MOLECULAR AND VIROLOGICAL ANALYSIS OF HIV-ASSOCIATED PERSISTENT GENERALISED LYMPHADENOPATHY (PGL)

Archana Reddy

PhD
University of Edinburgh
2001
DECLARATION

I declare that this thesis has been composed by myself and has not been submitted for any other degree. The work described herein is my own except where otherwise indicated and all work of other authors is duly acknowledged.

Archana Reddy

Faculty of Medicine
Department of Medical Microbiology,
University of Edinburgh Medical School
Teviot Place,
Edinburgh,
EH8 9AG
To Vinoo, my sister and parents
ACKNOWLEDGEMENTS

I would like to thank my supervisor Professor Dorothy Crawford for allowing me the opportunity to do this PhD and for all her help, generosity and support. I convey my deepest gratitude and regard to Dr. Tim Crook without whose continual motivation, friendship, guidance (and valuable reagents!) this project would not have been possible.

I am particularly indebted to Dr. Andrew Krajewsky for providing invaluable control material, Ian Bennet for all his patience with my endless sequencing requests and Dr. Louise Brooks for introducing me to SSCP.

It goes without saying that I could not have completed this project without the morale boosting hugs, kindness and support of my family and friends. A special thanks to Karen for her unstinting assistance, Jill and Maurice for their technical advice and expertise, and the rest of the herpesvirus group for providing help (and laughter!) at the times that I needed it the most.

Finally, I would like to acknowledge the financial support provided by the Overseas Research Scholarship Scheme and the University of Edinburgh.
Non-Hodgkin's lymphoma (NHL) represents the second most common cancer affecting individuals infected with Human Immunodeficiency virus (HIV). NHL is 60 to 100 times more likely to develop in AIDS patients than in the general population. The great majority (90-95%) of these are aggressive high-grade B cell lymphomas that respond poorly to chemotherapy, and are associated with a median survival, after diagnosis, of only 4-6 months. Approximately one-third of HIV-infected individuals present early in infection with a syndrome called Persistent generalised lymphadenopathy (PGL). The enlarged lymph nodes of this condition may represent pre-malignant lesions.

The aim of this study was to investigate genetic and virological variables in PGL and to identify early genetic lesions that might be predictive of future lymphoma development in these individuals. Lymph node biopsies from 23 individuals with PGL together with appropriate controls from HIV-uninfected individuals were analysed for alterations in the structure and expression of selected genes.

The results of the study were as follows: i) Mutations in p53 were detected in 26% of HIV-infected individuals. ii) A distinct pattern of p73 and p63 gene expression was observed in the HIV-PGL samples compared to the controls. iii) Structural modifications of the genes on the INK4 locus were absent. iv) Epigenetic silencing of the INK4a, INK4b, and p73 genes was not observed. v) Mutations in bcl-6 were detected in 48% of HIV-infected individuals and in 12.5% of healthy individuals, along with polymorphic substitutions at nucleotides, +753 and +875. vi) Rearrangements of c-myc t(8:14) and bcl-2 t(14:18) were not observed in either the study or control groups except for a single t(8:14) in the lymph node of a healthy individual. vii) EBV DNA was detected in 100% of HIV-infected individuals and in 86% of healthy individuals. KSHV DNA was detected in 8.7% of HIV-infected individuals and in none of the healthy controls. Based on the findings in this study, a speculative model for the molecular pathogenesis of AIDS-NHL is proposed. This model hypothesises that p53 and bcl-6 mutations occur early in lymphomagenesis, whereas activation/deregulation of oncogenes such as c-myc and bcl-2, and/or inactivation of the tumour suppressor genes of the INK4 family constitute later events in the development of AIDS-NHL.
CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iv</td>
</tr>
<tr>
<td>Abstract</td>
<td>v</td>
</tr>
<tr>
<td>Contents</td>
<td>vi</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xv</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xviii</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER ONE: INTRODUCTION

1.1 Human Immunodeficiency virus (HIV)
1.1.1 Structure and genome organisation of the virus
1.1.2 Tropism and spread
1.1.3 Clinical course of HIV infection
1.1.4 HIV-associated Persistent Generalised Lymphadenopathy (PGL)
1.1.4.1 Morphology of lymph nodes in PGL
1.1.4.2 Role of viruses in the pathogenesis of PGL
1.1.5 AIDS-related lymphomas
1.1.5.1 Incidence
1.1.5.2 Histopathological classification of AIDS-NHL
1.1.5.3 Clinical classification of AIDS-NHL
1.1.5.3.1 AIDS-related systemic NHL
 (i) AIDS-related small non-cleaved cell lymphoma (AIDS-SNCCL)
 (ii) AIDS-related diffuse large cell lymphoma (AIDS-DLCL)
1.1.5.3.2 AIDS-related primary central nervous system lymphoma (AIDS-PCNSL)
1.1.5.4 HIV-associated Hodgkin's disease (HIV-HD)
1.1.5.5 Human herpes virus-6 (HHV-6) and AIDS-NHL

1.2 The Cell Cycle

1.3 p53

1.3.1 Structure of p53

1.3.2 Physiological role of p53

1.3.3 The p53 signalling pathway

 (i) Upstream events that signal to p53

 (ii) Downstream effectors of p53 function

1.3.4 The role of p53 in carcinogenesis

1.4 The p53 gene family: Recent additions - p73 and p63

1.4.1 Structural organisation of p73 and p63

1.4.2 Homo- and hetero-oligomerisation of the p53 family

1.4.3 Activation of p63 and p73 by cellular stress signals

1.4.4 Role of the p53 family members in development and cancer

 (i) Role in differentiation and development

 (ii) Role in carcinogenesis

1.5 The INK4 locus

1.5.1 Discovery and structure of p16^{INK4a} and p15^{INK4b}

1.5.2 Alternative product of the INK4a locus: p14^{ARF}/p19^{ARF} (ARF)

1.5.3 Expression and regulation of the INK4 proteins and ARF

1.5.4 Involvement of p16^{INK4a}, p15^{INK4b} and ARF in cancer

 (i) Homozygous deletion

 (ii) Intragenic mutations

 (iii) Promoter silencing by methylation

1.6 Oncogenes

1.7 c-Myc

1.7.1 Discovery of c-myc

1.7.2 Structure of the c-myc gene and protein

1.7.3 c-Myc as a transcription factor

1.7.4 Role of c-Myc in human neoplasia

1.7.4.1 c-myc alterations in BL

1.7.4.2 Regulation of c-Myc in BL
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8 Bcl-2</td>
<td></td>
</tr>
<tr>
<td>1.8.1</td>
<td>Discovery of bcl-2</td>
</tr>
<tr>
<td>1.8.2</td>
<td>Structure of the bcl-2 gene and protein</td>
</tr>
<tr>
<td>1.8.3</td>
<td>The Bcl-2 protein family</td>
</tr>
<tr>
<td>1.8.4</td>
<td>Expression and physiological role of Bcl-2</td>
</tr>
<tr>
<td>1.8.5</td>
<td>Role for the Bcl-2 family members in cell death regulation</td>
</tr>
<tr>
<td>1.8.6</td>
<td>Bcl-2 and the cell cycle</td>
</tr>
<tr>
<td>1.8.7</td>
<td>Involvement of bcl-2 in cancer</td>
</tr>
<tr>
<td>1.8.7.1</td>
<td>bcl-2 alterations in lymphomas</td>
</tr>
<tr>
<td>1.8.7.2</td>
<td>Co-operation between the bcl-2 family and c-Myc and p53 in neoplasia</td>
</tr>
<tr>
<td>1.8.7.3</td>
<td>Prognostic significance of bcl-2 expression</td>
</tr>
<tr>
<td>1.9 Bcl-6</td>
<td></td>
</tr>
<tr>
<td>1.9.1</td>
<td>Cloning and characterisation of bcl-6</td>
</tr>
<tr>
<td>1.9.2</td>
<td>Structure of the bcl-6 gene and protein</td>
</tr>
<tr>
<td>1.9.3</td>
<td>Pattern and regulation of Bcl-6 expression</td>
</tr>
<tr>
<td>1.9.4</td>
<td>Transcriptional repression function of Bcl-6</td>
</tr>
<tr>
<td>1.9.5</td>
<td>Role for Bcl-6 in B and T cell development</td>
</tr>
<tr>
<td>1.9.5.1</td>
<td>Genetic alterations in bcl-6</td>
</tr>
<tr>
<td>1.9.5.2</td>
<td>bcl-6 translocations in NHL</td>
</tr>
<tr>
<td>1.9.5.3</td>
<td>Somatic mutations in bcl-6</td>
</tr>
<tr>
<td>1.9.5.3</td>
<td>Prognostic and histogenetic implications of bcl-6 gene alterations and expression</td>
</tr>
<tr>
<td>1.10 Tumour-associated viruses</td>
<td></td>
</tr>
<tr>
<td>1.11 Epstein-Barr Virus (EBV)</td>
<td></td>
</tr>
<tr>
<td>1.11.1</td>
<td>Genome organisation</td>
</tr>
<tr>
<td>1.11.2</td>
<td>EBV infection of B lymphocytes</td>
</tr>
<tr>
<td>1.11.3</td>
<td>Models of EBV latency</td>
</tr>
<tr>
<td>1.11.4</td>
<td>EBV infection in vivo</td>
</tr>
<tr>
<td>1.11.5</td>
<td>Malignancies in immunosuppressed individuals</td>
</tr>
<tr>
<td>1.11.5.1</td>
<td>AIDS-related Non-Hodgkin's lymphoma (NHL)</td>
</tr>
<tr>
<td>1.12 Kaposi's Sarcoma-associated Herpes Virus (KSHV)</td>
<td></td>
</tr>
<tr>
<td>1.12.1</td>
<td>Genome structure</td>
</tr>
</tbody>
</table>
1.12.2 Gene expression and function 58
1.12.3 In vitro infection of B cells 58
1.12.4 Latent infection 58
1.12.5 KSHV transmission and seroprevalence 59
1.12.6 KSHV-associated diseases in HIV infection 59
 (i) AIDS-associated KS (AIDS-KS) 61
 (ii) Primary effusion lymphoma (PEL) 61
 (iii) Multicentric Castleman's disease (MCD) 62

1.13 Molecular features of AIDS-NHL 63
1.13.1 AIDS-SNCCL 63
1.13.2 AIDS-DLCL 63
1.13.3 AIDS-PCNSL 64
1.13.4 Other genetic lesions associated with AIDS lymphomas 64

AIMS OF THE PROJECT 65

CHAPTER TWO: MATERIALS AND METHODS 66

2.1 Reagents 67
2.2 Equipment 68
2.3 General solutions 68
 2.3.1 DNA size markers 70
 2.3.2 Bacterial strains 70
 2.3.3 Plasmids 71
2.4 Cell culture techniques 71
 2.4.1 Control cell lines 71
 2.4.2 Thawing cells 71
 2.4.3 Culturing cells 72
 2.4.4 Counting cells 72
 2.4.5 Freezing cells 72
2.5 Processing and storing of tissue 72
 2.5.1 Processing of lymph nodes 72
2.5.2 Processing of tonsillar tissue

2.6 DNA extraction and Methods

2.6.1 Extraction of DNA from tissue

(i) Extraction of DNA using the Invitrogen Easy DNA Kit

(ii) Extraction of DNA by the microfuge method

2.6.2 Extraction and purification of DNA from agarose gels

2.6.3 Measurement of DNA/RNA concentration

2.7 RNA extraction and Methods

2.7.1 Isolation of RNA by the RNAzol method

(i) Homogenisation

(ii) RNA precipitation

(iii) RNA wash

2.7.2 First strand cDNA synthesis using Reverse Transcriptase (RT)

2.8 Polymerase Chain Reaction (PCR)

2.8.1 Safe PCR practice

2.8.2 Genomic PCR

2.8.2.1 Primers for the detection of viral DNA and human β-globin

2.8.2.2 Reaction mixture

2.8.2.3 Amplification

2.8.3 Semi-quantitative analysis of EB viral load

2.8.4 KSHV LNA-1 dilution series

2.8.5 Reverse Transcriptase (RT)- PCR

2.8.5.2 Primer pairs and probes for RT-PCR

2.8.5.3 Controls for RT-PCR

2.8.5.4 Reaction mixture

2.8.6 PCR amplification for sequencing using Platinum Pfx DNA Polymerase

2.8.7 Long Distance PCR (LD-PCR)

2.8.7.1 Primers for LD-PCR

2.8.7.2 Control cell lines and templates for LD-PCR

2.8.7.3 Reaction mixture and amplification

2.8.8 "Hot-Start" PCR
2.9 Agarose gel electrophoresis
 2.9.1 Preparation of agarose gels
 2.9.2 Running agarose gels
 2.9.3 Imaging of the gel
2.10 Southern transfer of DNA to nylon membranes
2.11 Pre-Hybridisation of Membranes
2.12 Preparation of radioactive probes
 (i) End-labelled oligonucleotide probes
 (ii) Random-labelled probes
2.13 Hybridisation of 32P-labelled probes to DNA
2.14 Washing and autoradiography
 (i) End-labelled probes
 (ii) Random-labelled probes
2.15 Stripping a membrane for reprobing
2.16 Single strand conformation polymorphism (SSCP)
 2.16.1 Primers for PCR-SSCP analysis of $p53$, $INK4$ genes and $bcl-6$
 2.16.2 Controls for SSCP-PCR
 2.16.3 Amplification
 2.16.4 SSCP-PCR using radioactive 32P and 33P
 2.16.5 SSCP Gel running
2.17 Cloning
 2.17.1 Ligation reactions
 2.17.1.1 $pGEM^®-T$ Vector Systems
 (i) Transformation
 2.17.1.2 $TOPO TA^®$ Cloning Kit for sequencing
 (i) Transformation
 2.17.1.3 The Zero-BluntTM PCR Cloning Kit
 (i) Transformation
 2.17.2 Colony screening
 2.17.3 Minipreparation of plasmid DNA
 2.17.4 Endonuclease restriction digest
2.18 DNA sequencing and analysis
2.18.1 Automated sequencing of double-stranded DNA templates 100
 (i) Sequencing using the Sequitherm Excel™ II Kit 100
2.18.2 Isolation of DNA for sequencing following PCR using $[\alpha^{32}\text{P}] \text{dCTP}$ 100
 (i) Radioactive PCR using $[\alpha^{32}\text{P}] \text{dCTP}$ 101
 (ii) Polyacrylamide gel electrophoresis 101
 (iii) Isolation of DNA fragments 101
 (iv) Re-amplification of DNA 101
 (v) Cloning and sequencing of the re-amplified DNA 102

2.19 Methylation analysis 102
2.19.1 Bisulphite modification of DNA 102
2.19.2 Methylation specific PCR (MSP) 103
2.19.2.1 Primers and reaction mixture 103
2.19.2.2 Amplification 103

2.20 Statistical analysis 104

CHAPTER THREE: RESULTS 105

3.1 Standardisation of study and control material 106
3.1.1 Study and Control Population 106
3.1.2 Standardisation of starting material 106

3.2 Optimisation of PCR parameters 107
 (i) Optimisation of magnesium concentration 108
 (ii) Optimisation of annealing temperature 108
 (iii) Optimisation of primer concentration 110
 (iv) Optimal Taq DNA polymerase concentration 110
 (v) Optimisation of cycle number 112
3.2.1 Summary of optimisation experiments for genomic and RT-PCR 114

3.3 Determination of primer sensitivity for Methylation-specific PCR (MSP) 114

3.4 Optimisation of conditions for Long-Distance (LD)-PCR 115
3.4.1 Optimisation of LD-PCR conditions for the detection of translocations involving the c-myc and bcl-2 genes 117
3.4.1.1 Specificity of primers used for LD-PCR analysis 117
3.4.1.2 Optimisation of Mg2+ concentration for LD-PCR 118
3.3.1.3 Optimisation of annealing temperature for LD-PCR 118
3.3.1.4 Sensitivity of the primers used for LD-PCR analysis 120
 (i) Sensitivity of the primers used for the c-\textit{myc} LD-PCR 120
 (ii) Sensitivity of the primers used for the \textit{bcl-2} LD-PCR 120
3.5 Screening for amplifiable DNA using \(\beta\)-Globin primers 122
3.6 Analysis of the structure and expression of the \(p53\) gene family in PGL 125
 3.6.1 PCR without radioactive \(33\text{P}\) using primers for \(p53\) exons 2-11 125
 3.6.2 Comparison of radio-isotopes \(32\text{P}\) with \(33\text{P}\) for SSCP analysis 128
 3.6.3 SSCP mobility shifts are detected in PGL tissue 130
 3.6.4 Amplification of DNA using a high-fidelity polymerase- \(Pfx\) 130
 3.6.4.1 Optimisation of annealing temperature using \(Pfx\) polymerase 136
 3.6.5 \(p53\) mutations are detected in PGL 136
 3.6.6 Analysis of \(p73\) expression in HIV-PGL and HIV-uninfected tissue 142
 3.6.6.1 Multiple C-terminal isoforms of \(p73\) are expressed in PGL 142
 3.6.6.2 Detection of the alpha and beta isoforms of \(p73\) using colony
 hybridisation and sequencing 142
 3.6.6.3 Detection of \(p73\) isoforms using radioactive PCR and sequencing 145
 3.6.6.4 \(\Delta2\) isoforms of \(p73\) are expressed in both HIV-PGL and normal
 lymph nodes and tonsils 145
 3.6.6.5 Hypermethylation of \(p73\) is not detectable in PGL 145
 3.6.7 Analysis of \(p63\) expression in HIV-PGL and HIV-uninfected tissue 148
 3.6.7.1 TA is the predominant isoform of \(p63\) expressed in lymphoid
 tissue 148
 3.6.7.2 The \(\Delta N\) isoform of \(p63\) is expressed only in HIV-uninfected
 tonsils 151
3.7 Genetic, epigenetic and expression analysis of the \(INK4\) locus in PGL 151
 3.7.1 SSCP analysis of the \(INK4a/ARF\) locus 153
 3.7.2 Analysis of expression of \(p16^{INK4a}\), \(p14^{ARF}\) and \(p15^{INK4b}\) in
 HIV-infected and uninfected tissue
 (i) Expression of \(p16^{INK4a}\) 153
 (ii) Expression of \(p14^{ARF}\) 157
3.7.3 Methylation analysis of p16INK4a and p15INK4b

3.8 Analysis of structural alterations in c-\textit{myc}, \textit{bcl}-2 and \textit{bcl}-6 in PGL

3.8.1 Analysis of the t(8:14) translocation

3.8.2 Analysis of the t(14:18) translocation

3.8.3 Analysis of \textit{bcl}-6 mutations in HIV-PGL

3.8.3.1 SSCP variants in \textit{bcl}-6 are detected in HIV-infected and uninfected tissue

3.8.3.2 Mutations in \textit{bcl}-6 are present at a higher frequency in HIV-PGL than in uninfected control tissue

3.8.3.3 Polymorphic variants in \textit{bcl}-6

3.9 Analysis of EBV and KSHV infection in HIV-PGL

3.9.1 Detection of EBV in HIV-PGL using primers for the BamH1 W repeat sequence

3.9.2 Detection of the presence and expression of KSHV

3.9.2.1 Analysis for the presence of the KSHV genome

3.9.2.2 Expression of a KSHV transcript encoding ORF 72

CHAPTER FOUR: DISCUSSION

4.1 p53 mutations are detectable in some cases of PGL

4.2 Exon 2 deleted isoforms of p73 (\Delta2 p73) are over-expressed in PGL

4.3 Aberrant hypermethylation of p73 is not a feature of PGL

4.4 Over-expression of the TA, but not the \DeltaN isoform of p63 occurs in PGL

4.5 Lack of involvement of the INK4 locus in the pathogenesis of PGL

4.5.1 No evidence for mutation or hypermethylation in \textit{INK4a}

4.5.2 No evidence for abnormalities of p15INK4b in PGL

4.5.3 Analysis of p14ARF in PGL

4.6 Absence of c-\textit{myc}/IgH translocations in PGL

4.7 \textit{bcl}-2/IgH translocations are not detected in PGL

4.8 Mutations in \textit{bcl}-6 are frequently detected in PGL

4.9 EBV is uniformly detectable in PGL

4.10 Analysis of the presence of KSHV
4.11 Conclusions

4.12 A speculative model for AIDS-lymphomagenesis

REFERENCES

Appendix 1 Overview of the genetic, epigenetic and virological analysis in HIV-PGL

Appendix 2 Overview of the genetic, epigenetic and virological analysis in HIV-uninfected lymph nodes and tonsils

Appendix 3 Commercial Suppliers

Appendix 4 Clinical data on HIV-infected individuals with PGL

LIST OF FIGURES

1. Structure of the HIV virion 3
2. Genome organisation of HIV-1 4
3. The Cell Cycle 13
4. Structure of p53 14
5. Signalling to and from p53 17
6. Structural comparison of p53, p63 and p73 22
7. Comparison of the p53, p63 and p73 genes 24
8. The INK4a/ARF locus 28
9. Regulatory mechanisms involving p14ARF and p16INK4a 30
10. Structure and functional domains of c-Myc 36
11. Functions of c-Myc 37
12. c-myc/IgH t(8:14) translocation 39
13. bcl-2/IgH t(14:18) fusion 45
14. Structure of the bcl-6 gene and protein 48
15. Transcription pattern of ORFs 71-73 of KSHV 60
16. Optimisation of Mg²⁺ concentration for RT-PCR using β-actin primers 109
17. Optimisation of annealing temperature for RT-PCR using p15INK4b primers 109
18. Optimisation of primer concentration for RT-PCR using p14ARF primers 111
19. Optimisation of *Taq* polymerase concentration for RT-PCR using p16INK4a primers 111
20. Determination of optimal number of PCR cycles using \(\beta\)-actin primers 113
21. Sensitivity of the MSP analysis for the detection of methylated alleles 116
22. Specificity of primers used for LD-PCR 119
23. Optimisation of Mg2+ concentration for LD-PCR 119
24. Optimisation of annealing temperature for LD-PCR 119
25. Sensitivity of the primers used for the c-myc LD-PCR 121
26. Sensitivity of the primers used for the *bcl-2* LD-PCR 121
27. Screening for amplifiable DNA in PGL tissue using human \(\beta\)-globin primers 123
28A. Screening for amplifiable DNA in normal tonsil tissue preparations using human \(\beta\)-globin primers 124
28B. Screening for amplifiable DNA in normal lymph node tissue preparations using human \(\beta\)-globin primers 124
29A. PCR amplification of exon 5 of *p53* 126
29B. PCR amplification of exon 6 of *p53* 126
29C. PCR amplification of exon 7 of *p53* 127
29D. PCR amplification of exon 8 of *p53* 127
30. SSCP analysis of exon 5 with radioactive phosphorus isotopes \(32\text{P}\) and \(33\text{P}\) 129
30A. SSCP analysis of exon 5 using \([\alpha^{32}\text{P}]\text{dCTP}\) 129
30B. SSCP analysis of exon 5 using \([\alpha^{33}\text{P}]\text{dCTP}\) 129
31. SSCP analysis of exon 2/3 of *p53* 131
32. SSCP analysis of exon 4 of *p53* 131
33. SSCP analysis of exon 5 of *p53* 132
34. SSCP analysis of exon 6 of *p53* 132
35. SSCP analysis of exon 7 of *p53* 133
36. SSCP analysis of exon 8 of *p53* 134
37. SSCP analysis of exon 9 of *p53* 134
38. SSCP analysis of exon 10 of *p53* 135
39. SSCP analysis of exon 11 of *p53* 135
40. Optimisation of annealing temperature using *pfx* polymerase 137
41. PCR amplification of exon 7 using pfx polymerase
42. Sequence analysis of p53
42A. Sequence of LN 1
42B. Sequence of LN 9
42C. Sequence of LN 15
42D. Sequence of LN 16
42E. Sequence of LN 5
42F. Sequence of LN 24
42G. Sequence of LN T6
43. Detection of p73 transcripts in HIV-PGL and HIV-uninfected tissue
44. Colony hybridisation to identify p73 transcripts
45. Restriction enzyme digest of clones that hybridised with the $[\gamma^{32}\text{P}]$ ATP-labelled p73 oligonucleotide
46. Radioactive RT-PCR to detect splice variants of p73
47. Detection of the Δ2 p73 variant in HIV-PGL and HIV-uninfected tissue
48. Methylation status of the p73 gene in HIV-PGL tissue
49. Detection of TA p63 transcripts in HIV-PGL and HIV-uninfected tissue
50. Detection of ΔN p63 transcripts in HIV-PGL and HIV-uninfected tissue
51. SSCP analysis of exon 1α in PGL
52. SSCP analysis of exon 1β in PGL
53. SSCP analysis of exon 2a in PGL
54. Analysis of p16INK4a mRNA in HIV-PGL and HIV-uninfected tissue
55. Determination of optimal cycle number for semi-quantitative analysis of p14ARF expression
56. Analysis of p14ARF mRNA in HIV-PGL and HIV-uninfected tissue
57. Analysis of p15INK4b mRNA in HIV-PGL and HIV-uninfected tissue
58. Methylation status of the p16INK4a gene in HIV-PGL tissue
59. Methylation status of the p15INK4b gene in HIV-PGL tissue
60. Analysis of c-myc translocations by LD-PCR
61. t(8:14) chromosomal breakpoint in an HIV-uninfected lymph node (case no. 2435)
62. Analysis of bcl-2 translocations by LD-PCR 170
63. SSCP analysis of fragment E1.10 of bcl-6 172
64. SSCP analysis of fragment E1.11 of bcl-6 174
65. SSCP analysis of fragment E1.12 of bcl-6 176
66. Sensitivity of the EBV BamHI W primers 183
67. Detection of EBV DNA in HIV-uninfected tissue 183
68. Detection of EBV DNA in HIV-PGL tissue 185
69. Detection of KSHV DNA in HIV-PGL using LNA primers 188
70. Detection of KSHV DNA in HIV-uninfected tissue using LNA primers 188
71. Expression of a KSHV transcript encoding ORF 72 191
72. A speculative model for AIDS-lymphomagenesis 218

LIST OF TABLES

1. Relative risk of AIDS-related lymphoma compared with the general population 8
2. Mode of activation of selected oncogenes in human cancer 34
3. EBV-associated diseases 53
4. Classification and function of selected EBV genes 54
5. Pattern of EBV latency in EBV-associated malignancies 55
6. KSHV gene expression 58
7. Molecular lesions associated with AIDS-NHL 64
8. Control Cell Lines 71
9. Primers and probes for the amplification of EBV, KSHV and human β-globin 78
10. PCR Amplification Programs for the EBV, KSHV and β-globin PCR 78
11. Primer and probe sequences for RT-PCR 80
12. Positive controls for RT-PCR 81
13. RT-PCR Amplification Programs 83
14. LD-PCR primers for the amplification of the c-myc t(8:14) and bcl-2 t(14:18) translocations 85
15. Control cell lines and templates for LD-PCR 86
16. Percentage of Agarose for optimal resolution of DNA 87
17. SSCP-PCR primers for p53 91
18. SSCP-PCR primers for INK4 Locus 92
19. SSCP-PCR primers for bcl-6 92
20. Controls for p53, INK4 locus and bcl-6 SSCP-PCR 93
21. SSCP-PCR Amplification Programs for p53, INK4 locus and bcl-6 94
22. Composition of Roche restriction endonuclease buffers 100
23. Primers for methylation analysis of p16^{INK4a}, p15^{INK4b} and p73 104
24. Standardisation of genomic DNA extraction method 107
25. Summary of published conditions for genomic and RT-PCR 107
26. Summary of optimisation experiments for genomic and RT-PCR 114
27. Error-rates of Taq, Pfu and Pfx polymerase 130
28. Summary of sequence analysis of p53 138
29. Methylation status of p16^{INK4a}, p15^{INK4b} and p73 in BL cell lines Raji and Namalwa 148
30A. Nucleotide substitutions in the bcl-6 intronic region +406 to +670 (E1.10) 178
30B. Nucleotide substitutions in the bcl-6 intronic region +654 to +867 (E1.11) 179
30C. Nucleotide substitutions in the bcl-6 intronic region +848 to +1140 (E1.12) 179
31. Nature of bcl-6 mutations 180
32. Summary of structural changes in bcl-6 fragments E1.10, E1.11 and E1.12 181
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aa</td>
<td>Amino acid</td>
</tr>
<tr>
<td>AIDS</td>
<td>Acquired Immunodeficiency syndrome</td>
</tr>
<tr>
<td>AIDS-BL</td>
<td>AIDS-related Burkitt's lymphoma</td>
</tr>
<tr>
<td>AIDS-BLL</td>
<td>AIDS-related Burkitt's-like lymphoma</td>
</tr>
<tr>
<td>AIDS-DLCL</td>
<td>AIDS-related diffuse large cell lymphoma</td>
</tr>
<tr>
<td>AIDS-NHL</td>
<td>AIDS-related Non-Hodgkin's lymphoma</td>
</tr>
<tr>
<td>AIDS-PCNSL</td>
<td>AIDS-related primary central nervous system lymphoma</td>
</tr>
<tr>
<td>AIDS-SNCL</td>
<td>AIDS-related small non-cleaved cell lymphoma</td>
</tr>
<tr>
<td>ALL</td>
<td>Acute lymphoblastic leukaemia</td>
</tr>
<tr>
<td>AML</td>
<td>Acute myeloid leukaemia</td>
</tr>
<tr>
<td>ARF</td>
<td>Alternate reading frame</td>
</tr>
<tr>
<td>ARL</td>
<td>AIDS-related lymphoma</td>
</tr>
<tr>
<td>ATM</td>
<td>Ataxia telangiectasia mutated gene</td>
</tr>
<tr>
<td>ATR</td>
<td>ATM-Rad51 related protein</td>
</tr>
<tr>
<td>BARTs</td>
<td>BamH1 A rightward transcripts</td>
</tr>
<tr>
<td>b/HLH/Z</td>
<td>Basic/Helix-loop-helix/zipper domain</td>
</tr>
<tr>
<td>BL</td>
<td>Burkitt's lymphoma</td>
</tr>
<tr>
<td>BLL</td>
<td>Burkitt's-like lymphoma</td>
</tr>
<tr>
<td>bp</td>
<td>Base-pair</td>
</tr>
<tr>
<td>BPB</td>
<td>Bromophenol blue</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>Calcium chloride</td>
</tr>
<tr>
<td>CD</td>
<td>Cluster designation</td>
</tr>
<tr>
<td>CDC</td>
<td>Centers for Disease Control</td>
</tr>
<tr>
<td>CDK</td>
<td>Cyclin dependent kinase</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary DNA</td>
</tr>
<tr>
<td>Ci</td>
<td>Curie</td>
</tr>
<tr>
<td>CML</td>
<td>Chronic myeloid leukaemia</td>
</tr>
<tr>
<td>cm²</td>
<td>Centimeter squared</td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
</tbody>
</table>
CTL Cytotoxic T lymphocyte
dATP 2'-Deoxyadenosine 5'-triphosphate
°C Degrees Celsius
dCTP 2'-Deoxycytidine 5'-triphosphate
DEPC Diethylpyrocarbonate
dGTP 2'-Deoxyguanosine 5'-triphosphate
dH2O Distilled water
DMF Dimethylformamide
DMSO Dimethylsulphoxide
DNA Deoxyribonucleic acid
dNTPs Deoxynucleoside 5'-triphosphates
DTT Dithiothreitol
dTTP 2'-Deoxythymidine 5'-triphosphate
EBERs Epstein-Barr encoded RNAs
EBNA Epstein-Barr nuclear antigen
EBV Epstein-Barr virus
EDTA Ethylene diamine-tetraacetic acid
EtBr Ethidium bromide
FCS Fetal calf serum
FITC Fluorescein isothiocyanate
FLICE FADD homologous ICE/CED-3-like protease
FLIP FLICE- inhibitory protein
g G-number
GPCR G protein-coupled receptor
HAART Highly active antiretroviral therapy
HCl Hydrochloric acid
HD Hodgkin's disease
HEPES N-2-Hydroxyethylpiperazine-N'-2-ethanesulfonic acid
HHV-6 Human herpesvirus 6
HIV Human Immunodeficiency virus
hMDM2 human homologue of mouse double-minute
IBL Immunoblastic lymphoma
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFN</td>
<td>Interferon</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunoglobulin</td>
</tr>
<tr>
<td>IgH</td>
<td>Immunoglobulin heavy chain</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>INK4</td>
<td>Inhibitors of cyclin dependent kinase 4</td>
</tr>
<tr>
<td>IPTG</td>
<td>Isopropylthio- β- D galactoside</td>
</tr>
<tr>
<td>kb</td>
<td>Kilobase</td>
</tr>
<tr>
<td>KCl</td>
<td>Potassium chloride</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>Kg</td>
<td>Kilogram (10³)</td>
</tr>
<tr>
<td>KS</td>
<td>Kaposi's sarcoma</td>
</tr>
<tr>
<td>KSHV</td>
<td>Kaposi's sarcoma-associated herpesvirus</td>
</tr>
<tr>
<td>L</td>
<td>Litre</td>
</tr>
<tr>
<td>LB</td>
<td>Luria Bertani medium</td>
</tr>
<tr>
<td>LCL</td>
<td>Lymphoblastoid cell line</td>
</tr>
<tr>
<td>LMP</td>
<td>Latent membrane protein</td>
</tr>
<tr>
<td>LNCCCL</td>
<td>Large non-cleaved cell lymphoma</td>
</tr>
<tr>
<td>LTR</td>
<td>Long Terminal Repeat</td>
</tr>
<tr>
<td>m</td>
<td>Milli (10⁻³)</td>
</tr>
<tr>
<td>M</td>
<td>Molar (moles per litre)</td>
</tr>
<tr>
<td>MALT</td>
<td>Mucosa-associated lymphoma tissue</td>
</tr>
<tr>
<td>MCD</td>
<td>Multicentric Castleman's disease</td>
</tr>
<tr>
<td>MDM2</td>
<td>Mouse double-minute</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>Magnesium chloride</td>
</tr>
<tr>
<td>μ</td>
<td>Micro (10⁻⁶)</td>
</tr>
<tr>
<td>ml</td>
<td>Millilitre</td>
</tr>
<tr>
<td>ML</td>
<td>Myeloid leukaemia</td>
</tr>
<tr>
<td>MM</td>
<td>Multiple myeloma</td>
</tr>
<tr>
<td>MMLV-RT</td>
<td>Moloney Murine Leukemia Virus reverse transcriptase</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger RNA</td>
</tr>
<tr>
<td>n</td>
<td>Nano (10⁻⁹)</td>
</tr>
</tbody>
</table>
NaCl Sodium chloride
NaHCO₃ Sodium bicarbonate
NaOH Sodium hydroxide
NHL Non-Hodgkin's lymphoma
NPC Nasopharyngeal carcinoma
OD Optical density
ORF Open reading frame
p Pico (10⁻¹²)
PBMCs Peripheral blood mononuclear cells
PBS Phosphate buffered saline
PEL Primary effusion lymphoma
PGL Persistent generalised lymphadenopathy
POZ poxvirus and zinc finger domain
PTLD Post-transplant lymphoproliferative disorder
PVP Polyvinylpyrolidone
RNA Ribonucleic acid
RNase Ribonuclease
rpm Revolutions per minute
RPMI Roswell Park Memorial Institute
RT Reverse transcriptase
SDS Sodium dodecyl sulphate
SDW Sterile distilled water
SSC Standard saline citrate
TE Tris-EDTA
TEMED N₂N₂N',N'-Tetramethylethylenediamine
TGFβ Transforming growth factor β
Tris Tris (hydroxymethyl) aminomethane
Tween20 Polyoxethylene(20)-sorbitan monolaurate
UV Ultraviolet
v/v Volume per volume
w/v Weight per volume
X-Gal 5-bromo-4-chloro-3-indolyl-β-D-galactoside
CHAPTER ONE

INTRODUCTION
1.1 Human Immunodeficiency virus (HIV)

The World Health Organisation (WHO) and the Joint United Nations Programme on HIV/AIDS (UNAIDS) estimated that at the end of 2000 over 36.1 million people were living with the Human Immunodeficiency virus (HIV), with 5.3 million new infections occurring world-wide in that year alone (UNAIDS/WHO, 2000). HIV belongs to the family Retroviridae and subfamily Lentivirinae. Since its discovery, (Barre-Sinoussi et al., 1983; Gallo et al., 1984) this retrovirus, recognised because of its association with AIDS, has claimed more than 21 million lives (UNAIDS/WHO, 2000). However, with the inception of highly active antiretroviral therapy (HAART), or triple "cocktail" therapy in 1995, deaths from AIDS in the United States have declined by 44%, along with the frequency of hospitalisations and the incidence of major AIDS-related opportunistic infections (Palella et al., 1998). However, in developing countries the full impact of HAART has not been realised due to cost implications, and hence HIV continues to be a major cause of infectious death in these countries.

1.1.1 Structure and genome organisation of the virus

The structure of the virus is depicted in Figure 1 and reviewed in (Levy, 1993; Luciw, 1996; see figure 1). The HIV genome is about 9.8kb in length and is comprised of nine genes that are flanked by long terminal repeat (LTR) elements (figure 2). These include the gag, pol and env genes that are common to all replication-competent retroviruses as well as the regulatory genes Tat and Rev and the accessory genes Nef, Vif, Vpr and Vpu. The protein products of these genes are translated from different RNAs produced through the use of ribosomal frame-shifting and alternative splice sites (reviewed in Luciw, 1996; see figure 2).

1.1.2 Tropism and spread

HIV primarily infects activated CD4+ cells (T-cell tropic) through binding of viral gp120 to the CD4 molecule, and terminally differentiated cells of the macrophage lineage (M-tropic). The virus however, has a diverse cellular host range (reviewed in Levy, 1993). Sequence variation within a region of the gp120 molecule, called the
The HIV virion is spherical with a diameter of approximately 110nm. A lipid bilayer envelope encapsulates a cone-shaped core. Projecting from the envelope surface are 72 knob-like structures, which are heterodimers of the envelope glycoproteins, gp120 and gp41. The core contains two identical molecules of single-stranded RNA, with which the virally encoded enzymes, RNA-dependent DNA polymerase or reverse transcriptase (RT), integrase (IN) and protease (PR), are associated. The protein products of the gag polyprotein gene provide the structure and integrity of the virion. They include the matrix protein (MA), located between the nucleocapsid and the envelope, the capsid protein (CA), and the nucleocapsid protein (NC) that is closely coupled with the RNA genome.

Adapted from Fields Virology, Edited by Fields et al., 1996, Philadelphia: Lipincott-Raven.
The **gag**, **pol** and **env** genes constitute the virion structural genes and are heavily shaded. The accessory genes **vif**, **vpu**, **vpr** and **nef** are shown in grey and the regulatory genes include **tat** (black boxes) and **rev** (striped boxes). The 5' and 3' LTR regions are shown as open boxes.

LTR: Long terminal repeat

Adapted from *Fields Virology*, Edited by Fields et al., 1996, Philadelphia: Lipincott-Raven
V3 loop plays an important role in influencing biological properties of the virus such as cell tropism, syncytium formation, infectivity and cytopathicity (Stamatatos and Cheng-Mayer 1993; Willey et al., 1994).

HIV can be transmitted both vertically (mother to child) and horizontally through sexual exposure, contaminated blood and blood products, or sharing of needles by intravenous drug users (IVDUs) (reviewed in Levy, 1993).

1.1.3 Clinical course of HIV infection

Primary infection provokes an acute mononucleosis-like illness with fever, sore throat, headache, rash, lymphadenopathy and malaise, which lasts between 1-3 weeks. This phase is characterised by high-level virus replication in the activated lymphocytes in the lymph nodes, simultaneous with a transient decrease in CD4\(^+\) cell counts and increase in CD8\(^+\) cell numbers.

A marked reduction in viremia due to a highly active cytotoxic T cell (CTL) immune response and a rise in CD4\(^+\) T cell numbers coincide with the clinically latent or asymptomatic period, which averages around 10 years (Bacchetti and Moss, 1989). Neutralising antibodies, particularly against the V3 loop of gp120 are detectable after seroconversion, although they are not as effective as the cellular response in the control of viral infection. During this period equilibrium is established between the virus and host immunity, and the set point of this steady state predicts clinical outcome. Thus, low viral load correlates with long clinical latency whereas a high viral burden predicts a short latent period (Mellors et al., 1996). Viral replication, however, continues over the entire course of infection (Ho et al., 1995) with proviral load in the lymphoid tissues being 5-10 times greater than in peripheral blood, suggesting that the lymphoid germinal centres serve as important reservoirs of viral RNA (Pantaleo et al., 1993).

The terminal phase of HIV infection, characterised by the onset of AIDS, is marked by a sudden increase in viremia due to decline in host CTL immune responses. Progressive depletion of CD4\(^+\) T cells is the defining feature of immunodeficiency (Lang et al., 1989). At this stage opportunistic infections and/or malignancies occur and death ensues in an average of 15 months.
1.1.4 HIV-associated Persistent Generalised Lymphadenopathy (PGL)

PGL is a frequent finding of early HIV infection, and is present in more than one-third of infected patients in some studies (Gerstoft et al., 1987; Metroka et al., 1983). PGL is defined by the Centers for Disease Control (CDC) as "unexplained lymphadenopathy of longer than 3 months duration, in two or more extrainguinal sites, in the absence of any intercurrent illnesses known to cause adenopathy".

1.1.4.1 Morphology of lymph nodes in PGL

Morphologically the abnormal lymph nodes exhibit a characteristic B cell hyperplasia and dysplasia (Meyer et al., 1984). Distinct histological stages (I to III) have been described, although the change may be gradual, with lack of clear markers of transition from one stage to the next.

Stage I is characterised by florid follicular hyperplasia, with mantle zone depletion and lymphocyte infiltration, particularly CD8+ T cells, which frequently invade and fragment the follicular centres. The lymph node sinuses frequently contain clusters of monocytoid B cells, which represent reactive B lymphocytes derived from the marginal zone. Stage II is characterised by a decrease in the number of follicles with the remainder showing involution. This is accompanied by a decrease in lymphocytes and an increase in plasma cells in the interfollicular areas. In Stage III there is complete destruction of lymph node architecture with remnants of the dendritic reticulum cells. The "burned-out" lymph nodes are usually small and depleted of both T and B lymphocytes.

Follicular hyperplasia, with follicular fragmentation and disruption are non-specific changes commonly seen in a number of benign conditions and immunodeficiencies. However, thinning of the mantle zone and marked depletion of the lymphocytes is pathognomonic of HIV lymphadenitis, and may be used in the differential diagnosis of this syndrome (Chadburn et al., 1989; Jaffe et al., 1985; Pallesen et al., 1987). A further distinguishing feature of lymphadenopathy in HIV-infected individuals is the increased production of interferon γ (IFN-γ) by the CD8+ cells of these lymph nodes, which is believed to promote B cell proliferation (Boyle et al., 1993).

The clinical and immunological status at the time of biopsy in HIV-infected PGL individuals correlates significantly with histological lymph node changes. In the
study by Gerstoft et al., all patients with opportunistic infections and AIDS-related complex were found to have Stage III histology. Furthermore, they also had significantly fewer CD4+ cells and inverted CD4+:CD8+ ratios compared to Stage I individuals. Consistent with the polyclonal hypergammaglobulinemia observed in these patients, serum IgA and IgM levels were significantly higher in Stage III individuals compared with Stage I individuals, perhaps reflecting secondary infection with opportunistic pathogens (Gerstoft et al., 1987).

1.1.4.2 Role of viruses in the pathogenesis of PGL
Only limited studies have been carried out to investigate the role of B cell tropic viruses such as Epstein-Barr virus (EBV) in the germinal centre B cell activation and hyperproliferation that is characteristic of PGL. Using molecular and in situ techniques, some investigators have suggested that the B cells of these abnormal nodes are very rarely infected with EBV or HIV (Boyle et al., 1992; Uccini et al., 1989). These findings however, were contradicted by the detection of EBV and HIV in PGL lymph nodes using sensitive PCR techniques (Ometto et al., 1997; Shibata et al., 1991; Armstrong and Horne 1984; Tenner-Racz et al., 1986). Despite detection of these viruses in the lymph nodes of individuals with PGL, there is no direct evidence suggesting that they contribute to the B cell proliferation observed.

1.1.5 AIDS-related lymphomas (ARL)

1.1.5.1 Incidence
Lymphoma was incorporated into the CDC case definition of AIDS in 1985, and is now recognised as the second most common malignancy affecting HIV-positive women and homosexual men (second only to Kaposi's sarcoma [KS]), and the most frequently diagnosed cancer in other HIV transmission groups (CDC, 1985; Beral and Newton 1998).

The National Cancer Institute (NCI) estimates that between 8% and 27% of the approximately 50,000 cases of Non-Hodgkin's lymphomas (NHL) diagnosed yearly in the United States are HIV-related (Gail et al., 1991). HIV-infected individuals are 60 times more likely to develop NHL (Beral, 1991), and 10 times more likely to
to develop Hodgkin's disease (HD) than the general population (Beral, 1991; see Table 1). Although the advent of HAART has been associated with a significant decline in common HIV-1 associated opportunistic infections and KS, the effect of HAART on AIDS-related NHL (AIDS-NHL) is still unclear (Palella et al., 1998).

Table 1
Relative risk of AIDS-related lymphoma compared with the general population

<table>
<thead>
<tr>
<th>Lymphoma type</th>
<th>Relative risk (Fold-increase over general population)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Hodgkin's lymphoma</td>
<td>60</td>
</tr>
<tr>
<td>Burkitt's</td>
<td>220</td>
</tr>
<tr>
<td>Diffuse large-cell</td>
<td>145</td>
</tr>
<tr>
<td>Immunoblastic</td>
<td>627</td>
</tr>
<tr>
<td>Primary central nervous system</td>
<td>1000</td>
</tr>
<tr>
<td>Hodgkin's disease</td>
<td>10</td>
</tr>
</tbody>
</table>

Adapted from Beral and Newton (1998) and Levine (2000).

1.1.5.2 Histopathological classification of AIDS-NHL
90-95% of AIDS lymphomas are of B cell origin, and comprise a spectrum of lesions ranging from polyclonal lymphoid hyperplasia to high-grade malignancies most frequently of the diffuse large-cell type (Levine et al., 1985). The two most common histological types of AIDS-NHL are diffuse large-cell lymphomas (AIDS-DLCL) and small non-cleaved cell lymphomas (AIDS-SNCL) that differ in regard to the time of onset, EBV positivity, molecular genetic features, and histogenetic derivation. Anaplastic CD30+ large-cell lymphomas (Nosari et al., 1996), as well as primary effusion lymphomas containing KSHV (Cesarman et al., 1995) have also been described in the spectrum of AIDS-NHL, but are less frequently observed.

1.1.5.3 Clinical classification of AIDS-NHL
In addition to the histological classification described above, AIDS-NHL may also be broadly classified on the primary site of presentation as systemic lymphoma, constituting 80% of all AIDS-NHL, and central nervous system (CNS) lymphoma comprising the remaining 20%. Clinically, disease presentation is that of an aggressive tumour with frequent extranodal involvement and poor response to
chemotherapy. Prognosis of patients with AIDS-NHL has been associated with extent of disease and extranodal involvement, severity of underlying immunodeficiency (measured by CD4+ lymphocyte count in the peripheral blood) and prior AIDS diagnosis (history of opportunistic infection or KS). Individuals with CNS lymphoma have more severe underlying disease than those with systemic lymphomas as shown by higher incidence of prior AIDS diagnoses (73% vs. 37%), lower median CD4+ cell count (30/dL versus 189/dL), and a worse median survival time (2.5 months vs. 6.0 months) (Levine et al., 1991).

