This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use:

- This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated.
- A copy can be downloaded for personal non-commercial research or study, without prior permission or charge.
- This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author.
- The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author.
- When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given.
PHOSPHO1: AN EXAMPLE OF THE INTERPLAY BETWEEN BONE MINERALISATION AND ENERGY METABOLISM

Karla Jade Oldknow

This thesis is presented for the degree of Doctor of Philosophy at The University of Edinburgh

2015
Declaration

I declare that this thesis has been composed entirely by the candidate, Karla Jade Oldknow. This work has not previously been submitted for a Doctor of Philosophy, a degree or any professional qualification. I have done all the work, unless acknowledged otherwise. All sources of information have been acknowledged.

Karla Jade Oldknow
Acknowledgements

I would firstly like to thank my supervisors Prof. Colin Farquharson and Dr. Vicky MacRae for their outstanding guidance and supervision throughout this work. Special thanks are due to my principle supervisor Prof. Colin Farquharson for his continuous confidence, encouragement and humour, resulting in a truly enjoyable 4 years. I would also like to express my gratitude to the BBSRC for funding this project.

Thanks must be paid to past and present members of the Bone Biology group who have helped me when in need of support and advice throughout my years at the Roslin Institute. In particular I would like to thank Dr. Ross Dobie, Dean Houston, Dr. Carmen Huesa, Elaine Seawright, Dr. Katherine Staines and Dr. Dongxing Zhu. I also wish to thank and acknowledge all the wonderful collaborators I have been fortunate to work with during this project who given me invaluable advice and technical guidance: Dr. Derek Ball, Dr. Lutz Bunger, Dr. Mathieu Ferron, Dr. Anyonya Guntur, Prof. Gerard Karsenty, Dr. Zohreh Khavandgar, Prof. José Luis Millán, Prof. Nik Morton, Dr. Monzur Murshed, Dr. Sophie Rajoanah, Prof. Clifford Rosen, Dr. Cal Vary, Dr. Tom Wishart and Dr. Manisha Yadav. I would like to pay a particular thanks to Prof. Lutz Bünger who has provided continued advice and support. In addition, appreciation is deserved for all the people within the Roslin Institute who have aided me in this project.

Finally, a special thank you has to be paid to my friends and family, particularly my parents and husband for their unconditional love, kind words, support and encouragement throughout this demanding period.

“Carefully watch your thoughts, for they become your words. Manage and watch your words, for they will become your actions. Consider and judge your actions, for they have become your habits. Acknowledge and watch your habits, for they shall become your values. Understand and embrace your values, for they become your destiny.”

Gandhi, Mohandas (1869 - 1948)
Abstract

The classical functions of the skeleton encompass locomotion, protection and mineral homeostasis. However, cell-specific gene deletions in the mouse and human genetic studies have recently identified bone as an endocrine organ possessing the capabilities to regulate both energy metabolism and reproduction. Preliminary data suggested that Phosphatase, Orphan 1 (PHOSPHO1) a bone specific phosphatase, indispensable for bone mineralisation, may crosstalk with osteotesticular protein tyrosine phosphatase (OST-PT, Esp), a signalling molecule that dephosphorylates the insulin receptor (InsR) on the osteoblast, negatively regulating the osteoblast insulin signalling cascade.

The work of this thesis has expanded upon preliminary data confirming that Esp was up-regulated 60-fold in Phospho1−/− osteoblasts. Furthermore in silico analysis revealed Phospho1 ablation is significantly associated with insulin dependent diabetes mellitus. These data form the basis of this thesis examining the role of PHOSPHO1 in energy metabolism.

Initial in vivo characterisation of Phospho1−/− mice revealed that the ablation of Phospho1 results in decreased blood glucose levels, improved insulin sensitivity and glucose tolerance in juvenile, adult and aged mice. Following high fat feeding, Phospho1 ablation conferred a remarkable degree of protection against diet-induced-obesity and non-alcoholic fatty liver disease (NAFLD) despite the 60-fold increase in Esp expression.

The metabolic protection observed in Phospho1−/− mice served to strengthen PHOSPHO1’s potential role in energy metabolism. However the mechanisms remained unclear. Mice overexpressing Esp specifically in osteoblasts are glucose intolerant and insulin resistant, due to the negative regulation of osteoblast-insulin-signalling, resulting in decreased undercarboxylated osteocalcin (GLU13-OCN)
release. This thesis identified however that the serum levels of a GLU13-OCN were normal in Phospho1+/ mice suggesting that there was a GLU13-OCN-independent mechanism for PHOSPHO1 regulated energy metabolism. Moreover, mass spectrometry analysis identified > 100 differentially expressed proteins in Phospho1−/− serum associated with the regulation of glycolysis and gluconeogenesis. These candidates displayed an enrichment for microRNA Mir34a and the transcription factor hepatocyte nuclear factor 1, both reported to regulate hepatic glucose homeostasis. These data therefore support the notion that further, yet undefined osteoblast derived factors contribute to whole body energy metabolism and highlight a new and unconventional role of Esp suggestive that it may act as a fine controller of insulin sensitivity in mice, offering protection from severe hypoglycaemia and dyslipidaemia.

Finally, this thesis also explored the notion that decreased levels of choline may contribute to the insulin sensitivity observed in Phospho1+/− mice. Phosphocholine (P-Chol) is a recognised substrate for PHOSPHO1 being hydrolysed into choline and inorganic phosphate (P). Phosphatase Orphan 1 deficient mice, hypothesised to have reduced choline levels were fed a 2% choline rich diet; mice displayed a normalisation in insulin sensitivity and fat mass. These data suggest that Phospho1-deficiency improves the metabolic profile of mice in vivo and confers resistance to obesity and diabetes via the alteration of serum/tissue choline levels.

The work described herein has characterised the metabolic phenotype of Phospho1+/− mice and began to unravel the mechanisms underlying the improved metabolic phenotype in Phospho1+/− mice.
Publications

Original peer reviewed papers

Reviews

Book Chapters

Published Abstracts

Oldknow KJ, Morton NM, Yadav MC, Rajoanah S, Huesa C, Bunger L, Ball D, Ferron M, Karsenty G, MacRae VE, Millán JL, Farquharson C (2013). PHOSPHO1:

Awards

The American Society for Bone and Mineral Research Young Investigator Award – 2013.

The European Calcified Tissue Society New Investigator Award – 2013.

Prizes

British Heart Foundation centre of Research Excellence Adipose Tissue Workshop and 40th UK Adipose Tissue Discussion Group (Poster prize – runner up) – 2013.

Society for Endocrinology Career Development Workshop (track 1) (Early career grant proposal winners) – 2014.

Scientific funding

Roslin Small project grant (£5500) – 2014.
Roslin Small project grant (£8100) – 2013.

Travel grants

The American Society for Bone and Mineral Research Young Investigator Travel Grant – 2015.
Practical Skills Grant Society of Endocrinology – 2015.
Farm Animal Imaging COST Action Grant – 2014.
Page Travel Bursary – 2014.
Birrell-Gray Travelling Scholarship – 2013.
Farm Animal Imaging COST Action Grant – 2012.
Abbreviations

µCT Micro computed tomography
Abhd Abhydrolase domain containing 16
ADAMTS A disintegrin and metalloproteinase with thrombospondin motifs
ADHR Autosomal-dominant hypophosphatemic rickets
Adipoq Adiponectin
ADP Adenosine diphosphate
ADRB3 Adrenoceptor beta
AFT4 Activating transcription factor 4
Akp2 Tissue-nonspecific alkaline phosphatase (gene)
AKT Protein kinase B
ALOX Arachidonate 5-lipoxygenase-activating protein
ALP Alkaline phosphatase
AMPK AMP-activated protein kinase
ANK Progressive ankylosis
ANOVA Analysis of variance
ASARM Acidic serine- and aspirate-rich motif
ATF4 Activating transcription factor 4
ATP Adenosine triphosphate
Atp5b ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide
BAT Brown adipose tissue
BBB Blood–brain-barrier
Bglap Bone Gla protein
BM-40 Osteonectin
BMD Bone mineral density
BMI Body mass index
BMP Bone morphogenetic protein
BMPR Bone morphogenetic protein receptor
BRL Beta 3-receptor agonist
BSA Bovine serum albumin
BSP Bone sialoprotein
BTB Blood-testis-barrier
BV Bone volume
BV/TV bone volume fraction
BW Body weight
Ca10(PO4)6(OH)2 Calcium hydroxyapatite
CART Cocaine and amphetamine-regulated transcript
CD Control diet
cDNA Complimentary DNA
CE Cholesteryl esters
Cfp Complement factor properdin
Cidae
Cell death-inducing DFFA-like effector a

CII/CIII
Mitochondrial complex II/III

CLAMS
Comprehensive Lab Animal Monitoring System

Clec6a
C-type lectin domain family 6, member A

CNS
Central nervous system

CO
Carbon dioxide

Cor. BMD
Cortical bone mineral density

Cor. Por
Cortical porosity

Cor. Th.
Cortical thickness

COX
Cyclooxygenase

CRE
Carbapenem-resistant enterobacteriaceae

CREB
cAMP response element-binding protein

CT
Computer tomography

Cxcl
The chemokine (C-X-C motif) ligand 1

DA
Degree of anisotropy

DAB
Diaminobenzidine

DAPI
4',6-diamidino-2-phenylindole

DEPC
Diethylpyrocarbonate

DES1
Sphingolipid delta (4)-desaturase

dH2O
Distilled water

DICOM
Digital Imaging and Communications in Medicine

Dio2
Deiodinase, iodothyronine, type II

Dlx5
Distal-Less homeobox 5

DM
Dry matter

DMEM
Dulbecco’s modified eagle medium

DMP1
Dentin matrix protein 1

DMSO
Dimethyl sulfoxide

DNA
Deoxyribonucleic acid

dNTP
Deoxyribonucleotide triphosphate

DS
Dissected

DSPP
Dentin sialophosphoprotein

DTT
Dithiothreitol

DXA
Dual-energy X-ray absorptiometry

ECL
Electrochemiluminescence

ECM
Extracellular matrix

EDTA
Ethylenediaminetetraacetic acid

ELISA
Enzyme-linked immunosorbent assay

Enpp1
Ectonucleotide pyrophosphatase/phosphodiesterase family member 1 (NPP1 protein)

ENU
N-ethyl-N-nitrosourea mutagenesis

ERK
Extracellular signal-regulated kinases

ES1
Electrospray ionisation

Esp
Embryonic stem cell phosphatase

EUCOMM
European Conditional Mouse Mutagenesis Program

EV
Empty vector
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FatP</td>
<td>Fat percentage</td>
</tr>
<tr>
<td>FatW</td>
<td>Fat weight</td>
</tr>
<tr>
<td>FBS</td>
<td>Fetal Bovine Serum</td>
</tr>
<tr>
<td>FCCP</td>
<td>Carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone</td>
</tr>
<tr>
<td>Feer1g</td>
<td>Fc Fragment of IgE, high affinity I, receptor for gamma polypeptide</td>
</tr>
<tr>
<td>Fcgr</td>
<td>Low affinity immunoglobulin gamma Fc region receptor</td>
</tr>
<tr>
<td>FD</td>
<td>Freeze dried</td>
</tr>
<tr>
<td>FFM</td>
<td>Fat free mass</td>
</tr>
<tr>
<td>FGF</td>
<td>Fibroblast growth factor</td>
</tr>
<tr>
<td>Fmod</td>
<td>Fibromodulin</td>
</tr>
<tr>
<td>FOV</td>
<td>Field of view</td>
</tr>
<tr>
<td>FoxO1</td>
<td>Forkhead box protein O 1</td>
</tr>
<tr>
<td>FP1</td>
<td>Flag tagged PHOSPHO1 overexpressing virus</td>
</tr>
<tr>
<td>fro</td>
<td>Fragilitas ossium</td>
</tr>
<tr>
<td>GAG</td>
<td>Glycosaminoglycans</td>
</tr>
<tr>
<td>GF</td>
<td>Gonadal fat</td>
</tr>
<tr>
<td>GFP</td>
<td>Green fluorescent protein</td>
</tr>
<tr>
<td>GIGYF</td>
<td>GYF protein 1</td>
</tr>
<tr>
<td>GIGYF1</td>
<td>GYF protein 1</td>
</tr>
<tr>
<td>GLA</td>
<td>Vitamin K dependent carboxyglutamic acid residues</td>
</tr>
<tr>
<td>GLA13-OCN</td>
<td>Inactive osteocalcin</td>
</tr>
<tr>
<td>GLP-1</td>
<td>Glucagon-like peptide-1</td>
</tr>
<tr>
<td>GLU13-OCN</td>
<td>Metabolically active osteocalcin</td>
</tr>
<tr>
<td>GLUT</td>
<td>Glucose transporter facilitators</td>
</tr>
<tr>
<td>GPCR</td>
<td>G protein-coupled receptor</td>
</tr>
<tr>
<td>Gpnmb</td>
<td>Glycoprotein (transmembrane) nmb</td>
</tr>
<tr>
<td>GPRC6A</td>
<td>G protein-coupled receptor, class C, group 6, member A</td>
</tr>
<tr>
<td>GRB10</td>
<td>Growth factor receptor-bound protein 10</td>
</tr>
<tr>
<td>GSIS</td>
<td>Glucose stimulated insulin secretion tests</td>
</tr>
<tr>
<td>GSK</td>
<td>Glycogen synthase kinase 3</td>
</tr>
<tr>
<td>GTT</td>
<td>Glucose tolerance test</td>
</tr>
<tr>
<td>H&E</td>
<td>Haemotoxylin and eosin</td>
</tr>
<tr>
<td>HA</td>
<td>Hydroxyapatite</td>
</tr>
<tr>
<td>HAD</td>
<td>Haloacid dehalogenase</td>
</tr>
<tr>
<td>HBSS</td>
<td>Hank's Balanced Salt Solution</td>
</tr>
<tr>
<td>HEPES</td>
<td>4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid</td>
</tr>
<tr>
<td>HFD</td>
<td>High fat diet</td>
</tr>
<tr>
<td>HLA-B</td>
<td>Major histocompatibility complex, class I, B</td>
</tr>
<tr>
<td>HOMAIR</td>
<td>Homeostasis model assessment of insulin resistance</td>
</tr>
<tr>
<td>HRP</td>
<td>Horseradish peroxidase</td>
</tr>
<tr>
<td>HSC</td>
<td>Hematopoietic stem cell</td>
</tr>
<tr>
<td>HU</td>
<td>Hounsfield unit</td>
</tr>
<tr>
<td>HZ</td>
<td>Hypertrophic zone</td>
</tr>
<tr>
<td>iBF</td>
<td>Interscapular brown fat</td>
</tr>
</tbody>
</table>
Ibsp
Bone sialoprotein (gene)

Icam
Intercellular adhesion molecule

IFN-γ
Interferon gamma

IGF-1
Insulin like growth factor – 1

IgG
Immunoglobulin G

IHC
Immunohistochemistry

Ihh
Indian hedgehog

InsR
Insulin receptor

IPA
Ingenuity pathway analysis

IRS
Insulin receptor substrate

ITT
Insulin tolerance test

LC
Liquid chromatography

LRP
Low-density lipoprotein receptors

LTW
Live tissue weight

Lum
Lumican

MAPK
Mitogen-activated protein kinase

MAR
Mineral apposition rate

MCP-1
Monocyte chemo-attractant protein-1

MEPE
Matrix extracellular phosphoglycoprotein

MF
Mesenteric Fat

MGP
Matrix gla protein

miRNA
Micro ribonucleic acid

MMCRI
Maine Medical Center Research Institute

MMP
Matrix metalloproteinase

MOPS
3-(N-morpholino)propanesulfonic acid

Mpeg1
Macrophage expressed gene 1

Mrc1
Mannose receptor, C Type 1

MRI
Magnetic resonance imaging

mRNA
Messenger ribonucleic acid

MS
Mass spectrometry

MSC
Mesenchymal stem cells

Msx2
Homeobox protein Hox-8

MV
Matrix vesicle

NAFLD
Non-alcoholic fatty liver disease

NASH
Non-alcoholic steatohepatitis

NBF
Neutral buffered formalin

NCP
Non-collagenous protein

NF-kB
Nuclear factor-Kappa B

NFW
Nuclease free water

NHS
National Health Service

NMR
Nuclear magnetic resonance

nSMase2
Neutral sphingomyelinase 2

OA
Osteoarthritis

OCN
Osteocalcin

OCT
Optimal cutting temperature
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>Osteonectin</td>
</tr>
<tr>
<td>OPG</td>
<td>Osteoprotegerin</td>
</tr>
<tr>
<td>OPN</td>
<td>Osteopontin</td>
</tr>
<tr>
<td>OST-PTP</td>
<td>Osteotesticular protein tyrosine phosphatase</td>
</tr>
<tr>
<td>Osx</td>
<td>Osterix</td>
</tr>
<tr>
<td>P2</td>
<td>Purinergic receptor</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered solution</td>
</tr>
<tr>
<td>P-Chol</td>
<td>Phosphocholine</td>
</tr>
<tr>
<td>Pck1</td>
<td>Phosphoenolpyruvate carboxykinase 1</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PEA</td>
<td>Phosphoethanolamine</td>
</tr>
<tr>
<td>PFA</td>
<td>Paraformaldehyde</td>
</tr>
<tr>
<td>Pgc1</td>
<td>Peroxisome proliferator-activated receptor gamma, coactivator 1</td>
</tr>
<tr>
<td>PHOSPHO1</td>
<td>Phosphatase, Orphan 1</td>
</tr>
<tr>
<td>Pi</td>
<td>Inorganic phosphate</td>
</tr>
<tr>
<td>PiT</td>
<td>phosphate transporter 1</td>
</tr>
<tr>
<td>PIGF</td>
<td>Placental growth factor</td>
</tr>
<tr>
<td>PNPLA3</td>
<td>Patatin-like phospholipase domain-containing 3</td>
</tr>
<tr>
<td>PPAR</td>
<td>Peroxisome proliferator-activated receptor</td>
</tr>
<tr>
<td>PPi</td>
<td>Inorganic pyrophosphate</td>
</tr>
<tr>
<td>PRDM16</td>
<td>PR domain containing 1</td>
</tr>
<tr>
<td>Prkaa1</td>
<td>Protein kinase, AMP-activated, alpha 1 catalytic subunit</td>
</tr>
<tr>
<td>PTHrP</td>
<td>Parathyroid hormone-related protein</td>
</tr>
<tr>
<td>PVA</td>
<td>Polyvinyl acetate</td>
</tr>
<tr>
<td>PZ</td>
<td>Proliferative zone</td>
</tr>
<tr>
<td>qPCR</td>
<td>Quantitative PCR</td>
</tr>
<tr>
<td>RANKL</td>
<td>Receptor for activation of nuclear factor kappa B ligand</td>
</tr>
<tr>
<td>RER</td>
<td>Respiratory exchange ratio</td>
</tr>
<tr>
<td>RIPA</td>
<td>Radio-immunoprecipitation assay</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>RNase</td>
<td>Ribonuclease</td>
</tr>
<tr>
<td>RT</td>
<td>Reverse transcription</td>
</tr>
<tr>
<td>Runx2</td>
<td>Runt-related transcription factor 2</td>
</tr>
<tr>
<td>SB</td>
<td>Subcutaneous fat</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulphate</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard error of the mean</td>
</tr>
<tr>
<td>Sglt</td>
<td>Sodium coupled glucose transporters</td>
</tr>
<tr>
<td>SIBLING</td>
<td>Small integrin-binding ligand N-linked glycoprotein</td>
</tr>
<tr>
<td>Slc</td>
<td>Solute carrier family</td>
</tr>
<tr>
<td>SMI</td>
<td>Structural model index</td>
</tr>
<tr>
<td>SMPD3</td>
<td>Sphingomyelin phosphodiesterase 3</td>
</tr>
<tr>
<td>SMURF</td>
<td>Smad ubiquitin regulatory factors</td>
</tr>
<tr>
<td>SNS</td>
<td>Sympathetic nervous system</td>
</tr>
<tr>
<td>SPARC</td>
<td>Secreted protein acidic and rich in cysteine</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Spic</td>
<td>Spi-C transcription factor</td>
</tr>
<tr>
<td>Spp1</td>
<td>Secreted phosphoprotein 1</td>
</tr>
<tr>
<td>SRUC</td>
<td>Scotland's Rural College</td>
</tr>
<tr>
<td>STAR</td>
<td>Sheep tomogram analysis routines</td>
</tr>
<tr>
<td>STAT</td>
<td>Signal transducer and activator of transcription</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris-acetate- ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>TBE</td>
<td>Tris-borate-EDTA</td>
</tr>
<tr>
<td>TBS</td>
<td>Tris-buffered saline</td>
</tr>
<tr>
<td>TBS/T</td>
<td>Tris-buffered saline/Tween-20</td>
</tr>
<tr>
<td>TCRIG1</td>
<td>T cell, immune regulator 1, ATPase, H+ transporting, lysosomal V0 protein A3</td>
</tr>
<tr>
<td>TE</td>
<td>Echo Time</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission electron microscopy</td>
</tr>
<tr>
<td>TGF-β</td>
<td>Transforming growth factor beta</td>
</tr>
<tr>
<td>TNAP</td>
<td>Tissue-nonspecific alkaline phosphatase (gene)</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumour necrosis factor</td>
</tr>
<tr>
<td>Tr. Sp.</td>
<td>Trabecular separation</td>
</tr>
<tr>
<td>Tr. Th.</td>
<td>Trabecular thickness</td>
</tr>
<tr>
<td>Tr.No.</td>
<td>Trabecular number</td>
</tr>
<tr>
<td>Tr.Pf</td>
<td>Trabecular pattern formation</td>
</tr>
<tr>
<td>TR</td>
<td>Repetition time</td>
</tr>
<tr>
<td>TRAP</td>
<td>Tartrate-resistant acid phosphatase</td>
</tr>
<tr>
<td>TV</td>
<td>Tissue volume</td>
</tr>
<tr>
<td>TW</td>
<td>Total Weight</td>
</tr>
<tr>
<td>Twist 2</td>
<td>Twist basic helix-loop-helix transcription factor</td>
</tr>
<tr>
<td>UCP</td>
<td>Uncoupling protein</td>
</tr>
<tr>
<td>UDP</td>
<td>Uridine diphosphate</td>
</tr>
<tr>
<td>UTP</td>
<td>Uridine triphosphate</td>
</tr>
<tr>
<td>VCO₂</td>
<td>Volume carbon dioxide</td>
</tr>
<tr>
<td>VDR</td>
<td>Vitamin D receptor</td>
</tr>
<tr>
<td>VEGF</td>
<td>Vascular endothelial growth factor</td>
</tr>
<tr>
<td>VIP</td>
<td>Vasoactive intestinal peptide</td>
</tr>
<tr>
<td>VO₂</td>
<td>Volume oxygen</td>
</tr>
<tr>
<td>WAT</td>
<td>White adipose tissue</td>
</tr>
<tr>
<td>WNT</td>
<td>Wingless</td>
</tr>
<tr>
<td>WT</td>
<td>Wild-type</td>
</tr>
<tr>
<td>XLH</td>
<td>X-linked hypophosphatemic rickets</td>
</tr>
</tbody>
</table>
Table of Contents

Chapter 1: Background

- Preface 2
- 1.1 Skeleton form and function 2
- 1.2 Embryonic bone formation 5
 - 1.2.1 Intramembranous ossification 5
 - 1.2.2 Endochondral ossification 5
 - 1.2.3 Appositional bone growth 7
- 1.3 The process of bone remodelling and modelling 9
 - 1.3.1 Osteoblasts 9
 - 1.3.2 Osteoclasts 10
 - 1.3.3 Osteocytes 11
- 1.4 Chondrocytes and cartilage 13
- 1.5 The mineralisation process 13
 - 1.5.1 The role of matrix vesicles 15
 - 1.5.2 The regulatory factors of matrix mineralisation 17
 - 1.5.2.1 PHOSPHO1 17
 - 1.5.2.2 NPP1 & ANK 20
 - 1.5.2.3 Purinergic signalling 20
 - 1.5.2.4 Polyphosphate 22
 - 1.5.2.5 SIBLING family of proteins 22
 - 1.5.2.6 Secreted protein acidic and rich in cysteine (SPARC) 24
 - 1.5.2.7 SMPD3 24
 - 1.5.2.8 Vitamin K dependent proteins 25
- 1.6 Bone as an endocrine organ 27
 - 1.6.1 The role of insulin in the osteoblast 29
 - 1.6.2 Male fertility and the discovery of the osteocalcin receptor 33
 - 1.6.3 Clinical evidence: osteocalcin and metabolism/fertility 37
 - 1.6.4 GLUT and bone 37
 - 1.6.5 Fibroblast growth factor 23 39
- 1.7 Aims and strategy 41

Chapter 2: Materials and Methods

- 2.1 Reagents and solutions 44
- 2.2 Cell culture 44
 - 2.2.1 Cell culture reagents 44
 - 2.2.2 Isolating primary osteoblasts 44
 - 2.2.3 Freezing/thawing of cells 45
 - 2.2.3.1 Cell lines 45
 - 2.2.3.2 Primary Calvarial Osteoblasts 45
2.2.4 Maintenance and passaging of cells
2.2.5 Conditioned media
2.2.6 Viral transduction of primary osteoblasts

2.3 *In vitro* procedures for metabolic assessment of cells
2.3.1 Insulin treatment of cells
2.3.2 Immunocytochemistry
2.3.3 2-deoxyglucose [3H] *in vitro*
2.3.4 Mitochondria stress test

2.4 Histological analysis of cell cultures
2.4.1 Oil-Red-O

2.5 *In vivo* studies
2.5.1 Animal welfare and generation
2.5.2 DNA extraction and genotyping
2.5.3 Metabolic analysis of animal models
 2.5.3.1 XY activity monitor
 2.5.3.2 Metabolic activity measurement using indirect calorimetry
 2.5.3.3 Glucose and insulin tolerance tests
 2.5.3.4 *In vivo* 20 minute insulin treatment
 2.5.3.5 Beta 3-receptor agonist -37344 administration

2.6 RNA methods
2.6.1 Isolation of RNA from cells and tissues
2.6.2 Reverse transcription
2.6.3 Primer design
2.6.4 Real time quantitative polymerase chain reaction and quantification of gene expression
2.6.5 Optimisation of qPCR primers and PCR product sequencing

2.7 Protein methods
2.7.1 Protein extraction from cells and tissues
2.7.2 Quantification of protein concentration
 2.7.2.1 DC assay
 2.7.2.2 Bradford assay
2.7.3 Western blotting
2.7.4 Stripping nitrocellulose
2.7.5 Protein expression quantification

2.8 Histology
2.8.1 Paraffin embedded tissue
2.8.2 Frozen tissue
2.8.3 Haematoxylin and eosin
2.8.4 Oil-red O
2.8.5 Quantification of pancreatic β-cell islet size number and size

2.9 Fat phenotypic analysis
2.9.1 Computed tomography
2.9.2 Freeze drying 63
2.9.3 Micro magnetic resonance imaging and liver spectroscopy 64

2.10 Biochemical Methods 66
 2.10.1 Choline assay 66
 2.10.2 Pancreas insulin content 66
 2.10.3 Malachite green phosphatase assay 66
 2.10.4 Triglyceride colorimetric assay 67
 2.10.5 Osteocalcin carboxylation status 67
 2.10.6 Enzyme-linked Immunosorbent Assay (ELISA) 68

2.11 Mass Spectroscopy 68
 2.11.1 Protein sequencing 68
 2.11.2 Quantification of ceramide species in serum samples 68
 2.11.3 Identification of differential expressed serum proteins 70
 2.11.4 Identification of differential expressed serum lipids 70

2.12 Bone analysis 71
 2.12.1 X-ray and 3 Point bending 71
 2.12.2 Micro-computed tomography imaging 71

2.13 Statistical analysis 73

Chapter 3: Initial observations of the importance of PHOSPHO1 in energy metabolism

3.1 Introduction 75
3.2 Hypothesis 77
3.3 Aims 77

3.4 Materials and Methods 77
 3.4.1 Microarray analysis of WT and Phospho1−/− osteoblasts 77
 3.4.2 Primary osteoblasts 77
 3.4.3 Viral transduction of primary osteoblasts 78
 3.4.4 Malachite green phosphatase assay 78
 3.4.5 mRNA analysis of primary osteoblasts cells 78
 3.4.6 Protein analysis of primary osteoblast cells 79
 3.4.7 Insulin treatment of primary osteoblasts 79
 3.4.8 Immunocytochemistry 79

3.5 Results 80
 3.5.1 Microarray analysis 80
 3.5.2 Confirmation of Esp expression 86
 3.5.3 PHOSPHO1 peptide specificities 88
 3.5.4 Effects of insulin on primary osteoblasts 90
 3.5.5 Determination of PHOSPHO1 protein/mRNA expression in murine tissues 90

3.6 Discussion 95
Chapter 4: Characterising the Phospho1 knock-out mouse metabolic phenotype

4.1 Introduction 102
4.2 Hypothesis 104
4.3 Aims 104
4.4 Materials and Methods 104
 4.4.1 Glucose tolerance and insulin tolerance test 104
 4.4.2 Growth curves 104
 4.4.3 Food consumption, activity and energy expenditure 105
 4.4.4 mRNA analysis of primary osteoblasts cells and cell lines 105
 4.4.5 Protein analysis of primary osteoblasts cells and cell lines 105
 4.4.6 Tissue histology 105
 4.4.7 Serum isolation from whole blood samples 106
 4.4.8 Pancreas insulin content 106
 4.4.9 µCT x-ray and 3 point bending 106
4.5 Results 107
 4.5.1 Phospho1 inactivation improves glucose tolerance and insulin sensitivity in juvenile mice 107
 4.5.2 Phospho1 inactivation improves glucose tolerance and insulin sensitivity in aged mice. 111
 4.5.3 Phospho1 deficiency protects from diet induced hyperglycemia and insulin resistance 114
 4.5.4 PHOSPH01 may represent a druggable target for the treatment of insulin resistance and diabetes 116
 4.5.5 Analysis of a high fat feeding on WT and Phospho1−/− adult bone 126
4.6 Discussion 133

Chapter 5: Evaluating fat deposition and localisation

5.1 Introduction 138
5.2 Hypothesis 139
5.3 Aims 139
5.4 Materials and Methods 141
 5.4.1 CT 141
 5.4.2 Freeze Drying 141
 5.4.3 µMRI 141
 5.4.4 Spectroscopy 141
 5.4.5 In vivo µCT 142
 5.4.6 Histological staining of fat depots 142
 5.4.7 Oil-Red-O staining of the liver in vivo 142
 5.4.8 Statistical analysis 142
5.5 Results

5.5.1 Live weight, fat and non-fat traits measured by freeze drying, CT and dissection

5.5.2 Live weight as a predictor for fat and non-fat

5.5.3 Benchmarking CT predictions against freeze drying

5.5.4 Benchmarking isolated dissected fat pad mass against freeze drying and CT

5.5.5 WT and Phospho1−/− control and HFD dissection analysis

5.5.6 WT and Phospho1−/− control and HFD CT analysis

5.5.7 μMRI adiposity and hepatic analysis

5.6 Discussion

Chapter 6: Elucidating the mechanism of the role of PHOSPHO1 in energy metabolism

6.1 Introduction

6.2 Hypothesis

6.3 Aims

6.4 Materials and Methods

6.4.1 Primary osteoblasts

6.4.2 Cell lines (FAZA, INS1E, C2C12, 3T3-L1)

6.4.3 Conditioned medium with insulin treatment

6.4.4 mRNA analysis of primary osteoblasts cells and cell lines

6.4.5 Protein analysis of primary osteoblasts cells and cell lines

6.4.6 ELISA analysis of serum OCN, adiponectin and leptin

6.4.7 Analysis of serum triglyceride

6.4.8 Ceramide mass spectrometry

6.4.9 In vitro 2-deoxyglucose [3H]

6.4.10 BRL-37344

6.4.11 Mitochondria stress test

6.4.12 2% choline diet

6.4.13 Proteomics

6.4.14 Lipidomics

6.5 Results

6.5.1 Quantification of serum adipokines

6.5.2 Expression of genes metabolic target genes

6.5.3 Examination of in vitro and in vivo glucose metabolism in WT and Phospho1−/− mice

6.5.4 The effect of β3-adrenergic receptor agonist on WT and Phospho1−/− mice

6.5.5 Phospho1−/− osteoblasts secrete a factor which regulates insulin signalling, independent of OCN

6.5.6 Investigation of ceramide and choline as regulators of insulin signalling
6.5.7 Identification of novel regulators of insulin signalling 177

6.6 Discussion 184
 6.6.1 Esp - a fine controller of insulin sensitivity in mice 185
 6.6.2 Mechanism of osteoblasts metabolic functions 185
 6.6.3 Skeletal regulation - beyond osteocalcin 187

Chapter 7: Final discussion

7.1 General discussion 189
7.2 Direction for future research 197

References 203

Appendix 233
Figure 1.1	Bone as a composite material	3
Figure 1.2	The bone structure and bone cells	4
Figure 1.3	Endochondral ossification	8
Figure 1.4	Mineral formation and alignment with collagen fibrils	16
Figure 1.5	Phospho1−/− mouse bone phenotype	19
Figure 1.6	Model of initiation of skeletal mineralisation including the function of PHOSPHO1, TNAP, NPP1, and phosphate transporters	21
Figure 1.7	Bone related Functions of Leptin	28
Figure 1.8	OCN a bone-derived multifunctional hormone	35
Figure 1.9	GLUT transporter family	40
Figure 2.1	Genotyping of Phospho1−/− and WT mice using PCR and all Blue staining of polyacrylamide gel	52
Figure 2.2	Metabolic testing of Phospho1−/− and WT mice	55
Figure 2.3	Validation of qPCR primer efficiency and specificity	58
Figure 2.4	Micro magnetic resonance imaging (μMRI) in mice	65
Figure 2.5	Mass spectrometer	69
Figure 2.6	Three point bending load extension curve	72
Figure 3.1	Ingenuity Pathways Analysis network summary predictions	83
Figure 3.2	GeneMANIA network summary predictions	85
Figure 3.3	Conformation of Esp overexpression in Phospho1−/− osteoblasts	87
Figure 3.4	PHOSPHO1 Substrates	89
Figure 3.5	Phospho1−/− primary calvarial osteoblasts display reduced AKT phosphorylation in response to insulin signalling	92
Figure 3.6	BioGPS expression of Phospho1 in mice	93
Figure 3.7	The expression of Phospho1 mRNA and PHOSPHO1 protein in murine tissue	94
Figure 3.8	Model of the InsR	97
Figure 3.9	Skeletal specific expression of Phospho1 in the E14.5 mouse	100
Figure 4.1	Juvenile Phospho1−/− male mice are protected from glucose intolerance	108
Figure 4.2	Juvenile Phospho1−/− male mice are smaller than WT counterparts having decreased adipose tissue stores	109
Figure 4.3	Energy expenditure and activity analysis of Juvenile Phospho1−/− male mice	110
Figure 4.4	Aged Phospho1−/− male mice are insulin sensitive and have decreased adipose tissue stores	112
Figure 4.5 Adult Phospho1⁺ male mice are protected from hyperglycaemia and weight gain following the administration of a HFD

Figure 4.6 Adult Phospho1⁺ male mice are protected from diet induced glucose intolerance and insulin resistance

Figure 4.7 Immunolocalistion of Insulin in the adult WT and Phospho1⁺ male mice

Figure 4.8 Quantification of Immunolocalistion of Insulin in the adult WT and Phospho1⁺ male mice

Figure 4.9 Phospho1⁺ male mice have smaller brown fat adipocytes compared to WT controls

Figure 4.10 Brown fat characterisation of adult mice

Figure 4.11 Energy expenditure and activity analysis of adult Phospho1⁺ male mice

Figure 4.12 Juvenile Phospho1⁺⁺ male mice display an intermediate insulin sensitive phenotype

Figure 4.13 X-rays of WT and Phospho1⁺ Tibiae

Figure 4.14 X-ray densitometry analysis

Figure 5.1 Multi-object CT scanning

Figure 5.2 Dissection based fat quantification from WT and Phospho1⁺ mice on both a control and HFD

Figure 5.3 CT based fat quantification from WT and Phospho1⁺ mice on both a control and HFD

Figure 5.4 Cross section μCT scans of WT and Phospho1⁺ mice

Figure 5.5 μMRI fat quantification from WT and Phospho1⁺ mice on both a control and HFD

Figure 5.6 WT and Phospho1⁺ mice liver analysis from both a control and HFD

Figure 6.1 Phospho1⁺ mice are insulin sensitive despite decreased adiponectin

Figure 6.2 Selected metabolic target genes were largely unaltered in subcutaneous adipose quadriceps femoris and liver tissue of Phospho1⁺ mice

Figure 6.3 Phospho1⁺ osteoblasts show decreased 2-deoxyglucose [3H] uptake upon insulin Stimulation

Figure 6.4 Phospho1⁺ mice show increased insulin sensitivity in bone

Figure 6.5 Effect of β3-adrenergic receptor agonist on WT and Phospho1⁻/⁻ mice

Figure 6.6 No difference in GLU13-OCN serum levels between WT and Phospho1⁺ mice

Figure 6.7 Phospho1⁺ osteoblast secreted factors increased basal insulin sensitivity in primary calvarial osteoblasts
Figure 6.8 No difference in Ceramide between WT and Phospho1−/− mice 181
Figure 6.9 Bone derived choline regulates insulin sensitivity 182
Figure 6.10 Proteomic analysis of serum from WT and Phospho1−/− mice 183
Figure 6.11 Lipidomic analysis of serum from WT and Phospho1−/− mice 184
Figure 7.1 The endocrine role of bone: Osteocalcin and beyond 196
Figure 7.2 Phospho1;Ocn knockout mice phenotype’s 199
List of Tables

Table 1.1	Molecules involved in bone formation	12
Table 1.2	Metabolic phenotype of Bglap3^{−/−}, Esp^{−/−}, Esp overexpression and insulin receptor mutant mice	36
Table 3.1	Osteoblast microarray candidates involved associated with insulin dependent diabetes mellitus	81
Table 3.2	In Silico analysis of Ingenuity pathways predictions	84
Table 4.1	Activity analysis of aged Phospho1^{−/−} male mice	113
Table 4.2	General Linear model summary table of the effect of genotype (WT and Phospho1^{−/−}) and diet (CD and HFD) on the growth parameters in mice	117
Table 4.3	µCT and 3-point-bending analysis of tibiae from 35 day male WT and Phospho1^{−/−} mice	130
Table 4.4	µCT and 3-point-bending analysis of tibiae from 120 day male CD and HFD WT and Phospho1^{−/−} mice	131
Table 4.5	µCT and 3-point-bending analysis of tibiae from 35 day old and 120 day male CD WT and Phospho1^{−/−} mice	132
Table 5.1	Comparison of Invasive and Non-invasive methods for measuring adiposity in rodents	140
Table 5.2	Simple means from freezer drying, CT and dissection	145
Table 5.3	Correlation coefficients and confidence intervals for CT and dissected fat predictions	147
Table 7.1	Non-alcoholic fatty liver disease (NAFLD) pathology, symptoms and severity	192
Chapter 1

Introduction
Preface
Traditionally the skeleton has been viewed as an inert structural organ essential for locomotion, ion homeostasis and maintenance of the hematopoietic niche. However, in the last decade, bone has been identified as a true endocrine organ, possessing the capabilities to regulate both energy metabolism and reproduction. These recent advances expand our understanding and identify a new and unconventional role of bone beyond its classical functions. However, much is still to be learned. This thesis will investigate the role of Phosphatase, Orphan 1 (PHOSPHO1) in energy metabolism. The bone specific phosphatase, PHOSPHO1 has a well-established role in bone mineralisation and excitingly preliminary data suggested that PHOSPHO1 may be involved in the regulation of global energy metabolism. Understanding the mechanisms in which bone specific proteins can influence whole body homeostasis is essential to identify potential therapeutic targets beyond the well accepted and reported candidates. It should be noted that sections of this introduction are based on the published review by Oldknow et al., highlighting the endocrine roles of bone (Oldknow et al., 2015).

1.1 Skeleton form and function
The vertebrate skeleton is one of the largest mammalian organs, providing the framework of the body, supporting the softer tissues and creating points of attachment for most skeletal muscles. In addition, the skeleton provides protection for vital organs and blood cells, assists in movement and acts as a storage system for minerals, namely calcium and phosphorus, in order to repair micro-damage and participate in fracture healing, thus maintaining a high bone quality adequate to fulfil its major functions.

The structure of bone is adapted to its function. Bone is a composite material composed of living cells enmeshed in a mineralised collagenous matrix. These collagen fibres enable the bone to withstand torsion and tension, whereas the
inorganic mineral provides strength and resists compression (Fig. 1.1) (Farquharson, 2008).

![Diagram of mineral and collagen in bone](image)

Figure 1.1 Bone as a composite material
Bone explant treated with hypochlorite (left) to digest collagen, leaving the mineral component intact and hydrochloric acid (right) to dissolve mineral, leaving the collagen component intact. With kind permission from Tim Arnett.

Bone is organised into two distinct structures, cortical (compact) and trabecular (cancellous). Cortical bone accounts for 80% of the total skeletal mass, primarily located in the shaft of the long bones (diaphysis) surrounding the medullary cavity. Cortical bone is highly organised; osteons, the chief structural unit of cortical bone consists of concentric lamellae organised in Haversian systems, resulting in a highly dense, poorly porous (2-5%) material. Central to the Haversian system is the Haversian canal. This canal contains blood vessels, connective tissues, nerve fibres and lymphatic vessels that supply osteocytes and nerves, this system proves advantageous when bone is subjected to high tensile forces from contracting muscles (Sommerfeldt and Rubin, 2001)(Fig 1.2). Unlike cortical bone, trabecular bone does not contain a Haversian system. As an alternative, trabeculae, accounting for 20% of the bone mass, form the functional units of trabecular bone. Arranged in a highly organised three dimensional manner, trabeculae provide continuous units of bony tissue aligned in parallel with the lines of major compressive or tensile forces. Accordingly, trabecular bone is less dense and more elastic than cortical bone, possessing 10 times the surface area of cortical bone. Due to this arrangement,
trabecular bone is more porous (30-90%) and has a higher bone turnover than cortical bone (Fig. 1.2).

Figure 1.2 The bone structure and bone cells
The bone consists of two structures, cortical and trabecular bone. (A) Cortical bone with a central Haversian canal. Osteocytes are visible, present in the concentric layers of bone matrix. (B) Low power scanning electron microscope image showing normal bone architecture in the third lumbar vertebra of a 30 year old woman. Strong, interconnected plates of trabecular bone are visible allowing the bone to withstand compressive forces. (C) Mineralisation of osteoblast cells in vitro. (D) Scanning electron microscope image of osteocytes organised in functional syncytia collectively referred to as the osteocytic lacunar–canalicular system. (E) Scanning electron micrograph showing an osteoclast resorbing bone. Images provided from the Bone Research Society, by kind permission of (A,C,E) Tim Arnett (B) Alan Boyde (D) Kevin Mackenzie.
1.2 Embryonic bone formation

Skeletal development involves the growth, expansion and remodelling of the bony structure. During development, bone is formed from three distinct cell lineages: the neural crest, paraxial mesoderm, and lateral plate mesoderm, which form the flat bones of the jaw and skull, vertebral column and appendicular skeleton respectively. Two mechanisms of bone formation (ossification) exist: endochondral and intramembranous, which are dependent upon a complex assimilation of biochemical and morphological events.

1.2.1 Intramembranous ossification

Intramembranous ossification is responsible for the formation of the frontal and parietal bone of the skull, mandible, maxilla and the periosteum of long bones. Ossification commences with mesenchymal condensations that secrete the early extracellular matrix (ECM) and collagen concomitantly with mesenchymal cells that form a membrane of osteoprogenitor cells that differentiate into osteoblasts and osteocytes, secreting bone matrix resulting in the formation of spicules that fuse into trabeculae constituting primary bone (Samuelson, 2007). There is no intermediate cartilage template formed during the process of intramembranous ossification.

1.2.2 Endochondral ossification

Endochondral bone formation begins as a cartilaginous anlage and is observed during formation of long bones, such as those of the limbs. Long bones of the skeleton develop from limb buds comprised of an aggregate of undifferentiated mesenchymal cells (precartilage condensations). Upon differentiation into chondrocytes, cells secrete ECM forming the cartilaginous template of the bone; simultaneously the perichondral sheath is formed from mesenchymal cells at the periphery of the template. Proliferating chondrocytes within the cartilaginous template hypertrophy, concomitant with this, perichondral cells around the mid diaphyseal region of the cartilage model differentiate into osteoblasts and lay down
the supportive bony collar which is infiltrated by blood vessels transporting cells / elements that will form the bone marrow and osteoclasts. Osteoclasts resorb the cartilage template forming the primary ossification centre. Osteoblasts secrete bone matrix forming lamellar bone. Finally, the secondary ossification centre forms in the epiphyseal region of the cartilage, and a highly specialised epiphyseal growth plate forms between the two ossification centres.

The growth plate is essential postnataley, allowing the bone to grow in a longitudinal manner. The growth plate comprises chondrocytes arranged in columns that are parallel to the axis of the bone, and surrounded by their ECM (consisting of collagens, proteoglycans and numerous other non-collagenous proteins (NCP) (Gentili and Cancedda, 2009; Heinegard, 2009) (Fig. 1.3). Specifically, endochondral bone growth is characterised by the precise temporal and spatial organisation of chondrocytes (section 1.4) within the epiphyseal growth plate. These chondrocytes sit in distinct cellular zones of maturation, separated by longitudinal and transverse septa. The cells of each region can be distinguished by differences in their rate of proliferation and morphology. Chondrocytes proceed through these stages of differentiation whilst maintaining their spatially fixed locations (Hunziker et al. 1987). Resting chondrocytes and undifferentiated progenitors are situated in the resting zone located at the top of the growth plate, nearest the epiphysis, these cells progress through to the proliferating zone where they become proliferative and adopt a flattened and oblate shape; arranging themselves spatially into longitudinal columns (Hunziker et al., 1987). Following the cessation of cell division, chondrocytes enter the hypertrophic zone, undergoing phenotypic changes. In brief, the cells become spherical and their volume increases approximately 10 times larger than that of the proliferative chondrocytes with increases in endoplasmic reticulum and Golgi apparatus, thus increasing matrix production. Associated with this hypertrophic phenotype is the increase in tissue non-specific alkaline phosphatase (TNAP) activity and expression of collagen type X, chondrocalcin, osteonectin (ON) and osteopontin (OPN) and decreased expression of collagen type II (early
chondrocyte marker), indicative of the final maturation phase (Buckwalter et al. 1986; Hunziker et al. 1987; Farnum et al. 2002). Finally, mineralisation of the ECM surrounding the hypertrophic chondrocytes of the longitudinal septa occurs allowing vascular invasion. This invasion facilitates the resorption of the transverse septa via osteoclast migration, allowing osteoblasts to replace this degraded cartilage with a bone matrix forming the primary spongiosa (Mackie et al. 2011). Upon sexual maturity, the primary and secondary ossification centres meet, fusion occurs and longitudinal bone growth ceases (Fig.1.3). Interestingly, in mice the growth plate never closes.

