>
<td>Mesial sagittal section, x.8.</td>
</tr>
<tr>
<td>65.</td>
<td>Human embryo, No. I</td>
<td>Anterior view, x.4.</td>
</tr>
<tr>
<td>66.</td>
<td>Human embryo, No. I</td>
<td>Superior view, x.4.</td>
</tr>
<tr>
<td>67.</td>
<td>Human embryo, No. I</td>
<td>Posterior view, x.4.</td>
</tr>
<tr>
<td>68.</td>
<td>Human embryo, No. I</td>
<td>Right lateral view, x.4.</td>
</tr>
<tr>
<td>69.</td>
<td>Human embryo, No. I</td>
<td>Mesial sagittal section, x.4.</td>
</tr>
<tr>
<td>70.</td>
<td>Human embryo, No. I</td>
<td>Superior view, x.4.</td>
</tr>
<tr>
<td>71.</td>
<td>Human embryo, No. I</td>
<td>Posterior view, x.4.</td>
</tr>
<tr>
<td>72.</td>
<td>Human embryo, No. I</td>
<td>Left lateral view, x.4.</td>
</tr>
<tr>
<td>73.</td>
<td>Human embryo, No. I</td>
<td>Superior sagittal section, x.4.</td>
</tr>
<tr>
<td>74.</td>
<td>Adult human cerebellum</td>
<td>Mesial sagittal section.</td>
</tr>
<tr>
<td>75.</td>
<td>Adult human cerebellum</td>
<td>Superior surface.</td>
</tr>
<tr>
<td>76.</td>
<td>Adult human cerebellum</td>
<td>Inferior surface.</td>
</tr>
<tr>
<td>77.</td>
<td>Adult human cerebellum</td>
<td>Superior surface.</td>
</tr>
<tr>
<td>78.</td>
<td>Adult human cerebellum</td>
<td>Inferior surface.</td>
</tr>
<tr>
<td>79.</td>
<td>Adult human cerebellum</td>
<td>Mesial sagittal section.</td>
</tr>
</tbody>
</table>
Fig. 1. Sheep embryo. 68 mm. Mesial sagittal section.

Fig. 2. Sheep embryo. Posterior view. x 4.

Fig. 3. Sheep embryo. 87 mm. Mesial sagittal section.

Fig. 4. Sheep embryo. Superior-posterior view. x 4.

Fig. 5. Sheep embryo. 100 mm. Anterior view. x 4.
Fig: 6. Sheep embryo.
100 mm. Mesial sagittal section.

Fig: 7. Superior-posterior view. x4.
Paraflocculus.
Flocculus.

Fig: 8. Mesial sagittal section.

Fig: 9. Anterior view. x4.
Sheep embryo. 114 mm.
The condition of the adult cerebellum is shown in Figs. 103 and 104 in the published paper (No. I).
Fig. 12. Superior-posterior view. x4.

Fig. 13. Left lateral view. x4.

Fig. 14. Medial sagittal section.

Calf embryo. 13.8 mm.

Fig. 15. Posterior-superior view. x4.

Fig. 16. Left lateral view. x4.

Calf embryo. 150 mm.
Fig: 17. Superior view. x 4.
Fig: 18. Posterior view. x 4.
Fig: 19. Anterior view. x 4.
Fig: 20. Mesial sagittal section.

Calf embryo. 175 m.m.
Fig. 21. Anterior view.

Fig. 22. Superior view.

Fig. 23. Posterior view.

Bos taurus. x1.

The appearance of a mesial sagittal section is shown in Fig. 106 of the paper already published. (I).
Fig: 24. Posterior View. x 4.

Fig: 25. Anterior View. x 4.

Fig: 26. Mesial Sagittal section.

The section was cut slightly obliquely; the anterior part of the figure, therefore, shows the fissures the a little more to the right than the posterior part.

Horse embryo. 18 weeks old.
Fig. 27. Superior View. x4.

Fig. 28. Anterior View. x4.

Fig. 29. Postero-lateral View. x4.

Fig. 30. Mesial sagittal section.

Didelphis azarae.
Fig: 31. Anterior View

Fig: 32. Superior View

Fig: 33. Posterior View

Fig: 34. Mesial sagittal section

Herpestes mungo x4.
Fig. 35. Anterior view.

Fig. 36. Superior view.

Fig. 37. Posterior view.

Fig. 38. Medial sagittal section.

Procyon lotor. x2.
Viverra civetta × 2

Viverra malaccensis
Posterior View × 2
Fig: 4.4. Superior view. x1.

Fig: 4.5. Posterior view. x1.

Fig: 4.6. Inferior view. x1.

Fig: 4.7. Mesial sagittal section. x2.

Phoca vitulina.
Fig. 48. Superior view. x4.

Fig. 49. Posterior view. x4.

Fig. 50. Left lateral view. x4.

Fig. 51. Mesial sagittal section. x7.

Hapale jacchus.
Fig: 52. Anterior view.

Fig: 53. Superior view.

Fig: 54. Posterior view.

Fig: 55. Inferior surface. Left half.

Fig: 56. Mesial sagittal section.

Cebus capucinus. x 2.
Macacus rhesus. x2.
Fig: 61. Anterior view.

Fig: 62. Superior view.

Fig: 63. Posterior view.

Fig: 64. Mesial sagittal section.

Cercocebus fuliginosus. x2.
Human embryo No. I (x4)

a = Sulcus post-centralis.
b = pre-clivalis.
c = post-clivalis.
d = horizontalis magnus.
e = post-pyramidalis.
f = pre-pyramidalis.
g = post-nodularis.

The various lobes are discussed in the text.
Fig. 70. Human embryo. No: II. x4. Posterior view.

Fig. 71. Superior view.

Fig. 72. Posterior view.
Fig. 73. Human embryo.
No. II x 4.
Left lateral view.

Fig. 74. Human embryo.
No. IV x 4.
Mesial sagittal section.

The external anatomy of this cerebellum was almost identical with that of No. III.
Adult human cerebellum.
Fig: 78. Schema of the lobes and lobules of the average mammalian cerebellum arranged in one plane.

Fig: 79. Schema of the mesial sagittal section of the average mammalian cerebellum.