1.1.5.3.1 AIDS-related systemic NHL
Systemic NHLs arise in patients with a wide range of immune function. 70% of cases occur in persons with a CD4+ lymphocyte count higher than 50x10^6/L and approximately 30% in persons with a CD4+ count in excess of 200x10^6/L (Levine et al., 1991). Extranodal presentation commonly occurs (87-95% of individuals) at a variety of sites. The CNS, bone marrow, gastrointestinal tract and liver are involved in 42%, 33% 27% and 12% of cases respectively. The vast majority of patients present with systemic 'B' symptoms, which include unexplained fever, drenching night sweats and/or weight loss in excess of 10% of normal body weight (Kaplan et al., 1989). Prognostic criteria predicting shorter survival in patients with AIDS-NHL constitute age greater than 35 years, CD4+ count less than 100x10^6/L, elevated serum LDH levels and history of intravenous drug use (Straus et al., 1998). Treatment of systemic disease is problematic, although recently, combination chemotherapy in conjunction with HAART has been found to improve prognosis (Ratner et al., 2001).

(i) AIDS-related small non-cleaved cell lymphoma (AIDS-SNCCL)
These lymphomas represent 20-30% of AIDS-NHL, and develop in the presence of relatively high CD4+ counts (>200x10^6/L) (Boyle et al., 1990). According to the Revised European American Lymphoma (REAL) classification, SNCCL is further categorised into Burkitt's lymphoma (BL) or high-grade Burkitt's-like lymphoma (BLL) (Chan et al., 1994). AIDS-BLL is a distinct histological entity and morphologically intermediate between typical BL and DLCL, with immunoblastic features (Carbone et al., 1995).
AIDS-related diffuse large cell lymphoma (AIDS-DLCL)
AIDS-DLCL is sub-divided into AIDS-related large non-cleaved cell lymphoma (LNCCCL) and AIDS-related immunoblastic lymphoma (IBL), and constitutes approximately 70% of AIDS-NHL (Gaidano and Dalla-Favera 1995). These lymphomas arise in the setting of severe immunosuppression and are more heterogeneous than AIDS-SNCCCL (Boyle et al., 1990).

1.1.5.3.2 AIDS-related primary central nervous system lymphoma (AIDS-PCNSL)
These tumours predominantly have a large-cell histology (Camilleri-Broet et al., 1997) and arise in the advanced stages of HIV infection when CD4+ T lymphocyte counts fall below 50x10^6/L. Up to 75% of these individuals exhibit a previous AIDS-defining diagnosis, in contrast to those with systemic lymphoma (37%) (Levine et al., 1991).
PCNSL lesions usually occur as solitary or multiple parenchymal lesions in a perivascular cuffing pattern (Camilleri-Broet et al., 1997). About half of the patients diagnosed with PCNSL present with focal neurological problems such as seizures, headache, memory loss, as well as systemic symptoms of diarrhoea, weight loss and fatigue (Rosenblum et al., 1988). Symptoms are often indistinguishable from those of an opportunistic infection, central nervous system toxoplasmosis. Traditional treatment involves corticosteroids, followed by whole-brain radiation, but a key aspect of control is immune restoration in these patients through HAART (McGowan and Shah, 1998).

1.1.5.4 HIV-associated Hodgkin's disease (HIV-HD)
Unlike NHL and KS in the setting of HIV-associated immunodeficiency, Hodgkin's disease is not considered an AIDS-defining diagnosis by the CDC (CDC, 1993). Although most patients have not had an AIDS-defining diagnosis prior to the onset of HD, between 36-83% have had a history of PGL (Andrieu et al., 1993). HIV-HD is usually aggressive, with widely disseminated disease and bone marrow involvement in up to 50% of cases (Rubio, 1994). Most patients present with mixed cellularity or lymphocyte-depleted Hodgkin's disease, systemic 'B' symptoms, and a
median CD4\(^+\) count of 300x10\(^6\)/L or less. Median survival time is between 8 and 18 months. Death in these patients is not due to Hodgkin's disease (most patients respond to chemotherapy regimens and granulocyte colony stimulating factor), but rather to opportunistic infections or other HIV-related malignancies (Levine, 1998).

1.1.5.5 Human herpes virus-6 (HHV-6) and AIDS-NHL
A causative role for HHV-6 in AIDS-NHL has been suggested (Corbellino et al., 1993; Lusso and Gallo, 1994). Although low copy numbers of HHV-6 DNA have been found in lymphadenopathies associated with HIV infection, the prevalence of HHV-6 DNA in B cell AIDS-NHL was found to be lower or similar to that observed in lymphoproliferative disorders from HIV-uninfected individuals (Dolcetti et al., 1996; Fillet et al., 1995). These studies therefore argue against a strong association between HHV-6 infection and pathogenesis of AIDS-NHL.

1.2 The Cell Cycle

The cell cycle is typically characterised by four stages: \textbf{G1-S-G2-M}; G1 and G2 signify the gap phases of the cycle, S the phase of DNA synthesis and M the mitotic phase. In addition to these 4 phases there are two major control points: one towards the end of G1, known as the restriction point, and the other at the initiation of mitosis. G2 cells deprived of growth factors before the restriction point exit the cell cycle and enter G0.

Homeostasis in an organism is maintained by a fine balance between cell proliferation and cell death, both of which are controlled by the sequential assembly and activation/inactivation of crucial cell cycle regulators. Some of the genes encoding these growth regulators are directly involved in tumourigenesis and constitute the cancer-related genes such as the oncogenes, tumour suppressor genes, apoptosis regulators and DNA repair genes.

Tumour suppressor genes, refers to a group of growth regulators that are capable of suppressing tumour formation. Knudson's two-hit hypothesis for tumour suppressors requires inactivation of both alleles by deletion or mutation, before loss of function can occur (Knudson, 1971). A mutated tumour suppressor gene comprises one of
many selected genetic events found in cancer progression, and may serve either as an *initiator* (in the case of germline mutation) or a *progressor* in tumour progression. Sections 1.3 to 1.5 will focus on the tumour suppressor genes, *p53*, the *INK4* family (*INK4a, INK4b* and *ARF*), and the newly discovered *p53* family members, *p63* and *p73*, some of which are believed to contribute to the pathogenesis of AIDS-NHL. *p53* and *ARF* function both at the restriction point and at the mitotic checkpoint, whereas the *INK4a* and *INK4b* genes and their protein products p16_{INK4a} and p15_{INK4b} have a key role in regulating G1/S transition (see sections 1.3 to 1.5 and figure 3).

1.3 *p53*

TP53 is the most intensively studied gene in cancer biology. Its protein product, *p53*, was first identified (in 1979), as a cellular protein tightly complexed to simian virus 40 large T antigen (SV40T) (Lane and Crawford, 1979). *p53* is now known to be a pivotal regulatory protein, a potent tumour suppressor and a multifunctional homotetrameric transcription factor (reviewed in Levine, 1997).

1.3.1 Structure of *p53*

TP53, found on chromosome 17p13 is 20kb in length and has 11 exons, the 1st of which is non-coding. The gene gives rise to a 2.8kb mRNA transcript, which encodes a 53 kilodalton (kDa) nuclear phosphoprotein, of 393 amino acids (aa) (Lamb and Crawford, 1986). Sequence analysis has revealed the existence of five evolutionarily conserved domains in exons 1,4,5,7 and 8 (Soussi *et al.*, 1990 and see figure 4).

The protein is divided structurally and functionally into three domains: the transactivation domain, the sequence-specific DNA-binding domain and the oligomerisation domain. The first 42aa constitute the acidic N-terminal transcriptional activation domain that allows *p53* to recruit basic transcriptional machinery and subsequently activate expression of target genes. This region is also critical for regulating the stability and activity of *p53* via interactions with proteins such as the human form (hMDM2) of the mouse double-minute (MDM2) protein and viral oncoproteins (Lin *et al.*, 1995; Lohrum and Vousden, 1999). The core domain localised between aa residues 102 and 292 is principally involved in the sequence...
Schematic representation of the cell cycle indicating the points of action of p53 and its family members, p63 and p73, as well as members of the INK4 gene family, p16^INK4a, p14^ARF and p15^INK4b. The 4 stages of the cell cycle are depicted as G1 (Gap phase 1), S (DNA synthesis), G2 (Gap phase 2) and M (mitosis). G0 represents point of exit of the cell from the cell cycle. The green triangles represent the direction of the cell cycle. The p53 and p14^ARF tumour suppressor proteins function both at the G1/S and G2/M checkpoints. p53 acts to arrest the cell cycle at both these checkpoints by inducing either growth arrest or apoptosis, whereas p14^ARF can arrest the cell cycle via p53-dependent and independent pathways. The INK4 proteins (p16^INK4a and p15^INK4b) specifically bind to and inhibit the kinase activities of CDK4/6 and their association with the D-type cyclins. This interaction prevents the phosphorylation of pRb (and release of E2F), the primary substrate of the cyclin/CDK4 complex, with subsequent growth arrest at G1. Similar to p53, p73 can arrest cells at G1. The role of p63 in the progression of the cell through the cell cycle is presently unknown.

R point: Restriction point
pRb: Retinoblastoma protein
? : unclear
The p53 protein has 11 exons and is composed of 393 amino acids. The 1st exon, which is non-coding, is not shown. Amino acid numbers comprising each exon are shown above the protein. The protein is divided functionally into 3 domains: the N-terminal transactivation domain, the core sequence-specific DNA-binding domain and the C-terminal oligomerisation domain. The five evolutionarily conserved regions (I-V) of the protein are indicated by grey cylinders and pale pink boxes. Mutation "hot-spots" within regions III-V, are shown in red. The SH3 binding region, separating the N-terminus and the core domain, and a 30 amino acid region rich in basic residues at the extreme C-terminus are also indicated.
specific DNA binding function of p53. The minimal p53 binding site consists of 2 copies of the consensus sequence 5'-PuPuPuC(A/T) (T/A)GPyPyPy-3', separated by 0-13 base pairs (el Deiry et al., 1992). A region of proline repeats that allows interactions with signal transduction molecules containing a src-homology binding region, separates this domain from the N-terminus (Gorina and Pavletich, 1996; see figure 4).

Sequence-specific binding by the core domain is negatively regulated by the C-terminus, which can bind DNA non-specifically (Wang et al., 1993). Such inhibitory activity is relieved upon exposure to stress, which results in increased DNA binding (Hupp and Lane, 1995). The C-terminus is further sub-divided into three regions; a flexible linker connecting the DNA binding domain to the oligomerisation domain, the oligomerisation domain (aa residues 320 to 360) and a regulatory region (30aa) composed predominantly of basic residues. The basic region can allosterically regulate conversion of p53 from the latent form (with respect to DNA binding) to one that is active for sequence-specific DNA binding (Hupp and Lane, 1994). This region also serves to recognise DNA damage and promote DNA strand re-annealing (Gottlieb and Oren, 1996).

1.3.2 Physiological role of p53
In unstressed cells, p53 is expressed at low levels and has a short half-life due to rapid turnover mediated by ubiquitination and proteolysis. The protein is stabilised following various cellular stresses, including ionising and ultraviolet radiation, DNA damage, hypoxia, ribonucleotide depletion, binding of viral proteins (SV40T, Adenovirus E1B) and deregulated expression of oncogenes (e.g ras, c-myc and E2F) (Lohrum and Vousden, 1999). The activation of p53 allows it to carry out its growth regulatory function(s) such as cell-cycle arrest, apoptosis, DNA repair, inhibition of DNA replication, senescence, differentiation, and anti-angiogenesis (Levine, 1997). A major regulator of p53 levels in normal cells is hMDM2, which functions as an E3 ubiquitin ligase (Kubbutat et al., 1997) and negatively regulates p53 in an autoregulatory feedback loop (Wu et al., 1993). This protein mediates shuttling of p53 from the nucleus to the cytoplasm where it is degraded by ubiquitin-mediated proteolysis (Haupt et al., 1997; Kubbutat et al., 1997), and this requires the
interaction of hMDM2 with a transcriptional co-activator p300 (Grossman et al., 1998). Proteolysis of p53 by this mechanism can be rescued by an alternative protein product of the INK4a locus, p14ARF (ARF), which binds and represses hMDM2 (Pomerantz et al., 1998; Ko and Prives, 1996; see below).

1.3.3 The p53 signalling pathway

p53 functions to integrate cellular responses to stress and effects growth arrest and apoptosis through transactivation of target genes (see below and figure 5).

(i) Upstream events that signal to p53

There is now accumulating evidence that DNA damage and stress stimuli lead to the phosphorylation of p53 at both the N- and C-termini. Such modifications both stabilise the wild-type protein and increase its activity. These phosphorylation events are effected by serine and threonine kinases, including ATM, ATR, and CHK2 (Canman et al., 1998; Tibbetts et al., 1999; Hirao et al., 2000). N-terminal phosphorylation is believed to induce conformational changes that affect the interaction of p53 with other proteins, including hMDM2 (Shieh et al., 1997). In addition, covalent modification at regulatory sites within the C-terminus, such as phosphorylation, O-glycosylation and acetylation, is known to stimulate DNA binding by the central core region (Jayaraman and Prives, 1999). Furthermore, p53 appears to be connected to DNA repair processes through non-covalent modification of the C-terminus by components of the DNA repair machinery such as Rad51 and Ref1 (Jayaraman and Prives, 1999; Prives and Hall, 1999).

(ii) Downstream effectors of p53 function

p53 functions primarily as a transcriptional regulator (Crook et al., 1994) and its activity is profoundly influenced by several co-activator and co-repressor proteins. Considerable complexity and cell-type differences exist in the spectrum of genes that are regulated by p53. The diverse biological functions of p53 (Levine, 1997; Ko and Prives, 1996 and see above) are beyond the scope of this thesis and this section will focus primarily on the growth arrest and apoptotic functions of this protein.
Figure 5. Signalling to and from p53

UPSTREAM EVENTS

Radiation (g, UV, ionising) hypoxia Ribonucleoside triphosphate

DNA damage activates

Increased levels of p53, modification of protein non-covalent modifiers

Phosphorylation of N/C termini by Protein kinases ATM, ATR, CHK2

Adenovirus E1B 55 kDa

SV-40
1. prevents DNA binding of p53
2. DNA binding unaffected, transactivation domain of p53 abrogated

DOWNSTREAM EVENTS

+expression -expression +stability

hMDM2 regulates E2F1 inhibits MDM2 degradation of p53

P14RF (trimeric complex)

Rb (trimeric complex) regulates E2F1

rescues apoptosis

Transcriptional activation

Direct signalling

p21waf1/cip1

Transcriptional activation

Cyclin/cdk Complexes (inhibits DNA polymerase)

PCNA gadd45 (repair) CyclinG

\textbf{CELL CYCLE ARREST} [G1 and G2/M] APOPTOSIS

IGF-1 Bcl-2 Bind

Inducer of ROS

PIG-3 IGF-BP3 bax fas/apo1

\textbf{CyclinG}

14.3.3s
Figure 5. Signalling to and from p53. Events that signal to p53 and those that act downstream of the protein to effect growth arrest and apoptosis are shown in the yellow and green boxes, respectively.

The protein is activated in response to DNA damage that is induced by stress signals (e.g. radiation, hypoxia and reduction in triphosphate levels). This leads to the stabilisation of the protein through modification by phosphorylation at the N- and C-termini by kinases, ATM, ATR, CHK2, or by non-covalent modification of the C-terminus by components of the DNA repair machinery (e.g. Rad51). Furthermore, stabilisation is also effected by expression of viral proteins such as SV40 Large T and Adenovirus E1B.

The hMDM2 and p14ARF proteins function in negative and positive feedback loops with p53 respectively. The expression of these proteins is regulated by p53, and they in turn control the stability of p53. p14ARF can induce p53 accumulation by inhibiting hMDM2-mediated degradation of p53. In addition, the transcription factor E2F-1, the retinoblastoma protein (pRb), and viral and cellular oncogenes (e.g. adenoviral E1A c-myc and ras) can stabilise p53 through the upregulation of p14ARF.

Events occurring downstream of p53 to effect growth arrest and apoptosis include transcriptional activation of the p21waf1, which induces growth arrest either by inhibiting the function of the CDK4/cyclin D complex, or by binding to the proliferating cell nuclear antigen (PCNA). Other genes that mediate G1 and G2 growth arrest include growth arrest and DNA-damage inducible gene #45 (GADD45), 14-3-3σ, and cyclin G.

Apoptosis is induced via the upregulation of a number of pro-apoptotic proteins. These include Bax (bcl-2 gene family), death receptors such as CD95/Fas and DR5/Killer, the insulin growth factor-binding protein 3 (IGF-BP3) gene and the p53-inducible genes (PIGs).
The choice between effecting cell-cycle arrest or apoptosis by p53, upon sensing DNA damage, is dependent on the cell-type, intensity of the DNA damage inducer, efficiency of DNA repair mechanisms, growth and survival factors, and the levels of p53 protein itself (Gottlieb and Oren, 1998). p53 mediates arrest of cells at the G1/S boundary mainly by transactivating the wild-type p53-activated fragment-1 (WAF1) gene or p21 which inhibits the function of the CDK4-cyclin D complex. p21 also binds to the proliferating cell nuclear antigen (PCNA) and can inhibit the processivity of DNA replication. Other genes, including the growth arrest and DNA-damage inducible gene #45 (gadd45), 14-3-3σ, and cyclin G, have emerged as potential mediators of p53-dependent G1 and G2 arrest (reviewed in el Deiry, 1998; see figure 5).

Overexpression of wild-type p53 causes apoptosis in a wide variety of cell types, and this occurs both by sequence-specific, transactivation-dependent (SST) and independent mechanisms (Caelles et al., 1994). Bax, a pro-apoptotic protein, was first identified as a candidate effector of p53-mediated apoptosis, although its induction is cell-type specific (Miyashita and Reed, 1995). Subsequently, death receptors such as CD95/Fas and DR5/Killer and genes containing p53-binding sites such as the insulin growth factor-binding protein 3 (IGF-BP3) gene, p53-inducible genes (PIGs), and the c-fos gene have been identified as mediators of p53-dependent apoptosis (reviewed in Gottlieb and Oren, 1998; Bates and Vousden, 1999; see figure 5). Viral proteins such as SV40T, adenovirus E1B and HPV E6 can antagonise the apoptotic function of p53 by targeting it for degradation or repressing its transcriptional ability (Mietz et al., 1992; reviewed in Gottlieb and Oren, 1996).

1.3.4 The role of p53 in carcinogenesis

Mutations involving p53 are the most common genetic alteration yet described in human cancer, occurring in approximately 50% of all human cancers (Hollstein et al., 1991). More than 90% of mutations occur in the DNA-binding domain of p53. Such mutations either alter critical residues involved in DNA contact or modify the structural conformation of the protein, with subsequent loss of ability to function as a transcription factor. More than 40% of all mutations in p53 occur in residues R175, G245, R248, R249, R273, and R282 ('hot-spots'), which play a critical role in the
structural integrity of this domain (Hollstein et al., 1991, 1994).
The contribution of wild-type p53 to tumour suppression has been clearly
demonstrated in p53 null mice which develop normally but are highly prone to
spontaneous tumours later in life (Donehower et al., 1992). A similar propensity for
spontaneous tumours has also been observed in an inherited cancer syndrome, Li-
Fraumeni syndrome, wherein affected individuals carry a mutated p53 allele in their
germline in addition to a wild-type allele (Srivastava et al., 1990).
p53 commonly conforms to Knudson's two-hit hypothesis (Knudson, 1971), wherein
heterozygous loss of the short arm of chromosome 17 (LOH) containing p53 is often
accompanied by point mutations in the remaining allele and vice-versa (Vogelstein et
al., 1988; Takahashi et al., 1989). The spectrum of mutations is strongly biased in
favour of missense point mutations, which produce a stable protein lacking the
transactivating function of the wild-type protein (el Deiry et al., 1992; Kern et al.,
1992). 3 classes of mutant p53 exist, which have distinct biological activities (Halevy
et al., 1990), according to the site of mutation and the relative levels of wild-type
(wt) and mutant p53 in the cell:
(i) Dominant mutants: protein from the single mutant allele can form hetero-
tetramers with wild-type p53, resulting in complexes that are defective for DNA
binding (Kern et al., 1992; Milner and Medcalf, 1991).
(ii) Recessive mutants: mutant p53 is unable to inactivate the function of wild-type
p53.
(iii) Gain-of-function mutants: mutant protein is capable of conferring increased
tumourigenicity or metastatic potential. Although the mechanism is uncertain it may
involve stimulation of the transcription of cellular genes with oncogenic or
angiogenic functions (Kern et al., 1992), or, alternatively abrogation of the function
of the p53 family member, p73 (Di Como et al., 1999; Marin et al., 2000 and see
below).

1.4 The p53 gene family: Recent additions - p73 and p63

In 1997, the widely held belief that p53 was indeed part of a family of proteins was
finally vindicated, when the structural homologue p73 was identified by Caput and
co-workers (Kaghad et al., 1997). Shortly thereafter, several groups identified a third member of the family, variously termed p63, Ket, p40, p51, p73L (Osada et al., 1998; Schmale and Bamberger 1997; Trink et al., 1998; Yang et al., 1998). Phylogenetic analysis of these proteins suggests that p63 is the evolutionary ancestor of the p53 gene family (Yang et al., 1998).

1.4.1 Structural organisation of p73 and p63
The exon/intron organisation of the p53 family members is similar. Exon 1 is invariably non-coding and each gene is characterised by the presence of very large introns (Schmale and Bamberger 1997). The p73 gene is approximately 65kb with 14 exons (Kaghad et al., 1997), whereas the p63 gene contains 15 exons (Yang et al., 1998). The sequences of p73 and p63 are more similar to each other than either is to p53, with the highest degree of homology in the central DNA-binding domain, and least homology in the N-terminal transactivation domain (Kaghad et al., 1997; Osada et al., 1998; see figure 6). Akin to p53, both p73 and p63 can bind to canonical p53 binding sites, and activate transcription from a range of p53-responsive promoters (Kato et al., 1999; Zhu et al., 1998). Although bax and several redox-related genes (PIGs 2, 3, 6 and 11) induced by p53, are not significantly induced by p73, in vitro studies in human keratinocytes indicate that both p63 and p73 can transactivate the expression of markers of epidermal differentiation, namely loricrin, involucrin and transglutaminase (De Laurenzi et al., 2000). Each can also induce apoptosis when overproduced in cells (Jost et al., 1997; Osada et al., 1998) and recently it has been shown that E2F1 can induce cell death in the absence of p53, through the activation of p73 (Irwin et al., 2000).

The diversity in biological activity among p53 family members stems, at least in part, from differences in mRNA processing. In striking contrast to p53, both p63 and p73 undergo complex alternative splicing at the C-termini to generate multiple mRNA transcripts. To date, recognised variants of p63 include the (TA p63) α, β, and γ isoforms that retain the coding sequence for the N-terminal transactivation domain (TA) with additional N-terminal truncated transcripts being generated through the utilisation of a cryptic promoter located in intron 3, (ΔN p63) α, β, and γ. The ΔN isoforms are known to act in a dominant-negative manner with respect to wild-type
Figure 6. Structural comparison of p53, p63 and p73

Schematic representation of the structure of p53 (pink boxes), p63 (green boxes) and p73 (blue boxes). p63 and p73 are more similar to each other than either is to p53. The greatest sequence homology is observed in the central DNA-binding domain. The transactivation domains (TAD), DNA-binding domains (DBD) and oligomerisation domains (OD) are indicated in the paler shades of each colour representing the respective proteins. The SAM domains are shown as stippled boxes and the Post-SAM domains as hatched boxes. Both these domains are present only in the α isoforms of p63 and p73. SAM: Sterile alpha motif

Adapted from Ikawa et al., 1999.
TA p63 and wild-type p53 (Yang et al., 1998). Splicing of p73 generates at least 6 isoforms at the C-terminus, α, β, γ, δ, ε and ζ (De Laurenzi et al., 1998, 1999; see figure 7). Similar to the ΔN variants of p63, investigators have recently reported the expression of p73 variants lacking exon 2 (Δ2 p73) in neuroblastomas and ovarian cancers (Casciano et al., 1999; Ng et al., 2000). Moreover, Pozniak and colleagues have recently ascribed an anti-apoptotic role for ΔN p73 in developing mouse neurons (Pozniak et al., 2000), and suggest that this variant might act in a dominant negative fashion, analogous to ΔN p63.

p63 and p73 diverge from p53 predominantly in the C-terminus. In addition to the multiple splice variants generated at this terminus, a second transactivation domain between residues 382 and 491, not found in p53, has been described in p73 (Takada et al., 1999). Furthermore, both p73α and p63α contain potential SAM (sterile alpha motif) domains (protein-protein interaction domains found in proteins involved in developmental regulation), underscoring the importance of these genes in differentiation (Bork et al., 1999; see figure 7). The presence of a SAM structure suggests the existence of binding proteins that modulate p63 and p73 activities. In addition, a post-SAM domain, namely the last 70 amino acids, is necessary for inhibiting the transactivation function of TA p63α and TA p73α (Ozaki et al., 1999; see figure 7).

1.4.2 Homo- and hetero-oligomerisation of the p53 family

p53 binds DNA as a homo-tetramer. The oligomerisation domains (OD) of p63 and p73 can bind weakly to each other but they are unable to form stable hetero-oligomers with wild-type p53 (Davison et al., 1999). Moreover, the different C-termini of the various isoforms of p63 and p73 directly or indirectly influence the ability of these molecules to form productive oligomers, and may also influence their ability to activate p53-responsive promoters (De Laurenzi et al., 1998; Kaghad et al., 1997). There is evidence that certain p53 mutants can bind p73 and p63 and reduce its transcriptional activation function, with subsequent decrease in its ability to induce apoptosis (Di Como et al., 1999; Gaiddon et al., 2001). The existence of mutant p53-p73 complexes in vivo has also been established (Marin et al., 2000).
The p53 gene, indicated as pink boxes, is composed of 11 exons. The p63 gene (green boxes) is composed of 15 exons. Full-length transcription of the gene gives rise to the α transcript. However, splicing at the C-terminus gives rise to variants β (splices out exon 13) and γ (splices out exons 11, 12, 13 and 14). Transcription at the N-terminus is either initiated in exon 1, giving rise to the TA variant, or through the use of a cryptic promoter located in intron 3, giving rise to the ΔN variant. Altogether, the p63 gene encodes at least 6 isoforms of p63. The p73 gene (blue boxes) is composed of 14 exons. Similar to p63, the gene is multiply spliced at its C-terminus to generate 6 isoforms, α (full length), β (splices out exon 13), γ (splices out exon 11), δ (splices out exon 11 and 13), e (splices out exon 11 and 13) and ζ (splices out exons 11 and 12). Furthermore, a variant of p73, ΔN p73 is generated through the deletion of exon 2. Coding regions are indicated in the paler shades of each colour representing the respective proteins. Adapted from Levrero et al., 1999.
1.4.3 Activation of p63 and p73 by cellular stress signals

p73 is activated only by specific forms of DNA damage such as γ-irradiation and cisplatin. Treatment with these agents results in activation of c-abl tyrosine kinase activity, which in turn leads to increased p73 protein levels and subsequent apoptosis (Agami et al., 1999; Gong et al., 1999). More recently, it has been demonstrated that p73 can be induced by E2F-1, c-Myc and E1A, and activate apoptosis in the absence of functional p53 (Irwin et al., 2000; Zaika et al., 2000). The upstream events that activate p63 are not known.

1.4.4 Role of the p53 family members in development and cancer

(i) Role in differentiation and development

Although p53 is not dispensable for survival and growth, p63 and p73 have been shown to be essential for development and differentiation. p73 null mice have severe neurological, pheromonal and inflammatory defects but do not develop spontaneous tumours (Yang et al., 2000), whereas p63^{−/−} mice have major defects in limb, cranofacial and epithelial development (Yang et al., 1999).

(ii) Role in carcinogenesis

The p73 gene maps to chromosome 1p36, a region frequently deleted in human cancers including neuroblastomas (Kaghad et al., 1997). To concur with Knudson’s two-hit hypothesis for tumour suppressor genes (Knudson, 1971), the remaining p73 allele is expected to be mutated in such cases. However, mutations in p73 are exceedingly rare in human cancers (Ichimiya et al., 1999). A possible explanation for this is the monoallelic expression of p73 (due to genomic imprinting) in these tumours, such that loss of the transcribed allele would be sufficient to promote tumourigenesis (Kaghad et al., 1997). This however does not account for the absence of mutations in those tumours where both alleles are expressed. Conflicting reports exist as to the biallelic and monoallelic expression of this gene, which varies with the tissue type as well as between different individuals. Perhaps surprisingly, p73 mRNA levels are frequently increased rather than decreased in tumour tissue relative to surrounding normal tissue (Kovalev et al., 1998).
Recently, transcriptional silencing of p73 has been observed in specific haematological malignancies by aberrant hypermethylation of the promoter region (Corn et al., 1999; Kawano et al., 1999). Interestingly, a methylation-independent silencing mechanism of this gene has been proposed in neuroblastomas (Banelli et al., 2000). Despite the above evidence, confirmation of p73's role as a tumour suppressor requires further investigation.

The role of p63 as a tumour suppressor presently remains unclear. This gene located on chromosome 3q27-29 is very similar to p73 in that it is rarely mutated in human cancers (Osada et al., 1998). Recently, Sidransky and co-workers have shown that this gene is over-amplified in lung and head and neck squamous cell carcinomas and thereby behaves as an oncogene rather than a tumour suppressor (Yamaguchi et al., 2000). Evidence in support of its oncogenic role also comes from studies that demonstrate the ability of ΔN isoforms of p63 (see above) to act as oncoproteins, by virtue of their ability to antagonise p53 function (Crook et al., 2000; Yang et al., 1998). More recent evidence indicates that wild-type p53 can regulate the stability of certain ΔN isoforms of p63 through caspase-mediated degradation, thus possibly counterbalancing the ability of these isoforms to precipitate tumourigenesis or induce epithelial proliferation (Ratovitski et al., 2001). Further studies however, are needed to clarify the exact role of this gene in human neoplasia.

1.5 The INK4 locus

Orderly execution of the various stages of the cell-cycle is governed by the expression and interaction of three types of molecule; a family of enzymes called the cyclin-dependent kinases (CDKs), which are activated by a group of positive regulators, the cyclins, and inhibited by the CDK inhibitors (CKIs). The CKIs include two distinct families; the INK4 (Inhibitors of cyclin dependent kinase 4) family whose four members (p16INK4a, p15INK4b, p18INK4c and p19INK4d) exclusively bind to and inhibit CDK4 and CDK6, and the CIP/KIP family whose three members (p21CIP1/WAF1, p27KIP1, p57KIP2) are able to inhibit the activity of all CDKs (Sherr and Roberts 1995).

The remainder of this section will focus on the INK4a and INK4b genes and their protein products, p16INK4a and p15INK4b, and a second protein product of the INK4a
locus, p14\text{ARF} [alternative reading frame (ARF)].

1.5.1 Discovery and structure of p16\text{INK4a} and p15\text{INK4b}
Serrano and co-workers were the first to isolate the cDNA encoding p16\text{INK4a} in 1993 (Serrano et al., 1993). Soon after, low stringency screening of a cDNA library from transforming growth factor β (TGF-β)-arrested human keratinocytes using a p16\text{INK4a} probe, led to the isolation of p15\text{INK4b} (Hannon and Beach, 1994). The INK4a and INK4b genes are tandemly linked on chromosome 9p21 within 30kb of one another in the same transcriptional orientation. The p15\text{INK4b} and the p16\text{INK4a} proteins are encoded by 2 and 3 exons respectively, with greater than 95% amino acid sequence identity in exon 2. All the INK4 proteins are characterised by the presence of anykrin repeat motifs that are used as structural scaffolds to facilitate protein-protein interactions. Both p16\text{INK4a} and p15\text{INK4b} contain 4 anykrin-like repeats, and studies suggest that the third anykrin repeat is crucial for interaction of the INK4 proteins with CDK4 and CDK6 (Roussel 1999; Ruas and Peters, 1998).

The principal function of the INK4 proteins is to specifically bind to and inhibit the kinase activities of CDK4 and CDK6 and their association with the D-type cyclins. This interaction prevents the phosphorylation of pRb, which is the primary substrate of the cyclin/CDK4 complex (Ewen, 1994). Hypophosphorylated pRb then forms DNA complexes with members of the E2F and DP transcription factor families, genes that are necessary for DNA synthesis, with subsequent growth arrest at G1 (Sherr and Roberts, 1995).

1.5.2 Alternative product of the INK4a locus: p14\text{ARF}/p19\text{ARF} (ARF)
The INK4 locus in mouse and man contains two independent but overlapping genes, INK4a and ARF, which encode functionally distinct proteins (Quelle et al., 1995; see figure 8). The initiator codon in exon 1β is not in frame with sequences encoding p16\text{INK4a} in exon 2, and thus a novel 14 kDa polypeptide (19 kDa in the mouse, hence p19\text{ARF}) is translated from an alternative reading frame in exon 2 (Quelle et al., 1995; see figure 8).

Unlike p16\text{INK4a} and the other INK4 proteins, ARF does not bind the CDKs. It interacts with hMDM2 and arrests cells in the G1 and G2 phases of the cell cycle.
Figure 8. The INK4α/ARF locus

The CDKN2a locus on human chromosome 9p21 encodes 2 transcripts that initiate at unique first exons that are spliced to a common exon 2. Genomic sequences encoding p16INK4a (the α transcript) are shown as green shaded areas within the boxes designated exons 1α, 2 and 3, whereas the blue areas shaded in exons 1β and 2 encode p14ARF (β transcript). Unfilled portions of the exons correspond to non-coding 5' and 3' regions. Hatched lines indicate splicing between the exons. Exons 1α and 1β are indicated to have separate promoters (→). In the human genome, the alternative first exons are separated by approximately 20kb of intervening sequences. Note that exon 2 sequences are translated in different reading frames and the proteins are structurally unrelated. The β transcript however is terminated within exon 2, with exon 3 comprising an untranslated 3' exon. Amino acids contributed by each exon are indicated within the boxes. ARF: Alternative Reading Frame. Adapted from James and Peters, 2000
through the stabilisation of p53 (Pomerantz et al., 1998), but does not seem to be required for p53's response to DNA damage (Kamijo et al., 1997, 1998). Stabilisation of p53 by ARF can occur by several mechanisms, namely re-localising hMDM2 to the nucleolus, preventing hMDM2-p53 shuttling and accumulation of ARF-hMDM2-p53 'nuclear bodies' in the nucleoplasm, although the precise mechanism/s are yet to be established (Weber et al., 1999; reviewed in Sherr and Weber, 2000). ARF is also believed to negatively regulate the cell cycle in a p53-independent manner (Carnero et al., 2000; Weber et al., 2000).

1.5.3 Expression and regulation of the INK4 proteins and ARF
INK4 and ARF transcripts are differentially expressed during murine embryogenesis and adulthood, suggesting that they have tissue-specific functions (Roussel, 1999). Regulation of p16INK4a levels is primarily at the transcriptional level. In most tissues p16INK4a mRNA is very low, although it is extremely stable (half-life >24 hours) (Hara et al., 1996). Accumulation of p16INK4a mRNA and proteins occurs in response to cellular senescence, expression of oncogenic ras, and inactivation of pRb (Hara et al., 1996; Okamoto et al., 1995; Li et al., 1994a).

p15INK4b is more abundantly and ubiquitously expressed than p16INK4a. Its transcription is induced in most cells, and in particular epithelial cells, by TGF-β (Hannon and Beach, 1994), and there is evidence to indicate its upregulation by interferon-α in lymphoid cell lines (Sangfelt et al., 1997). Its expression is not affected by pRb status and is generally constant throughout the cell cycle (Stone et al., 1995).

Not only does ARF directly interfere with the p53-hMDM2 feedback loop but it is also subjected to negative regulation by p53 (Stott et al., 1998). Furthermore, ARF is known to link two important tumour suppressor pathways in cancer- namely the p53 and the pRb pathways, through direct induction by E2F-1 (Bates et al., 1998; see figure 9). Furthermore, ARF is believed to be a link between viral (E1A) and cellular (c-myc, ras) oncogene signalling and p53 accumulation, through its interaction with hMDM2 (de Stanchina et al., 1998; Zindy et al., 1998; Palmero et al., 1998; see figure 5, page 17).
Figure 9. Regulatory mechanisms involving p14^{ARF} and p16^{INK4a}

p16^{INK4a} prevents the phosphorylation and inactivation of pRb by CDK4/6, whereas, p14^{ARF} prevents the hMDM2-mediated degradation of p53. Both p16^{INK4a} and p14^{ARF} are themselves negatively regulated by pRB and p53 respectively. The release of E2F by the phosphorylation and ablation of pRb leads to the upregulation of p14^{ARF}, providing a direct connection between the pRb and p53 pathways.

Adapted from James and Peters, 2000.
1.5.4 Involvement of p16INK4a, p15INK4b and ARF in cancer

The evidence to validate INK4\textit{a} as a tumour suppressor came from research in two different fields, cancer genetics and cell cycle regulation. Search for a melanoma susceptibility gene resulted in the discovery that the region on chromosome 9p21 containing the p16INK4a gene is homozygously deleted in approximately 75% of melanoma cell lines (Kamb \textit{et al.}, 1994). Its role in familial melanoma is now firmly established and is defined by the presence of germline mutations, typically point mutations or small intragenic deletions within the first or second exon (Hussussian \textit{et al.}, 1994).

The ability of p16INK4a and p15INK4b to induce growth arrest by inhibiting phosphorylation of pRb suggests that loss of function could contribute to tumourigenesis, further endorsing their role as tumour suppressors. The importance of this cell cycle regulatory pathway has been underscored by alterations in other components of this pathway, such as inactivation of pRb, overexpression of D-type cyclins and CDKs, or CDK4 mutations that abrogates binding of p16INK4a. These genetic lesions often appear to be mutually exclusive within tumours, suggesting that they have functionally equivalent consequences (Sherr, 1996). In contrast, an inverse correlation is not strictly observed between INK4\textit{a}/ARF and p53 genetic alterations at least in some human cancers, further denoting a p53-independent function for ARF (Iida \textit{et al.}, 2000; Sanchez-Cespedes \textit{et al.}, 1999).

Inactivation of the INK4 locus has been shown in a range of cancers (Kamb \textit{et al.}, 1994; Ruas and Peters, 1998). Essentially three modes of inactivation have been observed: i) homozygous deletion, ii) intragenic mutation and iii) promoter silencing by methylation.

\textbf{(i) Homozygous deletion}

Deletion of 9p21 is the most common method of inactivation, which generally involves the entire INK4\textit{a}/ARF locus and frequently, but not always, INK4\textit{b}. It affects up to 14% of all tumours analysed to date including gliomas, melanomas, leukaemias, head and neck tumours and carcinomas of the bladder, lung, kidney, pancreas and ovary (Ruas and Peters, 1998). Deletions of INK4\textit{a} and INK4\textit{b} have been consistently observed in children with acute lymphoblastic leukaemia (ALL).
 (>30%), especially in leukaemias of the T-cell lineage (>50%) (Siebert et al., 1996). In contrast, incidence of \textit{INK4a} deletions is low in other haematological malignancies such as NHL, chronic and acute myeloid leukaemia (CML and AML, respectively) and primary breast cancers (<3%). Furthermore, deletions are consistently absent in cancers of the colon, cervix and liver (Kamb, 1995; Ruas and Peters, 1998).

Deletion of exon 1\(\beta\) in mice is associated with the development of lymphomas, sarcomas, carcinomas and gliomas, similar to that observed in \textit{INK4a}/\textit{ARF-null} mice, suggesting that \textit{ARF} on its own is an important regulator of cell growth. The sensitivity of \textit{ARF-null} mouse embryonic fibroblasts to oncogenic transformation further establishes a vital tumour suppressor function for this protein (Kamijo et al., 1997).

\textbf{(ii) Intragenic mutations}

Mutations in the \textit{INK4a}/\textit{ARF} locus is much higher in permanently growing cell lines than in the primary tumours from which they are derived (Spruck et al., 1994; Zhang et al., 1994). Most point missense mutations occur in exon 2, common to both \textit{INK4a} and \textit{ARF}, and usually affect the amino acid sequence of both proteins (Quelle et al., 1997; Kubo et al., 1997; Sanchez-Cespedes et al., 1999). Mutations occurring in \textit{INK4a} affects residues that are crucial for interactions between p16INK4a and CDK4 or CDK6 leading to phosphorylation of pHb, E2F release and G1/S progression (Lilischkis et al., 1996). Exon 2 mutations do not seem to affect the ability of \textit{ARF} to induce cell cycle arrest, although they might affect nucleolar localisation of the protein (Quelle et al., 1997). A fraction of mutations have been found to exclusively target exon 1\(\alpha\) of \textit{INK4a}, while mutations in \textit{INK4b} are rare (Okamoto et al., 1995). Mutations in exon 1\(\beta\) of \textit{ARF} are rare (Burri et al., 2001; Poi et al., 2001; Tanaka et al., 1997). Overall, point mutations in the \textit{INK4a}/\textit{ARF} coding regions have been detected in 5\% of all human tumours analysed (Ruas and Peters, 1998).

\textbf{(iii) Promoter silencing by methylation}

Methylation of the \textit{INK4} genes, in particular exon 1\(\alpha\) of the p16INK4a gene, has been observed in a significant fraction of human tumours, which results in a complete loss
of its transcriptional activity. Hypermethylation has been proposed as an alternative to intragenic mutation in silencing the residual allele of tumors showing LOH at 9p21, although this has not yet been proven in primary tumors (Merlo et al., 1995). Silencing of the INK4a promoter has been found in 19% of all human tumors studied (Ruas and Peters, 1998). Interestingly, methylation-induced silencing of the p16INK4a gene has been found in cancers of the breast and colon that do not show homozygous deletions of the gene, and might represent an alternative to deletion as a mode of inactivating p16INK4a.

In murine T-cell lymphomas, loss of p15INK4b expression by methylation is more common than inactivation of the INK4a/ARF locus (Malumbres et al., 1997), and recent studies by the same group reveal that in addition to promoter region hypermethylation, the 3' untranslated region of p15INK4b is also sensitive to methylation (Malumbres et al., 1999). Furthermore, the INK4b gene is hypermethylated without silencing of the INK4a promoter in certain hematological malignancies (AML, T cell NHL and ALL) and gliomas. Hence, this suggests an independent contribution and a tumor suppressor role for p15INK4b, at least in some human cancers (Herman et al., 1997). Methylation of both INK4a and INK4b is a common occurrence in Burkitt's lymphomas, multiple myeloma and B cell NHL (Herman et al., 1997).

Aberrant methylation of the ARF promoter has been recently reported in human colorectal and gastric cancers (25-45%) independently of INK4a promoter methylation (Esteller et al., 2000; Iida et al., 2000). However, the promoter is infrequently methylated in murine primary T-cell lymphomas (Melendez et al., 2000).

1.6 Oncogenes

By definition, an oncogene typically refers to any gene that produces a malignant phenotype when introduced into a normal cell (Bishop, 1991; Weinberg, 1994). Oncogenes are derived from proto-oncogenes, cellular genes that function in various aspects of cell cycle regulation, including growth, proliferation, differentiation and apoptosis. Changes in the structure of the proto-oncogene, attributed to translocation,
mutation, and/or amplification resulting in the synthesis of an abnormal gene product (oncoprotein), or changes in the regulation of gene expression resulting in enhanced or inappropriate production of the normal protein, contributes to tumourigenesis. Table 2 highlights selected oncogenes and their mode of activation in associated human tumours.

Table 2

<table>
<thead>
<tr>
<th>Proto-oncogene</th>
<th>Mechanism</th>
<th>Associated human tumour</th>
</tr>
</thead>
<tbody>
<tr>
<td>ras</td>
<td>Point mutation</td>
<td>Variety of cancers, including lung, colon, pancreas, leukaemias, some AIDS-BL</td>
</tr>
<tr>
<td>c-myc</td>
<td>Translocation</td>
<td>BL, some DLCL</td>
</tr>
<tr>
<td>N-myc</td>
<td>Amplification</td>
<td>Breast, lung, colon, prostate cancer and MM, ML</td>
</tr>
<tr>
<td>L-myc</td>
<td>Amplification</td>
<td>Neuroblastoma, small cell lung carcinoma</td>
</tr>
<tr>
<td>bcl-1</td>
<td>Translocation</td>
<td>Small cell lung carcinoma</td>
</tr>
<tr>
<td>bcl-2</td>
<td>Translocation</td>
<td>Mantle zone lymphomas</td>
</tr>
<tr>
<td>bcl-6</td>
<td>Translocation</td>
<td>Breast, liver and oesophageal cancers</td>
</tr>
<tr>
<td>bcl-10</td>
<td>Translocation/point mutations</td>
<td>Breast, liver and oesophageal cancers</td>
</tr>
</tbody>
</table>

BL, Burkitt’s lymphoma; FL, Follicular lymphoma; DLCL, diffuse large cell lymphoma; MM, multiple myeloma; ML, myeloid leukaemia

The following sections describe three genes, c-myc, bcl-2 and bcl-6, each of which have a distinct function in growth and proliferation (c-myc), apoptosis regulation (bcl-2) and differentiation (bcl-6). These genes have been investigated in the present study due to their implied role in the pathogenesis of certain AIDS-NHL (Dalla-Favera et al., 1982b; Tsujimoto et al., 1984; Ye et al., 1993).

1.7 c-Myc

1.7.1 Discovery of c-myc

In 1979, an oncogene which caused carcinomas, sarcomas, endotheliomas and the leukaemic disorder myelocytomatosis (hence the acronym, myc), was identified from the MC29 avian leukaemia retrovirus (ALV) (Sheiness and Bishop, 1979). In 1982, the human c-myc gene was isolated as the cellular homologue of the chicken retroviral v-myc gene (Dalla-Favera et al., 1982a). Subsequently, its potent
oncogenicity was realised by the presence of chromosomal translocations involving the myc gene in animal and human tumours, such as murine plasmacytomas and Burkitt's lymphomas (Shen-Ong et al., 1982; Dalla-Favera et al., 1982b). c-myc belongs to a family of genes including B-myc, L-myc, N-myc and s-myc. Besides c-myc, only N-myc and L-myc are involved in neoplastic transformation (Schwab et al., 1985).

1.7.2 Structure of the c-myc gene and protein
The c-myc locus maps to chromosome 8q24 and consists of 3 exons. Exon 1 is untranslated, while exons 2 and 3 providing the major coding regions. The 2.4kb and 2.2kb transcripts initiated from promoters P1 and P2 account for 10-25% and 75-90% of steady-state c-myc RNAs in normal cells respectively, and contain the open reading frame (ORF) for the two major c-myc polypeptides, p67 and p64 (Taub et al., 1984; Hann et al., 1988; Bentley and Groudine, 1986). It has been suggested that p67 may act as a negative regulator of p64 activity (Hann, et al., 1988). Minor promoters P0 (5' to P1) and P3 give rise to less than 5% of c-myc mRNAs (3.1kb and 2.3kb respectively) (Bentley and Groudine, 1986). The structure of the c-Myc protein is illustrated in Figure 10. The C-terminal DNA-binding domain and N-terminal transactivation domain of c-Myc are required for its biological activities (Kato et al., 1990). In addition, the conserved Myc box II (MBII) is critical for the biological activity of c-Myc and for oncogenic transformation (Li et al., 1994b; Ingvarsson, 1990; Henriksson and Luscher, 1996).