1.2.3 Appositional bone growth
In addition to intramembranous and endochondral bone formation it is also important to address appositional bone growth. Appositional bone growth is the formation of new bone on the outer surfaces of existing bone to increase its width; necessary to allow the bone to withstand increasing loading pressures by increasing the cross sectional moment of inertia. Osteoblasts situated on the periosteum deposit bone in successive laminae, whilst osteoclasts resorb bone on the endosteal surface, resulting in a net increase in bone mass and marrow cavity diameter. Upon the termination of appositional growth, the periosteum is responsible for the maintenance of the bone surface (Farquharson, 2008).
Figure 1.3 Endochondral ossification
Stages of endochondral ossification. (A) Mesenchymal stem cells (B) condense and aggregate to form the cartilage anlagen. (C) Pre-chondrocytes differentiate into chondrocytes and secrete ECM. The formation of a supportive bony collar is initiated. (D) Chondrocytes in the centre become hypertrophic and mineralise their surrounding matrix. (E) Invasion of the anlagen by blood vessels allows the infiltration of osteoblasts and osteoclasts leading to the formation of the primary ossification centre. (F) The primary ossification centre expands towards the epiphysis. (G) A secondary ossification centre and growth plate develops in the epiphysis. The epiphyseal growth plate is organised into distinct zones of the growth plate; the resting, proliferating, and hypertrophic zone, functioning until the point in which the two ossification centres fuse and growth ceases. Adapted from (Gilbert, 2006).
1.3 The process of bone remodelling and modelling

Bone remodelling is a biphasic process occurring throughout life in a constant and balanced manner, responsible for bone maintenance during adulthood, demonstrating a true homeostatic function. Bone remodelling is fully dependent upon the actions of two antagonistic cell populations: the osteoblasts and osteoclasts. The primary function of mesenchyme-derived osteoblasts is to deposit bone matrix that subsequently becomes mineralised (section 1.5). Conversely, the haematopoietic-tissue-derived osteoclasts are a unique cell type possessing the capability to destroy the host tissue by reabsorbing mineralised bone matrix (Rodan and Martin, 2000; Teitelbaum, 2000; Harada and Rodan, 2003; Teitelbaum and Ross, 2003; Karsenty, 2006). The misregulation of bone remodelling inevitably results in bone loss and disease, the most common, by far, is osteoporosis. These concepts will be discussed in greater detail hereafter.

Bone modelling differs from bone remodelling as bone resorption and formation occur on separate surfaces resulting in changes in the bone micro-structure (Frost, 1990). The process of bone modelling, unlike remodelling occurs from birth to adulthood and is responsible for adapting structure to loading by changing bone size and shape and removes damage thus maintaining bone strength (Seeman, 2009).

1.3.1 Osteoblasts

Constituting approximately 5% of all bone cells, osteoblasts are specialised ‘bone building’ cells, originating from pluripotent mesenchymal stem cells (MSC’s) (Fig. 1.2 C). In addition to osteoblasts, MSC’s are capable of differentiating into chondrocytes, adipocytes, fibroblasts, myoblasts and stromal cells; however, commitment of MSCs to these lineages is dependent upon the coordinated expression and activation of a number of transcription factors and cytokines including runt-related transcription factor 2 (Runx2), Osterix (Osx), Wnt, Transforming growth factor beta (TGFβ), ß-catenin and bone morphogenetic
proteins (BMPs) (Table 1.1) (Ducy et al., 2000b; Manolagas, 2000). Required at each stage of bone development, and throughout the remodelling process, osteoblasts are cuboidal in shape and contain abundant mitochondria, Golgi apparatus, ribosomes and endoplasmic reticulum, all characteristic of secretory cells (Dudley and Spiro, 1961). Ideally situated on the bone surface, the osteoblasts primary function is to synthesise bone matrix, termed the osteoid, predominantly consisting of collagen (94%) in addition to proteoglycans and other NCPs. Following matrix deposition and mineralisation, the osteoblast either remains on the surface of the bone as inactive lining cells, undergoes apoptosis, or becomes entombed by their secreted matrix and differentiate into osteocytes (section 1.3.3) (Dallas and Bonewald, 2010).

1.3.2 Osteoclasts

Osteoclasts act in a synchronised manner with osteoblasts, however, having opposite roles. Osteoclasts are responsible for the resorption of mineralised bone and together with the osteoblasts they regulate remodelling of bone tissue. Derived from the hematopoietic lineage, osteoclastogenesis is stimulated by factors such as macrophage colony-stimulating factor, and receptor for activation of receptor activator of nuclear factor kappa B ligand (RANKL) requiring contact with osteoblasts and stromal cells (Sommerfeldt and Rubin, 2001). Osteoclasts are multinucleated, rich in lysosomes, migratory giant cells. They have numerous mitochondria and a well-developed Golgi apparatus. Osteoclasts reside on the bone surface, ideally located for their function, where upon maturation osteoclasts become polarised and form a ruffled border that allows the osteoclast to attach to the bone surface forming a microenvironment which is key to the resorptive event. This compartment, isolated from the general extracellular space becomes acidified by an electrogenic proton pump, the Cl⁻ channel and secretion of acid proteases. The formation of the acid milieu (pH 4.5) mobilises the mineralised component of bone, exposing the organic matrix, mainly type 1 collagen that is degraded by the lysosomal enzyme cathepsin K. Furthermore, the secreted enzymes, tartrate-resistant acid phosphatase (TRAP) and matrix metalloproteinase (MMP) are also
responsible for the breakdown of the ECM. Diminished functions of osteoclast function in animals and human results in an excess of bone mass (osteopetrosis or pyknodysostosis). Conversely, increased activity or an imbalance between bone formation and resorption leads to bone loss and osteoporosis. Osteoclasts are known to be regulated in an endocrine manner e.g. through the secretion of calcitonin from the thyroid and parathyroid hormone (PTH) from the parathyroid gland (Samuelson, 2007; M. Lyons, 2013).

1.3.3 Osteocytes
Osteocytes are regarded as terminally differentiated osteoblasts and are the most abundant cell type, constituting over ninety percent of the cells in bone. It was previously thought that the osteoblast was the dynamic cell and upon maturation into an osteocyte, the cell became quiescent. However, it is now becoming clear that the osteocyte is also an important regulator of bone mass and a key endocrine regulator of phosphate metabolism (Dallas and Bonewald, 2010).

Osteocytes reside in lacunae and are immobilised in mature bone, they possess extensive filopodia, cellular processes that extend to adjacent osteocytes within canaliculi, allowing the passage of nutrients and metabolites. Gap junctions present between processes from different cells allow the osteocytes to form a functional network, communicating with osteoblasts and osteoclasts situated at the periosteum and endosteam. Ideally positioned within the bone matrix, osteocytes sense mechanical strain and translate that strain into biochemical signals of resorption or formation related to the intensity and distribution of the strain signals (Lanyon 1993). Osteocytes are also central to the regulation of system phosphate homeostasis and coordinate bone mineralisation with fibroblast growth factor 23 (FGF23) production and renal phosphate handling (Bonestal and Wacker, 2013). Furthermore, studies have highlighted that osteocytes and not osteoblasts or osteoblast progenitors are the major source of the osteoclastogenic cytokine receptor activator of nuclear factor kappa B (NF-kB), RANKL and the decoy receptor,
osteoprotegerin (OPG) (Nakashima et al., 2011; Xiong et al., 2011; Wysolmerski, 2012).

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Function</th>
<th>In vivo and in vitro effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMP2</td>
<td>Osteogenic factor</td>
<td>Osteochondrogenic factor; might initiate bone formation and bone healing and can induce expression of other BMPs.</td>
</tr>
<tr>
<td>BMP4</td>
<td>Osteogenic factor</td>
<td>Osteochondrogenic factor in vivo and in vitro.</td>
</tr>
<tr>
<td>BMP7</td>
<td>Osteogenic factor</td>
<td>Osteogenic factor in vivo and in vitro; active on more mature osteoblasts.</td>
</tr>
<tr>
<td>Dlx5</td>
<td>Osteogenic homeobox protein</td>
<td>Induces osteoblast maturation but inhibits osteocyte formation.</td>
</tr>
<tr>
<td>FGF</td>
<td>Angiogenic and mitogenic factor, osteogenic factor (controversial)</td>
<td>Mutations induce chondrodysplasia and craniosynostosis; can stimulate Sox9; might be a negative regulator of postnatal bone growth and remodelling.</td>
</tr>
<tr>
<td>IGF-L II</td>
<td>Mitogenic factors, osteogenic factors</td>
<td>Stimulates growth plate formation, endochondratic ossification and bone formation by osteoblasts.</td>
</tr>
<tr>
<td>Ihh</td>
<td>Osteochondrogenic factor</td>
<td>Pivotal role for growth plate and endochondral formation; can inhibit osteoblast differentiation; might induce PTHrP expression.</td>
</tr>
<tr>
<td>MAPKs</td>
<td>Transduce osteogenic signalling by phosphorylation</td>
<td>Crucial for regulation of intracellular signalling induced by osteogenic factors (still remains controversial).</td>
</tr>
<tr>
<td>Msx2</td>
<td>Osteogenic homeobox protein</td>
<td>Induces proliferation of immature cells.</td>
</tr>
<tr>
<td>NF-kB</td>
<td>Inflammation transducer factor, inhibits osteogenesis</td>
<td>Inhibits the differentiation of MSCs and committed osteoblastic cells.</td>
</tr>
<tr>
<td>Noggin</td>
<td>BMP2, 4 and 7 specific inhibitor</td>
<td>Suppresses osteoblastic differentiation.</td>
</tr>
<tr>
<td>OPG</td>
<td>Decoy receptor of RANKL, inhibition of RANKL</td>
<td>Strongly inhibits bone resorption and has a pivotal role in bone remodelling.</td>
</tr>
<tr>
<td>Osterix</td>
<td>Late osteogenic transcription factor</td>
<td>Master regulator of late osteogenesis, inhibiting chondrogenesis.</td>
</tr>
<tr>
<td>PlGF</td>
<td>Angiogenic and vasculogenic factor</td>
<td>Induces proliferation and osteogenic differentiation of MSCs; crucial for vascularisation.</td>
</tr>
<tr>
<td>PTHrP</td>
<td>Osteochondrogenic factor</td>
<td>Pivotal role for growth plate and endochondral formation; can induce or inhibit osteogenesis.</td>
</tr>
<tr>
<td>RANKL</td>
<td>Induces osteoclastogenesis</td>
<td>Strongly stimulates bone resorption and has a pivotal role in bone remodelling.</td>
</tr>
<tr>
<td>Runx2</td>
<td>Early osteogenic transcription factor</td>
<td>Master regulator of early osteogenesis; Runx2/− mice died, with no bone formation.</td>
</tr>
<tr>
<td>TGFβ</td>
<td>Mitogenic factor, osteogenic factor</td>
<td>Can induce osteoblast differentiation at the early stage of immature cells but can also inhibit osteogenesis in committed cells.</td>
</tr>
<tr>
<td>VEGF</td>
<td>Angiogenic and vasculogenic factor</td>
<td>Most potent angiogenic and vasculogenic factor; crucial at the onset of bone formation.</td>
</tr>
<tr>
<td>Wnt(s)</td>
<td>Mitogenic and osteogenic factors</td>
<td>Depending on Wnt type, crucial for osteoprogenitor proliferation; can also inhibit final osteoblast maturation.</td>
</tr>
</tbody>
</table>

Table 1.1 Molecules involved in bone formation
(Modified from (Deschaseaux et al., 2009; Mohammad Hafiz et al., 2010).
1.4 Chondrocytes and cartilage

Each cartilage subtype has a single cell type – the chondrocyte, which are referred to as chondroblasts during the initial production of ‘ground material’ and as they become less active they become chondrocytes, which are rounded in shape present in the central regions of hyaline and elastic cartilage and to a lesser extent in fibrocartilage. The role of chondrocytes in the process of endochondral bone growth is discussed in section 1.2.2. Cartilage is a specialised form of connective tissue that is neither innervated nor vascularised. Cartilage is subdivided into three types: hyaline or articular, elastic and fibrous or fibrocartilage. Hyaline cartilage is the most common type of cartilage occurring at most bone forming sites, joint surfaces of articulating bones and tracheal rings, functioning to disperse forces on joints caused by movement, form growth templates for pre- and post-natal long bone growth and is involved in fracture repair (Shum and Nuckolls, 2002). The ability of hyaline cartilage to withstand large compressive and tensile forces is due to the arrangement of the collagen type II fibres that are arranged in accordance with the stress placed on the body. Within articular cartilage collagen type II fibres form irregular bundles between the chondrocytes and near the surface they are orientated parallel to the surface. Elastic cartilage is found in the ear, larynx and epiglottis. Having a well-developed network of elastic fibres, elastic cartilage gives support to external structures. Finally fibrocartilage, the least common of the three forms, often associated with dense connective tissue and hyaline cartilage, aids in transferring loads between tendons and bone. Present at intervertebral disks and certain ligamentous and tendinous attachments to bones, fibrocartilage, is very similar to hyaline however type I collagen fibres predominate which form discrete bundles enabling cartilage to withstand large forces thus remaining resilient to deformation (Samuelson, 2007).

1.5 The mineralisation process

Bone predominantly consists of ECM, with approximately 70% (by weight) of this being inorganic. Of the inorganic matrix, calcium and inorganic phosphate (P_i) are
abundant. Derived from both nutritional sources and enzymatic activity, (e.g. P\textsubscript{i} generation via TNAP and calcium via Vitamin D metabolites and PTH) calcium and phosphate form hydroxyapatite (HA) crystals (Ca\textsubscript{10}(PO\textsubscript{4})\textsubscript{6}(OH)\textsubscript{2}). Hydroxyapatite crystals also contain other elements such as magnesium, sodium, potassium, copper, zinc and manganese. These HA crystals are arranged in an organised manner, deposited alongside and in close juxtaposition to type I collagen fibres in bone and within their gap regions and surrounded by aggrecan composites producing a hard but lightweight composite material (Millan, 2013). The proteoglycans within the amorphous aggrecan composites are instrumental in initiating and inhibiting bone mineralisation allowing water to contact HA crystals and ion exchange to occur. Glycoproteins such as osteocalcin (OCN) and OPN bind to HA crystals (section 1.5).

The mineralisation process occurs by a series of complex physio-chemical and biochemical processes that together facilitate the deposition of a solid phase HA (Houston \textit{et al.}, 2004). Most simply, mineralisation is a two-step process (Fig 1.4):

1. De novo induction of mineral formation within the protective enclave of the matrix vesicles (MV) lumen (Anderson, 1995).
2. Propagation of induced mineral into the extravesicular matrix (Anderson \textit{et al.}, 2005).

It is important to mention that although the formation of HA in cartilage is widely accepted to involve membrane-limited MV, an alternative mechanism is suggested to occur in bone termed collagen-mediated calcification, whereby collagen fibrils induce the deposition of apatite crystallites through a process of heterogeneous nucleation (Bonucci, 2012). Both mechanisms do however require the concentration of both calcium and phosphate to initiate HA formation.
1.5.1 The role of matrix vesicles

Matrix vesicles bud from distinct areas of the membrane on the surface of all mineralising cells. Within cartilage, MV’s bud off from the hypertrophic chondrocyte plasma membrane whereas bone MV’s are restricted to the freshly formed osteoid that is located at the basal plasma membrane of mineralising osteoblasts (Morris et al., 1992). Within the MV lumen, calcium and P\textsubscript{i} accumulate until sufficient amounts are present for precipitation to occur resulting in the formation of HA. Calcium accumulation is achieved by Ca2+ channels and the MV affinity for calcium binding lipids and proteins, whereas P\textsubscript{i} accumulation remains highly controversial.
Figure 1.4 Mineral formation and alignment with collagen fibrils
(A) Accumulation of Calcium and P\textsubscript{i} within the matrix vesicle instigating the formation of HA crystals within the protective enclave of the MV lumen (B) HA crystals grow in size and the pierce the MV membrane resulting in growth in the extravesicular matrix (C) Analysis of mineral in mice (D) Mineral is aligned with collagen fibrils of the ECM (Anderson, 1995; Millan, 2006).
1.5.2 The regulatory factors of matrix mineralisation

Traditionally, TNAP was solely recognised as the generator of high levels of P$_i$ via its ATPase activity, however it was later observed that MV’s from patients with hypophosphatasia (characterised by mutations in the TNAP gene - $Akp2$) contain apatite crystals, which is also observed in TNAP null ($Akp2^{-/-}$) mice. This observation therefore suggested that other phosphatases must work with TNAP to generate P$_i$ and regulate matrix mineralisation. Following the identification of PHOSPHO1, this phosphatase has become recognised as an essential player in the bone mineralisation process.

1.5.2.1 PHOSPHO1

PHOSPHO1 is a bone specific phosphatase, identified over a decade ago at The Roslin Institute, University of Edinburgh (Houston et al., 1999). Thereafter, work concentrated in characterising its role in bone mineralisation. More specifically, PHOSPHO1 is a member of the large family of the haloacid dehalogenase (HAD) superfamily of Mg$^{2+}$ dependent hydrolases and its expression is upregulated in mineralising cells (Houston et al., 1999; Roberts et al., 2008). PHOSPHO1 shows high phosphohydrolase activity towards phosphoethanolamine (PEA) and phosphocholine (P-Cho) and is active inside chondrocyte and osteoblast derived MV’s where it has been speculated to scavenge P$_i$ from MV membrane phospholipids to favour intravesicular HA deposition (Stewart et al., 2003; Roberts et al., 2004; Stewart et al., 2006; Roberts et al., 2007).

Chemical inhibition of PHOSPHO1 by lansoprazole resulted in impaired skeletal mineralisation during limb development of the chick and markedly reducing mineralisation of the long bones of the leg and wings (MacRae et al., 2010). Furthermore, genetic ablation of the $Phospho1$ gene in mice resulted in significant skeletal pathology, spontaneous fractures, bowed long bones, osteomalacia, and scoliosis in early life (Fig. 1.5) (Huesa et al., 2011; Yadav et al., 2011). Curiously $Phospho1^{-/-}$ mice had reduced levels of TNAP and elevated pyrophosphate (PPi)
concentration (suppresses HA crystal formation and propagation and acts as a potent calcification inhibitor in biological fluids), however transgenic overexpression of TNAP did not correct the \textit{Phospho1}-/- phenotype, despite correcting plasma PPi levels (Yadav MC, 2011). The superimposing haploinsufficiency of TNAP (\textit{Akp2}+/-) with \textit{Phospho1}-/- caused a progressive worsening of the skeletal defects, whereas simultaneous ablation of \textit{Phospho1} and \textit{Akp2} results in the complete absence of skeletal mineralisation in the developing embryo and perinatal lethality. These data suggest that PHOSPHO1 and TNAP have complementary, non-redundant functional roles during skeletal mineralisation in the mouse (Yadav MC, 2011).

Using these models, a comprehensive paradigm of skeletal mineralisation was suggested, whereby PHOSPHO1 is responsible for intravesicular production of P\(_i\); and TNAP mediates extravesicular P\(_i\) transport into the MV, via phosphate transporter 1 (P:T) (Yadav \textit{et al.}, 2011; Millan, 2013).
Figure 1.5. Phospho1−/− mouse bone phenotype
(A) Micro Computed tomography (µCT) image of a Phospho1−/− E16.5 shows reduced skeletal mineralisation compared with WT embryos (B) Radiographic images of WT and Phospho1−/− mice on postnatal days 10 and 25. Phospho1−/− mice show skeletal abnormalities including deformed long bones (C) Normalised backscattered electron intensity maps of tibial cross sections from non-mineralised (0, black) to high mineralisation (255, white). Bone matrix was hypomineralised in Phospho1−/− compared to WT (Yadav et al., 2011) (Rodriguez-Florez et al., 2015).
1.5.2.2 NPP1 & ANK

Ectonucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) is the founding member of the NPP family. These glycoproteins have pleiotropic roles in hydrolysing phosphodiester or pyrophosphate bonds in various substrates, including nucleoside triphosphates, lysophospholipids and choline phosphate esters (Bollen et al., 2000; Stefan et al., 2005; Zimmermann et al., 2012). Specifically, NPP1 forms disulphide-bonded homodimers and is highly expressed in the plasma membrane and mineral-depositing MV of osteoblasts (Johnson et al., 1999; Vaingankar et al., 2004; Terkeltaub, 2006). Mice lacking NPP1 (Enpp1−/−) have severe mineralisation defects in long bones and calvariae, pathological soft tissue and medial arterial mineralisation associated with abnormally low pyrophosphate (PPi) levels (Anderson 2005; Mackenzie et al., 2012a; Mackenzie et al., 2012b; Oldknow et al., 2015). Therefore NPP1 has been identified as a critical regulator of tissue mineralisation, hydrolysing nucleotides such as adenosine triphosphate into extracellular PPi (Terkeltaub, 2001). Ankylosis protein (ANK), whose expression is upregulated in osteoblasts and chondrocytes, mediates the channelling of the intracellularly produced PPi to traverse to the ECM (Hakim et al., 1984; Terkeltaub et al. 1994; Ho et al. 2000; Nurnberg et al. 2001). Mice lacking the ANK protein are characterised by pathological calcification of articular cartilage and the synovial fluid surrounding these regions (Fig. 1.6) (Hakim et al., 1984).

1.5.2.3 Purinergic signalling

Purines can act as extra signalling molecules, and it is now accepted that extracellular nucleotides, signalling via P2 receptors, participate in a wide number of biological processes in both neuronal and non-neuronal tissues. P2 receptors existing in P2X ligand-gated ion channels and P2Y G-protein-coupled receptors respond to nucleotides including adenosine triphosphate (ATP), adenosine diphosphate (ADP), uridine triphosphate (UTP) and uridine diphosphate (UDP) (Burnstock and Kennedy, 1985; Abbracchio and Burnstock, 1994; Burnstock, 2007). Initial studies concerning purinergic signalling demonstrated that extracellular
nucleotides could induce increases in intracellular calcium in bone cells and inhibit bone formation whilst promoting bone resorption (Kumagai et al., 1989; Kumagai et al., 1991; Reimer and Dixon, 1992; Yu and Ferrier, 1993; Morrison et al., 1998; Hoebertz et al., 2002). New evidence suggests that ATP released from osteoblasts, stromal cells and osteocytes can act locally to inhibit bone mineralisation and stimulate osteoclast formation and activity (reviewed in (Orriss et al., 2010). Specifically uridine-5'-triphosphate (UTP), the P2Y2 receptor agonist strongly inhibits bone nodule formation, partly due to the decreased activity of TNAP (Hoebertz et al., 2002; Orriss et al., 2007). Moreover, osteoblasts have been shown to express P2X receptors, and P2X1 and P2X7 receptors within this class negatively regulate bone mineralisation (Orriss et al., 2012). It has also been suggested that ATP released from osteocytes entombed in bone might help to prevent matrix mineralisation at the periphery of the osteocyte and prevent cell death (Orriss et al., 2010).

Figure 1.6 Model of initiation of skeletal mineralisation including the function of PHOSPHO1, TNAP, NPP1, and phosphate transporters.
The first step of MV-mediated mineralisation involves the convergence of two independent biochemical pathways 1) intravesicular P_i generation by the enzymatic action of PHOSPHO1 hydrolysing P-Cho generated from sphingomyelin phosphodiesterase 3 (SMPD3). 2) Influx of P_i via the P_i transporters, generated in the perivesicular space by the activities of TNAP and NPP1. OPN acts as a mineral inhibitor (Modified from (Zhou et al., 2012; Millan, 2013).
1.5.2.4 Polyphosphate

Polyphosphates, predominantly located within nuclei, mitochondria and the plasma membrane, are long polymers of three to several hundred orthophosphates bound by energy-rich phosphoanhydride bonds (Kulaev, 1975; Kornberg, 1995; 1999). They have been implicated in phosphate storage (Harold, 1966), cation sequestration (Dunn et al., 1994), counter-ion actions for basic amino acids (Cramer and Davis, 1984), regulation of intracellular adenylate nucleotides (Lorenz et al., 1995) and modulation of cellular responses to stress (Lorenz et al., 1997). Polyphosphates are found at high levels in osteoblast-like cells, and calcium/phosphate rich polyphosphate granules have been identified at sites of bone resorption and in calcified cartilage suggestive of an involvement of polyphosphates in matrix mineralisation (Casey et al., 1972; Leyhausen et al., 1998; Schroder et al., 2000). Early studies showed that subcutaneous injection of polyphosphates inhibited ectopic calcification by direct binding to HA crystal thus halting crystal growth with equal or better potency than PPi (Fleish and Neuman, 1961; Fleisch et al., 1965; Francis, 1969). Most recently, in an osteoblast cell culture model polyphosphates (PolyP5 and PolyP65, polyphosphates of 5 and 65 phosphate residues in length) have been shown to be potent mineralisation inhibitors via direct binding to HA mineral crystals and by inhibition of TNAP activity (Hoac et al., 2013).

1.5.2.5 SIBLING family of proteins

The small integrin binding ligand N-linked glycoprotein (SIBLING) family of proteins have been identified to be key in the regulation of HA crystal initiation and propagation. Comprising a structurally and phylogenetically homogeneous group of matricellular factors this family consists of OPN, bone sialoprotein (BSP), dentin sialophosphoprotein (DSPP), dentin matrix acidic phosphoprotein 1 (DMP1) and matrix extracellular phosphoglycoprotein (MEPE) (Malaval et al., 2008). Briefly, OPN is secreted by both osteoblasts and osteoclasts and has been shown to inhibit the in vitro formation of HA (Hunter et al., 1994). Supporting the role for OPN in mineralisation, mice lacking the OPN gene (Spp1−/−) mice display a normal skeletal
phenotype, however have increased crystal size and crystallinity (Boskey et al., 2002). Bone sialoprotein (BSP (encoded by the \textit{Ibsp} gene)) is highly expressed by osteoblasts, hypertrophic chondrocytes and osteoclasts, acting as a local nucleator for HA production (Hunter et al., 1994; Raynal et al., 1996). Bone sialoprotein knockout mice (\textit{Ibsp}^{-/}) exhibit impaired bone growth and mineralisation, concomitant with dramatically reduced bone formation (Ganss et al., 1999; Malaval et al., 2008). First described in 1977, DSPP has since been shown to play a primary role in the formation and growth of HA crystals in an extracellular matrix of hard tissue such as bone and teeth (MacDougall et al., 1997). The importance of DSPP in bio-mineralisation has been illustrated by human and mouse genetic studies, which showed the association of \textit{Dspp} gene mutations or ablations with mineralisation defects in the dentin (Xiao et al., 2001; Zhang et al., 2001) and bone (Verdelis et al., 2008). Current data suggests that BMP2, RUNX2, nuclear factor Y and DMP1 may be involved in the regulation of DSPP, however the exact molecular pathways governing the expression of DSPP are still poorly understood. Expression of DMP1 is primarily restricted to osteocyte however osteoblasts and hypertrophic chondrocytes also express DMP1 (Toyosawa et al., 2001; Feng et al., 2002). \textit{In vitro}, DMP1 overexpression promotes ECM mineralisation, \textit{in vivo} \textit{Dmp1}^{-/} mice display significantly lower mineral content than control mice (Ling et al., 2005). Furthermore, \textit{Dmp1}^{-/} mice exhibit a dramatic increase in fibroblast growth factor 23 (\textit{Fgf23}) expression in the osteocytes. Fibroblast growth factor 23 regulates kidney Pi homeostasis suggesting that DMP1 can indirectly control Pi levels via FGF23. These findings are consistent with the hypophosphatemia observed in the \textit{Dmp1}^{-/} mice (Feng et al., 2006). Similarly to DMP1, MEPE is primarily expressed by osteocytes however it is also expressed by osteoblasts (Nampei et al., 2004). \textit{In vitro}, during osteoblast matrix mineralisation \textit{Mepe} mRNA expression is increased (Petersen et al., 2000; Argiro et al., 2001). \textit{In vivo}, \textit{Mepe}^{-/} mice had increased bone mass and were resistant to age associated trabecular bone loss. Furthermore, isolated osteoblasts produced significantly more mineralised nodules in \textit{ex vivo} cell cultures than wild type (WT) osteoblasts, these mice also display a decrease in TNAP activity in the
growth plate and the primary spongiosa (Gowen et al., 2003; David et al., 2009a). The functional component of MEPE (acidic serine aspartate-rich MEPE-associated motif (ASARM) peptide), in vitro and in vivo has been shown to inhibit the uptake of P. (Liu et al., 2007; Martin et al., 2008; Shirley et al., 2010). These data suggest that MEPE is involved in both bone mineralisation and P homoeostasis, however the pathways still remain somewhat elusive (Staines et al., 2012).

1.5.2.6 Secreted protein acidic and rich in cysteine (SPARC)

Secreted protein acidic and rich in cysteine (SPARC) alternatively known as osteonection (ON) or BM-40, is a bone matrix non-collagenous calcium binding matricellular glycoprotein that is involved with, but not restricted to, tissue remodelling, repair, cell turnover and bone mineralisation and is secreted by many different types of cells, such as osteoblasts, fibroblasts, endothelial cells, and platelets (Termine et al., 1981; Brekken and Sage, 2000; Alford and Hankenson, 2006). Its precise function in bone remains unclear, in vitro ON has the ability to inhibit HA crystal growth (Romberg et al, 1986). Osteonectin-deficient (Sparc−/−) mice exhibit decreased bone formation, remodelling and osteopenia, due to a negative bone balance resulting from decreased osteoblast and osteoclast surface area and number. Furthermore, ON has been shown to be important for osteoblast formation, maturation, and survival (Delany et al., 2000; Delany et al., 2003).

1.5.2.7 SMPD3

Recent in vitro results have indicated that sphingolipids are implicated in osteoblast and chondrocyte apoptosis and in the regulation of osteoclastogenesis (Takeda et al., 1998; MacRae et al., 2006); reviewed by (Khavandgar and Murshed, 2015). In vivo, sphingolipid metabolism plays a critical role in skeletogenesis. Mouse models lacking the ceramide-generating neutral sphingomyelinase 2 enzyme (nSMase2/SMPD3 – gene-targeted Smpd3−/− and fro/fro mice (deletion mutation in Smpd3 gene fragilitas ossium (fro))) display gross skeletal abnormalities, including deformed long bones, short-limb dwarfism, hypomineralisation, delayed dentin
mineralisation and enamel formation (Aubin et al., 2005; Stoffel et al., 2005; Alebrahim et al., 2014). Conversely, the overexpression of Smpd3 in osteoblasts only (fro/fro;Col1a1–Smpd3 mice) corrects embryonic bone abnormalities, demonstrating a direct role of SMPD3 in skeletal mineralisation (Khavandgar et al., 2011; Khavandgar et al., 2013). However, the mechanisms underlying this role, while remaining unclear, are now becoming a little less hazy. It has now been proposed that SMPD3 hydrolyses sphingomyelin to P-Cho (Stoffel et al., 2005), which is subsequently hydrolysed into choline and phosphate by the bone-specific phosphatase, PHOSPHO1 (Fig. 1.6) (McKee et al., 2013). As described in section 1.5.2, ablation of Phospho1 in mice results in a similar phenotype to that of fro/fro mice, with Phospho1−/− mice having significant skeletal pathology (Huesa et al., 2011; Yadav et al., 2011; Rodriguez-Florez et al., 2015). These results suggest that PHOSPHO1 and SMPD3 are functional within the same metabolic pathway required for skeletal mineralisation in the mouse (Khavandgar, Oldknow, Murshed & Farquharson, unpublished observations). Interestingly, both Phospho1 and Smpd3 deficient models exhibit decreased body size, indicating that, in addition to the de novo pathway, the sphingomyelinase pathway may have the potential to regulate energy metabolism (Chapter 6) (Stoffel et al., 2005; Oldknow et al., 2013).

1.5.2.8 Vitamin K dependent proteins
Osteocalcin (OCN) or bone Gla-protein was isolated from bone over three decades ago by two independent groups (Hauschka et al., 1975; Price et al., 1976; Hauschka et al., 1989b) and is the most abundant osteoblast-specific non-collagenous protein accounting for 10-20% of non-collagenous protein content (Hauschka et al., 1989b). Named due to the presence of three vitamin K-dependent γ carboxyglutamic acid residues, OCN is a small protein (46 and 49 amino acids long in mice and humans respectively) initially synthesised in the osteoblast as a pre–pro molecule. Vitamin K-dependent post-translational modifications occur, causing three glutamic acid residues (GLU13, GLU17 and GLU20) to be γ carboxylated into carboxyglutamic acid (GLA) residues by a γ carboxylase. Final intracellular cleavages produce the
mature OCN, which is subsequently secreted (Hauschka et al., 1989a). The presence of the three γ carboxyglutamic acid residues is critical for the structure and function of OCN in the fully carboxylated state allowing the binding of OCN to HA with a high affinity, regulating the maturation of bone mineral (Hauschka et al., 1989b). In the fully carboxylated form, OCN is largely unstructured when calcium is not present, however in the presence of calcium the OCN protein becomes folded, allowing calcium sequestering thus inhibiting mineral formation and matrix mineralisation (Chenu et al., 1994). However, OCN also exists in the general circulation in fully carboxylated, partially carboxylated and completely uncarboxylated forms (Plantalech et al., 1991; Cairns and Price, 1994; Vergnaud et al., 1997; Schilling et al., 2005). On the basis of results from human and rodent studies, serum OCN concentrations have been correlated with bone formation and osteoblast number, thus being used as a serum marker of bone formation (Brown et al., 1984). To investigate the role of OCN in bone health, OCN-deficient mice (Bglap3−/−) were generated and these mice were found to have a normal bone phenotype at birth but increased bone density and thickness at 6 months of age. This was due to the increased deposition of bone matrix without the impairment of bone resorption, thus OCN was concluded to be a negative regulator of bone formation (Ducy et al., 1996; Wolf, 1996). Analogous to OCN, Matrix Gla protein (MGP) contains 5 vitamin K dependent GLA residues (Price and Williamson, 1985) and appreciably accumulates in the matrix of bone, cartilage, and dentin, functioning to promote the binding of HA through the affinity to calcium ions (Hale et al., 1988). Despite this, OCN and MGP have non redundant and other unrelated functions. Mice that lack MGP are severely compromised and fatality is observed within two months of age as a result of arterial calcification which leads to blood-vessel rupture (Luo et al., 1997). Mice also exhibit inappropriate calcification of the growth plate, which eventually leads to short stature, osteopenia and fractures (Luo et al., 1997), thus MGP was concluded to inhibit calcification of arteries and cartilage. Interestingly expression of OCN at sites of ectopic mineralisation in MGP-deficient mice was not able to reverse the abnormal phenotype which is in contrast with the re-expression
of MGP at those same sites (Murshed et al., 2004). Furthermore, overexpression of MGP in hypertrophic chondrocytes reduces their mineralisation potential (Newman et al., 2001). However, the mode of action at the molecular level still remains somewhat elusive. Keutel syndrome, an autosomal recessive disease, is triggered by MGP loss of function mutations, and the disease is characterised by excessive cartilage (Cancela et al., 1990; Munroe et al., 1999; Cancela et al., 2014).

1.6 Bone as an endocrine organ

Energy is required in all cells and organs, allowing biological processes to proceed; bone shows no exception to this rule. More specifically, bone is an energy-expensive organ due to the constant modelling and remodelling it undergoes. It is therefore logical to postulate that bone may have a means of regulating the flow/supply of energy storage to fulfil its metabolic needs. The initial realisation that leptin, an adipocyte-derived hormone inhibits both appetite (Flier and Elmquist, 1997; Friedman and Halaas, 1998) and bone mass accrual though a hypothalamic relay over a decade ago (Ducy et al., 2000a), provided the basis for this potential link between bone remodelling and energy metabolism. Thereafter, a rapid expansion of evidence supporting this crosstalk has occurred, further elucidating the complex roles of leptin (Fig. 1.7) and identifying further adipocyte (adiponectin) and gut-derived hormones (glucagon-like peptides 1 and 2 and serotonin) that regulate bone mass, remodelling and energy homoeostasis. The revelation that bone itself regulates energy metabolism in a reciprocal manner via secreted OCN, which favours insulin secretion and insulin sensitivity and increased energy expenditure was uncovered several years ago (Lee et al., 2007; Ferron et al., 2010a; Rached et al., 2010). Recently an explosion of avant-garde research has explored this concept, uncovering new and atypical roles of bone beyond its traditional functions. The field of bone and energy metabolism is therefore moving in at least 3 distinct but complementary directions:
I. How bone mass is controlled by the brain.

II. The role of insulin in the osteoblast.

III. Regulation of whole body energy metabolism by bone derived factors.

Figure 1.7. Bone related Functions of Leptin
↑ indicates up regulation or increase, ↓ indicates down-regulation or decrease, → Indicates results in.
1.6.1 The role of insulin in the osteoblast

Osteoblasts have very few specific genes, the most specific being Bglap3 which codes for OCN (section 1.5.2.8). To investigate the role OCN in bone health, Bglap3−/− mice were generated, but surprisingly no major skeletal deformities were observed in these mice (Ducy et al., 1996). In 2007, further phenotypic evaluation of these mice resulted in an unanticipated finding. OCN-deficient mice were hyperglycemic, hypoinsulinemic and had a reduced insulin secretion and sensitivity compared to the litter mate WT mice. Additionally, islet size, number, β cell mass, pancreas insulin content, and insulin immunoreactivity were all markedly decreased in Bglap3−/− mice. Moreover, Bglap3−/− mice had increased fat mass and adipocyte number, being insulin resistant in the liver, muscle, and white adipose (Table 1.2)(Lee et al., 2007). In this same study the group took advantage of the small number of genes encoding secreted or signalling molecules that are expressed exclusively by the osteoblast in the hope to uncover further osteoblast-enriched genes affecting energy metabolism. One gene that was found to be of most interest was embryonic stem cell phosphatase (Esp), which is expressed by only two cell types, the osteoblast and the sertoli cells of the testis. Embryonic stem cell phosphatase encodes osteotesticular protein tyrosine phosphatase (OST-PTP) (Mauro et al., 1994). In vitro, Esp coordinates the progression of the pre-osteoblast to a mature, mineralising cell, and in vivo may be a critical regulator of the commitment of mesenchymal cells to the ossification of new bones during skeletogenesis (Mauro et al., 1994; Chengalvala et al., 2001; Yunker et al., 2004). However, it is well established, protein tyrosine phosphatases (PTPs) are key regulators of insulin receptor signalling (InsR) in many cell types dephosphorylating and inactivating the InsR within minutes of stimulation, maintaining glucose homeostasis (Mauro et al., 1994; Hunter, 1995; Schlessinger, 2000; Tonks, 2006; Lee et al., 2007). As a result, two mutant mice were created, a whole body knock out of Esp (Lee et al., 1996) and an osteoblast specific knock down of the phosphatase domain of OST-PTP (Dacquin et al., 2004). Both mutants exhibited severe hypoglycemia and hyperinsulinemia leading to postnatal lethality.
in the first two weeks of life. Further analysis demonstrated the pancreas of $Esp^\text{+/+}$ had greater islet content, number of islets, islet size and β cell mass, resulting in increased insulin secretion. In addition, mutants were significantly more tolerant to glucose upon challenge, displaying an insulin sensitive phenotype (demonstrated by insulin tolerance testing), thus mice were protected from induced obesity and diabetes (Lee et al., 2007; Ferron et al., 2008). In parallel, mice overexpressing full-length Esp cDNA selectively in osteoblasts exhibited hyperglycemia, hypoinsulinemia, glucose intolerance, insulin resistance, decreased β cell proliferation, lower β cell mass, and impaired insulin secretion (Lee et al., 2007). Subsequently, it was noted $Esp^\text{+/+}$ mice were a mirror image of $Bglap3^\text{+/+}$ mice, whilst the OST-PTP overexpressing mice were a phenocopy of $Bglap3^\text{−/−}$ mice. Further genetic studies revealed that the metabolic phenotype of $Esp^\text{+/+}$ mice was fully corrected by removing one allele of $Bglap3$, implying that $Esp^\text{+/+}$ mice are a model for a gain of function of OCN, providing solid evidence that OST-PTP and OCN reside in the same regulatory pathway (Lee et al., 2007). Biochemical analysis revealed $Esp^\text{+/+}$ mice have significantly higher serum GLU13-OCN levels than WT controls, however, total Ocn gene expression and OCN serum levels was normal in $Esp^\text{+/+}$, suggestive that OST-PTP is involved in the decarboxylation of OCN and subsequent release of GLU13-OCN into the systemic circulation (Table 1.2) (Lee et al., 2007; Ferron et al., 2010b).

Notwithstanding, it still remained unclear how carboxylation status could regulate whole body energy metabolism. Clues came from several key studies concerning forkhead box protein O1 (FoxO1) and activating transcription factor 4 (ATF4). The transcription factor FoxO1 is targeted by insulin and regulates glucose homeostasis in tissues involved in energy metabolism including adipocytes and hepatocytes, yet its function in osteoblasts had not been explored until recently (Rached et al., 2010). A FoxO1 osteoblast conditional knockout mouse was generated, mice displayed decreased fasting blood glucose levels, increased insulin sensitivity and a 30% increase in serum OCN levels, coupled with a 75% reduction in Esp expression,
suggestive of an association between Esp and carboxylation status of OCN (Lee et al., 2007). In the same study, it was demonstrated that mice lacking one allele of FoxO1 and one allele of Esp in osteoblasts showed improved insulin sensitivity. Similarly, the metabolic phenotype was corrected in heterozygous mice lacking one allele of FoxO1 in osteoblast by the removal of one allele of Bglap. Utilising these models to investigate the mechanisms underlying the phenotype, it was established that FoxO1 regulates the bioactivity of OCN via OST-PTP via direct binding to its promoter, reducing serum OCN (Rached et al., 2010; Kousteni, 2011; 2012). Activating transcription factor 4 belongs to the subfamily of cAMP-response element-binding protein / ATF basic leucine zipper proteins broadly expressed throughout the body, however predominantly accumulates in osteoblast where it regulates virtually all functions of the osteoblast related to the control of bone mass including bone formation and matrix mineralisation (Yang and Karsenty, 2004; Elefteriou et al., 2005; Yoshizawa et al., 2009). Mice deficient in Atf4 primarily show phenotypic abnormalities in the skeleton, however the global or osteoblast specific ablation of Atf4 results in favourable metabolic changes, including improved glucose tolerance and insulin sensitivity associated with decreased Esp expression. Contrary, the overexpression of ATF4 in osteoblasts mirrored this phenotype, resulting in glucose intolerance associated with increased Esp expression. This effect was due to the direct regulation of Esp expression in osteoblasts by ATF4 which was established by a ChIP array confirming that ATF4 binds to the CRE element in the Esp promoter (Yoshizawa et al., 2009). Finally, it has been shown that FoxO1 co-localises with ATF4 in the osteoblast nucleus, promoting the transcriptional activity of AFT4 thus up-regulating the expression of Esp in osteoblasts, resulting in OCN inactivation (Kode et al., 2012).

But how does OST-PTP affect insulin signalling in osteoblasts? In the search for the OST-PTP substrate in osteoblasts, utilising multiple genetic and biochemical modalities the InsR was identified as a potential substrate. As a result, two studies conducted simultaneously by Professors Gerard Karsenty’s and Thomas Clemens’
laboratories were initiated to explore the role of insulin signalling in osteoblasts. They generated InsR-deficient mice which presented with hyperglycemia, increased peripheral adiposity, reduced insulin secretion, severe glucose intolerance and decreased levels of circulating GLU13-OCN (Table 1.2). These mice also displayed a skeletal phenotype with a reduction in bone acquisition due to reduced bone formation; however the marker of bone resorption (CTx) was also decreased. Upon infusion of exogenous GLU13-OCN, the metabolic phenotype was fully corrected, suggestive that insulin signalling in osteoblasts has the potential to regulate whole body glucose homeostasis via carboxylation status of OCN (Ferron et al., 2010a; Fulzele et al., 2010). It was also suggested that insulin signalling in osteoblasts might favour bone resorption, due the observation of decreased CTx in osteoblast-specific InsRosb−/− mice which mirrored the increase in CTx observed in the Esp−/− mice. Utilising the InsRosb−/+ and Esp−/+ , Ferron et al. established using a co-culture system, whereby WT osteoclast precursor cells cultured with osteoblasts isolated from InsRosb−/− mice decreased resorption pit formation whilst a 50% increase was seen utilising the Esp−/+ primary osteoblasts. Moreover, Opg a negative regulator of osteoclast function, encoding the decoy receptor for RANKL was increased in InsR−/− and decreased 50% in Esp−/− osteoblasts. Further unravelling of this complex pathway found that insulin signalling in osteoblasts inhibited FoxO1 expression, favouring bone resorption via suppression of Opg, as well as supressing twist basic helix-loop-helix transcription factor (Twist2) expression (Runx inhibitor) (Ferron et al., 2010a; Fulzele et al., 2010; Rached et al., 2010). It appeared that osteoclasts were important in the connection between bone and energy metabolism, therefore Ferron and colleagues investigated genes associated with OPG dependent events in the osteoclast. It was found that T cell, immune regulator 1, ATPase, H+ transporting, lysosomal V0 protein A3 (Tcirg1) expression was decreased in osteoclast / InsRosb−/+ osteoblast co-culture models. Present in acidification of the bone prior to bone resorption Tcirg1 is present in osteoclasts (Teitelbaum, 2000; Teitelbaum and Ross, 2003; Bronckers et al., 2012). These data suggested that insulin signalling in osteoblasts induces osteoclast acidification and consequently bone resorption. This
is via altered via both OPG and the OPG/RANKL ratio resulting in acidic pH which is known to decarboxylate proteins (Engelke et al., 1991). Utilising biochemical and mass spectroscopy analysis it was established that an acidic environment generated by osteoclasts situated in osteoclast resorption lacuna can decarboxylate OCN present in the ECM.

In addition to the classical osteoblast specific PTP’s, which has a specificity for phosphotyrosine (Alonso et al., 2004; Barr et al., 2009), 37 other mammalian classical PTP’s exist. Of these, the only other identified PTP able to bind to the osteoblast InsR and respond to isoproterenol treatment similar to OST-PTP (Hinoi et al., 2008) is T-cell PTP (TC-PTP). This finding further strengthens the notion that bone is involved in the regulation of glucose metabolism, increasing our understanding of the complex regulation of OCN mediated glucose homeostasis (Zee et al., 2012).