1.7.3 c-Myc as a transcription factor
c-Myc is a nuclear phosphoprotein that functions primarily as a transcription factor. The ability of c-Myc to interact with the transcriptional machinery is modulated by its interaction with other transcription factors through both its C- and N-termini. In addition, the protein can activate and repress transcription of a number of target genes involved in cellular processes such as proliferation, differentiation and apoptosis and these functions of c-Myc are summarised in Figure 11. The c-Myc target genes are beyond the scope of this thesis and are reviewed in Dang (1999).
Figure 10. Structural and functional domains of c-Myc

c-Myc harbors a transactivation domain (TAD; amino acids 1-143) at its N-terminus; a nuclear localisation signal (NLS; amino acids 320-328), a basic region (b; amino acids 355-368), a helix-loop-helix motif (HLH; amino acids 368-410) and a leucine zipper domain (ZIP; amino acids 411-439). The HLH/ZIP domains mediate protein-protein interaction while the basic region specifies DNA binding. Yellow boxes within the TAD represent Myc Box I (amino acids 45-63) and II (amino acids 129-141), two conserved regions found in all Myc family members. P indicates the localisation of the major in vivo phosphorylation sites. p67 contains an additional 14 amino acid residues at its N-terminus, due to an initiation codon in exon 1, compared to p64 which initiates at the first AUG in exon 2. The functional and protein-protein interaction domains of Myc, along with a few examples of proteins (purple text) that interact with the C- and N-terminal domains are indicated.

Adapted from Henriksson and Luscher, 1996.
c-Myc has a number of biological functions. It positively affects cell cycle regulation, apoptosis and metabolism. c-Myc is absent in quiescent cells but is rapidly induced upon addition of growth factors. Ectopic c-Myc expression in quiescent cells promotes entry into S-phase and is growth factor-independent (Evan and Littlewood, 1993). c-Myc can also activate cellular apoptosis, which requires both the N-terminal transactivation domain and the b/HLH/Z domain (Evan et al., 1992). The proliferative and apoptotic activities of c-Myc are thought to be coupled, safeguarding against expansion of potentially malignant cells (Harrington et al., 1994). The protein sensitises the cell to apoptotic stimuli and death receptor signals from the CD95/Fas family in response to a variety of apoptotic stimuli such as hypoxia, DNA damage and glucose deprivation (Hueber et al., 1997; Evan and Littlewood, 1993).

c-Myc represses genes involved in cellular differentiation and cell adhesion through initiator or Inr elements. Transcriptional repression requires aa 106-143 within the TAD as well as the HLH domain (Li et al., 1994b; Lee et al., 1996). c-Myc mediated transformation thus requires both transactivation of growth-related genes and Inr-driven transcriptional repression of differentiation and cell adhesion genes.

Adapted from Dang et al., 1999.
The CTD mediates c-Myc binding to physiological target genes that are involved in transcriptional regulation. Max, a b/HLH/Z protein, was first identified as a binding partner for c-Myc, which controls the access of c-Myc to physiological target sites (Blackwood and Eisenman, 1991). Hetero-dimerisation with Max is necessary for c-Myc to mediate proliferation, transformation and apoptosis (Amati et al., 1993). Max in turn interacts with another b/HLH/Z protein family, Mad, which are implicated in transcriptional repression, cell growth inhibition and differentiation (Amati and Land, 1994).

1.7.4 Role of c-Myc in human neoplasia

c-myc is activated by a variety of genetic alterations such as chromosomal translocations, gene amplification, and somatic mutations. Beside its characteristic involvement in chromosomal translocations in BL (see below), the gene is also amplified in various cancers (Nesbit et al., 1999, see Table 2). A common underlying feature of tumours with c-myc alterations is the deregulated or elevated expression of the gene (Cole, 1986; Spencer and Groudine, 1991).

1.7.4.1 c-myc alterations in BL

The juxtaposition of the c-myc gene on chromosome 8 with regulatory elements of the immunoglobulin (Ig) heavy chain (IgH), or light chains λ and κ on chromosomes 14, 22 or 2 respectively, is a characteristic feature of BL (Dalla-Favera et al., 1982b). The most common translocation is t(8;14) (80% of cases) which involves a breakpoint on chromosome 14 in the switch region of μ (Sμ) in the majority of sporadic BL (sBL), and the IgH joining region in endemic BL. The site of chromosomal breakpoint observed in the different BL-types, is believed to reflect the stage of differentiation of the affected cell (Pelicci et al., 1986a). On chromosome 8, the breakpoint is located at an undefined distance 5' to the c-myc locus in most eBL, whereas in sBL and AIDS-BL the break is usually within intron 1 or the immediate 5' non-transcribed region of the c-myc gene (Pelicci et al., 1986a). These translocations place c-myc and the IgH gene in a head-to-head transcriptional configuration. In most sBL with t(8;14), the first exon of c-myc is removed from the coding portion of the gene (see figure 12).
The gene rearrangement between c-myc and the IgH locus (represented in green), along with the approximate primer sites for Long Distance polymerase chain reaction (LD-PCR) are indicated. The 1st exon of c-myc, which is non-coding, is indicated as an unfilled box, and the 2 coding exons are indicated as solid pink boxes. The t(8:14) translocation between the two loci places them in a head-to-head orientation. The primers designed for the LD-PCR analysis of the t(8:14) breakpoint region are shown by black arrows. The sense primer is located in exon 2 of c-myc and the antisense primers are within the μ, γ, and α constant regions on the IgH locus. VH: variable DH: diversity JH: joining E: enhancer S: switch C: constant regions of the IgH locus. Adapted from Basso et al., 1999.
In the less common 'variant' t(2:8) (15% of cases) and t(8:22) (5% of cases) translocations, the breakpoints on chromosome 8 occur up to 140kb downstream of the transcribed region of c-myc, and 5' of the variable region on the Ig light chains. The two loci are fused in the same transcriptional orientation (Cory, 1986).

Somatic mutation within the translocated c-myc allele, is another frequent structural feature of BL. Mutations mainly cluster in the 5' non-coding region either disrupting exon 1, intron 1 or the 5' flanking regions, and include insertions, deletions and single nucleotide substitutions (Pelicci et al., 1986a; Wiman et al., 1984). Additionally, the second exon of c-myc is also affected by mutations that modify key phosphorylation sites necessary for its transactivation function (Rabbitts et al., 1983; Bhatia et al., 1993). Furthermore, c-Myc mutants possess increased transforming activity, possibly due to their decreased responsiveness to the pRb family member, p107, which negatively regulates c-Myc (Hoang et al., 1995) or by their resistance to ubiquitin-mediated degradation, resulting in increased stability (Bahram et al., 2000).

1.7.4.2 Regulation of c-Myc in BL

The levels of c-myc RNA and protein expressed in BL are typically not strikingly higher than those seen in EBV-immortalised B cells, although they are elevated when compared to that observed in quiescent cells (Wiman et al., 1984). Transcription of c-myc in BL predominantly arises from the translocated allele, while the unrearranged allele is repressed or expressed at very low levels (Croce and Nowell, 1985). Activation of the translocated allele is believed to occur by the influence of cis-acting Ig enhancer elements that are transcriptionally active in B cells. Thus, the rearranged allele escapes the repression mechanisms that usually inactivate the normal c-myc allele in the later stages of B cell maturation (Spencer and Groudine, 1991).

Alternatively, loss of regulation of c-myc from the translocated allele could occur by the truncation of exon 1 as seen in sporadic BL (see above), or by the presence of structural alterations in the 5' region of the translocated allele (Pelicci et al., 1986a) and see above). This might inactivate important negative regulatory elements such as the block to transcriptional elongation near the 3' end of exon 1, leading to the constitutive transcriptional activation of c-myc, as seen in BL cells (Cesarman et al.,
Cells that constitutively express c-Myc are maintained in a state of continuous proliferation, are highly apoptosis-prone (Evan et al., 1992), and rarely undergo transformation unless they incur a second aberrant genetic event (Adams et al., 1983). Thus additional changes that counteract apoptosis, such as activation of bcl-2 (see section 1.8.7.2), mutations in p53, RB and Bax (Farrell et al., 1991; Cinti et al., 2000; Gutierrez et al., 1999), or silencing of INK4a by methylation (Klangby et al., 1998), are often present in primary BL and BL cell lines.

1.8 Bcl-2

1.8.1 Discovery of bcl-2

The B cell lymphoma/leukaemia-2 (bcl-2) gene was so named because of its characteristic association with B cell malignancies. This proto-oncogene was originally identified by virtue of its involvement in the t(14:18) translocation breakpoint of follicular B cell NHL (Tsujimoto et al., 1984). This discovery led to a new class of oncogenes whose primary function is regulation of programmed cell death (apoptosis) and cell survival, instead of promoting (c-myc) or inhibiting proliferation (p53 and RB) (Korsmeyer, 1992).

1.8.2 Structure of the bcl-2 gene and protein

The bcl-2 gene is located on chromosome 18 (band q21), has three exons and utilises two different promoters to generate transcripts that encode two proteins namely p26α (Dittmer et al., 1998) and p22β by alternative splicing (Reed et al., 1988; Seto et al., 1988). The Bcl-2 protein is an integral membrane protein, which is localised to mitochondrial, nuclear and endoplasmic reticulum membranes (Krajewski et al., 1993). A stretch of 19 hydrophobic amino acids at the C-terminus of p26α, critical for its anti-apoptotic function, serves to anchor the protein into membranes, with a majority of the amino terminus exposed to the cytosol (Chen-Levy and Cleary, 1990; Hockenbery et al., 1990). The truncated p22β form lacks this hydrophobic tail (Tsujimoto and Croce, 1986).
1.8.3 The Bcl-2 protein family

The Bcl-2 family comprises at least 16 members (Adams and Cory, 1998). All members possess sequence homology in one or more of four conserved motifs known as Bcl-2 homology domains (BH1 to BH4) that mediate protein-protein interactions (Yin et al., 1994).

Although Bcl-2 (anti-apoptotic) and Bax (pro-apoptotic) are capable of functioning independently, dimerisation among Bcl-2 family members provides an important mechanism of regulating their activity (Knudson and Korsmeyer, 1997). The BH3 domain is critical for both hetero-dimerisation with anti-apoptotic proteins and for induction of apoptosis (Theodorakis et al., 1996). The BH4 domain, which is found only in the anti-apoptotic members such as Bcl-2 and Bcl-XL, is required for the binding and sequestration of Caenorhabditis elegans, Ced-4 homologues, thereby inhibiting apoptosis (Huang et al., 1998; Korsmeyer, 1999 and see below).

1.8.4 Expression and physiological role of Bcl-2

Consistent with its role in cell survival, Bcl-2 is widely expressed during embryogenesis, notably in many neuronal populations, the retina and limb buds, although it is not absolutely required for embryonic development (Veis et al., 1993). In the adult, expression is limited to T and B lymphocytes, haematopoietic cells, epithelia and peripheral neurons (Hockenbery et al., 1991).

The physiological role of Bcl-2 has been elucidated by its topographical distribution in mature tissues, particularly the secondary germinal centres. The protein is expressed in early progenitor T and B cells, downregulated during the critical stage of lymphocyte development and selection, and re-expressed in mature T and B cells that have been selected for survival, thus implying a role in the selection and maintenance of plasma and memory B cells (Hockenbery et al., 1991).

1.8.5 Role for the Bcl-2 family members in cell death regulation

A critical role for this gene as an intracellular apoptosis-suppressor came from the observation that overexpression of Bcl-2 increases the viability and survival of certain cytokine-dependent haematopoietic cell lines upon cytokine withdrawal (Vaux et al., 1988). Furthermore, Bcl-2 prevents cell death in response to diverse
insults such as γ- and ultraviolet-radiation, growth factor withdrawal, oncogenes, viral proteins, oxidative stress and others (Yang and Korsmeyer, 1996). Hetero-dimerisation with Bax is not essential for the anti-apoptotic function of Bcl-2. An important factor in determining susceptibility to apoptosis is the ratio of Bcl-2 to Bax that is present in the cell (Oltvai et al., 1993). Bcl-2 exerts its anti-apoptotic activity through a variety of mechanisms, most of which involve prevention of cytochrome c release and subsequent activation of the apoptotic signal transduction pathway (Susin et al., 1996; reviewed in Green and Reed, 1998). Pro-survival proteins can also inhibit apoptosis downstream of the release of cytochrome c by direct binding to the cytoplasmic pro-apoptotic protein, Apaf-1 (Ced-4 homologue), inhibiting its association with procaspase-9 and its activation (Hu et al., 1998; Reed, 1997).

1.8.6 Bcl-2 and the cell cycle
Under sub-optimal growth conditions, Bcl-2 promotes exit of cells from the cell cycle and delays re-entry into cycle. This cell cycle inhibitory effect is genetically separable from its survival function (Huang et al., 1997). Cell cycle inhibition by Bcl-2 is believed to have evolved to reduce its oncogenicity, and provide additional protection against apoptotic stimuli that proliferating cells encounter (Adams and Cory, 1998).

1.8.7 Involvement of bcl-2 in cancer

1.8.7.1 bcl-2 alterations in lymphomas
85% of follicular lymphomas (Yunis et al., 1982) and 30% of diffuse B cell lymphomas (Aisenberg et al., 1988) harbour the t(14:18) reciprocal translocation that juxtaposes the bcl-2 gene and the IgH regulatory sequences. Nearly 70% of the breakpoints occur within the 3' untranslated region called the major breakpoint region (MBR) and 25% occur at a distance approximately 20kb 3' of the gene, called the minor cluster region (mcr) (Tsujimoto et al., 1985; Cleary et al., 1986). The corresponding breakpoints on chromosome 14 occur at or close to members of the joining region genes (JH) (Bakhshi et al., 1987). Occasionally, the breakpoint may
occur 5' to the \textit{bcl-2} gene (Yabumoto \textit{et al.}, 1996), although these rearrangements involve not only \textit{IgH} but also light chain genes as partners (see figure 13). These translocations are believed to occur as a result of endonucleolytic cleavages at the heavy chain diversity (D) and joining (J) segments by the enzyme recombinase during pre-B cell development, thus exposing sites of double-strand breaks to faulty recombinational events (Tsujimoto \textit{et al.}, 1985).

The translocation places the \textit{bcl-2} gene in the same transcriptional orientation as the \textit{IgH} locus, thus giving rise to \textit{bcl-2/IgH} chimeric transcripts (see figure 13). Since the protein-coding region of \textit{bcl-2} is left intact, both normal and translocated alleles encode for a normal 25kDa Bcl-2 protein. Transcriptional deregulation and inappropriately elevated levels of the protein are commonly observed in lymphomas as a consequence of the translocation, which is thought to confer a survival advantage to the malignant B cells (Seto \textit{et al.}, 1988).

Somatic mutations have been shown to accumulate in the translocated \textit{bcl-2} allele in a subset of NHL, possibly due to the proximity of the gene to the hypermutable Ig region. The functional significance of these mutations is unclear (Tanaka \textit{et al.}, 1992). Mutations near the amino-terminal BH4 domain of Bcl-2, a region responsible for the cell cycle inhibitory function of the protein, occurs in follicular lymphomas (Matolcsy \textit{et al.}, 1996). It has been suggested that these mutations might relieve cell cycle inhibition without affecting the anti-apoptotic function of Bcl-2, thus contributing to the more aggressive phenotype characteristic of progressed follicular lymphoma (Huang \textit{et al.}, 1997; Matolcsy \textit{et al.}, 1996).

Healthy individuals frequently (20 to 60%) harbour the t(14:18) translocation (Limpens \textit{et al.}, 1995; Aster \textit{et al.}, 1992; Summers \textit{et al.}, 2001), indicating that a translocation involving \textit{bcl-2} is in itself insufficient to cause cancer, and additional events are necessary for malignant transformation to occur (McDonnell and Korsmeyer, 1991; see below). Nonetheless, detection of t(14:18) is believed to be a marker for monitoring minimal residual disease and remission following therapy (Gribben and Nadler, 1995).

\textbf{1.8.7.2 Co-operation between the \textit{bcl-2} family and c-Myc and p53 in neoplasia}

Synergistic interactions between \textit{bcl-2} and \textit{c-myc} resulting in an increased potential
13 A Structure of bcl-2

5' bcl-2

13 B MBR/IgH fusion

JH Eμ S C

MBR/01 MBR/02 Eμ/01

13 C mcr/IgH fusion

JH Eμ S C

MBR/02 mcr/01 mcr/02 Eμ/01

Gene rearrangement between bcl-2 on chromosome 18 and the IgH locus (indicated in yellow) on chromosome 14 along with the approximate sites of the primers for the LD-PCR. The coding regions of bcl-2 are indicated as stippled boxes and the non-coding regions as solid blue boxes. The three breakpoint cluster regions (5' bcl-2, MBR and mcr) are indicated. Primers for the bcl-2 gene, indicated as stars, represent the sense strand in the forward direction, whereas those for the IgH gene represent the antisense strand in the reverse direction. 5' BCL-2: 5' cluster region of bcl-2 MBR: major breakpoint region, mcr: minor cluster region JH: joining region of the IgH Eμ: IgH-specific enhancer region S: switch region C: constant region. Adapted from Akasaka et al., 1998.
for transformation (Strasser et al., 1990), were first noted in vitro (Vaux et al., 1988) and subsequently observed in naturally occurring lymphoid tumours in vivo (Lee et al., 1989). This potent oncogenic combination probably reflects the ability of each gene to counter the anti-oncogenic properties of the other. In other words, Bcl-2 compensates the apoptotic function of deregulated c-Myc allowing unrestricted proliferation, whereas growth inhibition induced by Bcl-2 is overcome by the mitogenic effects of c-Myc (Cory et al., 1999; Hueber and Evan, 1998; Fanidi et al., 1992).

p53 is required for inducing apoptosis in response to genotoxic damage and often but not always upregulates expression of Bax (see section 1.3.3). Bcl-2 is capable of inhibiting both p53-dependent and independent mechanisms of cell death. Thymocytes from p53−/− mice are resistant to γ-irradiation and etoposide, but not glucocorticoids, interferon-γ and TGF-β. However, Bcl-2 is very effective at blocking cell death induced by these agents (Francis et al., 2000; Strasser et al., 1994).

1.8.7.3 Prognostic significance of bcl-2 expression
Elevated expression of Bcl-2 is not restricted to B-lymphomas with a t(14:18) translocation, but is also common in lymphoproliferative disorders, and cancers of the lung, breast, colon and prostate, independent of the translocation (Pezzella et al., 1990; reviewed in Jäättela, 1999). A distinct correlation between high Bcl-2 expression and poor prognosis has been reported in NHL and AML (Gascoyne et al., 1997). In contrast, high levels of Bcl-2 are considered to be markers of favourable clinical outcome in breast cancer (Silvestrini et al., 1994). Furthermore, loss of function mutations in Bax, and an elevated Bcl-2/Bax ratio is considered to be an indicator of poor prognosis, particularly in haematopoietic malignancies (Meijerink et al., 1998; reviewed in Jäättela, 1999).

1.9 Bcl-6

1.9.1 Cloning and characterisation of bcl-6
Based on cytogenetic observations of recurrent chromosomal translocations affecting
band 3q27 in diffuse large cell lymphomas (DLCL), the genomic region within 3q27 was cloned from a lymphoma with a t(3:14) (q27;q32) breakpoint (Baron et al., 1993). Subsequent nucleotide sequencing of the corresponding cDNA led to the identification of a novel putative proto-oncogene, bcl-6, for B cell lymphoma-6, also called LAZ3 (lymphoma-associated zinc finger gene on chromosome 3) (Ye et al., 1993).

1.9.2 Structure of the bcl-6 gene and protein

The bcl-6 gene has 10 exons spanning 26kb, with a 10kb intron between non-coding exons 1 and 2 (see figure 14A). Two transcription initiation sites have been mapped to exon 1. Exons 3 to 10 encode a 95 kDa phosphoprotein that contains six krüppel-type C2H2 zinc-finger (ZF) motifs typically found in sequence-specific transcription factors, and an evolutionarily conserved poxvirus and zinc finger (POZ) domain at the N-terminus (see figure 14B). This motif serves to mediate protein-protein interactions and is required for homo- or hetero-dimerisation, as well as transcriptional activation and repression. This region is also capable of regulating sequence-specific DNA binding by the zinc-finger domain. The POZ domain along with the central portion of the gene, which contains multiple phosphorylation sites embedded in PEST motifs, regulates its stability (Niu et al., 1998; see figure 14).

1.9.3 Pattern and regulation of Bcl-6 expression

The pattern of bcl-6 mRNA and protein expression is highly discordant, suggesting post-transcriptional and translational mechanisms of regulation (Allman et al., 1996). The mRNA is expressed at variable levels in many tissues and organs, highest levels being in skeletal muscle. However protein expression is far more restricted. Within the B cell lineage, the protein is detected only within the germinal centre and not in the immature B cells or differentiated plasma cells (Yen-Moore et al., 2000). In the T-cell lineage, it is expressed in a subset of CD4+ T cells within the GC and cortical thymocytes (Cattoretti et al., 1995). In non-lymphoid tissue, the protein can be found in proliferating chondrocytes, mature myocytes, and differentiating keratinocytes. This suggests that protein expression is tissue-specific and confined to cells at specific stages of differentiation (Knudson et al., 2001).
Figure 14. Structure of the bcl-6 gene and protein

14 A Structure of the bcl-6 gene

The dark purple boxes indicate the coding regions of the exons and the mauve boxes the non-coding regions. The mutation cluster region within the 5' non-coding region of the gene is indicated. A 740bp region encompassing the fragments E1.10, E1.11, and E1.12, wherein >90% of mutations reside, is indicated by bold red lines.

14 B Structure of the Bcl-6 protein

The Bcl-6 protein is a 95kDa nuclear phosphoprotein. The N-terminal POZ domain is responsible for protein-protein interactions, including homo-dimerisation and binding to nuclear co-repressors. The C-terminal domain, which is composed of six regularly spaced C2H2-type zinc fingers, mediates sequence-specific DNA recognition. The central region of the protein contains multiple phosphorylation sites embedded in PEST motifs. Trans-repression function of Bcl-6 requires both the POZ domain and the central PEST region. The STAT-6 binding site is indicated. POZ: poxvirus and zinc finger domain PEST: Proline (P), glutamic acid (E), serine (S) and threonine (T).

Adapted from Dalla-Favera et al., 1999.
Relatively little is known about the upstream signals that induce Bcl-6. However, signalling pathways that downregulate the protein, have been identified. Antigen-receptor signalling in B cells can induce mitogen-activated protein kinase (MAPK)-mediated phosphorylation and subsequent degradation of the protein by the ubiquitin/proteosome pathway (Niu et al., 1998). In addition, the protein can also be downregulated by CD40 signalling or by the CD40 functional homologue EBV LMP1 (Kenney et al., 1998; Allman et al., 1996; Ye et al., 1997).

1.9.4 Transcriptional repression function of Bcl-6
The POZ domain mediates Bcl-6 transcriptional repression activity (Seyfert et al., 1996) by interacting with nuclear co-repressors that recruit histone deacetylases, which in turn modify the activity of RNA polymerase II (Chang et al., 1996). Target genes repressed by Bcl-6 are reviewed in Shaffer et al (2000). Inhibition of differentiation and enhanced proliferation through repression of target genes by deregulated or constitutively expressed Bcl-6, might have important consequences in the development of B cell lymphomas that harbour translocated bcl-6 (Shaffer et al., 2000).

1.9.5 Role for Bcl-6 in B and T cell development
The function of Bcl-6 in B and T cell development has been elucidated in studies carried out in bcl-6 knockout mice. Mice deficient in Bcl-6 display normal B and T cell development but have a selective defect in T cell-dependent antibody responses with lack of affinity maturation, due to the inability of follicular B cells to proliferate and form germinal centres (Ye et al., 1997). Further support for the function of Bcl-6 as a transcriptional switch in GC formation and post-GC differentiation comes from the observation that it is upregulated in B cells that enter the GC, and downregulated abruptly when they exit (Ye et al., 1997).

Bcl-6 can modulate specific T cell-mediated responses. bcl-6−/− mice die at an early age of a severe inflammatory disease in multiple organs characterised by infiltrations of eosinophils and IgE-bearing B cells typical of a Th2-mediated hyperimmune response. This may be explained by the ability of Bcl-6 to bind and repress activation by STAT-6, a central mediator of IL-4-driven Th2 cell differentiation (Ye et al., 1997).
1997).

1.9.5 Genetic alterations in bcl-6

1.9.5.1 bcl-6 translocations in NHL

Rearrangements in bcl-6 have been demonstrated in around 40% of DLCL, but are less frequently observed in follicular lymphoma (FL) (6 to 15%) and marginal zone B cell lymphoma (9%), and virtually absent in other lymphoid malignancies (Lo Coco et al., 1994). In the setting of immunodeficiency, bcl-6 alterations are detectable in 20% of AIDS-DLCL (Gaidano et al., 1994).

An unusual feature of 3q27 reciprocal translocations is the heterogeneous nature of the partner chromosome. At least 33 different chromosomal loci have been described as participating in these translocations, including the Ig heavy and light chains and many non-Ig loci (Ye, 2000). 3q27 breakpoints are dispersed over a 10kb region (major translocation cluster, MTC) clustering mainly in the 5' flanking region within the first non-coding exon or intron of bcl-6. The 5' regulatory sequences which include the promoter in many cases, is removed, leaving the coding regions intact (Ye et al., 1993). Thus, the germline promoter of the bcl-6 gene is substituted by heterologous promoters fused in the same transcriptional orientation as the coding exons of bcl-6 (Ye et al., 1995a). The outcome of such promoter substitutions is usually a fusion transcript that translates a normal Bcl-6 protein (Chen et al., 1998a; Ye et al., 1995a). In B lymphoma cells, the germline bcl-6 allele is transcriptionally inactive indicating that the cellular differentiation state of these cells is non-permissive for Bcl-6 expression and that translocation allows the expression of a gene that would normally be silenced (Ye et al., 1995a). Therefore, the functional consequence of such translocations is transcriptional deregulation of bcl-6, resulting in a block to normal B cell differentiation and lymphomagenesis (Chen et al., 1998a).

30% of cases that carry 3q27 abnormalities do not show a break in the MTC of bcl-6 (Ye et al., 1993). Recent studies indicate the possibility of an alternative breakpoint region (ABR) 200-270 kb telomeric and 5' to bcl-6 (Chen et al., 1998b).

An interesting observation that demonstrates the requirement for co-operative
interactions between genes to effect tumourogenesis is that \textit{bcl-6} translocations are often accompanied by alterations in other genes, such as \textit{bcl-2}, \textit{bcl-1} and \textit{p53} (Butler \textit{et al.}, 1997). Concomitant rearrangements in \textit{bcl-6} and \textit{bcl-2} are observed in transformed lymphomas with a prior history of FL (Butler \textit{et al.}, 1997), and a subset of high-grade mucosa-associated lymphoma tissue (MALT)-derived tumours display rearrangements in \textit{bcl-6}, along with \textit{p53} mutations (Gaidano \textit{et al.}, 1997a).

\subsection*{1.9.5.2 Somatic mutations in \textit{bcl-6}}

In contrast to the coding region of \textit{bcl-6}, its 5' non-coding region displays extensive structural instability, which can result in deregulated expression (Capello \textit{et al.}, 2000; Ye \textit{et al.}, 1993). In addition to translocations and small intragenic deletions (Nakamura \textit{et al.}, 1999; Ye \textit{et al.}, 1995b), this region is frequently targeted by somatic mutations, both in GC derived tumours (1.4x103 to 1.6x102 per bp) as well as normal B cells (6.8x104 to 1.9x103 per bp) (Migliazza \textit{et al.}, 1995; Shen \textit{et al.}, 1998; see figure 14A). These 5' \textit{bcl-6} mutations are detectable in about 70% of DLCL and 45% of FL. Multiple biallelic mutations are present in both the germline and translocated \textit{bcl-6} alleles. Furthermore, it is known that mutations in \textit{bcl-6} can occur independently of translocation, as observed in 70% of AIDS-NHL (excluding DLCL), certain B-NHL without a 3q27 abnormality, and 28 to 50% of non-AIDS BL without detectable gross rearrangements (Capello \textit{et al.}, 1997; Gaidano \textit{et al.}, 1997c). More recently Zan \textit{et al.} have demonstrated that such mutations can occur out-with the \textit{Ig} locus, and suggest the existence of \textit{cis}-acting regulatory elements, similar to those in the \textit{Ig} locus, in \textit{bcl-6} (Zan \textit{et al.}, 2000).

Of considerable interest is the observation that somatic mutations in \textit{bcl-6} can also occur in normal GC and memory B cells, although at a much lower frequency (see above), indicating that \textit{bcl-6} mutations may reflect a GC-related physiological process rather than a lymphoma specific phenomenon (Pasqualucci \textit{et al.}, 1998).

\subsection*{1.9.5.3 Prognostic and histogenetic implications of \textit{bcl-6} gene alterations and expression}

\textit{bcl-6} mutations are more likely to reflect the GC or post-GC origin of tumours, since they are regarded as a marker of transition of a given B cell through the GC. This is
further corroborated by the fact that rare neoplasms of precursor B cells are significantly devoid of mutations in this gene, although they are frequently detected in DLCL, FL, BL and AIDS-NHL (Migliazza et al., 1995).

Analysis of Bcl-6 protein expression has also contributed substantially to the histogenesis of AIDS-NHL and Hodgkin's disease. Analysis of AIDS-NHL shows that 100% of AIDS-BL express Bcl-6, whereas in AIDS-DLCL, expression is restricted to the cases displaying LNCCL morphology and generally absent in the immunoblastic type (Carbone et al., 1997, 1998).

The significance of bcl-6 rearrangement as a useful prognostic marker is controversial (Pescarmona et al., 1997; Offit et al., 1994). As a disease-specific diagnostic marker however, the persistence of tumour cells with bcl-6 translocations after treatment can be used to monitor minimal residual disease. Somatic mutations in bcl-6 have been considered as a reliable indicator of the more aggressive forms of post-transplant lymphoproliferative disorder, such as NHL and multiple myeloma, (Cesarman et al., 1998).

1.10 Tumour-associated viruses

The first evidence of the tumour-inducing potential of viruses came in 1911, from the observation that a virus (Rous-sarcoma virus) could cause sarcomas in fowl (Rous, 1911). Since then viruses belonging to the retro-, herpex-, hepadn- papova- and adeno-virus families have been shown to be associated with a diverse range of neoplasias in humans and other hosts (for review see Wyke, 1997).

Three viruses associated with cancer both in immunocompetent and compromised (AIDS patients and organ transplant recipients) hosts are Epstein-Barr virus (EBV) (in Burkitt's lymphoma, AIDS-NHL and post-transplant lymphoproliferative disorder) (see below); Kaposi's sarcoma-associated herpesvirus (KSHV) (in Kaposi's sarcoma and primary effusion lymphoma) (see below); and human papillomavirus (HPV) (in anogenital, and cervical carcinoma) (Goedert et al., 1998). However, only a small number of infected people develop virus-associated malignancy, reflecting the multi-step nature of carcinogenesis, with viral infection representing only one of these steps.
1.11 Epstein-Barr Virus (EBV)

EBV, a prototype gamma (γ) herpesvirus (Family *Herpesviridae*, genus *Lymphocryptovirus*), was first identified by Epstein and colleagues in cultured tumour biopsy cells from a case of endemic (African) Burkitt’s lymphoma (BL) (Epstein *et al.*, 1964). Subsequently, the virus has been linked to diseases of both epithelial and lymphoid origin, in immunocompetent and immunocompromised hosts (reviewed in Brooks and Thomas, 1995, see Table 3).

Table 3

EBV-associated diseases

<table>
<thead>
<tr>
<th>Association</th>
<th>Disease</th>
<th>Cell of origin</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Causative agent</td>
<td>Acute infectious mononucleosis (IM)</td>
<td>Lymphoid</td>
<td>Niederman et al., 1970</td>
</tr>
<tr>
<td>Etiologic association</td>
<td>Burkitt’s lymphoma (BL)</td>
<td>Lymphoid</td>
<td>Epstein et al., 1964</td>
</tr>
<tr>
<td>Suspected association</td>
<td>Nasopharyngeal carcinoma (NPC)</td>
<td>Epithelial*</td>
<td>Wolf et al., 1973</td>
</tr>
<tr>
<td></td>
<td>Post-transplant lymphoproliferative disorder (PTLD)</td>
<td>Lymphoid</td>
<td>Crawford et al., 1980</td>
</tr>
<tr>
<td></td>
<td>AIDS-related lymphomas (ARL)</td>
<td>Lymphoid</td>
<td>Hamilton-Dutoit et al., 1991</td>
</tr>
<tr>
<td></td>
<td>Oral Hairy Leukoplakia (OHL)</td>
<td>Epithelial*</td>
<td>Greenspan et al., 1985</td>
</tr>
<tr>
<td></td>
<td>X-linked lymphoproliferative disease (XLPD)</td>
<td>Lymphoid</td>
<td>Purtilo et al., 1975</td>
</tr>
<tr>
<td></td>
<td>Hodgkin’s disease (a subset)</td>
<td>Lymphoid</td>
<td>Weiss et al., 1989</td>
</tr>
<tr>
<td></td>
<td>T-cell lymphoma (a subset)</td>
<td>Lymphoid</td>
<td>Jones et al., 1988</td>
</tr>
<tr>
<td></td>
<td>Gastric carcinoma (~10%)</td>
<td>Epithelial*</td>
<td>Imai et al., 1994</td>
</tr>
<tr>
<td></td>
<td>Carcinoma of the parotid gland</td>
<td>Epithelial*</td>
<td>Raab-Traub et al., 1991</td>
</tr>
<tr>
<td></td>
<td>Breast cancer</td>
<td>Epithelial</td>
<td>Bonnet et al., 1999</td>
</tr>
<tr>
<td></td>
<td>Leiomyosarcomas</td>
<td>smooth muscle</td>
<td>McClain et al., 1995</td>
</tr>
</tbody>
</table>

* Epithelial cell infection/lesions are included for completion but are not discussed further.

1.11.1 Genome organisation

EBV is an enveloped virus, with a 172kb double-stranded linear DNA genome enclosed in an icosahedral capsid. The genome contains dispersed regions of repeat (internal repeats {IR} 1-4) and unique (U) sequences (short {US} and long {UL}) along its entire length, and is flanked by reiterated 500bp terminal direct repeats that are required for covalent circularisation of the genome in latently infected cells. The genome has the coding capacity for approximately 70 proteins. The latent and lytic
cycle genes are described in Table 4 (reviewed in Epstein and Crawford, 1998; Rickinson and Kieff, 1996).

Table 4

Classification and function of selected EBV genes

<table>
<thead>
<tr>
<th>Class</th>
<th>Gene*</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>LATENT</td>
<td>EBNA LP</td>
<td>Immortalisation, binds p53 and pRb</td>
</tr>
<tr>
<td></td>
<td>EBNA1<sup>a</sup></td>
<td>Episome maintenance</td>
</tr>
<tr>
<td></td>
<td>EBNA2</td>
<td>Immortalisation, Transactivates viral & cellular genes (p21 and hMDM2)</td>
</tr>
<tr>
<td></td>
<td>EBNAs 3a, 3b and 3c</td>
<td>3a and 3c, immortalisation</td>
</tr>
<tr>
<td></td>
<td>LMP1<sup>a</sup></td>
<td>3c, viral transactivator, binds pRb</td>
</tr>
<tr>
<td></td>
<td>LMP2a and 2b</td>
<td>Immortalisation, upregulates anti-apoptotic bcl-2 and A20, tumourigenic in nude mice</td>
</tr>
<tr>
<td>LYTIC</td>
<td>EBERs</td>
<td>Facilitate immortalisation. LMP2a inhibits EBV reactivation from latency</td>
</tr>
<tr>
<td>Immediate</td>
<td>BARTs</td>
<td>bind and inhibit protein kinase, PKR</td>
</tr>
<tr>
<td>early</td>
<td></td>
<td>role in signal transduction and growth control</td>
</tr>
<tr>
<td>Early</td>
<td>BRLF1 and BZLF1 (Zta)</td>
<td>switch from latent to lytic infection; Zta, effects growth arrest by inducing p53, p21 and p27; BRLF1, activates E2F1 and viral replication</td>
</tr>
<tr>
<td>Late</td>
<td>Early antigen (EA)</td>
<td>Viral replication</td>
</tr>
<tr>
<td></td>
<td>Membrane antigen (MA)</td>
<td>Viral infectivity and spread</td>
</tr>
<tr>
<td></td>
<td>Viral capsid antigen (VCA)</td>
<td>Viral structural protein</td>
</tr>
</tbody>
</table>

^a, Only selective genes have been mentioned; ^a, expressed during both latent and lytic infection; EBNA, Epstein-Barr nuclear antigen; LMP, latent membrane protein; EBERs, EBV-encoded RNAs; BARTs, BamH1 A rightward transcripts; LP, Leader protein; PKR, double stranded RNA protein kinase

1.11.2 EBV infection of B lymphocytes

EBV infects B cells (rarely T lymphocytes and epithelial cells) both *in vitro* and *in vivo*. Latent infection results in the expression of viral latent genes without virus production. Viral infection of lymphocytes is mediated by binding of the viral envelope glycoprotein (gp350/220) to the C3d/CR2 complement receptor (CD21), which is found on all mature B lymphocytes, peripheral T cells and thymocytes (Fingeroth *et al.*, 1984). *In vitro* infection of B cells leads to the activation and immortalisation of these cells resulting in the generation of continuously proliferating lymphoblastoid cell lines (LCL) (Pope *et al.*, 1968). The linear genome enters the nucleus and circularises to form an episome, which amplifies and then replicates concurrently with, but does not integrate, into, host cell DNA. Between 0.1 to 5% of LCL cells enter the lytic cycle at any one time resulting in infectious virus
production and cell death.

1.11.3 Models of EBV latency

EBV can establish three different patterns of latency in infected cells - Latency I, II and III, both *in vitro* and *in vivo*, with each pattern being characterised by the expression of a specific set of latent genes (Rowe *et al.*, 1992; reviewed in Rickinson and Kieff, 1996; see Table 5).

<table>
<thead>
<tr>
<th>Latency</th>
<th>BARTs</th>
<th>EBERs</th>
<th>EBNA</th>
<th>LMP</th>
<th>Cancer type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3a</td>
<td>3b</td>
<td>3c</td>
</tr>
<tr>
<td>I</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5

Pattern of EBV latency in EBV-associated malignancies

Adapted from Niedobitek *et al.*, 1997.

BARTs, BamH1 A rightward transcripts; EBERs, Epstein-Barr encoded RNAs; EBNA, Epstein-Barr nuclear antigen; LMP, Latent membrane protein; NHL, Non-Hodgkin's lymphoma; DLCL, diffuse large-cell lymphoma; SNCCl, small non-cleaved cell lymphoma; PTLD, Post-transplant lymphoproliferative disorder; NPC, Nasopharyngeal carcinoma

1.11.4 EBV infection *in vivo*

EBV has a world-wide distribution and more than 90% of adults show evidence of past infection (Henle and Henle, 1966). The virus is transmitted predominantly through saliva (Yao *et al.*, 1985). In a majority of individuals primary infection occurs in the first 2 years of life and is usually asymptomatic. However, delayed primary infection in adolescence often manifests clinically as infectious mononucleosis (IM) (Diehl *et al.*, 1968; reviewed in Steven, 1996).

Following primary infection, life-long persistence is established, with 5-500 cells in every 10 million circulating B cells carrying the virus in a latent form (Miyashita *et al.*, 1995). Low level viral replication in the pharynx and intermittent shedding of infectious virus into saliva is observed during the carrier-state (Yao *et al.*, 1985).
1.11.5 Malignancies in immunosuppressed individuals

In immunocompetent individuals, EBV persistence is controlled by both cellular and humoral mechanisms. An antibody response to EBV antigens (mainly the lytic cycle antigens) is detectable during primary infection and convalescence, with IgG antibodies to the viral capsid antigen and EBNA-1 persisting in the serum throughout life (Henle et al., 1987). Antibodies against gp350/220 are neutralising, and are present in both the serum and saliva of carriers (Yao et al., 1991). However, it is the EBV-specific CD8\(^+\) cytotoxic T cells (CTLs) that are primarily responsible for maintaining a stable virus-host balance (Moss et al., 1978). Displacement of this equilibrium is classically seen in immunodeficient states, which leads to enhanced virus replication, increase in the number of EBV-carrying B cells, and elevated serum antibody levels to EBV lytic cycle antigens (Birx et al., 1986; Thomas et al., 1991).

1.11.5.1 AIDS-related Non-Hodgkin's lymphoma (NHL)

Unlike post-transplant lymphoproliferative disorders (PTLDs), AIDS-associated lymphomas are not uniformly associated with EBV, questioning whether the virus is involved in the development and pathogenesis of these lesions, or merely a passenger.

Among systemic AIDS-NHL, EBV is associated with around 70 to 80% of diffuse large cell lymphomas (DLCLs), and a similar proportion of Burkitt's-like lymphoma (BLL). The majority of DLCLs have a latency II or III phenotype and frequently, though not always, express the transforming antigens LMP-1 and EBNA-2, suggesting that the virus has a pathogenic role in the genesis of these tumours (Carbone et al., 1993; Hamilton-Dutoit et al., 1993). At a frequency similar to sporadic BL, around 30% of AIDS-BL carry EBV and have a latency I phenotype (Ballerini et al., 1993). Virus in BL is generally monoclonal, consistent with the hypothesis that the virus was present before clonal expansion, and might therefore contribute to lymphoma development (Neri et al., 1991). Furthermore, positive identification of EBV DNA in the lymph nodes of HIV-infected individuals is considered to be a predisposing factor for subsequent development of lymphomas (Shibata et al., 1991). However, EBV-positive AIDS-BL
fail to express EBNA-2 and LMP-1, which are key inducers of the transformed phenotype in other B cell tumour models (Carbone et al., 1993). Moreover, the absence of EBV in around 70% of AIDS-BL challenges the contribution of the virus to the pathogenesis of these lesions. AIDS-related PCNSL are consistently associated with EBV (MacMahon et al., 1991) and display a latency III EBV phenotype, similar to that of systemic immunoblastic NHL. Expression of EBV-LMP-1 is detected in approximately 50% of cases, suggesting a transforming role for the virus in the pathogenesis of these lymphomas (Larocca et al., 1998)

1.12 Kaposi's Sarcoma-associated Herpes Virus (KSHV)

Kaposi's sarcoma (KS) was first noted in 1872 by a Hungarian dermatologist, Moriz Kaposi, as purplish skin lesions (frequently accompanied by lymphoedema) that appeared on the lower extremities. Much later, these pigmented sarcomas were re-described in elderly men of Eastern European and Mediterranean descent (classic KS), African men and children (endemic KS) and organ transplant recipients (iatrogenic KS). With the onset of the AIDS epidemic a vast increase in KS cases was noted. Now AIDS-associated KS (AIDS-KS) is the most common neoplasm observed in AIDS patients (particularly young homosexual men), whose risk of developing the disease is 20,000 fold above that of the general population (Beral, 1991; Antman and Chang, 2000). In 1994, Chang and colleagues identified a previously unrecognised herpesvirus in the skin lesions of an individual with AIDS-KS, which came to be known as Kaposi’s sarcoma-associated herpesvirus (KSHV) or human herpesvirus-8 (HHV-8) (Chang et al., 1994).

1.12.1 Genome structure

KSHV is a γ-herpes virus, which is more similar to the simian herpesvirus saimiri (HVS) than it is to EBV. It consists of a double-stranded 165 to 172kb genome with a long unique region (LUR, ~140kb) flanked by terminal repeats. The LUR comprises the entire coding region for the virus and encodes over 80 genes. Genes that are conserved among all herpesvirus subfamilies are present along the length of
the genome and include those that code for structural proteins and DNA synthetic enzymes. Interspersed between these conserved gene blocks are regions unique to KSHV (open reading frames (ORFs) K1-15) and other rhadinoviruses, some of which can mimic cell cycle regulatory genes, cytokines and signal transduction proteins (Russo et al., 1996, reviewed in Moore and Chang, 1998).

1.12.2 Gene expression and function
Taking into account tissue-specific differences in transcription patterns, KSHV gene expression has been broadly classified into 3 classes based on their ability to be stimulated by 12-O-tetradecanoylphorbol-13-acetate (TPA) or sodium butyrate in body cavity cell lines (BC-1) in vitro (Sarid et al., 1998, and see Table 6).

Table 6
KSHV gene expression

<table>
<thead>
<tr>
<th>Class*</th>
<th>Inducible by TPA</th>
<th>Selected genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>-</td>
<td>v-cyclin (v-cyc), v-FLIP, LNA</td>
</tr>
<tr>
<td>II</td>
<td>+</td>
<td>v-IL6, v-GPCR, v-Bcl2</td>
</tr>
<tr>
<td>III</td>
<td>++</td>
<td>K12 (kaposin)</td>
</tr>
</tbody>
</table>

*, Pattern of gene transcription examined in a body cavity lymphoma cell line (BC-1). -, Constitutive and not induced by TPA (latent mRNAs); +, constitutive and inducible by TPA; ++, only inducible by TPA (late lytic genes). Only selective Class I, II and III transcripts have been shown due to space constraints (for a detailed list refer Sarid et al., 1998). LNA, latency associated nuclear antigen; FLIP, FLICE inhibitory protein; GPCR, G-protein coupled receptor; IL6, Interleukin-6

1.12.3 In vitro infection of B cells
KSHV can persistently infect primary peripheral blood B cells in vitro in the presence of EBV, and such infection leads to the outgrowth of continuously growing KSHV+/EBV+ LCLs. KSHV latent viral transcripts were expressed in non-stimulated KSHV+/EBV+ LCLs, and induction with phorbol ester and n-butyrate resulted in lytic expression (Kliche et al., 1998).

1.12.4 Latent infection
Similar to other herpesviruses, KSHV persists as a covalently closed circular
episome in latently infected cells with limited viral gene expression. Two latency-associated Class I transcripts are encoded at the right hand end of the genome. A 5.32kb transcript (latent transcript 1) encodes ORF73 (LNA), ORF72 (vCYC) and ORF71 (vFLIP), while splicing of the 5.32kb transcript yields a 1.7kb transcript (latent transcript 2) that encodes only ORF72 and ORF71 (Talbot et al., 1999; see figure 15). ORF73 encodes an immunoreactive latent nuclear antigen (LNA), analogous to the EBNA1 protein of EBV, and is constitutively expressed in cells latently infected with KSHV (Kellam et al., 1997). This protein has been shown to be necessary and sufficient for viral episome maintenance, persistence and segregation during mitosis, by tethering the KSHV genome to the chromosome (Ballestas et al., 1999). Recent evidence demonstrates that LNA can interact with p53 and inhibit transcriptional activation and apoptosis mediated by p53 (Friborg et al., 1999). In addition, the virus can interact with the pRb tumour suppressor both in vitro and in vivo and transactivate E2F regulatory sequences (Radkov et al., 2000).

1.12.5 KSHV transmission and seroprevalence
KSHV can be transmitted sexually, and is thought to be more readily transmissible through homosexual than heterosexual practices (Martin et al., 1998). In areas where KS is endemic vertical transmission accounts for a portion of childhood cases, although the precise mode of transmission in late childhood and adolescence is still unknown (Bourboulia et al., 1998). Viral DNA can be detected in the saliva, oral tissues, semen, peripheral blood and lymphoid tissue of seropositive people as well as in the gastrointestinal (GI) mucosa of HIV-infected individuals, suggesting other routes of transmission (Koelle et al., 1997; Thomas et al., 1996). Unlike EBV, KSHV is not ubiquitous (Gao et al., 1996a). The seroprevalence of KSHV in the general population, is highest in Africa (50%) where KS is endemic, whereas it is between 5 and 10% in the United States and 0.2% in Japan where KS is rare (Lennette et al., 1996). In the American HIV-infected population, the incidence is 30% in homosexual men and 3 to 4% in women and haemophiliacs.