1.6.2 Male fertility and the discovery of the osteocalcin receptor

The discovery of the OCN receptor (Gprc6a) occurred simultaneously with the elucidation of the role of OCN in fertility. Briefly, male and female patients with gonadal failure possess low bone mass and menopause favours bone loss (Riggs et al., 1982; Wishart et al., 1995; Riggs et al., 1998). These clinical observations led to studies investigating the possible relationship between bone and fertility. Fortuitously it was noted that Bglap3−/− mice were poor breeders, resulting from decreased testes weight with a 50% reduction in sperm count. This was associated with impaired Leydig cell maturation and decreased circulating testosterone (Oury et al., 2013). Mirroring this phenotype, Esp−/− mice had increased male reproductive organ weights with a 30% increase in sperm count and increased circulating testosterone (Oury et al., 2011). This data suggested a link between OCN and testosterone production which was relevant to males only as no change in circulating oestrogen or the aromatase enzyme required to convert testosterone to oestrogen (Cyp19A1) was observed in the Esp or Bglap3-deficient mice. In an effort to elucidate the signalling mechanism underlying this pathway, several factors were
taken into consideration, namely, the target cells affected by OCN (β cells of the pancreas and Leydig cells of the testis) and the sexually dimorphic aspects of OCN. These clues led to the identification of GPRC6A, a G protein–coupled receptor (GPCR) linked to adenylate cyclase. Present in is present in the Leydig cells, GPRC6A inactivation in mice leads to a metabolic phenotype very similar to the Bglap3−/− mice characterised by glucose intolerance, decreased in β-cell area and β-cell mass. In addition, these mice demonstrate defective bone mineralisation (Pi et al., 2008; Pi et al., 2010). Moreover, the compound heterozygous mice lacking Bglap3−/− Gprc6a−/+ had a reproductive phenotype identical in all aspects to the one seen in Bglap3−/− and Gprc6a-deficient mice models (Oury et al., 2011). These data identified GPRC6A as an OCN receptor, demonstrating the importance of CREB in the regulation of OCN mediated testosterone biosynthesis. Additionally, utilising the Gprc6a−/− mouse model it was shown that intraperitoneal injection of OCN failed to markedly stimulate ERK activity, thus having only minor effects on circulating serum insulin levels, which was in contrast to WT mice whose insulin levels were increased when challenged with OCN (Yoshikawa et al., 2011). The G protein–coupled receptor (Gprc6a) has been shown to be integral in the promotion of β cell proliferation during development and adulthood via OCN thus highlighting Gprc6a as an important receptor for skeletal mediated energy regulation via the pancreas (Pi et al., 2011) (Wei et al., 2014b). Most recently, Oury et al. demonstrated that OCN acts via the pancreas-bone-testis axis where OCN stimulated testosterone synthesis is positively regulated by insulin signalling in osteoblasts and is independent of luteinizing hormone (Oury et al., 2013).

To highlight the importance of the role of bone in energy metabolism, Wei et al. evaluated the consequences of the overexpression or loss of the InsR in osteoblasts of high fat diet (HFD) fed mice. These studies revealed that insulin resistance in bone affects whole-body glucose homeostasis in mice fed a HFD by decreasing OCN activity; moreover they demonstrated that Smad Ubiquitination Regulatory Factor 1 (SMURF1)-mediated InsR ubiquitination contributes to the development of insulin
Chapter 1

Introduction

resistance in osteoblasts. This data underpins the notion that bone is a highly important site for the regulation of global energy homeostasis (summarised Fig. 1.8) (Wei et al., 2014a).

Figure 1.8 OCN a bone-derived multifunctional hormone

A feed forward loop links insulin, bone resorption and OCN activity. Insulin signalling in osteoblasts decreases OPG. The decrease in the ratio of OPG (a RANKL decoy receptor) to RANKL increases bone resorption by osteoclasts. The acidic pH (4.5) in resorption lacunae decarboxylates OCN stored in the bone extracellular matrix. Undercarboxylated active OCN stimulates insulin secretion by the β-cells of the pancreatic islets and promotes insulin sensitivity in peripheral organs. Esp acts as an inhibitor, dephosphorylating the insulin receptor, supressing the levels of GLU13-OCN. Undercarboxylated OCN stimulates insulin secretion and β cell proliferation in the pancreas, energy expenditure by muscle, and insulin sensitivity in adipose tissue, muscle and liver. In addition, it promotes male fertility by stimulating testosterone synthesis in Leydig cells of the testis through the activation of its receptor, GPRC6A, in these cells ECM, extracellular matrix; InsR, insulin receptor. (Adapted from (Rosen and Motyl, 2010; Karsenty and Ferron, 2012)).
<table>
<thead>
<tr>
<th>InsP3</th>
<th>Lsp Overexpression</th>
<th>Lsp^{-/-} InsP3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperglycemia • Hyperglycaemia • Increased body fat • Reduced bone formation • Reduced bone resorption • Low serum CLIP-13-OCN</td>
<td>Hyperglycemia • Decreased insulin sensitivity • Decreased insulin secretion • Increased body fat • Reduced bone formation • Reduced bone resorption • Low serum CLIP-13-OCN</td>
<td>Hyperglycemia • Reduced serum insulin levels • Decreased pancreatic C cell mass and function • Reduced insulin secretion • Increased circulating insulin • Reduced circulating insulin sensitivity • Reduced insulin responsiveness • Increased energy expenditure • Marked peripheral adiposity • Reduced glucose intolerance</td>
</tr>
</tbody>
</table>
1.6.3 Clinical evidence: osteocalcin and metabolism/fertility
The first association between OCN and glucose metabolism in 1998 highlighted that OCN serum levels were significantly lower in diabetic patients and higher in patients with improved glycaemic control (Rosato et al., 1998). Many human studies have since quantified both total circulating OCN and the hormonally active undercarboxylated OCN, yielding mixed results. A positive correlation between serum undercarboxylated OCN levels and enhanced β-cell function was observed in several studies (Hwang et al., 2009; Prats-Puig et al., 2010; Pollock et al., 2011), however, in contrast, other studies have found no association between lower circulating uncarboxylated OCN levels and higher HOMA-IR (Shea et al., 2009). These conflicting results are likely attributed to the lack of a commercially available undercarboxylated OCN assay (Ducy 2011). Similarly, it appears that the reproductive function of OCN translates to humans, with the identification of a positive association between OCN and testosterone serum levels in the general population, patients with bone disorders and patients with T2DM (Hannemann et al., 2013; Kanazawa et al., 2013). Furthermore, two subjects were identified from a cohort of patients displaying testicular failure that harboured a heterozygous missense variant in one of the transmembrane domains of GPRC6A, giving credence to a role of OCN function in humans (Oury et al., 2013; Karsenty and Oury 2014; Oldknow et al., 2015).

1.6.4 GLUT and bone
Cellular uptake of glucose is mediated by either of the two families of membrane-associated carrier proteins, namely the sodium coupled glucose transporters (SGLTs) via active transport and glucose transporter (GLUT) facilitators via facilitated diffusion (Bell et al., 1990; Carruthers, 1990). The SGLT family comprises 12 members including co-transporters for sugars, anions, vitamins and short-chain fatty acids (Wright and Turk, 2004). Currently, the presence of SGLT in bone has not been reported; however, SGLT2 receptor inhibitors, acting as glucose-lowering agents in the management of type two diabetes mellitus (T2DM), have been...
reported to have no significant effects on bone formation and resorption or BMD in humans (Ljunggren et al., 2012). In contrast, GLUT receptors have recently been reported to be expressed in bone. To date, the GLUT family consists of 14 members sub-classified into three groups, according to sequence similarities and characteristic elements (Joost and Thorens, 2001; Mueckler and Thorens, 2013). GLUT receptors exhibit striking tissue-specific expression, each possessing differential sensitivities to stimuli such as insulin, thus allowing for complex and specific regulation of glucose uptake according to cellular requirements (Gould and Holman, 1993). It was first suggested that insulin promotes increased glucose uptake via GLUT1 in the osteoblast, independently of Insulin like growth factor – 1 (IGF-1) signalling to increase the metabolic activity of the osteoblast (Fulzele et al., 2007). Most recently, solute carrier family 4 (Slc2a4) has been found to be expressed at similar levels to those in skeletal muscle in osteoblasts, osteocytes and chondrocytes, with the genetic ablation of Slc2a4 in osteoblasts/osteocytes resulting in increased peripheral adiposity associated with mild hyperinsulinemia. These mice also presented with insulin resistance. These metabolic changes were assumed to originate from osteoblasts/osteocytes as no altered gene expression was identified in the liver or adipose tissue, indicating that decreased Slc2a4-mediated glucose uptake in bone is sufficient to influence whole-body metabolism (Zhu et al., 2013).

Emerging results from two independent laboratories have indicated that, in addition to GLUT4, GLUT1 is necessary for bone formation and whole-body glucose homeostasis. Moreover, GLUT1 is modulated by high glucose levels (Wei et al., 2014a; Wei et al., 2014b; Wei J, 2014). Collectively, these results provide a deeper understanding of the role of bone in the regulation of glucose metabolism (Fig. 1.9).

Excitingly, recent evidence suggests that other osteoblast-derived hormones may contribute to the emerging function of the skeleton as a regulator of the energy metabolism. This was demonstrated by the partial ablation of osteoblasts in transgenic mice which resulted in profound affects in glucose metabolism, gonadal fat mass combined with increased energy expenditure. Administration of OCN
partly corrected the metabolic phenotype, however it did not improve the increased energy expenditure or decrease gonadal fat. This suggests that osteoblasts have the ability to affect glucose metabolism through both OCN dependent and independent mechanisms (Yoshikawa et al., 2011). This observation forms the theme of this thesis.

1.6.5 Fibroblast growth factor 23

In addition to OCN, it is also important to highlight that osteocyte derived FGF23 has a central role in the regulation of energy metabolism (David et al., 2009a; David et al., 2009) in addition to its well documented roles in phosphate homeostasis and the coordination of bone mineralisation (section 1.3.3). Mouse models either overexpressing MEPE, ASARM peptides or infused with ASARM peptides display increased adiposity, are hyperglycaemic and have increased OCN, whereas FGF23-null mice are hypoglycaemic (ASARM peptide modulates PHEX–DMP1-mediated FGF23 expression; Rowe et al., 1996; David et al., 2009a; David et al., 2009b; David et al., 2011). Intriguingly, patients subjected to a 4 hour euglycaemic–hyperinsulinaemic clamp showed increased FGF23 that correlated positively with insulin infusion (Winther et al., 2011). These combined data are indicative of key roles for FGF23 in energy metabolism (Oldknow et al., 2015).
Introduction

Figure 1.9 GLUT Transporter Family

GLUT transporter family: Sl, small intestine; B, brain; BAT, brown adipose tissue; SI, small intestine; WAT, white adipose tissue; BAT, brown adipose tissue; BBB, blood-brain barrier; BTB, blood-testis barrier; GLUT, glucose transporter; GLUT1, GLUT2, GLUT3, GLUT4, GLUT5, GLUT6, GLUT7, GLUT8, GLUT9, GLUT10, GLUT11, GLUT12, GLUT13, GLUT14.

Potential similarities between GLUT1 and GLUT14 are indicated by a red line. The role of bone GLUT1 and GLUT14 in glucose homeostasis is speculative and indicated by a red double-headed arrow. GLUT receptor tissue distribution and cellular/subcellular expression is also highlighted. GLUT receptors in bone are also highlighted. Figure adapted from (Joost and Thorens, 2001; Mueckler and Thorens, 2004). Potential similarities between GLUT3 and GLUT14 are indicated by a red line. The role of bone GLUT1 and GLUT14 in glucose homeostasis is speculative and indicated by a red double-headed arrow. GLUT receptor tissue distribution and cellular/subcellular expression is also highlighted. Figure adapted from (Joost and Thorens, 2001; Mueckler and Thorens, 2004).
1.7 Aims and strategy

Whilst the functional importance of PHOSPHO1 in the regulation of skeletal mineralisation and in the formation of mechanically competent bones has been clearly demonstrated, the role of PHOSPHO1 in the regulation of energy metabolism has yet to be established. This potential role of PHOSPHO1 emerged from striking preliminary data obtained by Dr. Carmen Huesa, which suggested that:

I. *Phospho1*−/− osteoblasts have a 20-fold increase in *Esp* expression compared to WT osteoblasts.

II. PHOSPHO1 dephosphorylates the InsR at serine 1322.

III. PHOSPHO1 interacts with GYF protein 1 (GIGYF1), GIGYF1 forms a complex with GRB10 to regulate both insulin and IGF-1 receptor signalling.

Therefore, the aim of this thesis was to test the hypothesis that PHOSPHO1 regulates energy metabolism and PHOSPHO1 deficiency protects from obesity and insulin resistance. To address this I have completed the following aims:

I. Establish if PHOSPHO1 controls energy metabolism through cross talk with the InsR.

II. Determine if *Phospho1* overexpression in osteoblasts down regulates *Esp* expression and thereby regulate hormonally active GLU13-OCN.

III. Examine glucose metabolism and the energy status of *Phospho1*−/− mice.

IV. Investigate the potential regulation of energy metabolism by bone though PHOSPHO1 deficiency.

These aims have been achieved through the use of both *in vitro* and *in vivo* models. Prior to the phenotypic metabolic characterisation of *Phospho1*−/− mice it was first necessary to confirm/oppose preliminary data obtained by Dr. Carmen Huesa, suggestive that PHOSPHO1 controls energy metabolism through cross talk with the...
InsR (Chapter 3). Furthermore, I ascertained that Esp which controls GLU 13-OCN secretion, was more highly expressed in Phospho1−/− osteoblasts (Chapter 3). This chapter highlighted that PHOSPHO1 was an interesting candidate for in vivo studies.

Thereafter, Phospho1−/− mice were examined under both normal and diet challenged (60% HFD) conditions, assessing multiple parameters inclusive, but not limited to, insulin sensitivity, activity monitoring, oxygen consumption, liver spectroscopy and whole body adiposity (Chapter 4 and 5).

The identification of candidates underlying the remarkable protection from obesity and insulin resistance observed in Phospho1 deficiency would serve to cement Phospho1’s role in the regulation of the metabolic profile of mice. This role was examined both in vitro and in vivo using various cell lines (FAZA, INS1E, C2C12, 3T3-L1), primary calvarial osteoblasts and blood serum. Chapter 6 therefore provides a platform for future research.

In conclusion, these studies have revealed that the genetic ablation of Phospho1 improves the metabolic profile of mice in vivo and confers a remarkable protection against obesity and diabetes. Specifically, Phospho1−/− mice are hypoglycaemic, show improved glucose and insulin tolerance and are protected from HFD induced obesity. These observations were not OCN dependent or related to increased physical activity and are consistent with the noted smaller fat deposits. Furthermore, preliminary in vitro studies indicated that conditioned medium (CM) from Phospho1−/− primary osteoblasts increased basal and insulin stimulated sensitivity in osteoblasts, adipocytes and β cells. These data are suggestive that the observed metabolic phenotype is primarily bone driven. Such data is essential to further unravel the links between energy metabolism, mineralisation and bone.
Chapter 2

Materials and Methods
2.1 Reagents and solutions
All chemicals were purchased from Sigma-Aldrich (Dorset, UK) and tissue culture medium and buffers were purchased from Life Technologies (Paisley, UK) unless otherwise stated. All medium and buffer recipes are shown in Appendix I.

2.2 Cell culture
2.2.1 Cell culture reagents
All tissue culture reagents were prepared in a sterile category 2 hood. Cell media was supplemented with the broad spectrum antibiotic gentamicin (0.05mg/ml, Life Technologies). Heat inactivated foetal bovine serum (FBS, Life Technologies) was filter-sterilised through a 0.22μm filter prior to use. Prepared medium was subsequently stored at 4°C prior to use.

2.2.2 Isolating primary osteoblasts
Under sterile conditions calvariae were dissected from 3-4 day old new-born WT and Phospho1-/- mice as previously described (Zhu et al., 2011). Extracted calvaria were washed in Hank’s Balanced Salt Solution and subject to successive cellular digestions with constant agitation at 37°C. Briefly, the digest consisted of:

I. 10 minute collagenase type II digestion (10mg/ml, Worthington, Lakewood, NJ) whereby the supernatant was discarded.

II. 30 minute collagenase digestion which was retained together with a phosphate-buffered saline (PBS) wash of the calvaria (fraction 1).

III. 10 minute ethylenediaminetetraacetic acid (EDTA, 4mM) digestion which was retained together with a HBSS wash (fraction 2).

IV. A 30 minute collagenase digestion (fraction 3).
Osteoblasts were isolated from the fractions by centrifuging (1800g, 5 minutes), resuspended in primary osteoblast medium (Appendix I) and finally pooled to obtain a single cell suspension. The extracted osteoblasts cells were expanded in flasks in a humidified atmosphere of 95% air/5% CO₂ and maintained at 37°C until
80-90% confluence and were then plated at 10000 cells/cm² in multi-well plates for individual experiments as described in section 2.2.3.2.

2.2.3 Freezing/thawing of cells

2.2.3.1 Cell lines
Cryopreservation of cell lines was carried out to maintain stocks. Upon confluency cells were trypsinised and counted as described in section 2.2.4. The cell suspension was then centrifuged at 2000g for 5 minutes and resuspended in 50/50 maintenance media and freezing mix 1 (Appendix I) to obtain the desired number of cells (3 x 10^6 cells per cryovial) (Corning, Surrey, UK). The cryovials were then wrapped in cotton wool, placed inside a polystyrene box and stored at -80°C for 4-7 days. For longer term storage, vials were transferred to -150°C. Upon requirement, stored cells were thawed quickly at 37°C and added drop wise to 5ml of pre-warmed appropriate maintenance media (Appendix I). The cell suspension was mixed and centrifuged for 5 minutes at 2000g to remove the toxic dimethyl sulfoxide (DMSO), which acts as a cryoprotectant to prevent cell death during the freezing process. The cell pellet was resuspended in maintenance media and transferred to a T175 tissue culture flask.

2.2.3.2 Primary Calvarial Osteoblasts
Primary osteoblasts were trypsinised and counted as described in section 2.2.4 and resuspended in 1.5 ml freezing mix 2 (Appendix I) to obtain the desired number of cells (3 x 10^6 cells per cryovial). The cryovials were placed in isopropanol at -20°C for two hours, transferred to -80°C overnight and for longer term storage, vials were transferred to -150°C. To thaw primary calvarial osteoblasts, cryovials were gently shaken in a 37°C water bath. The total contents of the cryovial (1.5ml) was and added drop wise to 4.5ml of pre-warmed primary osteoblast medium (Appendix I). The cell suspension was mixed and centrifuged for 5 minutes. The cell pellet was resuspended in primary osteoblast medium and transferred to a T175 tissue culture flask.
2.2.4 Maintenance and passaging of cells
Upon sub-confluence (70-80%), adherent cells were passaged by trypsinisation. Initially the culture medium was removed and the monolayer was washed with PBS. Cells were detached from the plastic by incubation with trypsin/EDTA for approximately 5 minutes at 37°C. The trypsin was neutralised by the addition of at least double the volume of appropriate cell medium containing the neutralising FBS. The cellular suspension was centrifuged at 2000g for 5 minutes in order to obtain a cellular pellet. The medium was removed and the cells were counted (if appropriate) using a Neubauer haemocytometer and then resuspended in a known volume of appropriate cell medium.

2.2.5 Conditioned media
Conditioned media was collected from WT and Phospho1−/− primary osteoblasts that were plated at a density of 10000 cells/cm² as described. Media was changed every 3 days and on at day 0 (upon plate confluency), 3, 6 and 9 was removed from the cells, centrifuged to remove particulates and frozen at -80°C until required. Collected conditioned media from Phospho1−/− primary osteoblasts was incubated for 1 hour with C2C12 (mouse myoblast cell line), FAZA (rat liver cell line), Ins1e (rat insulinoma cell line), MLOA5 (mouse postosteoblast / preosteocyte-like cell line), 3T3-L1 (mouse fibroblast cell line that were differentiated into to adipocytes), MC3T3 (mouse osteoblastic cell line) and WT primary osteoblast cultures. WT osteoblast conditioned medium was used as a control. Following incubation cells were subject to Insulin treatment as described in section 2.3.1. Protein and mRNA were then extracted (section 2.6.1 and 2.7.1).

2.2.6 Viral transduction of primary osteoblasts
For overexpression experiments, primary Phospho1−/− calvarial osteoblasts were cultured in T25 flasks and left to reach 75% confluence. Half of the media was removed from the flask and either 2.5µl of empty vector (EV), 5µl PHOSPHO1 overexpression or 5µl flag tagged PHOSPHO1 (FP1) lentivirus was added to the
media along with and 4µg/ml of FuGENE transfection reagent (Promega, Southampton, UK). Virus packaging was conducted by Dr. Carmen Huesa. Following 6 hours the media was replaced. In order to select for successfully transfected osteoblasts, 5mg/ml of puromycin was added to the osteoblast cultures for 3 days. Media was then replaced, supplemented with 2.5mg/ml of puromycin to maintain selection pressure and ensure successful transfection during the growing phase. Cell growth was observed every day until confluency had been achieved.

2.3 In vitro procedures for metabolic assessment of cells

2.3.1 Insulin treatment of cells

Following confluency the appropriate cells were washed three times in PBS and cultured for 24 hours in αMEM supplanted with 0.5% FBS. Medium was then changed to αMEM supplemented with 0.1% BSA (Fraction V) and 10mM HEPES 10mM (pH 7.4) for 3-6 hours. Cells were then stimulated with 10mM of insulin (Sigma) for 15 minutes, washed in ice-cold PBS and protein and mRNA was extraction described in sections 2.6.1 and 2.7.1.

2.3.2 Immunocytochemistry

Primary calvarial osteoblasts were plated on rat tail type I collagen coated plastic ware containing a sterile 22mmx22mm glass coverslip (Scientific Laboratory Supplies, Yorkshire, UK). Upon confluency, cells were stimulated with 100nM insulin (section 2.3.1), fixed with 4% paraformaldehyde (PFA) and subsequently washed in PBS 3 x 5 minutes. For permeabilisation, fixed cells were incubated with ice cold 100% methanol for 5 minutes at -20°C. Cells were then washed 3 x 5 minutes in PBS and blocked for 1 hour in blocking buffer (1xPBS, 5% normal goat serum, 0.3% triton X-100). The blocking buffer was removed and cells were incubated overnight at 4°C with the primary antibody against the InsR (Cell signalling, Boston, USA) diluted in blocking buffer overnight at 4°C. Cells were washed in PBS 3 x 5 minutes and incubated with the fluorochrome-conjugated goat-anti-rabbit secondary antibody (Life Technologies) diluted in blocking buffer for 90
minutes at room temperature in the dark (Appendix II). Finally, cells were washed 3 x 5 minutes in PBS and the coverslips were mounted using ProLong Gold Antifade Mountant with 4’,6-diamidino-2-phenylindole (DAPI - Life Technologies). Slides were analysed using a Nikon EC-1 confocal microscope.

2.3.3 2-deoxyglucose [3H] in vitro

WT and Phospho1−/− primary osteoblasts were cultured in 6 well plates at a density of 10000 cells/cm² as described in section 2.2.4. Upon confluency primary osteoblasts were washed with PBS and incubated in in serum alpha MEM for 4 hours. Osteoblasts were washed in PBS again, and 2ml of PBS was added to each well. Osteoblasts were then treated with either 100nM insulin, 1000nM insulin or 10µM Cytochalasin B (PBS acted as the control) for 15 minutes at 37°C. Radioactive 2-deoxyglucose [3H] (Glucose, 2DG-[3-3H], PerkinElmer, Buckinghamshire, UK) was then added to each well (0.1 mM (9250 Bq/ml (0.25µCi/ml)) for 15min at 37°C. 2-deoxyglucose [3H] uptake was terminated by washing the osteoblasts 3 times with ice cold 0.9% saline. The osteoblasts were scraped in in 600µL PBS + 0.1% sodium dodecyl sulphate (SDS) and transferred to Eppendorf tubes where the cell extract was homogenised with a needle and syringe. Half the volume of the cell lysate (300µl) was transferred into a scintillation tube containing 4ml of scintillation liquid (Ecoscint Ultra, National Diagnostic’s, Hessle, UK) and mixed well. Radioactivity was counted using the Hidex 300 SL Automatic Liquid Scintillation Counter (Turku, Finland) and the counts per minute (cpm), disintegrations per minute (dpm) were recorded. The remaining cell lysate was stored at -20°C and used for protein assay (DC) (section 2.7.2.1). Counts in the experimental wells were normalised to protein level following the subtraction of counts from the cytochalasin B control wells (cytochalasin B blocks GLUT-mediated transport and therefore any radioactivity demonstrates non-carrier mediated glucose entry).
2.3.4 Mitochondria stress test

Calvarial osteoblasts were extracted as described in section 2.2.2 and plated on a Seahorse XF24 microplate at a density of 25,000 and 50,000 cells per well in 100 µL of primary osteoblast medium. The plate was left in the hood for one hour to allow the osteoblasts to adhere and 150 µL of primary osteoblast medium was subsequently added to each well and the plate was transferred to a 37°C CO₂ incubator until 100% confluency was reached (approximately 1 day). Osteoblasts were washed in 500µl XF assay media supplemented with 25 mM glucose and 10 mM pyruvate and placed in a non-CO₂ incubator at 37°C for 1 hour prior to start of assay. Calvarial osteoblasts were then exposed to oligomycin (1.2µM - a complex V inhibitor, that inhibits respiration by inhibiting ATP synthase), the uncoupling agent carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP -0.56µM), antimycin A (that inhibits respiration by inhibiting oxidation of ubiquinol in the electron transport chain) and rotenone (0.96µM - complex I inhibitor involved in the inhibition of the mitochondrial respiratory chain). All reagents were prepared for the assay from 2.5 mM Seahorse stock solutions (Seahorse Bioscience, Massachusetts, United States). Following equilibration the Seahorse plate was placed in the Seahorse XF24 Analyser and the protocol in Appendix III was followed. OCR values are shown as pMoles/min compared over time at 3 different time points per condition. All Seahorse experiments were repeated at least twice. All the data shown in the assays are an average of at least 3 different wells per group.

2.4 Histological analysis of cell cultures

2.4.1 Oil-Red-O

To observe and quantify fat droplets in cell culture, differentiated cells were washed in PBS and subsequently fixed with 10% Neutral buffered formalin (NBF) for 1 hour at room temperature. Following the removal of the fixative, cells were stained with freshly prepared Oil-Red-O working solution for 30 minutes (Appendix I), washed in PBS to remove excess stain and either visualised under a microscope or stored in PBS at 4°C until photography.
2.5 In vivo studies

2.5.1 Animal welfare and generation

All animal experiments were approved by The Roslin Institute’s Animal Users Committee and the animals were maintained in accordance with Home Office guidelines for the care and use of laboratory animals. Animals were maintained under conventional housing conditions with a 12 hour light/dark cycle. Phospho1 null mice were generated as previously described (Yadav MC, 2011) and separate colonies of WT and Phospho1−/− were maintained. This was preferable to using litter mates from Phospho1+/− breeding parents as the identity of the genotype of new-born mice was required for calvarial osteoblast preparations. Offspring carrying the mutant Phospho1 gene were identified by genotyping (section 2.5.2).

2.5.2 DNA extraction and genotyping

Genotyping of Phospho1−/− mice was performed in house. Ear snips were collected and DNA was extracted using prepared solution 1 and 2 (Appendix IV). To each ear snip, 75µl solution 1 was added and incubated at 30 min at 95°C. To neutralise the reaction 75 µl solution 2 was added and extracted DNA was stored at -20°C until use. Extracted DNA was subject to direct PCR using primers and PCR conditions developed by Dr. Carmen Huesa (Appendix IV). To each DNA sample, 5µl of restriction digest master mix (Appendix IV) was added, and samples were subsequently incubated at 65°C for 1 hour. Samples were run on a 1.5% agarose Tris-borate-EDTA (TBE) gel made containing 3% ethidium bromide following the addition of 5x loading buffer (Bioline Reagents Ltd, London, UK). Hyper ladder 1 was used as a reference. Corresponding band patterns are show in Fig. 2.1.

2.5.3 Metabolic analysis of animal models

Male juvenile (35 day old) adult (120 day old) and ageing (220 day old) WT and Phospho1−/− male mice were fed a control diet (CD - 6.2% fat; Harlan Laboratories, Indianapolis, IN, USA).
Adult mice diet challenged with:

I. A HFD (58% fat; DBM Scotland, Broxburn, UK) *Ad libitum* from 35 day old to until analysis at 120 day old.

II. 2% supplemented choline diet (Harlan Laboratories) from 85-days-old to 120 day old.

Food and water consumption was measured by housing mice individually for 5 days, whereby 200g of food and 250ml of water was given on day 0. Remaining food was subsequently weighed each day for 5 consecutive days at the same time each day (10am), obvious food remnants in the cage were recovered and weighed. The volume of water drank was also recorded. Average daily food and water intake was calculated over the 5-day time period. Observations on chewing of food pellets were also recorded. Due to the crumbly nature of the HFD it was not possible to weigh. Blood was extracted from mice via cardiac puncture. Collected blood was transferred to an EDTA coated tube and placed on ice for 30 minutes (Sarstedt, Nümbrecht Germany). Tubes were then centrifuged at 1000g which results in serum separation. Serum was carefully collected and stored at -80°C until use.

2.5.3.1 **XY activity monitor**

Basal nocturnal activity was measured using an AM524 Single Layer X, Y IR activity monitor and associated Amonlite software (Linton Instrumentations, Norfolk, UK). These experiments were conducted at the Biological Resource Facility, Roslin, University of Edinburgh with help from Darren Smith. The AM524 uses an array of infrared beams to determine activity and mobility of a subject, which are arranged in an 8 x 16 pitched grid. The XY activity (fast, slow and total), active time, mobile time, distance travelled, mobile counts (fast and slow), static counts (fast and slow), static time, active time and front to back movement was automatically recorded. Prior to use with experimental mice, initial pilot studies were undertaken to ensure the results were reproducible, whereby the same mouse was placed in the activity for three consecutive overnight periods. These studies indicated no prior acquisition
period prior to experimental testing was necessary. Juvenile, adult (CD and HFD) and aged male mice were single housed placed inside the activity monitor on the evening of the experiment, nocturnal activity was subsequently recorded for 14.5 hours to encompass the dark phase (18:00 – 08:30 hours the following day). During testing, mice were undisturbed, had free access to chow and water and the cage had the normal bedding retained in order to minimise external stimuli that may alter the normal activity.

Figure 2.1 Genotyping of Phospho1−/− and WT mice using PCR and all Blue staining of polyacrylamide gel
(A) PCR analysis shows that Phospho1−/− mice have a product of two distinct dark bands, heterozygous mice have one distinct dark band and two fainter and WT mice have only one distinct dark band (B) Simply Blue Safe Stain used to visualise recombinant PHOSPHO1 protein run bands on a polyacrylamide gel.
2.5.3.2 Metabolic activity measurement using indirect calorimetry

The Oxymax Lab Animal Monitoring System: CLAMS (Columbus Instruments, OH USA), was used to measure heat production, volume (V) of CO₂, VO₂ and respiratory exchange rate (RER) via indirect calorimetry (Ridgman, 1988). These studies were completed at the McGill University, Montreal, Canada, in collaboration with Dr. Monuzur Murshed and Dr. Zohreh Khavandgar. Male 35 day old and 120 day old HFD mice were placed in the Oxymax system and supplied with a known flow of air. The consumption of O₂ and production of CO₂ during the metabolic process was recorded and the following formulae to calculate the desired parameters:

\[
\text{Oxygen consumption (VO₂)} = (\text{InFlow x O₂in}) - (\text{OutFlow x O₂out}).
\]

\[
\text{Volume of carbon dioxide (VCO₂)} = (\text{OutFlow x CO₂out}) - (\text{InFlow x CO₂in}).
\]

\[
\text{Respiratory exchange rate (RER)} = (\text{VCO₂/VO₂}).
\]

\[
\text{HEAT} = ((3.815 + 1.232) \times \text{RER}) \times (\text{VO₂}).
\]

Prior to analysis an initial acclimatisation was undertaken which involved placing the mice in the Oxymax system for 2 hours for three consecutive days. The experiments were conducted over a 24 hour period, from 12pm until 12pm to obtain both day and night measurements. Associated CLAMS data eXamination Tool (CLAX) was used to assist in the analysis of the produced data.

2.5.3.3 Glucose and insulin tolerance tests

Mice were fasted for 4 hours and administered either 2mg of D-glucose (Sigma, Poole, UK) per g of body weight (BW) by gavage or 0.5mU of insulin per g of BW by intraperitoneal injection (IP) (Fig. 2.2). At 0, 15, 30 and 60 minutes after administration, blood glucose was measured with an Accu-Chek Aviva glucose meter (Roche Diagnostics Ltd, Lewes, UK) and insulin was measured by ELISA (ChrystalChem, Chicago, IL, USA) to obtain glucose-stimulated insulin secretion (GSIS) measurements. Animals were allowed to recover for two weeks prior to cull
and tissue removal to ensure glucose or insulin challenge did not bias further experimentation (serum measurements, gene expression etc.). However it is important to note 2% choline diet were sacrificed immediately after metabolic testing as a two week recover may have diluted diet induced changes.

2.5.3.4 In vivo 20 minute insulin treatment

To examine the effects of insulin treatment on the expression of known targets of insulin action. Juvenile male mice were fasted for 4 hours and administered 1mU of insulin per g of BW. At 0 and 19 minutes following administration, blood glucose was measured (detailed in section 2.5.3.3) to ensure insulin had been delivered successfully. At 20 minutes following insulin administration, mice were sacrificed and tissues including tibiae, pancreas, liver, quadriceps femoris and brown, subcutaneous (SB), mesenteric (MF) and gonadal (GF) fat pads, were collected for protein and gene expression analysis.

2.5.3.5 Beta 3-agonist-37344 administration

As an alternative to acute cold exposure juvenile WT and Phospho1+ male mice were weighed and fasted for 4 hours between 9am and 1pm. Beta 3-receptor agonist -37344 (BRL-37344, Sigma) was administered IP 3 hours before euthanisa (1mg/kg BW) and adipose depots were collected for gene expression analysis (as described in 2.6) (Doucette and Rosen, 2014).
Figure 2.2 Metabolic testing of Phospho1−/− and WT mice
Representative photographs of oral gavage procedure (A), Glucose measurement using the glucose meter (B) and blood collection for serum analysis (C).

2.6 RNA methods
2.6.1 Isolation of RNA from cells and tissues
Prior to RNA extraction cultured primary osteoblasts and cell lines were washed and scraped from individual wells in PBS and stored at -80°C until use. Tissues were snap frozen and homogenised in QIAzol Lysis Reagent (RNeasy Lipid and
Tissue kit, Qiagen, Manchester, UK) using a hand held homogeniser (Cole-Parmer Instruments Ltd, London UK). Bone samples were submerged in liquid nitrogen and homogenised using a mortar and pestle followed by a hand held homogeniser in QIAzol Lysis Reagent. RNA was extracted using the RNeasy lipid tissue kit following manufactures instructions. The RNeasy lipid contains a phenol/guanidine-based sample lysis step which facilitates the breakdown of fatty tissues. An optional DNase treatment step was also included to completely remove any contaminating DNA (Qiagen). The concentration and quality (the ratio of wavelengths 260nm/280nm) of RNA was measured using a NanoDrop spectrophotometer (Labtech, Tampa, USA). Samples were diluted to the same concentration (that of the lowest sample) in nuclease-free water (NFW).

2.6.2 Reverse transcription
Complementary DNA (cDNA) was prepared from 10µl of the diluted RNA using reverse transcription. Briefly, 2µl of random primers (1/60) was added to the diluted mRNA and heated for 10 minutes at 70°C in a Hybaid polymerase chain reaction (PCR) Express Thermal cycler (Thermo Scientific, Northumberland, UK). Samples were cooled on ice. The Superscript II kit was used to obtain cDNA following manufactures guidelines. The samples were run on the following programme in the Hybaid PCR machine: 25°C for 10 minutes; 42°C for 50 minutes; 70°C for 15 minutes and held at 4°C. The neat cDNA samples were stored at -20°C. The cDNA was diluted with NFW to 5ng/µl and stored at -20°C.

2.6.3 Primer design
Primers were designed to span an exon to avoid amplifying genomic DNA. Using Primer BLAST, primer sequences were entered to check that the melting temperature (T_m) of the primers was between 65°C and 75°C and within 5°C of each other and the GC content was between 40% and 60%. In silico PCR was used to check primers before purchasing (http://genome-euro.ucsc.edu/cgiin/hgPcr?hgsid=202376389_vkIkJEGcrSPgtiTvcQk9GXSJRtLMn).
Chapter 2

Materials and Methods

PCR oligonucleotides were purchased from MWG Eurofins (Ebersberg, Germany). Primer sequences are disclosed in Appendix V.

2.6.4 Real time quantitative polymerase chain reaction and quantification of gene expression

Real time qPCR reactions were conducted in a 96 well plate (Thermo Scientific) and cycled in a Stratagene Mx3000P PCR cycler (Agilent Technologies, Santa Clara, USA). For each qPCR reaction, 1 µl of primer (200 mM forward and reverse primer), 10 µl SYBR Green Master Mix (Primer Design, Southampton, UK), 4 µl RNase/DNase free water was made up to a volume of 15 µl and added to 5 µl of diluted cDNA (5 ng/µl). The qPCR reaction was cycled using the following protocol: Initial hotstart enzyme activation (2 minutes 95°C) followed by 40 cycles of denaturation (15 seconds at 95°C) and data collection (60 seconds at 60°C). A post PCR run melt curve was run to ensure the primers produced only one product. Each sample was tested in triplicate and compared to the appropriate housekeeping gene using MxPro software (Agilent, Cheshire, UK). The relative expression of the analysed genes was calculated using the ΔΔCT method (Laakso et al., 2001), whereby an arbitrary amplification threshold is set and relative expression levels of the samples are determined by comparison of the number of amplification cycles required to cross this threshold (CT).

2.6.5 Optimisation of qPCR primers and PCR product sequencing

Primers were tested for efficiency using serial dilutions of cDNA (known to express the gene of interest) to create a standard curve (Fig. 2.3). Primers were considered acceptable if the amplification efficiency was within the range of 90-110%, with an R² value between 0.99 and 1.00 and an amplification curve with sigmoid curves at regular intervals along the dilution series. Primer specificity was demonstrated by the generation of a single peak in the dissociation curve. Agarose gel electrophoresis was used to ensure the presence of one band following amplification. Bands were
cut from the gel and the DNA purified using a Qiaquick Gel Extraction Kit (Qiagen). To confirm primer specificity the purified DNA was sent for sequencing to Edinburgh Genomics (University of Edinburgh). NCBI Blast was used to match product sequence with sequence of interest.

![Figure 2.3 Validation of qPCR primer efficiency and specificity.](image)

Figure 2.3 Validation of qPCR primer efficiency and specificity.
Representative image of (A) standard curve and (B) dissociation curve.

2.7 Protein methods

2.7.1 Protein extraction from cells and tissues

Cell monolayers were washed in ice-cold PBS to remove excess medium and scraped in an appropriate volume of radio-immunoprecipitation assay (RIPA) buffer (Appendix I) containing 0.15 x volume of complete mini protease inhibitor cocktail (Roche). Tissue samples were homogenised in the appropriate volume of RIPA buffer. All samples were vortexed further and subjected to one freeze thaw
cycle to ensure cell disruption and protein release. Prior to quantification of protein concentration, samples were centrifuged and the supernatant removed and stored at -20°C to ensure no further protein release from the cell pellet/tissue material.

2.7.2 Quantification of protein concentration

2.7.2.1 DC assay

To quantify protein concentration in each sample, the Bio-Rad DC protein assay (Bio-Rad, Hertfordshire, UK) was used (similar to the well-documented Lowry assay) following manufactures instructions. Briefly, a protein standard (γ globulin) was used to generate a standard curve. Duplicates of 5μl of standard or sample was added to a well of a 96-well plate followed by 25μl alkaline copper tartrate (reagent A) and 200μl Folin’s reagent (reagent B). The plate was shaken and incubated at room temperature for 15 minutes prior to the measurement of absorbance (750nm) using a Multiskan Ascent microplate reader. The unknown sample protein concentrations were extracted using the generated standard curve.

2.7.2.2 Bradford assay

For samples containing high detergent levels, the Bradford protein assay was used to measure protein concentration (Bio-Rad). γ globulin protein standards were prepared ranging from 10 - 90μg/ml and used to generate a standard curve to which unknown sample values were extrapolated as described in 2.7.2.1. Standard or diluted sample (160μl) were added in duplicate into a 96-well plate, followed by 40μl Bradford dye reagent concentrate. The plate was shaken briefly and incubated at room temperature for 5 minutes prior to the measurement of absorbance (595nm) using a Multiskan Ascent microplate reader.

2.7.3 Western blotting

Following protein concentration quantification (section 2.7.2), protein samples were diluted to the same concentration (between 10-30μg) and the appropriate volume of 4x lithium dodecyl sulphate (LDS) sample buffer and reducing agent DTT was
added to each sample. Diluted protein samples were then denatured at 70°C for 10 minutes. The denatured protein samples and a pre-stained molecular weight marker to accurately determine protein size (All Blue, Bio-Rad) were chilled on ice for 5 minutes before being loaded onto pre-cast 3-8% Tris –Acetate or 10% Bis-Tris gels (Invitrogen, Paisley, UK - depending upon protein of interest molecular weight). Gels were run in a Novex Gel Tank (Invitrogen) containing 1x Tris Acetate or 1x MOPS running buffer, respectively. Anti-oxidant was added to the centre compartment of the tank to preserve reduced proteins (2.5µl/ml; Invitrogen). Proteins were separated by electrophoresis at 200V for 50mins. If necessary, to visualise protein bands on polyacrylamide gels prior to transfer the gel was washed 3 x 5 minutes in 100ml of ultrapure water, covered with 20ml of SafeStain (Life Technologies) and allowed to shake for 1 hour at room temperature. The gel was then washed with ultrapure water for at least 1 hour prior to visualisation either using a light box, or an Odyssey CLx scanner (LI-COR Biosciences, Lincoln, Nebraska) using the 700 channel (Fig. 2.1). Proteins were transferred onto a Hybound-ECL nitrocellulose membrane (GE Healthcare, Amersham), sandwiched between transfer buffer (Appendix I) soaked filter paper and sponges. This created a wet transfer within a transfer module (Invitrogen). Transfer was run on ice at 30V for 90mins. Following transfer, nitrocellulose was washed several times in a mixture of Tris-Buffered Saline and Tween 20 (TBST). Depending on western blot method (LICOR or ECL) the membrane was then blocked in Odyssey blocking buffer (LICOR) or 5% milk block, respectively. Primary antibodies were applied either overnight at 4°C with agitation or for 1 hour at room temperature (Primary and secondary antibodies listed in Appendix II). Membranes were then washed in PBS/TBST and secondary antibody applied in blocking buffer for 1.5 hours at room temperature (LICOR - 55 minutes with protection from light). Bound antibody was either detected using chemiluminescence detection or using the Odyssey infrared detection system were imaged directly on the LICOR Odyssey® scanner (Eaton et al., 2013). For chemiluminescence detection Amersham ECL western blotting detection reagents A and B (GE Healthcare) were used. The nitrocellulose was
covered with the reagents in a ratio of 1:1 for 1min and chemiluminescence was detected with Amersham ECL Hyperfilm (GE Healthcare), which was developed using a Medical Film Processor (SRX-101A; Konica Minolta, Banbury, UK).

2.7.4 Stripping nitrocellulose
Antibodies were stripped from the nitrocellulose membranes using restore plus stripping buffer (Thermo Scientific) at 37°C for 30 minutes. To ensure complete antibody removal, membranes were probed with the appropriate secondary antibody and chemiluminescence was repeated.

2.7.5 Protein expression quantification
For ECL detected proteins, Image J was used to compare the density of bands on the scanned x-ray films. Imported images were converted to grayscale (8-bit). Using the rectangular selections tool, a rectangle was drawn around the first lane, and using the gel tool, the remaining lanes were step wise selected. Following selection, the lanes were plotted, which produces a profile plot representing the relative density of the contents of the rectangle over each lane. The peaks were closed and the area measured. These measurements were then exported into an excel sheet where the relevant statistics were performed. LICOR scanned blots were quantified on single channels using Image Studio Lite.

2.8 Histology
2.8.1 Paraffin embedded tissue
For wax sections all tissue was fixed in 4% PFA for 24-48 hours and then transferred to 70% ethanol. However calcified tissue was decalcified in 10% EDTA (pH 7.4) with gentle agitation at 4°C for approximately 3 weeks, with regular EDTA changes prior to transfer to 70% ethanol. Fixed tissue (PFA) were placed in cassettes, and subjected to the following automated protocol: two changes of each of the following: 70% ethanol for 1 hour; 80% ethanol for 1 hour; 95% ethanol for 1 hour; 100% ethanol for 1 hour; xylene (VWR, Leicester, UK) for 1 hour; and overnight in paraffin wax
(VWR) at 60°C, followed by fresh paraffin wax for 1 hour. Processed tissues was embedded in paraffin wax using plastic moulds and allowed to set at 4°C. All Wax blocks were trimmed to size and stored at 4°C until required. Prior to sectioning, paraffin blocks were cooled on an ice block overlaid with a wet paper towel for 30 minutes. Using a microtome (Ernst Leitz AG, Germany; blades used were MX35 Premier+ Microtome Blades, Thermo Scientific, Cheshire, UK), Blocks were then sectioned at a 5µm thickness and sections were floated for 1 minute in a 40°C water bath and transferred to a poly-l-lysine coated microscope slide (VWR International Ltd, Lutterworth, UK). Slides were dried at 37°C overnight to ensure attachment of the sections to the slide and stored at room temperature until required.

2.8.2 Frozen tissue
For frozen sections proximal tibiae were coated in 5% polyvinyl acetate (PVA) and livers from WT and Phospho1-/- mice were snap frozen in a cooled hexane bath, and stored at -80°C. Frozen tissue was embedded in optimal cutting temperature (OCT) embedding medium (Brights, Huntingdon, UK) and attached to a metal chuck. A cryostat (OTF500/HS-001, Brights) was used to section tissue. Excess OCT was removed and the tungsten carbon knife (Brights) blade angle was set to 25°C, chamber temperature to 25°C and specimen temperature to 23°C. 10µm sections were taken and transferred to Superfrost slides (Fisher) and stored at -80°C. For bone sample’s, the Cryojane tape-transfer system was used (Instrumedics Inc, Richmond, IL, US) to allow preservation of the calcified bone. Briefly, after the block was trimmed, a piece of transfer tape was adhered to the block face, the adhesive tape is placed section-side-down on the adhesive-coated slide, and is laminated to the adhesive layer using a cold roller, a flash of ultraviolet light passes through the slide to polymerise the adhesive layer on the slide into a hard, solvent-resistant plastic, tightly anchoring the section to the slide, the tape is peeled away leaving the still frozen section tightly bonded to the plastic layer. The slides were finally air-dried and fixed in 100% ice cold acetone and stored at -80°C until use.
2.8.3 Haematoxylin and eosin
Paraffin embedded sections (section 2.8.1) of adipose tissue were stained with haematoxylin and eosin (H&E) such that morphology of adipocytes could be measured. Slides were first de-waxed in xylene and rehydrated through a series of alcohols to dH$_2$O and stained with H&E using Leica Autostainer and mounted in DePeX (VWR, Lutterworth, UK). Slides were mounted with DPX and visualised using a Nikon E600 microscope with a digital camera attached, using Image Tool (Image Tool Version 3.00). The adipocyte diameters of 100 adipocytes per section (sections were taken every 120µm throughout the tissue) were measured using ImageJ software (Lee et al., 2007).

2.8.4 Oil-Red O
Frozen liver sections (section 2.8.2) were washed with running tap water for 10 minutes, rinsed with 60% isopropanol and stained with freshly prepared Oil-Red-O working solution for 5 minutes (Appendix I). Slides were then washed with 60% isopropanol and nuclei was lightly stained with haematoxylin (5 dips), rinsed with distilled water and mounted in aqueous mountant (Life Technologies).

2.8.5 Quantification of pancreatic β-cell islet size number and size
Paraffin embedded pancreata (as detailed in section 2.8.1) from 120 day male CD WT and Phospho1–/– mice were sent to Dr. Sophie Turban (University of Edinburgh), who kindly immunostained sections with guinea pig anti-insulin (1:300) (AbCam, Cambridge, UK) prior to image quantification of islet areas using KS300 software (3.0 CarlZeiss Vision, GmBH).

2.9 Fat phenotypic analysis
2.9.1 Computed tomography
The bodies of freshly sacrificed male mice (35, 120 180 and 200 day old C57BL/6 mice and 120 day old male WT and Phospho1–/– control and HFD mice) were immediately CT-scanned using a Siemens Somatom Esprit Computer Tomography
Chapter 2

Materials and Methods

(CT) Scanner. Multi-object (6 mice/scan), cross-sectional CT images were taken along the length of the body (3 mm apart, field of view 450 mm, approximately 70 images per mouse) (Luu et al., 2009). Sheep Tomogram Analysis Routines (STAR) software (BioSS - V.4.8; STAR: Sheep Tomogram Analysis Routines, University of Edinburgh, http://www.ed.ac.uk) was used to calculate the total area and average densities of fat, muscle and bone in each carcass image without segmenting out guts and organs, based on density thresholds (low fat: -174 Hounsfield units (HU), high fat: -12 HU, low muscle: -10 HU, high muscle: 92 HU, bone: < 94 HU)). These values were established from sheep calibration trials in which lambs underwent CT scanning followed by slaughter and full dissection (Glasbey and Robinson, 2002). Sheep thresholds were used as mouse specific thresholds have not been reported in the literature to the best of my knowledge.

2.9.2 Freeze drying

Whole mouse carcasses and corresponding isolated adipose tissue were freeze dried to determine the dry matter weight (DM) of the carcass. The predication of individual fat percentage values was calculated by regression on DM content (DM/BW) using an equation (FatP _DM/BW (%) x 113 - 30.2) derived by Hastings & Hill (Hastings and Hill, 1989). The CT based measures of tissue weights were then compared to the DM-based estimates for the fat content (fat %) and the fat free mass (FFM) in (%) using simple linear regression:

\[y_i = b_0 + b_1 x_i \]

with \(b_1 = \) regression coefficient and \(b_0 = \) intercept

2.9.3 Micro magnetic resonance imaging and liver spectroscopy

Dr. Jansen (University of Edinburgh, Preclinical Imaging) conducted micro-magnetic resonance imaging (µMRI) and liver spectroscopy on male 120 day-old WT and Phospho1−/− CD and HFD mice. Mice were sacrificed at the Roslin Institute and placed in a plastic bag, weighed and transported to the preclinical imaging facility at the Little France campus to avoid quarantine restrictions. The Varian 7
Tesla magnet using VnmrJ Pre-Clinical MRI Software was used to acquire T2 weighted images in both the axial (1mm thickness, 192x192 pixels, TR – 3000ms, TE 24ms, 1 average, FOV – 38.4 x38.4) and coronal planes (0.5mm Thickness, 512x256 pixels, TR – 3000ms, TE 24ms, 4 averages, FOV – 102.4 x51.2) (Fig. 2.4). Liver spectroscopy was conducted on user defined areas (TR - 1800ms, TE – 11.5 ms, 16 averages, Vauxhall 3x3x3). Acquired DICOM images were analysed using sliceOmatic (TomoVision). This software was used to tag user defined areas allowing the quantification of total SB and MF. Tagging was done blind and the same images from one mouse were analysed twice to ensure reproducibility. Liver spectra were analysed by fitting Lorentzian and Gaussian lineshapes to fit peaks to MR data using jMRUI (Graphical User Interface that allows time-domain analysis of in vivo MR data http://www.mrui.uab.es/mrui/mrui).

Figure 2.4 Micro magnetic resonance imaging (µMRI) in mice
Representative image of (A) Varian 7 Tesla µMRI instrumentation (B-C) insert for micro-imaging (D) image reconstruction and post-processing facility.
2.10 Biochemical Methods

2.10.1 Choline assay
Serum from 35 day old and 120 day old CD and HFD mice was collected as described in section 2.5.3. The choline/Acetylcholine Assay Kit (Abcam) was used to determine serum choline. The assay was carried out in accordance with the manufacturer's instruction. The serum samples used in the assay were plated in duplicate and absorbance (750nm) was measured using a Multiskan Ascent microplate reader.

2.10.2 Pancreas insulin content
Pancreases from 120 day old WT and Phospho1−/− mice were dissected, weighed and submerged in 2ml of pancreata lysis buffer (Appendix I). Pancreata were homogenised using a small hand-held homogeniser. The homogenate (100µl) was diluted in 2ml of acidified ethanol (1.5% HCl in 70% ethanol) overnight at -20°C. The next day samples were centrifuged at 2000 g for 15 minutes at 4°C. The aqueous solution neutralised by the addition of 100µl 1M Tris (pH 7.5). Insulin content was measured by ELISA (as described in section 2.10.6) and normalised to protein content as measure by the Bradford assay (section 2.7.2.2).

2.10.3 Malachite green phosphatase assay
The BIOMOL Green reagent (Enzo Life sciences, Exeter, UK) was used to measure free-phosphate released during enzymatic phosphatase assays. This assay is a modification of the classic Malachite green assay (Martin et al., 1985; Harder et al., 1994). Briefly the reactions were measured in 96-well plates with a total volume of 50µl. Serial dilutions of the phosphate standards were made using the assay buffer (20mM Tris, 2mM MgCl₂, 25µg/ml BSA (Fraction V)). Substrates and the enzyme (rec human PHOSPHO1 – already available in the lab) were also diluted in assay buffer. Reactions were allowed to proceed at 37°C for 30 minutes. The reaction was then terminated by the addition of 100µl BIOMOL green reagent and left at room temperature for 20-30 minutes to allow for development of the green colour. The
absorbance of each well at 620 nm was measured and the specific activity was calculated in units of activity per mg of enzyme, where 1 unit of activity represents the hydrolysis of 1 nmol of phosphate per minute (Roberts et al., 2004).

2.10.4 Triglyceride colorimetric assay
The triglyceride colorimetric assay kit (Cayman Chemicals, Michigan, and USA) was used to measure triglyceride levels present in blood serum from 120 day old WT and Phospho1-/- mice. This assay is based on the enzymatic hydrolysis of the triglycerides by lipase to produce glycerol and free fatty acids. Briefly, 10µl of the prepared standards and serum was added to the provided plate in duplicate and the assay was initiated by the addition of 150 µl of diluted triglyceride enzyme mixture. The plate was then shaken, covered and incubated at room temperature for 15 minutes. The glycerol released was measured by a coupled enzymatic reaction system with a colorimetric readout at 540 nm (Multiskan Ascent) and total triglyceride content was calculated.

2.10.5 Osteocalcin carboxylation status
Serum from 56 day old and 120 day old male WT and Phospho1-/- CD mice were collected as described in section 2.5.3 and sent to Prof. Karsenty and Dr. Ferron (Columbia University, USA) who conducted an ELISA-based method to quantify osteocalcin carboxylation in mice (Ferron et al., 2010b). Briefly, ELISA plates (R&D systems, Minneapolis, MN, USA) were coated with 100μl of a 12 µg/ml solution of affinity purified anti-GLU-OCN, anti-GLA13-OCN or anti-MID-OCN, washed and blocked. 5µl of blank, standards (purified GLU-OCN or synthetic GLA-OCN) or serum samples were added to the plate and incubated overnight at 4°C. HRP-conjugated anti-CT-OCN was added to each well and the plate incubated for 1 hour at room temperature, further washes were conducted prior to the addition of a 3,3',5,5'-tetramethylbenzidine substrate and the final stop solution. Absorbance (450nm) was measured using a plate reader (Biorad). Concentrations of GLU-OCN, GLA13-OCN and total OCN in the samples were calculated from polynomial
second order or exponential standard curve obtained from the standard included in each assay.

2.10.6 Enzyme-linked Immunosorbent Assay (ELISA)

To measure serum leptin, insulin and adiponectin serum was collected (described in section 2.5.3) and sample was analysed in duplicate using commercially available ELISA’s following manufacturer’s instructions (ChrystalChem, Chicago, IL, USA).

2.11 Mass Spectroscopy

2.11.1 Protein sequencing

To determine if PHOSPHO1 was present in various tissues recombinant PHOSPHO1 protein was first sent to the Mr Dougie Lamont at the FingerPrints Proteomics Facility (College of Life Sciences, University of Dundee) to generate a purpose built inclusion list that was used to detect PHOSPHO1 in protein tissue samples (pancreas, quadriceps femoris and calvaria). Following completion protein samples from the tissues of interest were sent to Mr Dougie Lamont and a mass spectroscopy search was performed using proteome discovery software (Thermo Scientific) against both IPI mouse database and purpose built inclusion list.

2.11.2 Quantification of ceramide species in serum samples

To quantify serum ceramide in 120 day old male WT and Phospho1^{−/−} CD mice serum lipids were extracted according to the method of Folch et al. (Folch et al., 1957) fully supervised by Professor Phillip Whitfield (University of the Highlands and Islands, Inverness). Briefly, 50µl of serum was extracted with 4 ml chloroform/methanol (2/1, v/v) containing 10µl 1nmol D2, 10pmol D3 and 10pmols D2 as internal standards (C17 ceramide was used as a control as this species is not present in humans). The mixture was stood at room temperature for 1 hour and subsequently partitioned by the addition of 1.3ml of 0.1M KCL. The mixture was centrifuged to facilitate phase separation removing the lower chloroform layer which was then evaporated under nitrogen gas. The lipid extract was then reconstituted in 2 ml
prior to solid-phase extraction. A silica solid-phase extraction cartridge (100mg/3 ml) was attached to the chamber and primed with 5ml chloroform, the serum chloroform extract was then applied to the column, and the column was then washed with 5ml of chloroform and 10ml of chloroform/ethyl acetate (1/1, v/v) before elution of the glycolipid fraction with 5 ml of acetone/methanol (9/1, v/v) and the fraction was dried down and reconstituted in 200µl methanol containing 5mM ammonium formate glycolipid analysis and quantification was performed by Professor Phillip Whitfield via electrospray ionisation-tandem mass spectrometry (ESI-MS/MS) using a TSQ Quantum Ultra triple quadrupole mass spectrometer equipped with a heated electrospray source (HESI) and coupled to a Accela 1250 UHPLC system (Thermo Scientific, Hemel Hempstead, UK)(Whitfield et al., 2002) (Fig. 2.5). Data were analysed using software driven algorithm (thermo Xcalibur Quad Browser) imputing known ceramide species (Appendix VI).

Figure 2.5 Mass spectrometer
Representative image of (A) TSQ Quantum Ultra triple quadrupole mass spectrometer (B) Heated electrospray source (HESI).
2.11.3 Identification of differential expressed serum proteins

Proteins from 120 day old male WT and Phospho1−/− CD and HFD male mice serum were be extracted and prepared. Protein samples were precipitated using cold acetone, and gently dried. Samples were dissolved in ICAT denaturing buffer containing the reducing agent trichloroethyl phosphine, alkylated (iodoacetamide), and digested with sequencing grade trypsin (Sigma). Extracted peptides were analysed by Dr. Cal Vary, MMCRI according to published methods (Romero et al., 2011). Quantitation was accomplished by analysis of peak area. The search parameters allowed for cysteine modification by the ICAT reagent and biological modifications programmed in the algorithm (i.e., phosphorylation, amidation, tryptic fragments). The detected protein threshold was set to 2.0 to achieve 99% confidence. Identified proteins were grouped by the Paragon algorithm (Life Technologies) to minimise redundancy, and following bias correction (method kindly provided by Dr. Cal Vary) Functional pathway and causal network analysis was performed using QIAGEN’s Ingenuity (IPA), GeneMANIA and EXPANDER (EXpression Analyzer and DisplayER) following training from Dr. Jacqueline Smith, University of Edinburgh.

2.11.4 Identification of differential expressed serum lipids.

Total lipids were extracted from serum using the Bligh-Dyer method for total lipid extraction (Bligh and Dyer, 1959) and silica based solid phase extraction was employed for sample clean up and fractionation prior to analysis. This was done by myself with assistance from Dr. Cal Vary, MMCRI. Lipids were subsequently analysed by direct infusion on a hybrid quadrupole time-of-flight (TOF) mass spectrometer (TripleTOF 5600, ABSciex, MA, USA) using the MS/MSALL technique in positive mode essentially as described (Simons et al., 2012) Lipid species were identified using LipidView software (ABSciex), and principle component analysis (ABSciex) was used to identify and group lipid species according to contribution to sample differences. Lipid identification was corroborated by precursor ion scanning...
using a 4000QTRAP triple quadrupole mass spectrometer (ABSciex) (Stohn et al., 2015).

2.12 Bone analysis

2.12.1 X-ray and 3 Point bending
Male 35 day CD, 120 day CD and 120 day HFD WT and Phospho1/- bones were x-rayed using a Faxitron (Biooptics, Arizona, USA). The exposure was set to 15 seconds at 22kV. 3-point bending was conducted on male tibias from the defined groups using a LXR materials testing machine (Lloyd Instruments, West Sussex, UK) fitted with a 500N load cell (Huesa et al. 2011). The span of the anvil was set to 7.5mm with the lowering of the cross-head at a speed of 1 mm/min. Tibiae were placed on the anvil in a pre-determined orientation. Data was recorded after every 0.2 N change in load and every 0.1 mm change in deflection. Tibiae were tested until fracture (if possible). From the load extension curve, failure (point of maximum load), fracture (load rapidly decreases to 0), maximum stiffness (maximum gradient of the rising portion of the curve) and yield (95% of the maximum stiffness) were defined (Aspden, 2003) (Fig. 2.6). Tibia lengths were measured using callipers.

2.12.2 Micro-computed tomography imaging
To assess the trabecular architecture, cortical geometry and relative density of bone mineral, micro-computed tomography (µCT) imaging was carried out with guidance from Professor Rob Van’t Hof and Dr. Camen Huesa. Bone specimens were dissected, placed into H2O and stored at -20°C pending analysis. High-resolution scans with an isotropic voxel size of 5 μm (trabecular) or 10μm cortical scanning were acquired with a micro-computed tomography system (µCT, 60 kV, 0.5 mm aluminum filter, 0.6° rotation, Skyscan 1172, Brukker microCT, Kontich, Belgium). Two images were averaged at each rotation angle to reduce noise. Scans were reconstructed using NRecon software (Brukker microCT). The base of the growth plate was used as a standard reference point, and a 1000μm section of the metaphysis was taken for analysis of trabecular bone. For analysis of cortical
structure a 400 μm section of the mid-diaphysis was scanned 1500μm below the base of the metaphysis section. CTAn software (Bruker) was used to analyse appropriate parameters (bone volume fraction (BV/TV), trabecular thickness (Tr. Th.), trabecular separation (Tr. Sp.), trabecular number (Tr. No.), trabecular pattern formation (Tr. Pf.), structural model index (SMI), degree of anisotropy (DA), cortical porosity (Cor. Por. %), cortical thickness (Cor.Th.) and cortical bone mineral density (Cor. BMD) and reduce noise in the reconstructed images by applying a median filter with a radius of 1 pixel. Appropriate thresholds were set to ensure only bone was analysed. Calcium hydroxyapatite phantoms of a known density were scanned using the same settings as above for calibration, from which BMD values were calculated.

![Figure 2.6 Three point bending load extension curve](image)

Figure 2.6 Three point bending load extension curve

Diagram of a typical load extension curve obtained with 3-point bending. The measured parameters are highlighted.
2.13 Statistical analysis

Data was analysed in this thesis using various statistical models. All data were checked for normality and equal variance. Linear regression and correlation analysis based on Excel (Microsoft Office 10) built-in functions with interval of confidence and testing of the correlation coefficients were performed according to standard procedures described in the statistical literature (Rasch et al., 1978a; 1978b). The SAS software was used to fit the generalised linear model, and the Gompertz growth model was performed using Excel (Microsoft Office 10) built-in functions. The Student's t-test, ANOVA and a Two Way Repeated Measures ANOVA (two factor repetition with Holm-Sidak pairwise multiple comparison procedures) for normally distributed data and non-parametric data was analysed using a Mann–Whitney Rank Sum test using Sigma Plot software v11.0 (Systat Software Inc., London, UK). Data are presented as means ± standard error (SEM) were appropriate. Regression and correlation coefficient’s are given with the intervals of confidence ($P = 0.05$) and $P < 0.05$ was considered to be significant.
Chapter 3

Initial observations on the importance of PHOSPHO1 in the regulation of energy metabolism
3.1 Introduction

Matrix mineralisation is a tightly regulated physicochemical/biochemical biphasic process localised within terminally differentiating growth plate chondrocytes, osteoblasts and odontoblast, facilitating cartilage, bone and tooth formation (Cecil and Anderson, 1978; Anderson et al., 1990). Mineralisation is dependent upon the accumulation of calcium and P, which are permissive for the initiation of HA crystals. This process requires both non-collagenous and collaginous matrix proteins as well as a balance of mineralisation promoters and inhibitors such as include TNAP, NPP1, SIBLING proteins, ANK and PHOSPHO1 (section 1.5.2).

Phosphatase, Orphan 1 is a member of the HAD superfamily of Mg\(^{2+}\) dependent hydrolases, localised in sites of mineralisation whereby Phospho1 is expressed 100-fold higher in differentiating chondrocytes compared to non-chondrogenic tissue (Houston et al., 1999; Roberts et al., 2008). PHOSPHO1 shows high phosphohydrolase activity towards MV membrane phospholipids (e.g. P-Cho), whereby it scavenges P. This first phase of mineralisation occurs simultaneously with the accumulation of calcium ions in the MV, regulated by calcium binding molecules such as annexin I and phosphatidylerine (Stewart et al., 2003; Roberts et al., 2004; Stewart et al., 2006; Roberts et al., 2007) (Wu et al., 1995; Anderson, 2003) resulting in the formation of HA crystal’s. Upon MV membrane breakdown, preformed HA is exposed to the extracellular fluid allowing propagation into the collagenous ECM.

To further understand the roles of PHOSPHO1, Phospho1\(^{-/-}\) mutant mice were generated by N-ethyl-N-nitrosourea mutagenesis (ENU) (Yadav et al., 2011). These mice presented with significant skeletal pathology, growth plate abnormalities, spontaneous fractures, bowed long bones, osteomalacia, and scoliosis in early life (Huesa et al., 2011; Yadav et al., 2011). To uncover gene changes engendered in the Phospho1\(^{-/-}\) mutant mice, a microarray study was conducted using WT and Phospho1\(^{-/-}\) primary calvarial osteoblasts (unpublished data). The key finding was
that Esp, the gene encoding the protein osteotesticular protein tyrosine phosphatase, was up regulated 20-fold in Phospho1−/− osteoblasts compared to WT osteoblasts. In vitro, Esp coordinates the differentiation of the pre-osteoblast to a mature, mineralising cell, and in vivo may be a critical regulator of the commitment of mesenchymal cells to the ossification of new bones during skeletogenesis (Mauro et al., 1994; Chengalvala et al., 2001; Yunker et al., 2004). Interestingly, PTPs are key regulators of InsR signalling, dephosphorylating and inactivating the InsR within minutes of stimulation to maintain glucose homeostasis (Mauro et al., 1994; Hunter, 1995; Schlessinger, 2000; Dacquin et al., 2004; Tonks, 2006; Lee et al., 2007). Thus two models have been generated by others to explore the function of Esp:

I. Global knock out of Esp (Lee et al., 1996).

II. Osteoblast specific knock out of Esp (Dacquin et al., 2004).

Both mutants exhibited severe hypoglycemia and hyperinsulinemia resulting in postnatal lethality in the first two weeks of life. Further mechanistic characterisation identified that OST-PTP dephosphorylates the InsR, negatively regulating the osteoblast insulin signalling cascade. These data were therefore suggestive that OST-PTP and PHOSPHO1 may crosstalk in regulating energy metabolism.

Upon the commencement of my PhD two key preliminary pieces of evidence emerged strengthening the hypothesis that indeed PHOSPHO1 may regulate global energy metabolism. Firstly, utilising a commercial phosphatase profiling assay (JPT Peptide Technologies, Berlin, Germany), PHOSPHO1 displayed the highest hydrolysing activity towards the InsR S (P) 1322, suggesting PHOSPHO1 can potentially dephosphorylate the InsR at serine 1322. Secondly, yeast 2 hybrid studies revealed a potential interaction between PHOSPHO1 and GRB10 interacting GIGYF1 which, as the name suggests forms a complex with GRB10 to regulate both insulin and IGF-1 receptor signalling. In the absence of Phospho1 it could therefore be hypothesised that there would be increased IGF-1 receptor phosphorylation under insulin stimulation, as well as increased phosphorylation of IRS1 and Src
homology 2 domain-containing transforming protein 1 (UniProt, 2011). Therefore
the overarching aim of this chapter was to confirm / oppose preliminary data
obtained by Dr. Carmen Huesa.

3.2 Hypothesis
PHOSPHO1 directly mediates the dephosphorylation and deactivation of InsR
situated on the osteoblast.

3.3 Aims
I. Re-analysis of microarray data.
II. Establish if Phospho1 overexpression in osteoblasts down regulates Esp
expression.
III. Determine if PHOSPHO1 dephosphorylates the InsR.
IV. Investigate the effects of insulin stimulation in calvarial osteoblast
cultures.
V. Comparison of PHOSPHO1 expression levels in murine tissues.

3.4 Materials and Methods
3.4.1 Microarray analysis of WT and Phospho1−/− osteoblasts
Analysed microarray data from WT and Phospho1−/− osteoblasts was kindly provided
from Dr. Manisha Yadav (Sanford Children's Health Research Center, Sanford-
Burnham Medical Research Institute, La Jolla, CA, USA) in the form of a
spreadsheet depicting fold changes. Quantitative PCR was used to confirm gene
expression changes in Esp as described in section 2.6. Functional pathway and
causal network analysis was performed using QIAGEN’s IPA and GeneMANIA
using the query genes: Adamts4, Bmp4, Cd68, Cfp, Fmod, Lum, Mpeg1, Phospho1,
Runx2, Slc1a3, Spic and Vdr.

3.4.2 Primary osteoblasts
Under sterile conditions calvariae were dissected from 3-4 day old new-born WT
and Phospho1−/− mice as described in section 2.2.2. Extracted cells were resuspended
in osteoblast medium (Appendix I) and pooled to obtain a single cell suspension. The cells were expanded in flasks in a humidified atmosphere of 95% air/5% CO₂ and maintained at 37°C until 80–90% confluence and were then plated at 10000 cells/cm² in multi-well plates.

3.4.3 Viral transduction of primary osteoblasts
Lentivirus’ were a kind gift from Dr. Carmen Huesa who conducted virus packaging. Primary osteoblasts were maintained in osteoblast medium in T25 flasks as described in section 2.2.4. At 75% confluency 50% of the osteoblast media was removed and either empty vector (EV), PHOSPHO1 overexpressing virus (P1) or flag tagged PHOSPHO1 overexpressing virus (FP1) was added. Following transfection successfully transfected primary osteoblasts were selected and expanded (section 2.2.6).

3.4.4 Malachite green phosphatase assay
The BIOMOL Green reagent was used to measure free-phosphate released during enzymatic phosphatase assays (section 2.10.3). The absorbance of each well at 620nm was measured and the specific activity was calculated in units of activity per mg of enzyme, where 1 unit of activity represents the hydrolysis of 1 nmol of phosphate per minute.

3.4.5 mRNA analysis of primary osteoblasts cells
Ribonucleic acid was isolated from viral transduced calvarial primary cell cultures using a Qiagen RNeasy Lipid Tissue Mini Kit, mRNA concentration of each sample was determined (section 2.6.1) and samples were reverse transcribed to produce cDNA which was diluted to 5ng/µl for RT-qPCR analysis described in section 2.6.2 and 2.6.4. Results were normalised to the Atp5b housekeeping gene and the dissociation curve was checked for the presence of one product. Relative gene expression was calculated using the ΔΔCt method (Livak & Schmittgen 2001). All primers used are detailed in Appendix V.
3.4.6 Protein analysis of primary osteoblast cells

Protein was extracted from viral transduced calvarial primary cell cultures (section 2.7.1) and total protein content was assessed using the Bio-Rad DC protein assay according to the manufacturer’s instructions (section 2.7.2.1). PHOSPHO1 protein expression was determined using an anti-human anti-PHOSPHO1 HuCAL Fab bivalent antibody at a dilution of 1:1000 and a HRP-labelled goat anti-human secondary antibody (1:5000). The ECL detection kit was used to detect antibody labelling. To allow for protein expression quantification and conformation of accurate protein loading, nitrocellulose membranes were stripped and probed with mouse monoclonal HRP-labelled anti-β actin antibody (1:50000).

3.4.7 Insulin treatment of primary osteoblasts

Primary calvarial osteoblasts were extracted as described in (2.2.2). Osteoblasts were plated at 10000 cells/cm² in 6 well plates in osteoblast medium (Appendix I). Upon confluency, cells were serum starved for 4 hours in serum free medium (αMEM) and stimulated with insulin (10nM; Sigma) for 10 minutes before lysis (non-stimulated cells acted as controls). Protein was extracted for analysis as described in section 2.7.1. Membranes were probed with specific antibodies against phospho-Aktser473, total Akt, phospho-GSK3βser9, total GSK3β phospho-Erk1/2thr202/tyr204 and total Erk1/2 and protein expression was visualised using the ECL western blotting detection system.

3.4.8 Immunocytochemistry

Osteoblasts were plated in collagen coated 6 well plates. At confluence, cells were fixed in in 4% paraformaldehyde for 15 minutes, permeabilised and blocked as described in (section 2.3.2). Following removal of blocking buffer, cells were incubated with the primary antibody (1xPBS, 1% BSA (Faction V), 0.3% Triton X-100)) overnight at 4°C. Cells were washed in PBS 3 x 5 minutes and the fluorochrome-conjugated secondary antibody diluted in antibody dilution buffer was added to the cells for 90 minutes at room temperature in the dark. Following a
3.5 Results

3.5.1 Microarray analysis

To determine possible functional roles of PHOSPHO1 in energy metabolism, the osteoblast microarray data obtained by Dr. Manisha Yadav was subjected to re-analysis. Raw data was arranged into the correct format and inputted into the IPA software. Intriguingly, 21 of the 309 inputted genes significantly were significantly associated with T2DM ($P = 1.04 \times 10^{-6}$) (Table 3.1). This therefore warranted a deeper gene regulatory pathway analysis using IPA inbuilt knowledge database. Ingenuity knowledge database is a vast repository of biological interactions and functional annotations originating from original peer reviewed articles which allow the integration of predicted upstream and downstream regulators of the inputted microarray data associated with insulin dependent diabetes mellitus. Using this tool, an array of 45 indirect interactions were identified between insulin dependent diabetes mellitus, inputted genes and various cytokines, growth factors, enzymes, kinases, peptidases, phosphatases, transcriptional regulators, transmembrane receptors and transporters (Fig. 3.1A). To establish whether the predicted molecules were indeed associated with diabetes and/or bone an in silico search was performed using PubMed (Gene + Key words: adiposity, bone, diabetes, glucose, osteoblasts, osteocalcin, and obesity). Of the 45 molecules identified only 10 genes were found to be associated with both diabetes and bone and one gene, solute carrier family 1 (glial high affinity glutamate transporter), member 3 (Slc1a3), was only associated with diabetes. However, glutamate transporters are known to play important roles in osteoblast and osteoclast differentiation and activity, bone mass regulation and response to osteogenic mechanical load; therefore Slc1a3 was retained in the cohort (reviewed in (Brakspear and Mason, 2012) (Table 3.2). Upon completion of the in silico search, gene expression of the selected molecules were examined by RT-qPCR.
Validation using RT-qPCR ascertained that all genes (*Vdr, Slc1a3, Adamts4, Bmp4, Cd68, Cfp, Cxcl4, Fmod and Lum*) except *Mpeg1* were up/down regulated as predicted by IPA (Fig. 3.1 B and Table 3.2).

<table>
<thead>
<tr>
<th>Gene in Dataset</th>
<th>Fold From WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abhd16a</td>
<td>-14.224</td>
</tr>
<tr>
<td>Alox5ap</td>
<td>-3.427</td>
</tr>
<tr>
<td>Ccl9</td>
<td>-3.863</td>
</tr>
<tr>
<td>Clec6a</td>
<td>-3.787</td>
</tr>
<tr>
<td>Cts</td>
<td>-2.372</td>
</tr>
<tr>
<td>Fcer1g</td>
<td>-15.853</td>
</tr>
<tr>
<td>Fcgr2a</td>
<td>-3.299</td>
</tr>
<tr>
<td>Fcgr2b</td>
<td>-2.432</td>
</tr>
<tr>
<td>Gp49a/Lilrb4</td>
<td>-3.138</td>
</tr>
<tr>
<td>Gp49a/Lilrb4</td>
<td>-3.138</td>
</tr>
<tr>
<td>Gpmb</td>
<td>-13.704</td>
</tr>
<tr>
<td>Hla-b</td>
<td>-18.680</td>
</tr>
<tr>
<td>Icam1</td>
<td>2.527</td>
</tr>
<tr>
<td>Ifi202b</td>
<td>11.328</td>
</tr>
<tr>
<td>Lyz1/Lyz2</td>
<td>-11.330</td>
</tr>
<tr>
<td>Mpeg1</td>
<td>-7.108</td>
</tr>
<tr>
<td>Mrc1</td>
<td>-2.510</td>
</tr>
<tr>
<td>Ms4a6a</td>
<td>-4.583</td>
</tr>
<tr>
<td>Serping1</td>
<td>1.993</td>
</tr>
<tr>
<td>Tyrobp</td>
<td>-2.971</td>
</tr>
<tr>
<td>Vdr</td>
<td>2.297</td>
</tr>
<tr>
<td>VIP</td>
<td>2.093</td>
</tr>
</tbody>
</table>

Table 3.1 Osteoblast microarray candidates involved associated with insulin dependent diabetes mellitus

21 genes from the WT and *Phospho1−/−* osteoblast microarray were identified by Ingenuity Pathway Analysis to be associated with type two diabetes mellitus $P = 1.04 \times 10^{-6}$.
To further establish genetic interactions and associations between the genes identified from the in silico output search; the identified 10 genes were inputted into the online network creator, GeneMANIA. Similarly to Ingenuity’s knowledge database, GeneMANIA searches publicly available biological datasets to identify related genes via protein-protein, protein-DNA and genetic interactions, protein expression data, protein domains and phenotypic screening profiles, producing a gene network (Fig. 3.2).

Intriguingly, the GeneMANIA generated gene network highlighted that Phospho1 may indeed interact with Grb10 and Insr to regulate the glucose metabolic process. Excitingly, Atf4 and FoxO1 were also highlighted in the gene network. FoxO1 has been shown to co-localise with Atf4 in the osteoblast nucleus, promoting the transcriptional activity of Atf4, thus up-regulating Esp expression in osteoblasts and osteocalcin (OCN) inactivation (Kode et al., 2012). These gene network data are suggestive of a PHOSPHO1, OST-PTP and OCN mutual regulation.

Taken together the IPA and GeneMANIA network analysis highlight a potential role for PHOSPHO1 in the regulation of whole body glucose metabolism.
Figure 3.1 Ingenuity Pathways Analysis network summary predictions
To identify further genes which may be involved in the regulation of energy metabolism via the osteoblast, IPA was used to predict further genes associated with type two diabetes mellitus based upon the 21 genes found to be differentially expressed in the microarray (A). Predicated genes were confirmed by RT-qPCR in WT and Phospho1−/− primary calvarial osteoblasts. Results were normalised to the Atp5b housekeeping gene. Data are represented as mean ± S.E.M n = 3, t-test. * P < 0.05, ** P < 0.01, ***P < 0.01. Red = Up regulated. Green = Down regulated (the darker the shade of green and red colour indicates a more extreme up/down regulation, conversely the paler the shade indicates a more subtle up/down regulation. Dashed line = indirect interaction (blue = inhibition, yellow = findings underlying the relationship are inconsistent with the state of the downstream node, grey = IPA prediction).
Table 3.2 In Silico analysis of Ingenuity pathways prediction

<table>
<thead>
<tr>
<th>Gene</th>
<th>Function in Diabetes</th>
<th>Function in Bone</th>
<th>Ingenuity Prediction</th>
<th>Fold From WT</th>
<th>Fold p value</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vdr</td>
<td>Deficiency associated with T1DM.</td>
<td>The active form, 1alpha 25-(OH)2D, binds to the vitamin D receptor (VDR) to modulate gene transcription and regulate mineral ion homeostasis.</td>
<td>↑</td>
<td>2.21</td>
<td>0.00017</td>
<td>(Basit, 2013; Girgin et al., 2014)</td>
</tr>
<tr>
<td>Mpeg1</td>
<td>WAT-associated inflammation in HFD is accompanied by reduced expression of immune and inflammatory response genes including MPEGI.</td>
<td>Correlated with correlation femur ultimate force.</td>
<td>↓</td>
<td>↑</td>
<td>3.93</td>
<td>(Alam et al., 2009; Kang et al., 2011)</td>
</tr>
<tr>
<td>Sclt1α3 (glutamate transporter)</td>
<td>Alterations in glutamate transport during diabetes (retina).</td>
<td></td>
<td>↑</td>
<td>↑</td>
<td>4.16</td>
<td>(Ward et al., 2005)</td>
</tr>
<tr>
<td>Adamts4</td>
<td>ADAMTS families are regulated by PPARγ, which increases insulin sensitivity.</td>
<td>Key enzymes involved in the cleavage of aggrecan and the degradation of cartilage.</td>
<td>↑</td>
<td>↑</td>
<td>1.67</td>
<td>(Worley et al., 2003; Wainwright et al., 2013)</td>
</tr>
<tr>
<td>Bmp4</td>
<td>BMP4 has been suggested to play an important role in adipogenesis, especially the white adipocyte differentiation through interaction with BMP receptor (BMPR) and subsequently activating the Smad signalling pathways.</td>
<td>BMP4 stimulates osteocalcin synthesis in osteoblast-like MC3T3-E1 cells.</td>
<td>↓</td>
<td>↓</td>
<td>0.12</td>
<td>(Kosewawa et al., 2002; Tang et al., 2013)</td>
</tr>
<tr>
<td>C6d8 (macrophage transmembrane protein)</td>
<td>Obesity is associated with significant infiltration of adipose tissue by macrophages. Treatment with pioglitazone reduces expression of CD68 and MCP-1 in adipose tissue, apparently by reducing macrophage numbers, resulting in reduced inflammatory cytokine production and improvement in insulin sensitivity. Higher CD68 mRNA levels with obesity and insulin resistance.</td>
<td>Genetic ablation of CD68 results in mice with increased bone and dysfunctional osteoclasts.</td>
<td>↓</td>
<td>↓</td>
<td>0.56</td>
<td>(Weinberg et al., 2003; Xu et al., 2003; Di Gregorio et al., 2005; Ashley et al., 2011)</td>
</tr>
<tr>
<td>Ccr5 (complement factor propeptide)</td>
<td>Elevated properdin and enhanced complement activation in first-degree relatives of South Asian subjects with T2DM.</td>
<td>Complement proteins are present in developing endochondral bone and may mediate cartilage cell death and vascularisation - is localised in the resting and hypertrophic zone but not in the proliferating zone.</td>
<td>↓</td>
<td>↓</td>
<td>0.24</td>
<td>(Andrades et al., 1996; Somani et al., 2012)</td>
</tr>
<tr>
<td>Cxcl4</td>
<td>Incubation of 3T3-L1 adipocytes with CXCL4 stimulated insulin-dependent glucose uptake CXCL4 plays a causal role in HFD induced obesity.</td>
<td>Ex vivo expansion of HSCs may be highly effective through osteoblast-differentiated MSCs acting as a feeder layer, and likely operates through the CXCL12 chemokine's signalling pathway.</td>
<td>↑</td>
<td>↑</td>
<td>5.51</td>
<td>(Takahashi et al., 2007; Mishima et al., 2011)</td>
</tr>
<tr>
<td>Fmod</td>
<td>Fibromodulin were found to be down regulated after 40 weeks of diabetes.</td>
<td>Important in maintaining periodontal homeostasis through regulation of TGFβ/BMP signalling, matrix turnover, and collagen organisation.</td>
<td>↑</td>
<td>↑</td>
<td>1.34</td>
<td>(Jansson et al., 2006; Wang et al., 2014)</td>
</tr>
<tr>
<td>Lum (lumican)</td>
<td>Collagen-associated proteoglycan. In the present study, increased deposition of collagen types I and V and decreased deposition of collagen type III, biglycan and lumican was observed in the decidua of the diabetic group (uterine lining (endometrium)).</td>
<td>Lumican is a significant proteoglycan component of bone matrix, which is secreted by differentiating and mature osteoblasts only and therefore it can be used as a marker to distinguish proliferating pre-osteoblasts from the differentiating osteoblasts.</td>
<td>↑</td>
<td>↑</td>
<td>6.80</td>
<td>(Raoul et al., 2002; Favaro et al., 2013)</td>
</tr>
</tbody>
</table>

Initial observations on the importance of PHOSPHO1 in the regulation of energy metabolism
Figure 3.2 GeneMANIA network summary predictions
GeneMANIA network generated using Ingenuity Pathways Analysis gene predictions. The network highlights potential interactions between Phospho1 and related osteoblast genes in the glucose metabolic process, encompassing: glucose transport, InsR signalling, response to insulin and cellular response to insulin stimulus. Query genes (black) with the exception of Spic and Runx2 which were inputted manually, other genes (grey) were generated by the programme using a large set of inbuilt functional association data. Node size are based on GO terms. Network line colour corresponds to interaction: purple = co-expression, pink = physical interactions, blue = co-localisation, green = shared protein domains orange = predicted, grey = other.
3.5.2 Confirmation of *Esp* expression

To validate if indeed, *Esp* was truly up regulated 20-fold in *Phospho1*−/− osteoblasts compared to WT osteoblasts as suggested by the microarray study, gene expression of *Esp* was examined in WT and *Phospho1*−/− osteoblasts by RT-qPCR. There was approximately a 60-fold increase in *Esp* mRNA expression in *Phospho1*−/− osteoblasts in comparison to WT osteoblasts (Fig. 3.3A). Conversely, *Phospho1*−/− osteoblasts overexpressing PHOSPHO1 were generated and *Esp* mRNA was decreased by 2.5-fold compared to the EV control (Fig. 3.3B). Furthermore, assessment of PHOSPHO1 gene and protein expression by western blotting showed a significant increase in PHOSPHO1 between EV and PHOSPHO1 overexpressing osteoblasts (Fig. 3.3C-D). These data confirm the success of the *Phospho1* over expression strategy. It is important to note that a flag tag PHOSPHO1 lentivirus was also used in this study due to the intermittent nature of the PHOSPHO1 antibody.
Initial observations on the importance of PHOSPHO1 in the regulation of energy metabolism

Figure 3.3 Conformation of Esp overexpression in Phospho1−/− osteoblasts
To assess the relative change in Esp mRNA expression in primary calvarial osteoblasts, RT-qPCR was conducted. (A) Non transfected primary WT and Phospho1−/− osteoblasts (B) Phospho1−/− osteoblasts empty vector control and Phospho1−/− osteoblasts overexpressing PHOSPHO1 empty vector. To confirm PHOSPHO1 gene and protein overexpression RT-qPCR (C) and western blotting (D) was conducted in Phospho1−/− osteoblasts empty vector control and Phospho1−/− osteoblasts overexpressing Phospho1 (with and without the flag tag). mRNA values generated were normalised to the Atp5b housekeeping gene. Data are represented as mean ±S.E.M n = 3, t-test. * P < 0.05, ** P < 0.01, ***P < 0.001.
3.5.3 PHOSPHO1 peptide specificities

To examine whether PHOSPHO1 has specific activity towards the InsR S (P) 1322 and GIGYF1 as suggested by the preliminary phosphatase screen and yeast 2 hybrid analysis, a commercially available phosphatase assay adapted from the classic malachite green assay was used (Fig. 3.4A). The phosphatase assay has been previously employed to successfully identify two phosphomonoesters which PHOSPHO1 exhibits high specific activities toward PEA and P-Cho (Roberts et al., 2004). To determine the optimal concentration of recombinant PHOSPHO1 to use in these assays, varying concentrations of PHOSPHO1 (0ng, 50ng, 125ng, 250ng, 625ng) were used in addition to varying concentrations of PEA (1mM, 100µM, 10 µM). It was concluded that 200ng of recombinant PHOSPHO1 was sufficient to hydrolyse PEA releasing free phosphate (Fig. 3.4B). To select the optimum incubation time, 200ng of recombinant PHOSPHO1 was incubated with varying concentrations of PEA (1mM, 100µM, 10 µM) at 37°C for 5, 15, 30, 40 and 60 minutes (Fig. 3.3C), at 30 minutes sufficiently high levels of free phosphate was produced, therefore 30 minutes was the selected incubation time and used in future experiments.

Following the successful optimisation of the phosphatase assay, peptides from the desired substrates (20mM GIGYF1 and serine containing InsR), positive control (PEA 1mM, 100µM, 10 µM) and negative control (tyrosine containing InsR – GFKRSY* EEHIP) were incubated with both 200ng and 625ng of recombinant PHOSPHO1. Little phosphate was released from the GIGYF1 and serine containing InsRin both experiments suggestive that PHOSPHO1 is unable to hydrolyse phosphate from these substrates (Fig. 3.4D-E). The specific activities (unit/mg) for the positive, negative and GIGYF1 and serine containing InsR were calculated, confirming that PHOSPHO1 does not hydrolyse free phosphate from GIGYF1 and serine containing InsR (Fig. 3.4F).
Chapter 3
Initial observations on the importance of PHOSPHO1 in the regulation of energy metabolism

Figure 3.4 PHOSPHO1 substrates
Phosphatase assay to determine if PHOSPHO1 hydrolyses phosphate from GIGYF1 and serine containing InsR. (A) Representative malachite green assay plate containing blank reactions and standards in duplicate (From top of plate: 2nmol, 1nmol, 0.5 nmol, 0.25 nmol, 0.125 nmol, 0.063 nmol, 0.031nmol, 0nmol) (B) Concentration curve using PHOSPHO1 (0ng, 50ng, 125ng, 250ng, 625ng) and PEA (1mM, 100µM, 10 µM) as substrate. (C) Time course of BIOMOL green assay (200ng of rec enzyme) to determine optimal incubation time for future reactions. (D) Standard curve showing linear absorbencies utilising known concentrations of phosphate (BML-KI102) (E) Phosphate released from substrates of interest following incubation with varying concentrations of PHOSPHO1. (F) Specific units of activity (units/mg) of substrates of interest and reference substrate (PEA). Units of activity = hydrolysis of 1nmol phosphate per minute. Specific activity = units / mg enzyme.
3.5.4 Effects of insulin on primary osteoblasts

To determine if in vitro osteoblast insulin signalling was altered in Phospho1 deficiency, primary WT and Phospho1−/− osteoblasts were stimulated with 100nM, 10nM and 1nM of insulin. As expected insulin stimulated AKT and ERK1/2 phosphorylation in a concentration dependent manner in both genotypes, however Phospho1−/− osteoblasts exhibited a lesser response to 100nM insulin-stimulation AKT phosphorylation than WT cells. Similarly all concentrations of insulin stimulated ERK1/2 phosphorylation in Phospho1−/− cells was also decreased compared to WT cells (Fig. 3.5A). Surprisingly, the distribution of the InsR in primary WT and Phospho1−/− osteoblasts was not altered in both basal and stimulated conditions (Fig. 3.5B).

3.5.5 Determination of PHOSPHO1 protein/mRNA expression in murine tissues

It has been reported that gene expression of Phospho1 by RT-qPCR was 120-fold higher in bone than the lowest expression tissue (liver) and low transcript levels were also detected in all other tissues examined: heart (5.67), bone marrow (3.57), adipose tissue (3.38), brain (1.96), and gut (1.20) (fold difference compared with PHOSPHO1 expression in liver, which was arbitrarily set as 1 for comparison) (Roberts et al., 2007). However, using the online BioGPS, Gene Atlas portal (http://biogps.org), it appears that Phospho1 is expressed highly in skeletal muscle, bone marrow and testis (Fig. 3.5) but poorly in bone. Some of tissues were not initially screened in the study by Roberts and colleagues (2007) and therefore the tissue expression of Phospho1 was examined in an expanded tissue list (Fig. 3.6A). Phospho1 was found to be expressed at high levels in the gonad, interscapular brown fat (iBF) and quadriceps femoris. However, protein expression did not match this distribution and PHOSPHO1, as determined by western blotting was most highly expressed in mouse calvariae and bone with significantly lower levels observed in the brain, lung, heart and quadriceps femoris, suggestive that Phospho1 transcript levels are not indicative of translated PHOSPHO1 protein. As expected, expression bands in calvariae, bone, brain, lung, heart and quadriceps femoris were not present.
in Phospho1−/− tissue. However, a double band, approximately 1kDa lower than the expected PHOSPHO1 band was observed in both WT and Phospho1−/− pancreata (Fig. 3.6A). Sequencing confirmed this was not PHOSPHO1. Unfortunately I was unable to perform successful immunohistochemistry (IHC) to confirm this tissue distribution of PHOSPHO1 protein. In brief, expected PHOSPHO1 labelling was observed in the tibial shaft, however the same, yet faint staining was observed in Phospho1−/− tibiae despite protocol optimisation and antibody repurchase. Furthermore, attempts by others out with the group reported that PHOSPHO1 expression was present in odontoblasts, however later, unpublished analysis of Phospho1−/− teeth showed they had similar staining (McKee et al., 2013). It is likely that the commercially available antibody whilst (usually) good for western blotting is unpredictable for IHC.
Figure 3.5 *Phospho*1−/− primary calvarial osteoblasts display reduced AKT phosphorylation in response to insulin signalling.