1.12.6 KSHV-associated diseases in HIV infection
KSHV has a tropism for B lymphocytes and has been detected in lymph nodes and
Figure 15. Transcription pattern of ORFs 71-73 of KSHV

The LNA, v-cyclin and v-FLIP genes are part of a polycistronic transcript (5.32kb). Splicing of this transcript yields a bicistronic message (1.7kb) encoding v-cyclin and v-FLIP. The numbers above the arrows indicate the corresponding open reading frames. Splice donor and splice acceptor sites are indicated as red circles and blue squares respectively. **LNA**: Latent nuclear antigen **FLIP**: FLICE inhibitory protein **TR**: Terminal repeat.

Adapted from Talbot et al., 1999.
peripheral blood B cells (Whitby et al., 1995). However, the virus also has a predilection for spindle cells of endothelial origin (Boshoff et al., 1995), as seen in KS, and primary human keratinocytes in culture (Cerimele et al., 2001). KSHV has been etiologically linked to diseases with prominent vasculature such as KS and multicentric Castleman's disease, as well as a rare B cell lymphoma, primary effusion lymphoma, in both individuals who have a preserved immune function and those with AIDS (reviewed in Cannon and Cesarman, 2000 and see below).

(i) AIDS-associated KS (AIDS-KS)
A causal relationship between KSHV and KS has been established by studies that have demonstrated evidence of infection prior to the development of KS, as well as the presence of KSHV sequences in all forms of KS (Dupin et al., 1995). Seroconversion to KSHV is a prognostic indicator of KS development (Whitby et al., 1995; Gao et al., 1996b).

KS lesions are histologically complex containing proliferating spindle cells of endothelial origin, but which often express markers characteristic of endothelial, macrophage and smooth muscle cells. Infiltrating plasma and mononuclear cells as well as abundant slit-like neovascular spaces are present in these lesions. AIDS-KS is particularly aggressive and frequently fatal, due to disseminated infection involving the lung, GI tract, liver and spleen (Friedman-Kien and Saltzman, 1990). The highly aggressive phenotype of AIDS-KS is believed to be induced by extracellular HIV-Tat, which synergises with, and mobilises sequestered basic fibroblast growth factor (bFGF), increasing endothelial cell growth and invasion in response to bFGF, by mimicking extracellular matrix proteins (Barillari et al., 1999; Ensoli et al., 1994). Most infected cells in a KS lesion are latently infected with lytic expression being limited to only 0.5 to 1% of cells. Productive infection occurs in the peripheral blood B cells of individuals with KS (Decker et al., 1996).

(ii) Primary effusion lymphoma (PEL)
KSHV-associated lymphomas represent a distinct diagnostic entity, called body cavity-based lymphoma or PEL (Nador et al., 1996). This malignancy accounts for 3 to 5% of AIDS-related NHL and has unique morphological and genetic
characteristics that distinguish it from other AIDS-NHL (Carbone et al., 1996a). Clinically, PEL is an aggressive lymphoma that presents as lymphomatous effusions in the pleural, peritoneal and/or pericardial cavity without a contiguous tumour mass. However, 15% of KSHV-associated lymphomas present as solid extranodal tumours, with half of these developing a subsequent lymphomatous effusion. These lymphomas are B cell in origin and histologically comprise a mixture of anaplastic and immunoblast-like cells. Co-infection with EBV occurs in 90% of PELs (Fassone et al., 2000); (Nador et al., 1996). Apart from 5' non-coding mutations in bcl-6 in 20% of cases (Gaidano et al., 1997d), these lesions lack molecular defects commonly associated with B cell neoplasia, such as rearrangement of c-myc, activation of bcl-2, and mutations in p53 and ras (Nador et al., 1996; Carbone et al., 1996a; Cesarman and Knowles, 1999).

(iii) Multicentric Castleman's disease (MCD)
MCD is an atypical lymphoproliferative disorder, which is characterised by a vascular proliferation in the germinal centres, and clinical presentation of multiple lymphadenopathies, autoimmune phenomena, skin rashes and intercurrent infection. Patients with MCD frequently develop other malignancies, most commonly KS and NHL (Soulier et al., 1995). KSHV is consistently detected in MCD associated with AIDS, although it has also been identified in 40% of MCD cases in HIV-negative individuals (Soulier et al., 1995). MCD in HIV positive patients frequently occurs in conjunction with KS (75%), although the virus is also present independent of KS in these individuals (Oksenhendler et al., 1996). Elevated serum levels of IL-6 are thought to contribute to the characteristic polyclonal plasmacytosis and hypergammaglobulinemia observed. Notably, vIL6 of KSHV is expressed in a few B cells surrounding the lymphoid follicles, suggesting a paracrine mechanism to drive proliferation and differentiation of B cells in KSHV-associated MCD (Parravicini et al., 2000; Staskus et al., 1999).
1.13 Molecular features of AIDS-NHL

1.13.1 AIDS-SNCCL
AIDS-BL typically harbour translocations between the c-myc oncogene on chromosome 8 and one of the Ig gene loci on chromosomes 14,22 or 2 (Ballerini et al., 1993; Subar et al., 1988; Gaidano et al., 1997b). Furthermore, the translocated c-myc alleles are frequently affected by mutations in exon 2, which alter the amino-acid sequence of the c-Myc protein (Bhatia et al., 1994).

Inactivating mutations of the p53 tumour suppressor gene were reported in 37% of AIDS-NHL, although the majority (60%) of these occur in the AIDS-BL sub-type (Ballerini et al., 1993). This figure is twice as high as that observed in NHL of the immunocompetent host (Gaidano and Dalla-Favera, 1993). In contrast to sporadic and endemic BL, AIDS-BLs are consistently devoid of molecular lesions in bax (Gaidano et al., 2000), a proapoptotic gene that is transcriptionally activated by p53 (Miyashita and Reed, 1995).

The molecular pathogenesis of AIDS-BLL is different from that of AIDS-BL, in that p53 mutation is rare and c-myc translocations less frequent in the former than the latter (20-60% versus 100%) (Davi et al., 1998; see Table 7). However, similar to AIDS-BL, approximately 70% of AIDS-BLL harbour bcl-6 mutations (Gaidano et al., 1997b). Furthermore, although rearrangements of bcl-2 have been detected in a fraction of BLL in the immunocompetent host (Yano et al., 1992), such abnormalities have not been detected across the spectrum of AIDS-NHL in the small number of studies that have been carried out (Gaidano et al., 1997b).

1.13.2 AIDS-DLCL
Mutations and rearrangements of c-myc are observed less frequently (20-50%) in AIDS-DLCL than in AIDS-SNCCL (Ballerini et al., 1993; Gaidano et al., 1997b; Delecluse et al., 1993a; see Table 7). However molecular alterations affecting bcl-6 are associated with a significant fraction of these tumours (Strasser et al., 1994). Rearrangements of bcl-6 are detected in 20% of AIDS-DLCL and in 40% of DLCLs in the immunocompetent host (Gaidano et al., 1994, 1997c). Mutations in the 5' regulatory region of the gene occurs in 70% of these tumours, similar to that
observed in the immunocompetent host (Capello et al., 2000; Gaidano et al., 1997d). Mutations in p53 are rarely observed among this subset of tumours (Ballerini et al., 1993; see Table 7).

Table 7

<table>
<thead>
<tr>
<th>AIDS-NHL type</th>
<th>p53 mutation</th>
<th>c-myc rearrangement/mutation</th>
<th>bcl-6 rearrangement/mutation</th>
<th>bcl-2</th>
<th>EBV</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLCL LNCCl</td>
<td>rare</td>
<td>20-50%</td>
<td>20%</td>
<td>70%</td>
<td>-</td>
</tr>
<tr>
<td>IBL</td>
<td>rare</td>
<td>20%</td>
<td>-</td>
<td>70%</td>
<td>-</td>
</tr>
<tr>
<td>SNCCl BL</td>
<td>60%</td>
<td>100%</td>
<td>-</td>
<td>60%</td>
<td>-</td>
</tr>
<tr>
<td>BLL</td>
<td>-</td>
<td>20-60%</td>
<td>-</td>
<td>70%</td>
<td>-</td>
</tr>
<tr>
<td>PCNSL</td>
<td>nd</td>
<td>-</td>
<td>-</td>
<td>70%</td>
<td>+</td>
</tr>
</tbody>
</table>

nd, not done; +, positive expression; -, absence of genetic lesion/expression; DLCL, diffuse large-cell lymphoma; LNCCl, large non-cleaved cell lymphoma; IBL, immunoblastic lymphoma; SNCCl, small non-cleaved cell lymphoma; BL, Burkitt's lymphoma; BLL, Burkitt-like lymphoma; PCNSL, primary central nervous system lymphoma; EBV, Epstein-Barr virus

1.13.3 AIDS-PCNSL

Although the Bcl-6 protein is expressed by all PCNSLs in the immunocompetent host, AIDS-PCNSL are classified as Bcl-6-expressing or non-expressing cases (Carbone et al., 1998). The IBL variants are characterised by an absence of Bcl-6 expression and rearrangement, and almost consistent expression of Bcl-2 and EBV LMP-1 (Kenney et al., 1998; Carbone et al., 1997). Conversely, the LNCCl variants express Bcl-6 and include rearranged and non-rearranged bcl-6. These tumours fail to express Bcl-2 and LMP-1, when infected with EBV (Larocca et al., 1998). Mutations in bcl-6 are relatively frequent among AIDS-PCNSLs, similar to that observed in the other subsets of AIDS-NHL (Larocca et al., 1998; see Table 7).

1.13.4 Other genetic lesions associated with AIDS lymphomas

Besides the genetic alterations involving the c-myc, p53 and bcl-6 genes, structural
changes in other genes have been reported, albeit less frequently. Mutations in the ras oncogene occur predominantly in the AIDS-SNCCCL subtype (approximately 15% of cases analysed) (Ballerini et al., 1993) despite being absent in NHL of the immunocompetent host (Neri et al., 1988). Furthermore, extensive structural analysis of the functional domains of the retinoblastoma gene (RB) locus in AIDS-NHL has indicated an absence of alterations (Ballerini et al., 1993).

Deletions of the long arm of chromosome 6 (Vitolo et al., 1998), a frequent genetic alteration of B-NHL in the immunocompetent host, has been reported in a fraction of AIDS-DLCL (around 20%), whereas it is consistently absent among other types of AIDS-NHL (Pastore et al., 1996). In addition, AIDS-BL particularly those that are EBV-positive, demonstrate recurrent 1q21-25 chromosome abnormalities, suggesting that this genomic site harbours an unknown gene with relevance to AIDS-related lymphomagenesis (Polito et al., 1995).

AIMS OF THE PROJECT

The aim of this project was to define the molecular genetic and virological characteristics of persistent generalised lymphadenopathy (PGL) in HIV-infected individuals, in an attempt to identify early lesions that might be predictive of future lymphoma development in these individuals. This was achieved by genetic (structural), epigenetic and/or expression analysis of selected tumour suppressor genes (p53, p63, p73 and INK4 genes), oncogenes (c-myc, bcl-2 and bcl-6) and viruses (EBV and KSHV).
CHAPTER TWO

MATERIALS AND METHODS
2.1 Reagents

All cell culture reagents were supplied by Life Technologies unless otherwise stated. General reagents, unless specified, were supplied by Merck Ltd. Radiolabelled isotopes were supplied by ICN Biomedicals Ltd. and Amersham Pharmacia Biotec. Unless otherwise stated, Roche Diagnostics and Biochemicals Ltd. supplied restriction endonucleases and buffers. All oligonucleotides were synthesised by Life Technologies. Commercial suppliers are listed in appendix 3.

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>1Kb DNA ladder</td>
<td>Life Technologies</td>
</tr>
<tr>
<td>100bp DNA ladder</td>
<td>Life Technologies</td>
</tr>
<tr>
<td>λ DNA restricted with Hind III</td>
<td>Roche</td>
</tr>
<tr>
<td>Agarose</td>
<td>ICN</td>
</tr>
<tr>
<td>Ammonium persulphate</td>
<td>Bio-rad Laboratories</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>Sigma</td>
</tr>
<tr>
<td>AmpliTaq Gold® polymerase</td>
<td>Roche</td>
</tr>
<tr>
<td>BPB</td>
<td>Sigma</td>
</tr>
<tr>
<td>BSA</td>
<td>Sigma</td>
</tr>
<tr>
<td>Chloroform</td>
<td>Sigma</td>
</tr>
<tr>
<td>DMF</td>
<td>Sigma</td>
</tr>
<tr>
<td>DMSO</td>
<td>Sigma</td>
</tr>
<tr>
<td>DNA Polymerization Mix</td>
<td>Amersham Pharmacia</td>
</tr>
<tr>
<td>Ethidium bromide</td>
<td>Life Technologies</td>
</tr>
<tr>
<td>FCS</td>
<td>Harlan Sera Lab</td>
</tr>
<tr>
<td>Ficoll™ 400</td>
<td>Amersham Pharmacia</td>
</tr>
<tr>
<td>Formamide</td>
<td>Life Technologies</td>
</tr>
<tr>
<td>φX-174 DNA/Hinf I dephosphorylated markers</td>
<td>Promega</td>
</tr>
<tr>
<td>Glycerol</td>
<td>Sigma</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>Sigma</td>
</tr>
<tr>
<td>Kanamycin</td>
<td>Sigma</td>
</tr>
<tr>
<td>LA Taq polymerase</td>
<td>BioWhittaker</td>
</tr>
</tbody>
</table>
Mineral oil
NICK™ column
NuSieve® 3:1 agarose
PBS tablets
Pfix polymerase
Polynucleotide kinase
PVP
Proteinase K
RNAzol™ B
RT-PCR Kit
Sheared salmon sperm DNA
Sequagel® MD
Taq DNA Polymerase
TaqStart™ Antibody
TEMED
Triton® X-100
Trypan Blue
Ultrapure dH2O
X Ray Developer and Fixer
Sigma
Amersham Pharmacia
Flowgen
Oxoid
Life Technologies
Promega
Sigma
Promega
Biogenesis
Stratagene
CP Labs
National Diagnostics Ltd
Promega
Clontech
Bio-rad Laboratories
Sigma
ICN
Sigma
Jet X-Ray

2.2 Equipment

Benchtop centrifugation was carried out using a Mistral 3000E MSE (Sanyo). Thermal cycling was carried out using the Hybaid Touchdown, Hybaid Omnigene (Hybaid) and the Robocycler Gradient 96 (Stratagene). Hybridisations were done in Shake N' Stack cabinets (Hybaid). General plastic-ware was supplied by SLS and Anachem. Tissue culture plastic-ware was supplied by Fred Baker, SLS and Life Technologies, unless specified otherwise.

2.3 General Solutions

All solutions were prepared in sterile distilled water (SDW)
Freezing Medium
90% v/v Fetal calf serum, 10% v/v DMSO

Culture Medium
2mM L-glutamine, 100 IU/ml Penicillin, 100 μg/ml Streptomycin, 5 or 10% v/v FCS, made up in 1× RPMI 1640

Phosphate buffered saline (PBS)
1 PBS tablet dissolved in 100ml of dH₂O

TaqStart Antibody [1.1μg/μl]
(in 10mM Tris-HCl pH7.0, 50mM KCl, 50% glycerol)

10×Tris-Borate-EDTA (TBE) Buffer
10.8% v/v Tris, 5.5% w/v Boric acid, 4% v/v 0.5M EDTA (pH 8.0)

20×Standard Saline Citrate (SSC)
3M sodium chloride, 0.3M trisodium citrate (pH 7.0)

Tris-EDTA (TE)
10mM Tris-HCl (pH 8.0), 1mM EDTA pH 8.0

Denaturing Solution
1.5 mM NaCl, 0.5M NaOH

Neutralising Solution
1.5mM NaCl, 0.5M Tris-HCl (pH 7.2), 0.001M EDTA (pH 8.0)

10% w/v Sodium Dodecyl Sulfate (SDS)
made up in dH₂O

10×DNA Loading Buffer
100mM EDTA (pH 8.0), 6% w/v Sucrose, 0.1% v/v BPB, 0.1% Xylene cyanol

Stop solution
95% formamide, 20mM EDTA, 0.05% w/v BPB, 0.05% w/v Xylene cyanol

Formamide
Deionised in 10% w/v Mixed-bed resin.

100×Denhardt’s solution
2% w/v BSA, 2% w/v Ficoll™, 2% w/v PVP

Pre-Hybridisation Solution
50% v/v Formamide, 25% v/v 20×SSC, 10% v/v 50×Denhardt’s solution, 5% w/v SDS, 1% v/v sheared salmon sperm DNA
Sheared Salmon Sperm DNA
10mg/mL 1% v/v

Hybridisation solution
Prehybridisation solution with 32P-labelled probe and fresh 1% v/v sheared salmon sperm DNA

T4 Polynucleotide Kinase [5U/mL] (from a recombinant E. coli bacterium strain)

10×Kinase buffer
700mM Tris-HCl (pH 7.6), 100mM MgCl$_2$, 50mM DTT

Membrane wash solutions
2×SSC/ 0.1% w/v SDS and 1×SSC/ 0.1% w/v SDS

Luria-Bertani medium (LB, supplied by Veterinary Pathology Media service)
1% bacto-tryptone, 0.5% Bacto-yeast extract, 1% sodium chloride adjusted to pH 7.2 using 1M sodium hydroxide

LB agar
LB supplemented with 1.5% agar

SOC medium
2% tryptone, 0.5% yeast extract, 10mM sodium chloride, 2.5mM potassium chloride, 10mM magnesium chloride, 10mM magnesium sulphate and 20mM glucose

2.3.1 DNA Size Markers
0.5μg of the DNA markers were used on each gel.

100bp DNA ladder [50μg/ml]
(in 10mM Tris-HCl pH7.5, 1mM EDTA)

1kb DNA ladder [200μg/ml]
(in 10mM Tris-HCl, pH7.5, 50mM NaCl, 0.1mM EDTA)

φX174 DNA/Hind I dephosphorylated markers [50μg/ml]
(in 10mM Tris-HCl, pH7.5, 1mM EDTA)

λDNA restricted with Hind III [250μg/ml]
(in 10mm Tris-HCL, 1mM EDTA pH8.0)

2.3.2 Bacterial Strains
JM109 (Promega, UK); TOP10 (Invitrogen, Holland)
2.3.3 Plasmids

- **pGEM®-T**: Promega, UK
- **pCR®-BLUNT**: Invitrogen, Holland (Bernard et al., 1994)
- **pCR®4-TOPO®**: Invitrogen, Holland (Shuman, 1994)

2.4 Cell culture techniques

All cell culture techniques were carried out in an aseptic manner inside microbiological (class II) safety cabinets using sterile equipment and solutions.

2.4.1 Control Cell Lines

A store of control cell lines was kept under liquid nitrogen, and is shown in Table 8.

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Cell type</th>
<th>EBV/KSHV status</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCP-1</td>
<td>Body cavity lymphoma</td>
<td>+/-</td>
<td>Boshoff et al., 1998</td>
</tr>
<tr>
<td>BJAB</td>
<td>BL</td>
<td>+/-</td>
<td>Menezes et al., 1975</td>
</tr>
<tr>
<td>Namalwa</td>
<td>BL</td>
<td>+/-</td>
<td>Klein and Dombos, 1973</td>
</tr>
<tr>
<td>P3HR1</td>
<td>BL</td>
<td>+/-</td>
<td>Hinuma et al., 1967</td>
</tr>
<tr>
<td>Raji</td>
<td>BL</td>
<td>+/-</td>
<td>Pulvertaft, 1965</td>
</tr>
<tr>
<td>Ramos</td>
<td>BL</td>
<td>+/-</td>
<td>Klein et al., 1975</td>
</tr>
</tbody>
</table>

BL, Burkitt’s lymphoma

2.4.2 Thawing cells

Cells were recovered from liquid nitrogen by thawing in a 37°C water bath for a few minutes and then slowly adding 9 times the volume of wash medium (HBSS). The cells were then spun down at 400g (g-number = 11.2 x r x n² x 10⁶, where r is the centrifugal radius in cm from axis to middle of tube and n is the speed in rpm) for 7 minutes in a bench centrifuge. This was followed by re-suspension of the cell pellet
in 5ml of tissue culture medium in a 25cm2 culture flask, and incubation at 37°C.

2.4.3 Culturing cells
All cells were cultured in a humidified 5% CO$_2$ incubator (Heraeus) at 37°C and fed every 2-3 days, as required, with tissue culture medium.

2.4.4 Counting cells
10μl of cell suspension was mixed with 10μl of 0.5% w/v trypan blue in PBS. 10μl of the mixture was placed on a haemocytometer (Weber Improved Neubauer, Merck). Cells were counted using a light microscope (Leitz). The cells that excluded the dye (viable cells) were counted.

2.4.5 Freezing cells
Around 107 cells were spun at 400g for 7 minutes in a bench centrifuge, followed by two washes with wash medium at 400g for 7 minutes. The cells were then re-suspended in 1 ml of freezing medium in a cryotube (Nunc, Life Technologies) which was placed at −70°C. 24 hours later the cells were transferred to a liquid nitrogen tank (Jencons).

2.5 Processing and storing of tissue

2.5.1 Processing of lymph nodes
Hyperplastic lymph node tissue, biopsied from 23 HIV-infected individuals with lymphadenopathy, was kindly provided by Prof. Ian Weller, UCL, London. 9 reactive control lymph nodes frozen in OCT (Optimum Tissue Cutting medium) compound were kindly provided by Dr. Andrew Krajewsky, Department of Pathology, Edinburgh University.

Tissue was recovered from liquid nitrogen and thawed briefly on ice. The tissue was placed on a petri dish and cut into smaller pieces with a sterile scalpel. The cut tissue was placed in clean eppendorfs, snap-frozen in isopentane and stored at −70°C or liquid nitrogen.
2.5.2 Processing of tonsillar tissue
7 fresh tonsils obtained from routine tonsillectomies performed at the City Hospital, Edinburgh, were collected in 10ml of saline. The specimen was placed on a petri dish and lymphoid tissue was dissected from the surrounding fibrous connective tissue. The tissue was then cut and stored as described in section 2.5.1.

2.6 DNA Extraction and Methods

2.6.1 Extraction of DNA from tissue

(i) Extraction of DNA using the Invitrogen Easy DNA Kit (Invitrogen)
DNA was extracted from snap-frozen PBMCs using the Invitrogen Easy-DNA kit according to the manufacturer’s instructions (Invitrogen). Briefly 10^3-10^7 cells were thawed on ice and resuspended in 200µl of PBS (2.3). Tissue kept frozen at -70°C was thawed on ice, homogenised using sterile homogenisers (SLS), and resuspended in 200µl of PBS. 350µl of solution A (lysis solution) was added, the solution vortexed and incubated at 65°C for 10 minutes. 150µl of solution B (precipitation solution) was added and the solution vortexed vigorously, followed by the addition of 500µl of chloroform. The phases were separated by spinning the solution at 10000g for 20 minutes in a microfuge. The upper aqueous layer was carefully transferred to a clean eppendorf. 1ml of 100% ethanol was added to the solution and left at -20°C overnight, to precipitate the DNA. The DNA was pelleted by centrifugation, washed with 70% ethanol, air-dried and re-suspended in 30-50µl of sterile distilled water. Ribonuclease (RNase) was then added to a final concentration of 40µg/ml and incubated at 37°C, to remove contaminating RNA.

(ii) Extraction of DNA by the microfuge method
This method was used for the extraction of genomic DNA using autoclaved 1.5ml centrifuge tubes. 10^6 to 5×10^6 cells were washed twice in cold PBS, and transferred to a microfuge tube in 1ml of PBS. The cells were then spun at 2000g for 1 minute and re-suspended in 500µl of DNA lysis buffer (10mM Tris pH 8.0, 1mM EDTA pH 8.0, 5mM NaCl and 0.5% SDS w/v). 100µg/ml of Proteinase K was added and the
lysate incubated at 37°C overnight. The aqueous layer of DNA was extracted with the addition of 500μl of TE-equilibrated phenol (pH 7.5) to remove proteins. The solutions were mixed, and then separated by spinning at 10000g for 10 minutes in the microfuge. The aqueous layer was carefully transferred to a fresh tube and further extractions were performed by adding an equal volume of phenol chloroform (1:1), using the same procedure until the interface of the organic and aqueous phase was clear. To ensure the complete removal of phenol (which would co-precipitate with DNA), a final extraction was performed with chloroform alone.

For ethanol precipitation of the DNA 0.1 volumes of 3M sodium acetate and 2.5 volumes of ice-cold absolute ethanol were added to the DNA solution, mixed well, and left at -20°C overnight or at -70°C for 1 hour. The DNA was pelleted by centrifugation for 10 minutes at room temperature in a microfuge. The precipitate was washed in 70% ethanol, dried and re-suspended in 50-100μl of sterile distilled water (SDW).

2.6.2 Extraction and purification of DNA from agarose gels

The QIAquick Gel Extraction Kit commercially available from Qiagen™ was used to extract DNA from agarose gels. The solutions and protocol were supplied with the kit.

The DNA fragment of interest was excised from the gel with a clean scalpel and weighed in a microfuge tube. Binding buffer QG was added to the gel in the ratio of 3:1 and incubated at 50°C for 10 minutes until the gel slice was completely dissolved. 1 gel volume of isopropanol was added to the solution and mixed. The solution was applied to a Qiaquick column and centrifuged for 1 minute at 10000g. The flow through was discarded and 500μl of binding buffer QG was added to the column and centrifuged for a further minute. The flow through was discarded and 750μl of wash buffer PE containing ethanol was added to the column and centrifuged at 10000g for one minute. The column was spun for an additional minute at 10000g to remove any residual ethanol. 30μl of buffer EB (10mM Tris-HCl, pH 8.5) was added to the centre of the column, allowed to stand for one minute and then centrifuged at 10000g for a further minute to elute the DNA.
2.6.3 Measurement of DNA/RNA concentration
The amount of DNA or RNA present in the sample is directly proportional to the amount of UV radiation absorbed by the sample. The concentration of nucleic acid was determined by spectrophotometry (GeneQuant II, Amersham Pharmacia Biotec). Absorbance was measured at wavelengths of 260 and 280nm.

DNA concentration = Absorption at 260nm (A260) \times 50 \times \text{dilution factor}

RNA concentration = Absorption at 260nm (A260) \times 40 \times \text{dilution factor}

where an A260 of 1.0 is equivalent to 50mg/ml of DNA and 40mg/ml of RNA. The purity of DNA was calculated as a ratio of OD\textsubscript{260}/OD\textsubscript{280}.

A value greater than 1.8 for DNA and 1.9 for RNA indicates that the sample is free of protein contamination.

2.7 RNA extraction and methods

Precautions were taken to preserve the integrity of RNA throughout the following procedures. Particular emphasis was placed on avoiding contamination with RNases. Sterile disposable plastic-ware was used, and all glassware was autoclaved prior to use. Gloves were changed frequently. Ultrapure (molecular biology grade) distilled water was used to prepare solutions, all of which were autoclaved prior to use.

2.7.1 Isolation of RNA by the RNAzol method

Total RNA was isolated using RNAzolTMB, which is commercially available from Biogenesis Ltd., based on the acidic guanidinium-phenol-chloroform method described by Chomczynski and Sacchi (1987).

(i) **Homogenisation**

Tissue, which was kept frozen at −70°C, was placed on ice and 0.8-1ml of RNAzol B was added depending on the amount of tissue present. The tissue was homogenised using sterile homogenisers. RNA was extracted by the addition of 80-100μl of chloroform. The samples were shaken vigorously, left on ice for 5 minutes to allow the phases to separate, and then centrifuged at 10000g for 15 minutes at 4°C.
(ii) RNA precipitation
The aqueous phase was carefully transferred to a clean Eppendorf tube and an equal volume of isopropanol was added. The solutions were mixed well and allowed to precipitate at −20°C overnight. The RNA was pelleted by centrifugation as above.

(iii) RNA wash
The supernatant was removed and the pellet was washed once with 500μl of 75% ethanol, followed by centrifugation for 8 minutes (7500g, 4°C). At the end of the centrifugation the ethanol was removed carefully and briefly spun to remove any residual ethanol. The precipitated RNA was re-suspended in 30-50μl of RNase/DNase free water and the concentration of RNA was measured by UV spectrophotometry (see section 2.6.3).

2.7.2 First strand cDNA synthesis using Reverse Transcriptase (RT)
cDNA was synthesised using the Pro-Star First Strand RT-PCR Kit (Stratagene) according to the manufacturer’s instructions. RNA was reverse transcribed using random primers and RT to give a heterogeneous population of cDNA templates, which were subsequently used as the starting template for RT-PCR. Briefly 1μg of RNA was dissolved in DEPC-treated water to give a final volume of 38μl. 3μl of random hexamer oligonucleotides was added to the RNA and incubated at 65°C for 5 minutes, followed by cooling at room temperature to allow annealing of the primers. The following reagents were then added to the reaction in the stated order:

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>10×1st strand buffer</td>
<td>5μl</td>
</tr>
<tr>
<td>RNase block ribonuclease inhibitor (40U/μl)</td>
<td>1μl</td>
</tr>
<tr>
<td>100 mM dNTPs</td>
<td>2μl</td>
</tr>
<tr>
<td>Mouse Moloney LV reverse transcriptase (MMLV-RT) (50U/μl)</td>
<td>1μl</td>
</tr>
</tbody>
</table>

The reactions were gently mixed and incubated for 1 hour in a 37°C water bath. The cDNA was heated for 5 minutes at 90°C prior to its use in PCR reactions.
2.8 Polymerase chain reaction (PCR)

2.8.1 Safe PCR Practice
Care was taken throughout the preparation of PCR reactions to avoid contamination of samples with amplified products, or unwanted DNA. Amplifications were carried out in a room designated for PCR work only. Gloves were worn and changed regularly, and sterile tubes and aerosol resistant tips were used throughout the procedure. All PCR reagents were aliquotted and stored in smaller volumes.

2.8.2 Genomic PCR
PCR was carried out essentially as described by (Saiki et al., 1985, 1988).

2.8.2.1 Primers for the detection of viral DNA and human β-globin
The EBV W-repeat PCR detects the BamH1 W repeat sequence of the EBV genome. The KSHV PCR detects a 376bp fragment of open reading frame 73 (ORF-73), which encodes the latent nuclear antigen (LNA). PCR for detecting the human β-globin gene was carried out on all samples to check for amplifiable DNA. The sequences of the oligonucleotides are shown in Table 9.

2.8.2.2 Reaction mixture
Amplification was carried out in a final volume of 100μl for the β-globin and Bam H1 W PCRs and 50μl for the KSHV LNA PCR, using 500ng of genomic DNA as template. For every run, appropriate positive and negative controls were included. Sterile distilled water was always included as a control for DNA contamination. Each reaction mixture consisted of 50mM KCl, 10mM Tris-HCl (pH 9.0), 0.1% Triton X-100, 1.5mM MgCl₂, 1μM each primer (0.4μM for the LNA PCR), 200μM each dNTP and 2.5 units of Taq (Thermus aquaticus strain YT1) DNA polymerase.

2.8.2.3 Amplification
The DNA template was initially denatured at 94°C for 5 minutes. The reaction mixture was overlaid with two drops of mineral oil, and cycled using the conditions shown in Table 10 (see Table 26, page 114 for optimised conditions).
Table 9

Primers and probes for the amplification of EBV, KSHV and human β-globin

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer and Probe Sequences 5'→3'</th>
<th>Genome coordinates¹</th>
<th>Product size (bp)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBV Bam H1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W1</td>
<td>CTT TAG AGG CGA ATG GGC GC</td>
<td>14068-14087</td>
<td>298</td>
<td>Faulkner et al., 1999</td>
</tr>
<tr>
<td>W2</td>
<td>AGG ACC ACT TTA TAC CAG GG</td>
<td>14365-14346</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probe</td>
<td>TGA CTT CAC CAA AGG TCA GG</td>
<td>14226-14245</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KSHV LNA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LNA-5'</td>
<td>TGA GTG TGG AGG TGT AGT CTG</td>
<td>126776-126796</td>
<td>376</td>
<td>This study</td>
</tr>
<tr>
<td>LNA-3'</td>
<td>GCC GAC TCC ATC GAC GGC CG</td>
<td>127153-127134</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probe</td>
<td>ATG GAG AAT GAG TT ACG TCG TGG</td>
<td>126907-126927</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-Globin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1</td>
<td>ACA CAA CTG TGT TCA CTA GC</td>
<td>117-136</td>
<td>110</td>
<td>Suikl et al., 1985</td>
</tr>
<tr>
<td>G2</td>
<td>CAA CTT CAT CGT TCA CC</td>
<td>226-207</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probe</td>
<td>GTT ACT GCC CTG TGG G</td>
<td>187-202</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹Genbank accession numbers are as follows: EBV BamH1 W (V01555), KSHV LNA (U75698) and β-globin (V00499)

Table 10

PCR Amplification Programs for the EBV, KSHV and β-globin PCR

<table>
<thead>
<tr>
<th>Gene</th>
<th>Denaturation</th>
<th>Annealing</th>
<th>Extension</th>
<th>Final Extension</th>
<th>Number of Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Temp. (°C)</td>
<td>Time (secs)</td>
<td>Temp. (°C)</td>
<td>Time (secs)</td>
<td>Temp. (°C)</td>
</tr>
<tr>
<td>EBV BamH1</td>
<td>94</td>
<td>60</td>
<td>57</td>
<td>120</td>
<td>72</td>
</tr>
<tr>
<td>KSHV LNA</td>
<td>94</td>
<td>30</td>
<td>60</td>
<td>30</td>
<td>72</td>
</tr>
<tr>
<td>β-Globin</td>
<td>94</td>
<td>60</td>
<td>49</td>
<td>120</td>
<td>72</td>
</tr>
</tbody>
</table>

Temp., Temperature

2.8.3 Semi-quantitative analysis of EBV load

A ten-fold dilution series from 1-10⁶ cells of the Burkitt’s lymphoma cell line Namalwa (which contains 1-2 copies of the EBV genome per cell) in a background of 10⁶ cells from an EBV negative cell line BJAB was carried out. BamH1 W PCR
was performed on DNA at each dilution. The dilution series was run alongside each set of patient samples, and the band intensity measured using scanning densitometric analysis. The density of the test sample was compared with the densities of the dilution series to obtain a semi-quantitative value of EBV genome copy number in each of the samples.

2.8.4 KSHV LNA-1 dilution series

To test the sensitivity of the KSHV PCR, a ten-fold dilution series of the body cavity-based lymphoma cell line BCP-1 (which contains 30-50 copies of the KSHV gene per cell) was made in a background of KSHV negative cell line BJAB. The dilution series, which ranged from 10^5 to 1 BCP-1 cell in a background of 10^6 negative cells, was run alongside the patient and control samples.

2.8.5 Reverse Transcriptase (RT)-PCR

RT-PCR was carried out essentially as described by Saiki et al., 1985, 1988 and Hart et al., 1988. cDNA was made from the samples on 2 separate occasions and analysed twice for the expression of a particular gene, using β-actin to confirm the presence of amplifiable cDNA on each occasion. For each RT-PCR a positive control (see Table 12, page 81) and SDW as a cDNA template-free negative control were included.

2.8.5.1 Primer pairs and probes for RT-PCR

The oligonucleotides primer pairs and probes used for RT-PCR were from published primer sequences and are shown in Table 11. The primer pairs for the p15$^{\text{INK4b}}$ and the KSHV LNA genes were designed from gene sequences deposited in Genbank (accession number L36844 and U75698 respectively) (Table 11) as was the probe for the exon 2 deleted variant of p73 (Δ2 p73) (accession number AF079082). cDNA plasmids for the detection of p16$^{\text{INK4a}}$ and p14$^{\text{ARF}}$ transcripts were kindly supplied by Dr. Gordon Peters (ICRF, London) and Dr. Tim Crook (LICR, London) respectively.
Table 11

Primer and probe sequences for RT-PCR

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer and Probe sequences 5'-3'</th>
<th>Product size (bp)</th>
<th>Genome Coordinates</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Actin</td>
<td>GTG GGG CGC CCC AGG CAC CA CTC CTT AAT GTC ACG CAC GAT TTC</td>
<td>540</td>
<td>144-163</td>
<td>683-660</td>
</tr>
<tr>
<td>TA p63</td>
<td>ATG TCC CAG AGC ACA CAG AGC TCA TGG TGG GGG CAC</td>
<td>629</td>
<td>145-162</td>
<td>773-756</td>
</tr>
<tr>
<td>AN p63</td>
<td>CAG ACT CAA TTT AGT GAG AGC TCA TGG TGG GGG CAC</td>
<td>440</td>
<td>25-42</td>
<td>464-447</td>
</tr>
<tr>
<td>p73</td>
<td>ACT TTG AGA TCC TGA TGA AG CAG ATG GTC ATG CGG TAC TG</td>
<td>535</td>
<td>1201-1220</td>
<td>1735-1716</td>
</tr>
<tr>
<td>Δ2 p73</td>
<td>ACG CAG CGA AAC CGG GCC CGG GCC CGG CTG CTC ATC TGG</td>
<td>(344)*</td>
<td>6-26</td>
<td>349-329</td>
</tr>
<tr>
<td>Probes</td>
<td>GGA TTC CAG CAT GGA CTG CT TGG CC</td>
<td>242</td>
<td>149-169</td>
<td></td>
</tr>
<tr>
<td>p16 INK4a</td>
<td>AGC CTT CGG CTG ACT GGC TGG CTG CCC ATC ATC ATG ACC TGG A</td>
<td>139</td>
<td>69-89</td>
<td>207-186</td>
</tr>
<tr>
<td>p14 INK4b</td>
<td>TAC TGA GGA GCC AGC GTC TA AGC ACC ACC AGC GTG TC</td>
<td>188</td>
<td>287-306</td>
<td>474-458</td>
</tr>
<tr>
<td>ORF 71-73</td>
<td>GGT TAC GGC CAA CGG TGG AGC ACC ACC AGC GTG TCC</td>
<td>346</td>
<td>275-292</td>
<td>620-603</td>
</tr>
<tr>
<td>Probes</td>
<td>AAG GTG CGA CAC TCC TGG GAA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Genbank accession numbers used for the primer and probe sequences are as follows: β-actin (X00351); TAp63 (NM003722); AN p63 (AF075431); p73 (Y11416); Δ2 p73 (NM005427); p16 INK4a (L27211); p14 INK4b (S78535); p15 INK4b (L36844) and KSHV ORF 71-73 (U75698); *, full length p73 (344bp), Δ2 p73 (242bp).
2.8.5.2 Controls for RT-PCR

Positive control cDNA known to express the transcript under investigation, are summarised in Table 12. Positive controls for all RT-PCR experiments, except where mentioned, were kindly provided by Dr. Tim Crook (LICR, London) and Ms. Jenny O’nions (LICR, London). The H-358 lung cancer cell line was provided by Dr. Scott Bader (Molecular Medicine Centre, Western General Hospital), and the lymphoblastoid cell line (LCL) KB, by Dr. Ingo Johannessen (Clinical and Diagnostic Virology, University of Edinburgh). The LCLs (kindly provided by Ms. O’nions and Dr. Johannessen) were generated by infection of human primary B cells, isolated from buffy coat residues, with an EBV-preparation from a B95-8 EBV-positive marmoset cell line. A template cDNA-free reaction was included in each RT-PCR run as a negative control, where sterile distilled water, replaced target DNA.

<table>
<thead>
<tr>
<th>Gene</th>
<th>cDNA from Cell line or tumour biopsy</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA p63</td>
<td>Lymphoblastoid cell line (PD-LCL)</td>
</tr>
<tr>
<td>ΔN p63</td>
<td>Squamous cell cancer (S1)</td>
</tr>
<tr>
<td>p73</td>
<td>Vulval squamous carcinomas (T1 and T2)</td>
</tr>
<tr>
<td>Δ2 p73</td>
<td>Vulval squamous carcinoma (5T and 11T)</td>
</tr>
<tr>
<td>p16INK4a</td>
<td>Lymphoblastoid cell lines (PD-LCL and OTIS)</td>
</tr>
<tr>
<td>p15INK4b</td>
<td>Breast adenocarcinomas</td>
</tr>
<tr>
<td>p14ARF</td>
<td>BL cell line (BL-41)</td>
</tr>
<tr>
<td>KSHV ORF 71-73</td>
<td>Vulval squamous cancer (T1 and T2)</td>
</tr>
<tr>
<td></td>
<td>Lung cancer cell line (H358)</td>
</tr>
<tr>
<td></td>
<td>Body cavity lymphoma cell line (BCP-1)</td>
</tr>
</tbody>
</table>

Table 12
Positive controls for RT-PCR

2.8.5.3 Reaction mixture

cDNA synthesised from 40-100ng of RNA from each sample was used as the template in each reaction. Amplification of KSHV ORF 71-73, p73, Δ2 p73, TA p63, and ΔN p63 transcripts was carried out in a total volume of 50μl; amplification of p16INK4a, p15INK4b and p14ARF transcripts was carried out in a volume of 30μl and
that for β-actin in 100μl. Each reaction mixture consisted of 50mM KCl, 10mM Tris-HCl (pH 9.0), 0.1% Triton X-100, and 0.5-1μM of each primer. Additionally, the amplification reactions for p16INK4a, p15INK4b and p14ARF included 10% DMSO. Each reaction was over-laid with 2 drops of sterile mineral oil to prevent evaporation during amplification.

The concentrations of MgCl₂, primer and Taq DNA polymerase that were used for each individual RT-PCR is summarised in Table 26 (page 114). The reaction conditions for each primer pair were optimised (Table 26, page 114) using published conditions as a reference point (Table 25, page 107).

2.8.5.4 Amplification

PCR amplification was carried out in a Hybaid thermal cycler, and a summary of the PCR programmes is shown in Table 13. Optimisation of PCR reaction conditions for each primer pair (Table 26, page 114) was carried out using published conditions as a reference point (Table 25, page 107). For the β-actin and the ΔN p73 primer pairs, the annealing and extension temperatures were the same (1-step).

2.8.6 PCR amplification for sequencing using Platinum Pfx DNA Polymerase

To overcome the inherent errors and mis-incorporations of nucleotides by Taq polymerase (0.2-2×10⁻⁴ errors per bp per cycle) (Smith et al., 1997; Cline et al., 1996), Platinum Pfx DNA polymerase (Life Technologies) was used for the amplification of PCR products that were to be subsequently sequenced. Pfx polymerase is a high fidelity, proofreading enzyme with 3’ to 5’ exonuclease activity and is supplied in an inactive form bound to an antibody. The enzyme is rendered active at 94°C providing an automatic “hot start” for PCR. The high specificity and accuracy offered by the enzyme makes it very suitable for cloning and sequencing.

The following components were added to an eppendorf on ice, in a total reaction volume of 50μl; 1×Pfx amplification buffer, 300μM each dNTP, 1mM MgSO₄, 0.3μM each primer, 300ng of template DNA and 1.25 units of Pfx DNA polymerase. The template was denatured initially for 2 minutes at 94°C, followed by 30 cycles of denaturation at 94°C for 30 seconds, annealing at 63-66°C for 45 seconds and extension at 68°C for 90 seconds.
Table 13
RT-PCR Amplification Programs

<table>
<thead>
<tr>
<th>Gene</th>
<th>Denaturation</th>
<th>Annealing</th>
<th>Extension</th>
<th>Final Extension</th>
<th>Number of Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Temp. (°C)</td>
<td>Time (secs)</td>
<td>Temp. (°C)</td>
<td>Time (secs)</td>
<td>Temp. (°C)</td>
</tr>
<tr>
<td>β-actin¹</td>
<td>94</td>
<td>60</td>
<td>65</td>
<td>120</td>
<td>-</td>
</tr>
<tr>
<td>P73</td>
<td>95</td>
<td>60</td>
<td>64</td>
<td>55</td>
<td>72</td>
</tr>
<tr>
<td>Δ2 p73¹</td>
<td>94</td>
<td>720</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TA p63</td>
<td>94</td>
<td>30</td>
<td>52</td>
<td>30</td>
<td>72</td>
</tr>
<tr>
<td>ΔN p63</td>
<td>94</td>
<td>30</td>
<td>52</td>
<td>30</td>
<td>72</td>
</tr>
<tr>
<td>p16INK4a</td>
<td>94</td>
<td>180</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>p16INK4b</td>
<td>94</td>
<td>60</td>
<td>56</td>
<td>30</td>
<td>72</td>
</tr>
<tr>
<td>p14ARF</td>
<td>94</td>
<td>60</td>
<td>56</td>
<td>30</td>
<td>72</td>
</tr>
<tr>
<td>KSHV ORF 71-73</td>
<td>94</td>
<td>30</td>
<td>57</td>
<td>30</td>
<td>72</td>
</tr>
</tbody>
</table>

¹, The annealing and extension steps are performed at the same temperature (1-step)

2.8.7 Long Distance PCR (LD-PCR)

LD-PCR is a recent advancement in PCR technology, which gives efficient amplification of DNA fragments >10kb (Cheng et al., 1994), by incorporating a mixture of thermostable and proofreading polymerases, improved buffers and thermal cycling profiles. The Long and accurate (LA) PCR Kit Ver 2.1 (BioWhittaker) which includes the improved enzyme TaKaRa LA Taq™ was used effectively for the amplification of targets between 4 and 20 kb.
2.8.7.1 Primers for LD-PCR

The primers and probes used for the amplification of the c-myc t(8:14) and bcl-2 t(14:18) translocations were derived from published sequences and are shown in Table 14.

Due to the head-to-head orientation of the c-myc gene with the IgH locus the sense primer is located in exon 2 of c-myc (external to exon1/intron). Since the breakpoints within the IgH locus are located preferentially in the switch regions, the antisense primers are located in the constant regions of the IgH locus (Ca, Cγ and Cµ) (figure 12, page 39). The c-myc probe recognises a sequence in exon 2 of the c-myc gene (Table 14).

The bcl-2 and IgH genes are fused in the same transcriptional orientation. The sense primers were located in the MBR or mcr regions of bcl-2 and upstream of these regions (Table 14), whereas the antisense primer was located in the IgH specific enhancer region (Eµ) (figure 13, page 45).

The oligonucleotide probe for the identification of the t(14:18) translocation (Eµ probe, Table 14) was designed in this study from a published sequence of the IgH region (Neale and Kitchingman, 1991), and lies just internal to the Eµ primer within the IgH locus.