(A) Representative immunoblots demonstrating the effects of insulin (100nM, 10nM and 1nM) on the phosphorylation of AKT and ERK1/2 in calvarial osteoblast cultures (n ≥ 3). (B) Immunofluorescent staining of the InsR (red) on the surface of WT and *Phospho*1−/− neonatal calvarial primary osteoblast cultures. Nuclei are shown in blue.
Chapter 3

Initial observations on the importance of PHOSPHO1 in the regulation of energy metabolism

Figure 3.6 BioGPS expression of Phospho1 in mice

High-throughput gene expression profiling from a diverse array of cell lines and normal tissues, organs of mice, and cell lines. Adapted from: GeneAtlas MOE430, gcrma, species: Mouse.
Chapter 3

Initial observations on the importance of PHOSPHO1 in the regulation of energy metabolism

Figure 3.7 The expression of Phospho1 mRNA and PHOSPHO1 protein in murine tissue

(A) RT-qPCR of Phospho1 in murine tissues. Phospho1 was found to be expressed at high levels in the gonad, iBF and quadriceps femoris. (B) Protein expression of PHOSPHO1 was shown to be only present in WT bone, illustrating complete ablation in bone. (C) PHOSPHO1 was highly expressed in mouse calvaria and bone, with significantly lower levels observed in the brain, lung, heart and quadriceps femoris. Mesenteric fat (MF), intrascapular brown fat (iBF), gonadal fat (GF), subcutaneous fat (SB) and bone marrow (BM).
3.6 Discussion

The bone specific phosphatase, PHOSPHO1 has previously been shown to be essential for the initiation of HA crystal formation inside MVs during endochondral ossification (reviewed in (Millan, 2013). Through the study of in vivo models, PHOSPHO1 was revealed to be crucial in the production of mechanically competent mineralisation enabling the skeleton to withstand habitual load thus avoiding spontaneous fractures (Huesa et al., 2011). However the underlying biochemical details whereby PHOSPHO1 generates Pi remains largely unknown. In an attempt to provide a deeper understanding to how PHOSPHO1 contributes to HA crystal formation, a microarray study was conducted in WT and Phospho1−/− primary calvarial osteoblasts. The data from this comparison have subsequently been pivotal to the focus of this thesis. The embryonic stem cell protein-tyrosine phosphatase was found to be up regulated 60-fold in Phospho1−/− osteoblasts, confirmed by elevated mRNA levels in Phospho1−/− osteoblasts and conversely decreased in Phospho1−/− osteoblasts overexpressing PHOSPHO1, suggestive that PHOSPHO1 is involved in global energy metabolism (Fig. 3.3). Thus, a more compressive in silico analysis was performed to determine if indeed PHOSPHO1 had alternate roles out-with bone mineralisation. Unquestionably, IPA revealed that Phospho1 ablation is significantly associated with insulin dependent diabetes mellitus. Further analysis by GeneMANIA a complimentary in silico data mining software highlighted 10 genes which were associated with both diabetes and bone. The identification of this subset of genes therefore warrants future investigation by genetic manipulation (e.g. the generation of gene specific osteoblast conditional knockout mice) which was outside the possibilities of this PhD. However, in the midst of the era of integrative physiology, these data add to the rapid and expanding body of evidence linking bone with global energy regulation.

Preliminary data suggested that PHOSPHO1 may directly dephosphorylate the InsR S (P) 1322 and interact with GIGYF1. However, upon further investigation a phosphatase assay showed recPHOSPHO1 released little phosphate from both InsR
S (P) 1322 and GIGYF1 peptides, demonstrating the inability of PHOPSHO1 to dephosphorylate the outlined candidates. Furthermore, InsR S (P) 1322 and InsR Y (P) 1322 appear to have synonymous names in the literature. Insulin has been shown to stimulate autophosphorylation of the InsR on multiple tyrosines, including Tyr 1322 on the COOH-terminus (Fig. 3.8) (King and Sale, 1990; White and Kahn, 1994). However, deletion of tyrosine (Tyr1322, Tyr1316) and threonine (Thr1336) phosphorylation sites of the COOH terminal has no effect on insulin stimulated receptor kinase activity or biological activity, suggesting the COOH terminus does not modulate the kinase function of the insulin receptor. Whilst not essential for signalling these tyrosine residues including Tyr 1322 may play a regulatory role as they autophosphorylated in native receptors (Myers et al., 1991; Takata et al., 1991).

In contrast to the in vitro experiments, in silico analysis suggested that Phospho1 may interact with Grb10 and the InsR to regulate the glucose metabolic process. It is important however to recognise the limitations associated with in silico network analysis. Networks are created based upon large sets of functional association data. These association data encompass protein and genetic interactions, pathways, co-expression, co-localisation and protein domain similarity. These pathways are based upon predictions and similar to microarray studies, require further in vitro and/or in vivo experimentation to confirm predictions. A united effort of experimental biology and theory therefore must be applied. It remains unclear if PHOSPHO1 has a direct effect on the insulin receptor.
Chapter 3 Initial observations on the importance of PHOSPHO1 in the regulation of energy metabolism

Figure 3.8 Model of the InsR
Tyr01322 is situated on the COOH terminus of the β subunit linked to the α subunit by disulphide bonds (adapted from (White and Kahn, 1994)).
To try to unravel these complex data, primary calvarial osteoblasts were stimulated with insulin. Intriguingly, Phospho1−/− osteoblasts exhibited decreased AKT phosphorylation in response to 100nM insulin. This observation however this was not a result of an altered distribution of the InsR mRNA expression levels between the two genotypes. These conflicting data may be as a consequence of the 60-fold increase of Esp in Phospho1−/− osteoblasts leading to greater dephosphorylation of the InsR. This is discussed fully in Chapter 6.

All data available indicated that PHOSPHO1 is preferentially expressed by bone. Indeed in the avian model, IHC localised PHOSPHO1 protein to the osteoid layer of the periosteum, forming surfaces of growing osteons, newly formed osteocytes, cartilage remnants and trabecular bone. All soft tissues analysed were negative. Moreover whole-mount in situ hybridisation showed that Phospho1 expression occurred prior to E6.5, restricted to the bone collar within the mid-shaft of the diaphysis of long bones but by E11.5 expression was observed over the entire length of the diaphysis (Houston et al., 2004; Stewart et al., 2006; Roberts et al., 2007).

Further evidence from the online transcriptome atlas database for mouse embryo (Eurexpress -http://www.eurexpress.org/ee/databases/assay.jsp?assayID=euxassay_007708&image=01) revealed that in the E15.5 mouse the strongest hybridisation for Phospho1 was in the skeletal elements (Fig. 3.8). However, contradictory to these data, the BioGPS, Gene Atlas portal highlighted Phospho1 is expressed at high levels in skeletal muscle, BAT, and testis. If this wider expression pattern is indeed true, any metabolic phenotype of the Phosho1−/− mice may not be due to bone derived PHOSPHO1 but potentially a consequence of non-osseous tissue derived PHOSPHO1. Quantification of mRNA expression in a large panel of tissues not previously analysed, demonstrated Phospho1 was found to be expressed at high levels in the gonad, iBF and quadriceps femoris however this did not translate to PHOSPHO1 protein expression. These data were not in accordance with previously reported expression of Phospho1 (Roberts et al., 2007), this is likely due to the primer sequence used. Roberts et al. selected primers that were specific to Phospho1,
however the amplicon obtained was 2070 base pairs, dramatically above the desired 50-150 base pairs for optimal PCR efficiency. Similarly, expression of Esp in murine tissue is widespread (data not shown), however protein levels of OST-PTP are restricted to osseous and testicular tissue as suggested by the name osteotesticular protein tyrosine phosphatase (Lee et al., 2007).

It is not uncommon for genes to be transcribed into mRNA but not translated into protein due to various regulatory mechanisms, encompassing post-transcriptional or post-translational regulation. These processes usually occur due to errors during protein synthesis and sensitivity to environmental changes, allowing only a small percentage of proteins to reach their intended functional state (Medicherla and Goldberg, 2008). However, some mRNA is translated and rapidly degraded which may contribute to the lack of PHOSPHO1 being observed in the gonad, iBF and quadriceps femoris. As protein synthesis and maturation requires up to 75% of the total cellular energy budget this degradation is a somewhat wasteful process (Kim et al., 2013b). Specifically, 15-30% of newly synthesised proteins are rapidly degraded in a ubiquitin-proteasome dependent manner in which substrates are tagged with ubiquitin prior to transportation to the 26S proteasome for degradation (Schubert et al., 2000; Vabulas and Hartl, 2005; Welchman et al., 2005). Alternatively, autophagy is a further mechanism for both non-specific and specific protein degradation. This protein degradation pathway occurs within the lumen of the lysosomes, following transportation via macroautophagy, microautophagy or chaperone-mediated autophagy (reviewed in (Wang et al., 2015).

In addition to the post-translational regulation described above, post-transcriptional regulation may also explain the disparity observed between mRNA and protein levels. Short endogenous RNAs, microRNAs (miRNAs), pair to sites in the 3′ untranslated region to regulate protein expression (Welchman et al., 2005). Studies have suggested that miRNAs chiefly affect protein expression and may not have measurable effects on mRNA abundance (Welchman et al., 2005). The investigation
of the process underlying the disparity between PHOSPHO1 mRNA and protein expression was not investigated in this thesis but such information would be informative in future studies.

In conclusion, the conflicting data obtained from both in vitro and in silico work make it difficult to confirm if PHOSPHO1 affects osteoblast InsR signalling or if the upregulation of Esp expression in the Phospho1−/− osteoblasts offers protection from excessive insulin signalling. The subsequent chapters aim to determine if Phospho1−/− mice have a metabolic phenotype in vivo as suggested by the altered Esp expression noted in cultured Phospho1−/− osteoblasts.

Figure 3.9 Skeletal specific expression of Phospho1 in the E14.5 mouse
High-throughput transcriptome-wide acquisition of expression patterns by in situ hybridisation of sagittal sections from E14.5 wild type murine embryos. The strongest hybridisation for Phospho1 was in the skeletal elements (e.g. radius, ulna, humorous, fibular, tibiae, femur, mandible, maxilla, rib, axial skeleton, clavicle, scapular, pelvic girdle) indicated by dark purple staining. Adapted from: http://www.eurexpress.org/ee/databases/assay.jsp?assayID=euxassay_007708.
Chapter 4

Characterising the *Phospho1* knock-out mouse metabolic phenotype
4.1 Introduction

The bone specific phosphatase PHOSPHO1 is present in MV’s of osteoblasts and chondrocytes (Houston et al., 2004; Stewart et al., 2006). Analysis of mice lacking PHOSPHO1 showed that these animals had significant skeletal pathology, spontaneous fractures, bowed long bones, osteomalacia, and scoliosis in early life (Huesa et al., 2011; Yadav et al., 2011). Further investigation revealed that the double ablation of both PHOSPHO1 and tissue-nonspecific alkaline phosphatase (TNAP) is perinatally lethal and that these mice display a complete absence of skeletal mineralisation at embryonic day 18 (E18), suggestive that PHOSPHO1 and TNAP have complementary, non-redundant functional roles during endochondral ossification (Yadav et al. 2011). Using these models a comprehensive paradigm of skeletal mineralisation was suggested, whereby PHOSPHO1 is responsible for intravesicular production of Pi and TNAP mediates extravesicular Pi transport into the MV, via phosphate transporter 1 (PiT) (Yadav et al., 2011; Millan, 2013). Despite the advances that have been made in generating this inclusive model for the initiation of skeletal mineralisation, the intimate biochemical details of how PHOSPHO1 is implicated in intravesicular Pi generation have yet to be elucidated.

As outlined in Chapter 3 a microarray was used to provide clues to the molecular pathways underlying the functional role of PHOSPHO1. The key finding was that Esp, the gene encoding the OST-PTP, was up regulated 20-fold in Phospho1−/− osteoblasts compared to WT osteoblasts, which was later confirmed by RT-qPCR (60-fold) and lentivirus overexpression studies (Chapter 3). Embryonic stem cell protein-tyrosine phosphatase is expressed by only two cell types, the osteoblast and the sertoli cells of the testis. In vitro, Esp coordinates the progression of the pre-osteoblast to a mature, mineralising cell, and in vivo may be a critical regulator of the commitment of mesenchymal cells to the ossification of new bones during skeletogenesis (Mauro et al., 1994; Chengalvala et al., 2001; Yunker et al., 2004). Protein tyrosine phosphatases are master regulators of InsR signalling. Osteotesticular protein tyrosine phosphatase has been recently shown to be involved in the decarboxylation of OCN, whereby Esp dephosphorylates the InsR
situated on the osteoblast, negatively regulating the osteoblast-insulin-signalling cascade and subsequent release of GLU13-OCN into the systemic circulation (Mauro et al., 1994; Hunter, 1995; Schlessinger, 2000; Dacquin et al., 2004; Tonks, 2006; Lee et al., 2007; Ferron et al., 2010b). The fully carboxylated OCN regulates mineral formation and matrix mineralisation (Chenu et al., 1994), however upon decarboxylation of OCN on its three glutamic acid residues (GLU13, GLU17 and GLU20) OCN is realised into the general circulation and regulates global energy metabolism via the stimulation of insulin secretion and β cell proliferation in the pancreas, energy expenditure by muscle, and insulin sensitivity in adipose tissue, muscle and liver (Rosen and Motyl, 2010; Karsenty and Ferron, 2012). Indeed, the 60-fold increase in Esp in Phospho1−/− mice is therefore suggestive that Phospho1−/− mice may resemble OST-PTP overexpression mice and OCN-deficient mice; Both OST-PTP overexpression and OCN-deficient mice are phenocopies; the mice are hyperglycemic, hypoinsulinemic and have reduced insulin secretion and sensitivity compared to the litter mate WT mice (Lee et al., 2007). These data indicate that there may be a reciprocal regulation between OST-PTP and PHOSPHO1, whereby global energy metabolism is affected via circulating GLU13-OCN. Certainly to add credence to this hypothesis, pathway analysis of the existing microarray data obtained from WT and Phospho1−/− primary calvaria osteoblasts highlighted that PHOSPHO1 is associated with T2DM ($P = 1.04 \times 10^{-6}$). Furthermore, 10 genes (Vdr, $Slc1a3$, $Mpeg1$, $Adamts4$, $Bmp4$, $Cd68$, Cfp, $Cxcl4$, $Fmod$ and Lum) were found to be associated with both diabetes and bone following an in silico search (validated by RT-qPCR) and GeneMANIA network analysis predicted Phospho1 interacts with $Grb10$, $Insr$, $Atf4$ and $FoxO1$ (involved in the GLU13-OCN regulation) (Chapter 3). Therefore the overarching aim of this chapter was to characterise the metabolic phenotype of Phospho1−/− mice.
Chapter 4

Characterising the Phospho1 knock-out mouse metabolic phenotype

4.2 Hypothesis
Phospho1−/− mice are hyperglycaemic, have decreased insulin secretion and sensitivity.

4.3 Aims

I. Analyse the metabolic phenotype of juvenile and aged Phospho1−/− mice.

II. Examine the effect of a HFD on the metabolic phenotype of WT and Phospho1−/− mice.

III. Study Phospho1 heterozygote mice to explore the possibility that PHOSPHO1 may represent a druggable target.

IV. Determine if a HFD affects the skeletal phenotype of WT and Phospho1−/− mice.

4.4 Materials and Methods

4.4.1 Glucose tolerance and insulin tolerance test
Male juvenile, adult and aged mice were weighed and fasted for 4 hours between 9am and 1pm. 2 mg of D-glucose per g of BW was administered by gavage or 0.5mU of insulin per g of BW was administered IP and blood glucose and circulating insulin was measured (detailed in section 2.5.3.3). Animals were allowed to recover for two weeks prior to euthanasia. Tissues were collected for protein, gene and histological analysis.

4.4.2 Growth curves
WT and Phospho1−/− mice on both CD and HFD were weighed every week from weaning until 120 days of age.
4.4.3 Food consumption, activity and energy expenditure

Ad libitum food consumption was monitored for 6 days and basal nocturnal activity was quantified using an AM524 Single Layer X, Y IR activity monitor and associated Amonlite software (Linton Instrumentations, Norfolk, UK). Metabolic activity was measured using indirect calorimetry (Oxymax Lab Animal Monitoring System: CLAMS (Columbus Instruments, OH USA). This was done in collaboration with Dr. Monzur Murshed and Dr. Zohreh Khavandgar, University of Montreal, Canada. All experiments were conducted blind to the operator.

4.4.4 mRNA analysis of primary osteoblasts cells and cell lines

RNA samples were extracted from primary calvarial osteoblasts, using a Qiagen RNeasy lipid kit according to the manufacturer’s instructions. cDNA was prepared (section 2.6.1) and was used at 5ng/µl for RT-qPCR analysis, as detailed in section 2.6.4. Results were normalised to the Atp5b housekeeping gene and the relative gene expression level was calculated using the ΔΔCt method (Livak & Schmittgen 2001).

4.4.5 Protein analysis of primary osteoblasts cells and cell lines

Protein was extracted from primary calvarial osteoblasts in RIPA buffer as detailed in section 2.7.1. Protein concentration was quantified (section 2.7.2) and appropriate quantities were used for western blot analysis (section 2.7.3). UCP1 protein expression was determined using an anti-rabbit anti-UCP1 antibody at a dilution of 1:1000 and a HRP-labelled goat anti-rabbit secondary antibody (1:5000). Antibody labelling was visualized using the ECL detection kit. Equality of protein loading was confirmed by also probing the membrane with mouse monoclonal HRP-labelled anti-β actin antibody (1:50000).

4.4.6 Tissue histology

Male juvenile, adult and aged mice (35, 120 and 220 day-old, respectively) CD and HFD were sacrificed by cervical dislocation. Tissue was fixed in 4% PFA and embedded in paraffin wax. 5-µm sections were stained with haematoxylin and
eosin (H&E) using the Leica Autostainer and mounted in DePeX (VWR, Lutterworth, UK). Adipocyte diameter and pancreatic β-cell islet number and size was quantified using ImageJ software as previously described (section 2.8.5) (Lee et al., 2007; Huesa et al., 2014).

4.4.7 Serum isolation from whole blood samples

Blood was extracted from mice via cardiac puncture and blood was transferred to an EDTA coated tube, serum was collected and stored at -80°C until use.

4.4.8 Pancreas insulin content

Dissected pancreata from 120 day old WT and Phospho1−/− mice were homogenised and diluted in 2ml of acidified ethanol overnight at -20°C. Samples were neutralised by the addition of 100μl 1M Tris (pH 7.5) and insulin content was measured by ELISA (section 2.10.6) and normalised to protein content as measure by the Bradford assay (section 2.7.2.2).

4.4.9 µCT x-ray and 3 point bending

µCT imaging was carried on 35 day CD, 120 day CD and 120 day HFD tibiae. High-resolution scans with an isotropic voxel size of 5 μm (trabecular) or 10μm cortical scanning were acquired with a micro-computed tomography system (µCT, 60 kV, 0.5 mm aluminum filter, 0.6° rotation, Skyscan 1172, Brukker microCT, Kontich, Belgium). Scans were reconstructed and using CTAn software (Bruker) was used to analyse appropriate parameters (section 2.12.2). Calcium hydroxyapatite phantoms of a known density were scanned using the same settings to calculate BMD. Bones were then x-rayed (section 2.12.1) and subsequently loaded until fracture (where indicated) using a LXR materials testing machine fitted with a 500N load cell. Data was recorded after every 0.2 N change in load and every 0.1 mm change in deflection. From the load extension curve, failure, fracture, maximum stiffness and yield were defined (Aspden, 2003).
4.5 Results

4.5.1 Phospho1 inactivation improves glucose tolerance and insulin sensitivity in juvenile mice

I reasoned that if the ablation of Phospho1 was associated with T2DM and caused a 60-fold up-regulation of Esp expression in osteoblasts (Chapter 3) Phospho1−/− mice would have a similar phenotype to transgenic mice overexpressing full-length Esp cDNA selectively in osteoblasts (α1(I)-Esp mice). α1(I)-Esp mice are hyperglycemic, glucose intolerant and insulin resistant as a result of impaired insulin secretion in response to glucose (Lee et al., 2007). Unexpectedly, metabolic analysis revealed that juvenile (35 day old) Phospho1−/− mice had a significant reduction in blood glucose levels (WT: 9.31±0.31 mmol/L, Phospho1−/−: 7.76±0.32 mmol/L; P < 0.01) (Fig. 4.1A). Phospho1−/− mice also showed an improvement in glucose tolerance (Fig. 4.1B) and were more insulin sensitive compared to WT counterparts (Fig. 4.1C). These observations were consistent with a significantly decreased body mass (g) of Phospho1−/− mice (WT: 22.58±0.96, Phospho1−/−: 19.03±0.10; P < 0.05) and the finding of smaller (mg/g BW) SB (WT: 4.31±0.27, Phospho1−/−: 2.58±0.20; P < 0.01), MF (WT: 5.30±0.30, Phospho1−/−: 3.39±0.40; P < 0.01), GF (WT: 4.31±0.27, Phospho1−/−: 2.58±0.20; P < 0.01) and interscapular brown (iBF) (WT: 5.11±0.57, Phospho1−/−: 3.05±0.40; P < 0.01) fat depots noted in Phospho1−/− mice at necropsy (Fig. 4.2B). Consistent with these observations, histological analysis revealed smaller gonadal adipocytes in Phospho1−/− mice (P < 0.05) (Fig. 4.2C). These changes were not a consequence of altered food intake (g/gBW/day) (WT: 0.13±0.01; Phospho1−/−: 0.12± 0.01) (Fig. 4.3A), but may be partly explained by a significant increase in total activity of Phospho1−/− mice (beam breaks) (WT: 4048.33±238.58; Phospho1−/−:9176.33±901.03; P < 0.01) (Fig. 4.3B). However, no change in energy expenditure was observed between WT and Phospho1−/− mice (Fig. 4.3C-F).
Figure 4.1 Juvenile Phospho1−/− male mice are protected from glucose intolerance

Metabolic analysis of 35 day old WT and Phospho1−/− male mice. (A) Phospho1−/− mice had a reduction in blood glucose levels compared to WT counterparts. (B) GTT tests revealed that Phospho1−/− mice also showed an improvement in glucose tolerance and (C) were significantly more insulin sensitive compared to WT counterparts as determined by an insulin tolerance test. n ≥ 10, t-test (A), two way repeated measures ANOVA (B&C). Data are represented as mean ±S.E.M. * P < 0.05, ** P < 0.01, ***P < 0.001.
Figure 4.2 Juvenile *Phospho1−/−* male mice are smaller than WT counterparts having decreased adipose tissue stores

Simple weighing of 35 day old WT and *Phospho1−/−* male mice revealed (A) *Phospho1−/−* mice are smaller than WT counterparts. (B) These mice were then dissected and the outlined tissues were removed and weighed: Subcutaneous fat (SB), gonadal fat (GF), mesenteric fat (MF), pancreas, spleen, liver, intra-scapular brown fat (iBF), quadriceps femoris, heart, kidney, lungs and gonad. Dissection analysis revealed that all fat depots weighed (mg/g BW) in *Phospho1−/−* were smaller than WT counterpart mice. The GF were then fixed, processed and sectioned and used to examine the adipocyte size in these mice. (C) Histological analysis revealed smaller gonadal adipocytes in *Phospho1−/−* mice. n ≥ 5, t-test. Data are represented as mean ±S.E.M. * $P < 0.05$, ** $P < 0.01$, ***$P < 0.001$.

Figure 4.2: diagrams and graphs showing the comparison of mass, mg/g body weight, and percentage of cells in different cell diameter ranges for WT and *Phospho1−/−* mice.
Figure 4.3 Energy expenditure and activity analysis of Juvenile Phospho1−/− male mice

Food intake was measured in 35 day old WT and Phospho1−/− male mice, no difference was observed when normalised to BW (A). (B) An increase in slow activity was observed in Phospho1−/− mice which results in an increased in total activity, measured by beam breaking. (C-F) No change in energy expenditure, measured by indirect calorimetry was observed between WT and Phospho1−/− mice. n ≥ 3, t-test. Data are represented as mean ±S.E.M. * P < 0.05, ** P < 0.01, ***P < 0.001.
4.5.2 *Phospho1* inactivation improves glucose tolerance and insulin sensitivity in aged mice

It is likely, that as the genetic ablation of *Phospho1* results in a hypomineralised, fracture-prone skeleton in juvenile mice (Huesa et al. 2011) aged *Phospho1*−/− mice may not display any metabolic abnormalities. Therefore to discern if aged *Phospho1*−/− mice are also protected from obesity and insulin resistance aged (220 day old) *Phospho1*−/− mice were subject to metabolic analysis. Indeed, aged *Phospho1*−/− mice had improved glucose tolerance compared to WT counterparts, however the fasting glucose levels were unchanged between the genotypes (WT: 8.33±1.20, *Phospho1*−/−: 8.60±0.15; *P* = 0.61) (Fig. 4.4A). In accordance with juvenile mice, aged *Phospho1*−/− mice had smaller (mg/g BW) subcutaneous (WT:6.13±0.51, *Phospho1*−/−: 4.12±0.12; *P* < 0.05), gonadal (WT: 10.54±0.52, *Phospho1*−/−: 5.98±0.43; *P* < 0.05) and iBF (WT: 5.49±0.10, *Phospho1*−/−: 3.75±0.18; *P* < 0.05) fat depots compared to WT controls (Fig. 4.4B). Furthermore, improved metabolic activity seen in aged *Phospho1*−/− mice was not a consequence of altered food intake (g/gBW/day) (WT: 0.12±0.004; *Phospho1*−/−: 0.103± 0.005 p = 0.15) (data not shown) or altered activity (Table 4.1). Unfortunately mice were not available to measure energy expenditure at this age.
Figure 4.4 Aged Phospho1^{−/−} male mice are insulin sensitive and have decreased adipose tissue stores

Metabolic analysis of 220 day old WT and Phospho1^{−/−} male mice. (A) Phospho1^{−/−} mice had no change in fasting blood glucose levels compared to WT counterparts however they showed an improvement in glucose tolerance as determined by glucose tolerance testing. (B) These experimental mice were then dissected and the outlined tissues were removed and weighed: Subcutaneous fat (SB), gonadal fat (GF), mesenteric fat (MF), pancreas, spleen, liver, intrascapular brown fat (iBF), quadriceps femoris, heart, kidney, lungs and gonad. Dissection analysis revealed that (B) SB, GF and iBF fat depots (mg/g BW) were smaller in Phospho1^{−/−} mice than WT counterpart mice. n ≥ 3, two way repeated measures ANOVA (A), t-test (B). Data are represented as mean ±S.E.M. * P < 0.05, ** P < 0.01, ***P < 0.001.
Table 4.1 Activity analysis of aged Phospho1^{−/−} male mice
No change in activity of any of the parameter measured was observed in 220 day old Phospho1^{−/−} mice compared to WT counterparts (measured by beam breaking). Beam breaks (BB), seconds (s), metres (s). n = 5, t-test. Data are represented as mean ±S.E.M.
4.5.3 *Phospho1* deficiency protects from diet induced hyperglycemia and insulin resistance

As *Phospho1*−/− mice disclosed an improvement in glucose tolerance it is likely that these mutant mice may be protected from hyperglycemia and insulin resistance. Wild type and *Phospho1*−/− mice were therefore fed mice a HFD from weaning until 120 days of age (data summarised in Table 4.2). In agreement with data from juvenile and aged mice, *Phospho1*−/− mice fed a CD remained leaner than WT counterparts until adulthood (Fig. 4.5A). Furthermore *Phospho1*−/− mice had decreased fasting glucose levels compared to WT mice which were not increased with HFD feeding (CD: WT: 9.50 ±0.37, *Phospho1*−/−: 8.59±0.27; HFD: WT 10.3±0.53 mmol/L, *Phospho1*−/−: 9.27±0.77 mmol/L; P < 0.05) and *Phospho1*−/− mice resisted the pronounced HFD induced weight gain (CD: WT:34.20 ±1.12, *Phospho1*−/−:28.30±0.59; HFD: WT: 38.0±1.54 g, *Phospho1*−/−: 32.4±1.26 g; P < 0.05) (Fig. 4.5 B-C). Indeed, *Phospho1*−/− mice displayed an improvement in glucose tolerance on the CD which persisted when *Phospho1*−/− mice were fed the chronic HFD (Fig. 4.6A). It is important to highlight the fasting glucose levels observed in the WT mice are very similar with previously reported fasted (5 hours) glucose levels of C57BL/6 mice (9.1±0.2 mmol/L) which had the highest fasting blood glucose compared to 3 commonly used imbred mouse stains (129X1/Sv, FVB/N and DBA/2 mice) (Berglund *et al.*, 2008).

To assess if the improved glucose tolerance was due to increased insulin secretion in response to glucose, GSIS were performed. In comparison to WT mice the GSIS revealed decreased insulin secretion in response to an IP injection of glucose in *Phospho1*−/− mice fed either a CD or HFD, suggestive of a highly insulin sensitive phenotype (Fig. 4.6B). Insulin tolerance tests revealed *Phospho1*−/− mice remained insulin sensitive on the HFD, which was unlike WT mice that became insulin resistance when fed a HFD (Fig. 4.6 C-D). These observations were consistent with the significant decrease in the HOMA-IR reading (a clinical method to quantify insulin resistance and beta-cell function) in *Phospho1*−/− HFD mice compared
to WT HFD controls, indicative that Phospho1+/− resist diet induced insulin resistance (HFD: WT 0.90±0.26, Phospho1+/− 0.33±0.04; P < 0.05) (Fig. 4.6 E). These observations were not explained by altered food intake (no data available for HFD due to crumbly nature of food deeming it impossible to measure without specialist equipment) (Fig. 4.6F). The detailed evaluation of fat deposition and localisation adult WT and Phospho1+/− is presented in Chapter 5).

Interestingly, histological analysis of pancreata from adult WT and Phospho1+/− male mice revealed CD adult Phospho1+/− mice had a significant decrease in islet number (CD: WT 1.40 ±0.10, Phospho1+/− 1.10±0.001; P < 0.05) however this did not translate to a decrease in islet area, indicative that Phospho1+/− mice have larger islets than WT controls (Fig. 4.7 & 4.8A-B). Moreover, no change in pancreas insulin content between the genotypes was observed in the CD cohort, but WT HFD mice had a significant decrease in insulin content (µg/mg protein) compared to Phospho1+/− HFD mice (HFD: WT 280.00 ±11.32, Phospho1+/− 258.01±6.12; P < 0.05) (Fig. 4.8C).

Intriguingly, histological analysis of BAT from all ages indicate that Phospho1+/− mice had a markedly decreased lipid content and increased cellular nuclei number (Fig. 4.9 and 4.10A). Importantly no differences were observed in the expression of Ucp1 and other BAT enriched genes e.g. Ppara, dio2, Pgc1α, prdm16, Cidae and Adipoq (Fig. 4.10B). UCP1 was also found to be normally expressed at the protein level (Fig. 4.10C). Since UCP1 is responsible for the majority of non-shivering thermogenesis, this suggests that canonical thermogenesis through UCP1 does not underlie the metabolic protection seen in Phospho1+/− mice.

To deduce if increased energy expenditure/activity or decreased food intake could offer a simple explanation for the metabolic protection observed in Phospho1+/− mice these parameters were measured. No change in slow or total activity was seen between the genotypes as observed in juvenile mice (Fig. 4.11 A-B). Intriguingly Phospho1+/− HFD mice had significantly increased oxygen consumption (ml/kg/hr)
(HFD Dark: WT 3835.77 ±168.54, Phospho1−/− 4263.99±72.05 P < 0.05), produced significantly less heat (kcal/hr)than WT counterparts (Dark HFD: WT 0.68 ± 0.014, Phospho1−/− 0.65±; 0.01P < 0.01) despite the dramatic change in BAT histology (Fig. 4.9) and had a decreased respiratory exchange ratio (RER) (VCO2/VO2), suggestive of switch to fatty acid oxidation (Dark HFD: WT 0.83± 0.006, Phospho1−/− 0.81±; 0.005P < 0.05) (Fig. 4.11 C-F).

4.5.4 PHOSPHO1 may represent a druggable target for the treatment of insulin resistance and diabetes

Finally if the observed metabolic phenotype in Phospho1−/− mice was primarily bone driven and not due to food intake or activity, it was of interest to ascertain if Phospho1 heterozygote (Phospho1+/−) mice displayed an intermediate insulin sensitive phenotype. Glucose and ITT revealed that juvenile Phospho1+/− male mice displayed an intermediate insulin sensitive phenotype, showing improvement in glucose tolerance and insulin sensitivity compared to WT mice (Fig. 4.12A-B), however no significant difference between WT and Phospho1−/− mice fat depots (mg/g BW) were seen at necropsy, subcutaneous (WT:4.31 ±0.28, Phospho1+/−:4.26 ±0.35), MF (WT:5.30 ±0.30, Phospho1+/−:6.45±1.63), GF (WT:4.31 ±0.28, Phospho1+/−: 4.26±0.35) and iBF (WT:5.11 ±0.56, Phospho1+/−:4.69 ±0.44) These data suggest that PHOSPHO1 may represent a druggable target which may be of importance in the global epidemic of insulin resistance and diabetes.
Table 4.2 General linear model summary table of the effect of genotype (WT and \textit{Phospho1}⁻⁻) and diet (CD and HFD) on the growth parameters in mice

<table>
<thead>
<tr>
<th>Trait</th>
<th>WTCD</th>
<th>KOCD</th>
<th>WTHFD</th>
<th>KOHFD</th>
<th>WT</th>
<th>KO</th>
<th>CD</th>
<th>HFD</th>
<th>Genotype</th>
<th>Diet</th>
<th>Genotype x Diet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight at 21 days (g)</td>
<td>13.595±1.151</td>
<td>11.360±1.337</td>
<td>11.221±0.580</td>
<td>13.200±0.590</td>
<td>12.401±0.646</td>
<td>12.283±0.731</td>
<td>12.480±0.889</td>
<td>12.200±0.410</td>
<td>0.907</td>
<td>0.779</td>
<td>0.036</td>
</tr>
<tr>
<td>Weight at 120 days (g)</td>
<td>35.245±0.961</td>
<td>28.02±1.024</td>
<td>38.00±1.080</td>
<td>31.56±1.116</td>
<td>36.62±0.720</td>
<td>29.79±0.758</td>
<td>31.68±0.790</td>
<td>34.78±0.781</td>
<td><0.001</td>
<td>0.003</td>
<td>0.708</td>
</tr>
<tr>
<td>Fasting glucose (mmol/L)</td>
<td>9.44±0.370</td>
<td>8.31±0.387</td>
<td>10.28±0.375</td>
<td>8.56±0.389</td>
<td>9.86±0.262</td>
<td>8.43±0.278</td>
<td>8.87±0.260</td>
<td>9.42±0.267</td>
<td><0.001</td>
<td>0.149</td>
<td>0.436</td>
</tr>
<tr>
<td>Max weight (g)</td>
<td>43.22±6.436</td>
<td>28.68±7.436</td>
<td>48.25±3.327</td>
<td>33.97±3.323</td>
<td>45.73±3.621</td>
<td>31.31±2.070</td>
<td>35.95±4.914</td>
<td>41.09±2.354</td>
<td>0.012</td>
<td>0.352</td>
<td>0.984</td>
</tr>
<tr>
<td>Max weight gain (g/day)</td>
<td>0.36±0.050</td>
<td>0.63±0.064</td>
<td>0.41±0.033</td>
<td>0.38±0.039</td>
<td>0.38±0.037</td>
<td>0.50±0.039</td>
<td>0.49±0.046</td>
<td>0.39±0.025</td>
<td>0.010</td>
<td>0.025</td>
<td>0.002</td>
</tr>
<tr>
<td>Age at max weight gain (days)</td>
<td>18.39±5.958</td>
<td>16.63±6.873</td>
<td>33.60±3.071</td>
<td>13.24±3.070</td>
<td>25.99±3.358</td>
<td>14.94±3.763</td>
<td>17.5±4.557</td>
<td>23.42±2.175</td>
<td>0.035</td>
<td>0.249</td>
<td>0.073</td>
</tr>
<tr>
<td>Age at half max weight (days)</td>
<td>48.21±9.326</td>
<td>13.73±10.771</td>
<td>28.41±4.826</td>
<td>43.04±4.821</td>
<td>38.34±5.253</td>
<td>28.39±5.902</td>
<td>30.97±7.120</td>
<td>35.78±3.400</td>
<td>0.216</td>
<td>0.548</td>
<td>0.004</td>
</tr>
</tbody>
</table>

White columns contain least square means are presented with their SEM from wild type mice (WT), \textit{Phospho1}⁻⁻ mice (KO), control diet (CD) and high fat diet (HFD). Orange columns contain least square means with their SEM of WT data from all diets (WT.), \textit{Phospho1}⁻⁻ data from all diets (KO.), CD data from all genotypes (CD.) and HFD from all genotypes (HFD.). Green columns contain \(P \) values of the genotype effect only (Genotype) on growth parameters, diet effect only (Diet) and the combination of genotype and diet effect (Genotype x Diet). Values assigned the same letter show no significant difference from one another (\(P < 0.05 \) white columns). Significances denoted in bold (green columns). \(n = 12 \), parameters calculated by linear regression, Gompertz growth model and analysed using the generalised linear model.
Figure 4.5 Adult *Phospho1^{−/−}* male mice are protected from hyperglycemia and weight gain following the administration of a HFD

WT and *Phospho1^{−/−}* mice on the CD were weighed once a week on the same day and time. *Phospho1^{−/−}* mice remained leaner than WT counterparts until adulthood (120 days) (A). Following administration of a HFD from weaning until 120 days of age the fasting glucose levels and mass of WT and *Phospho1^{−/−}* mice on the CD and HFD were measured. *Phospho1^{−/−}* mice had decreased fasting glucose levels compared to WT mice which were not increased with HFD feeding (B), likewise there was no significant increase in BW following HFD feeding which was observed in WT mice (C). n ≥ 3, one way ANOVA. Data are represented as mean ±S.E.M. Values assigned the same letter show no significant difference from one another (P < 0.05).
Figure 4.6 Adult \textit{Phospho1} knockout male mice are protected from diet induced glucose intolerance and insulin resistance

WT and \textit{Phospho1} knockout were fed a HFD from weaning until 120 days of age. Glucose tolerance tests (A) and insulin tolerance tests (B) revealed WT mice fed a HFD became insulin resistant whereas \textit{Phospho1} knockout mice showed an improvement in glucose tolerance on the CD compared to WT mice which then persisted when \textit{Phospho1} knockout mice were fed the chronic HFD. Furthermore GSIS revealed the improved glucose tolerance in \textit{Phospho1} knockout mice fed either a CD or HFD was accompanied by a decreased insulin response in response to glucose. \textit{Phospho1} knockout mice resist insulin resistance observed in WT HFD mice (C). There was a significant decrease in the area under the curve (GTT) on the HFD between WT and
Phospho1⁻/⁻ mice (D) which translated into a significant decrease in the HOMA-IR reading in Phospho1⁻/⁻ HFD mice compared to WT HFD controls (E). These changes were independent on altered food intake (F). n ≥ 3, two way repeated measures ANOVA (A-C), one way ANOVA (D&E) t-test (F). Data are represented as mean ± S.E.M. Values assigned the same letter show no significant difference from one another (P < 0.05).

Figure 4.7 Immunolocalisation of insulin in the pancreas of adult WT and Phospho1⁻/⁻ male mice
Immunohistochemistry showed insulin present in WT and Phospho1⁻/⁻ islets (positive insulin protein is indicated by brown stain). Arrows indicate insulin negative islets (n = 4).
Figure 4.8 Quantification of Immunolocalisation of Insulin in the adult WT and Phospho1−/− male mice

Insulin immunohistochemistry analysis revealed that 120 day old Phospho1−/− mice have a significant decrease in islet number (A) however no change in islet area. (B) No change in insulin content between the genotypes was observed in the CD cohort; however WT HFD mice had a significant decrease in insulin content compared to Phospho1−/− HFD mice (C). n = 4, t-test (A&B), one way ANOVA (C). Data are represented as mean ± S.E.M. Values assigned the same letter show no significant difference from one another (* P < 0.05, ** P < 0.01, *** P < 0.001).
Figure 4.9 Phospho1−/− male mice have smaller brown fat adipocytes compared to WT controls. Representative histology of juvenile, adult (CD and HFD) and aged WT and Phospho1−/− mice.
Figure 4.10 Brown fat characterisation of adult mice

(A) 120 day old Phospho1^{−/−} mice had a significant increase in brown fat nuclei number indicative of an increase number of small brown adipocytes. However this was not accompanied by mRNA expression of brown fat specific genes (B) or (C) UCP1 protein expression. n ≥ 3, t-test (A&B). Data are represented as mean ±S.E.M. *P < 0.05, ** P < 0.01, ***P < 0.001.
Figure 4.11 Energy expenditure and activity analysis of adult Phospho1–/– male mice

(A) No major changes in slow activity or (B) total activity was observed between the genotypes however HFD significantly decreased activity in both genotypes. Phospho1–/– HFD mice had a significantly increased VO2 in the dark (C), however no change in VCO2 was observed (D). Phospho1–/– HFD mice produced significantly less heat than WT counterparts both in the light and dark (E). Furthermore Phospho1–/– respiratory exchange ratio (RER) was significantly decreased compared to WT counterparts both in the light and dark suggestive of a switch to fatty acid oxidation (F). n ≥ 3, one way ANOVA (A&B), t-test (C-F). Data are represented as mean ±S.E.M. * P < 0.05, ** P < 0.01, ***P < 0.001.
Figure 4.12 Juvenile Phospho1^{−/−} male mice display an intermediate insulin sensitive phenotype

Metabolic analysis of 35 day old WT, Phospho1^{−/−} and Phospho1^{+/−} male mice. (A) Glucose tolerance tests revealed that Phospho1^{−/−} mice also showed an improvement in glucose tolerance compared to WT mice and were (B) more insulin sensitive compared to WT counterparts as determined by an ITT. These data are suggestive that PHOSPHO1 may represent a druggable target. n = 5, two way repeated measures ANOVA. Data are represented as mean ±S.E.M.
4.5.5 Analysis of HFD feeding on the phenotype of WT and Phospho1−/− adult bone

There is a clear disparity in the literature regarding the relationship between HFD feeding and bone mineral density (BMD) in murine models. Whilst some murine models lose bone with a HFD others do not (Doucette et al., 2015). It is also important to highlight that in genetically homogenous mice, HFD feeding leads to different metabolic adaptations which may affect bone parameters (Burcelin et al., 2002). Therefore, to investigate the interrelationship of diet, age and bone in male WT and Phospho1−/−, we first x-rayed tibiae of juvenile (35-days-old) and adult (120-days-old) WT and Phospho1−/− tibiae (CD and HFD). All Phospho1−/− tibiae irrespective of age/diet show clear deformation (Fig. 4.13). Densitometry analysis confirmed that Phospho1−/− tibia are shorter in length and have increased width, this was not changed by the administration of a HFD (Fig. 4.14 A-B). However HFD feeding normalised the increased OD seen in 120 day old CD Phospho1−/− tibiae to the WT basal state (Fig. 4.14 C), indicative that HFD lowers mineral content in Phospho1−/− tibiae but does not affect WT tibiae.

Next juvenile (35 day old) WT and Phospho1−/− male mice tibiae were subject to 3-point-bending and µCT to assess the biomechanical, trabecular and cortical parameters. Previous analysis revealed that long bones of 30 day old Phospho1−/− mice undergo plastic deformation and do not fracture upon bending. Furthermore these bones had reduced accumulation of osteoid in the long bones, reduced ash mineral content and reduced BMD of cortical bone (Huesa et al., 2011; Yadav et al., 2011). In this present study however, only subtle changes in bone architecture and biomechanistic properties were seen between juvenile tibiae from Phospho1−/− and WT mice. The Phospho1−/− mice had a significant reduction in cortical thickness and increase in maximum stiffness (Table 4.3).

To determine if HFD had an effect on biomechanical, trabecular and cortical parameters of tibiae from WT and Phospho1−/− mice, tibiae were again subjected to 3-point-bending and µCT analysis. The general linear model was used to ascertain if
the differences in biomechanical, trabecular and cortical parameters were due to a genotype effect only, diet effect only or the combination of genotype and diet (Table 4.4). The expected the genetic ablation of Phospho1 in mice significantly decreased cortical porosity and increased the load and slope to maximum stiffness, yield, failure and fracture. Interestingly diet had the greatest effect on trabecular bone, increasing trabecular separation, trabecular pattern formation and structural model index, but reduced trabecular number and the degree of anisotropy. Indeed HFD also significantly reduced bone volume fraction. Surprisingly the combination of genotype and diet only had a significant effect the trabecular degree of anisotropy and cortical porosity (P values outlined in Table 4.4).

Combining the data from juvenile and CD adult mice it was then possible to ascertain if the differences in biomechanical, trabecular and cortical parameters were due to a genotype effect only, age effect only or the combination of genotype and age (Table 4.5). Most surprisingly, genotype only had a significant effect on structural model index, load and slope to maximum stiffness. As anticipated age had an effect on most of the parameters measured, whereas the combination of genotype and age have no significant effect on any of the parameters measured (Table 4.5).
Figure 4.13 X-rays of WT and Phospho1−/− tibiae
X-rays of juvenile (35-days-old) and adult (120-days-old) WT and Phospho1−/− tibiae. All Phospho1−/− tibiae show clear deformation irrespective of diet (n = 6).
Figure 4.14 X-ray densitometry analysis
X-ray of densitometry of juvenile (35-days-old) and adult (120-days-old) WT and Phospho1⁻/⁻ tibia. All Phospho1⁻/⁻ tibiae have are significantly decreased length (A) and increased in width (B) irrespective of diet compared to WT tibiae. Optical density measurements of juvenile and HFD mice were unchanged between the genotypes however Phospho1⁻/⁻ CD adult tibiae were significantly more dense than WT controls (C). n = 6, one way ANOVA. Data are represented as mean ±S.E.M. Values assigned the same letter show no significant difference from one another (P < 0.05).
Table 4.3: µCT and 3-point-bending analysis of tibiae from 35 day male WT and Phospho1−/− mice

<table>
<thead>
<tr>
<th>Trait</th>
<th>WT</th>
<th>Phospho1−/−</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV/TV</td>
<td>10.403 ± 1.186</td>
<td>10.240 ± 1.299</td>
</tr>
<tr>
<td>Tr. Th.</td>
<td>34.063 ± 1.014</td>
<td>32.868 ± 1.110</td>
</tr>
<tr>
<td>Tr. Sp.</td>
<td>186.457 ± 9.743</td>
<td>204.320 ± 10.673</td>
</tr>
<tr>
<td>Tr. No.</td>
<td>0.003 ± 0.000</td>
<td>0.003 ± 0.000</td>
</tr>
<tr>
<td>Tr. Pf.</td>
<td>0.032 ± 0.003</td>
<td>0.027 ± 0.003</td>
</tr>
<tr>
<td>SMI</td>
<td>1.969 ± 0.093</td>
<td>1.787 ± 0.102</td>
</tr>
<tr>
<td>DA*</td>
<td>2.679 ± 0.413</td>
<td>2.584 ± 0.452</td>
</tr>
<tr>
<td>Cor. Por total %</td>
<td>48.946 ± 4.385</td>
<td>57.585 ± 4.804</td>
</tr>
<tr>
<td>Cor. Th.</td>
<td>171.848 ± 7.219</td>
<td>144.576 ± 7.908</td>
</tr>
<tr>
<td>Cor. BMD</td>
<td>1.213 ± 0.055</td>
<td>1.095 ± 0.060</td>
</tr>
<tr>
<td>Load to Max (N)</td>
<td>1.23 ± 0.33</td>
<td>1.27 ± 0.422</td>
</tr>
<tr>
<td>Cor. BMD</td>
<td>1.23 ± 0.33</td>
<td>1.27 ± 0.422</td>
</tr>
<tr>
<td>Cor. Por total %</td>
<td>5.25 ± 1.11</td>
<td>4.57 ± 0.35</td>
</tr>
<tr>
<td>DA*</td>
<td>2.67 ± 0.41</td>
<td>2.58 ± 0.45</td>
</tr>
<tr>
<td>SNFI</td>
<td>1.73 ± 0.13</td>
<td>1.69 ± 0.13</td>
</tr>
<tr>
<td>Tr. Pf.</td>
<td>0.03 ± 0.00</td>
<td>0.02 ± 0.00</td>
</tr>
<tr>
<td>Tr. Sp.</td>
<td>32.86 ± 1.11</td>
<td>34.03 ± 1.44</td>
</tr>
<tr>
<td>Tr. Th.</td>
<td>105.38 ± 1.78</td>
<td>104.03 ± 1.98</td>
</tr>
<tr>
<td>BMD</td>
<td>105.38 ± 1.78</td>
<td>104.03 ± 1.98</td>
</tr>
</tbody>
</table>

Least square means are presented with their standard errors of the mean (SEM); n = 6 per group. The following parameters were measured - µCT analysis: bone volume fraction (BV/TV), trabecular thickness (Tr. Th.), trabecular separation (Tr. Sp.), trabecular number (Tr. No.), trabecular pattern formation (Tr. Pf.), structural model index (SMI), degree of anisotropy (DA), cortical porosity (Cor. Por. %), cortical thickness (Cor. Th.), cortical bone mineral density (Cor. BMD). 3-point-bending analysis: load to max, slope to max, yield, failure, fracture, work to failure, work to fracture. p > 0.05.
Chapter 4

Characterising the Phospho1 knock-out mouse metabolic phenotype

<table>
<thead>
<tr>
<th>Trait</th>
<th>WTCD</th>
<th>KOCD</th>
<th>WT HFD</th>
<th>KO HFD</th>
<th>WT</th>
<th>KO</th>
<th>CD</th>
<th>HFD</th>
<th>Genotype</th>
<th>Diet</th>
<th>Genotype x Diet</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV/TV</td>
<td>1.407±0.381</td>
<td>1.407±0.381</td>
<td>8.405±0.819</td>
<td>8.675±0.819</td>
<td>11.239±0.979</td>
<td>11.374±0.579</td>
<td>14.073±0.579</td>
<td>8.54±0.579</td>
<td>0.871</td>
<td>< 0.001</td>
<td>0.871</td>
</tr>
<tr>
<td>Tr. Th.</td>
<td>47.60±1.893</td>
<td>49.96±1.893</td>
<td>44.81±1.893</td>
<td>51.27±1.893</td>
<td>41.23±1.319</td>
<td>51.98±1.319</td>
<td>48.67±1.319</td>
<td>51.54±1.319</td>
<td>0.062</td>
<td>0.146</td>
<td>0.377</td>
</tr>
<tr>
<td>Tr. Sp.</td>
<td>190.93±15.479</td>
<td>188.81±15.479</td>
<td>254.07±15.479</td>
<td>296.37±15.479</td>
<td>222.67±10.946</td>
<td>242.58±10.946</td>
<td>189.07±10.946</td>
<td>275.36±10.946</td>
<td>0.231</td>
<td>< 0.001</td>
<td>0.170</td>
</tr>
<tr>
<td>Tr. No.</td>
<td>0.003±0.000</td>
<td>0.003±0.000</td>
<td>0.002±0.000</td>
<td>0.002±0.000</td>
<td>0.002±0.000</td>
<td>0.003±0.000</td>
<td>0.002±0.000</td>
<td>0.002±0.000</td>
<td>0.391</td>
<td>< 0.001</td>
<td>0.095</td>
</tr>
<tr>
<td>Tr. Pl.</td>
<td>0.022±0.002</td>
<td>0.037±0.002</td>
<td>0.030±0.002</td>
<td>0.026±0.002</td>
<td>0.026±0.002</td>
<td>0.020±0.001</td>
<td>0.020±0.001</td>
<td>0.020±0.001</td>
<td>0.031</td>
<td>< 0.001</td>
<td>0.966</td>
</tr>
<tr>
<td>SMI</td>
<td>1.817±0.098</td>
<td>1.913±0.098</td>
<td>2.360±0.098</td>
<td>2.366±0.098</td>
<td>2.061±0.069</td>
<td>1.918±0.069</td>
<td>1.704±0.069</td>
<td>2.276±0.069</td>
<td>0.158</td>
<td>< 0.001</td>
<td>0.405</td>
</tr>
<tr>
<td>DA*</td>
<td>2.753±0.005</td>
<td>2.61±0.005</td>
<td>2.420±0.005</td>
<td>2.590±0.005</td>
<td>2.590±0.006</td>
<td>2.597±0.006</td>
<td>2.590±0.006</td>
<td>2.490±0.006</td>
<td>0.970</td>
<td>0.007</td>
<td>0.043</td>
</tr>
<tr>
<td>Cor. P. total %</td>
<td>52.0±1.435</td>
<td>52.99±1.435</td>
<td>57.47±1.435</td>
<td>47.80±1.435</td>
<td>54.78±1.014</td>
<td>50.38±1.014</td>
<td>52.53±1.014</td>
<td>52.64±1.014</td>
<td>0.007</td>
<td>0.931</td>
<td>0.001</td>
</tr>
<tr>
<td>Cor. Th</td>
<td>186.97±15.728</td>
<td>186.58±15.728</td>
<td>157.49±15.728</td>
<td>190.32±15.728</td>
<td>172.23±1.121</td>
<td>188.49±1.121</td>
<td>187.5±1.121</td>
<td>171.9±1.121</td>
<td>0.267</td>
<td>0.389</td>
<td>0.332</td>
</tr>
<tr>
<td>Cor. BMD</td>
<td>1.196±0.054</td>
<td>1.341±0.054</td>
<td>1.213±0.054</td>
<td>1.196±0.054</td>
<td>1.204±0.038</td>
<td>1.268±0.038</td>
<td>1.268±0.038</td>
<td>1.205±0.038</td>
<td>0.251</td>
<td>0.252</td>
<td>0.130</td>
</tr>
<tr>
<td>Load to Max (N)</td>
<td>5.424±1.032</td>
<td>7.61±0.942</td>
<td>4.699±0.942</td>
<td>8.92±0.942</td>
<td>5.04±0.698</td>
<td>8.271±0.666</td>
<td>6.521±0.698</td>
<td>6.798±0.666</td>
<td>0.003</td>
<td>0.777</td>
<td>0.297</td>
</tr>
<tr>
<td>Slope to Max</td>
<td>22.60±3.960</td>
<td>34.31±3.615</td>
<td>27.31±3.615</td>
<td>41.19±3.615</td>
<td>24.96±0.681</td>
<td>38.92±0.681</td>
<td>28.40±0.681</td>
<td>35.75±0.681</td>
<td>0.001</td>
<td>0.064</td>
<td>0.494</td>
</tr>
<tr>
<td>Yield</td>
<td>7.47±1.467</td>
<td>11.19±1.339</td>
<td>6.74±1.339</td>
<td>10.45±1.339</td>
<td>7.11±0.993</td>
<td>10.38±0.993</td>
<td>9.33±0.993</td>
<td>8.60±0.993</td>
<td>0.004</td>
<td>0.601</td>
<td>0.999</td>
</tr>
<tr>
<td>Failure (N)</td>
<td>121.93±1.311</td>
<td>16.84±1.279</td>
<td>11.56±1.279</td>
<td>17.05±1.279</td>
<td>11.8±0.23</td>
<td>16.59±0.23</td>
<td>14.59±0.23</td>
<td>14.3±0.23</td>
<td>0.002</td>
<td>0.889</td>
<td>0.767</td>
</tr>
<tr>
<td>Fracture (N)</td>
<td>6.67±1.664</td>
<td>11.21±1.519</td>
<td>7.01±1.519</td>
<td>10.87±1.519</td>
<td>6.84±1.127</td>
<td>11.02±1.127</td>
<td>8.94±1.127</td>
<td>8.90±1.127</td>
<td>0.055</td>
<td>0.980</td>
<td>0.834</td>
</tr>
<tr>
<td>Work to Failure</td>
<td>5.07±0.830</td>
<td>5.40±0.776</td>
<td>5.77±0.776</td>
<td>4.82±0.776</td>
<td>4.42±0.576</td>
<td>5.18±0.576</td>
<td>5.27±0.576</td>
<td>4.28±0.576</td>
<td>0.304</td>
<td>0.232</td>
<td>0.691</td>
</tr>
<tr>
<td>Work to Fracture</td>
<td>8.65±1.329</td>
<td>10.20±1.213</td>
<td>5.31±1.213</td>
<td>9.64±1.213</td>
<td>6.95±1.00</td>
<td>9.90±1.00</td>
<td>9.42±1.00</td>
<td>7.46±1.00</td>
<td>0.010</td>
<td>0.130</td>
<td>0.282</td>
</tr>
<tr>
<td>Post-Failure Work</td>
<td>3.55±1.261</td>
<td>4.73±1.151</td>
<td>3.73±1.151</td>
<td>4.82±1.151</td>
<td>2.59±0.83</td>
<td>4.76±0.83</td>
<td>4.15±0.83</td>
<td>3.17±0.83</td>
<td>0.076</td>
<td>0.415</td>
<td>0.382</td>
</tr>
</tbody>
</table>

Table 4.4 µCT and 3-point-bending analysis of tibiae from 120 day male CD and HFD WT and Phospho1 KO mice. µCT analysis: bone volume fraction (BV/TV), trabecular thickness (Tr. Th.), trabecular separation (Tr. Sp.), trabecular number (Tr. No.), trabecular pattern formation (Tr. Pf.), structural model index (SMI), degree of anisotropy (DA), cortical porosity (Cor. Por. %), cortical thickness (Cor. Th.) and cortical bone mineral density (Cor. BMD). 3-point-bending analysis - Load to max, slope to max, yield, failure, fracture, work to failure, work to fracture. Values assigned the same letter show no significant difference from one another (P < 0.05) white columns. Significances denoted in bold (green columns). n = 6, generalised linear model.
Table 4.5

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Cor. Por</th>
<th>Tr. No.</th>
<th>Tr. Th.</th>
<th>Tr. Pf.</th>
<th>SMI</th>
<th>total %</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.059</td>
<td>0.003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KO35d</td>
<td>b,c</td>
<td></td>
<td></td>
<td>a,c</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>1.316</td>
<td>1.329</td>
<td>0.761</td>
<td>0.073</td>
<td>0.730</td>
<td>1.271</td>
<td>0.694</td>
</tr>
<tr>
<td>KO120d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.441</td>
<td>1.329</td>
<td>0.761</td>
<td>0.091</td>
<td>0.730</td>
<td>1.271</td>
<td>0.694</td>
</tr>
</tbody>
</table>

Significances denoted in bold (green columns).
4.6 Discussion

Recent developments in endocrinology made possible by the combination of mouse genetics, integrative physiology and clinical observations have resulted in rapid and unanticipated advances in the field of skeletal biology. Indeed, the skeleton, classically viewed as a structural scaffold necessary for mobility and regulator of calcium–phosphorus homoeostasis and maintenance of the haematopoietic niche has now been identified as a more complex organ involved in the regulation of male fertility and whole-body glucose metabolism which is in addition to the classical insulin target tissues (Ducy et al., 2000a; Lee et al., 2007; Ferron et al., 2008; Confavreux et al., 2009; Ferron et al., 2010a; Clemens and Karsenty, 2011; Karsenty, 2012). These seminal data have established the skeleton as a bona fide endocrine organ.

Data presented in Chapter 3 revealed that Esp, the gene encoding the protein OST-PTP, was up regulated 60 fold in Phospho1−/− osteoblasts. OST-PTP dephosphorylates the InsR, negatively regulating osteoblast-insulin-signalling and thereby controlling GLU13-OCN release (Mauro et al., 1994; Hunter, 1995; Schlessinger, 2000; Dacquin et al., 2004; Tonks, 2006; Lee et al., 2007). Furthermore mice lacking Esp in osteoblasts have severe hypoglycemia and hyperinsulinemia (Lee et al., 2007). Conversely, mice overexpressing Esp only in osteoblasts were glucose intolerant and insulin resistant (Lee et al., 2007). Therefore the identification of increased Esp expression in Phospho1−/− mice has important implications for osteoblast differentiation and glucose homeostasis, possibly identifying a novel link between bone and energy metabolism.

Indeed, the results presented in this Chapter reveal that the ablation of Phospho1 results in decreased blood glucose levels, improved insulin sensitivity and glucose tolerance in juvenile, adult and aged mice. Furthermore following HFD feeding, Phospho1 ablation confers a remarkable degree of protection against insulin resistance in mice despite the 60-fold increase in Esp expression. These data support
the notion that the osteoblast is an important target used by insulin to control whole-body glucose homeostasis and suggest that Esp may act as a fine controller of insulin sensitivity, offering protection from severe hypoglycemia and dyslipidaemia.

Following the comprehensive phenotypic analysis of WT and Phospho1−/− mice it is apparent that changes in food intake are not responsible for the improved metabolic phenotype as no change in food intake was seen in all three age groups. However juvenile Phospho1−/− mice displayed increased activity which was not seen at adulthood or during ageing. This initial increase in activity may result in improved life-long insulin sensitivity; however this seems unlikely as no change in energy expenditure was observed. It is also possible that the ablation of Phospho1 expression in the developing embryo can have long lasting effects, effectively “priming” the mice for an insulin sensitive phenotype throughout life. To discern if aged Phospho1−/− mice are protected from obesity and insulin resistance, a tamoxifen inducible Phospho1 knockout model would be required (Chapter 7). It is also likely that bone architecture composition including fracture incidence does not influence the metabolic phenotype in this model. It has been reported that the genetic ablation of Phospho1 produces significant skeletal deficits, which are transiently suppressed during skeletal maturity, therefore if bone architecture was the sole determinant of this phenotype it would have been expected to note a normalisation at 120 day old mice (Javaheri et al., 2015).

An alternative explanation for the improved metabolic phenotype in Phospho1−/− mice may be due to the increased nuclei number and decreased lipid content of BAT from Phospho1−/− mice, possibly indicating increased mitochondria number. An increase in mitochondria number would lead to elevated canonical thermogenesis. BAT regulates metabolism and energy expenditure. Specifically, BAT dissipates large amounts of energy as heat, thus maintaining the energy balance of the whole body, but crucially only when the ambient temperature is below the thermoneutral range.
for mice (30°C) (Richard and Picard, 2011). Since no differences were observed in the expression of BAT enriched genes e.g. Ucp1 this suggests that canonical thermogenesis through Ucp1 does not underlie the metabolic protection we see in Phospho1^{−/−} mice. However, as these experiments were conducted in temperatures (23°C) which are below the rodent thermoneutral temperature (30°C), mice housed at this sub-thermoneutrality were potentially mildly cold-stressed, hyper-metabolic, hypertensive and obesity-resistant and therefore gene expression may have been altered. It would be therefore beneficial to study mice at thermoneutrality, which would be of more direct relevance to energy balance in humans (Unfortunately this was not possible but discussed fully in Chapter 7) (Maloney et al., 2014). However, if the observation that Ucp1 expression is unchanged at thermoneutrality, these data would suggest the existence of a new non-canonical BAT protective pathway.

Finally in an effort to investigate the controversial effect of HFD on mice, WT and Phospho1^{−/−} mice were fed a HFD from weaning until 120-days of age and subject to 3-point-bending and µCT analysis. Bone microarchitecture of trabecular bone was significantly influenced by HFD feeding, specifically the HFD resulted in bone loss in Phospho1^{−/−} mice. These skeletal changes are in agreement with previous studies that demonstrate that bone loss occurs in C57BL/6J following HFD feeding (Cao et al., 2010; Patsch et al., 2011; Huesa et al., 2014) but, are in contrast to a recent study that suggested that bone mass is not altered in C57BL/6J mice fed a HFD (Doucette et al., 2015). The loss of bone in our model is consistent with the dogma that that HFD feeding increases adipocyte size and proliferation leading to the secretion of adipokines and cytokines such as TNFα, IL-6, Pref-1, resistin, leptin, that influence bone remodelling (Skurk et al., 2007; Doucette et al., 2015).

In conclusion, the results presented in this chapter highlight that the ablation of Phospho1 in mice offers protection against diet induced hyperglycemia and insulin resistance. Importantly, the improved metabolic phenotype observed in Phospho1^{−/−} mice is present in both juvenile and aged mice on a CD, highlighting that Phospho1^{−/−}
mice display lifelong protection from metabolic disease. Importantly, \textit{Phospho}^{1-/+} mice display an intermediate insulin sensitive phenotype suggesting PHOSPHO1 may represent a druggable target. Following the quantification of fat mass in \textit{Phospho}^{1-} mice (Chapter 5), Chapter 6 will aim to elucidate the mechanisms regulating PHOSPHO1 mediated energy metabolism.
Chapter 5

Evaluating fat deposition and localisation in WT and Phospho1 knock-out mice
5.1 Introduction

Body weight coupled with dissection is the simplest and most common predictor of fat mass, however it has been previously reported that body weight (BW) alone is a poor predictor of fat percentage especially in leaner mice (Rogers and Webb, 1980). The dissection of single fat pads, exemplified by GF, has been shown to be highly correlated with total body fat percentage, but the experimental animals need to be sacrificed (Sharp et al., 1984). The gold standard methods for evaluating fat mass include freeze drying and chemical analyses. Briefly, freeze dried mass / wet weight allows for the prediction of fat percentage from dry matter content (FatP_FD) (Hastings and Hill, 1989; Bunger and Hill, 1997) and subsequent chemical analysis of the dried and ground animal allows for the prediction of protein content (from nitrogen)(Reynolds et al., 2001). These methods are time consuming and destructive implying they can only be used post mortem (with the exception of BW) and therefore cannot be used in longitudinal studies.

In the last decade many sophisticated modalities have emerged to quantify adiposity in both rodent and larger animal models in a non-invasive way, including both standard and small animal dual-energy X-ray absorptiometry (DXA), PIXImus DXA, in-vivo CT and μCT and standard and μMRI. Whilst these modalities have a high resolution, are quantifiable and allow for longitudinal studies, they have a low throughput and are relatively expensive (Table 5.1). They also require initial calibration against accepted gold standard methods such as dissection, freeze drying and chemical analysis (Hastings and Hill, 1989; Bunger and Hill, 1997).

The genetic ablation of Phospho1 dramatically improves glucose and insulin tolerance (Chapter 4), suggesting that lack of Phospho1 may protect against diet induced obesity in mice. Therefore the overarching aim of this chapter was to quantify total fat mass and adipose localisation in WT and Phospho1−/− mice. However, due to the small cohort of mice available it was first necessary to evaluate the robustness of simple dissection, freeze drying and multi-object in vivo CT in
mice. These data would not only extend Prof. Lutz Bunger’s (SRUC) preliminary data indicating that multi-object \textit{in vivo} CT in the ovine model was capable of providing precise and robust quantification of adipose tissue in C57BL/6 mice, the most widely used of all inbred strains (Clelland \textit{et al.}, 2013), but also determine if the simplistic weighing of SB, GF, MF and iBF fat pads is indeed an accurate method to predict whole body adiposity. Following validation, it would be then possible to exploit these findings and precisely quantify fat in the WT and \textit{Phospho1-/-} control and HFD cohort. As imaging is of great importance within The University of Edinburgh, I was awarded a small project grant from the Roslin Institute to expand upon these initial aims and establish if the use of \textmu CT and \textmu MRI in murine models was a good predictor of total fat mass and indeed if these modalities provided additional advantages to CT, dissection and freeze drying methods.

5.2 Hypothesis

\textit{Phospho1-/-} mice are leaner than their WT counterparts in both subcutaneous and visceral fat deposits.

5.3 Aims

I. To assess the repeatability, reproducibility and accuracy of multi-object \textit{in vivo} CT in mice.

II. To evaluate the robustness of simple dissection and freeze drying in mice.

III. To quantify total fat mass and adipose localisation in WT and \textit{Phospho1-/-} mice using the selected method from aim I and II.

IV. To assess if \textmu CT and \textmu MRI provide additional advantages to CT, dissection and freeze drying methods.
The page contains a table comparing invasive and non-invasive methods for measuring adiposity in rodents. The table is labeled as Table 5.1. The table includes columns for Cost, Image acquisition time, Manual/Automated analysis, Expertise/Software, Outcome, Destructive, and References. The table lists various methods such as Dissection, Freeze Drying, PIXImus, DXA, and CT with corresponding details for each method in the respective columns.
Chapter 5
Evaluating fat deposition and localisation in WT and Phospho1 knock-out mice

5.4 Materials and Methods

5.4.1 CT

35, 120 180 and 200 day old (n = 5) C57BL/6 mice and 120 day old male WT and Phospho1−/− control and HFD (n = 6) mice were sacrificed by cervical dislocation immediately prior to CT-scanning. Cross-sectional CT images were taken along the length of the body and Sheep Tomogram Analysis Routines (STAR) software was used to calculate the total area and average densities of fat, muscle and bone in each carcass image without gutting as outlined in section 2.9.1.

5.4.2 Freeze Drying

Individual fat pads (SB, GF, MF & iBF) were extracted and weighed (Fig. 5.1B and C). Whole mouse carcasses and corresponding isolated adipose tissue were freeze dried to determine the dry matter weight (DM) of the carcass and the predication of individual fat percentage values was calculated by regression on dry matter content as outlined in section 2.9.2. The CT based measures of tissue weights were compared to the DM-based estimates for the fat content (fat %) and the fat free mass (FFM) in (%) using simple linear regression: $y = b_0 + b_1x$, with b_1 = regression coefficient and b_0 = intercept.

5.4.3 µMRI

Following sacrifice, 120 day old WT and Phospho1−/− male mice (n = 4) on both the control and HFD were subject to MRI. T2 weighted images were acquired both in the axial and coronal planes. Acquired DICOM images were analysed blind using sliceOmatic.

5.4.4 Spectroscopy

Spectra were obtained from livers from 120 day old WT and Phospho1−/− male mice on both the control and HFD (n = 4). Two peaks were fitted using jMRUI with either a Lorentzian and Gaussian lineshapes.
5.4.5 In vivo µCT

Frozen 120 day old WT and \textit{Phospho}1-/- mice (n = 3) were scanned using the Skyscan 1076 \textit{in vivo} scanner. Scans were performed at a resolution of 35 \(\mu\)m with the X-ray source set to 40kV, 250 \(\mu\)A and using a 0.5mm Al filter, step size of 0.4\(^\circ\) combined with frame averaging set to 3.

5.4.6 Histological staining of fat depots

Following sacrifice by cervical dislocation, fat pads were dissected from 35, 120 and 220 day old WT and \textit{Phospho}1-/- male mice on both the control (n = 5) and HFD (120 day old mice) (n = 4) and fixed in 5\% PFA for 24 hours and stored in 70\% ethanol. The fat depots were processed into wax as described in section 2.8.1 and stained with haematoxylin and eosin (section 2.8.3).

5.4.7 Oil-Red-O staining of the liver \textit{in vivo}

Adult (120 day old) WT and \textit{Phospho}1-/- mice on both the control and HFD (n = 4) were sacrificed by cervical dislocation and livers were snap frozen in a cooled hexane bath. Oil-Red-O staining of 10\(\mu\)m-thick liver cryo-sections was performed as outlined in section 2.8.4. Nuclei were lightly stained with haematoxylin and sections were mounted in aqueous mountant prior to visualisation.

5.4.8 Statistical analysis

The data analysis has used linear regression and correlation analysis based on Excel (Microsoft Office 10) built-in functions with interval of confidence and testing of the correlation coefficients according to standard procedures described in the statistical literature (Rasch \textit{et al.}, 1978a; 1978b). Data are presented as means ± SEM where appropriate. Regression and correlation coefficient’s are given with the intervals of confidence (\(P = 0.05\)).
Figure 5.1 – Multi-object CT scanning
(A) Multi-object CT scanning. (B) Photograph depicting locations of fat depots. (C) Representative images of the dissected fat depots. From top to bottom: subcutaneous fat (SB), gonadal fat (GF), mesenteric fat (MF), interscapular brown fat (iBF). Scale bar = 10mm.
5.5 Results

5.5.1 Live weight, fat and non-fat traits measured by freeze drying, CT and dissection

The description of the dataset regarding these traits in terms of simple means and their standard errors is given in Table 5.2. The live tissue weight (LTW) of the mice was on average 31.5g, but splitting into the age groups shows a high variation between the age group means (20.9g to 41.1g). This produced the required variation in the fat traits, with fatness increasing with age. Taking the FatP_FD as an example, the fat content increases from about zero % (-1.1%) at 35 days to 18% at 200 days (with an average of 9%). Given the different methods to measure the size of the fat and non-fat compartment of the body it is not unexpected to find that the magnitude of the measured quantities of fat and non-fat differed between the methods used. The total estimated fat by FD across all ages amounts to 3.4g (9.0%). The value obtained from CT is 6.5g (23.6%) and thus much higher, probably indicating that the thresholds derived from sheep dissection trials need to be refined for mice. Another opportunity is to use the obtained CT values in suitable regression equations to predict accurately the fat values obtained by freeze drying; the gold standard. Similarly, it is not unexpected to find the lowest total fat amount from dissecting out the 4 above mentioned fat depots (SB, GF, MF and iBF). This method finds on average 1.5g of the total fat (sum of the 4 depots), which is less than half of the existing body fat. Again, the total body fat can be easily predicted from appropriate regression equations which either use the information from one or all dissected fat depots.
Chapter 5
Evaluating fat deposition and localisation in WT and Phospho1 knock-out mice

Table 5.2 Simple means from freezer drying, CT and dissection

<table>
<thead>
<tr>
<th>Trait</th>
<th>35 days</th>
<th></th>
<th>120 days</th>
<th></th>
<th>180 days</th>
<th></th>
<th>200 days</th>
<th></th>
<th>All Ages</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SEM</td>
<td>Mean</td>
<td>SEM</td>
<td>Mean</td>
<td>SEM</td>
<td>Mean</td>
<td>SEM</td>
<td>Mean</td>
<td>SEM</td>
</tr>
<tr>
<td>LTW (g)</td>
<td>20.88</td>
<td>0.373</td>
<td>30.18</td>
<td>0.946</td>
<td>33.88</td>
<td>1.130</td>
<td>41.12</td>
<td>0.900</td>
<td>31.525</td>
<td>1.970</td>
</tr>
<tr>
<td>FatW_FD (g)</td>
<td>-0.244</td>
<td>0.172</td>
<td>2.251</td>
<td>0.478</td>
<td>3.9630</td>
<td>0.893</td>
<td>7.576</td>
<td>0.468</td>
<td>3.387</td>
<td>0.681</td>
</tr>
<tr>
<td>FatP_FD (%)</td>
<td>-1.141</td>
<td>0.818</td>
<td>7.400</td>
<td>1.426</td>
<td>11.416</td>
<td>2.264</td>
<td>18.401</td>
<td>0.946</td>
<td>9.019</td>
<td>1.994</td>
</tr>
<tr>
<td>NFatW_FD (g)</td>
<td>20.76</td>
<td>0.430</td>
<td>27.65</td>
<td>0.848</td>
<td>29.35</td>
<td>0.495</td>
<td>32.47</td>
<td>0.610</td>
<td>27.56</td>
<td>3.237</td>
</tr>
<tr>
<td>NFatW_FD (%)</td>
<td>100.78</td>
<td>0.412</td>
<td>92.34</td>
<td>1.391</td>
<td>88.05</td>
<td>2.115</td>
<td>80.62</td>
<td>0.778</td>
<td>90.45</td>
<td>5.636</td>
</tr>
<tr>
<td>FatW_CT (g)</td>
<td>2.640</td>
<td>0.120</td>
<td>4.87</td>
<td>0.618</td>
<td>7.07</td>
<td>1.181</td>
<td>11.34</td>
<td>0.698</td>
<td>6.48</td>
<td>0.709</td>
</tr>
<tr>
<td>FatP_CT (%)</td>
<td>16.06</td>
<td>1.030</td>
<td>19.86</td>
<td>2.030</td>
<td>51.77</td>
<td>1.560</td>
<td>32.48</td>
<td>1.850</td>
<td>23.58</td>
<td>1.660</td>
</tr>
<tr>
<td>NFatW_CT (g)</td>
<td>13.91</td>
<td>0.577</td>
<td>19.39</td>
<td>0.221</td>
<td>19.90</td>
<td>0.881</td>
<td>23.57</td>
<td>0.841</td>
<td>19.19</td>
<td>2.692</td>
</tr>
<tr>
<td>NFatW_CT (%)</td>
<td>83.94</td>
<td>1.032</td>
<td>80.14</td>
<td>2.033</td>
<td>74.08</td>
<td>3.708</td>
<td>67.52</td>
<td>1.853</td>
<td>76.42</td>
<td>2.033</td>
</tr>
<tr>
<td>TW_CT (g)</td>
<td>16.55</td>
<td>0.520</td>
<td>24.25</td>
<td>0.656</td>
<td>26.97</td>
<td>0.980</td>
<td>34.91</td>
<td>0.742</td>
<td>25.67</td>
<td>1.729</td>
</tr>
<tr>
<td>M_DS (g)</td>
<td>0.050</td>
<td>0.006</td>
<td>0.151</td>
<td>0.013</td>
<td>0.194</td>
<td>0.022</td>
<td>0.468</td>
<td>0.053</td>
<td>0.216</td>
<td>0.031</td>
</tr>
<tr>
<td>GF_DS (g)</td>
<td>0.143</td>
<td>0.006</td>
<td>0.508</td>
<td>0.057</td>
<td>0.784</td>
<td>0.176</td>
<td>1.680</td>
<td>0.120</td>
<td>0.779</td>
<td>0.116</td>
</tr>
<tr>
<td>SB_DS (g)</td>
<td>0.126</td>
<td>0.007</td>
<td>0.237</td>
<td>0.031</td>
<td>0.383</td>
<td>0.057</td>
<td>0.645</td>
<td>0.108</td>
<td>0.348</td>
<td>0.041</td>
</tr>
<tr>
<td>iBF_DS (g)</td>
<td>0.096</td>
<td>0.011</td>
<td>0.156</td>
<td>0.007</td>
<td>0.179</td>
<td>0.023</td>
<td>0.257</td>
<td>0.019</td>
<td>0.172</td>
<td>0.017</td>
</tr>
<tr>
<td>NFatW_DS (g)</td>
<td>20.47</td>
<td>0.367</td>
<td>29.13</td>
<td>0.889</td>
<td>32.34</td>
<td>0.876</td>
<td>38.07</td>
<td>0.767</td>
<td>30.00</td>
<td>4.749</td>
</tr>
<tr>
<td>NFatW_DS (%)</td>
<td>98.02</td>
<td>0.068</td>
<td>96.53</td>
<td>0.235</td>
<td>95.53</td>
<td>0.608</td>
<td>92.60</td>
<td>0.557</td>
<td>95.67</td>
<td>1.565</td>
</tr>
<tr>
<td>TW_DS (g)</td>
<td>0.414</td>
<td>0.016</td>
<td>1.052</td>
<td>0.092</td>
<td>1.540</td>
<td>0.258</td>
<td>3.050</td>
<td>0.270</td>
<td>1.514</td>
<td>0.201</td>
</tr>
</tbody>
</table>

Note: Animals of different ages have been chosen to enlarge the variability in the fat traits. Live tissue weight (LTW), Fat weight (FatW), Fat percentage (FatP), Non-fat weight (NFatW), Mesenteric fat (M), Gonadal fat (GF), Subcutaneous fat (SB), Interscapular brown fat (iBF), Freeze dried (_FD), Computed tomography (_CT) and Dissected (DS).

~ 145 ~
5.5.2 Live weight as a predictor for fat and non-fat

The simplest predictor of fatness is often LTW (Table 5.3). This assumes however that there is a wide variation in fatness. This was the case in the present cohort where mice aged between 35 and 200 days of age were studied. Both, FatW_FD and FatP_FD are highly correlated with LTW, $r = 0.95$ and 0.95, respectively, indicating that LTW alone allows good prediction of the fat weight and content in this sample of mice. LTW also correlates highly with the non-fat weight and content estimated by FD: $r = 0.98$ and 0.95. It is of note that these seemingly good prediction abilities of LTW will be diminished when looking at mice at one age or animals with a small age span only, although the low sample sizes per age group in this study did not allow me to prove this. As the FD measures of fatness are highly correlated with those obtained from CT it is not surprising to find that LTW is also a good predictor for the CT based traits, with the correlations slightly lower ($r = 0.85$ to 0.94; Table 5.3).

5.5.3 Benchmarking CT predictions against freeze drying

Water content is a robust indicator of fat proportion as described previously and can be easily measured by freeze drying (Sharp et al., 1984). This method is cheaper and quicker than the equivalent chemical analysis. As the latter was not available in this study, freeze drying was the chosen benchmarking method. The initial use of both methods on the same sample allows the derivation of prediction equations, which can be utilised to allow the use of subsequent CT measures alone to predict fat and non-fat traits given the results of both methods correlate highly. Here, high positive correlations between CT measured fat (FatW_CT and FatP_CT) and the corresponding traits quantified by FD ($r = 0.91$ to 0.98) was shown. Moreover, high positive and just slightly lower correlations between the non-fat traits measured by FD and CT were observed. Interestingly, the correlations between the measures expressed as a percentage are always slightly lower than the correlations between absolute values.
Chapter 5

Evaluating fat deposition and localisation in WT and Phospho1 knock-out mice

Table 5.3 Correlation coefficients and confidence intervals for CT and dissected fat predictions

<table>
<thead>
<tr>
<th></th>
<th>Correlation Coefficients</th>
<th>95 % Confidence Interval (lower bound)</th>
<th>95 % Confidence Interval (upper bound)</th>
<th>Regression Coefficients (b1)</th>
<th>5% Lower Limit</th>
<th>5% Upper Limit</th>
<th>Intercept (b0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTW (g) vs. FatW_FD (g)</td>
<td>0.950</td>
<td>0.876</td>
<td>0.980</td>
<td>0.387</td>
<td>0.325</td>
<td>0.450</td>
<td>-8.824</td>
</tr>
<tr>
<td>LTW (g) vs. FatP_FD (%)</td>
<td>0.947</td>
<td>0.869</td>
<td>0.979</td>
<td>0.967</td>
<td>0.806</td>
<td>1.127</td>
<td>-21.445</td>
</tr>
<tr>
<td>LTW (g) vs. NFatW_FD (g)</td>
<td>0.947</td>
<td>0.947</td>
<td>0.992</td>
<td>0.613</td>
<td>0.550</td>
<td>0.675</td>
<td>8.824</td>
</tr>
<tr>
<td>LTW (g) vs. NFatP_FD (%)</td>
<td>0.947</td>
<td>0.979</td>
<td>0.967</td>
<td>0.806</td>
<td>1.127</td>
<td>121.445</td>
<td></td>
</tr>
<tr>
<td>LTW (g) vs. FatW_CT (g)</td>
<td>0.956</td>
<td>0.842</td>
<td>0.975</td>
<td>0.443</td>
<td>0.361</td>
<td>0.525</td>
<td>-7.745</td>
</tr>
<tr>
<td>LTW (g) vs. FatP_CT (%)</td>
<td>0.850</td>
<td>0.654</td>
<td>0.939</td>
<td>0.886</td>
<td>0.616</td>
<td>1.156</td>
<td>-4.438</td>
</tr>
<tr>
<td>LTW (g) vs. NFatW_CT (g)</td>
<td>0.894</td>
<td>0.747</td>
<td>0.958</td>
<td>0.442</td>
<td>0.333</td>
<td>0.551</td>
<td>5.258</td>
</tr>
<tr>
<td>LTW (g) vs. NFatP_CT (%)</td>
<td>0.850</td>
<td>0.939</td>
<td>0.654</td>
<td>0.886</td>
<td>0.616</td>
<td>1.156</td>
<td>104.348</td>
</tr>
<tr>
<td>FatW_CT (g) vs. FatW_FD (g)</td>
<td>0.983</td>
<td>0.957</td>
<td>0.994</td>
<td>0.848</td>
<td>0.771</td>
<td>0.925</td>
<td>-2.105</td>
</tr>
<tr>
<td>FatP_CT (%) vs. FatP_FD (%)</td>
<td>0.905</td>
<td>0.770</td>
<td>0.962</td>
<td>0.886</td>
<td>0.681</td>
<td>1.091</td>
<td>-11.867</td>
</tr>
<tr>
<td>NFatW_CT (g) vs. NFatW_FD (g)</td>
<td>0.915</td>
<td>0.794</td>
<td>0.966</td>
<td>1.158</td>
<td>0.907</td>
<td>1.408</td>
<td>20.804</td>
</tr>
<tr>
<td>NFatP_CT (%) vs. NFatP_FD (%)</td>
<td>0.905</td>
<td>0.770</td>
<td>0.962</td>
<td>0.886</td>
<td>0.681</td>
<td>1.091</td>
<td>111.867</td>
</tr>
<tr>
<td>TW_C (g) vs. TW_FD (g)</td>
<td>0.987</td>
<td>0.966</td>
<td>1.095</td>
<td>1.100</td>
<td>1.012</td>
<td>1.189</td>
<td>-5.978</td>
</tr>
<tr>
<td>SB_DS (g) vs. FatW_FD (g)</td>
<td>0.918</td>
<td>0.800</td>
<td>0.967</td>
<td>12.117</td>
<td>9.54</td>
<td>14.694</td>
<td>-8.829</td>
</tr>
<tr>
<td>M_DS (g) vs. FatW_FD (g)</td>
<td>0.931</td>
<td>0.830</td>
<td>0.973</td>
<td>17.202</td>
<td>13.873</td>
<td>20.531</td>
<td>-0.322</td>
</tr>
<tr>
<td>GF_DS (g) vs. FatW_FD (g)</td>
<td>0.982</td>
<td>0.954</td>
<td>0.993</td>
<td>4.931</td>
<td>4.463</td>
<td>5.400</td>
<td>-0.454</td>
</tr>
<tr>
<td>iBF_DS (g) vs. FatW_FD (g)</td>
<td>0.891</td>
<td>0.741</td>
<td>0.957</td>
<td>41.115</td>
<td>30.839</td>
<td>51.391</td>
<td>-3.682</td>
</tr>
<tr>
<td>SB_DS (g) vs. FatW_CT (g)</td>
<td>0.938</td>
<td>0.846</td>
<td>0.975</td>
<td>14.338</td>
<td>11.74</td>
<td>16.976</td>
<td>1.483</td>
</tr>
<tr>
<td>M_DS (g) vs. FatW_CT (g)</td>
<td>0.932</td>
<td>0.832</td>
<td>0.973</td>
<td>19.98</td>
<td>16.151</td>
<td>23.808</td>
<td>2.171</td>
</tr>
<tr>
<td>GF_DS (g) vs. FatW_CT (g)</td>
<td>0.981</td>
<td>0.952</td>
<td>0.993</td>
<td>5.716</td>
<td>5.163</td>
<td>6.269</td>
<td>2.027</td>
</tr>
<tr>
<td>iBF_DS (g) vs. FatW_CT (g)</td>
<td>0.862</td>
<td>0.777</td>
<td>0.944</td>
<td>46.092</td>
<td>32.736</td>
<td>59.447</td>
<td>-1.445</td>
</tr>
<tr>
<td>TW_DS (g) vs. FatW_FD (g)</td>
<td>0.979</td>
<td>0.947</td>
<td>0.992</td>
<td>2.865</td>
<td>2.574</td>
<td>3.157</td>
<td>-0.92</td>
</tr>
<tr>
<td>TW_DS (g) vs. FatP_FD (%)</td>
<td>0.938</td>
<td>0.848</td>
<td>0.976</td>
<td>6.870</td>
<td>5.625</td>
<td>8.115</td>
<td>-1.383</td>
</tr>
<tr>
<td>TW_DS (g) vs. FatW_CT (g)</td>
<td>0.982</td>
<td>0.953</td>
<td>0.993</td>
<td>3.332</td>
<td>3.013</td>
<td>3.650</td>
<td>1.434</td>
</tr>
<tr>
<td>TW_DS (g) vs. FatP_CT (%)</td>
<td>0.908</td>
<td>0.777</td>
<td>0.963</td>
<td>6.787</td>
<td>5.244</td>
<td>8.329</td>
<td>13.303</td>
</tr>
</tbody>
</table>

Table 5.3 Correlation coefficients and confidence intervals for CT and dissected fat predictions

Dissected (DS), Fat percentage (FatP), Fat weight (FatW), Freeze dried (FD), live tissue weight (LTW), Total Weight (TW). n = 20, data analysed by using the generalised linear model.
5.5.4 Benchmarking isolated dissected fat pad mass against freeze drying and CT

The dissection of a single isolated fat pad from mice is a very common, invasive but highly simplistic and rapid exercise to evaluate total fat mass in mice. However, the accuracy of this in C57BL/6 mice has not yet been reported. High positive correlations ($r = 0.92$, 0.93, 0.98, and 0.89, respectively) were found between all isolated fat pads and the FatW_FD(g) with the highest correlation between GF_DS and FatW_FD indicating that the GF pad seems the best single trait predictor for the total body fat in a mouse ($r = 0.98$; Table 5.3). Again, as the FD and CT measured fat traits are highly correlated, it is expected that the mass of the individual fat depots also correlates highly with the CT based fat mass measures, with the highest value ($r = 0.98$) between the GF_DS and FatW_CT emphasising the good prediction opportunities if only one depot is being used, and highlighting the accuracy of multi-object CT.

The last 4 rows of Table 5.3 highlight that the prediction accuracy can be increased if the fat weight found in all 4 depots is summed up and all correlated to FD and CT measured fat mass. The correlations are both 0.98 and therefore comparable to the GF_DS vs. FatW ones.

These data highlight that there is a strong correlation between BW alone and fat mass / percentage. Moreover, simplistic dissection is sufficient to quantify whole body adiposity in mice and CT can accurately predict the degree of adiposity in the murine model. Thus these techniques were applied to the experimental WT and Phospho1–/– cohort.

5.5.5 WT and Phospho1–/– control and HFD dissection analysis

Phospho1 deficient mice had significantly decreased fat accumulation in SB, GF, MF depots than the WT mice on the CD. Upon HFD feeding WT mice became obese and had a significant increase in fat accumulation in all depots measured; however Phospho1–/– mice only accumulated fat in the SB and GF depots with no change in fat accu...
accumulation noted in the MF depot between the control and HFD fed $Phospho1^{-/-}$ mice. No change in fat mass accrual was seen in the iBF depot between genotypes on the two diets (Fig. 5.2). There was no significant change in the size of adipocytes from GF of $Phospho1^{-/-}$ mice on the control and HFD with both groups having significantly more smaller adipocytes (< 20μm diameter) than the WT groups on both diets. Wild type HFD mice had significantly more larger adipocytes (> 60μm diameter) ($P < 0.05$) that WT CD mice suggestive that the HFD does not affect the size of $Phospho1^{-/-}$ adipocytes, however HFD increased the number of larger and decreased the number of smaller adipocytes in WT mice, consistent with obesity (Fig.5.2).

5.5.6 WT and $Phospho1^{-/-}$ control and HFD CT analysis

Multi-object CT values from the WT and $Phospho1^{-/-}$ were calculated from non-segmented mouse carcass (Fig. 5.3A) (preliminary data suggested that time consuming segmentation did not improve fat prediction accuracy). Computed tomography based fat predictions indicated that WT mice regardless of diet had increased total fat mass compared to $Phospho1^{-/-}$ mice and diet did not increase fat mass of the two genotypes. Interestingly, CD $Phospho1^{-/-}$ mice had increased muscle and bone mass compared to CD WT mice ($P < 0.05$) (Fig. 5.3B). Micro computed tomography confirmed the decrease of SB fat mass of CD $Phospho1^{-/-}$ mice to WT mice (Fig. 5.4).