2.8.7.2 Control cell lines and templates for LD-PCR

The control cell lines and templates that were used to detect translocations involving the c-myc and bcl-2 genes, by LD-PCR is shown in Table 15, page 86. The P3HR1 cell line obtained from an endemic Burkitt’s lymphoma was used as a negative control for the c-myc LD-PCR. The breakpoint on chromosome 8 is located around 190kb upstream of the c-myc gene, and hence outside the region amplified by the primers used in this study (Joos et al., 1992). For the bcl-2/IgH LD-PCR analysis, lymph node biopsy 761 was used as the negative control and lymph nodes 1119 and 1143 as the positive controls (translocations confirmed by Andrew Krajewsky, personal communication).
<table>
<thead>
<tr>
<th>Primer</th>
<th>Primer and probe sequences 5'→3'</th>
<th>Specificity</th>
<th>Strand/Orientation</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>MYC/01</td>
<td>ACA GTC CTG GAT GAT GAT GTT TTT GAT GAA GGT CT</td>
<td>c-myc, exon 2</td>
<td>A/R</td>
<td>Battey et al., 1983</td>
</tr>
<tr>
<td>Cμ</td>
<td>TGC TGC TGA TGT CAG AGT TGT TCT TGT ATT TCC AG</td>
<td>Cμ constant region</td>
<td>A/R</td>
<td>Akasaka et al., 1996</td>
</tr>
<tr>
<td>Cγ</td>
<td>AGG GCA CGG TCA CCA CGC TGC TGA GGG AGT AGA GT</td>
<td>Cγ constant region</td>
<td>A/R</td>
<td>Akasaka et al., 1996</td>
</tr>
<tr>
<td>Ca</td>
<td>TCG TGT AGT GCT TCA CGT GGC ATG TCA CGG ACT TG</td>
<td>Ca constant region</td>
<td>A/R</td>
<td>Akasaka et al., 1996</td>
</tr>
<tr>
<td>Myc probe</td>
<td>TCG CTC TGC TGC TGC TGC TGG</td>
<td>c-myc, exon 2</td>
<td>A/R</td>
<td>Battey et al., 1983</td>
</tr>
<tr>
<td>Eμ</td>
<td>CTA GGC CAG TCC TGC TGA CGC CGC ATC GGT GAT TC</td>
<td>Enhancer region of IgH</td>
<td>A/R</td>
<td>Neale and Kitchingman, 1991</td>
</tr>
<tr>
<td>MBR-1</td>
<td>CAC AAG TGA AGT CAA CAT GCC TGC CCC AAA CAA AT</td>
<td>bcl-2, exon 3 coding region</td>
<td>S/F</td>
<td>Cleary et al., 1986</td>
</tr>
<tr>
<td>MBR-2</td>
<td>CTA TGG TGG TTT GAC CTT TAG AGA GTT GCT TTA CG</td>
<td>bcl-2, exon 3 immediately upstream of MBR</td>
<td>S/F</td>
<td>Cleary et al., 1986</td>
</tr>
<tr>
<td>mcr-1</td>
<td>GGT AGA GGT GAA TAC CCC AGG GCT GAG CAG GAA GG</td>
<td>bcl-2, 10 kb upstream of mcr</td>
<td>S/F</td>
<td>Akasaka et al., 1998</td>
</tr>
<tr>
<td>mcr-2</td>
<td>TGT TGG TTG ACA TTT GAT GGC TTT GCT GAG AGG TA</td>
<td>bcl-2, mcr</td>
<td>S/F</td>
<td>Ngan et al., 1989</td>
</tr>
<tr>
<td>Eμ probe</td>
<td>TAA GGT GTC TCC ACA GTC CT</td>
<td>Enhancer region of IgH</td>
<td>A/R</td>
<td>This study</td>
</tr>
</tbody>
</table>

A/R, antisense strand in reverse direction; S/F, sense strand in forward direction; MBR, major breakpoint region; mcr, minor cluster region.
Table 15
Control cell lines and templates for LD-PCR

<table>
<thead>
<tr>
<th>Cell line/Template</th>
<th>Type</th>
<th>Translocation</th>
<th>Primers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raji</td>
<td>BL cell line</td>
<td>c-mycl/ Syγ</td>
<td>c-mycl/ Cγ</td>
</tr>
<tr>
<td>Ramos</td>
<td>BL cell line</td>
<td>c-mycl/ Sµ</td>
<td>c-mycl/ Cµ</td>
</tr>
<tr>
<td>BL-41</td>
<td>BL cell line</td>
<td>c-mycl/ Sα</td>
<td>c-mycl/ Cα</td>
</tr>
<tr>
<td>P3HR1</td>
<td>BL cell line</td>
<td>190kb 5' of c-myc</td>
<td>*</td>
</tr>
<tr>
<td>1119a</td>
<td>Lymph node biopsy</td>
<td>bcl-2 MBR</td>
<td>MBR-1 and MBR-2/ Eµ</td>
</tr>
<tr>
<td>1143a</td>
<td>Lymph node biopsy</td>
<td>bcl-2 mcr</td>
<td>mcr-1 and mcr-2/ Eµ</td>
</tr>
<tr>
<td>761a</td>
<td>Lymph node biopsy</td>
<td>None</td>
<td>**</td>
</tr>
</tbody>
</table>

BL, Burkitt’s lymphoma; Sy and Cγ, switch and constant regions γ of the IgH locus respectively; Sµ and Cµ, switch and constant regions µ of the IgH locus respectively; Sα and Cα, switch and constant regions α of the IgH locus respectively; MBR, major breakpoint region; mcr, minor cluster region; *, negative control for t(8:14) using primers used in this study; **, negative control for t(14:18); a, Personal communication from A. Krajewsky

2.8.7.3 Reaction mixture and amplification
Briefly, the reaction mixture was prepared by combining the following reagents to a total volume of 50 µl in thin-walled PCR tubes. 1×LA PCR Buffer II with 2.5 mM MgCl₂, 400 µM each dNTP, 0.4 µM of each primer, 200 ng genomic DNA, and 2.5 units of TaKaRa LA Taq™. The reaction was overlaid with mineral oil and subjected to the following thermal cycling profile:
1 cycle of denaturation at 94°C for 1 minute
14 cycles of denaturation at 98°C for 20 seconds, primer annealing and DNA extension at 68°C for 20 minutes
16 cycles of denaturation at 98°C for 20 seconds, annealing and extension at 68°C for 20 minutes with 15-second increments per cycle (auto-segment extension)
1 cycle of final extension at 72°C for 10 minutes.

2.8.8 "Hot-Start" PCR
An automatic hot-start was employed for PCR, to prevent mis-priming and
amplification of non-specific products. The TaqStart™ Antibody was used to "hot-start" LD-PCR amplification of t(8;14) and t(14;18) translocations. This monoclonal antibody which binds to, and blocks Taq polymerase activity at ambient temperature, dissociates from the enzyme above 70°C, thus providing an automatic "hot-start". The antibody is mixed with Taq at a micromolar ratio of 28:1, and incubated for 5 minutes at room temperature before its use in PCR.

"Hot-start" was also employed for the amplification of the Δ2 p73 transcript using the enzyme AmpliTaq Gold® polymerase (Roche). The enzyme was heat-inactivated for 12 minutes at 95°C before thermal cycling. This enzyme was also used as a "hot-start" for the methylation-specific PCR assay (see section 2.19.2).

2.9 Agarose gel electrophoresis

2.9.1 Preparation of agarose gels

The range of efficient separation of linear DNA molecules in agarose gels of different concentration is shown in Table 16 (Sambrook et al., 1989).

Table 16

<table>
<thead>
<tr>
<th>Percentage agarose in the gel</th>
<th>Efficient range of separation of linear DNA molecules</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7</td>
<td>0.8-10 kb</td>
</tr>
<tr>
<td>0.9</td>
<td>0.5-7 kb</td>
</tr>
<tr>
<td>1.2</td>
<td>0.4-6 kb</td>
</tr>
<tr>
<td>1.5</td>
<td>0.2-3 kb</td>
</tr>
</tbody>
</table>

The appropriate amount of Nusieve® 3:1 agarose (3 parts Nusieve agarose, 1 part SeaKem® agarose) as determined using Table 16 (page 87) was dissolved in 1×TBE and heated while stirring until the agarose was completely dissolved. 1µg/ml of EtBr was added to the gel solution to visualise the DNA. The molten gel was poured into the appropriate casting tray and allowed to set at room temperature.
2.9.2 Running agarose gels

The cast gel was submerged in 1×TBE. Samples and DNA markers (see section 2.3.1) were mixed with loading buffer in a ratio of 10:1, and loaded into the wells. Electrophoresis was carried out at 70mA until sufficient resolution of the DNA was achieved.

2.9.3 Imaging of the gel

The DNA was visualised and photographed using an UV Gel Documentation System (Ultra Violet Products Ltd., Cambridge, UK).

2.10 Southern transfer of DNA to nylon membranes

DNA was transferred to positively charged nylon membranes (Hybond-N+, Amersham Pharmacia) by the method of Southern (1975). After electrophoresis the gels were rinsed with dH₂O and washed in denaturing and neutralising solutions (section 2.3) for 20 minutes each. The prepared gel was placed on a 'wick' consisting of a sheet of pre-wet Whatman (3MM) paper placed on a plate over a tray containing 2×SSC (section 2.3), such that the ends of the paper were immersed in the solution. A piece of nylon membrane, cut to the size of the gel, was placed on top of the gel carefully to avoid any air-bubbles. The exposed area of the paper and tray were covered with cling-film to prevent any evaporation. 3 pieces of 3MM paper were placed on top of the membrane, followed by 3-4 inches of absorbent towels, a glass plate and a 400gram weight. The transfer was allowed to take place overnight at room temperature. After the transfer the membrane was washed briefly in 2×SSC, air-dried and UV cross-linked using a Stratalinker (Stratagene).

2.11 Pre-Hybridisation of Membranes

Nylon membranes were prehybridised in a hybridising oven for at least 3 hours in pre-hybridisation solution (see section 2.3) at 42°C (end-labelled probes) or 65°C (random-labelled probes) (see section 2.12).
2.12 Preparation of radioactive probes

(i) End-labelled oligonucleotide probes

Oligonucleotides were labelled with $[^{32}\text{P}]\text{ATP}$ as follows:

1. $1\mu\text{l}$ oligonucleotide (5pmol/µl)
2. $2\mu\text{l}$ 10×Kinase buffer
3. $5\mu\text{l} [^{32}\text{P}]\text{ATP} (50\mu\text{Ci})$
4. $1\mu\text{l}$ T4 polynucleotide kinase (10U/µl)
5. dH_{2}O to a total volume of 20µl

The reaction was incubated at 37°C for 30 minutes.

(ii) Random-labelled probes

Random labelled probes were prepared using the Multiprime DNA labelling system (Amersham Pharmacia), by the method described by (Feinberg and Vogelstein 1983). The protocol and materials were supplied with the kit.

25ng DNA dissolved in dH_{2}O was heated at 95-100°C for 5 minutes and cooled rapidly on ice. The following were then added:

1. $10\mu\text{l}$ of Buffer (containing dATP, dGTP and dTTP in a solution containing Tris-HCl, pH7.8, MgCl$_2$ and 2-mercaptoethanol)
2. $5\mu\text{l}$ of primer (Random hexanucleotides)
3. $5\mu\text{l}$ of $[^{32}\text{P}]\text{dCTP} (10\mu\text{Ci}/\mu\text{l})$
4. $1\mu\text{l}$ Klenow enzyme (1 unit/µl in 50mM potassium phosphate, pH6.5, 10mM 2-mercaptoethanol and 50% glycerol)

This reaction was gently mixed and incubated at 37°C for 30 minutes. Labelled probes were purified by fractionation on Sephadex G-50 NICK™ columns (Amersham Pharmacia) according to the manufacturer’s instructions, to remove unincorporated label.

2.13 Hybridisation of ^{32}P-labelled probes to DNA

The eluate from the column was collected and added to 25ml of prehybridisation solution (2.3). For random labelling, probes were denatured at 95°C for 5 minutes before being added to the prehybridisation solution. 100µg/ml of denatured salmon sperm DNA was added to the mix, and incubated for at least 12 hours at
temperatures appropriate for end-labelled (42°C) or random-labelled (65°C) probes.

2.14 Washing and autoradiography

(i) End-labelled probes

The hybridisation mix was discarded and the non-specifically bound probe was washed off the nylon membrane by 2 washes in 2×SSC, 0.1% w/v SDS for 30 minutes each.

(ii) Random-labelled probes

25 ml washes at 65°C for 10 minutes each were used. Initial washes were in 2×SSC, 0.1% w/v SDS increasing to a stringency of 1-0.5×SSC, 0.1% w/v SDS over a series of twice repeated washes.

Monitoring the filter with a β-monitor was used to assess the adequacy of the washes and to determine whether a more stringent wash was required. The filter was then wrapped in cling-film and exposed to Hyper-MP film (Amersham Pharmacia) in a cassette with intensifying screens for up to a week at −70°C.

2.15 Stripping a membrane for re-probing

The membrane to be re-probed was placed in a hybridisation tube at 65°C, containing 100 ml of 0.4M sodium hydroxide. After 30 minutes the sodium hydroxide solution was replaced with 100 ml of a neutralising solution (0.1×SSC, 0.1% w/v SDS, 200 mM Tris-HCl, pH 7.5) for two 15-minute incubations at 65°C. The membrane was exposed overnight to ensure all signals had been stripped. Alternatively the membrane was stripped by boiling in a 0.5% w/v SDS solution and then allowed to cool to room temperature for approximately 2 hours.

2.16 Single strand conformation polymorphism (SSCP)

Single strand conformation polymorphism is a technique used to detect sequence changes in DNA and cDNA. The technique is based on the effect of sequence on the folding (intramolecular secondary structure) of single-stranded DNA, which affects its conformation and hence its migration through a non-denaturing polyacrylamide gel.
2.16.1 Primers for PCR-SSCP analysis of p53, INK4 genes and bcl-6

The sequences and genome co-ordinates of the published oligonucleotide primer pairs used for SSCP-PCR in this study are shown in Tables 17 to 19.

Table 17

SSCP-PCR primers for p53

<table>
<thead>
<tr>
<th>Exon</th>
<th>Sequence (5’→3’)</th>
<th>Size (bp)</th>
<th>Coordinates¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/3</td>
<td>TCC TCT TGC AGC AGC CAG ACT GC</td>
<td>267</td>
<td>11678-11700</td>
</tr>
<tr>
<td></td>
<td>ACC CCT TGT CCT TAC CAG AAC GTA G</td>
<td></td>
<td>11942-11919</td>
</tr>
<tr>
<td>4</td>
<td>CAC CCA TCT ACA GTC CCC CTT GC</td>
<td>307</td>
<td>12008-12030</td>
</tr>
<tr>
<td></td>
<td>CTC AGG GCA ACT GAC CGT GCA AG</td>
<td></td>
<td>12394-12372</td>
</tr>
<tr>
<td>5</td>
<td>CTC TCT CAG TAC TCC CCT GC</td>
<td>211</td>
<td>13042-13065</td>
</tr>
<tr>
<td></td>
<td>GCC CCA GCT GCT CAC CAT CGC TA</td>
<td></td>
<td>13253-13231</td>
</tr>
<tr>
<td>6</td>
<td>GAT GTC TCT TAG GTC TGG CCC CTC</td>
<td>185</td>
<td>13308-13331</td>
</tr>
<tr>
<td></td>
<td>GGC CAC TGA CAA CCA CCC TTA ACC</td>
<td></td>
<td>13489-13466</td>
</tr>
<tr>
<td>7</td>
<td>GTG TTG TCT CCT AGG TTG GCT CTG</td>
<td>139</td>
<td>13986-14009</td>
</tr>
<tr>
<td></td>
<td>CAA GTG GCT CCT GAC CTG GAG TC</td>
<td></td>
<td>14124-14102</td>
</tr>
<tr>
<td>8</td>
<td>ACC TGA TTT CCT TAC TGC CTC TGG C</td>
<td>200</td>
<td>14404-14428</td>
</tr>
<tr>
<td></td>
<td>GTC CTG CTT GCT TAC TCG CTC TCT TGC ATC TCT CCC TGC</td>
<td></td>
<td>14603-14579</td>
</tr>
<tr>
<td>9</td>
<td>GCC TCT TTC CTA GCA CTG CCC AAC</td>
<td>102</td>
<td>14668-14691</td>
</tr>
<tr>
<td></td>
<td>CCC AAG ACT TAG TAC CTG AAG GGT G</td>
<td></td>
<td>14769-14746</td>
</tr>
<tr>
<td>10</td>
<td>TGT TGC TGC AGA TCC GTG GGC GT</td>
<td>131</td>
<td>17561-17583</td>
</tr>
<tr>
<td></td>
<td>GAG GTC ACT CAC CTG GAG TGA GC</td>
<td></td>
<td>17690-17668</td>
</tr>
<tr>
<td>11</td>
<td>TGT GAT GTC ATC TCT CCT CCC TGC</td>
<td>153</td>
<td>18560-18583</td>
</tr>
<tr>
<td></td>
<td>GGC TGT CAG TGG GGA ACA AGA AGT</td>
<td></td>
<td>18712-18689</td>
</tr>
</tbody>
</table>

¹, Genbank accession number U94788. Primer sequences from Visscher et al., 1996
Table 18

SSCP-PCR primers for *INK4* Locus

<table>
<thead>
<tr>
<th>Gene</th>
<th>Sequence (5'→3')</th>
<th>Size (bp)</th>
<th>Coordinates¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>INK4a Exon 1α</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5'</td>
<td>TCT GCG GAG AGG GGG AGA GCA GGC A</td>
<td>278</td>
<td>28512-28531</td>
</tr>
<tr>
<td>3'</td>
<td>GCG CTA CCT GAT TCC AAT TC</td>
<td>28790-28767</td>
<td></td>
</tr>
<tr>
<td>ARF Exon 1β*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5'</td>
<td>TAC TGA GGA GCC AGC GTC TA</td>
<td>188</td>
<td>287-306</td>
</tr>
<tr>
<td>3'</td>
<td>AGC ACC ACC AGC GTG TC</td>
<td>474-458</td>
<td></td>
</tr>
<tr>
<td>Exon 2a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5'</td>
<td>CCA GGC ATC GCG CAC GTC CA</td>
<td>243</td>
<td>24943-24962</td>
</tr>
<tr>
<td>3'</td>
<td>ACA AGC TTC CTT TCC GTC ATG CCG</td>
<td>25186-25163</td>
<td></td>
</tr>
<tr>
<td>Exon 2b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5'</td>
<td>TCT GAC CTT TGG AAG CTC TCA G</td>
<td>241</td>
<td>24764-24785</td>
</tr>
<tr>
<td>3'</td>
<td>TTC CTG GAC AGC CTG GTG GT</td>
<td>25005-24986</td>
<td></td>
</tr>
</tbody>
</table>

¹ Genbank accession numbers for exon 1α, exon 2a and exon 2b is AC000048, and S78535 for exon 1β. Primer sequences from (Zhang et al., 1994); * Exon 1β was amplified from cDNA (Gazzeri et al., 1998)

Table 19

SSCP-PCR primers for *bcl-6*

<table>
<thead>
<tr>
<th>Gene</th>
<th>Sequence (5'→3')</th>
<th>Size (bp)</th>
<th>Coordinates¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5'</td>
<td>CTC TTG CCA AAT GCT TTG</td>
<td>267</td>
<td>1749-1766</td>
</tr>
<tr>
<td>3'</td>
<td>TAA TTC CCC TCC TTC TTC CTC</td>
<td></td>
<td>2013-1996</td>
</tr>
<tr>
<td>E1.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5'</td>
<td>AGG AAG GAG GGG AAT TAG</td>
<td>215</td>
<td>1997-2014</td>
</tr>
<tr>
<td>3'</td>
<td>AAG CAG TTT GCA AGC GAG</td>
<td></td>
<td>2210-2193</td>
</tr>
<tr>
<td>E1.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5'</td>
<td>TTC TCG CTT GCA AAC TGC</td>
<td>295</td>
<td>2191-2208</td>
</tr>
<tr>
<td>3'</td>
<td>CAC GAT ACT TCA TCT CAT C</td>
<td></td>
<td>2483-2465</td>
</tr>
</tbody>
</table>

¹ Genbank accession number Z79581. Primer sequences from Migliazza et al., 1995
2.16.2 Controls for SSCP-PCR

Appropriate positive and negative controls for each exon/fragment were used and are described in Table 20. Biopsy material was kindly provided by Mr. Robert Morris, Western General Hospital, Edinburgh and Dr. Tim Crook, LICR, London. Nasopharyngeal carcinoma (NPC) cell lines, C17 and C18, were kindly provided by Dr. Louise Brooks, LICR, London.

Table 20
Controls for p53, INK4 locus and bcl-6 SSCP-PCR

<table>
<thead>
<tr>
<th>Gene</th>
<th>Exon/Fragment</th>
<th>DNA from biopsy¹ or cell line²</th>
<th>Positive control</th>
<th>Negative control</th>
</tr>
</thead>
<tbody>
<tr>
<td>p53</td>
<td>2/3</td>
<td>-</td>
<td></td>
<td>Human genomic DNA³</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>BCT R/R</td>
<td></td>
<td>BCN R/R</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>C18</td>
<td></td>
<td>BCN1 R/P</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>28697T</td>
<td></td>
<td>C17</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>03157T</td>
<td></td>
<td>28697N</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>13758T</td>
<td></td>
<td>03157N</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>00997T</td>
<td></td>
<td>13758N</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>05747T</td>
<td></td>
<td>00997N</td>
</tr>
<tr>
<td>INK4 locus</td>
<td>Exon 1α</td>
<td>C17</td>
<td></td>
<td>C17</td>
</tr>
<tr>
<td></td>
<td>Exon 1β</td>
<td>-</td>
<td></td>
<td>Human genomic DNA³</td>
</tr>
<tr>
<td></td>
<td>Exon 2</td>
<td>-</td>
<td></td>
<td>Human genomic DNA³</td>
</tr>
<tr>
<td>bcl-6</td>
<td>E1.10</td>
<td>P3HR1</td>
<td>P3HR1</td>
<td>Raji</td>
</tr>
<tr>
<td></td>
<td>E1.11</td>
<td>Raji</td>
<td>Raji</td>
<td>Namalwa</td>
</tr>
<tr>
<td></td>
<td>E1.12</td>
<td>Raji</td>
<td>Raji</td>
<td>Namalwa</td>
</tr>
</tbody>
</table>

¹ Biopsies with a suffix T indicates tumour tissue and with a suffix N indicates normal tissue; ² Cell lines C17 and C18 are nasopharyngeal carcinoma cell lines and Raji, Namalwa and P3HR1 are Burkitt’s lymphoma cell lines; ³ Human genomic DNA obtained from normal diploid fibroblasts; R, Arginine; P, Proline (codon 72); BC, breast cancer

2.16.3 Amplification

PCR was initially performed without radioactivity for exons 2-11 of p53, exons 1α,
1β and 2 (2a, 2b) of the INK4 locus, and a 735bp region in the first intron of bcl-6 to assess the efficiency of the PCR conditions, along with β-globin amplification to check for amplifiable DNA. Amplification of p53 and INK4 was carried out in a total volume of 100μl, each reaction containing 10mM Tris-HCl, 50mM KCl, 1.5mM MgCl₂, 200μM of each dNTP, 1μM of each primer, 500ng of DNA and 1.25-2.5 units of Taq polymerase. The reaction mixture for the amplification of the INK4 locus also contained 5% DMSO. Amplification of bcl-6 was carried out in a final volume of 10μl, with the reaction containing 10mM Tris-HCl, 50mM KCl, 1.5mM MgCl₂, 0.2μM of each primer, 10μM each dNTP, 100ng of DNA and 0.5 units of Taq polymerase. The template was initially denatured at 94°C for 5 minutes. The reaction mixture was overlaid with mineral oil, and subjected to the amplification conditions shown in Table 21. The amplified products were run on a 2% agarose gel containing EtBr and visualised under UV light (see section 2.9).

Table 21

SSCP-PCR Amplification Programs for p53, INK4 locus and bcl-6

<table>
<thead>
<tr>
<th>Gene</th>
<th>Denaturation</th>
<th>Annealing</th>
<th>Extension</th>
<th>Number of Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Temp. (°C)</td>
<td>Time (secs)</td>
<td>Temp. (°C)</td>
<td>Time (secs)</td>
</tr>
<tr>
<td>p53 Exons 2-11</td>
<td>95</td>
<td>30</td>
<td>70</td>
<td>45</td>
</tr>
<tr>
<td>INK4 Locus</td>
<td>Exons 1α, 2α, 2b</td>
<td>94</td>
<td>50</td>
<td>62</td>
</tr>
<tr>
<td>Exon 1β</td>
<td>95</td>
<td>30</td>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td>bcl-6</td>
<td>E1.10</td>
<td>94</td>
<td>30</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>E1.11</td>
<td>94</td>
<td>30</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>E1.12</td>
<td>94</td>
<td>30</td>
<td>54</td>
</tr>
</tbody>
</table>

Temp, Temperature

2.16.4 SSCP-PCR using radioactive 32P and 33P

SSCP-PCR was performed initially for exons 5 and 6 of p53, in a 50μl reaction
containing 10mM Tris-HCl, 50mM KCl, 1.5mM MgCl₂, 200μM each dNTP, 1μM of each primer and 1 unit of Taq polymerase. 2μCi of [α³²P] dCTP was added to each reaction and cycled at the conditions shown in Table 21. ³²P is a high-energy beta emitter, with a maximum range of 6m in air, whereas ³³P is a low-energy beta emitter, with a maximum range of only 50cm in air. Because of its lower average energy (0.08MeV vs. 0.69MeV for ³²P), ³³P is considered a safer alternative to ³²P. Therefore, it was decided to use [α³³P] dCTP for SSCP-PCR. The reactions and cycling conditions were carried out exactly as described above, except that 10μCi of ³³P was substituted for ³²P in each reaction.

2.16.5 SSCP Gel running
The PCR products were separated on a polyacrylamide gel containing 10% v/v glycerol, 25% v/v Sequagel® MD and 6% v/v 10×TBE. 0.6×TBE (2.1.6) was used as the running buffer. 400μl of a 10% ammonium persulfate (APS) solution and 40μl of TEMED was added to polymerise the gel. The gel was cast between a pair of plates (380mmx170mm) separated by 0.3mm spacers.

The samples were heated at 94°C for 5 minutes and immediately placed on ice to keep the DNA denatured. 3μl of the PCR product was mixed with 3μl of stop solution (2.3), loaded into wells created by insertion of a “sharks tooth” comb and run slowly overnight at 3-4 W.

The gel was allowed to cool for 15 minutes before the plates were separated. The gel was blotted onto a sheet of Whatman 3MM paper, covered with cling-film and dried for 2 hours. The gel was then placed in an autoradiograph cassette and exposed to Hyperfilm AP (Amersham Pharmacia) at -70°C from 3 days up to a week, with intensifying screens.

2.17 Cloning

Cloning of PCR products was carried out using various commercially available systems. The pGEM®-T Vector Systems (Promega), and the TOPO TA Cloning® kit (Invitrogen), utilise the non-template-dependent activity of Taq polymerase which adds a single deoxyadenosine (‘A’) to the 3’ ends of PCR products. The supplied,
linearised vectors have a single 3' deoxythymidine ('T') residue, which allows the PCR inserts to ligate efficiently to the vector.

The pGEM®-T vectors contain a multiple cloning region with the α-peptide coding region of the enzyme β-galactosidase fused to the lacZ gene. Insertional inactivation of the α-peptide allows recombinant clones to be directly identified by colour screening on IPTG-X-Gal plates.

The TOPO TA Cloning® exploits the ligation reaction of topoisomerase I by providing an “activated” linearised TA vector using proprietary technology (Shuman, 1994). Ligation of the vector with a PCR product containing 3' ‘A’ overhangs is very efficient and occurs spontaneously within 5 minutes at Room temperature.

The Zero Blunt™ PCR cloning kit is designed to clone blunt-ended PCR fragments. Recombinants are directly selected via disruption of a lethal gene. The system is based on vectors containing the lethal Escherichia coli gene, ccdB (Bernard et al., 1994). The vector pCR®-BLUNT is supplied linearised and blunt-ended with the ccdB gene fused to the C-terminus of lacZα. When a PCR product is cloned it disrupts expression of the lacZα-ccdB fusion gene, permitting growth only of positive recombinants after transformation.

2.17.1 Ligation reactions

Typically 25-50ng of vector was ligated to the insert at a range of molar ratios, in the range of 3:1 to 10:1 (insert: vector). Vector and insert DNA were added to 10×ligation buffer (500mM Tris-HCl pH 7.5, 100mM magnesium chloride, 100mM DTT, 10mM ATP) and T4 DNA ligase. Reactions were incubated at 16°C for an hour or overnight at 4°C.

2.17.1.1 pGEM®-T Vector Systems

Whenever possible, fresh PCR products were used for cloning. However, if old PCR products were being used, then the PCR product was incubated at 72°C for 15 minutes with 1 unit of Taq DNA polymerase and 200µM dNTP, followed by inactivation of Taq at 97°C for 10 minutes, for the addition of an ‘A’ overhang. 10µl ligation reactions were set up as follows:
PCR product 1-2µl
2×Rapid ligation buffer 5.0µl
(300mM Tris-HCl, pH 7.8, 100mM MgCl₂, 100mM DTT, 10mM ATP)
50ng/µl pGEM®-T Easy vector 1.0µl
Sterile water to a total volume of 10µl
T4 DNA ligase (3 Weiss units) 1.0µl

The ligation reaction was incubated overnight at 4°C.

(i) Transformation
2µl of the ligation reaction was added to 50µl of JM109 High Efficiency competent cells and incubated on ice for 20 minutes. The cells were heat-shocked for 45 seconds at 42°C and then placed back on ice for a further 2 minutes. 950µl of SOC medium (section 2.3) was added to the cells and incubated at 37°C for 1.5 hours in a shaking water bath. 100µl of the transformation was spread on a LB agar (section 2.3) plate containing ampicillin (100µg/ml), 200µM IPTG and 0.004% X-Gal in DMF. The plates were incubated at 37°C overnight and then placed at 4°C to allow colour development. White colonies were tested for the presence of insert (section 2.17.4).

2.17.1.2 TOPO TA® Cloning Kit for sequencing
5µl TOPO-Cloning reaction was set up as follows:

- PCR product 0.5-2µl
- Salt solution 1µl
- Sterile water to a total volume of 5µl
- pCR®4-TOPO® vector 1µl

The TOPO-Cloning reaction was incubated for 30-60 minutes at room temperature.

(i) Transformation
2µl of the TOPO-Cloning reaction were added to 50µl of TOP10 competent cells and incubated on ice for 30 minutes. The cells were heat-shocked for exactly 30
seconds at 42°C and then placed back on ice for a further 2 minutes. 250μl of SOC medium was added to the cells and incubated at 37°C for 30 minutes (ampicillin selection) or 1 hour (kanamycin selection) while being agitated by rotation. 50μl and 100μl of the transformation were spread on LB agar plates containing kanamycin or ampicillin. The plates were incubated at 37°C overnight and colonies were analysed for the presence of insert (section 2.17.4).

2.17.1.3 The Zero-Blunt™ PCR Cloning Kit.

10μl ligation reaction was set up as follows:

- Linearised, pCR®-BLUNT: 1μl
- Blunt PCR product: 1-5μl
- 10×ligation buffer (with ATP): 1μl
 (60mM Tris-HCl, pH 7.5, 60mM MgCl₂, 50mM NaCl, 1mg/ml BSA, 70mM β-mercaptoethanol, 1mM ATP, 20mM DTT, 10mM spermidine)
- Sterile water: to a total volume of 10μl
- T4 DNA ligase (4U/μl): 1μl

The ligation reaction was incubated at 16°C for one hour.

(i) Transformation

2μl of the ligation reaction were added to 50μl of TOP10 competent cells and incubated on ice for 30 minutes. The cells were heat-shocked for exactly 45 seconds at 42°C and then placed back on ice for a further 2 minutes. 250μl of pre-warmed SOC medium was added to the cells and incubated at 37°C for 1 hour in a shaking water bath. 50-100μl of the transformation was spread onto LB plates containing 50μg/ml kanamycin. The plates were incubated at 37°C overnight and colonies tested for the presence of the insert (section 2.17.4).

2.17.2 Colony screening

Where PCR cloning was inefficient, colonies were screened using this protocol for
the ease of subsequently selecting positive clones. Using autoclaved toothpicks, individual colonies were scratched across the surface of a Hybond-N\(^+\) membrane (Amersham Pharmacia), which had been stamped with a 50-square matrix, and placed on a selective media plate. The same colony was also scratched on a selective media plate at the same position as indicated from a matrix stuck to the underside of the plate. Both plates were incubated overnight at 37°C. The membranes were placed colony side up on blotting paper soaked in 2xSSC, 5% SDS for 2 minutes. The membranes were microwaved at full power for 45 seconds, which lyses the cells and denatures and fixes the DNA. The membranes were then available for prehybridisation (section 2.11) and subsequent hybridisation with a radioactively labelled probe (sections 2.12 and 2.13).

2.17.3 Minipreparation of plasmid DNA
The QIAprep Spin Miniprep Kit commercially available from Qiagen™ was used to extract plasmid DNA on a small scale. The solutions and protocol were supplied with the kit. A single colony was used to inoculate 5ml of LB (supplemented with an appropriate antibiotic) and grown overnight at 37°C with shaking. 1.5ml of the cells were pelleted using a microcentrifuge (10000g, 4 minutes) and re-suspended in 250μl of cell suspension buffer P1 containing RNase. The cells were lysed by the addition of 250μl of buffer P2 and then neutralised by the addition of 350μl of buffer N3. The cell debris was pelleted by microcentrifugation (10000g, 10 minutes). The supernatant was decanted into a QIAprep column and after centrifugation (10000g, 60 seconds) the flow through was discarded. The column was washed with 500μl of buffer PB, followed by a second wash with 750μl of Buffer PE containing ethanol, and centrifuged as above. The flow through was discarded and the column centrifuged for an additional 1 minute to remove residual ethanol. The DNA was eluted from the column by the addition of 50μl of buffer EB.

2.17.4 Endonuclease restriction digest
DNA restrictions were typically carried out for 2-3 hours at 37°C using commercially available restriction endonucleases. 3-10 units of enzyme were usually used to restrict 1μg of DNA in a 20μl volume of the recommended buffer.
Restriction endonuclease buffers were supplied at 10x the final concentration. The Roche incubation buffer range was used for single enzyme restrictions (Table 22).

Table 22
Composition of Roche restriction endonuclease buffers
(Final concentration in mM)

<table>
<thead>
<tr>
<th>Component</th>
<th>Buffer</th>
<th>Buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>H</td>
</tr>
<tr>
<td>Tris-HCl</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>Magnesium chloride</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Potassium acetate</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Dithioerythritol (DTE)</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>β-mercaptoethanol</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>pH at 37°C</td>
<td>8.0</td>
<td>7.5</td>
</tr>
</tbody>
</table>

2.18 DNA sequencing and analysis

2.18.1 Automated sequencing of double-stranded DNA templates

(i) Sequencing using the Sequitherm Excel™ II Kit
Cloned DNA was sequenced using the LICOR 4000L automated sequencer (MWG Biotech, Milton Keynes, UK), and the Sequitherm Excel™ II kit (Cambio, Cambridge, UK). Labelled M13 forward and reverse primers were purchased from MWG Biotech. Sequencing was kindly performed by Mr. Ian Bennet (Department of Veterinary Pathology, Edinburgh).

2.18.2 Isolation of DNA for sequencing following PCR using [α^32P] dCTP
The following procedure was used to isolate and identify DNA fragments of interest that could not be detected by ethidium bromide staining of agarose gels and subsequent visualisation under UV light.
(i) **Radioactive PCR using $[^{32}\text{P}]$ dCTP**
PCR was carried out using either genomic or cDNA as a template and $10\mu\text{Ci}$ of $[^{32}\text{P}]$ dCTP per reaction, using reaction conditions and cycling profiles as described for the individual PCRs (see sections 2.8.2 and 2.8.5).

(ii) **Polyacrylamide gel electrophoresis**
5μl of PCR product was mixed with 5μl of loading dye, containing formamide and resolved on a 6% polyacrylamide gel. The gel was run at 80W for 2 hours, transferred onto Whatman 3MM paper and finally dried under vacuum at 80°C. Dried gels were then exposed to 2 films overnight at room temperature, one of which served as a template for excising the bands of interest and the other which was retained as a record. To allow accurate alignment of the developed autoradiograph with the dried gel, luminescent autoradiograph markers, Glogo$\text{S}^\text{®}$ II (Stratagene) were placed on the four corners of the gel.

(iii) **Isolation of DNA fragments**
The autoradiograph was positioned on top of the dried gel as accurately as possible using the markers as a guide. The area surrounding the band of interest was cut out using a sterile scalpel blade making a window in the autoradiograph. The excised band from the dried gel was then placed in a sterile 1.5ml eppendorf containing 100μl of sterile distilled water. The DNA was eluted by incubating the tube at 65°C for 30 minutes and then at 4°C overnight.

(iv) **Re-amplification of DNA**
2μl of eluted DNA was re-amplified in a PCR using the same reaction and thermal cycling conditions used to initially amplify the DNA product of interest, but omitting the $[^{32}\text{P}]$ dCTP from the reaction mix. 20μl of the re-amplified product was resolved on a 2% w/v NuSieve® agarose gel containing 1μg/ml EtBr and visualized under UV light (see section 2.9).
Cloning and sequencing of the re-amplified DNA

The re-amplified PCR products containing the DNA of interest were ligated into the pCR®4-TOPO® vector (2.17.1.2) and up to 5 clones recovered from each transformation were sequenced using the Sequitherm Excel™ II kit (2.18.2).

2.19 Methylation analysis

Methylation specific PCR (MSP) is a rapid inexpensive method for the analysis of the methylation status of CpG islands (cytosines located 5' to guanines) that are present in the regulatory regions of many genes. It is therefore an important technique for the study of abnormally methylated genes in neoplasia and of imprinted genes. The procedure takes advantage of the sequence difference between methylated and unmethylated alleles following sodium bisulphite treatment of DNA, which converts unmethylated, but not methylated, cytosines to uracil. The modified DNA is then used as a template for amplification using primers for a given locus, which are designed to distinguish methylated DNA from unmethylated DNA.

2.19.1 Bisulphite modification of DNA

Modification of DNA using sodium bisulphite was performed using reagents and protocols supplied with the CpGenome™ Modification Kit (Intergen, U.S.A). Briefly, 1μg of DNA was denatured with 3M NaOH at 37°C for 10 minutes, before the addition of 550μl of DNA Modification Reagent I containing sodium bisulphite and hydroquinone, and incubation at 50°C for 20 hours. This was followed by the addition of 5μl and 750μl of DNA Modification Reagents III and II containing NaOH and incubation at room temperature for 10 minutes to complete the chemical conversion. DNA purification was carried out by 3 washes in 70% ethanol followed by the addition of 50μl of 20mM NaOH/90% ethanol and incubation at room temperature for 5 minutes. The DNA pellet recovered after 2 washes in 90% ethanol was resuspended in 25μl of TE (10mM Tris/0.1mM EDTA, pH 7.5) and incubated at 50°C for 15 minutes to elute the DNA. The samples were centrifuged at 10000g for 3 minutes and the supernatant containing the eluted DNA transferred to a fresh eppendorf and stored at -20°C until used for PCR.
2.19.2 Methylation specific PCR (MSP)

2.19.2.1 Primers and reaction mixture
Following bisulphite modification of DNA, MSP was carried out using primers that could distinguish methylated from unmethylated DNA (Table 23, page 104). The CpG WIZ™ Amplification kit (Intergen, U.S.A) was used for the methylation analysis of p16^{INK4a} and p15^{INK4b}, according to the manufacturer's instructions. Methylated and unmethylated control DNA (Intergen), chemically modified, was used as positive and negative controls respectively. Briefly, a hot-start PCR, using AmpliTaq Gold (section 2.8.8), was employed to eliminate mis-priming and PCR-related artefacts. Separate reaction mixes were made up using primers specific for the methylated (M) and unmethylated (U) reactions and were as follows:

10×Universal buffer 2.5µl
2.5mM dNTP mix 2.5µl
U or M primers 1.0µl
AmpliTaq Gold Polymerase 1 unit
Modified template DNA 50-100ng
dH₂O Up to 25 µl

2.19.2.2 Amplification
The reactions were then subjected to the following thermal cycling conditions:
1 cycle for
Activation of AmpliTaq Gold 95°C for 12 minutes
35 cycles of
Denaturation 95°C for 45 seconds
Annealing 60°C for 45 seconds
Extension 72°C for 60 seconds
For the p73 MSP reaction, the reaction mix was made up to a total volume of 25µl, using primers specified in Table 23, and were as follows:

10x GeneAmp PCR Buffer II 2.5µl
(100mM Tris-HCl, pH8.3, 500mM KCl)
25mM MgCl₂ 2.5µl
5 mM dNTP mix 4 µl
U or M primers 0.4 µM each
AmpliTaq Gold Polymerase 1 unit
Modified template DNA 50-100 ng

The reactions were then subjected to the following thermal cycling conditions:

1 cycle for

Activation of AmpliTaq Gold 95°C for 12 minutes

35 cycles of

Denaturation 95°C for 30 seconds
Annealing 60°C for 45 seconds
Extension 72°C for 30 seconds

25 µl of PCR-amplified products were resolved on 3% w/v NuSieve® agarose gels containing 1 µg/ml EtBr and visualized under UV light (2.9).

Table 23

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer</th>
<th>Sequence</th>
<th>Product size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p16^{NK4a}</td>
<td>M</td>
<td>Primer sequences proprietary (Intergen, U.S.A) Accession number X94154</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>U</td>
<td></td>
<td>154</td>
</tr>
<tr>
<td>p15^{NK4b}</td>
<td>M</td>
<td>Primer sequences proprietary (Intergen, U.S.A) Accession number SL5756</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>U</td>
<td></td>
<td>162</td>
</tr>
<tr>
<td>p73*</td>
<td>M F</td>
<td>GGA CGT AGC GAA ATC GGG GTT C</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>M R</td>
<td>ACC CCG AAC ATC GAC GTC CG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>U F</td>
<td>AGG GGA TGT AGT GAA ATT GGG GTT T</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>U R</td>
<td>ATC ACA ACC CCA AAC ATC AAC ATC CA</td>
<td></td>
</tr>
</tbody>
</table>

M, methylated; U, unmethylated; F, forward; R, reverse; *, Primer sequences from Corn *et al.*., 1999

2.20 Statistical analysis

The statistical tests used in this study were (i) The Fisher's exact test for calculating p values from small sample numbers using 2x2 contingency tables and (ii) the Mann-Whitney test (non-parametric) for comparison of the medians of two unpaired groups.
CHAPTER THREE

RESULTS
3.1 Standardisation of study and control material

3.1.1 Study and Control Population
Frozen lymph node tissue from 23 HIV-infected individuals with persistent generalised lymphadenopathy (PGL) obtained in 1983-84, were used as the study population.
Tissue from nine HIV-negative reactive lymph nodes (coded 2425, 2435, 2437, 2462, 2478, 2495, 2498, 2499 and 2512), was obtained from the Department of Pathology, University of Edinburgh. 7 tonsils (numbered T1-T7), removed at routine tonsillectomy, were kindly provided by the ENT Department, City Hospital, Edinburgh. Both lymph nodes and tonsils from the HIV-uninfected individuals served as negative controls.

3.1.2 Standardisation of starting material
The aim of these preliminary studies was to determine the most efficient method of extracting DNA free from contaminating RNA and proteins, from the lymph node and tonsil material used in this study. A tonsil (T1) from an HIV-uninfected individual was used as the prototype for this experiment.
A fresh frozen tonsil was processed by cutting a small piece of tissue from the main block or cutting it into 10, 10-micron sections. DNA was then extracted using either the microfuge phenol-chloroform method, or the Invitrogen Easy DNA Kit (see section 2.6.1).
The purity of the DNA, as determined by the OD 260/280 ratio was 1.79 using the phenol-chloroform extraction method, irrespective of whether the tissue was cut or sectioned. Using the Invitrogen method, the OD 260/280 ratio of the DNA extracted from the cut and sectioned tissue was 1.8 and 1.76 respectively (see Table 24).
The purity of the DNA was unaffected by the way in which the tissue was processed or the protocol used (Table 24). Furthermore, no significant difference in DNA yield was observed using either experiment (Table 24). Therefore, it was decided to use the Invitrogen Easy DNA Kit to extract DNA from cut tissue, since it is a more rapid and convenient method of DNA extraction than the phenol-chloroform method.
Table 24
Standardisation of genomic DNA extraction method

<table>
<thead>
<tr>
<th>Method of DNA extraction</th>
<th>Type of tissue processed</th>
<th>Ratio (OD 260/280)</th>
<th>Concentration of DNA (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenol-chloroform</td>
<td>small cut piece</td>
<td>1.79</td>
<td>247.2</td>
</tr>
<tr>
<td></td>
<td>Ten 10 micron sections</td>
<td>1.79</td>
<td>203</td>
</tr>
<tr>
<td>Invitrogen</td>
<td>small cut piece</td>
<td>1.8</td>
<td>344</td>
</tr>
<tr>
<td></td>
<td>Ten 10 micron sections</td>
<td>1.76</td>
<td>204</td>
</tr>
</tbody>
</table>

OD, optical density

3.2 Optimisation of PCR parameters

Specificity and yield of PCR amplified products is influenced by (i) MgCl₂ (ii) Annealing temperature (iii) dNTPs (iv) Taq polymerase and (v) number of cycles (see below). To establish optimal conditions (specificity and sensitivity) for PCR amplification with each primer pair, reaction conditions were standardised for the above parameters. Published reaction conditions were used as reference points (see Table 25).

Table 25
Summary of published conditions for genomic and RT-PCR

<table>
<thead>
<tr>
<th>Gene</th>
<th>MgCl₂ (mM)</th>
<th>Ann. Temp (°C)</th>
<th>Taq (U)</th>
<th>Primer (µM)</th>
<th>Cycle number</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-actin</td>
<td>*</td>
<td>65²</td>
<td>*</td>
<td>*</td>
<td>35</td>
</tr>
<tr>
<td>P63 (TA and ΔN)</td>
<td>*</td>
<td>52</td>
<td>*</td>
<td>*</td>
<td>40</td>
</tr>
<tr>
<td>p73</td>
<td>1.5</td>
<td>59</td>
<td>2.5ᵃ</td>
<td>0.4</td>
<td>35</td>
</tr>
<tr>
<td>Δ2 p73</td>
<td>*</td>
<td>72²</td>
<td>*</td>
<td>*</td>
<td>25</td>
</tr>
<tr>
<td>p₁₆³NK₄a</td>
<td>*</td>
<td>56</td>
<td>*</td>
<td>*</td>
<td>22</td>
</tr>
<tr>
<td>p₁₄₅ARF</td>
<td>*</td>
<td>60</td>
<td>*</td>
<td>*</td>
<td>35</td>
</tr>
<tr>
<td>KSHV ORF 71-73</td>
<td>*</td>
<td>57</td>
<td>*</td>
<td>*</td>
<td>30</td>
</tr>
<tr>
<td>BamHI W</td>
<td>1.5</td>
<td>45</td>
<td>2.5ᵇ</td>
<td>1</td>
<td>35</td>
</tr>
</tbody>
</table>

Ann. Temp, annealing temperature; ¹, References for the primer pairs used are given in Tables 9 and 11; ², annealing and extension as 1-step; *, conditions not published; ᵃ, U/50µl; ᵇ, U/100µl
(i) **Optimisation of magnesium concentration**

Taq polymerase is dependent on the presence of free Mg$^{2+}$ ions for its enzymatic function. A high concentration inhibits the enzyme whereas the product yield is reduced if the Mg$^{2+}$ concentration is too low (Linz *et al*., 1990).

cDNA synthesised from 40ng of RNA from a LCL, KB, was subjected to a 35-cycle amplification for β-actin mRNA. The MgCl$_2$ concentration was varied from 0.5mM to 4mM and included the established concentration of 1.5mM (see Table 25).

Figure 16 shows the results obtained with the primer pair for human β-actin. A 540bp PCR fragment was detected following amplification of cDNA from a human tonsil, with Mg$^{2+}$ concentrations of 0.5mM to 3mM in 0.5mM increments (lanes 2 to 7), and 4mM (lane 8). The efficiency of amplification was reduced and non-specific bands were observed with Mg$^{2+}$ concentrations above 1.5mM (lanes 6 to 8). The efficiency of amplification was similar at a Mg$^{2+}$ concentration of 1.0 and 1.5mM. The optimal Mg$^{2+}$ concentration was taken as the published value of 1.5mM for the human β-actin primer pair. The optimal Mg$^{2+}$ concentration for the other primer pairs was established in a similar fashion. The results are shown in Table 26, page 114.

(ii) **Optimisation of annealing temperature**

The efficiency of primer annealing to the target and the outcome of the PCR reaction is dependent on accurate annealing temperatures (Kocher and Wilson, 1991).

cDNA synthesised from 40ng of RNA from the BL-41 Burkitt's lymphoma cell line was subjected to a 35-cycle amplification for p15INK4b mRNA, containing the established optimal MgCl$_2$ concentration (see Table 26, page 114). The annealing temperature (Tm) of the p15INK4b primer pair was calculated to be 59°C using the formula \([(2\times A/T)+(4\times G/C)]\). The PCR run included annealing temperatures of 54°C to 62°C in 2°C increments.

Figure 17 shows the results obtained with the primer pair for human p15INK4b. A 346bp PCR fragment was detected following amplification at annealing temperatures of 54, 56°C, 58°C and 60°C (lanes 1 to 4). The efficiency of the amplification and quality of the product (as judged by the intensity of bands on the gel) was found to be similar at 56°C and 58°C, but no amplification was noted at 62°C. The optimal annealing temperature was taken as 58°C for the p15INK4b primer pair.
Optimisation of Mg2+ concentration for PCR using \(\beta \)-actin primers

cDNA synthesised from 40ng of RNA was subjected to amplification (35 cycles) in a 50\(\mu \)l reaction using \(\beta \)-actin primers. 20\(\mu \)l of the amplified product was resolved on a 2% w/v agarose gel. The bands were visualised under UV light. \(\textbf{M} \): 100bp DNA size marker (fragment sizes in bp). \textbf{Lane 1}: Sterile distilled water \textbf{Lanes 2-8}: 0.5mM, 1.0mM, 1.5mM, 2.0mM, 2.5mM, 3.0mM, and 4.0mM Mg2+ per reaction, respectively. The \(\beta \)-actin PCR product (540bp) is indicated.

Optimisation of annealing temperature for PCR using \(p15^\text{NK4b} \) primers

cDNA synthesised from 40ng of RNA was subjected to amplification (35 cycles) in a 30\(\mu \)l reaction using \(p15^\text{NK4b} \) primers. 20\(\mu \)l of the amplified product was resolved on a 2% w/v agarose gel and the bands were visualised under UV light. \(\textbf{M} \): 100bp DNA size marker (fragment sizes in bp). \textbf{Lanes 1-5}: Annealing temperatures of 54°C, 56°C, 58°C, 60°C, and 62°C respectively \textbf{Lane 6}: Sterile distilled water. The \(p15^\text{NK4b} \) PCR product (346bp) is indicated.
The optimal annealing temperature for the other primer pairs was established in a similar fashion, either using published conditions (Table 25, page 107) or calculated Tm as starting values. The results are shown in Table 26 on page 114.

(iii) Optimisation of primer concentration
An excess of primers can lead to the amplification of non-target sequences, while too low a concentration can limit the efficiency of the PCR (Sambrook et al., 1989).

cDNA synthesised from 40ng of RNA from a human lung cancer cell line (H-358) was subjected to a 35-cycle amplification for p14ARF mRNA containing established optimal Mg\(^{2+}\) concentration and annealing temperature (Table 26, page 114).

Figure 18 shows the amplification of a 188bp PCR product with the primer pair for p14ARF. The PCR run included primer concentrations of 0.25, 0.5, 1, 1.25 and 1.5μM (lanes 2 to 6 respectively). The efficiency of the amplification was reduced, and increasing non-specific products were observed, with primer concentrations above 0.5μM. Amplification was completely inhibited at a primer concentration of 1.5μM. The optimal primer concentration was taken to be 0.5μM for the p14ARF primer pair.

The optimal primer concentration for the other primer pairs was established in a similar fashion. The results are shown in Table 26 on page 114.

(iv) Optimal Taq DNA polymerase concentration
The amount of Taq polymerase required in a reaction is dependent on the target DNA, the primers and the volume of the reaction. Insufficient enzyme results in a poor yield, whereas excess causes nucleotide misincorporation and amplification of non-target sequences (Sambrook et al., 1989; Kocher and Wilson, 1991).

cDNA synthesised from 40ng of RNA from a LCL, KB, was subjected to a 35-cycle amplification for p16INK4a mRNA, in a reaction volume of 30μl, containing the established optimal Mg\(^{2+}\) and primer concentration and annealing temperature (see Table 26, page 114). The PCR run included reactions containing 0.5-4.5 units (U) of Taq polymerase, in 1U increments.

Figure 19 shows the results obtained with the primer pair for p16INK4a. A 139bp PCR fragment was detected following amplification of the LCL, KB, with the concentration of Taq polymerase enzyme in the range of 0.5-3.5 U (lanes 2 to 5), but
Figure 18. Optimisation of primer concentration for PCR using p14ARF primers

cDNA synthesised from 40ng of RNA was subjected to amplification (35 cycles) in a 30μl reaction using p14ARF primers. 20μl of the amplified product was resolved on a 2% w/v agarose gel. The bands were visualised under UV light. M: 100bp DNA size marker (fragment sizes in bp). Lane 1: Sterile distilled water Lanes 2-6: 0.25μM, 0.5μM, 1μM, 1.25μM and 1.5μM primers per reaction, respectively. The p14ARF PCR product (188bp) is indicated.

Figure 19. Optimisation of Taq polymerase concentration for PCR using p16INK4a primers

cDNA synthesised from 40ng of RNA was subjected to amplification (35 cycles) in a 30μl reaction using p16INK4a primers. 20μl of the amplified product was resolved on a 2% w/v agarose gel. The bands were visualised under UV light. M: 100bp DNA size marker (fragment sizes in bp). Lane 1: Sterile distilled water Lanes 2-6: 0.5U, 1.5U, 2.5U, 3.5U, and 4.5U of Taq DNA polymerase per 30 μl reaction, respectively. The p16INK4a PCR product (139bp) is indicated.
amplification was completely inhibited with 4.5 U of the enzyme (lane 6). The efficiency of the amplification and quality of the product (as judged by the intensity of bands on the gel) decreased with enzyme concentrations above 0.5 U. The optimum \textit{Taq} polymerase concentration was therefore taken to be 0.5 U/30\mu l for the \textit{p16INK4a} primer pair. The optimum enzyme concentration for the other primer pairs was established in a similar fashion. The results are shown in Table 26 on page 114.

(v) Optimisation of cycle number
The number of PCR cycles required for amplification of target sequence depends on the amount of available target DNA and the efficiency of the PCR reaction (Taylor, 1991).

cDNA synthesised from 40ng of RNA from a tonsil was subjected to a 35-cycle amplification for \textit{\beta}-actin mRNA at the established optimal annealing temperature, primer, \textit{Taq} and Mg2+ concentrations (see Table 26, page 114). The PCR run included reactions carried out in increments of 5 cycles from 15 cycles to 40 cycles and included the published cycle number of 35 cycles (Table 25, page 107).

Figures 20A and 20B show the results obtained with the primer pair for \textit{\beta}-actin. A 540bp PCR fragment was detected using 20 to 40 cycles of amplification (lanes 3 to 7), but was not detectable at 15 cycles (Figure 20A, lane 2). Following hybridisation with a 32P-labelled oligonucleotide, a 540bp fragment could be detected at a cycle number of 15 (figure 20B, lane 2). The intensity of the bands was measured using scanning densitometry (UVP Gel Works) and a graph was plotted of cycle number against band volume. From the graph, the intensity of the amplified fragments was found to be similar when using 30 or more cycles (figure 20C). Therefore, the optimum number of PCR cycles for the \textit{\beta}-actin primer pair was taken to be 28 cycles (between 25 and 30 cycles), which is on the linear slope of the curve (figure 20C). However, lower number of cycles is appropriate for semi-quantitative PCR analysis. The optimum cycle number for the other primer pairs was established in a similar fashion. The results are shown in Table 26 on page 114.
Figure 20. Determination of optimal number of PCR cycles using β-actin primers

20 A

![DNA gel image showing bands and M marker](image)

C. DNA synthesised from 40ng of RNA was subjected to amplification in a 50μl reaction for 35 cycles using β-actin primers. 20μl of the amplified product was resolved on a 2%w/v agarose gel. The bands were visualised under UV light. M: 100bp DNA size marker (fragment sizes in bp). Lane 1: Sterile distilled water Lanes 2-7: 15, 20, 25, 30, 35 and 40 PCR cycles respectively. The β-actin PCR product (540bp) is indicated.

20 B

![DNA gel image showing bands and M marker](image)

PCR products were Southern transferred to a Hybond N+ membrane and hybridized with a 32P-labelled oligonucleotide probe specific for the amplified fragment. M: Hinfl digested φX-174 DNA size marker (fragment sizes in bp). L: 100bp DNA size marker. Lane 1: Sterile distilled water Lanes 2-7: 15, 20, 25, 30, 35 and 40 PCR cycles respectively. The β-actin PCR product (540bp) is indicated.

20 C

![Graph showing beta-actin RT-PCR results](image)

The intensity of the bands, obtained after hybridization of the β-actin PCR products with a 32P-labelled oligonucleotide probe, was measured using scanning densitometry (UVP Gel Works). A graph was then plotted with the cycle number on the X-axis and the band volume on the Y-axis. The optimal cycle number for the β-actin PCR was determined to be 28 cycles, which is on the exponential portion of the amplification curve.
3.2.1 Summary of optimisation experiments for genomic and RT-PCR

A summary of the optimised PCR conditions for each primer pair is shown in Table 26. dNTPs were used at concentrations of 200μM each (Sambrook et al., 1989). Reaction conditions for the β-globin PCR were kindly optimised by Dr. Tanzina Haque.

Table 26

Summary of optimisation experiments for genomic and RT-PCR

<table>
<thead>
<tr>
<th>Gene</th>
<th>MgCl₂ (mM)</th>
<th>Ann. Temp (°C)</th>
<th>Tag (U)</th>
<th>Primer (μM)</th>
<th>Cycle number</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-actin</td>
<td>1.5</td>
<td>65</td>
<td>1.5b</td>
<td>1</td>
<td>28</td>
</tr>
<tr>
<td>p63 (TA and ΔN)</td>
<td>1.5</td>
<td>52</td>
<td>1c</td>
<td>0.5</td>
<td>28</td>
</tr>
<tr>
<td>p73</td>
<td>1.5</td>
<td>59</td>
<td>2.5e</td>
<td>0.25</td>
<td>35</td>
</tr>
<tr>
<td>Δ2 p73</td>
<td>1.5</td>
<td>72l</td>
<td>1e</td>
<td>0.5</td>
<td>35</td>
</tr>
<tr>
<td>p16INK4a</td>
<td>2</td>
<td>56</td>
<td>0.5d</td>
<td>0.5</td>
<td>25</td>
</tr>
<tr>
<td>p14ARF</td>
<td>2</td>
<td>56</td>
<td>0.5d</td>
<td>0.5</td>
<td>22a</td>
</tr>
<tr>
<td>p15INK4b</td>
<td>2</td>
<td>58</td>
<td>0.5d</td>
<td>0.5</td>
<td>25</td>
</tr>
<tr>
<td>LNA</td>
<td>1.5</td>
<td>60</td>
<td>2.5c</td>
<td>0.4</td>
<td>30</td>
</tr>
<tr>
<td>KSHV ORF 71-73</td>
<td>1.5</td>
<td>57</td>
<td>1.0c</td>
<td>0.4</td>
<td>35</td>
</tr>
<tr>
<td>BamHI W</td>
<td>1.5</td>
<td>57</td>
<td>2.5b</td>
<td>1</td>
<td>28</td>
</tr>
</tbody>
</table>

Ann. Temp, annealing temperature; 1, annealing and extension as 1-step; b, cycle number for semi-quantitative PCR; c, U/100μl; e, U/50μl; d, U/30μl

3.3 Determination of primer sensitivity for Methylation-specific PCR (MSP)

Aberrant methylation of CpG islands in the promoter region of a gene is an important mechanism of inactivation of the function of some tumour suppressor genes. In preliminary work, primers and conditions for MSP were evaluated. These experiments were designed to assess the sensitivity of the assay in detecting methylated alleles present in a background of unmethylated DNA. Serial 10-fold
dilutions of DNA from the BL cell lines, Raji (with documented methylation in the p16^INK4a and p15^INK4b genes) and Namalwa (with methylation in p73 as assessed in this study), in a total of 1µg of lymphoblastoid cell DNA was carried out. The DNA from each dilution series was chemically modified using the CpGenome™ Modification Kit (Intergen) and 40ng of DNA was subjected to MSP analysis using primers specific for methylated and unmethylated alleles.

Figures 21A and 21B demonstrate the sensitivity of the MSP analysis for detecting methylated alleles of p16^INK4a and p73 genes respectively using the primers specified in Table 23, page 104. In the case of the p16^INK4a gene a band of 145bp could be detected at a dilution of 10^-3 (4pg of methylated DNA) (figure 21A, lane 4). A similar result was obtained with the MSP for the p73 gene using the Namalwa cell line. A band of 60bp could be detected at a dilution of 10^-3 (~4pg of methylated DNA) (figure 21B, lane 4). The sensitivity of the p15^INK4b primer pair was similarly established, and methylated alleles could be detected at a dilution of 10^-3 (~4pg of methylated DNA).

3.4 Optimisation of conditions for Long-Distance (LD)-PCR

Junctional sequences created by the fusion of two genes occur in particular subtypes of lymphomas and leukaemias, and hence detection of such sequences can provide valuable information for diagnosis and subsequent management of haematological neoplasms (Dalla-Favera et al., 1982b; Tsujimoto et al., 1984; Ye et al., 1993). The breakpoint on the partner chromosome can be distributed over a large region, such that the region enclosed by the primers is too large to yield a PCR product by standard PCR techniques. Therefore, a long-distance PCR strategy (Akasaka et al., 1996; see section 2.8.7) was used in this study to investigate chromosomal translocations involving the c-myc and bcl-2 genes.
Figure 21. Sensitivity of MSP analysis for the detection of methylated alleles

21 A

A ten-fold dilution series of the BL cell line, Raji, in a total of 1μg of lymphoblastoid cell line (LCL) DNA was prepared and subjected to sodium bisulfite modification. 40ng of each dilution was subjected to amplification in a 35-cycle hot-start PCR for p16\(^{\text{INK4a}}\) using the appropriate primers for the methylated reaction. 25μl of PCR product was resolved on a 2.5% w/v agarose gel. The bands were visualised under UV light. M: 100bp DNA size marker (fragment sizes in bp). Lanes 1, 2, 3 and 4: 1, 10\(^{-1}\), 10\(^{-2}\), and 10\(^{-3}\) dilutions respectively of Raji DNA in LCL DNA. The p16\(^{\text{INK4a}}\) methylated product (145bp) is indicated.

21 B

A ten-fold dilution series of the BL cell line, Namalwa, in a total of 1μg of lymphoblastoid cell line (LCL) DNA was prepared and subjected to sodium bisulfite modification. 40ng of each dilution was subjected to amplification in a 35-cycle hot-start PCR for p73 using the appropriate primers for the methylated reaction. 25μl of PCR product was resolved on a 2.5% w/v agarose gel. The bands were visualised under UV light. M: 100bp DNA size marker (fragment sizes in bp). Lane 1: Sterile distilled water. Lanes 2, 3 and 4: 10\(^{-1}\), 10\(^{-2}\), and 10\(^{-3}\) dilutions respectively of Namalwa DNA in LCL DNA. The p73 methylated product (60bp) is indicated.
3.4.1 Optimisation of LD-PCR conditions for the detection of translocations involving the c-myc and bcl-2 genes

The specificity, sensitivity, optimal magnesium concentration and annealing temperature for each primer pair used in the LD-PCR analysis of the c-myc and bcl-2 translocations was established, and representative experiments are shown below.

3.4.1.1 Specificity of primers used for LD-PCR analysis
To test the specificity of the primers used for the c-myc LD-PCR analysis (Table 14, page 85), genomic DNA from cell lines that have been shown to harbour translocations specific to a primer set (Akasaka et al., 1996; Table 15, page 86) was amplified (Figure 22, page 119).

A 7.6kb fragment from the Raji cell line was amplified with the c-myc/C\gamma primer set (figure 22, lane 1).

A 4.0kb fragment from the BL-41 cell line was amplified with the c-myc/C\alpha primer set (figure 22, lane 2).

A 4.9kb fragment from the Ramos cell line was amplified with the c-myc/C\mu primer set (figure 22, lane 3).

No amplification was observed when the Raji cell line, which has a c-myc/S\gamma translocation, was tested with the c-myc/C\mu primer set (figure 22, lane 4). Negative amplification with the P3HR1 cell line, wherein the breakpoint on chromosome 8 is located around 190kb upstream of the c-myc gene (Joos et al., 1992), further confirmed the specificity of the primers (figure 22, lane 5).

The specificity of the primer pairs for the analysis of bcl-2/IgH translocations (Table 14, page 85) was established in a similar fashion. Lymph nodes with known translocations between the MBR (1119) and mcr (1143) regions on chromosome 18 and the JH region of chromosome 14 (Krajewsky, A, personal communication), amplified with the MBR/E\mu and mcr/E\mu primer pairs respectively. A lymph node with no known t(14:18) translocation did not amplify with any of the primer pairs (Table 15, page 86).
3.4.1.2 Optimisation of Mg$^{2+}$ concentration for LD-PCR

Since sub-optimal concentrations of Mg$^{2+}$ can inhibit Taq polymerase activity (Linz et al., 1990), the following experiment was carried out to optimise Mg$^{2+}$ ion concentration for the LD-PCR.

Figure 23 shows a 7.6kb region, which was amplified from DNA extracted from the BL cell line, Raji, in a 35-cycle RT-PCR reaction using the c-myc/Cγ primer pair and Mg$^{2+}$ concentrations of 2.0mM, 2.5mM and 3.0mM (lanes 1 to 3 respectively). The efficiency of amplification was reduced at a Mg$^{2+}$ concentration of 2.0mM, and non-specific bands were observed with increasing concentrations of Mg$^{2+}$. From the above experiment the optimum Mg$^{2+}$ concentration was taken as the published concentration of 2.5mM for the c-myc/Cγ primer pair (figure 23, lane 2).

The optimum MgCl$_2$ concentration for the other primer pairs was established in a similar fashion and found to be 2.5mM.

3.4.1.3 Optimisation of annealing temperature for LD-PCR

The following experiment was carried out to ascertain the optimal annealing temperature for the LD-PCR amplification of the c-myc and bcl-2 translocations.

Figure 24 shows the results obtained when genomic DNA from the BL-41 cell line was amplified in a 35-cycle LD-PCR reaction using the c-myc/Cα primer pair and at annealing temperatures of 63°C, 68°C and 73°C (figure 24, lanes 1,2 and 3 respectively). A 4.0kb product was amplified at annealing temperatures of 63°C and 68°C (figure 24 lanes, 1 and 2 respectively), although the efficiency of amplification, as judged by the intensity and size of the band, was greater at an annealing temperature of 68°C. Amplification was not observed at an annealing temperature of 73°C. The optimum annealing temperature was taken as the published value of 68°C for the c-myc/Cα primer pair.

The optimum annealing temperature for all the other primer pairs was established in a similar fashion and was found to be 68°C in each case.
200ng of genomic DNA from the BL-41, Raji and Ramos cell lines were subjected to amplification in a 35-cycle LD-PCR reaction using the c-myc/Cα, c-myc/Cγ and c-myc/Cμ primer pairs respectively. DNA from the Raji cell line was similarly subjected to amplification using the c-myc/Cα primer set. 20μl of the PCR product was resolved on a 0.8% w/v agarose gel and the bands were visualised under UV light. M: Lambda (λ) DNA digested with Hind III DNA size marker (fragment sizes in bp). Lane 1: Raji cell line (7.6kb translocation) Lane 2: Ramos cell line (4.9kb translocation) Lane 3: BL-41 cell line (4.0kb translocation) Lane 4: Raji cell line (c-myc/Cμ primer set) Lane 5: P3HR1 cell line.

Figure 22. Specificity of primers used for LD-PCR

200ng of genomic DNA from the Raji cell line was subjected to amplification in a 35-cycle LD-PCR reaction using the c-myc/Cγ primer set. 20μl of the PCR product was resolved on a 0.8% w/v agarose gel and the bands were visualised under UV light. M: Lambda (λ) DNA digested with Hind III DNA size marker (fragment sizes in bp). Lanes 1-3: 2.0mM, 2.5mM and 3mM Mg²⁺ per reaction respectively. The c-myc/Cγ (7.6kb) translocation is indicated.

Figure 23. Optimisation of Mg²⁺ concentration for LD-PCR

200ng of genomic DNA from the BL-41 cell line was subjected to amplification in a 35-cycle LD-PCR reaction using the c-myc/Cα primer set. 20μl of the PCR product was resolved on a 0.8% w/v agarose gel and the bands were visualised under UV light. M: 1kb DNA size marker (fragment sizes in bp). Lanes 1-3: Annealing temperatures of 63°C, 68°C and 73°C respectively. The c-myc/Cα (4.0kb) translocation is indicated.

Figure 24. Optimisation of annealing temperature for LD-PCR

200ng of genomic DNA from the BL-41 cell line was subjected to amplification in a 35-cycle LD-PCR reaction using the c-myc/Cα primer set. 20μl of the PCR product was resolved on a 0.8% w/v agarose gel and the bands were visualised under UV light. M: 1kb DNA size marker (fragment sizes in bp). Lanes 1-3: Annealing temperatures of 63°C, 68°C and 73°C respectively. The c-myc/Cα (4.0kb) translocation is indicated.
3.4.1.4 Sensitivity of the primers used for LD-PCR analysis

To ascertain the sensitivity of the primers used to detect the c-myc and bcl-2 translocations, the Raji cell line and DNA from lymph node biopsy 1119 were used respectively.

(i) Sensitivity of the primers used for the c-myc LD-PCR

Serial ten-fold dilutions of Raji cells (which harbour a c-myc/S\gamma translocation) in increasing numbers of cells from a lymphoblastoid cell line were prepared. 100ng of DNA extracted from each dilution was then subjected to LD-PCR analysis using the c-myc/C\gamma primer set. A band of 7.6kb could be detected at a dilution of 10^{-2} (figure 25A, lane 3). Hybridisation of the amplified products with a [\gamma^{32}P] ATP-labelled c-myc probe increased the sensitivity of detection by one order of magnitude and a 7.6kb band could be detected at a dilution of 10^{-3} (figure 25B, lane 4). Since 100ng of DNA is equivalent to 10^4 cells on average, the sensitivity of detection was estimated to be 10 copies of the c-myc/IgH translocation.

The sensitivity of detection of the t(8:14) translocations using the other primer pairs was established in a similar fashion, and in each case was found to be 10 copies.

(ii) Sensitivity of the primers used for the bcl-2 LD-PCR

Since the accurate cell number could not be determined with the lymph node biopsy, serial ten-fold dilutions of genomic DNA from a lymph node biopsy (1119) which has a MBR/JH fusion, in increasing amounts of DNA from a lymphoblastoid cell line were prepared. 100ng of DNA extracted from each dilution was then subjected to LD-PCR analysis using the MBR-1/E\mu primer set. Hybridisation of the amplified products with a [\gamma^{32}P] ATP-labelled E\mu probe identified a 4.2kb band at a dilution of 10^{-3} (figure 26, lane 7). Since 100ng of DNA is equivalent to 10^4 cells on average, the sensitivity of detection was estimated to be 10 copies of the MBR/JH fusion.

The sensitivity of detection of bcl-2/IgH fusions using the other primer pairs was established in a similar manner, and in all cases was found to be 10 copies.
Serial ten-fold dilutions of Raji cells (which harbor a c-myc/Sy translocation) in increasing numbers of cells from a lymphoblastoid cell line (LCL) were prepared. 100ng of DNA from each dilution was then subjected to LD-PCR analysis using the c-myc/Cy primer set. 20µl of the PCR product was resolved on a 0.8% w/v agarose gel. M: Lambda (λ) DNA digested with Hind III DNA size marker (fragment sizes in bp). Lanes 1 to 4: 1, 10⁻¹, 10⁻², and 10⁻³ dilutions of Raji cells in cells from an LCL, respectively. The c-myc/Sy (7.6kb) translocation is indicated.

PCR products were transferred to a Hybond N* membrane, and hybridised with a [γ³²P] ATP-labelled c-myc probe. M: Lambda (λ) DNA digested with Hind III DNA size marker (fragment sizes in bp). Lanes 1 to 4: 1, 10⁻¹, 10⁻², and 10⁻³ dilutions of Raji cells with cells from an LCL, respectively. The c-myc/Sy (7.6kb) translocation is indicated.

Serial ten-fold dilutions of DNA from a lymph node (1119) in increasing amounts of DNA from a lymphoblastoid cell line, was prepared. 100ng of DNA from each dilution was then subjected to LD-PCR analysis using the MBR-1/Eµ primer set. 20µl of the PCR product was resolved on a 0.8% w/v agarose gel, transferred to a Hybond N* membrane, and hybridised with a [γ³²P] ATP-labelled Eµ probe. M: Lambda (λ) DNA digested with Hind III DNA size marker (fragment sizes in bp). Lanes 1: Blank Lane 2: Sterile distilled water Lane 3: Lymph node without t(14:18) translocation (761) Lanes 4 to 7: 1, 10⁻¹, 10⁻², and 10⁻³ dilutions of lymph node (1119) DNA in cells from a LCL, respectively. The MBR-1/JH (4.2kb) translocation is indicated.
3.5 Screening for amplifiable DNA using β-Globin primers

DNA prepared from PGL tissue, as well as HIV-negative control tonsil and lymph node, was amplified using β-globin primers (Table 9, page 78) to check for the presence of amplifiable DNA. A band of 110bp was detected in all the PGL samples (figures 27A and 27B) as well as in all the control tonsils (figure 28A) and lymph nodes (figure 28B). A lymphoblastoid cell line (LCL), KB, was used as a positive control for amplification and sterile water was used as a control for PCR contamination.
Figure 27. Screening for amplifiable DNA in PGL tissue using human β-globin primers

27 A

1μg of DNA prepared from PGL tissue was subjected to amplification in a 28-cycle PCR reaction using human β-globin primers. 20μl of PCR product was resolved on a 2% w/v agarose gel and visualised under UV light. M: 1kb DNA size marker (fragment sizes in bp). Lane 1: Blank Lane 2: Sterile water Lane 3: Blank Lanes 4-15: PGL samples. The 110bp β-globin product is indicated.

27 B

1μg of DNA prepared from PGL tissue was subjected to amplification in a 28-cycle PCR reaction using human β-globin primers. 20μl of PCR product was resolved on a 2% w/v agarose gel and visualised under UV light. M: 1kb DNA size marker (fragment sizes in bp). Lane 1: Blank Lane 2: Sterile water Lane 3: Blank Lanes 4-14: PGL samples Lane 15: Blank Lane 16: Lymphoblastoid cell line (LCL). The 110bp β-globin product is indicated.
Figure 28 A Screening for amplifiable DNA in normal tonsil tissue preparations using human β-globin primers

1μg of DNA prepared from tonsil tissue was subjected to amplification in a 28-cycle PCR reaction using human β-globin primers. 20μl of PCR product was resolved on a 2% w/v agarose gel and visualised under UV light. M: 1kb DNA size marker (fragment sizes in bp). Lane 1-3: Blank Lane 4: LCL Lane 5: Sterile water Lanes 6-12: Tonsils. The 110bp β-globin product is indicated.

Figure 28 B Screening for amplifiable DNA in normal lymph node tissue preparations using human β-globin primers

1μg of DNA prepared from lymph node tissue was subjected to amplification in a 28-cycle PCR reaction using human β-globin primers. 20μl of PCR product was resolved on a 2% w/v agarose gel and visualised under UV light. M: 1kb DNA size marker (fragment sizes in bp). Lane 1: Blank Lane 2: Lymphoblastoid cell line (LCL) Lane 3: Sterile water Lanes 4-12: Lymph nodes. The 110bp β-globin product is indicated.
3.6 Analysis of the structure and expression of the p53 gene family in PGL

In the immunosuppressed host, particularly in AIDS-NHL mutations in p53 occur at a frequency of around 38%, with a high percentage (60%) clustering in the AIDS-BL sub-type (Ballerini et al., 1993).

The role of the p53 family members, p63 and p73 in AIDS-NHL is unknown. Somatic mutations in both genes are rare in human cancer (Ichimiya et al., 1999; Ikawa et al., 1999). However, transcriptional silencing of p73 by intragenic hypermethylation in a subset of haematological malignancies is consistent with a tumour suppressor role for this gene (Corn et al., 1999). N-terminal variants of p63 (ΔN p63) are overexpressed in some squamous cancers indicating a potential oncogenic function for this gene (Yamaguchi et al., 2000; Crook et al., 2000).

Unlike p53, p63 and p73 are spliced at their C-termini, and expression shows tissue specificity. Similar to ΔN p63, N-terminal deleted variants of p73 lacking exon 2 (Δ2p73) have recently been described in ovarian and breast cancer (Yang et al., 1998; De Laurenzi et al., 1998, Ng et al., 2000; reviewed in section 1.4).

The objectives of the studies described in this chapter were as follows:
(i) To determine whether somatic mutations in p53 occur in PGL.
(ii) To define patterns of expression of p63 and p73 in normal lymphoid tissue and PGL.
(iii) To seek experimental evidence in support of a tumour suppressor role for p73 in PGL.

3.6.1 PCR without radioactive 33P using primers for p53 exons 2-11

DNA from PGL and control tissue was initially amplified without any radioactivity using primers for p53 exons 2-11, to assess the specificity of the PCR, using the primers shown in Table 17, page 91. 500ng of DNA from each of the samples were amplified using the conditions specified in section 2.16.3. A nasopharyngeal carcinoma (NPC) cell line, C18, was used as a positive control for amplification and sterile distilled water as a control for PCR contamination.

Figures 29A to D are representative results of PCRs with primer pairs for exons 5,6,7, and 8 of p53. These experiments clearly demonstrated that the PCR is specific,
Figure 29 A PCR amplification of exon 5 of p53

500ng of DNA was subjected to amplification in a 35-cycle PCR reaction using the p53 exon 5 primer pair. 20μl of the PCR product was resolved on a 2% w/v agarose gel and the bands were visualised under UV light. M: 1kb DNA size marker (fragment sizes in bp) Lanes 1-2: Blank Lanes 3: SDW Lanes 4-12: PGL samples Lane 13: C18. The exon 5 amplified fragment (211bp) is indicated.

Figure 29 B PCR amplification of exon 6 of p53

500ng of DNA was subjected to amplification in a 35-cycle PCR reaction using the p53 exon 6 primer pair. 20μl of the PCR product was resolved on a 2% w/v agarose gel and the bands were visualised under UV light. M: 1kb DNA size marker (fragment sizes in bp). Lanes 1-2: Blank Lanes 3: SDW Lanes 4-12: PGL samples Lane 13: C18. The exon 6 amplified fragment (185bp) is indicated.
Figure 29 C
PCR amplification of exon 7 of p53

500ng of DNA was subjected to amplification in a 35-cycle PCR reaction using the p53 exon 7 primer pair. 20µl of the PCR product was resolved on a 2% w/v agarose gel and the bands were visualised under UV light. M: 1kb DNA size marker (fragment sizes in bp). Lanes 1: Blank Lane 2: SDW Lane 3: C18 Lane 4: Blank Lane 5-12: PGL samples. The exon 7 amplified fragment (139bp) is indicated.

Figure 29 D
PCR amplification of exon 8 of p53

500ng of DNA was subjected to amplification in a 35-cycle PCR reaction using the p53 exon 8 primer pair. 20µl of the PCR product was resolved on a 2% w/v agarose gel and the bands were visualised under UV light. M: 1kb DNA size marker (fragment sizes in bp). Lanes 1-2: Blank Lane 3: SDW Lanes 4-12: PGL samples Lane 13: C18. The exon 8 amplified fragment (200bp) is indicated.
since only a single band was amplified with each primer pair (the sizes of the PCR products 211bp (exon 5), 185bp (exon 6), 139bp (exon 7) and 200bp (exon 8) are indicated in figures 29A to D respectively).

3.6.2 Comparison of radio-isotopes ^{32}P with ^{33}P for SSCP analysis

^{33}P is a low-energy beta emitter, and hence is safer to work with, when compared to ^{32}P. To assess whether the ^{33}P isotope was comparable to the ^{32}P isotope in detecting SSCP mobility shifts, the following experiment was carried out.

SSCP-PCR was performed with primers to amplify exon 5 of p53, on PGL samples, a positive control (C18) and a negative control (LCL), using both [α^{33}P] dCTP and [α^{32}P] dCTP.

Figures 30A and 30B are representative SSCP-PCR amplifications of exon 5 of p53 using ^{32}P and ^{33}P isotopes respectively. A positive SSCP shift observed with the positive control, C18, in figure 30A was similarly observed in figure 30B.

It was concluded from the above experiment that SSCP-PCR using ^{33}P as the radioisotope was as sensitive as ^{32}P in detecting mobility shifts.
Figure 30. SSCP analysis of exon 5 with radioactive phosphorus isotopes 32P and 33P

Figure 30 A SSCP analysis of exon 5 using $[^{32}\text{P}]$ dCTP

500ng of DNA was subjected to amplification in a 35-cycle PCR using primers PU5 and PD5 and 2µCi of $[^{32}\text{P}]$ dCTP per reaction. Following amplification, 3µl of radiolabelled PCR product was mixed with 3µl of loading dye. The samples were heat-denatured at 94°C for 5 minutes and resolved on a 6% polyacrylamide (PAGE) gel with 10% glycerol. After being dried the gel was exposed to Kodak XR film at room temperature for 24 hours with intensifying screens. **Lanes 1-8:** PGL samples T: C18 (duplication of codons 149-153, codon 154 deleted) N: LCL.

Figure 30 B SSCP analysis of exon 5 using $[^{33}\text{P}]$ dCTP

500ng of DNA was subjected to amplification in a 35-cycle PCR using primers PU5 and PD5 and 10µCi of $[^{33}\text{P}]$ dCTP per reaction. Following amplification 3µl of radiolabelled PCR product was mixed with 3µl of loading dye. The samples were heat-denatured at 94°C for 5 minutes and resolved on a 6% polyacrylamide (PAGE) gel with 10% glycerol. After being dried the gel was exposed to Kodak XR film at -70°C for 24 hours with intensifying screens. **Lanes 1-8:** PGL samples T: C18 (duplication of codons 149-153, codon 154 deleted) N: LCL.
3.6.3 SSCP mobility shifts are detected in PGL tissue

The presence of p53 mutations in the current series of PGL was sought using SSCP analysis of each coding exon of the gene (exons 2-11) and genomic DNA as a substrate. The amplification reactions included 10μCi of \([\alpha^{33}\text{P}]\) dCTP. The sequences of the primer pairs are given in Table 17, page 91. Positive and negative controls are shown in Table 20, page 93. Representative SSCP autoradiographs for each analysed exon are presented in Figures 31 to 39. Samples with altered migration are indicated in blue. Positive and negative controls are indicated in red.

Mobility shifts suggestive of sequence changes were detected in 6/23 (26%) analysed DNA samples from HIV-infected individuals with PGL. These comprised 5 PGL samples in exon 7 (figure 35 lanes 1,9,11,12 and 21), and 1 PGL sample in exon 10 (figure 38 lane 4). Abnormal migration was also detected in one tonsil (6.3%) from an HIV-uninfected individual in exon 6 (figure 34 lane 13). In the case of exon 2/3 (figure 31), two distinct patterns of migration were observed, suggestive of a polymorphism, which occurs in exon 2 (GAC>GAT) (Ahuja et al., 1990). Samples in lanes 2,5,7,8,10,11, and 12 showed a pattern of migration that differed from those samples in lanes 1,3,4, and 6. Normal migration patterns in all the other exons were observed in the remaining PGL samples and controls.

3.6.4 Amplification of DNA using a high-fidelity polymerase- \(Pfx\)

Each DNA sample exhibiting a mobility shift was subjected to re-amplification of the exon containing the suggested mutation, with a high fidelity thermostable DNA polymerase, \(Pfx\), since it has an error rate \(~26\) times lower than \(Taq\) (Lackovich et al., 2001). The error rate of \(Taq\), \(Pfu\) and \(Pfx\) polymerases is shown in Table 27.

<table>
<thead>
<tr>
<th>Polymerase</th>
<th>Error-rate ((x \times 10^{-6}))</th>
<th>Relative fidelity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Taq)</td>
<td>42 ± 19</td>
<td>1</td>
</tr>
<tr>
<td>(Pfu)</td>
<td>3 ± 1</td>
<td>14</td>
</tr>
<tr>
<td>(Pfx)</td>
<td>1.6 ± 0.5</td>
<td>26</td>
</tr>
</tbody>
</table>

Adapted from Lackovich et al., 2001 and Takagi et al., 1997
Figure 31. SSCP analysis of exon 2/3 of p53

500ng of DNA was subjected to amplification using primers PU2 and PD3. 3μl of radiolabelled PCR product was mixed with 3μl of loading dye. The samples were heat-denatured and resolved on a 6% polyacrylamide (PAGE) gel with 10% glycerol. The dried gel was exposed to Kodak XR film at -70°C for 2-3 days. Lanes 1-8: PGL samples Lane 9: Blank Lanes 10-11: PGL samples N: Negative control.

Figure 32. SSCP analysis of exon 4 of p53

500ng of DNA was subjected to amplification using primers PU4 and PD4. 3μl of radiolabelled PCR product was mixed with 3μl of loading dye. The samples were heat-denatured and resolved on a 6% polyacrylamide (PAGE) gel with 10% glycerol. The dried gel was exposed to Kodak XR film at -70°C for 2-3 days. Lanes 1-10: PGL samples Lanes 11&12: Blank T: Tumour control (arginine at codon 72) N: Normal control (arginine at codon 72) N1: Normal control (proline at codon 72).
Figure 33. SSCP analysis of exon 5 of p53

500ng of DNA was subjected to amplification using primers PU5 and PD5. 3μl of radiolabelled PCR product was mixed with 3μl of loading dye. The samples were heat-denatured and resolved on a 6% polyacrylamide (PAGE) gel with 10% glycerol. The dried gel was exposed to Kodak XR film at -70°C for 2-3 days. Lanes 1-6: Tonsil controls. Lane 7-15: Lymph node controls Lane 16: Blank T: Tumour control C18 (duplication of codons 149-153, codon 154 deleted); N: Normal control 28697N.

Figure 34. SSCP analysis of exon 6 of p53

500ng of DNA was subjected to amplification using primers PU6 and PD6. 3μl of radiolabelled PCR product was mixed with 3μl of loading dye. The samples were heat-denatured and resolved on a 6% polyacrylamide (PAGE) gel with 10% glycerol. The dried gel was exposed to Kodak XR film at -70°C for 2-3 days. Lanes 1-9: Lymph node controls Lanes 10-16: Tonsil controls Lane 13: Abnormally migrating sample (T6) T: Tumour control 03157T (codon 213, CGA-TGA); T1: Tumour control 13758T (codon 202, CGT-CAT) N: Normal control 03157N.
500ng of DNA was subjected to amplification using primers PU7 and PD7. 3µl of radiolabelled PCR product was mixed with 3µl of loading dye. The samples were heat-denatured and resolved on a 6% polyacrylamide (PAGE) gel with 10% glycerol. The dried gel was exposed to Kodak XR film at -70°C for 2-3 days. Lanes 1-21: PGL samples Lanes 1,9,11,12 and 21: Abnormally migrating samples (LN1,9,15,16 and 20 respectively) Lane 22: Blank T: Tumour control 00997T (codon 248, CGG-TGG); N: Normal control 00997N.
500ng of DNA was subjected to amplification using primers PU8 and PD8. 3μl of radiolabelled PCR product was mixed with 3μl of loading dye. The samples were heat-denatured and resolved on a 6% polyacrylamide (PAGE) gel with 10% glycerol. The dried gel was exposed to Kodak XR film at -70°C for 2-3 days. **Lanes 1-4, 6 & 8-12:** PGL samples **Lanes 5 & 7:** Blank **T:** Tumour control 05747T (codon 281, GAC-AAC); **N:** Normal control 05747N.

500ng of DNA was subjected to amplification using primers PU9 and PD9. 3μl of radiolabelled PCR product was mixed with 3μl of loading dye. The samples were heat-denatured and resolved on a 6% polyacrylamide (PAGE) gel with 10% glycerol. The dried gel was exposed to Kodak XR film at -70°C for 2-3 days. **Lanes 1-9:** PGL samples **T:** Tumour controls C17 and C18; **N:** Normal control, DNA from fibroblasts.
Figure 38. SSCP analysis of exon 10 of p53

500ng of DNA was subjected to amplification using primers PU10 and PD10. 3μl of radiolabelled PCR product was mixed with 3μl of loading dye. The samples were heat-denatured and resolved on a 6% polyacrylamide (PAGE) gel with 10% glycerol. The dried gel was exposed to Kodak XR film at -70°C for 2-3 days. Lanes 1-3,4,6-8,10-13: PGL samples Lanes 5 and 9: Blank Lane 4: Abnormally migrating sample (LN5) T: Tumour control, C17; N: Normal control, DNA from fibroblasts.

Figure 39. SSCP analysis of exon 11 of p53

500ng of DNA was subjected to amplification using primers PU11 and PD11. 3μl of radiolabelled PCR product was mixed with 3μl of loading dye. The samples were heat-denatured and resolved on a 6% polyacrylamide (PAGE) gel with 10% glycerol. The dried gel was exposed to Kodak XR film at -70°C for 2-3 days. Lanes 1-10: PGL samples T: Tumour control, C17; N: Normal control, DNA from fibroblasts.
3.6.4.1 Optimisation of annealing temperature using Pfx polymerase

These studies were carried out to establish the optimal annealing temperature for the re-amplification of DNA, using Pfx polymerase, which was to be subsequently cloned and sequenced. 300ng of DNA was amplified in a 35-cycle PCR reaction containing MgSO₄, Pfx and primer at concentrations recommended by the manufacturer (Life Technologies, see section 2.8.6). The minimum recommended temperature was 55°C. PCR was carried out using primers for exon 7, at annealing temperatures of 55-63°C, in one-degree increments, as shown in figure 40 (lanes 2 to 10 respectively). The efficiency of amplification and quantity of the product (as judged by the intensity of the bands on the gel) was similar at temperatures between 61-63°C, whereas at temperatures below 61°C, amplification specificity was compromised and non-specific bands were observed. The optimum annealing temperature was determined to be 63°C (figure 40, lane 10). The optimum annealing temperature for the other primer pairs was established in a similar fashion, and was found to be 66°C for exon 2/3 and exon 10 primer pairs.

Figure 41 is a representative result of PGL samples amplified using primers for exon 7 of p53 and Pfx polymerase.

3.6.5 p53 mutations are detected in PGL

Pfx-amplified PCR fragments were either gel-purified or ligated directly into pCR®-BLUNT (2.17.1.3). Following restriction enzyme digest of individual clones, 20-30 clones that contained an insert of the right size were sequenced using the LICOR 4000L automated sequencer (MWG Biotech, Milton Keynes, UK), and the Sequitherm Excel™ II kit (Cambio, Cambridge, UK) using M13 forward and reverse primers. Proposed mutations were confirmed by sequencing both DNA strands as well as re-amplification of the DNA in an independent PCR reaction, followed by cloning and sequencing (Table 28, page 138, and figure 42). No sequence changes were observed in the exon 2/3 fragments with altered mobility shifts. It was thus concluded that these shifts were an artefact of SSCP analysis. Mutations were however identified in each of the 6 PGL DNA samples and 1 HIV-uninfected tonsil that had mobility shifts by SSCP, which are represented in Figures 42 A to G, pages 139-140 and Table 28, page 138. Nucleotide changes are indicated in red.
300ng of DNA was subjected to amplification in a 35-cycle PCR using exon 7 primers and Pfx polymerase. The DNA was subjected to amplification using annealing temperatures between 55°C and 63°C, in one-degree increments. 20μl of PCR product was resolved on a 2% w/v agarose gel and the bands were visualised under UV light. M: 100bp DNA size marker (fragment sizes in bp). Lane 1: SDW Lanes 2-10: 55°C - 63°C respectively. The exon 7 amplified product (139bp) is indicated.

300ng of DNA was subjected to amplification in a 35-cycle PCR using primers for exon 7 and Pfx polymerase. 20μl of PCR product was resolved on a 2% w/v agarose gel and the bands were visualised under UV light. M: 1kb DNA size marker (fragment sizes in bp). Lanes 1-3: PGL samples (LN1, LN9 and LN15 respectively). The exon 7 amplified product (139bp) is indicated.
Missense mutations were detected in cases LN 1 (codon 229), LN 9 (codon 242), LN 15 (codon 238) and LN 16 (codon 249) in exon 7. A silent mutation was observed in codon 245 (exon 7) in case LN 24. In case LN 5, deletion of a guanine residue in codon 361 (exon 10) was observed, resulting in a shift in the reading frame by -1. Although the nucleotide deletion resulted in no change in the amino acid at codon 361, a termination codon (TGA) observed in codon 369 could result in premature termination of translation. In the HIV-uninfected tonsil (T6) a silent mutation was detected in exon 6, codon 222. The nucleotide substitutions and amino acid changes are shown in Table 28. Although the p53 mutants described in this study have not been functionally characterised, the phenotype of mutants involving the same codon but different amino acid substitutions have also been indicated. The nature of nucleotide substitutions was a transversion in case numbers 15, 16, and T6 and transition in case numbers 1, 9 and 24. All the mutations occur within evolutionarily conserved codons and codon 249 (LN 16) is considered to be a mutational hot spot.