5.5.7 µMRI adiposity and hepatic analysis

The mass of iBF predicted by µMRI did not significantly change between the genotypes however iBF did show a tendency to increase with HFD feeding similar to dissection analysis (Fig. 5.5B, Fig. 5.2C). The mass of SB and MF was not increased in $Phospho1^{-/-}$ mice between the two diets, whereas a HFD increased WT SB by 27.1% and MF by 64.5% ($P < 0.05$) indicating that $Phospho1^{-/-}$ mice are protected from diet induced obesity. Following conventional µMRI, MR spectroscopy was then conducted using time-domain analysis of *in vivo* MR data. Fitting both
Lorentzian and Gaussian lineshapes revealed that fat content was unchanged in the liver of Phospho1^{−/−} mice between the two diets, consistent with µMRI fat depot analysis. Concomitant to this, fat content was significantly increased (84.8%) in WT HFD mice compared to Phospho1^{−/−} HFD mice resulting in non-alcoholic fatty liver (NAFLD) disease which was visualised by both gross dissection and increased Oil-red-O staining in WT HFD livers (Fig. 5.6).
Figure 5.2 Dissection based fat quantification from WT and *Phospho1^{−/−}* mice on both a control and HFD

(A) Photograph depicting fat accumulation in WT and *Phospho1^{−/−}* mice on both a control and HFD. (B) Representative Images of the dissected GF fat depots. (C) Fat depots were dissected from WT and *Phospho1^{−/−}* control and HFD mice. Results were normalised to BW (mg/g). (D) Percent of total GF adipocytes per 10μm diameter size class. n = 3 replicates, one way ANOVA. Data are represented as mean ±S.E.M. Values assigned the same letter show no significant difference from one another (P < 0.05).
Figure 5.3 CT based fat quantification from WT and Phospho1−/− mice on both a control and HFD

(A) Multi-object CT scanning. Left non-segmented, right segmented mouse carcass. (B) Fat, muscle and bone mass determined by non-segmented multi-object CT scanning. Results were normalised to BW (mg/g). n = 6, one way ANOVA. Data are represented as mean ±S.E.M. Values assigned the same letter show no significant difference from one another (P < 0.05).
Figure 5.4 Cross section µCT scans of WT and Phospho1−/− mice
Representative µCT scans of two mice per genotype. Arrows depict subcutaneous fat accumulation.
Figure 5.5 μMRI fat quantification from WT and Phospho1−/− mice on both a control and HFD

(A) Representative reconstructed μMRI scan. Green = SB fat, red = MF fat, blue = iBF. (B) SB, MF and iBF mass determined by μMRI. Results were normalised to BW (mg/g). n = 6, one way ANOVA. Data are represented as mean ±S.E.M. Values assigned the same letter show no significant difference from one another (P < 0.05).
Figure 5.6 WT and Phospho1 knockout mice liver analysis from both a control and HFD
(A) Typical photographs of liver histology (Oil-Red-O stained) from each group. (B) Representative photographs of dissected liver. (C) Quantitative assessment of liver fat utilising spectroscopy. Water and fat peak areas were defined with the assumption of either Gaussian or Lorentzian line shapes. n = 2 WT, n = 3 for remaining groups, one way ANOVA. Data are represented as mean ±S.E.M (n = 3 replicates). Values assigned the same letter show no significant difference from one another (P < 0.05).
5.6 Discussion

PHOSPHO1, the bone specific phosphatase has been previously been shown to be essential for the initiation of bone mineralisation (Houston et al., 2004; MacRae et al., 2010; Huesa et al., 2011; Yadav et al., 2011). Moreover, I have shown that in addition to the roles in bone mineralisation Phospho1 ablation confers a remarkable insulin resistance and diabetes in mice (Chapter 4). Here, the fat deposition and localisation in WT and Phospho1−/− control and HFD mice was determined (Fig. 5.2-5.6). Prior to these studies it was first necessary to compare both invasive and non-invasive methods for measuring adiposity in young to old C57BL/6 male mice. These parameters were necessary as the WT and Phospho1−/− experimental mice were predominantly C57BL/6 male mice with a large variation of fat traits. Previous publications have evaluated the use of BW alone as predictor of fat mass or fat percentage, reporting a good correlation in obese mice, yet a poor correlation in very lean mice (Rogers and Webb, 1980). Contrary to this, a strong correlation between BW alone and fat mass and percentage in mice of 20g (35 days of age) to 40g (200 days of age) measured by freeze drying and by multi-object CT was observed in the cohort of this present study. There was a tendency for the r values to be slightly lower for the relative measures (%) compared to the absolute values (g), and the correlation to FD measures seem slightly higher compared to the CT based measures. These high correlations are likely due to the large age span present in the cohort, selected to produce a large variation in fat traits. However, in mice with similar BW’s, this may not be the case and the use of LTW as solely predictor of fat mass is not recommended.

Compared to the LTW as a fat predictor, the multi-object CT yielded slightly higher accuracies, e.g. the FatW_CT is a very good predictor for the total fat mass in the body ($r = 0.98$). The chosen approach in this study to CT scan freshly killed mice allows conclusions for CT scanning mice in vivo. This study shows the fat amount in live animals can be predicted very well with multi-object spiral CT. There was only limited research exploring the use of multi-object CT in fat mass prediction in mice.

~ 156 ~
This study now provides prediction equations based on one predictor (Table 5.3), indicating that CT can accurately predict the degree of adiposity in the murine model. Moreover, with the use of multiple regression analysis, a further small increase in accuracy could be expected.

This study highlighted that simplistic dissection is also sufficient to quantify whole body adiposity, and the measurement of one depot (GF pad) achieves the same predicted accuracy than the dissection of all 4 depots. These results are in agreement with previous work (Hull, 1960) and are based on the strong positive correlation between isolated fat depots and predicted fat mass. Therefore it was concluded that LTW, dissection and multi-object in vivo CT fat quantification are highly valuable techniques to evaluate fat mass. Multi-object in vivo CT offers the clear advantages of being a minimally invasive technique allowing longitudinal studies to be completed in a high throughput manner.

With these insights, simplistic dissection was first employed to quantify whole body adiposity. These data were suggestive that Phospho1−/− mice had smaller (mg/g BW) GF, SB and MF fat deposits compared to the WT counterparts. Indeed Phospho1−/− mice resisted MF accumulation when fed the chronic HFD. In concordance with these data, multi-object CT based fat predictions indicated that WT mice had increased total fat mass compared to Phospho1−/− mice however diet did not increase fat mass of the two genotypes. The lack of a detectable effect of HFD feeding on mice may be due to the fact that the thresholds derived from sheep dissection trials need to be refined for mice to more accurately detect small changes in fat mass or the mice used in this study may have developed adaptive mechanisms that participated in in the protection against diet induced obesity (Burcelin et al., 2002). However, these data are consistent with the insulin sensitivity and hypoglycemia observed in Phospho1−/− mice (Chapter 3), but this phenotype was not expected due to the 60-fold increase in Esp mRNA expression in Phospho1−/− osteoblasts that has been
reported to be associated with InsR inactivation, thus insulin resistance and obesity (Lee et al., 2007).

Coincidentally, additional funding became available to evaluate µCT and µMRI imaging modalities in mice. Both µCT and µMRI were in concordance with dissection and CT fat predictions, indicating that Phospho1−/− mice were leaner than WT mice. However these modalities, specifically µMRI provided the ability to delineate between different fat depots, with the additional benefit of MR spectroscopy, not possible with conventional CT, freeze drying and dissection. µMRI revealed that Phospho1−/− mice resisted diet induced obesity and NAFLD.

The discrepancy between hypothesised fat mass and actual fat mass evaluated by dissection, CT, µCT and µMRI highlighted that PHOSPHO1 regulates global energy metabolism despite the 60-fold increase in Esp, strengthening the notion that a novel pathway may exist between osteoblasts and glucose homeostasis, and like other studies points towards further osteoblast-derived hormones that regulate glucose metabolism (Yoshikawa et al., 2011). This study also revealed that both µCT (qualitative) and µMRI (quantitative) were good predictors of total fat mass in mice and indeed provided additional advantages to conventional CT, dissection and freeze drying methods, such as the ability to accurately dissect fat tissue in silico (allowing total fat quantification), the ability to delineate between different tissues thus providing high resolution, longitudinal tools to study fat distribution in mice, muscle shape and hepatic fat/water ratios.

In conclusion this study highlights that simple dissection and BW is an accurate predictor of whole body fat mass; however for longitudinal studies multi-object CT has the capability to accurately predict total fat mass and with appropriate bench marking muscle and bone mass (as shown in other species), thus replacing time consuming dissection in experimental design. Furthermore, this study has highlighted that µMRI and µCT provide high spatial resolution and contrast,
allowing not only quantification of adiposity in longitudinal studies, but also the ability to distinguish between normal and pathological tissues. Specifically μMRI is quantifiable, and provides the additional benefit of MR spectroscopy, however further work is required to benchmark both μMRI and μCT to DM based prediction or chemical analyses in allow for the dissection of the genetic basis of diet induced obesity and study of diet effects over age. Utilising these various imaging modalities I have shown that PHOSPHO1 ablation is protective against obesity and NAFLD likely via OCN independent mechanism that will be explored in Chapter 6.
Chapter 6

Elucidating the mechanism(s) by which PHOSPHO1 regulates energy metabolism
6.1 Introduction

Energy metabolism is a precisely regulated process, involving intricate paracrine, autocrine and endocrine signalling pathways that work in synergy to coordinate energy expenditure and storage in metabolically active tissues. In the last decade, bone has been identified as a true endocrine organ, possessing the capabilities to regulate energy metabolism, expanding our understanding and identifying a new and unconventional role of bone beyond its classical functions (section 1.6). Whilst this thesis has identified and characterised the role of PHOSPHO1 in this phenomenon, the underlying mechanisms have not yet been examined. Of particular interest was OCN, the most abundant osteoblast-specific non-collagenous protein accounting for 10-20% of the non-collagenous protein content of bone (Hauschka et al., 1989b). Initially synthesised in the osteoblast as a pre–pro molecule, OCN is largely unstructured when calcium is not present. In the presence of calcium the OCN protein becomes folded regulating the maturation of bone mineral (detailed in section 1.5.2.8) (Hauschka et al., 1989b; Chenu et al., 1994). However, OCN also exists in partially carboxylated and completely uncarboxylated forms in the circulation which has recently been shown to regulate energy metabolism by stimulating insulin sensitivity, insulin secretion and energy expenditure (Plantalech et al., 1991; Cairns and Price, 1994; Vergnaud et al., 1997; Schilling et al., 2005; Ferron et al., 2008). Indeed, the bioactivity of OCN is tightly regulated by OST-PTP, the product of the Esp gene, mutations of which result in insulin sensitivity and protection from induced obesity and diabetes due to increased circulating GLU13-OCN (Lee et al., 2007; Ferron et al., 2008). More recently, FoxO1 has been implicated as a regulator of Esp. In the osteoblast nucleus FoxO1 co-localises with ATF4, promoting the transcriptional activity of ATF4 resulting in the up-regulation of Esp in osteoblasts, leading to OCN inactivation (Kode et al., 2012). Indeed, a 60-fold increase in Esp mRNA expression was observed in Phospho1−/− osteoblasts and in silico gene network analysis was suggestive that Atf4 and Fox01 were differentially expressed between WT and Phospho1−/− osteoblasts indicative of PHOSPHO1, OST-PTP and OCN mutual regulation. However,
contrary to the established dogma, Phospho1−/− mice have lower blood glucose, improved glucose and insulin tolerance and resist obesity on a HFD despite the 60-fold increase in Esp expression which is indicative of a hyperglycemic, insulin resistant and obese phenotype (section 1.6.1) (Lee et al., 2007). These observations point towards an OCN-independent influence of osteoblasts on energy metabolism with Esp possibly offering protection against excessive insulin signalling. It is therefore plausible to suggest that in addition to OCN, other bone-derived hormones may contribute to the function of the skeleton as a regulator of energy metabolism (Yoshikawa et al., 2011). Mindful of this, SMPD3 catalyses the hydrolysis of sphingomyelin to from ceramide and phosphocholine (section 1.5.2.7) (Stoffel et al., 2005). Phosphocholine is subsequently hydrolysed to choline and phosphate by PHOSPHO1. Elevated levels of both ceramide and choline result in insulin resistance in mice (Yang et al., 2009; Wu et al., 2013). Ceramide may have direct effects on genes (e.g. Ucp3) involved in energy metabolism and expenditure and induce the suppressor of cytokine signalling-3 which plays a central mechanistic role in the development of both leptin and insulin signalling pathways. It does this by attenuating phosphorylated signal transducer and activator of transcription (STAT) proteins binding to the InsR (Ueki et al., 2004; Kanatani et al., 2007), inhibiting IRS-1 phosphorylation and downstream insulin signalling (Lebrun and Van Obberghen, 2008) and targeting both IRS-1 and IRS-2 for proteosomal degradation (Lebrun and Van Obberghen, 2008). Furthermore, choline has been shown to induce hyperglycemia and insulin intolerance in mice via the modulation of plasma glucagon. Glucagon subsequently enhances hepatic gluconeogenesis, concomitant with increasing mitochondrial fatty acid uptake and oxidative stress that increases phosphorylation of IRS1-s-307, thereby inhibiting insulin-mediated signal transduction (Nakatani et al., 2004; Wu et al., 2013). Theoretically, the genetic ablation of Phospho1 would result in decreased choline and preliminary mass spectroscopy analysis indicated that plasma ceramide was reduced in Phospho1−/− mice. Choline and / or ceramide deficiency may therefore provide an alternative hypothesis for the improved metabolic profile of Phospho1−/− mice in vivo.
Therefore the overarching aim of this chapter was to elucidate the mechanisms regulating PHOSPHO1 mediated energy metabolism. This will provide new insights into the molecular mechanisms surrounding the dynamic interplay between bone and glucose regulation.

6.2 Hypothesis

Phospho1 ablation regulates whole body glucose metabolism through an OCN independent mechanism.

6.3 Aims

I. Quantify serum OCN levels in WT and *Phospho1^{−/−}* mice.

II. Analyse the effects of *Phospho1^{−/−}* and WT osteoblast conditioned medium on hepatic, pancreatic, myoblast, osteoblastic and adipogenic cell lines.

III. Examine whether ceramide species are decreased in *Phospho1^{−/−}* serum

IV. Determine if choline supplementation normalises glucose metabolism in *Phospho1^{−/−}* mice.

V. Identify the candidates underlying the protection from obesity and insulin resistance in *Phospho1* deficiency.

6.4 Materials and Methods

6.4.1 Primary osteoblasts

Under sterile conditions calvariae were dissected from 3-4 day old new-born WT and *Phospho1^{−/−}* mice as described in section (2.2.2). Extracted cells were resuspended in osteoblast medium (Appendix I) and pooled to obtain a single cell suspension. The cells were expanded in flasks in a humidified atmosphere of 95% air/5% CO₂.
and maintained at 37°C until 80–90% confluence before being plated at 10,000 cells/cm² in multi-well plates.

6.4.2 Cell lines (FAZA, Ins1e, C2C12, 3T3-L1)
Under sterile conditions cells lines (FAZA - rat liver cell line, Ins1e - rat insulinoma cell line, C2C12 - mouse myoblast cell line and 3T3-L1 maintained at -160°C were thawed quickly at 37°C and 5ml of pre-warmed appropriate maintenance media (Appendix I) was added slowly and centrifuged. The cell pellet was resuspended in maintenance media and transferred to a T175 tissue culture flask (T75 for C2C12 cells) and expanded in flasks in a humidified atmosphere of 95% air/5% CO₂ and maintained at 37°C. When the cells were 80–90% confluent they were plated at 10,000 cells/cm² in multi-well plates until differentiated.

6.4.3 Conditioned medium with insulin treatment
Following differentiation, C2C12, FAZA, Ins1e, 3T3-L1 and primary WT osteoblast cells were cultured for 24 hours in αMEM containing 0.5% FBS. Medium was changed to serum free αMEM containing 0.1% BSA (Fraction V) and HEPES 10mM pH 7.4. 1 hour prior to insulin stimulation, cells were incubated with 1ml WT or Phospho1⁻/⁻ osteoblast conditioned medium. Cells were finally stimulated with 10nM insulin or vehicle control (PBS) for 15 minutes and washed in ice-cold PBS prior to protein and mRNA extraction (section 2.6, 1.7).

6.4.4 mRNA analysis of primary osteoblasts cells and cell lines
RNA samples were extracted from primary calvarial osteoblasts, using a Qiagen RNeasy lipid kit according to the manufacturer’s instructions. cDNA was prepared and was used at 5ng/µl for RT-qPCR analysis, as detailed in section 2.6 Results were normalised to the appropriate housekeeping gene and the relative gene expression level was calculated using the ΔΔCt method (Livak & Schmittgen 2001).
6.4.5 Protein analysis of primary osteoblasts cells and cell lines

Protein was extracted from primary calvarial osteoblasts and cell lines in RIPA buffer as detailed in section 2.7.1. Protein concentration was quantified (section 2.7.2) and appropriate quantities were used for western blot analysis (section 2.7.3). pAKT, AKT, GLUT 4, pGSK3 and GSK3 expression was determined using a goat anti-rabbit (goat anti-mouse GLUT4) antibody at a dilution of 1:1000 and the appropriately HRP-labelled donkey anti-rabbit/mouse secondary antibody (1:5000) (Appendix II). Antibody labelling was visualised using the ECL detection kit. Equality of protein loading was confirmed by also probing the membrane with mouse monoclonal HRP-labelled anti-β actin antibody (1:50000).

6.4.6 ELISA analysis of serum OCN, adiponectin and leptin

Serum from 8 week and 120 day old male WT and Phospho1+/− CD mice was collected via cardiac puncture and transferred to an EDTA coated tube and stored at -80°C until use. An ELISA-based method to quantify osteocalcin carboxylation was used (section 2.10.5) (Ferron et al., 2010b). Commercially available ELISA kits were used to measure leptin, adiponectin and insulin in serum from 120 day old male WT and Phospho1+/− CD and HFD (section 2.10.6).

6.4.7 Analysis of serum triglyceride

A triglyceride colorimetric assay kit was used to measure triglyceride levels present in blood serum from 120 day old male WT and Phospho1+/− CD and HFD mice. This assay was based on the enzymatic hydrolysis of the triglycerides by lipase to produce glycerol and free fatty acids. The glycerol released was measured by a coupled enzymatic reaction system with a colorimetric readout at 540 nm (detailed in section 2.10.4).

6.4.8 Ceramide mass spectrometry

Serum was collected as described in section 2.5.3 from 120 WT and Phospho1+/− mice. 50μl of serum was used to extract lipids according to the method of Folch et al.
Chapter 6

Elucidating the mechanism(s) by which PHOSPHO1 regulates energy metabolism

(Folch et al., 1957). Glycolipid analysis and quantification was performed by Professor Phillip Whitfield (University if Highland and Islands) via electrospray ionization-tandem mass spectrometry (ESI-MS/MS) (detailed in section 2.11.2). Data were analysed using software driven algorithm (thermo Xcalibur Quad Browser) imputing known ceramide species (Appendix VI).

6.4.9 In vitro 2-deoxyglucose [3H]

WT and Phospho1−/− primary osteoblasts were extracted and expanded as described in section 2.2.2 and 2.2.4. Cells were then incubated in serum free medium for 4 hours and washed in PBS. Either basal (2ml PBS), 100nM insulin (in 2ml PBS), 1000nM insulin (in 2 ml PBS) or 10µM Cytochalasin B (in 2 ml PBS) was added for 15 minutes at 37°C. Following insulin treatment 0.1 mM (9250 Bq/ml (0.25µCi/ml)) 2-DG ([3H]-labelled) was then added to each well for 15min at 37°C. Glucose uptake was terminated by washing the cells 3 times with ice cold 0.9% saline with the plates on ice. Cells were scraped in PBS+0.1% SDS and homogenised. Radioactivity was measured and normalised to protein content (section 2.3.3).

6.4.10 BRL-37344

Male juvenile, adult and aged mice (35, 120 and 220 day-old) were weighed and fasted for 4 hours between 9am and 1pm. 1mg/kg BW of BRL-37344 was administered IP for 3 hours. Mice were later euthanised and tissues were collected for protein and gene analysis (2.6 and 2.7).

6.4.11 Mitochondria stress test

Osteoblasts were plated at a density of 25,000 and 50,000 cell’s per well (24 well plate) and transferred to a 37°C CO2 incubator until 100% confluency was reached. Cells were washed in 500µl XF assay media supplemented with 25 mM glucose and 10 mM pyruvate and placed in a non-CO2 incubator at 37°C for 1 hour prior to start of assay. Oligomycin (1.2µM), FCCP (0.56µM), antimycin A / rotenone (0.96µM)
were prepared and following equilibration the Seahorse plate was placed in the Seahorse XF24 Analyser for analysis (section 2.3.4).

6.4.12 2% choline diet
Male mice were fed a 2% supplemented choline diet (Harlan Laboratories) or CD (Harlan Laboratories) for 5 weeks prior to cull at 120 days. Metabolic tests were conducted as detailed in section 2.5.3.3.

6.4.13 Proteomics
Proteins from serum were extracted and prepared (section 2.5.3) and the extracted proteins were analysed using a RSLC 3000 nanoscale capillary LC followed by qTOF mass spectrometry (QSTAR, ABSciex). This was done by Dr. Cal Vary (Center for Molecular Medicine, Maine Medical Center Research Institute (MMCRI), ME, USA). ProteinPilot™ was used for protein identification and quantitation, as well as visualising peptide-protein associations and relationships. Functional pathway and causal network analysis was performed using QIAGEN’s Ingenuity (IPA), GeneMANIA and EXPANDER (EXpression Analyzer and DisplayER) following training from Dr. Jacqueline Smith.

6.4.14 Lipidomics
Total lipids were extracted from serum and osteoblast conditioned medium and silica based solid phase extraction was employed for sample clean up and fractionation prior to analysis. Resulting mass spectra was analysed by LC-MS in both positive and negative ion scanning modes. This was done by myself with assistance from Dr. Cal Vary, MMCRI. LipidView™ was used for the molecular characterisation and quantification of lipid species and principle component multivariate data analysis established preliminary lipid classes and their contribution to sample differences.
Chapter 6 Elucidating the mechanism(s) by which PHOSPHO1 regulates energy metabolism

6.5 Results

6.5.1 Quantification of serum adipokines

To uncover the mechanism leading to the increase in insulin sensitivity in \textit{Phospho1}\(^{-/-}\) mice, various serum adipokines were first studied. Adiponectin, an adipokine that plays an important role in the modulation of glucose and lipid metabolism in insulin-sensitive tissues (Chandran \textit{et al.}, 2003) was decreased 2.62 and 1.92 fold respectively in \textit{Phospho1}\(^{-/-}\) mice on both the CD and HFD (Fig. 6.1A), suggestive that insulin sensitivity and protection from obesity is independent of elevated adiponectin. Serum leptin levels were unaffected between WT and \textit{Phospho1}\(^{-/-}\) mice on a CD, however in the diet challenged study leptin was decreased by 1.31-fold in HFD \textit{Phospho1}\(^{-/-}\) mice compared to HFD WT controls (Fig. 6.1B). Circulating triglycerides were increased 1.30-fold in CD \textit{Phospho1}\(^{-/-}\) mice compared to CD WT mice (Fig. 6.1C).

6.5.2 Expression of genes metabolic target genes

The expression of target genes involved in metabolism was next evaluated. Surprisingly, selected metabolic target genes were largely unaltered in SB adipose, quadriceps femoris and liver tissue of \textit{Phospho1} deficient mice. Specifically, lipoprotein lipase (\textit{lpl}) which is involved in the regulation of fatty acid turnover was up regulated 2.16-fold in \textit{Phospho1}\(^{-/-}\) adipose tissue compared to controls (Fig. 6.2A). \textit{Irisin}, an exercise-induced myokine suggested to induce browning of white adipocytes (Huh \textit{et al.}, 2014), was up regulated 1.62-fold in \textit{Phospho1}\(^{-/-}\) quadriceps femoris compared to controls (Fig. 6.2B) and AMP-activated protein kinase (\textit{Prkaa1}), phosphoenolpyruvate carboxykinase 1 (\textit{Pck1}) and peroxisome proliferator-activated receptor alpha (\textit{Ppara}) were up regulated 1.25, 1.57 and 1.62 respectively in \textit{Phospho1}\(^{-/-}\) hepatic tissue compared to controls (Fig. 6.2C). Furthermore, both adipose and quadriceps femoris tissue had a significant increase in \textit{Slc2a1} in the \textit{Phospho1}\(^{-/-}\) mice (Fig. 6.2D-E) however no such change was observed in hepatic tissue (Fig. 6.2F). These subtle changes were seen on both the CD and HFD fed mice (data not shown). Results of this phenotypic analysis established that
Phospho1 function is required for the development of obesity and glucose intolerance in mice.

Figure 6.1 Phospho1^{−/−} mice are insulin sensitive despite decreased adiponectin
Serum levels of adipokines and triglycerides were measured in serum from 120 day old CD and HFD male mice by ELISA (A) adiponectin and (B) leptin (C) triglyceride. \(n \geq 8 \), two way repeated measures ANOVA. Data are represented as mean ±S.E.M. * \(P < 0.5 \), ** \(P < 0.01 \), ***\(P < 0.001 \).
Figure 6.2 Selected metabolic target genes were largely unaltered in subcutaneous adipose quadriceps femoris and liver tissue of Phospho1−/− mice

RT-qPCR analysis of tissue extracted from 120 day old WT and Phospho1−/− mice (A) adipose tissue (B) quadriceps femoris and (C) liver. RT-qPCR analysis of GLUT receptors from (D) Adipose tissue (E) quadriceps femoris and (F) liver. mRNA values generated were normalised to Gapdh housekeeping gene. n = 3, t-test and Mann–Whitney rank sum test. Data are represented as mean ±S.E.M. * P < 0.5, ** P < 0.01, ***P < 0.001.
6.5.3 Examination of \textit{in vitro} and \textit{in vivo} glucose metabolism in WT and \textit{Phospho1}⁻/⁻ mice

Glucose metabolism and insulin responses were initially assessed \textit{in vitro}. In brief, primary osteoblasts extracted from WT and \textit{Phospho1}⁻/⁻ mice were stimulated with [³H]-deoxyglucose and the incorporation of radioactive tritium (as a surrogate of glucose uptake) was measured. Surprisingly \textit{Phospho1}⁻/⁻ osteoblasts incorporated less glucose than WT osteoblasts, suggestive that they are less metabolically active (Fig. 6.3).

Furthermore, \textit{Phospho1}⁺/⁺ mice subjected to a sub-maximal \textit{in vivo} administration of insulin (1mU/g) displayed a significant increase in the key markers of insulin sensitivity in bone (Akt phosphorylation) ($P < 0.05$) and decreases in phosphorylated-p44/42, total p44/42 and GLUT4 ($P < 0.05$). These changes were absent in WT bone and no such changes were noted in liver, muscle and fat (data not shown) suggestive of a \textit{Phospho1}⁻/⁻ bone driven regulation of whole body metabolism (Fig. 6.4A-B).

The differences in metabolism observed between WT and \textit{Phospho1}⁺/⁺ mice prompted me to compare the metabolic profile of WT and \textit{Phospho1}⁺/⁺ calvarial osteoblasts. The XF-24 extracellular flux analyser was used to measure oxygen consumption rate (OCR) and then a Mito Stress test was performed by using inhibitors of the mitochondrial electron transport chain in a sequence (Guntur et al., 2014). Oligomycin was first injected to inhibit oxygen consumption; FCCP was injected which uncouples the electron transport chain thus increasing OCR and finally respiration was completely inhibited using a combination of complex I and complex III inhibitors, rotenone and antimycin A. It was observed that \textit{Phospho1}⁺/⁺ calvarial osteoblasts had higher OCRs than WT osteoblasts. Suggestive that \textit{Phospho1}⁺/⁺ calvarial osteoblasts may be cells less glycolytic than WT osteoblasts, however this may be due to the inability of \textit{Phospho1}⁺/⁺ calvarial osteoblasts to mineralise \textit{in vitro} (6.4C).
Figure 6.3 Phospho1−/− osteoblasts show decreased 2-deoxyglucose [3H] uptake upon insulin stimulation

2-deoxyglucose [3H] incorporation into insulin stimulated primary osteoblasts extracted from WT and Phospho1−/− mice. n = 3, t-test. Data are represented as mean ±S.E.M. * P < 0.5, ** P < 0.01, ***P < 0.001.
Figure 6.4 *Phospho1* knockout mice show increased insulin sensitivity in bone

(A) Immunoblot of WT and *Phospho1* knockout mice subjected to *in vivo* insulin administration 20 minutes prior to cull. (B) Densitometric analysis of proteins shows a significant increase in pAKT and decrease in p-p44/42 and GLUT4 was observed in insulin stimulated *Phospho1* knockout bone. (C) Seahorse X-24 analysis of OCR (an indication of oxidative phosphorylation) in WT and *Phospho1* knockout primary calvarial osteoblasts under basal conditions or following the addition of oligomycin, the uncoupler FCCP or the electron transport inhibitor antimycin A. *Phospho1* knockout primary calvarial osteoblasts had decreased OCR. * n ≥ 3, one way ANOVA (B) and t-test (C). Data are represented as mean ±S.E.M. Values assigned the same letter show no significant difference from one another (* P < 0.05,* P < 0.05).
6.5.4 The effect of β3-adrenergic receptor agonist on WT and Phospho1−/− mice

The increased mitochondrial mass of Phospho1−/− BAT noted in Chapter 4 implied that the ablation of Phospho1 may improve the metabolic phenotype by impacting non-shivering thermogenesis mechanisms. Therefore to test if the improved metabolic phenotype of Phospho1−/− mice was a consequence of enhanced sensitivity of BAT thermogenesis, 35 day old WT and Phospho1−/− mice were challenged 3 hours prior to cull with BRL-37344, a preferential β3-adrenergic receptor agonist that activates SNS signalling (Doucette and Rosen, 2014). This approach is an alternative to acute cold exposure and was used to test the immediate effects of environmental stress. Few metabolically significant changes were observed between WT and Phospho1−/− mice challenged with BRL (Fig. 6.5). However of importance, transcript levels of β3-adrenergic receptor (Adrb3) were increased in Phospho1−/− BAT following BRL administration. No such change was seen in WT mice (Fig. 6.5A). This suggested that there was an increase in intracellular lipolysis of triglycerides from lipid droplets, resulting in release of fatty acids into the cytoplasm. Furthermore, in Phospho1−/− mice, Pparγ transcript levels were increased in BAT but decreased in GF following BRL administration. No change in transcript Pparγ was seen in BAT or GF from WT mice. This suggests that PPARγ is involved in the physiological recruitment process in BAT but not WAT (Fig. 6.5A&B). Interestingly the expression of thermogenic associated genes in GF were differentially expressed between WT and Phospho1−/− mice in response to BRL treatment, these changes were seen at a lesser extent in SB fat. These results reveal that mimicking acute cold exposure using β3-adrenergic receptor may indicate that GF contributes to the insulin sensitive phenotype in the Phospho1−/− mice.
Chapter 6
Elucidating the mechanism(s) by which PHOSPHO1 regulates energy metabolism

Figure 6.5 Effect of β3-adrenergic receptor agonist on WT and Phospho1−/− mice
RT-qPCR analysis of tissue extracted from 35 day old WT and Phospho1−/− mice challenged with β3-adrenergic receptor agonist (A) iBF (B) GF and (C) SB adipose tissue. mRNA values generated were normalised to the Gapdh housekeeping gene. n = 6, one way ANOVA. Values assigned the same letter show no significant difference from one another (P < 0.05).
6.5.5 Phospho1⁻/⁻ osteoblasts secrete a factor which regulates insulin signalling, independent of OCN

The low blood glucose levels and enhanced insulin sensitivity observed in the Phospho1⁻/⁻ transgenic mice is opposite to the expected similarity to the OST-PTP overexpression-like phenotype. This was therefore suggestive that there may be an increase in circulating GLU13-OCN rather than a decrease as inferred by the 60-fold up-regulation of Esp in Phospho1⁻/⁻ osteoblasts. Indeed, I saw an increase in total OCN (GLA13-OCN) which was expected as Phospho1⁻/⁻ mice display increased bone turnover (Huesa et al., 2011). However, no change in GLU13-OCN in both juvenile and adult Phospho1⁻/⁻ mice was observed indicating that lowered GLU13-OCN may not underlie the improved metabolic phenotype observed in Phospho1⁻/⁻ mice (Fig. 6.6A-B).

Therefore, to establish if PHOSPHO1 truly regulates glucose metabolism via its osteoblastic expression, conditioned medium from WT and Phospho1⁻/⁻ primary calvarial osteoblasts was collected and tested on various cell lines. This approach indicated that Phospho1⁻/⁻ osteoblasts secreted factors that increased basal insulin sensitivity in primary calvarial osteoblasts (Fig. 6.7A-B), decreased insulin stimulated sensitivity in INS1e cells (Fig. 6.7C-D) and increased insulin stimulated sensitivity in 3T3-L1 cells (Fig. 6.7E-F) compared to WT conditioned medium. No effect was seen in FAZA and C2C12 cells (data not shown). These results provide evidence that in addition to GLU13-OCN other osteoblast-derived factors contribute to the global regulation of energy metabolism.

6.5.6 Investigation of ceramide and choline as regulators of insulin signalling

Having established that GLU13-OCN is not responsible for the metabolic phenotype of the Phospho1⁻/⁻ mice, it is likely that other osteoblast secreted molecules contribute to global energy regulation. Neutral sphingomyelinase catalyses the hydrolysis of sphingomyelin to form ceramide and P-Chol (Stoffel et al., 2005). Phosphocholine is subsequently hydrolysed into choline and P, by PHOSPHO1 (Fig. 6.8A). Elevated
Elucidating the mechanism(s) by which PHOSPHO1 regulates energy metabolism

Levels of both ceramide and choline result in insulin resistance in mice (Yang et al., 2009; Wu et al., 2013). This led to the hypothesis that Phospho1−/− mice may have reduced ceramide or choline levels resulting in increased insulin sensitivity. Analysis indicated however that there was no significant difference between various ceramide species in the two genotypes highlighting that ceramide was unlikely to underlie the insulin sensitive phenotype observed in the Phospho1−/− mice (Fig. 6.8B). Unfortunately we were unable to measure serum choline due to the lack of a mass spectrometry assay, therefore we next supplemented WT and Phospho1−/− mice with a 2% choline diet. Choline supplementation normalised the insulin sensitivity measured in Phospho1−/−, measured by GTT however (Fig. 6.9A), unlike WT mice which when fed a 2% choline diet took longer to recover from the insulin challenge, Phospho1−/− showed no metabolic change in response to insulin between the diets (Fig. 6.9B). Furthermore, choline supplementation had no effect on mass, but normalised the lean phenotype observed in Phospho1−/− mice to the level seen in basal WT mice (P < 0.05)(Fig. 6.9C-D). This result suggested that PHOSPHO1-deficiency improves the metabolic profile of mice in vivo and confers resistance to obesity and diabetes possibly via the alteration of bone choline levels.

6.5.7 Identification of novel regulators of insulin signalling

The regulation of bone is a complex, multifactorial process; therefore it is possible that bone derived choline may not be the only skeletal regulator in mice and further, undefined bone secreted factors may play an important role in global energy regulation. To identify secreted proteins or lipids that may also be involved in the energy regulation via the skeleton, quantitative proteomics and lipidomics were conducted in serum from WT and Phospho1−/− CD and HFD mice. Proteomic analysis identified > 100 differentially expressed proteins in Phospho1−/− serum. These unique proteins were highly associated with glycolysis, gluconeogenesis and ‘metabolic pathways’ (Fig. 6.10A-B) and showed enrichment for miR-34a; a microRNAs (miRNAs) that affects diverse parts of insulin signalling in the pancreas, liver, muscle and adipose tissue (Rottiers and Naar, 2012). Furthermore, lumican, a
proteoglycan secreted by differentiating and mature osteoblasts, a constituent of the bone matrix and is observed in the decidua of the diabetic patients was found to be enriched in serum of Phospho1^{−/−} mice by both proteomic and microarray analysis (section 6.5.7) (Raouf et al., 2002; Favaro et al., 2013). The key finding of preliminary lipid analysis was that cholesteryl esters (CE), were not detected in WT HFD serum (Fig. 6.11). Cholesteryl esters are molecular species that are important in the intracellular storage and intravascular transport of cholesterol and integral to membrane function (Ginsburg et al., 1984; Bowden et al., 2011). Conditions that effect cholesterol metabolism e.g. tumour promotion, alter tissue CE levels. Furthermore, over-nutrition which is characteristic of the HFD mouse model results in elevated tissue CE levels in the form of CE-enriched lipid droplets in tissues (Mahlberg et al., 1990). As tissue levels of CE were not measured it can only by hypothesised that the lack of CE in serum may be due to the accumulation of CE in WT HFD tissue, which Phospho1^{−/−} mice are protected from. However this must be investigated further.
Figure 6.6 No difference in GLU13-OCN serum levels between WT and Phospho1^{−/−} mice
(A)(B) Osteocalcin analysis in WT and Phospho1^{−/−} mice serum from 60 and 120 days of age. n ≥ 6, t-test. Data are represented as mean ± S.E.M. * P < 0.05, ** P < 0.01, *** P < 0.01.
Figure 6.7 *Phospho1* osteoblast secreted factors increased basal insulin sensitivity in primary calvarial osteoblasts

Effect of a 1 hour pre-treatment with osteoblast conditioned medium prior to 10nm insulin stimulation (15 minutes) on primary cells and cell lines. WT Primary osteoblast (A) Densitometry analysis (B) RT-qPCR analysis. Insulinoma cell line - INS-1E (C) Densitometry analysis (D) RT-qPCR analysis. Differentiated adipocytes (3T3-L1) (E) Protein densitometry analysis (F) RT-qPCR analysis. n ≥ 3, one way ANOVA. Data are represented as mean
±S.E.M. Values assigned the same letter show no significant difference from one another ($P < 0.05$).

Figure 6.8 No difference in Ceramide between WT and Phospho1−/− mice
(A) Schematic diagram outlining the mechanisms by which ceramide and choline are linked. (B) Mouse serum ceramide analysis by LC-MS/MS. n = 5, t-test. Data are represented as mean ±S.E.M.
Figure 6.9 Bone derived choline regulates insulin sensitivity

(A) GTT and ITT (B) of 120 CD and 2% supplemented choline WT and Phospho1−/− mice (C) Simple weighing of 120 CD 2% choline mice revealed choline did not alter body mass. (D) Dissected fat depot weights, a 2% choline diet increased both SB, GF in Phospho1−/− mice however did not increased fat GF in WT mice. n ≥ 9, two way repeated measures ANOVA (A&B), one way ANOVA (C&D). Data are represented as mean ±S.E.M. Values assigned the same letter show no significant difference from one another (P < 0.05).
Figure 6.10 Proteomic analysis of serum from WT and \textit{Phospho1-/-} mice
(A) Ven diagram representing number of unique proteins from proteomics (B) \textit{Phospho1-/-} HFD unique network of carbohydrate, lipid metabolism (grey proteins in data set). (n = 3).
Figure 6.11 Lipidomic analysis of serum from WT and \textit{Phospho1}^/- mice
All Lipid species present in serum from 120 day old male WT and \textit{Phospho1}^/- CD and high fat diet mice. (Glycerophospholipid - PC, PE, PG, PS; Sphingolipids - SM, Cer, HexCer, Glycerolipids - TAG, MADAG; Sterol Lipids – CE) (n = 3). Graph kindly provided by Dr. Cal Vary, MMCRI.

6.6 Discussion
In the last decade, many reports have begun to unravel the precise mechanisms and address the aetiology, genetic and molecular aspects and the pathophysiology whereby the skeleton regulates energy metabolism. Moreover, as obesity plays a central role in the pathophysiology of diabetes mellitus, insulin resistance, dyslipidaemia, hypertension and atherosclerosis (constituting the metabolic syndrome) (Redinger, 2007); understanding the relationship between bone and energy metabolism may be helpful for the development and identification of new preventative, therapeutic and genetic strategies to combat obesity and the metabolic syndrome.

The results presented in this chapter uncover a novel role for PHOSPHO1 and bone derived choline in the regulation of energy metabolism, expanding the notion that the skeleton regulates global energy metabolism inclusive of insulin sensitivity, glucose tolerance and fat metabolism via both OCN-dependent and independent mechanisms. The data presented also suggests that \textit{Esp} may act as a fine controller of insulin sensitivity, offering protection from severe hypoglycemia and dyslipidaemia without affecting OCN. Therefore these data add to the emerging notion of the complex skeletal regulation of energy metabolism.
6.6.1 Esp - a fine controller of insulin sensitivity in mice

As Esp offers protection against excessive insulin signalling the key finding that Esp was up regulated 60-fold in Phospho1−/− osteoblasts suggested the existence of an insulin resistant phenotype (Lee et al., 2007). This was not found however and Phospho1-deficiency resulted in decreased blood glucose levels, improved insulin sensitivity and glucose tolerance and conferred protection from diet induced obesity and diabetes in mice. Furthermore, the increased insulin sensitivity was not associated with an expected rise in serum GLU13-OCN levels suggesting that PHOSPHO1-regulated energy metabolism is via OCN-independent mechanisms. This notion has previously been observed when partial genetic ablation of osteoblasts profoundly affected energy expenditure, GF weight and insulin sensitivity which were not restored by the administration of OCN (Yoshikawa et al., 2011). Nevertheless, it cannot be discounted that the increased insulin sensitivity noted in the Phospho1−/− mice may be primed by an initial rise in GLU13-OCN levels, which is eventually normalised in a compensatory manner by the observed increase in Esp and OST-PTP expression. This being the case it would be predicted that the loss of Esp on a Phospho1−/− background would exacerbate the insulin sensitivity due to increased GLU13-OCN serum levels. Such experiments would be informative but were not possible due the time and budget restraints of this studentship. These data strengthen the concept that a novel pathway exists between osteoblasts and glucose homeostasis, however, it does highlight the potential cross-talk between OCN-dependent and OCN-independent mechanisms of glucose metabolism.

6.6.2 Mechanism of osteoblasts metabolic functions

The role of PHOSPHO1 in controlling bone mineralisation has been extensively investigated through the use of both in vitro and in vivo mouse models. Crucial in the initiation of mineralisation within the MV, PHOSPHO1 hydrolyses membrane lipids, primarily P-Cho to produce Pi (utilised in HA formation) and choline (Roberts et al., 2004). P-Cho is generated from the hydrolysis of sphingomyelin to form P-Cho and ceramide. Mindful of this, it has been reported that elevated levels
of both ceramide and choline result in insulin resistance in mice (Yang et al., 2009; Wu et al., 2013). No change in ceramide species in Phospho1+ mice were noted, whereas Phospho1− mice fed 2% choline rich diet displayed a normalisation in insulin sensitivity and fat mass. Choline induces hyperglycemia and insulin intolerance in mice via the modulation of plasma glucagon (Nakatani et al., 2004). This chapter highlights for the first time the importance of bone derived choline in the regulation of energy metabolism, however, the precise mechanism(s) still remains unclear. It is possible that lack of choline in Phospho1+/− medium leads to the altered insulin stimulated sensitivity observed in vitro in INS1e and 3T3-L1 cells. However, it is also possible that alterations in bone choline influence other osteoblasts secreted factors that may regulate energy metabolism.

I have recently reviewed the literature on other osteoblast candidates beyond OCN that may be involved in bones ability to regulate glucose homeostasis (Oldknow et al., 2015). These include AMP-activated protein kinase (AMPK), BMP’s, GSK, FGF23, ‘osteokines’, sphingolipids and NPP1. Proteomic and lipidomic analysis of Phospho1+/− serum identified over 100 differentially expressed proteins and lipids in Phospho1+ serum associated with the regulation of glycolysis and gluconeogenesis and these candidates included miR-34a which is known to affect diverse parts of insulin signalling in the pancreas, liver, muscle and adipose tissue (Kim et al., 2013a). Further investigate of these candidates may uncover new skeletal regulators of energy metabolism. To add credence to our findings, a large independent prospective, nested case-control study found that DNA methylation markers that regulate gene expression and mediates the biological response to environmental exposures at the PHOSPHO1 loci were associated with BMI, waist: hip ratio, glucose concentrations, HOMA-IR, and future type 2 diabetes incidence among Indians, Asians and Europeans (Chambers et al.).
6.6.3 Skeletal regulation - beyond osteocalcin

Collectively, the results of this chapter add further credibility to the concept that OCN is not the sole mediator of the endocrine function of the skeleton (Yoshikawa et al., 2011). The umbrella term ‘glucose metabolism’ encompasses insulin secretion and sensitivity, energy expenditure and lipid accumulation, which are precisely regulated by the function of the liver, pancreas, adipose tissue and muscle. Therefore, the notion that only one osteoblast/bone-derived factor (osteocalcin), contributes to the regulation of whole body glucose metabolism by regulating these diverse functions is highly unlikely. We therefore suggest, as have others have done, that further bone derived proteins/lipids work in collaboration with OCN to regulate the metabolic function of the skeleton. Indeed, this chapter has raised the possibility that bone derived choline may contribute to the regulation of the development of the metabolic syndrome, since Phospho1−/− mice who lack the ability to hydrolyse P-Chol in bone (Roberts et al., 2004), do not develop obesity or diabetes. Finally the results presented in the chapter suggest that Esp may act as a fine controller of insulin sensitivity in mice, offering protection from severe hypoglycemia and dyslipidaemia.
Chapter 7

Final discussion and future research possibilities
7.1 General discussion

Recent developments in endocrinology, made possible by the combination of mouse genetics, integrative physiology and clinical observations have resulted in rapid and unanticipated advances in the field of skeletal biology. Indeed, the skeleton, classically viewed as a structural scaffold necessary for mobility, and regulator of calcium–phosphorus homoeostasis and maintenance of the haematopoietic niche has now been identified as a more complex organ, involved in the regulation of male fertility and whole-body glucose metabolism, in addition to the classical insulin target tissues. These seminal data have established the skeleton as a \textit{bona fide} endocrine organ, challenging and fascinating researchers, resulting in an increased number of laboratories working in this field.

In the last decade, many laboratories have begun to unravel the precise mechanisms and address the aetiology, genetic and molecular aspects and the pathophysiology whereby the skeleton regulates energy metabolism. Obesity plays a central role in the pathophysiology of T2DM, insulin resistance, dyslipidaemia, hypertension and atherosclerosis (constituting the metabolic syndrome) (Redinger, 2007). Understanding the relationship between bone and energy metabolism may therefore be helpful for the development and identification of new preventative, therapeutic and genetic strategies to combat obesity and the metabolic syndrome. This would be both invaluable and timely as the current obesity global epidemic, presently the fifth leading risk of death worldwide costs approximately $147 billion annually (Finkelstein \textit{et al.}, 2009; Stevens \textit{et al.}, 2009; Grube \textit{et al.}, 2013).