Table 28
Summary of sequence analysis of p53

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Exon</th>
<th>Codon</th>
<th>Nucleotide substitution</th>
<th>Type of mutation</th>
<th>Amino acid change</th>
<th>Phenotype**</th>
</tr>
</thead>
<tbody>
<tr>
<td>LN 1</td>
<td>7</td>
<td>229</td>
<td>TGT → CGT</td>
<td>Missense (Transition)</td>
<td>C → R</td>
<td>nk</td>
</tr>
<tr>
<td>LN 9</td>
<td>7</td>
<td>242</td>
<td>TGC → CGC</td>
<td>Missense (Transition)</td>
<td>C → R</td>
<td>242Y¹ nk</td>
</tr>
<tr>
<td>LN 15</td>
<td>7</td>
<td>238</td>
<td>TGT → GGT</td>
<td>Missense (Transversion)</td>
<td>C → G</td>
<td>A238-239² Yes</td>
</tr>
<tr>
<td>LN 16</td>
<td>7</td>
<td>249</td>
<td>AGG → ATG</td>
<td>Missense (Transversion)</td>
<td>R → M</td>
<td>249S² Yes³ No²</td>
</tr>
<tr>
<td>LN 24</td>
<td>7</td>
<td>245</td>
<td>GGC → GGT</td>
<td>Silent (Transversion)</td>
<td>G → G</td>
<td>NA</td>
</tr>
<tr>
<td>LN 5</td>
<td>10</td>
<td>361</td>
<td>GGG → GGAG</td>
<td>Nonsense*</td>
<td></td>
<td>nk</td>
</tr>
<tr>
<td>T6</td>
<td>6</td>
<td>222</td>
<td>CCG → CCT</td>
<td>Silent (Transversion)</td>
<td>P → P</td>
<td>NA</td>
</tr>
</tbody>
</table>

T= normal tonsil; LN = lymph node from PGL; *, Termination (TGA) codon 369, exon 11; C, Cysteine; R, Arginine; G, Glycine; M, Methionine; P, Proline; Y, Tyrosine; S, serine; W, Tryptophan; **, Transdominance tested in yeast, and transactivation of the waf1 or hmdm2 promoter; Transdom., transdominant; Transact., transactivation; nk, not known; NA, not applicable; ¹, Campomenosi et al., 2001; ², Marutani et al., 1999; ³, Crook et al., 1994
Figure 42. Sequence analysis of p53

Figure 42 A
Sequence of LN 1

TGT → CGT
(anti-sense shown)

Figure 42 B
Sequence of LN 9

TGC → CGC
(anti-sense shown)

Figure 42 C
Sequence of LN 15

TGT → GGT
(anti-sense shown)

Figure 42 D
Sequence of LN 16

AGG → ATG
(sense shown)

139
Figure 42 E

Sequence of LN 5

Figure 42 F

Sequence of LN 24

Figure 42 G

Sequence of T6

GGG → GGΔG
(sense shown)

GGC → GGT
(sense shown)

CCG → CCT
(anti-sense shown)
Figure 42. Sequence analysis of p53. Samples that showed a positive shift on SSCP analysis were re-amplified with Pfx polymerase, cloned into plasmid vectors and sequenced using LICOR 4000L automated sequencer (MWG Biotech, Milton Keynes, UK), and the Sequitherm Excel™ II kit (Cambio, Cambridge, UK). Labelled M13 forward and reverse primers were used. Nucleotide substitutions are indicated in red.

Figure 42 A: Sequence of LN 1 (lane 1, figure 35, exon 7)
Figure 42 B: Sequence of LN 9 (lane 9, figure 35, exon 7)
Figure 42 C: Sequence of LN 15 (lane 11, figure 35, exon 7)
Figure 42 D: Sequence of LN 16 (lane 12, figure 35, exon 7)
Figure 42 E: Sequence of LN 5 (lane 4, figure 38, exon 10)
Figure 42 F: Sequence of LN 24 (lane 21, figure 35, exon 7)
Figure 42 G: Sequence of T6 (lane 16, figure 34, exon 6)
3.6.6 Analysis of p73 expression in HIV-PGL and HIV-uninfected tissue

3.6.6.1 Multiple C-terminal isoforms of p73 are expressed in PGL

RT-PCR was used to analyse expression of the p73 gene using primers located in exon 10 (sense) and exon 14 (antisense) of the gene (Table 11, page 80). The location of the primers allowed for the detection of the multiple C-terminal isoforms, of which 6 have been reported to date (De Laurenzi et al., 1998, 1999). Following amplification, RT-PCR products were hybridised to a \([\gamma^{32}P]\) ATP-labelled p73 oligonucleotide located in exon 10.

Expression of p73 was detected in 19/19 HIV-infected PGL tissue and in 9 of 15 HIV uninfected tonsils and lymph nodes (figure 43A, lanes 3,4,6,7,8,9,10,13 and 14). 8 individual bands were detected in the PGL samples, whereas only 4 bands were detected in the normal lymph nodes and tonsils (figure 43B). Note that the pattern of expression in the vulval cancers (positive controls) is different to that observed in the HIV-infected and uninfected lymphoid tissue (figure 43C).

3.6.6.2 Detection of the alpha and beta isoforms of p73 using colony hybridisation and sequencing

To identify the RT-PCR amplified products (see above) and determine whether the transcripts were p73-specific, colony hybridisation using a \([\gamma^{32}P]\) ATP-labelled p73 oligonucleotide (Table 11, page 80) was carried out (see section 2.17.2). DNA from the clones that hybridised with the probe was purified (see section 2.17.3) and sequenced (see section 2.18). Of the 50 clones screened, 6 hybridised to the p73 probe (figure 44, A-F). The remaining 44 clones did not hybridise to the probe indicating absence of a p73-specific product. On subsequent sequencing of these 6 clones, 5 were identified as the alpha transcript (535bp) of the p73 gene (figure 45, lanes 2,4,6,8 and 10), and 1 as the beta transcript (440bp) (figure 45, lane 12).
Figure 43. Detection of p73 transcripts in HIV-PGL and HIV-uninfected tissue

43 A

A 535bp region of p73 was amplified from cDNA in a 35-cycle RT-PCR reaction using p73 primers. 20μl of PCR product was resolved on a 3% w/v agarose gel run slowly for 6 hours at 30mA. PCR products were transferred to Hybond N+ membrane and probed with a 32P-labelled oligonucleotide located in exon 10. M: HindIII digested φX-174 DNA size marker (fragment sizes in bp). The presence of amplifiable cDNA is indicated by amplification of β-actin. **Figure 43A Lanes 1-19:** PGL samples. **Figure 43B Lanes 1-7:** HIV-uninfected tonsils. **Lanes 8-15:** HIV-uninfected lymph nodes. **Figure 43C Lane 1:** Sterile distilled water. **Lanes 2 and 3:** cDNA from vulval cancers (T1 and T2 respectively).
The p73 RT-PCR product was cloned using the TOPO TA® Cloning Kit and the colonies recovered were screened using a [\(\gamma^{32}P\)] ATP-labelled p73 oligonucleotide located in exon 10. A-F: Colonies that hybridised with the [\(\gamma^{32}P\)] ATP-labelled p73 oligonucleotide.

Plasmid DNA extracted from the colonies that hybridised with the \(32\)P-labelled p73 oligonucleotide were digested with the restriction enzyme EcoRI for 3 hours at 37°C. 20 µl of the digested DNA was resolved on a 2% w/v agarose gel and the bands visualised under UV light. M: A 100bp DNA size marker (fragment sizes in bp). Lanes 1,3,5,7,9 and 11: Undigested DNA. Lanes 2,4,6,8,10 and 12: DNA digested with EcoRI. The clones that hybridised with the \(32\)P-labelled p73 oligonucleotide (A-F) are indicated. The \(\alpha\) fragment (535bp) and the \(\beta\) fragment (440bp) are indicated. Plasmid vector not shown.
3.6.6.3 Detection of p73 isoforms using radioactive PCR and sequencing

Radioactive PCR, using [α\(^{32}\)P] dCTP (2.18.2) and primers specified in Table 11 (page 80) was performed to further identify those transcripts that could not be detected by the colony hybridisation technique. Individual DNA fragments excised from the gel, were re-amplified in a 40-cycle RT-PCR reaction and ligated into a TOPO TA vector (see section 2.17.1.2). Clones representing each DNA fragment were sequenced and 5 transcripts were identified, which were the α (535bp), β (440bp), γ (386bp), ε (291bp) and ζ (249bp) transcripts (figure 46). Sequencing of the other cloned fragments revealed that they did not derive from the p73 gene.

3.6.6.4 Δ2 isoforms of p73 are expressed in both HIV-PGL and normal lymph nodes and tonsils

RT-PCR to detect p73 variants that lack exon 2 was performed using primers that amplify a 344bp region of p73 (Ng et al., 2000). The sense primer was located in exon 1 and the antisense primer in exon 4 (Table 11, page 80). Following amplification RT-PCR products were hybridised to a \([\gamma^{32}\)P] ATP-labelled p73 oligonucleotide (Table 11, page 80) located in exon 3.

The full-length transcript was not detectable in any of the samples analysed. A smaller fragment (242bp), representing the Δ2 p73 variant was detected in 16/16 HIV-PGL tissue (figure 47A) and in 8/15 HIV-uninfected samples (figure 47B). RT-PCR products were re-hybridised to a probe in exon 2 (Table 11, page 80). The absence of detectable product confirmed that only the Δ2 p73 variant was expressed in all samples analysed.

3.6.6.5 Hypermethylation of p73 is not detectable in PGL

To assess whether p73 is silenced by hypermethylation in HIV-infected individuals with PGL, which might suggest a tumour suppressor role for this gene, methylation-specific PCR (MSP) was performed using primers specific for the methylated and unmethylated reactions (Table 23, page 104). Methylated and unmethylated human genomic DNA (Intergen, U.S.A) was used as positive and negative controls respectively. In addition, Burkitt’s lymphoma (BL) cell lines, Raji and Namalwa were also analysed, which have documented hypermethylation in the p16\(^{INK4a}\) and
cDNA synthesised from 40ng of RNA from HIV-infected PGL tissue was subjected to amplification in a 40-cycle p73 RT-PCR, and 10μCi of [α-³²P] dCTP was included in each reaction. 3μl of radiolabelled PCR product was mixed with 3μl of loading dye, containing formamide, heat-denatured and resolved on a 6% denaturing polyacrylamide gel. M: Hinfl digested φX-174 DNA size marker (fragment sizes in bp). Lanes 1,3 and 5: Blank. Lanes 2,4 and 6: HIV-infected PGL tissue.

Upon sequencing, bands A-E were identified as A: α transcript (535bp), B: β transcript (440bp), C: γ transcript (386bp), D: ε transcript (291bp), F: ζ transcript (249bp) respectively.
Figure 47. Detection of the Δ2 p73 variant in HIV-PGL and HIV-uninfected tissue

47 A

Figure 47A Lane 1: SDW Lane 2&15: Blank Lanes 3-18: PGL samples. Figure 47B Top panel (96 hour exposure) Lanes 1-7: HIV-uninfected tonsils Lanes 8-15: HIV-uninfected lymph nodes Lane 16: Vulval squamous carcinoma (5T). The Δ2 variant of p73 (242bp) is indicated.

cDNA synthesised from 40ng of RNA was subjected to amplification in a 35-cycle RT-PCR reaction using primers for the detection of the Δ2 p73. 20μl of the RT-PCR product was resolved on a 2% w/v agarose gel, Southern transferred to a Hybond N+ membrane and hybridised with a 32P-labelled p73 oligonucleotide located in exon 3. M: Hinf1 digested φX-174 DNA size marker (fragment sizes in bp). The presence of amplifiable cDNA is indicated by amplification of β-actin.
p15^{INK4b} genes (Klangby et al., 1998 and see Table 29). The methylation status of the p73 gene in these cell lines was assessed in this study. Methylation of the p73 gene was not found in any of the HIV-infected PGL samples. Methylation analysis of the BL cell lines indicated complete methylation of the Namalwa cell line (figure 48, lane 23). The Raji cell line contained both methylated as well as unmethylated copies of the gene (Table 29), but this cell line was not included for MSP analysis in this experiment. Amplification of the positive control methylated DNA (figure 48, lane 22) with only the methylated primer set, and the unmethylated control DNA with the unmethylated primer set (figure 48, lane 21), confirmed the specificity of the PCR. These results suggest that hypermethylation of p73 is not characteristic of HIV-infected PGL.

Table 29

Methylation status of p16^{INK4a}, p15^{INK4b} and p73 in BL cell lines Raji and Namalwa

<table>
<thead>
<tr>
<th>BL cell line</th>
<th>p16^{INK4a}</th>
<th>p15^{INK4b}</th>
<th>p73'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raji</td>
<td>+</td>
<td>(+)</td>
<td>(+)</td>
</tr>
<tr>
<td>Namalwa</td>
<td>+</td>
<td>(+)</td>
<td>+</td>
</tr>
</tbody>
</table>

BL, Burkitt's lymphoma; +, complete methylation; (+), partial methylation; 1, methylation status assessed in this study

3.6.7 Analysis of p63 expression in HIV-PGL and HIV-uninfected tissue

3.6.7.1 TA is the predominant isoform of p63 expressed in lymphoid tissue

RT-PCR was performed to assess expression of TA p63 in lymph node and tonsil tissue. These primers amplify a 629bp fragment, with the sense primer located in exon 2 and the antisense primer in exon 5 (Table 11). Following amplification, RT-PCR products were hybridised to a [γ^{32}P] ATP-labelled p63 oligonucleotide (Table 10) located in exon 3.

Expression of TA p63 was observed in 14 of 19 (73%) PGL samples (figure 49A, lanes 2-6,8,9, and 12-17 and figure 49B, lane 2). The transcript was also detected in 1 tonsil (figure 49B lane 10) and in 5 of 9 (55%) HIV-uninfected lymph nodes (figure 49B lanes 12,14 and 16-18).
Figure 48. Methylation status of the p73 gene in HIV-PGL

40 ng of genomic DNA modified by sodium bisulphite was used in a 35-cycle MSP reaction to amplify 60bp and 69bp fragments of the p73 gene, using primers specific for the methylated and unmethylated reactions respectively. 20μl of the PCR product was resolved on a 3% w/v agarose gel and the bands were visualised under UV light. L: A 100bp DNA size marker (fragment sizes in bp). U: Unmethylated DNA. M: Methylated DNA.

Lanes 1 to 20: PGL samples. Lane 21: Unmethylated control DNA. Lane 22: Methylated control DNA. Lane 23: Namalwa cell line. The unmethylated (69bp) and methylated (60bp) products are indicated.
Figure 49. Detection of TA p63 transcripts in HIV-PGL and HIV-uninfected tissue

49 A

M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
726/713 — 553 — 500 — 629bp
β-actin —

49 B

M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
726/713 — 553 — 500 — 629bp
β-actin —

A 629bp region of p63, specific for the TA isoform, was amplified from cDNA in a 30-cycle RT-PCR reaction. 20μl of PCR product was resolved on a 2% w/v agarose gel. PCR products were transferred to Hybond N+ membrane and probed with a 32P-labelled oligonucleotide located in exon 3. M: Hinfl digested φX-174 DNA size marker (fragment sizes in bp). The presence of amplifiable cDNA is indicated by the amplification of β-actin. The TA p63 RT-PCR product (629bp) is indicated.

Figure 49 A
Lane 1: Blank Lanes 2-19: PGL samples Lane 20: cDNA from lymphoblastoid cell line (PD-LCL).

Figure 49 B
Lane 1: Blank Lane 2: PGL sample Lane 3: Sterile distilled water Lanes 4-10: HIV-uninfected tonsils Lanes 11-19: HIV-uninfected lymph nodes.
3.6.7.2 The ΔN isoform of p63 is expressed only in HIV-uninfected tonsils

RT-PCR was performed to analyse the expression of ΔN p63. Primers were designed to amplify a 440bp region, with the sense primer located in exon 3' and the antisense primer located in exon 5 (Table 11, page 80). Following amplification, RT-PCR products were hybridised to a [γ³²P] ATP-labelled p63 oligonucleotide (Table 11, page 80) located in exon 4.

Expression of ΔN p63 was only observed in the HIV-uninfected tonsils, with a 440bp fragment being detected in 6 of 7 tonsils (85%) (figure 50B, lanes 4-8 and 10). There was complete absence of expression in the PGL samples and HIV-uninfected lymph nodes (figure 50A, lanes 2 to 19 and figure 50B, lanes 11-19).

3.7 Genetic, epigenetic and expression analysis of the INK4 locus in PGL

Tumour suppressor roles for the cyclin-dependent kinase inhibitors, p16\(^{INK4a}\) and p15\(^{INK4b}\) in human cancer have been well established (see section 1.5.5). A putative tumour-suppressor role has been suggested for the alternate protein product of the INK4A locus, designated p14\(^{ARF}\) in humans and p19\(^{ARF}\) (ARF for alternate reading frame) in the mouse, based on gene targeting studies in mice. Although exon 1β mutations are rare, exon 2 mutations affecting both p16\(^{INK4a}\) and p14\(^{ARF}\) have been reported (Sanchez-Cespedes et al., 1999; Rizos et al., 2000). Deletion of exon 1β of p14\(^{ARF}\) has been reported in hepatocellular and gastric carcinomas (Jin et al., 2000; Iida et al., 2000). In addition, hypermethylation of the promoter region of ARF has been described in some human colorectal and gastric tumours (Esteller et al., 2000; Iida et al., 2000).

In NHLs that arise in immunocompetent hosts, deletions and transcriptional silencing via aberrant promoter hypermethylation are the most common mechanisms of INK4a and INK4b inactivation. Both genes are subject to hypermethylation in high-grade B-cell lymphomas (Herman et al., 1997). Inactivating mutations in p15\(^{INK4b}\) and those that target exon 1α and exon 2 of p16\(^{INK4a}\) are rarely observed (<1%) in these malignancies.
Figure 50. Detection of ΔN p63 transcripts in HIV-PGL and HIV-uninfected tissue

50 A

A 440bp region of p63 was amplified from cDNA in a 30-cycle RT-PCR reaction. 20μl of PCR product was resolved on a 2% w/v agarose gel. PCR products were transferred to Hybond N+ membrane and probed with a 32P-labelled oligonucleotide located in exon 4. M: Hinfl digested ϕX-174 DNA size marker (fragment sizes in bp). The presence of amplifiable cDNA is indicated by the amplification of β-actin. The ΔN p63 RT-PCR product (440bp) is indicated.

Figure 50 A
Lane 1: Blank Lanes 2-19: PGL samples.

Figure 50 B
Lane 1: Blank Lane 2: PGL sample Lane 3: Sterile distilled water Lanes 4-10: HIV-uninfected tonsils Lanes 11-19: HIV-uninfected lymph nodes Lane 20: cDNA from squamous cell cancer (S1).
Given the importance of these genes in neoplasia, the studies described in this chapter were carried out to assess whether changes in structure, expression and/or gene hypermethylation of members of the INK4a locus occur in HIV-related PGL.

3.7.1 SSCP analysis of the INK4a/ARF locus
To determine whether the INK4a/ARF locus is structurally altered in HIV-infected PGL, SSCP-PCR was performed on genomic DNA, using primers that amplify a 278bp fragment in exon 1α and 243bp and 241bp fragments in exon 2 (fragments 2a and 2b respectively). Exon 1β was analysed from cDNA (Table 18, page 92). Since it was not possible to obtain positive controls, it was decided that any sample with a migration pattern different from that observed in the negative (normal) control would be cloned and sequenced. Mobility shifts indicative of sequence changes were not observed in exons 1α, 1β or 2 (figures 51 to 53 respectively) by SSCP analysis of the corresponding exons.

3.7.2 Analysis of expression of p16INK4a, p14ARF and p15INK4b in HIV-infected and uninfected tissue

(i) Expression of p16INK4a
The p16INK4a tumour suppressor gene product acts as a negative regulator of proliferation by inhibiting the activity of CDK4, thus preventing the phosphorylation of pRb and subsequent G1/S progression (see section 1.5). Expression of p16INK4a was analysed in HIV-infected lymphoid tissue by RT-PCR, using a sense primer in exon 1α and an antisense primer in exon 2, followed by hybridisation of the amplified products to a 32P-labelled p16INK4a cDNA.

p16INK4a mRNA was detected in 16 of 16 (100%) HIV-infected PGL samples tested (figure 54A, lanes 2 to 19). 3 PGL samples were unavailable for analysis due to insufficient material. In addition, the gene was expressed in all (16/16) of the HIV-uninfected lymph nodes and tonsils (figure 54B, lanes 2 to 17).
Figure 51. SSCP analysis of exon 1\alpha in PGL

Figure 52. SSCP analysis of exon 1\beta in PGL

Figure 53. SSCP analysis of exon 2a in PGL
Figure 51. SSCP analysis of exon 1α of p16INK4a. 500ng of DNA was subjected to amplification using the appropriate primers (Table 18). 3μl of radiolabelled PCR product was mixed with 3μl of loading dye. Samples were heat-denatured at 94°C for 5 minutes, then resolved on a 6% polyacrylamide (PAGE) gel with 10% glycerol. Dried gels were exposed to Kodak XR film at -70°C for 2-3 days with intensifying screens. Lanes 1-10: PGL samples N: Normal control (DNA from fibroblasts).

Figure 52. SSCP analysis of exon 1β of p14ARF. 500ng of DNA was subjected to amplification using the appropriate primers (Table 18). 3μl of radiolabelled PCR product was mixed with 3μl of loading dye. The samples were heat-denatured at 94°C for 5 minutes, then resolved on a 6% polyacrylamide (PAGE) gel with 10% glycerol. Dried gels were exposed to Kodak XR film at -70°C for 2-3 days with intensifying screens. Lanes 1-4, 6,8,10,11: PGL samples Lanes 5,7 & 9: Blank N: Normal control (DNA from fibroblasts).

Figure 53. SSCP analysis of exon 2α of p16INK4a. SSCP of the 5' half of exon 2 (2α) of p16INK4a. 500ng of DNA was subjected to amplification using the appropriate primers (Table 18). 3μl of radiolabelled PCR product was mixed with 3μl of loading dye. The samples were heat-denatured at 94°C for 5 minutes, then resolved on a 6% polyacrylamide (PAGE) gel with 10% glycerol. Dried gels were exposed to Kodak XR film at -70°C for 2-3 days. Lanes 1-11: PGL samples N: Normal control (DNA from fibroblasts).
Figure 54. Analysis of p16^{INK4a} mRNA expression in HIV-PGL and HIV-uninfected tissue

54 A

![Image of gel](image)

A 139bp region of p16^{INK4a} was amplified from cDNA in a 22-cycle RT-PCR reaction. 20μl of the product was resolved on a 2% w/v agarose gel, then transferred to a Hybond N+ membrane and probed with a ^32P-labelled p16^{INK4a} cDNA. M: Hinf1 digested ϕX-174 DNA size marker (fragment sizes in bp). The p16^{INK4a} RT-PCR product (139bp) is indicated. The presence of amplifiable cDNA is indicated by the amplification of β-actin.

Figure 54 A

Lane 1: Sterile distilled water **Lanes 2-17:** HIV-infected PGL samples **Lane 18:** cDNA from breast tumour **Lane 19:** Lymphoblastoid cell line (PD-LCL).

Figure 54 B

Lane 1: Blank **Lanes 2-8:** HIV-uninfected tonsils **Lanes 9-17:** HIV-uninfected lymph nodes **Lane 18:** cDNA from breast tumour **Lane 19:** Lymphoblastoid cell line (OTIS).
(ii) Expression of p14ARF

Deregulation of p14ARF occurs in cells that are functionally null for p53. p14ARF can suppress oncogenic transformation in primary fibroblasts via p53-dependent as well independent mechanisms (Pomerantz et al., 1998; Weber et al., 2000). Hence it was decided to investigate whether the PGL samples with p53 mutations expressed the p14ARF transcript at higher levels than those samples, which lacked p53 mutation.

Initial experiments were designed to determine appropriate conditions for semi-quantitative assessment of relative expression levels of p14ARF, by optimising the cycle number for RT-PCR amplification of the gene (figure 55A and 55B). cDNA from a vulval squamous cell cancer that was known to be positive for p14ARF expression was subjected to 15-30 cycles of amplification, to amplify a 188bp fragment using a sense primer in exon 1β and an antisense primer in exon 2 of INK4a/ARF (see Table 11, page 80), followed by hybridisation of the amplified products to a 32P-labelled p14ARF cDNA as described in sections 2.12 and 2.13 (figure 55A, lanes 1 to 4 respectively). Band intensity was measured using scanning densitometry (UVP Gel Works). The optimum cycle number was determined to be 22 cycles, between 20 and 25 cycles (exponential phase of the amplification curve) (figure 55B).

RT-PCR of the HIV-infected and uninfected samples was performed at 22 cycles. p14ARF mRNA was detected in 19/19 of the PGL samples (figure 56A, lanes 1-19) and in all (14/15) the HIV-uninfected samples, except in one lymph node (figure 56B lane 12). Elevated steady-state levels of p14ARF mRNA, indicative of possible deregulation, was not observed in those samples with missense mutations in p53 (figure 56A, lanes 4, 7, 11, 12).

(iii) Expression of p15INK4b

p15INK4b is another member of the INK4 family of proteins that can specifically bind to CDK4/6 and impose a G1 phase cell cycle arrest, provided the cell contains functional pRb. RT-PCR to analyse expression of this gene was performed using a sense primer that was common to both p16INK4a and p15INK4b and an antisense primer located in exon 2 of the p15INK4b gene, followed by hybridisation of the amplified products to a 32P-labelled oligonucleotide located in exon 2 of the p15INK4b gene.
Figure 55. Determination of optimal cycle number for semi-quantitative analysis of p14ARF expression

55 A

A 188bp region of p14ARF was amplified at 15, 20, 25 and 30 cycles, using cDNA from a vulval squamous cancer cell line. 20\mu l of the PCR product was resolved on a 2\% w/v agarose gel, then transferred to a Hybond N+ membrane and probed with a 32P-labelled p14ARF cDNA. M: \textit{Hin}f1 digested \textphi{X}-174 DNA was used as a DNA size marker (fragment sizes in bp).

55 B

Optimisation of cycle number for p14arf RT-PCR

A graph was then plotted with the cycle number on the X-axis and the band volume on the Y-axis. The optimal cycle number for the p14ARF RT-PCR was determined to be 22 cycles, which is on the exponential portion of the amplification curve.
Figure 56. Analysis of p14ARF mRNA expression in HIV-PGL and HIV-uninfected tissue

56 A

A 188bp region of p14ARF was amplified from cDNA in a 22-cycle RT-PCR reaction. 20\mu l of the PCR product was resolved on a 2\% w/v agarose gel, then transferred to a Hybond N+ membrane and probed with a 32P-labelled p14ARF plasmid. M: \textit{Hind}I digested \textsc{x}174 DNA size marker (fragment sizes in bp). The p14ARF RT-PCR product (188bp) is indicated. The presence of amplifiable cDNA is indicated by the amplification of \(\beta\)-actin.

Figure 56 A: Lanes 1-19: HIV-infected PGL samples. The * indicates PGL samples with p53 mutation.

Figure 56 B: Lanes 1-7: HIV-uninfected tonsils. Lanes 8-15: HIV-uninfected lymph nodes. Lanes 16 and 17: cDNA from vulval cancers (T1 and T2). Lane 18: Sterile distilled water.
p15INK4b mRNA was detected in 16/16 HIV-infected lymph nodes tested (figure 57A, lanes 2 to 17). 3 PGL samples were unavailable for analysis due to insufficient material. The gene was expressed in all the HIV-uninfected tonsils (figure 57B, lanes 1 to 7), in contrast to expression in only 1 HIV-uninfected lymph node (figure 57B, lane 11).

3.7.3 Methylation analysis of p16INK4a and p15INK4b

Although expression of p16INK4a and p15INK4b could be detected in all HIV-PGL samples analysed, it is possible that partial methylation could have contributed to the low or null expression that was observed in some of the samples (see figures 54A and 57A). Therefore, to assess the methylation status of the INK4a and INK4b genes in HIV-PGL, DNA from 22 of 24 HIV-infected PGL samples was chemically modified using sodium bisulfite (see section 2.19.1), and subjected to MSP analysis (see section 2.19.2) using primers specific for the unmethylated and methylated reactions (Table 23, page 104). Methylation of the p16INK4a and p15INK4b genes was not detected in any of the PGL samples (figures 58 and 59). However methylation was observed in the BL cell lines Namalwa and Raji (positive controls). Both cell lines contained methylated copies of the p16INK4a gene (figure 58, lanes 22 and 23 respectively), whereas the p15INK4b gene was found to be partially methylated (containing both methylated and unmethylated alleles) in both these BL cell lines (figure 59, lanes 23 and 24). These results are in agreement with previous studies (Klangby et al., 1998). The data indicates that methylation of p16INK4a and p15INK4b is not a common event in PGL.

3.8 Analysis of structural alterations in c-myc, bcl-2 and bcl-6 in PGL

3.8.1 Analysis of the t(8:14) translocation

The t(8;14) (q24;q32) translocation between the c-myc gene (8q24) and the immunoglobulin heavy chain (IgH) locus (14q32) is the most frequent genetic alteration described in endemic Burkitt's lymphoma (eBL), sporadic BL (sBL) and AIDS-BL (Dalla-Favera et al., 1982b, Gaidano et al., 1997b). The breakpoint in AIDS-BL and sBL is preferentially located within intron 1 or exon 1 of c-myc and in
A 346bp region of p15INK4b was subjected to amplification in a 28-cycle RT-PCR reaction. 20\textmu l of the PCR product was resolved on a 2\% w/v agarose gel, then transferred to a Hybond N+ membrane and probed with a 32P-labelled p15INK4b oligonucleotide located in exon 2. \textbf{M}: \textit{Hin}f\textit{i} digested \textit{\phi}X-174 DNA size marker (fragment sizes in bp). The p15INK4b RT-PCR product (346bp) is indicated. The presence of amplifiable cDNA is indicated by the amplification of \textit{\beta}-actin.

Figure 58 A: Lane 1: Sterile distilled water Lanes 2-17: HIV-infected PGL samples.
Figure 58 B: Lanes 1-7: HIV-uninfected tonsils Lanes 8-16: HIV-uninfected lymph nodes Lane 17: BL-41 cell line.
Figure 58. Methylation status of the p16^{INK4a} gene in HIV-PGL tissue

40 ng of DNA modified by sodium bisulphite was used in a 35-cycle MSP reaction to amplify a 145bp and 154bp region of the p16^{INK4a} gene, using primers specific for the methylated and unmethylated reactions respectively. 20μl of the PCR product was resolved on a 3% w/v agarose gel and the bands were visualised under UV light.

L: A 100bp DNA size marker (fragment sizes in bp).
U: Unmethylated DNA. M: Methylated DNA.

Lanes 1 to 20: HIV-infected PGL samples. Lane 21: Unmethylated control DNA. Lane 22: Namalwa cell line. Lane 23: Raji cell line. Lane 24: Methylated control DNA.
Figure 59. Methylation status of the p15INK4b gene in HIV-PGL tissue

40 ng of DNA modified by sodium bisulphite was used in a 35-cycle MSP reaction to amplify a 154bp and 162bp region of the p15INK4b gene, using primers specific for the methylated and unmethylated reactions respectively. 20μl of the PCR product was resolved on a 3% w/v agarose gel and the bands were visualised under UV light.

L: A 100bp DNA size marker (fragment sizes in bp). U: unmethylated DNA. M: Methylated DNA.

Lanes 1 to 21: HIV-infected PGL samples. Lane 22: Unmethylated control DNA. Lane 23: Namalwa cell line. Lane 24: Raji cell line. Lane 25: Methylated control DNA.
the switch region(s) of the IgH locus (Neri et al., 1991).

Thus, to analyse whether rearrangement of c-myc is a characteristic feature of HIV-associated PGL syndrome, LD-PCR amplification of the c-myc/IgH switch junctions was carried out, using primers specified in Table 14, page 85.

LD-PCR of the HIV-infected PGL tissue did not reveal any translocations, although the positive control for each primer pair was successfully amplified: Raji cell line using the c-myc/Cγ primer pair (figure 60A, lane 1), Ramos cell line using the c-myc/Cμ primer pair (figure 60B, lane 1) and the BL-41 cell line using the c-myc/Cα primer pair (figure 60C, lane 1).

However, LD-PCR analysis for the t(8:14) translocation in HIV-uninfected lymph nodes and tonsils revealed positive amplification in a single lymph node tissue, case number 2435, using the c-myc/Cγ primer set (figure 60A, lane 9). The breakpoint region in this material was identified by cloning and sequencing of the PCR product. In 6/6 clones that were examined the breakpoint was identified in the 5' flanking region of c-myc, 424bp upstream of the 1st exon (nucleotide position 1904, antisense strand, Genbank accession X00364), and in the Sy4 region of the IgH locus (nucleotide position 3431, sense strand, Genbank accession X56796) (figures 61A and 61B, page 167). Fusion of the chromosomal segments was imprecise, with an insertion of 6 nucleotide residues, mapping neither to the c-myc nor Sy4 regions at the interchromosomal junction (figures 61B and 61C, page 167).
Figure 60. Analysis of c-myc translocations by LD-PCR

60 A c-myc/C\(\gamma\) LD-PCR

60 B c-myc/C\(\mu\) LD-PCR

60 C c-myc/C\(\alpha\) LD-PCR
Figure 60. Analysis of c-\textit{myc} translocations by LD-PCR. 100ng of genomic DNA from HIV-infected PGL tissue and HIV-uninfected lymph nodes and tonsils was subjected to amplification in a 35-cycle LD-PCR reaction using the c-\textit{myc/C}_\text{Y}, c-\textit{myc/C}_\text{M}, and c-\textit{myc/C}_\text{A} primer pairs. 20μl of the PCR products were resolved on a 0.8% w/v agarose gel, transferred to a Hybond N+ membrane and hybridised with a [\gamma32P] ATP-labelled oligonucleotide probe specific to exon 2 of the c-\textit{myc} gene. M: Lambda (\lambda) DNA digested with Hind III DNA size marker (fragment sizes in bp). The presence of amplifiable DNA is indicated by amplification of β-globin.

Figure 60 A. c-\textit{myc}/C\text{Y} LD-PCR
Lane 1: Raji cell line (7.6kb band is indicated) Lanes 2 to 8: HIV-uninfected tonsils Lane 9: HIV-uninfected lymph node with a t(8:14) translocation Lanes 10 to 14: HIV-uninfected lymph nodes Lane 15: P3HR1 cell line (negative control).

Figure 60 B. c-\textit{myc}/C\text{M} LD-PCR
Lane 1: Ramos cell line (4.9kb band is indicated) Lanes 2 to 13: HIV-PGL samples Lane 14: P3HR1 cell line (negative control).

Figure 60 C. c-\textit{myc}/C\text{A} LD-PCR
Lane 1: BL-41 cell line (4.0kb band is indicated) Lanes 2 to 13: HIV-PGL samples Lane 14: P3HR1 cell line (negative control).
Figure 61. t(8:14) chromosomal breakpoint in an HIV-uninfected lymph node (case no. 2435)

61 A

3' EXON 3 EXON 2 EXON 1 5' 3'

SY4 SE

BREAKPOINT

61 B

3' CCAGGCTGCAGGCGCTCGCT 5'

GERMLINE c-myc chromosome 8

1925 1904

3431 3450

GERMLINE Ig-4 switch region chromosome 14

61 C

A C G T

INSERTION
Figure 61. t(8:14) chromosomal breakpoint in an HIV-uninfected lymph node (case no. 2435). Genomic DNA from case 2435 was subjected to amplification using the c-myc/C\textgamma{} primer pair and the product was ligated directly into the pCR\textregistered4-TOPO\textregistered vector. Cloned DNA was then sequenced using the LICOR 4000L automated sequencer (MWG Biotech, Milton Keynes, UK), and the Sequitherm ExcelTM II kit (Cambio, Cambridge, UK).

Figure 61 A. Schematic representation of the t(8:14) breakpoint observed in case 2435. A black arrow indicates the position of the breakpoint, between the 5' flanking region of c-myc and the S\textgamma{}4 region of the IgH locus.

Figure 61 B. Sequence of the t(8:14) chromosomal breakpoint junction. The c-myc gene is indicated in blue and the S\textgamma{}4 gene in black. The two genes are placed in a head-to-head orientation. The positions of the breakpoint in the 5' flanking region of c-myc (nucleotide position 1904, antisense strand, Genbank accession X00364), and in the S\textgamma{}4 region of the IgH locus (nucleotide position 3431, sense strand, Genbank accession X56796) are indicated. An insertion of 6 nucleotide residues at the interchromosomal junction is indicated in red.

Figure 61 C. Pictorial representation of the c-myc/S\textgamma{}4 breakpoint sequence. The c-myc gene is indicated in blue. The S\textgamma{}4 gene is indicated in black. The insertion of 6 residues at the breakpoint junction is indicated in red.
3.8.2 Analysis of the t(14:18) translocation

The t(14;18) (q32;q21) translocation involving the immunoglobulin heavy chain gene (IgH) and the bcl-2 gene respectively, is the most common chromosomal translocation in follicular lymphoma (85%) and diffuse large-cell lymphomas (30%) (Yunis et al., 1987). More than 70% of the translocations in the bcl-2 gene are clustered in a 150bp segment at the 3' untranslated region, designated the major breakpoint region (MBR) and a small number of translocations have been identified at a site 30kb 3' to the MBR called the minor cluster region (mcr) (Tsujimoto et al., 1985; Cleary et al., 1986). The corresponding breakpoints on chromosome 14 occur predominantly at or close to the members of the joining region genes (JH) (Bakhshi et al., 1987). To investigate whether bcl-2 translocations occur in HIV-associated PGL syndrome, LD-PCR of both the MBR and mcr regions and upstream of these regions on the bcl-2 locus was carried out.

Figures 62A and 62B are representative autoradiographs of LD-PCR amplification of the t(14:18) translocation using MBR-1/E\(\mu\) and mcr-2/E\(\mu\) primer sets respectively. Although the sensitivity of the primers were confirmed for the bcl-2 LD-PCR analysis (see section 3.4.1.4) and the primers could detect translocations known to be present in lymph node positive controls 1119 and 1143 (figure 62A, lane 15 and figure 62B, lane 1 respectively), translocations were not detected in the present series of PGL samples or HIV-uninfected individuals.

It was thus concluded that chromosomal aberration involving the bcl-2 gene is not an early characteristic feature of HIV-associated lymphomas. This observation is consistent with previous studies that have reported lack of involvement of the bcl-2 gene in AIDS-NHL (Subar et al., 1988; Gaidano et al., 1997b; Davi et al., 1998).

3.8.3 Analysis of bcl-6 mutations in HIV-PGL

In contrast to the coding region of bcl-6, its 5' non-coding region displays extensive structural instability (Ye et al., 1993; Capello et al., 2000). Rearrangements of bcl-6 with heterogeneous promoters occur in approximately 40% of diffuse large-cell lymphomas and 6-14% of follicular lymphomas in the immunocompetent host (Lo Coco et al., 1994). In HIV-infected individuals alterations are detectable in 20% of AIDS-DLCL (Gaidano et al., 1994).
Figure 62. Analysis of \(bcl-2 \) translocations by LD-PCR

62 A

100
ng of genomic DNA from HIV-PGL tissue and HIV-uninfected lymph nodes and tonsils was subjected to amplification in a 35-cycle LD-PCR reaction using the MBR-1/E\(\mu \) mcr-2/E\(\mu \) primer pairs. 20\(\mu \)l of the PCR product was resolved on a 0.8% w/v agarose gel, transferred to a Hybond N+ membrane and hybridised with a \([\gamma^{32P}]\) ATP-labelled oligonucleotide probe in the E\(\mu \) region of the IgH locus. The presence of amplifiable DNA is indicated by amplification of \(\beta \)-globin. M: Lambda (\(\lambda \)) DNA digested with Hind III DNA size marker (fragment sizes in bp).

Figure 63 A: Lane 1: Sterile distilled water Lane 2: Lymph node 761 (negative control) Lanes 3 to 14: HIV-PGL samples Lane 15: Lymph node 1119 (4.2kb band is indicated).

Figure 63 B: Lane 1: Lymph node 1143 (6.0kb band is indicated) Lane 2: Sterile distilled water Lane 3: Lymph node 781 (negative control) Lanes 4 to 15: HIV-PGL samples.
In addition to translocations and small intragenic deletions, which can deregulate \textit{bcl-6} expression (Ye et al., 1995a; Nakamura et al., 1999), this region is targeted by somatic mutations, both in GC-derived tumours and in normal B cells (Migliazza et al., 1995; Shen et al., 1998). These 5' \textit{bcl-6} mutations are detectable in about 70% of DLCL and 45% of FL, are bi-allelic and present in both germline and translocated \textit{bcl-6} alleles. Furthermore, they also occur independently of translocation, as seen in 70% of AIDS-NHL (excluding DLCL), certain B-NHL without a 3q27 abnormality, and 28 to 50% of non-AIDS BL (Gaidano et al., 1997d; Capello et al., 1997).

To determine the frequency of mutations in \textit{bcl-6} in both HIV-infected and uninfected tissue, SSCP analysis of a 735bp region was performed, which represents a mutational hot-spot, harbouring more than 90% of \textit{bcl-6} mutations reported in diffuse large-cell and follicular lymphoma (Migliazza et al., 1995).

3.8.3.1 SSCP variants in \textit{bcl-6} are detected in HIV-infected and uninfected tissue

Mutations in \textit{bcl-6} were sought in PGL samples and in uninfected lymph nodes and tonsil controls using SSCP. Three partially overlapping PCR fragments (E1.10, E1.11 and E1.12) spanning a 735bp region, located 100bp downstream of the first \textit{bcl-6} non-coding exon (Migliazza et al., 1995) were amplified in separate reactions using primers specified in Table 19, page 92. The first nucleotide of \textit{bcl-6} cDNA from the reported germline database sequence (Genbank accession number Z79581) was arbitrarily chosen as position +1 (Migliazza et al., 1995), and the amplified \textit{bcl-6} 5' intronic region spanned +406 to +1140.

All samples with a mobility pattern different from that of the normal (negative) control were scored as positive. Abnormally migrating samples are indicated in blue. SSCP variants were detected in 3/23 PGL samples in E1.10 (figure 63B, lanes 3,11 and 20), 7/23 PGL samples in E1.11 (figure 64B, lanes 4,8,11,12,16,18,19) and in 10/23 PGL samples in E1.12 (figure 65B, lanes 1,2,5,6,9,12,13,15,16,19; see Table 32, page 181). In the HIV-uninfected tissue, variants were observed in 4/16 samples in E1.11 (figure 64A, lanes 2,8,9,10) and in 7/16 samples in E1.12 (figure 65A, lanes 1,2,3,8,10,11,14) (see Table 32, page 181). All those samples with a mobility shift were re-amplified using a high-fidelity enzyme, Pfx polymerase, and subsequently cloned (see section 2.17.1.3) and sequenced (see section 2.18.1).
Figure 63. SSCP analysis of fragment E1.10 of *bcl-6*

63 A

63 B
Figure 63. SSCP analysis of fragment E1.10 of *bcl-6*. 500ng of DNA was subjected to amplification using primers E1.10 5' and E1.10 3'. 3μl of radiolabelled PCR product was mixed with 3μl of loading dye. The samples were heat-denatured at 94°C for 5 minutes and resolved on a 6% polyacrylamide (PAGE) gel with 10% glycerol. After being dried the gel was exposed to Kodak XR film at -70°C for 2-3 days with intensifying screens. Abnormally migrating samples are indicated in blue.

Figure 63 A. Lane 1: Blank Lanes 2-8: HIV-uninfected tonsils Lanes 9-17: HIV-uninfected lymph nodes N: Negative control (Raji cell line).

Figure 63 B. Lanes 1-22: HIV-PGL samples Lanes 3,11 and 20: Abnormally migrating samples (LN 5, 15 and 24 respectively) N: Negative control (Raji cell line).
Figure 64. SSCP analysis of fragment E1.11 of bcl-6

64 A

64 B
Figure 64. SSCP analysis of fragment E1.11 of bcl-6. 500ng of DNA was subjected to amplification using primers E1.11 5' and E1.11 3'. 3µl of radiolabelled PCR product was mixed with 3µl of loading dye. The samples were heat-denatured at 94°C for 5 minutes and resolved on a 6% polyacrylamide (PAGE) gel with 10% glycerol. After being dried the gel was exposed to Kodak XR film at -70°C for 2-3 days with intensifying screens. Abnormally migrating samples are indicated in blue.

Figure 64 A. Lanes 1-5: HIV-uninfected tonsils Lanes 6-10: HIV-uninfected lymph nodes Lanes 2, 8, 9 and 10: Abnormally migrating samples (T2, 2478, 2495 and 2499 respectively) N: Negative control (Namalwa cell line).

Figure 64 B. Lanes 1-22: HIV-PGL samples Lanes 4, 8, 11, 12, 16, 18, 19: Abnormally migrating samples (LN 9, 12, 1, 15, 17, 14 and 20 respectively) N: Negative control (Namalwa cell line).
Figure 65. SSCP analysis of fragment E1.12 of \(bcl-6 \)

65 A

65 B
Figure 65. SSCP analysis of fragment E1.12 of bcl-6. 500ng of DNA was subjected to amplification using primers E1.12 5' and E1.12 3'. 3μl of radiolabelled PCR product was mixed with 3μl of loading dye. The samples were heat-denatured at 94°C for 5 minutes and resolved on a 6% polyacrylamide (PAGE) gel with 10% glycerol. After being dried the gel was exposed to Kodak XR film at -70°C for 2-3 days with intensifying screens. Abnormally migrating samples are indicated in blue.

Figure 65 A. Lanes 1-6: HIV-uninfected tonsils Lanes 7-14: HIV-uninfected lymph nodes Lanes 1,2,3,8,10,11 and 14: Abnormally migrating samples (T1, T2, T3, 2435, 2462, 2478 and 2499 respectively) T: Positive control (Raji cell line) N: Negative control (Namalwa cell line).

Figure 65 B. Lanes 1-22: HIV-PGL samples Lanes 1,2,5,6,9,12,13,15,16 and 19: Abnormally migrating samples (LN1,3,6,8,12,16,17,20,19 and 23 respectively) T: Positive control (Raji cell line) N: Negative control (Namalwa cell line).
3.8.3.2 Mutations in bcl-6 are present at a higher frequency in HIV-PGL than in uninfected control tissue

bcl-6 mutations were detected in 11/23 HIV-infected individuals and in 2/16 HIV-uninfected controls (48% vs. 12.5% respectively, p<0.05, Fisher's exact test). A total of 24 mutations were detected in the 735bp region analysed, with 19/24 (79%) occurring in the PGL samples and 5/24 in the control samples (21%) (p<0.001, Fisher's exact test) (Tables 30A to C and Table 32, page 181). The 3 mutations detected in fragment E1.10 were within a negative regulatory sequence in the first intron of bcl-6.

The mutation frequency in both the HIV-infected and uninfected population was calculated using the formula:

Number of mutations/ (Number of clones analysed × Sequence length of region tested)

The mutation frequency was estimated to be between 9.8x10⁻⁴ to 1.3x10⁻³ per bp in the HIV-infected group and 8.2x10⁻⁵ to 5x10⁻⁴ per bp in the uninfected group.

Table 30A

Nucleotide substitutions in the bcl-6 intronic region +406 to +670 (E1.10)

<table>
<thead>
<tr>
<th>HIV status</th>
<th>Case no.</th>
<th>bcl-6 mutation*</th>
<th>Polymorphic (nucleotide) substitution</th>
<th>Allele</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>5</td>
<td>T→C (575)</td>
<td>None</td>
<td>nk</td>
</tr>
<tr>
<td>+</td>
<td>15</td>
<td>A→G (609)</td>
<td>None</td>
<td>nk</td>
</tr>
<tr>
<td>+</td>
<td>24</td>
<td>T→C (556)</td>
<td>None</td>
<td>nk</td>
</tr>
</tbody>
</table>

*, intronic region amplified is +406 to +670 (+1 corresponds to the first nucleotide of bcl-6 cDNA, Genbank accession number Z79581); +, positive; nk, not known
Table 30 B
Nucleotide substitutions in the *bcl-6* intronic region +654 to +867 (E1.11)

<table>
<thead>
<tr>
<th>HIV status</th>
<th>Case no.</th>
<th>bcl-6 mutation*</th>
<th>Polymorphic (nucleotide) substitution</th>
<th>Allele**</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>1</td>
<td>C→G (787)</td>
<td>None</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C→A (790)</td>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T→C (799)</td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>+</td>
<td>9</td>
<td>G→A (820)</td>
<td>G→C (753)</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T→C (726)</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>+</td>
<td>14</td>
<td>G→A (684)</td>
<td>None</td>
<td>nk</td>
</tr>
<tr>
<td>+</td>
<td>15</td>
<td>G→T (680)</td>
<td>G→C (753)</td>
<td>A</td>
</tr>
<tr>
<td>+</td>
<td>20</td>
<td>T→C (714)</td>
<td>G→C (753)</td>
<td>A</td>
</tr>
<tr>
<td>-</td>
<td>2499</td>
<td>T→C (795)</td>
<td>G→C (753)</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T→C (788)</td>
<td>G→C (753)</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T→G (788)</td>
<td></td>
<td>B</td>
</tr>
</tbody>
</table>

*, intronic region amplified is +654 to +867 (+1 corresponds to the first nucleotide of *bcl-6* cDNA, Genbank accession number Z79581); **, polymorphic substitutions are arbitrarily designated on allele A and are indicated in blue, C indicates mutations that exist on the same allele; -, negative; +, positive; nk, not known.