There are currently many efforts to reduce obesity, encompassing the promotion of a healthy diet and increasing physical activity in the entire population. In addition, the lipase inhibitor, Orlistat is a clinically approved anti-obesity medication that is offered to UK patients with a body mass index (BMI) of > 28 coupled with related obesity conditions including high blood pressure. In more severe cases, bariatric surgery is offered to patients whereby dietary efforts have not been successful,
therefore they continue to have a BMI of > 40 or > 35 coupled with obesity related comorbidity’s such as type 2 diabetes mellitus (T2DM), obstructive sleep apnoea or high blood pressure. The two most common types of bariatric surgery are the fitting of a gastric band, reducing the volume of the stomach, or a gastric bypass whereby the ‘pouch’ created in the upper stomach then bypasses the remaining stomach, resulting in dramatically decreased digestion thus less calorie intake (NHS, 2014).

Obesity is clearly preventable; however, if steps are not taken to tackle obesity, the current statistic of one in four adults in the UK whom are affected could rapidly increase, constituting a huge burden to the NHS. Furthermore, obesity is associated with a multitude of chronic diseases including stroke, coronary heart disease, cancer of the breast, endometrium and colon.

This thesis focused on the bone specific phosphatase PHOSPHO1 which is indispensable for bone mineralisation and the prevention of soft tissue ossification abnormalities. Here I show that the ablation of Phospho1 confers a remarkable degree of protection against NAFLD, insulin resistance and T2DM in mice (Chapter 4 & 5). These data support the notion that further, yet undefined osteoblast derived factors contribute to whole body energy metabolism

Non-alcoholic fatty liver disease is the most common cause of chronic liver disease in Western countries, commencing with hepatic lipid accumulation and primarily affecting the hepatic structure and function resulting in both morbidity and mortality from cirrhosis, liver failure and hepatocellular carcinoma (Table 7.1). It is now accepted that NAFLD is a multisystem disease affecting non-hepatic organs, leading to increased risk of cardiovascular and cardiac diseases, chronic kidney disease and T2DM (Anstee et al., 2013)(reviewed (Byrne and Targher, 2015)). The current major risk factors for NAFLD are well established, in addition to obesity, insulin resistance and T2DM, increased ferritin and the patatin-like phospholipase
domain-containing 3 (Pnpla) I148M polymorphism (prevalence of this risk allele is in 40 to 50% of Europeans) are known to result in NAFLD. However the mechanisms underlying disease progression are less well understood (particularly Pnpla3 genotype) (Romeo et al., 2008; Wang et al., 2011). Alarmingly, there are currently no approved drugs for the treatment of non-alcoholic steatohepatitis (NASH) (stage 2 of NAFLD -2-5% UK population), with current clinical trials focusing on insulin sensitisers (e.g. glitazones) and hepatoprotective agents (e.g. vitamin E). However it is predicted none of the molecules under investigation are likely to improve NAFLD, thus new targets must be identified (Soden et al., 2007; Gastaldelli et al., 2009) (reviewed in (Ratziu et al., 2015). The data presented in this thesis (Chapter 5) certainly indicates that the genetic ablation of Phospho1 offers a remarkable protection against NAFLD when mice are fed a chronic high fat diet. It is therefore plausible to suggest that the administration of PHOSPHO1 inhibitors or PHOSPHO1 neutralising antibodies may provide a therapeutic intervention in patients with NAFLD, potentially preventing the onset of fibrosis, cirrhosis and possibly reducing the risk of developing cardiovascular and cardiac diseases. Certainly this seems viable, as juvenile Phospho1 heterozygous mice display an intermediate insulin sensitive phenotype suggestive that PHOSPHO1 may represent a druggable target (Chapter 4). Furthermore, administration of the a highly selective PHOSPHO1 inhibitor MLS-0263839 (with no detectable cross-inhibition of TNAP or NPP1) was shown to inhibit vascular calcification in mineralising murine WT vascular smooth muscle cells to 41.8%±2.0% of control (Kiffer-Moreira et al., 2013). Additionally, inhibition of PHOSPHO1 by lansoprazole, ebselen and SCH-202676 disrupts MV mediated mineralisation in Akp2−/− osteoblasts and impairs the skeletal development chick long bones (Roberts et al., 2007; MacRae et al., 2010).
Table 7.1 Non-alcoholic fatty liver disease (NAFLD) pathology, symptoms and severity

<table>
<thead>
<tr>
<th>Stage</th>
<th>Nomenclature</th>
<th>Pathology</th>
<th>Symptoms</th>
<th>Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Simple fatty liver (steatosis)</td>
<td>Excess lipid accumulates in hepatocytes.</td>
<td>No symptoms (identified via blood test)</td>
<td>Mild</td>
</tr>
<tr>
<td>2</td>
<td>Non-alcoholic steatohepatitis (NASH)</td>
<td>Inflammation of the liver.</td>
<td>No symptoms (identified via blood test) or dull or aching pain in the top right of their abdomen</td>
<td>Moderate</td>
</tr>
<tr>
<td>3</td>
<td>Fibrosis</td>
<td>Persistent inflammation of the liver resulting in the generation of fibrous scar tissue around the hepatocytes and blood vessels.</td>
<td>Dull or aching pain in the top right of their abdomen</td>
<td>Moderate – Severe.</td>
</tr>
<tr>
<td>4</td>
<td>Cirrhosis</td>
<td>Liver shrinkage leading to liver failure / hepatocellular carcinoma.</td>
<td>Tiredness, loss of appetite, weight loss, nausea, pain around the liver area, itchy skin, jaundice, hair loss and oedema.</td>
<td>Severe</td>
</tr>
</tbody>
</table>

Table 7.1 Non-alcoholic fatty liver disease (NAFLD) pathology, symptoms and severity
Insulin resistance, often termed pre-diabetes, occurs when insulin is produced at a high level, over a prolonged period of time, reducing insulin tissue sensitivity, occurring years prior to the development of glucose intolerance, β cell failure and T2DM (Tabak et al., 2009). Upon the onset of T2DM, patients may present with insulin resistance in muscle, adipose tissue, and liver, impaired insulin secretion, impaired incretin (hormone secreted from enteroendocrine cells, incretin functions to regulate insulin following eating) secretion and action, and altered balance of central nervous system (CNS) pathways controlling food intake and energy expenditure (Kim and Egan, 2008). Both genetic and environmental factors contribute to the onset of T2DM, with risk factors including obesity, inactivity and aging. Furthermore, mitochondrial oxidative dysfunction, endoplasmic reticulum stress, oxidative stress, and alterations in insulin signalling have all been linked to insulin resistance as reviewed in (Doria et al., 2008; Sales and Patti, 2013). The recommended strategy for achieving glucose control in insulin resistance or T2DM patients is to establish a metabolic target and to adjust treatment to achieve reduced glucose levels, via lifestyle changes (controlled and healthy diet, weight loss and increase of physical activity) and medication (including but not restricted to metformin, sulphonylureas, glitazones, gliptins, GLP-1 agonists, acarbose, acarbose, nateglinide and repaglinide). Comorbidity is common in patients with T2DM taking glucose lowering drugs resulting in further chronic disease, such as joint disorders, respiratory disease, anaemia, malignancy, depression, thus further research into new drug targets must be undertaken to reduce comorbidities, reducing chronic diseases (Wami et al., 2013). Since the realisation that the skeleton is an important regulator of whole-body glucose metabolism via the hormonally active OCN, which stimulates insulin secretion and β cell proliferation in the pancreas and promotes insulin sensitivity in peripheral organs in mice, many clinical studies have been conducted to deduce whether this mechanism is present in humans. One of the earliest studies to show an association between OCN and glucose metabolism was published over a decade ago. Osteocalcin levels were significantly lower in diabetic
patients, although OCN levels increased with improved glycaemic control (Rosato et al., 1998). In many human studies only total OCN levels were quantified; however, the effects on glucose metabolism via bone are attributed to GLU13-OCN. These studies yielded mixed results with several of them indicating a positive correlation between serum GLU13-OCN levels and enhanced β-cell function (Hwang et al., 2009; Prats-Puig et al., 2010; Pollock et al., 2011). However, results from other studies indicate no association between lower circulating GLU13-OCN levels and higher HOMA-IR (Shea et al., 2009). Results from one recent study have indicated that there is a sex-specific action of the bone–energy homoeostasis axis with OCN being associated with improved metabolic state via adiponectin in females, and via testosterone in males (Buday et al., 2013). Direct clinical evidence has been reported for the role of OCN in energy metabolism, via the removal of an OCN-producing osteoid osteoma, which resulted in elevated serum glucose, potentially associated with decreased levels of GLU13-OCN (Confavreux et al., 2012). These conflicting results may be attributable to the lack of a commercially available GLU13-OCN ELISA, or differing methodologies (Ducy, 2011). The potential therapeutic implications of these recent findings have however not yet been fully exploited. Whether the use of OC is efficacious in the treatment of T2DM remains to be determined.

As highlighted in Chapter 4 & 5, the ablation of Phospho1 offers protection against obesity and T2DM in mice, however in Phospho1−/− mice the serum levels of GLU13-OCN were normal, suggesting an OCN-independent mechanism of PHOSPHO1 regulated energy metabolism (Chapter 3 & 6). Therefore as described previously, PHOSPHO1 inhibitors or PHOSPHO1 neutralising antibodies may provide a therapeutic intervention in patients with insulin resistance and T2DM. However, it is important to note that as in addition to the skeletal pathologies such as, spontaneous fractures, bowed long bones, osteomalacia, and scoliosis in early life observed in the Phospho1−/− mice (Chapter 1)(Huesa et al., 2011; Yadav et al., 2011), recent data obtained from our lab suggests that Phospho1−/− mice show subchondral
bone thickening, a hallmark of osteoarthritis (OA) and unquestionably contribute to OA pathogenesis, in addition to severe articular cartilage degeneration and osteophyte formation (unpublished data). As T2DM is associated with various skeletal comorbidities such as joint disorders, PHOSPHO1 may be a challenging drug target resulting in undesirable side effects and therefore any therapeutic approaches using inhibitors will need to be managed very carefully and further research will be required.

Nevertheless, in addition to PHOSPHO1, it seems plausible that other proteins expressed in bone may affect energy metabolism via OCN independent mechanisms, providing further novel drug candidates including AMPK (Jeyabalan et al., 2012), BMPs, GSK3, osteokines (osteocyte-derived factors), sphingolipids and NPP1 (Fig. 7.1) reviewed in (Schulz and Tsen, 2009; Jeyabalan et al., 2012; Oldknow et al., 2015).

In conclusion, this thesis identifies for the first time that Phospho1 deficiency improves the metabolic profile of mice via an OCN-independent mechanism, supporting the notion that further, yet undefined osteoblasts derived hormones contribute to whole body energy regulation via the skeleton. However many questions still remain: does OCN regulate insulin secretion over the short/long term? How does the osteoblast or osteocyte sense and use glucose or other fuels? Do bone cells utilise glucose or amino acids? Does bone fracture increase whole-body energy expenditure? Do osteocytes truly have an effect on energy metabolism? (Fulzele et al., 2007; Fulzele and Clemens, 2012). The complex OCN-dependent and independent mechanisms discussed here are still somewhat in their infancy; therefore it is vital that the research community endeavour to fully establish the mechanisms undelaying these endocrine interactions resulting in the better diagnosis, clinical management and treatment of patients with metabolic diseases.
Chapter 7

Final discussion and future research possibilities

Figure 7.1 The endocrine role of bone: Osteocalcin and beyond

(Arrow key: Solid – accepted; dashed – speculative. Black = known interactions, green = indirect interactions, red = direct interactions, blue = osteokines). A feed forward loop links insulin, bone resorption and OCN activity. Insulin signalling in osteoblasts decreases the expression of *Opg* via decreasing the ratio of *Opg* (a RANKL decoy receptor) to RANKL thus increasing bone resorption by osteoclasts. This osteoclastic bone resorption generates an acidic pH in the resorption lacunae necessary to decarboxylate OCN stored in the bone extracellular matrix. GLU13-OCN is released into the blood stream, affecting glucose metabolism by binding to the OCN receptor (GPRC6A) thus stimulating insulin secretion and β cell proliferation in the pancreas and promoting insulin sensitivity in peripheral organs. In addition, GLU13-OCN promotes male fertility by stimulating testosterone synthesis in leydig cells of the testis through GPRC6A activation. Esp acts as an inhibitor, dephosphorylating the insulin receptor, suppressing the levels of GLU13-OCN. To complete this feed forward loop, peripheral / central tissues (adrenal gland, adipose tissue, pancreas) can further indirectly regulate the release of GLU13-OCN into the peripheral circulation. New emerging evidence suggests in addition, NPP1 can indirectly inhibit GLU13-OCN release via OPG. Independently of OCN, osteoblast specific proteins (PHOSPHO1, AMPK and GSK3β) can influence insulin secretion from β cell functions and adiposity. Osteocyte derived factors - Osteokines, may also be implicated in the endocrine regulation of glucose metabolism (Figure adapted from (Rosen and Motyl, 2010; Ferron and Lacombe, 2014) Published: (Oldknow et al., 2015)
7.2 Direction for future research

The results presented in this thesis have identified that the genetic ablation of Phospho1 results in hypoglycemia, improved glucose and insulin tolerance and offers protection from diet induced fatty liver and obesity in mice. However, further work is necessary to fully elucidate the mechanism underlying this protection in PHOSPHO1 deficiency (Chapter 6) and indeed if this mechanism is truly GLU13-OCN independent. Mouse genetic technology would offer a gateway to the exploration of these questions.

PHOSPHO1 is preferentially expressed by bone, however low protein expression is observed in non-bone organs (e.g. brain and muscle) (Chapter 3), which in its absence could possibly contribute to the insulin sensitive phenotype of Phospho1−/− mice. It would therefore be beneficial to generate a Phospho1−/−Col1a1-Phospho1 mouse model, in which Phospho1 expression is restored in bone (using the Col1a1 promoter – Appendix VII) in a Phospho1−/− global mouse to firmly confirm that the Phospho1−/− insulin sensitive phenotype is osteoblast driven. If this were the case, metabolic normalisation would be observed in this model. Alternatively, it may be found that the insulin sensitivity is not normalised, suggestive that PHOSPHO1 has a new, non-redundant role in non-bone organs. Furthermore, it is unclear if the ablation of Phospho1 expression in the developing embryo can have long lasting effects, effectively “priming” the mice for an insulin sensitive phenotype in later life. To discern if aged Phospho1−/− mice are protected from obesity the study of a tamoxifen inducible Phospho1 knockout model could be of enormous value. Phosphatase, Orphan 1, conditionally ready mice (Tm1a) using ‘knockout-first’ (Phospho1 embryonic stem cell clones are available from the EUCOMM consortium). Mice (Tm1a) could be bred with a FLPE line reverting to the Tm1c allele which is effectively a WT mouse but with a floxed critical exon. Finally, Tm1c mice could be bred with tamoxifen (TM) inducible germ line-Cre-driver mice to permit temporally knock-out Phospho1 expression in all tissues (Hayashi and McMahon, 2002). Both germ line Cre-ER_Tm and FLPE mice are available at The Edinburgh University.
however were unattainable during this PhD and the costs of these experiments would have been prohibitive. It would be beneficial to characterise insulin sensitivity in 35, 120 and 220 day old mice following intraperitoneal injection of TM to ascertain when PHOSPHO1 deficiency is most influential in age related metabolic disease.

Certainly, it would be of benefit to establish the functional role of Esp in Phospho1−/− mice. As described, Esp was more highly expressed in Phospho1−/− osteoblasts (60-fold, \(P < 0.01 \)) indicative of decreased of GLU13-OCN secretion and insulin resistance, however this was not the case in the Phospho1−/− mice (Chapter 3). The generation of Phospho1;Esp double knockout mice would clarify if Esp offers protection against excessive insulin signalling due to increased GLU13-OCN serum levels. Once the role of Esp in mice is established, it would be essential to generate Phospho1;Ocn double knockout mice and conduct metabolic analysis to address if either the increased insulin sensitivity in Phospho1−/− mice is:

I. Truly OCN independent.

II. Due to an initial rise in GLU13-OCN levels which effectively “primes” the Phospho1−/− mice for an insulin sensitive phenotype throughout life. This insulin sensitivity is eventually normalised due to the compensatory increase in Esp expression (Fig. 7.2).
Figure 7.2: Phospho1;Ocn knockout mice phenotypes

If Phospho1 ablation (on an Ocn-/- background) fails to correct the insulin resistance of Ocn-/- mice (line 2) this would suggest that PHOSPHO1's actions are GLU13-OCN dependent (line 4). Alternatively, if Ocn-/- insulin resistance is normalized in Phospho1/Ocn double knockout mice this would imply that the increased insulin sensitivity is GLU13-OCN independent (line 4).
Chapter 7

Final discussion and future research possibilities

It has been hypothesised that PHOSPHO1, together with SMPD3, through the generation and processing of P-Cho (Chapter 6), respectively, network to regulate glucose homeostasis and insulin sensitivity (Stoffel et al., 2005; Oldknow et al., 2015). Indeed SMPD3 may act upstream of PHOSPHO1 within the same metabolic pathway to regulate glucose homeostasis and insulin sensitivity. To investigate this two mice could be generated:

I. Smpd3/Phospho1 double knockout and Smpd3−/− mice.

II. Phospho1−/− and Phospho1−/−Col1a1-Smpd3 mice (Smpd3 is overexpressed in the osteoblasts of Phospho1−/− mice).

If SMPD3 acts upstream of PHOSPHO1 the degree of insulin sensitivity in Smpd3/Phospho1 double knockout and Smpd3−/− mice would be similar, and no correction of insulin sensitivity would be observed in the Phospho1−/−Col1a1-Smpd3 mice. Moreover, ceramide and choline, products of SMPD3 and PHOSPHO1 activity respectively, in excess can cause insulin resistance. Consequently, lower levels of either ceramide or choline due to Smpd3 or Phospho1 ablation may explain the resultant insulin sensitivity (Chapter 6) (Yang et al., 2009; Wu et al., 2013). However, as outlined in this thesis, normal levels of ceramide species were observed in Phospho1−/− mice, however administration of a 2% choline rich normalised the insulin sensitive phenotype in Phospho1−/− mice suggesting that decreased choline may be responsible for the insulin sensitivity observed in Phospho1−/− mice. It is therefore important to quantify total bone and serum choline by mass spectroscopy to ascertain if indeed bone derived choline is indispensable for whole body metabolism.

I have shown that osteoblast secreted candidate(s) regulate energy metabolism in Phospho1−/− mice, however these candidates remain undetected. I have conducted proteomic, lipidomic and in silico analysis with the aim to identify secreted candidates in serum and osteoblast conditioned medium, and for lipids principle
component multivariate data analysis was conducted to establish preliminary lipid classes and their contribution to sample differences (Chapter 6). However it was not possible to fully verify this data by western blotting, siRNA knockdown or microRNA screening. Furthermore, it would also be advantageous to obtain samples from alkaline phosphatase null mice (Alpl\(^{-/-}\); hypomineralised, normoglycaemic), that would act as a control to help eliminate proteins whose expression is altered solely as a result of impaired matrix mineralisation.

Finally, in the thesis, I reported that BAT of Phospho1\(^{-/-}\) mice had markedly reduced fat content and increased nuclei number \((P < 0.05) \). Indeed if the elevated nuclei number translated to increased mitochondria number, the metabolic phenotype observed in Phospho1\(^{-/-}\) mice may be due to alterations in non-shivering thermogenesis. If this is the case, Phospho1 ablation is less likely to have persisting anti-obesity effects at thermoneutrality. Therefore it would be essential to determine if the reduced fat mass and improved metabolic phenotype of Phospho1\(^{-/-}\) mice is a consequence of BAT thermogenesis by comparing energy expenditure in mice maintained at thermoneutrality (30°C) and ambient temperatures (23°C). As I observed no differences in the expression of BAT enriched genes (e.g. Ucp1), this is suggestive that canonical thermogenesis through Ucp1 does not underlie the metabolic protection seen in Phospho1\(^{-/-}\) mice. However, as these experiments were conducted at ambient temperatures (23°C – mice are considered mildly cold-stressed, hyper-metabolic, hypertensive and obesity-resistant). Studying WT and Phospho1\(^{-/-}\) mice at thermoneutrality may lead to the identification of novel genes underlying increased mitochondrial number and improved metabolism with Phospho1 deficiency directly relevant to humans (who spend most of their time at thermoneutrality) (Hayashi and McMahon, 2002). To test if the reduced fat mass and improved metabolic phenotype of Phospho1\(^{-/-}\) mice is a consequence of enhanced sensitivity of the BAT thermogenesis system, mice could be challenged with low temperatures stimulating Ucp1 and engendering an insulin sensitive phenotype. Mice could be exposed to chronic cold exposure from ambient (23°C) to 8°C for 98
hours, then to 4°C for up to 5 weeks. Additionally, acute cold exposure could be used to test the immediate effects of environmental stress, whereby mice could be subject to a 6-hour cold exposure (4°C). Body weight, fat and lean mass (using time domain nuclear magnetic resonance) glucose homeostasis and energy expenditure and BAT mitochondrial activity could also be determined. Specifically, mitochondrial activity in BAT could be assessed through (i) the expression of biomarkers of mitochondrial biogenesis (e.g. PGC-1α & β) and metabolic pathways linked to BAT fat oxidation (e.g. Ucp3, Cpt1b and Pdk4) by RT-qPCR, (ii) the expression of mitochondrial respiratory proteins (e.g. ND6, COX, CII, CIII-CORE2 and CVα) by immunoblotting and (iii) BAT mitochondrial activity (oxidative phosphorylation) and glycolysis by the 24 extracellular Flux Analyzer (Seahorse Bioscience). Furthermore, mitochondrial respiration and glycolysis of primary BAT adipocytes could be assessed using Seahorse technology (Chapter 6).

These proposed experiments would methodically illustrate the complex role of PHOSPHO1 in glycaemic control and energy metabolism. Uncovering the mechanisms whereby PHOSPHO1 impacts energy metabolism is vital, to provide impetus for the development of novel therapeutic and intervention strategies against obesity, T2DM and NAFLD.
Reference list

Chapman S.E. ODV, Mclaughlin W., Proctor S., Leevy M (2011). Dual energy X-ray method for direct visualization and quantitative measurement of peripheral adipose in small animals, Application Note, BRUKER.

References

and biochemical markers in Gaucher disease: implications for the prediction of

hyperinsulinemia is followed by increased serum concentrations of fibroblast
growth factor 23 in type 2 diabetes patients. Scandinavian Journal of Clinical and

bone density and bone turnover in men. Clinical Endocrinology (Oxf) 42(2):141-146.

Effects of peroxisome proliferator-activated receptor-gamma (PPAR gamma)

phosphatidylethanolamine N-methyltransferase-deficient mice via increased

Xiao S, Yu C, Chou X, Yuan W, Wang Y, Bu L, Fu G, Qian M, Yang J, Shi Y, Hu L,
imperfecta 1 with or without progressive hearing loss is associated with distinct
mutations in DSPP. Nature Genetics 27(2):201-204.

Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O'Brien CA (2011). Matrix-

Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS,
Tartaglia LA, Chen H (2003). Chronic inflammation in fat plays a crucial role in the
development of obesity-related insulin resistance. Journal of Clinical Investigation
112(12):1821-1830.

Appendix
Appendix I – Buffers and solutions

Cell culture buffers

Primary osteoblast medium
αMEM with 10% FBS and 0.05mg/ml gentamicin.

FAZA maintenance medium
McCoy’s 5a (1:1), supplemented with 10% FBS, 2mM L-Glutamine and 0.05mg/ml gentamicin.

INS1e maintenance medium
RPMI (1640) (1:1), supplemented with 5% FBS, 2mM Hepes, 50μM β-mercaptoethanol, 1mM pyruvate and 0.05mg/ml gentamicin.

C2C12 maintenance medium
DMEM (d5796 high glucose 4500 mg/L glucose), supplemented with 10% FBS, 2mM L-Glutamine and 0.05mg/ml gentamicin.

C2C12 Differentiation medium
DMEM (d5796) (1:1), supplemented with 1% FBS, 2mM L-Glutamine and 0.05mg/ml gentamicin.

3T3 maintenance medium
DMEM (d5546 low glucose 1000 mg/L glucose), supplemented with 10% foetal bovine serum (FBS), 2mM L-Glutamine and 0.05mg/ml gentamicin.

3T3 Differentiation medium
DMEM (d5796 high glucose 4500 mg/L glucose), supplemented with 10% FBS, 2mM L-Glutamine, 100nM dexamethasone and 0.05mg/ml gentamicin (1st 2-3 days additional IBMX supplementation).
Appendix I
Buffer and solution recipes

Freezing mix 1
60% DMEM/F-12; 20% FBS; 20% DMSO (suitable for standard cell lines)

Freezing mix 2
70% αMEM; 20% FBS; 20% DMSO (suitable for primary calvarial osteoblasts)

Gel Electrophoresis
Tris-Acetic Acid-EDTA (TAE)
40mM Tris, 1mM EDTA, 0.1 % Acetic Acid

Tris-Boric Acid-EDTA (TBE)
(90mM Tris, 2mM EDTA, 90mM boric acid)

Western Blotting
RIPA buffer
20mM Tris-HCl (pH8), 135mM NaCl, 10% Glycerol, 1% IGEPAL, 0.1% SDS, 0.5% Na Deoxycholate, 2mM EDTA

LDS Sample Buffer
10% Glycerol, 141 mM Tris Base, 106 mM Tris HCl, 2% LDS, 0.51 mM EDTA, 0.22 mM SERVA® Blue G250, 0.175 mM Phenol Red, pH 8.5

MOPS running buffer
50 mM MOPS pH 7.7, 50 mM Tris, 0.1% SDS, 1mM EDTA

1X Transfer buffer
100ml 10X transfer buffer, 200ml 98% Ethanol, 700ml dH2O
10X Transfer buffer
29.3mg/ml glycine, 58mg/ml Tris Base (trismethylamine), 18.8μl/ml 20% SDS in dH2O

Tris-Buffered Saline with Tween 20 (TBST)
10mM Tris HCl pH8.0, 150mM NaCl, 0.1% Tween-20

Blocking Solution ECL
5% (w/v) dried milk protein (Marvel) / BSA Faction V in TBST

Pancreas Lysis

Lysis buffer
50mmol/l Tris, pH 7.4, 0.27 mol/l sucrose, 1mmol/l sodium orthovanadate, pH 10, 1mmol/l EDTA, 1mmol/l EGTA, 10mmol/l sodium β-glycerophosphate, 50mmol/l NaF, 5mmol/l sodium pyrophosphate, 1%[wt/vol] Triton X-100, 0.1% [vol/vol] 2-mercaptoethanol, and protease inhibitors—EDTA free tablets (Roche)

Fixatives and histological stains

10% Neutral Buffered Formalin (NBF)
100ml strong formalin, 900ml tap water, 4.0g sodium dihydrogen phosphate, monohydrate (NaH₂PO₄.H₂O) and 6.5g Disodium hydrogen phosphate, anhydrous (Na₂HPO₄)

4% Paraformaldehyde (PFA)
800ml 1x PBS 60°C, 40g paraformaldehyde powder, 1N NaOH added dropwise until the solution cleared, adjust volume to 1L with 1x PBS

Oil-Red-O stock stain
0.5g Oil-Red-O (Cl 26125, Merc Millipore) dissolve in 100ml isopropanol with gentle heat
Appendix I

Buffer and solution recipes

Oil-Red-O working solution
Dilute 30ml stock stain in 20 ml of dH2O, stand and filter

General buffer recipes

Phosphate Buffered Saline (PBS)
140mM NaCl, 2.5mM KCl, 10mM Na₂HPO₄, 1.8mM KH₂PO₄

Hanks Buffered Saline Solution (HBSS)
1.26 mM CaCl₂, 0.493 mM MgCl₂, 0.407 mM MgSO₄, 5.33 mM KCl, 0.441 mM KH₂PO₄, 4.17 mM NaHCO₃, 137.93 mM NaCl, 0.338 mM Na₂HPO₄, 5.56 mM D-Glucose
Appendix II - Antibodies

Primary antibodies

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Species</th>
<th>Source</th>
<th>Use</th>
<th>Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>AKT</td>
<td>Rabbit</td>
<td>Cell Signaling Technology</td>
<td>Western Blotting</td>
<td>1:1000</td>
</tr>
<tr>
<td>ERK</td>
<td>Rabbit</td>
<td>Cell Signaling Technology</td>
<td>Western Blotting</td>
<td>1:1000</td>
</tr>
<tr>
<td>GLUT4</td>
<td>Mouse</td>
<td>(1F8) Cell Signaling Technology</td>
<td>Western Blotting</td>
<td>1:1000</td>
</tr>
<tr>
<td>GSK3β</td>
<td>Rabbit</td>
<td>Cell Signaling Technology</td>
<td>Western Blotting</td>
<td>1:1000</td>
</tr>
<tr>
<td>InsR</td>
<td>Rabbit</td>
<td>Cell Signaling Technology</td>
<td>Immunocytochemistry</td>
<td>1:200</td>
</tr>
<tr>
<td>pAKT</td>
<td>Rabbit</td>
<td>Cell Signaling Technology</td>
<td>Western Blotting</td>
<td>1:1000</td>
</tr>
<tr>
<td>pERK</td>
<td>Rabbit</td>
<td>Cell Signaling Technology</td>
<td>Western Blotting</td>
<td>1:1000</td>
</tr>
<tr>
<td>pGSK3β</td>
<td>Rabbit</td>
<td>Cell Signaling Technology</td>
<td>Western Blotting</td>
<td>1:1000</td>
</tr>
<tr>
<td>PHOSPHO1</td>
<td>Human</td>
<td>AbD Serotec, Bio-rad</td>
<td>Immunohistochemistry</td>
<td>1:200 / 1:1000</td>
</tr>
<tr>
<td>SMPD3</td>
<td>Rabbit</td>
<td>Santa Cruz</td>
<td>Western Blotting</td>
<td>1:1000</td>
</tr>
<tr>
<td>UCP1</td>
<td>Rabbit</td>
<td>Cell Signaling</td>
<td>Western Blotting</td>
<td>1:1000</td>
</tr>
<tr>
<td>β-actin (HRP-linked)</td>
<td>Mouse</td>
<td>Sigma</td>
<td>Western Blotting</td>
<td>1:50000</td>
</tr>
</tbody>
</table>
Secondary antibodies

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Source</th>
<th>Use</th>
<th>Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexa Fluor®488 goat anti mouse</td>
<td>Life Technologies</td>
<td>Immunocytochemistry</td>
<td>1:500</td>
</tr>
<tr>
<td>Alexa Fluor®594 goat anti rabbit</td>
<td>Life Technologies</td>
<td>Immunocytochemistry</td>
<td>1:500</td>
</tr>
<tr>
<td>Goat anti-mouse</td>
<td>Dako</td>
<td>Western Blotting</td>
<td>1:5000</td>
</tr>
<tr>
<td>Goat anti-rabbit</td>
<td>Dako</td>
<td>Western Blotting</td>
<td>1:5000</td>
</tr>
<tr>
<td>Goat anti-human</td>
<td>Dako</td>
<td>Western Blotting</td>
<td>1:5000</td>
</tr>
</tbody>
</table>
Appendix III - Seahorse XF24 Analyzer protocol

<table>
<thead>
<tr>
<th>Command</th>
<th>Time (min)</th>
<th>Parameter</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibrate</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equilibrate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loop Start</td>
<td>3.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mix</td>
<td>3.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wait</td>
<td>2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measure</td>
<td>3.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loop End</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inject A</td>
<td></td>
<td></td>
<td>OLIGO</td>
</tr>
<tr>
<td>Loop Start</td>
<td>3.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mix</td>
<td>3.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wait</td>
<td>2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measure</td>
<td>3.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loop End</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inject B</td>
<td></td>
<td></td>
<td>FCCP</td>
</tr>
<tr>
<td>Loop Start</td>
<td>3.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mix</td>
<td>3.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wait</td>
<td>2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measure</td>
<td>3.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loop End</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inject C</td>
<td></td>
<td></td>
<td>ROT/ANTI</td>
</tr>
<tr>
<td>Loop Start</td>
<td>3.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mix</td>
<td>3.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wait</td>
<td>2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measure</td>
<td>3.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loop End</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix IV - Genotyping

DNA extraction solutions

Solution 1
100ml dH₂O, 40ul of 0.5M EDTA, 0.1g NaOH

Solution 2
96ml dH₂O, 4ml 1M TRIS, Adjust to pH 5.5

Genotyping primers and mutation detail

<table>
<thead>
<tr>
<th>Genotyping Assay</th>
<th>Source</th>
<th>Sequence (5’-3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotyping Assay</td>
<td>INGENOtyping</td>
<td>TCCTCCTCACCTTCGACTTC</td>
</tr>
<tr>
<td>Phospho1_R74X</td>
<td></td>
<td>ATGCGGCGGAATAAAACTGT</td>
</tr>
</tbody>
</table>

Mutation position

5’-GTACATGCAAC/TGAGTCTTTAA-3’

WT: C

Phospho1/+: T

PCR fragment (355 bp):

TCCTCCTCACCTTCGACTTCGATGAGACCATCGTGAGCACGAGAACAGCGACG
ACTCGATCGTGGCCGCCAGCCAGCCAAGCAACTGCCCCAGAGCGCTCGTG
CCACCTATCGCGGAGGCTACTACATGACTAGTGAAAC/TCAGTCTTTAAC
TACCTGGGTTGAGCAGGAGGTTTGCAGCAGCTACAGTGCTGCTACGAG
ACCATCCCCTGTCGCGAGGCAATGGGCAATTGGTTGAGTTTCTACGCTATAGCCAAAC
AGGGGCTCTGCTTCCGAGGTATATTCTCATTTTCGCGATGGGACACACCTCTCGGTGTG
GAGAGTGGCCCTGCGTGCGCTGGCCACCACAGTTTATTCCGCGCAT
Phospho1 genotyping mix
1µl 10x Buffer, 0.5µl 10mM DNTPs, 0.75 µl 50mM MgCl₂, 1µl forward primer, 1µl reverse primer, 1.25µl 1%W, 0.25µl Taq DNA Polymerase and 4.25 µl extracted DNA per reaction.

Phospho1 genotyping programme
(94.0°C 30 sec, 61.0°C 30 sec, 72.0°C 90 sec) x 2
(94.0°C 30 sec, 59.0°C 30 sec, 72.0°C 90 sec) x 2
(94.0°C 30 sec, 57.0°C 30 sec, 72.0°C 90 sec) x 2
(94.0°C 30 sec, 55.0°C 30 sec, 72.0°C 90 sec) x 28
(94.0°C 30 sec, 61.0°C 30 sec, 72.0°C 10 min) End

Phospho1 Restriction mix
0.15µl BSA Faction V, 0.5µl BsrD1 restriction enzyme, 1.5µl NEB buffer and 2.85µl dH₂O. Heat together with PCR product at 65.0°C for 1 hour. Run product on 1.5% agarose gel.
Appendix V – PCR primers

<table>
<thead>
<tr>
<th>Gene</th>
<th>Source</th>
<th>Sequence (5’-3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acadm</td>
<td>PrimerBank</td>
<td>F: AACACACACACTCGAAAGCGG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R: TTCTGCTGTCTCCGTCAACTCA</td>
</tr>
<tr>
<td>Adamts4</td>
<td>PrimerBank</td>
<td>F: ATGGCCTCAATCCATCCCAAG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R: GCAAGCAGGTTGGAATCTTTG</td>
</tr>
<tr>
<td>Adipoq</td>
<td>PrimerBank</td>
<td>F: GGCCCTTCTTCACCTACCG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R: TGGAGGACACAGAGCCAG</td>
</tr>
<tr>
<td>Adipor1</td>
<td>PrimerBank</td>
<td>F: AACGGGCCATCCATTTTG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R: TTAGCCGGGCTACATCAAGG</td>
</tr>
<tr>
<td>Ang</td>
<td>PrimerBank</td>
<td>F: TCAAAAGTAGTGAAGGGACATGGG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R: GGCAGCTATTGTCTTGACAGT</td>
</tr>
<tr>
<td>Atf4</td>
<td>PrimerBank</td>
<td>F: CCTGAACAGCGAAGTGGTG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R: TGGGAACCACTGAAGTCCA</td>
</tr>
<tr>
<td>Atgl</td>
<td>PrimerBank</td>
<td>F: GCCCATGATGGTGCCCTAT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R: CACTCCAAACAAGCGGATGGT</td>
</tr>
<tr>
<td>b3ar</td>
<td>PrimerBank</td>
<td>F: GCCACAGGATAGCCATCCAAT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R: ACGAGGGAGAGGTAAGAGGAGAC</td>
</tr>
<tr>
<td>Bglap</td>
<td>Dr. Dongxing Zhu</td>
<td>F: CCGGGAGCAGGCTGAGCTTA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R: TAGATGCGTTGTAAGGCGGTC</td>
</tr>
<tr>
<td>Bmp4</td>
<td>PrimerBank</td>
<td>F: ATTCCTGGTAAACAGAATG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R: CCGGTCTCAGGTTCAAAACTAGC</td>
</tr>
<tr>
<td>Cd68</td>
<td>PrimerBank</td>
<td>F: CCATCCTTACGATGACACTCT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R: GGCAGGGTTATGAGTGACAGTT</td>
</tr>
<tr>
<td>Cebpa</td>
<td>PrimerBank</td>
<td>F: AACAGAACCAAGTACGGG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R: CACCTCCTGTGCGCTCCAC</td>
</tr>
<tr>
<td>Cfip</td>
<td>PrimerBank</td>
<td>F: CTGCTACTGGTTATCCCTGCA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R: TCTAACCTGATGTCTCTCCCA</td>
</tr>
<tr>
<td>Gene</td>
<td>Source</td>
<td>Sequence (5’-3’)</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Cidea</td>
<td>PrimerBank</td>
<td>F: TGACATTGCGAC
R: GGCGCATTGCGAC</td>
</tr>
<tr>
<td>Clec4d</td>
<td>PrimerBank</td>
<td>F: ACCCGACATCCAAAAGTC
R: CTCTCGTCCAGCATAGGTC</td>
</tr>
<tr>
<td>Col1a1</td>
<td>Qiagen</td>
<td>F: Not disclosed
R: Not disclosed</td>
</tr>
<tr>
<td>Irf20b</td>
<td>PrimerBank</td>
<td>F: GTGGCATTTGAGCAACAAAAGCT
R: GGCAGAGACCCATAACCTAC</td>
</tr>
<tr>
<td>Il1rn</td>
<td>PrimerBank</td>
<td>F: GCTCATTTGCGTTACCTACAA
R: CCAGACTTGGCAACAGAGG</td>
</tr>
<tr>
<td>Insr</td>
<td>PrimerBank</td>
<td>F: CTTGTTATCGAGATGTCC
R: CCCCACCACGCCTCGTGTA</td>
</tr>
<tr>
<td>Lep</td>
<td>PrimerBank</td>
<td>F: ATTTCAACGCAGTGCTAT
R: GGTGAGCCCAGGAATGAAG</td>
</tr>
<tr>
<td>Lpl</td>
<td>PrimerBank</td>
<td>F: TCTGTACGCAGAGTGAG
R: CCTCTCGATGAGCAGAAG</td>
</tr>
<tr>
<td>Lum</td>
<td>PrimerBank</td>
<td>F: CTCTTTGCCTTGGCATTAGCG
R: GGTCATCACAGTACATGGCAG</td>
</tr>
<tr>
<td>Mpeg1</td>
<td>PrimerBank</td>
<td>F: CTGGATGATAATAGCGTGCT
R: AAGAGTAGTGTTTCAACCAG</td>
</tr>
<tr>
<td>Nco6</td>
<td>PrimerBank</td>
<td>F: CTCGCAAGAGCATAAGAGCG
R: CAAGGAAGAGGAGGAAGG</td>
</tr>
<tr>
<td>Pck1</td>
<td>PrimerBank</td>
<td>F: CATATGCTGATCTGGGCAATAAC
R: CAAACTCCATCCAGGCAATGTC</td>
</tr>
<tr>
<td>Pdk4</td>
<td>PrimerBank</td>
<td>F: AGGATTACTGACCCTCCTT
R: CGTCTGCCCATAACCTGAC</td>
</tr>
<tr>
<td>Gene</td>
<td>Source</td>
<td>Sequence (5’-3’)</td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>Phospho1</td>
<td>Primer Design</td>
<td>F: TTTCATTTCCGATGCCCAAACA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R: TGAGGTATGGGCGGAATAA</td>
</tr>
<tr>
<td>Ppara</td>
<td>PrimerBank</td>
<td>F: CCCTGAACATCGAGTGCAGA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R: AATAGTTCGGCGAAGGACGCC</td>
</tr>
<tr>
<td>Pparg</td>
<td>Primer Design</td>
<td>F: CTGCCCTAGCACTTCACAAG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R: CTCTTGATGGAATGTAATTC</td>
</tr>
<tr>
<td>Ppargc1a</td>
<td>PrimerBank</td>
<td>F: CCCTGCAATTGTAAGACC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R: TGCTGCTGTTCCCTGTTC</td>
</tr>
<tr>
<td>Ppargc1b</td>
<td>PrimerBank</td>
<td>F: TCTGTTAAAGCCGGGAGTAT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R: GCTCTGGTAGGGCGAGTGA</td>
</tr>
<tr>
<td>Prdm16</td>
<td>PrimerBank</td>
<td>F: CCTACTTTCCCCACTCCCTTA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R: GCTCAGCCTTGACCAGCA</td>
</tr>
<tr>
<td>Prdx</td>
<td>PrimerBank</td>
<td>F: GCTGCAAGCCGACGTCTGTG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R: CCACTGAGGGAATGGCATTC</td>
</tr>
<tr>
<td>Prkaa2</td>
<td>PrimerBank</td>
<td>F: GTCAAAGCCGACCAATGATA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R: CGTACAGCAAATAATTAGGGGGT</td>
</tr>
<tr>
<td>Ptpn1</td>
<td>PrimerBank</td>
<td>F: ACCGGGTACCTGGTCATCTA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R: CTATGGTAGCTCCCTTAGCC</td>
</tr>
<tr>
<td>Runx2</td>
<td>Dr. Dongxing Zhu</td>
<td>ACCATAACAGTCTTCACAAATCCT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R: ACCATAACAGTCTTCACAAATCCT</td>
</tr>
<tr>
<td>Slc1a3</td>
<td>PrimerBank</td>
<td>F: ACCAAAAAGCAACGGGAAGAG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R: GCCATTCCGAAACAGGTAACCT</td>
</tr>
<tr>
<td>Slc2a1</td>
<td>(Flessner et al., 2012)</td>
<td>F: TCAACACGGCCTTCACTG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R: CACGATGCTCAGATGGACATC</td>
</tr>
<tr>
<td>Slc2a2</td>
<td>(Flessner et al., 2012)</td>
<td>F: TGTGCTGCTGGATAAAATTCCGCTG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R: ACCATGAACCAAGGGATTGGACC</td>
</tr>
<tr>
<td>Gene</td>
<td>Source</td>
<td>Sequence (5’-3’)</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------</td>
<td>------------------</td>
</tr>
</tbody>
</table>
| Slc2a3 | (Flessner et al., 2012) | F: TTCTGGTCGGAATGCTCTTC
 | R: AATGTCCCTGAAAGTCCTGC |
| Slc2a4 | Primer Design | F: CCAGTATGTTCCCGGATGCTAT
 | R: TTTTAGGAAGGTGAAGATGAAGAAG |
| Slc2a5 | ((Flessner et al., 2012) | F: GGCTCATCTTCCTCCCTTATC
 | R: ATGAATGTCCCTGCCCTTGG |
| Slc2a6 | (Flessner et al., 2012) | F: TTGGTGCTGTGAGGCT
 | R: TGGCACAACCTGGACGTA |
| Slc2a8 | (Flessner et al., 2012) | F: TTCATGGCCTTTCTAGTGACC
 | R: GAGTCTGCTTTAGTCTCAG |
| Slc2a9 | (Flessner et al., 2012) | F: TGCTTCCTCGTGCTGCCCAATA
 | R: CTCTGGCAAATGCTGGCTGATT |
| Slc2a10| (Flessner et al., 2012) | F: ACCAAAGACAGTCTTTAGCTG
 | R: ATCTCCAAGCAGCAGGATG |
| Slc2a12| (Flessner et al., 2012) | F: GGGTGCTCCTCTGGTCTTCA
 | R: CCAAGAGCCTCCCTTGTCTC |
| Sp7 | PrimerBank | F: ATGGCGTCCTCTGTGCTTGA
 | R: GAAGGGTGGTAGTCTTTTG |
| Tcirg1 | PrimerBank | F: CTCCTACTTGCTCTCGTGC
 | R: GAGCCCTGTCACATCAACA |
| Ucp1 | PrimerBank | F: GGATGGTGACCCGACAACCT
 | R: AACTCCGGCTGAGAAGATCTTG |
| Ucp2 | PrimerBank | F: AATCTCGGAGGCCACCTTTC
 | R: GAGAATGGGGACTGGCGAGAG |
| Vdr | PrimerBank | F: GAATGTGCGGAGTCTGTGG
 | R: ATGCGGCAATCTCCATTGAAG |
Appendix VI – Ceramide species

<table>
<thead>
<tr>
<th>Ceramide species</th>
<th>Parent Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>C14</td>
<td>510.7</td>
</tr>
<tr>
<td>C16</td>
<td>538.5</td>
</tr>
<tr>
<td>C17</td>
<td>552.5</td>
</tr>
<tr>
<td>C18:1</td>
<td>564.5</td>
</tr>
<tr>
<td>C18:0</td>
<td>566.5</td>
</tr>
<tr>
<td>C20:1</td>
<td>592.6</td>
</tr>
<tr>
<td>C20:0</td>
<td>594.6</td>
</tr>
<tr>
<td>C22:1</td>
<td>620.6</td>
</tr>
<tr>
<td>C22:0</td>
<td>622.6</td>
</tr>
<tr>
<td>C23:0</td>
<td>636.6</td>
</tr>
<tr>
<td>C24:1</td>
<td>648.6</td>
</tr>
<tr>
<td>C24:0</td>
<td>650.6</td>
</tr>
<tr>
<td>C25:1</td>
<td>662.6</td>
</tr>
<tr>
<td>C25:0</td>
<td>664.6</td>
</tr>
</tbody>
</table>
Appendix VII – *Phospho1^{-/-}Col1a1-Phospho1* mice

Generation of Phospho1^{-/-}Col1a1-Phospho1

Genotyping primers

<table>
<thead>
<tr>
<th>Primer</th>
<th>Source</th>
<th>Sequence (5'-3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>Col1a1/F</td>
<td>Dr. Monzur Murshed</td>
<td>CAGCTCTCCATCAAGATGGT</td>
</tr>
<tr>
<td>Beta-g-intron</td>
<td>Dr. Monzur Murshed</td>
<td>CCGGTTTGACTCAGAGTAT</td>
</tr>
</tbody>
</table>