Table 30 C
Nucleotide substitutions in the *bcl-6* intronic region +848 to +1140 (E1.12)

<table>
<thead>
<tr>
<th>HIV status</th>
<th>Case no.</th>
<th>bcl-6 mutation*</th>
<th>Polymorphic (nucleotide) substitution</th>
<th>Allele**</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>6</td>
<td>C→A (997)</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>A→G (1068)</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A→G (1117)</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T→G (901)</td>
<td>ΔT (875)</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>A→T (1027)</td>
<td></td>
<td>nk</td>
</tr>
<tr>
<td>+</td>
<td>23</td>
<td>T→A (1094)</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>-</td>
<td>2499</td>
<td>C→A (903)</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>-</td>
<td>2495</td>
<td>G→A (878)</td>
<td></td>
<td>nk</td>
</tr>
</tbody>
</table>

*, intronic region amplified is +848 to +1140 (+1 corresponds to the first nucleotide of *bcl-6* cDNA, Genbank accession number Z79581); **, polymorphic substitutions are arbitrarily designated on allele A and are indicated in blue; -, negative; +, positive; nk, not known.
Single nucleotide substitutions were the only type of mutation that was detected in this study. Transitions were favoured over transversions accounting for approximately 63% of mutations observed. Furthermore, preferential bias for T:N over A:N target bases (see Table 31) was observed. Mutations were bi-allelic and multiple within the same allele (LN 1 and LN 12). In cases LN 15 and 2499, mutations were detected in more than one fragment (Tables 30A to C).

Table 31

Nature of bcl-6 mutations

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A →</td>
<td>5</td>
<td>-</td>
<td>4</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>C →</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>G →</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>T →</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>-</td>
<td>11</td>
</tr>
<tr>
<td>Total</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>2</td>
<td>24</td>
</tr>
</tbody>
</table>

3.8.3.3 Polymorphic variants in bcl-6

Nucleotide substitutions likely to represent population polymorphisms were observed, a G to C change at position +753 in fragment E1.11 and a single base thymidine deletion (\(\Delta T\)) at position +875 in fragment E1.12. The polymorphism at +753 was observed in 5/7 PGL samples and 4/4 HIV-uninfected samples with abnormal mobility shifts by PCR-SSCP, and the polymorphism at +875 in 8/10 PGL samples and 7/7 HIV-uninfected samples with abnormal PCR-SSCP shifts (see Table 32).

The polymorphic variants identified in this study, which have been described previously (Migliazza *et al.*, 1995), also permitted the identification of bi-allelic mutations in bcl-6. Polymorphic substitutions in Tables 30B and 30C are indicated in blue and are arbitrarily designated on allele A and those designated on allele B are indicated in red. Mutations were detected in 4/9 individuals with a polymorphic substitution at position +753 (LN 9,15,20 and 2499) (see Table 30B), and in 4/15 individuals with a substitution at +875 (LN 6, 12, 23 and 2499) (see Table 30C).
8 of the total 12 mutations found in fragment E1.11 were associated with the polymorphism at +753. Interestingly, of these mutations 6/8 (75%) was found on the allele that had a cytosine substitution at position +753 (Table 30A). 7 of the total 9 mutations found in fragment E1.12 were associated with the polymorphism at +875. 5/7 (71%) of these mutations was on the allele that had a thymidine residue present at position +875 (Table 30B). Polymorphic substitutions were not observed at position +753 in LN 1 and LN 14 (Table 30B) and at position +875 in LN 19 and 2495 (Table 30C).

Table 32

Summary of structural changes in bcl-6 fragments E1.10, E1.11 and E1.12

<table>
<thead>
<tr>
<th>bcl-6 fragment</th>
<th>SSCP variants</th>
<th>Nucleotide substitutions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HIV⁺ (23)</td>
<td>HIV⁻ (16)</td>
</tr>
<tr>
<td>E1.10</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>E1.11</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>E1.12</td>
<td>10</td>
<td>7</td>
</tr>
</tbody>
</table>

3.9 Analysis of EBV and KSHV infection in HIV-PGL

Neoplasms arising in HIV-infected individuals are frequently associated with DNA tumour viruses such as EBV, KSHV and HPV (Mueller, 1999; Feigal, 1999). Approximately 30% of AIDS-NHL harbour EBV, although the frequency of association rises to nearly 100% in HIV-related primary central nervous system lymphoma and diffuse large-cell lymphomas of the immunoblastic subtype (Knowles, 1997). KSHV is invariably associated with a distinct set of malignancies in both HIV-infected and uninfected individuals, particularly, Kaposi's sarcoma, multicentric Castleman's disease and primary effusion lymphomas (Boshoff and Weiss, 1998; Cannon and Cesarian, 2000).

To address the presence and expression of EBV and KSHV in HIV-associated PGL
and in uninfected lymph nodes and tonsils, PCR-based analysis of both genomic DNA and mRNA was performed.

3.9.1 Detection of EBV in HIV-PGL using primers for the BamH1 W repeat sequence

The EBV W-repeat PCR, which detects the BamH1 W repeat sequence of the EBV genome, was used to determine the EBV status of PGL and of control tissues. The sensitivity of the BamH1 W primers was established in initial studies. Ten-fold dilutions of the BL cell line Namalwa (which contains 1-2 copies of the EBV genome per cell) in a background of 10^6 cells from an EBV negative cell line BJAB were prepared (see section 2.8.3) and subjected to PCR analysis as described in section 2.8.2.3 and Table 10, page 78. Under these assay conditions, the BamH1 W primers allowed detection of 10 copies of the EBV genome, as indicated by a 298bp fragment (figure 66A, lane 7). The sensitivity of detection was increased by one order of magnitude after hybridisation with a 32P-labelled oligonucleotide probe (figure 66B, lane 8).

EBV was detectable in 12/14 (86%) HIV-uninfected lymph nodes and tonsils (figure 67, lanes 7 to 21). The EBV copy number was between 1 and 10 genomes per million cells for all the samples that tested positive, except for one HIV-uninfected lymph node, 2478 (figure 67, lane 16), which had an EBV load of $>10^5$ genomes per million cells. EBV could not be detected in cases 2435 and 2512 (figure 67, lanes 13 and 21) even after repeat amplification in an independent PCR. Samples T3 and 2425 could not be analysed due to insufficient DNA.

EBV was detected in 23 of 23 (100%) PGL samples analysed (figures 68A and 68B). The EBV genome copy number was greater than 10,000 copies per million cells in 74% (17/23) of the PGL samples, as determined by analysis of band intensity by scanning densitometry (UVP Gel Works). The EBV genome copy number in 4/23 samples was between 1 and 100 genomes (figure 68A, lane 12; 68B, lanes 20, 21 and 25). Samples LN18 and LN19 (figure 68A, lanes 6 and 7) that were initially negative for the EB viral genome were found to harbour between 1-10 copies of the genome through repeat amplification in an independent PCR and hybridisation of the PCR product with a 32P-labelled oligonucleotide.
Figure 66. Sensitivity of the EBV BamH1 W primers

66 A

![DNA gel image with bands at 298bp and other sizes]

66 B

![DNA gel image with bands at 298bp and other sizes]

Figure 67. Detection of EBV DNA in HIV-uninfected tissue

M

![DNA gel image with bands at 298bp and other sizes]

β-globin
Figure 66. Sensitivity of the EBV BamH1 W primers. The Burkitt's lymphoma cell line Namalwa which contains 1-2 EBV genomes per cell was diluted ten-fold (10^5 cells to 1 cell per reaction) in 10^6 cells from an EBV negative cell line BJAB. 28 cycles of PCR were performed using BamH1 W primers. 20μl of the PCR product was resolved on a 2% w/v agarose gel, visualised under UV light (Figure 66A), transferred to Hybond N+ membrane and hybridised with a 32P-labelled oligonucleotide probe (Figure 66B).

Figure 66 A and 66 B. M: Hinfl digested φX-174 DNA size marker (fragment sizes in bp). L: 1kb DNA size marker (fragment sizes in bp). Lane 1: 10^6 BJAB cells Lane 2: 10^5 Namalwa cells Lane 3: Sterile distilled water Lanes 4-8: 10^6, 10^5, 10^4, 10^3, 10^2, 10 and 1 Namalwa cell(s) respectively.

Figure 67. Detection of EBV DNA in HIV-uninfected tissue. 28 cycles of PCR were carried out using BamH1 W primers. 20μl of the PCR product was resolved on a 2% w/v agarose gel and the bands were visualised under UV light. The PCR products were then transferred to Hybond N+ membrane and hybridised with a 32P-labelled oligonucleotide probe. The presence of amplifiable DNA is indicated by the amplification of β-globin. The BamH1 W fragment (298bp) is indicated. M: Hinfl digested φX-174 DNA size marker (fragment sizes in bp). Lanes 1-6: 10^5, 10^4, 10^3, 10^2, 10 and 1 Namalwa cell(s) in a background of 10^6 BJAB cells respectively Lanes 7-21: HIV-uninfected tonsils and lymph nodes.
Figure 68. Detection of EBV DNA in HIV-PGL tissue

68 A

[Image of gel electrophoresis with markers and bands]

68 B

[Image of gel electrophoresis with markers and bands]
Figure 68. Detection of EBV DNA in HIV-PGL tissue. 28 cycles of PCR were carried out using BamH1 W primers. 20µl of the PCR product was resolved on a 2% w/v agarose gel and the bands were visualised under UV light. The PCR products were then transferred to Hybond N+ membrane and hybridised with a 32P-labelled oligonucleotide probe, specific to the amplified fragment.

DNA size markers: M: Hinf1 digested φX-174 DNA size marker (fragment sizes in bp). L: Unlabelled 1kb DNA size marker (fragment sizes in bp).

Figure 68 A. Lane 1: Blank Lane 2: 10^3 Namalwa cells Lane 3: Sterile distilled water Lanes 4-14: HIV-infected PGL samples. The BamH1 W fragment (298bp) is indicated.

Figure 68 B. Lane 15: Blank Lanes 16 to 27: HIV-infected PGL samples. The BamH1 W fragment (298bp) is indicated.
3.9.2 Detection of the presence and expression of KSHV

3.9.2.1 Analysis for the presence of the KSHV genome

The KSHV LNA PCR, which amplifies a 376bp fragment, was used to determine the KSHV status of the PGL and of control tissue.

To establish the sensitivity of the KSHV PCR using the LNA primers (Table 9, page 78), a ten-fold dilution series of the body cavity-based lymphoma cell line BCP-1 (which contains 30-50 copies of the KSHV genome per cell) was prepared in a background of 10^6 cells from a KSHV negative cell line, BJAB (see section 2.8.4). A 376bp fragment was detected at a dilution of 1 BCP-1 cell in a background of 10^6 BJAB cells (figure 69, lane 7), confirming the sensitivity of the LNA primers.

KSHV LNA was detected in 2 of 23 (8.7%) PGL samples (figure 69, lanes 12 and 18) and in none of the HIV-uninfected lymph nodes and tonsils (figure 70), despite the presence of amplifiable DNA as shown by amplification of β-globin from the same DNA samples.
Figure 69. Detection of KSHV DNA in HIV-PGL using LNA primers

![Image of gel electrophoresis showing bands at 376bp for samples 1-12.](image1)

Figure 70. Detection of KSHV DNA in HIV-uninfected tissue using LNA primers

![Image of gel electrophoresis showing bands at 376bp for samples 1-15.](image2)
Figure 69. Detection of KSHV DNA in HIV-PGL using LNA primers. A ten-fold dilution series of the body cavity-based lymphoma cell line BCP-1 (which contains 30-50 copies of the KSHV gene per cell) was prepared in a background of 10^6 cells from the BJAB cell line, which lacks KSHV sequences. 35 cycles of PCR were performed on the dilution series and HIV-infected PGL tissue using LNA primers, after which 20μl of the PCR product was resolved on a 2% w/v agarose gel and visualised under UV light. M: 100bp DNA size marker (fragment sizes in bp). Lane 1: 10^6 BCP-1 cells Lane 2: Blank Lanes 3-7: 10^4, 10^3, 10^2, 10 and 1 BCP-1 cell(s) respectively Lane 8: 10^6 BJAB cells Lane 9: Sterile distilled water Lane 10: 10^6 BCP-1 cells Lane 11: Blank Lane 12: PGL sample (LN 1) Lane 13: 10^4 BCP-1 cells Lanes 14-24: PGL samples. The LNA fragment (376bp) is indicated.

Figure 70. Detection of KSHV DNA in HIV-uninfected tissue using LNA primers. A ten-fold dilution series of the body cavity-based lymphoma cell line BCP-1 (which contains 30-50 copies of the KSHV gene per cell) was prepared in a background of 10^6 cells from the BJAB cell line, which lacks KSHV sequences. 35 cycles of PCR were performed on the dilution series and the HIV-uninfected tissue using LNA primers, after which 20μl of the PCR product was resolved on a 2% w/v agarose gel and visualised under UV light. The PCR products were then transferred to Hybond N+ membrane and hybridised with a 32P-labelled oligonucleotide probe. M: Hinf1 digested φX-174 DNA size marker (fragment sizes in bp). Lane 1: Blank Lane 2: 10^6 BCP-1 cells Lane 3: 10^5 BJAB cells Lanes 4-8: 10^4, 10^3 10^2, 10 and 1 BCP-1 cell(s) respectively Lanes 9-15: HIV-uninfected tonsils Lane 16: Sterile distilled water Lanes 17-25: HIV-uninfected lymph nodes. The LNA fragment (376bp) is indicated.
3.9.2.2 Expression of a KSHV transcript encoding ORF 72

3 genes encoding KSHV v-FLIP (ORF 71), v-cyclin (ORF 72) and LNA (ORF 73) are transcribed from a single promoter as a polycistronic transcript and expressed during both the lytic and latent phases of the viral life cycle. A ~6kb transcript arises from the splicing of a small intron (499bp) in the 5' untranslated region, and further splicing of this transcript, yields a 1.7kb bicistronic message encoding v-cyclin and v-FLIP (Talbot et al., 1999).

To analyse expression from this promoter and to further confirm the presence of KSHV detected by the LNA genomic PCR, a 35-cycle RT-PCR reaction was performed using a sense primer located in the 5' untranslated region of LNA and the antisense primer within the v-cyclin ORF. Primers and thermal cycling conditions are shown in Table 11, page 80 and Table 13, page 83. RT-PCR analysis revealed the presence of a >700bp transcript in one (LN 15) of the 23 PGL samples (figure 71A, lane 12). This sample also harboured KSHV DNA (figure 69, lane 18). Cloning (see section 2.17.1.3) and sequencing (see section 2.18.1) of the PCR product identified a 956bp transcript encoding a part of ORF72 and splicing out of LNA, using the LNA/v-cyclin splice donor site at position 127812 and the v-cyclin splice acceptor site at position 123777 (figure 71B). RNA was unavailable for the other PGL sample (LN1) that was positive for KSHV DNA (figure 69, lane 12). Therefore, KSHV gene expression could not be tested in this sample.
Figure 71. Expression of a KSHV transcript encoding ORF 72

71 A

M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

726/713 —
553 —

β-actin —

71 B

v-FLIP v-cyclin LNA

3'primer

5'primer

● Splice donor (127812)
■ Splice acceptor (123777)

cDNA synthesised from 40ng of total RNA was subjected to amplification in a 35-cycle PCR reaction, using a sense primer located in the 5' untranslated region of LNA and the antisense primer within the v-cyclin ORF. 20μl of the product was resolved on a 1.5% w/v agarose gel, then transferred to a Hybond N+ membrane and hybridised with a ^32P-labelled oligonucleotide probe, 23bp internal to the sense primer. M: HinfI digested φX-174 DNA size marker (fragment sizes in bp). Lane 1: Sterile distilled water Lanes 2 to 19: PGL samples Lane 20: BCP-1 cell line. The v-cyclin/v-FLIP RT-PCR product (956bp) is indicated.
CHAPTER FOUR

DISCUSSION
AIDS-associated lymphomas represent a heterogeneous entity that is part of a continuum, ranging from benign polyclonal lymphoid hyperplasia, to aggressive high-grade malignancies most commonly of B cell origin (Meyer et al., 1984). PGL is an early manifestation of HIV infection that is suggested to predispose to AIDS-related B-NHL (Abrams et al., 1986; Pelicci et al., 1986b; Alonso et al., 1987). It is now recognised that the majority of individuals with PGL do not, however, progress to lymphoma, implying that additional molecular genetic events are required to facilitate lymphomagenesis. Identification of these events would not only provide insights into mechanisms that promote neoplastic transformation in the setting of altered immunity, but also help define molecular markers with potential utility in diagnosis and prognosis.

Molecular genetic changes in AIDS-related lymphomas have been described by a number of authors (Ballerini et al., 1993; Gaidano et al., 1997b, Gaidano et al., 1997d, Lo Coco et al., 1994). However, only a few studies have performed molecular genetic analyses in AIDS-associated lymphadenopathy (Alonso et al., 1987; Pelicci et al., 1986b). Therefore, in this thesis, a molecular genetic and virological study of PGL was performed. Structural, epigenetic and expression changes were analysed in genomic DNA and RNA from lymph nodes of HIV-infected individuals with PGL syndrome and in a control group of reactive lymph nodes and tonsils from HIV-uninfected individuals. The changes identified are discussed in the context of a model of multi-step carcinogenesis occurring in the chronically immunocompromised host.

Analysis of tumour suppressor genes

4.1 p53 mutations are detectable in some cases of PGL

p53 mutations have been identified in approximately 50% of human cancers (reviewed in section 1.3.4 and Levine, 1997). In AIDS-NHL, mutations in p53 occur at a frequency of around 30-40%, clustering predominantly in the small non-cleaved cell lymphoma sub-type (60%), and to a lesser extent in immunoblastic lymphomas
(14%) (Ballerini et al., 1993; Nakamura et al., 1993). These findings prompted a structural analysis of p53 in PGL. Using established SSCP and DNA sequencing methodology, p53 mutations were detected in 6/23 PGL samples. Of these, one was a non-coding sequence change, whilst a second mutation was deletion of a single 'G' residue in codon 361 causing a frame-shift of -1 and termination in codon 369. The remaining 4 were point mutations, all occurring in exon 7 and each resulting in amino acid substitutions (Table 28, page 138). Searching of the International Agency for Research on Cancer (IARC) TP53 mutation database revealed that each of the missense mutations detected in this study has been previously described (http://www.iarc.fr/p53/Index.html). Moreover, each mutation affects conserved amino acids important to p53 function, suggesting that wild-type p53 function will be compromised as a result of the mutation. Taken together, these considerations support the hypothesis that mutation in p53 may be an early molecular genetic change in HIV-associated lymphomagenesis, at least in a subset of cases.

It is interesting and instructive to consider the selective advantage imparted to cells containing p53 mutations in the context of HIV infection. One possibility is that loss of wild-type p53 function confers a replicative advantage to HIV, and that this, rather than selective pressure for growth advantage to the host cell is the mechanism for the outgrowth of clones containing p53 mutations. This hypothesis is supported by the ability of p53 mutants to transactivate the LTR of HIV-1 (Subler et al., 1994). Furthermore, wild-type p53 is a potent suppressor of Tat-dependent HIV LTR transcription, whereas, in turn, Tat can inhibit p53-mediated transactivation (Li et al., 1995). In this model, it is proposed that mutations in p53 would abrogate the repressive effects of the protein on HIV replication, resulting in increased levels of Tat. A second model envisages that mutations are selected as a result of the growth advantage, due to loss of one or more of the wild-type functions of p53, conferred to the host cell, rather than HIV. Such a hypothesis has been proposed in many models of multi-step carcinogenesis (Fearon and Vogelstein, 1990). The properties of the p53 mutants detected in the PGL samples have not been formally investigated in the present study. However, based on previous studies, it is highly likely that such mutants will be functionally compromised (Raycroft et al., 1990; Rowan et al.,
A third possibility which merits consideration is suggested by the observation that apoptosis of HIV-infected B and T cells may occur through a p53-dependent pathway (Genini et al., 2001). In this study, it was demonstrated that HIV activates a p53-dependent apoptotic program in CD4+ T cells, through the release of cytochrome c and subsequent caspase induction. It is possible therefore, that HIV may induce a similar p53-regulated death program in B cells and that functional inactivation of the gene by mutation would inhibit such a pathway. Whichever of these possibilities is the underlying mechanism, it is likely that cells expressing mutant p53 will possess a selective growth advantage over those with wild-type p53.

It is intriguing that p53 mutations are detectable in PGL, at a stage significantly preceding clinical presentation of lymphoma. As such, it is clearly of interest to question (i) whether such mutations function as initiating genetic events in lymphomagenesis, and /or (ii) whether the detection of such mutations is predictive of future development of lymphoma. When considering the possibility that p53 mutation may initiate lymphomagenesis, it is pertinent to note that mutations are consistently absent in most AIDS-DLCLs and AIDS-PELs, although present in 60% of AIDS-SNCCL (Ballerini et al., 1993; Carbone et al., 1996b). This clearly demonstrates that mutation in p53 is not an obligatory genetic change during AIDS-associated lymphomagenesis. However, it is particularly attractive to hypothesise that the cases of PGL with detectable p53 mutations are those which may subsequently progress to p53 mutant lymphomas. This hypothesis is certainly viable in the context of AIDS-SNCCL sub-type in which p53 mutation occurs commonly (see above, Ballerini et al., 1993; Gaidano et al., 1997b). It is therefore entirely possible that p53 mutation may represent an initiating or at least early molecular event in this subset of lymphomas. Such lymphomas typically harbour chromosomal translocations involving the c-myc gene. Analysis of PGL for such translocations, was however, uniformly negative (see later). A study of additional samples will be required to further define the role of p53 mutation in AIDS-associated lymphomagenesis.

The presence of p53 mutations in PGL also raises the possibility that they may have
use as molecular markers predictive of future lymphoma development. This can only be definitively tested in cases where both PGL and lymphoma are available from the same individual(s) for p53 analysis. Unfortunately, it is unknown which individuals with PGL in the present series subsequently developed lymphoma and therefore this issue cannot be addressed, but would clearly merit such an approach when suitable tissue becomes available.

An interesting finding in the present study was the detection of a silent p53 mutation in genomic DNA from the tonsil of an HIV-uninfected, healthy individual. It was first important to exclude the possibility that this is due to experimental artefact. This is unlikely to be the case since SSCP analysis of this DNA revealed a distinct mobility shift consistent with the presence of a mutation (figure 34, page 132). Moreover, the DNA was re-amplified using a thermostable DNA polymerase, Pfx, which has an extremely high degree of replication fidelity (see Table 27, page 130), before subsequent cloning and sequencing. The presence of the same mutation in multiple independent plasmid clones further argues strongly against the possibility that errors arising in cloning or amplification account for the presence of this mutation. Experimental studies of p53 mutations in healthy individuals are limited (Mao et al., 1996; Lazarus et al., 1995). However, in a recent analysis of base substitution mutations, Wilson and co-workers reported that p53 mutations in codon 248 were detectable in the circulating peripheral blood lymphocytes of 22% of normal individuals. This remarkably high frequency of mutations was thought to be due to the presence of a highly mutable CpG site (Wilson et al., 2000). In the present study, such a high frequency of mutations was not observed, although this may be attributable to the different methodologies employed. The SSCP technique used here is able to detect mutations at a frequency of 5% mutant alleles (T. Crook, personal communication), whereas the Needle-in-a-haystack mutation assay employed by Wilson et al had a detection sensitivity of one cell in a million. Silent mutations have been reported at variable frequencies in several tumour types. Such mutations play no role in tumour development, but, according to some authorities are sensitive indicators of genomic instability and hence of random mutation within a tissue or cell type (Strauss, 2000).
4.2 Exon 2 deleted isoforms of p73 (Δ2 p73) are over-expressed in PGL

The discovery of 2 novel members of the p53 family, p63 and p73, during the course of this study, prompted an investigation into their possible role(s) in PGL and predictive value, if any, in the development of AIDS-NHL. The extreme infrequency of somatic mutations in p63 and p73 in human cancer (Osada et al., 1998; Ichimiya et al., 1999) has raised doubts as to the tumour suppressor function of the two proteins. However, it is now clear that mechanisms of inactivation independent of mutation occur in human cancer. For example, specific p53 mutants are able to abrogate p63 and p73 function via formation of heterotypic protein-protein complexes (Di Como et al., 1999; Marin et al., 2000). Furthermore, p73 has been shown to be subject to methylation-dependent transcriptional silencing in some haematological malignancies (Corn et al., 1999).

Alternative splicing of both p63 and p73 generates multiple isoforms, differing at both N- and C-termini (Yang et al., 1998; De Laurenzi et al., 1998, 1999 and see section 1.4.1). The N-terminal variants of p73 (Δ2 p73) and p63 (ΔN p63) can behave in a dominant negative manner with respect to their full-length counterparts and wild-type p53. The Δ2 form of p73 inhibits full-length p73 and p53, whereas ΔN p63 inhibits wild-type p53 (Pozniak et al., 2000; Yang et al., 1998).

Little is known, however, of the patterns of expression of p63 and p73 in normal and neoplastic lymphoid tissues. Neither is it known by which mechanism (if any) p63 and p73 are inactivated in AIDS-NHL. These questions were addressed in the present study by RT-PCR expression analysis of full-length and deleted variants of p63 and p73 and also by analysis of CpG methylation in the p73 promoter by methylation-specific PCR (MSP).

In initial work, expression of C-terminal splice variants of p73 was investigated and these analyses revealed that p73 mRNA was expressed in all cases of PGL. In contrast, p73 expression was detected in approximately 50% of control, reactive tonsil and lymph node tissues. Importantly, the steady-state level of p73 mRNA was markedly higher in the majority of cases of PGL than in controls (figures 43A and B,
These observations reveal that p73 over-expression is common in PGL. A further significant finding was afforded by the observation of qualitative differences in expression of p73 isoforms between PGL and controls. Whereas only 3 variants (α, β and γ) were identified in the HIV-uninfected tissue, at least 5 isoforms (α, β, γ, ε and ζ) were detected in PGL. The predominance of the p73 α and β variants in both PGL and control tissues is consistent with previous analyses of other tissues (Yang et al., 1998; Ozaki et al., 1999). Although the γ isoform was expressed to a similar extent as the α and β variants in PGL tissue, this isoform was detected in only 3/16 (18%) HIV-uninfected normal tissue. Two recently described splice variants, ε and ζ, were weakly expressed in the PGL tissue but were consistently absent in the uninfected tissue. Taken together, these experiments clearly indicate both quantitative and qualitative differences in expression of p73 between HIV-infected and uninfected lymphoid tissue. Interestingly, the expression pattern of p73 isoforms in control vulval (epithelial) tissue was different to that observed in lymphoid tissue, with expression of the α, γ, ζ and δ but not the β isoforms in normal vulval epithelium. In contrast, whereas the β form was readily detectable in lymphoid tissue in the present study, the δ form could not be detected. These results suggest that different C-terminal variants have distinct roles in different tissues in vivo.

Over-expression of p73 relative to surrounding normal tissue has been observed in several cancers, including prostate, breast, lung, colorectal and bladder carcinomas (reviewed in Ikawa et al., 1999). The high frequency of p73 over-expression in PGL is, therefore an intriguing observation as it reveals clear similarity between PGL and common carcinomas. Having demonstrated over-expression of p73 mRNA in PGL, it was important to determine whether this was the full-length form or the more recently described Δ2 variant which lacks exon 2. RT-PCR analysis revealed that Δ2 variant was the only form expressed in both PGL and in p73-expressing control lymphoid tissue. Interestingly, expression of the Δ2 form of p73 was accompanied by the absence of full-length p73 in all the samples tested. Previous studies of Δ2 p73 have been limited, but expression has been described in malignant but not normal ovarian epithelium (Ng et al., 2000), in breast cancer cell lines (Fillippovich et al., 2001) and also in the developing neurons of mice (Pozniak et al., 2000).
What then are the mechanistic and biological implications of the over-expression of various forms of p73 in PGL? One possibility is that over-expressed full-length p73 competitively inhibits p53-dependent transactivation of p53-responsive promoters (Ueda et al., 1999). If this mechanism operates in PGL, attenuation of p53-dependent transactivation would result from over-expression of p73. In view of the predominant detection of A2 forms of p73, the most likely effect of p73 over-expression is trans-dominant inhibition of wild-type p53 and of full-length p73, since both activities have been clearly attributed to A2 p73 (Fillippovich et al., 2001; Pozniak et al., 2000).

4.3 Aberrant hypermethylation of p73 is not a feature of PGL

Hypermethylation of the promoter region of p73 was examined by methylation-specific PCR (MSP), given that silencing of p73 by this mechanism is operative in specific haematological malignancies, but not in normal lymphocytes (Kawano et al., 1999; Corn et al., 1999). The absence of aberrant hypermethylation of p73 in this study was well supported by the observation of mRNA expression in all the PGL samples analysed, indicating that epigenetic silencing of p73 is not a feature of HIV-infected PGL. The detection of 1/1000 methylated alleles, established in preliminary studies of the sensitivity of MSP, in a background of unmethylated DNA, excluded possible lack of sensitivity of the MSP analysis used in this study as the reason. A point to note is that p73 may be functionally compromised by mechanisms other than epigenetic silencing of the promoter region. This hypothesis is supported by the observation that a subset of p53 mutants can bind and inhibit the transcriptional activity of various isoforms of p73 (Marin et al., 2000; Gaiddon et al., 2001). Although yet to be formally demonstrated, it is conceivable that the p53 mutants detected in this study have similar trans-dominant properties with regards p73.

4.4 Over-expression of the TA, but not the ΔN isoform of p63 occurs in PGL

RT-PCR analysis of PGL and control lymphoid tissues revealed a difference in patterns of expression. The TA isoform was predominantly expressed in HIV-
infected and uninfected lymph nodes and in one tonsil. In contrast, expression of the \(\Delta N \) isoform was strictly limited to the HIV-uninfected tonsils, with expression of this isoform being undetectable in the PGL cases. The most likely explanation for the expression of the \(\Delta N \) isoform in non-PGL lymphoid tissue is that this expression is in the epithelial tissue within the tonsils. This hypothesis is favoured by data from other studies which indicate an epithelial-specific expression of \(\Delta N \) p63 in both normal and malignant tissue (Yang et al., 1998; Crook et al., 2000), but clearly requires immunocytochemical analysis for verification. It is unclear, however, why the \(\Delta N \) isoform is expressed in reactive nodes and tonsils, but not, apparently, in PGL. Again, immunocytochemistry might provide insight as to whether this is a reflection of the absence of epithelial tissue in PGL nodes or whether isoform switching has occurred. In any case, the biological significance of expression of TA p63 in PGL and in other lymphoid tissues awaits clarification.

The absence of somatic mutations in p63 has led some authors to question the putative tumour suppressor role of this gene. Similar to p73, there is now evidence that specific mutant forms of p53 can exert trans-dominant inhibitory effects on the function of p63 (Gaiddon et al., 2001), suggesting that alternative mechanisms of inactivation may occur in some cancers. The presence of p53 mutations within some PGL cases expressing TA p63, suggests that inhibition of p63 function by these mutants might be operative at least in these cases.

Over-expression of \(\Delta N \) p63 occurs in some squamous carcinomas. For example, Yamaguchi et al (2000) reported amplification and over-expression of \(\Delta N \) p63 in head and neck cancer, consistent with a potential oncogenic function (Yamaguchi et al., 2000). Similarly, over-expression of \(\Delta N \) p63 was observed invariably in undifferentiated NPC, wherein it was proposed that over-expression of \(\Delta N \) p63 might function via trans-dominant inhibition to counteract the negative growth regulatory effects of over-expressed wild-type p53 protein, which characterises this cancer (Crook et al., 2000). In any case, data from this study do not support a role, either tumour suppressor or oncogenic, for this gene in the pathogenesis of PGL.
4.5 Lack of involvement of the INK4 locus in the pathogenesis of PGL

The INK4 locus contains 3 genes, p16^{INK4a}, p15^{INK4b} and p14^{ARF} that function in pRb- and p53-dependent pathways of tumour suppression (see section 1.5). In cases of PGL which lack mutations in p53, it was of interest to determine whether alterations occur in p14^{ARF} which might functionally substitute for such mutations. In the case of RB, no mutations have been reported in AIDS-NHL. As such, it was important to determine whether the p16^{INK4a} and p15^{INK4b} genes are subject to genetic or epigenetic changes, which might themselves compromise pRb function.

A bona fide tumour suppressor role for p16^{INK4a} has been firmly established (Kamb et al., 1994; Hussussian et al., 1994). Inactivation of the gene by homozygous deletion, mutation, and/or methylation has been observed in a diverse range of human cancers (reviewed in Ruas and Peters, 1998 and see section 1.5). Abnormalities in p15^{INK4b} and p16^{INK4a} occur commonly in B cell lymphomas, with aberrant hypermethylation being the most common mechanism of inactivation (Klangby et al., 1998; Baur et al., 1999). The status of the gene in lymphomas affecting HIV-infected individuals is, however, unknown. Therefore, a detailed analysis of the mutation status, methylation and expression pattern of the INK4 locus was performed in HIV-PGL.

4.5.1 No evidence for mutation or hypermethylation in INK4a

SSCP analysis of exon 1α and 2 of INK4a did not reveal any abnormally migrating bands indicative of mutations. This result is consistent with studies of B cell lymphomas in which inactivation of the gene by point mutation was shown to be a relatively uncommon event (Ruas and Peters, 1998; Uchida et al., 1995). No attempt was made to examine the INK4 locus for genomic deletion in the present study. Not all germinal centre (GC) B cells in PGL lymph nodes are maintained in an equivalent hyperproliferative state, and as such the proportion of "normal" B cells in each sample cannot be assessed, making interpretation of deletion analysis unreliable. In the absence of point mutations in the coding sequence of the gene, a study of gene deletion would be of obvious value and interest, but would require the availability of
micro-dissected malignant and matched normal tissue for each case.

Aberrant hypermethylation is a common mechanism of inactivation of p16INK4a in NHL occurring in immunocompetent individuals (Baur et al., 1999; Klangby et al., 1998). MSP was therefore utilised to seek evidence of aberrant CpG hypermethylation in the p16INK4a gene in the series of PGL. However, no evidence of CpG methylation in exon 1\textalpha was observed in this study. It should be noted that the sensitivity of the MSP technique to detect hypermethylated alleles of p16INK4a had been carefully titrated in initial experiments using genomic DNA from the Raji cell line, in which both p16INK4a alleles are methylated. Methylated p16INK4a DNA was readily detectable at a dilution of 1:1000, suggesting that the inability to detect CpG methylation in the PGL samples is unlikely to be attributable to sensitivity limitations. Moreover, RT-PCR analysis revealed that p16INK4a mRNA was detectable in all samples analysed. Although the presence of some normal tissue in the PGL samples is a potential complicating factor in interpretation of these RT-PCR studies, expression of p16INK4a RNA is, nonetheless, consistent with the absence of gene methylation. Immunocytochemical analysis would provide definitive evidence of p16INK4a expression in PGL, but suitable tissue sections were not available in the present study.

4.5.2 No evidence for abnormalities of p15INK4b in PGL

p15INK4b is a tumour suppressor gene located adjacent to the p16INK4a gene on chromosome 9p21. Inactivation of p15INK4b in human cancers may occur by deletion, which is often, but not invariably, accompanied by simultaneous loss of p16INK4a (Drexler, 1998). Mutations in p15INK4b are extremely rare in human cancers in general and are virtually absent in NHLs (Gombart et al., 1995; Koduru et al., 1995). The gene is, however, frequently inactivated (>70%) by methylation in acute leukaemias of the myeloid and lymphoblastic subtypes, and to a lesser extent in B-NHL (11%). A distinct role for this gene has been indicated in murine T-cell lymphomas, wherein gene inactivation was found to be independent of p16INK4a alterations (Malumbres et al., 1997). Again, because of the lack of micro-dissected PGL biopsy material available for analysis, examination of gene deletion was not
attempted and work in the present study was focused on examination of the methylation status and mRNA expression pattern of the gene. No evidence was obtained for methylation of p15INK4b in any of the PGL samples analysed, despite preliminary studies showing the adequate sensitivity of the MSP conditions employed. Consistent with the lack of methylation, RT-PCR analysis revealed abundant expression of p15INK4b mRNA in all the PGL lymph nodes analysed, although expression was absent in 8/16 uninfected controls (7 lymph nodes and one tonsil). It is likely therefore, that p15INK4b is expressed in the hyperproliferating GC B cells of PGL tissue, although definitive conclusions can be drawn only after immunocytochemical examination of tissue sections or genetic analysis of micro-dissected material.

In conclusion, no evidence was obtained in the present study to support genetic or epigenetic inactivation of the p16INK4a and p15INK4b genes in PGL and the results, as such, do not support a contributory role for these genes in the pathogenesis of PGL. Structural and epigenetic alterations affecting the INK4 locus have previously been reported to correlate with aggressive high-grade tumours and with the histological transformation/progression of indolent lymphomas (Garcia-Sanz et al., 1997; Pinyol et al., 1998; Villuendas et al., 1998). With regards to the findings in this study, it is hypothesised that the absence of detectable mutations and aberrant hypermethylation in the INK4 genes analysed may reflect the fact that such abnormalities occur late in HIV-associated lymphomagenesis, probably as secondary genetic events contributing to the more aggressive biological nature of lymphomas.

4.5.3 Analysis of p14ARF in PGL

Inactivation of the p53 pathway can occur by a number of mechanisms in cancer. These include, loss of function of p53, alteration of ARF, or alternatively over-expression of hMDM2 (Eischen et al., 1999; Sanchez-Cespedes et al., 1999). Functional inactivation of ARF by deletion and less frequently by mutation, often but not always, occurs concurrently with alterations in INK4a (Ruas and Peters, 1998). Their concomitant disruption has been associated with progression and a poor prognosis in up to 40% of aggressive NHLs (Pinyol et al., 2000; Gronbaek et al.,
2000). These observations suggested the possibility of p14ARF abnormalities in PGL. SSCP analysis of exon 1\textbeta however, revealed no abnormally migrating conformers suggestive of mutation in any of the PGL cases. This is consistent with reports from previous studies (Pinyol et al., 2000; Tanaka et al., 1997).

Deletions targeting the INK4a/ARF locus commonly inactivate both p16INK4a and ARF, whereas cancer-associated mutations within exon 2 of the mouse INK4a gene have been shown to specifically target p16INK4a, and not p19ARF, for inactivation (Quelle et al., 1997). Conversely, mutations in human ARF exon 2 have been shown to disrupt its nucleolar localisation and impair its ability to block nuclear export of hMDM2 and p53 and subsequent p53 stabilisation (Zhang and Xiong, 1999). Furthermore, Rizos et al have shown that in the human ARF gene the carboxy-terminal nucleolar localisation domain lies within the shared INK4a/ARF exon 2 and is mutated in some melanoma-prone kindreds (Rizos et al., 2000). However, mutations in exon 2 were not observed in the present study, and therefore it is reasonable to conclude that ARF inactivation by point mutations is not a characteristic feature of HIV-associated PGL.

An inverse correlation between p53 and ARF expression/inactivation in human tumours has been suggested by some investigators, consistent with the theory that they are functionally linked in the same pathway (Stott et al., 1998; Vonlanthen et al., 1998). The expression of p14ARF was, therefore, examined by RT-PCR using cycling conditions determined in preliminary experiments to be in the exponential phase of amplification. Despite the evidence that p53 negatively regulates the expression of ARF and generally increased levels of endogenous ARF mRNA and protein are observed in cells that lack functional p53 (Stott et al., 1998), such findings were not validated in this study. Of note, p14ARF protein expression was not examined in this study, due to lack of suitable tissue sections for immunocytochemical analysis. Expression of ARF mRNA was observed in both the HIV-infected and uninfected samples investigated, independent of their p53 mutational status. There are several explanations that may account for the apparent lack of reciprocity between expression of ARF and p53. One is that the p53
mutations documented in this study do not abrogate its function and hence ARF expression would be under the normal regulatory control of p53. Although unlikely, without formal testing of each mutant, this hypothesis cannot be disproved. Secondly, in cases in which p53 is functionally compromised by such mutations, it is possible that ARF expression is regulated by a p53-independent mechanism. Recently, ARF has been shown to act independently of the hMDM2-p53 pathway, by arresting cell growth in mice that were lacking in p53 alone or both p53 and hMDM2 (Weber et al., 2000). Finally, contrary to evidence that p53 and ARF are inversely correlated, in lung cancer it has been demonstrated that inactivation of ARF and mutation of p53 are not mutually exclusive events (Gazzeri et al., 1998; Sanchez-Cespedes et al., 1999). Additionally, post-transcriptional modification was suggested to account for the discrepancy observed between ARF mRNA and protein expression (absence of protein in tumours with detectable mRNA) in these tumours (Gazzeri et al., 1998). A plausible theory in the present context would be that in cells with mutant p53, post-transcriptional modification of ARF mRNA occurs, despite apparently normal levels of the β transcript. However, this hypothesis can be confirmed only by immunocytochemical staining of the lymph node tissue for ARF protein expression. It should be re-emphasised here that the complicating effects of "normal" B cells in PGL nodes on the analysis of mRNA levels are not known, and again micro-dissected tissue would prove invaluable in validating the above findings.

Epigenetic silencing of ARF by promoter hypermethylation has been demonstrated in gastric and colorectal cancer (Iida et al., 2000; Esteller et al., 2000), and infrequently in murine lymphomas. Future studies of methylation of p14ARF, combined with immunocytochemical analysis of protein expression would be of obvious interest in NHL and PGL.

Analysis of oncogenes

Given the importance of deregulated oncogene expression in the pathogenesis of certain B cell lymphomas in both the immune-competent and -compromised host, alterations including chromosomal translocations and mutations in relevant genes
such as c-myc, bcl-2 and bcl-6 were investigated in the present study.

4.6 Absence of c-myc/IgH translocations in PGL

Chromosomal translocations juxtaposing the c-myc and immunoglobulin genes are an invariant feature of Burkitt's lymphoma (BL) in the immunocompetent host (Dalla-Favera et al., 1982b). Although, this translocation is also invariably present in AIDS-BL, it is detected in only 20-50% of AIDS large-cell lymphomas (Ballerini et al., 1993; Delecluse et al., 1993b). Recombination in AIDS-BL, commonly involves the first exon or first intron of the c-myc gene and the switch regions of the IgH locus, similar to sBL (Pelicci et al., 1986a; Ballerini et al., 1993). Taken together, these observations suggested that c-myc translocation might occur in HIV-PGL. This was addressed in the present study by use of a LD-PCR assay to amplify the t(8:14) translocation breakpoint.

The translocation was however, not detected in any of the PGL samples. One possibility is that the LD-PCR assay used is insufficiently sensitive to detect a low frequency of translocations occurring in a background of normal lymphocytes. However, the assay used in this study is able to detect 1 translocation-positive cell in a background of 10^3 normal lymphoblastoid cells and this sensitivity is comparable to that used in previous studies to detect c-myc translocations in BL (Akasaka et al., 1996; Basso et al., 1999). Nevertheless it is worth considering the possibility that a minor population of translocation-bearing cells characteristic of an initiating event in a single clone of cells will escape detection, whereas the greater number of translocations present in BL tumours will be readily detected. Arguing against this was the surprising discovery of a translocation event in an HIV-uninfected lymph node (case no. 2435). It is highly likely that this translocation is present in only a minority of cells within the normal lymph node. For this reason it is highly improbable that the failure to detect similar translocations in PGL is attributable to lack of sensitivity.

The second possibility is that PGL is not per se a precursor of HIV-associated BL. A
third interpretation is that such translocations occur as later events in lymphomagenesis. Polack et al (1996) made the intriguing observation that activation of c-myc in EBV-immortalised, B lymphocytes rendered growth of the cells independent of EBV-encoded proteins. These studies suggested a model of lymphomagenesis in which c-myc activation occurs subsequent to an initial immortalisation step effected by EBV (Polack et al., 1996). This model is particularly interesting in the light of the observation that EBV was present at a high copy-number in 23/23 lymph nodes of HIV-infected individuals with PGL (see later).

Cloning and sequencing of the PCR product from case 2435, identified a reciprocal exchange of chromosomal segments involving the 5' flanking region, 424bp upstream of the ATG in the first exon of c-myc, and the switch gamma 4 (Sγ) region of the Ig locus. Surprisingly, the breakpoint was detected in 5/5 translocation-bearing clones, indicating possible clonal outgrowth of a cell that may have a distinct survival advantage as a result of the translocation event. This hypothesis is currently under investigation. Of further interest, was the identification of a run of 5 nucleotides, mapping to neither the c-myc gene nor the Sγ region at the interchromosomal junction of the breakpoint. In a study of c-myc translocations in murine plasmacytomas, Gerondakis and colleagues have observed deletions, duplications and/or small insertions at most of the breakpoint junctions sequenced (Gerondakis et al., 1984). The authors believe that the insertion of residues is a result of competing polymerase (repair) and exonuclease activities following single-stranded breaks in either chromosome.

The observation of a c-myc translocation in an apparently healthy individual is not unique. In a study of t(8:14) recombinations in the blood lymphocytes of HIV-infected and uninfected homosexual men, c-myc translocation-bearing clones have been detected at a frequency of 10.5% and 2% respectively (Muller et al., 1995). In addition, c-myc deregulation by chromosomal recombination is believed to be associated with the normal physiological process of B cell differentiation, increasing in frequency with antigenic stimulation (Roschke et al., 1997). It may be pertinent in this respect that the lymph node in which the translocation was identified was
"reactive", implying that an active immune response was in progress at the time of biopsy. The clinical history and follow-up of the individual in whom the translocation was detected is not available. Nevertheless, it is known that the individual had no evidence of a lymphoma at the time of biopsy. The presence of a c-myc translocation event in the absence of detectable lymphoma in case 2435 can readily be explained by the fact that secondary “hits” by co-operating oncogenes are required for tumourigenesis to occur (Land et al., 1983). This hypothesis is supported by the fact that, in this individual, no abnormalities were detected in any of the genes analysed in this study. Furthermore, EBV, which is believed to have a contributory role in the development of BL, was below the detectable level (sensitivity of PCR assay was <10 genomes). Therefore, it is possible that in this case subsequent aberrant alterations in oncogenes and/or tumour suppressor genes, not analysed in this study, maybe required for malignant transformation to occur.

Although the finding of a c-myc translocation in a healthy individual is of interest, the most important conclusion to be drawn from the above observations is that such translocations were not detectable in PGL. It will be of interest to determine whether the deregulation or stability of c-myc in PGL is affected by mechanisms other than translocation. This would involve mutations, which have been shown to occur in the exon1/intron1 regions (Cesarman et al., 1987; Bhatia et al., 1994) or within the transactivation domains of c-myc (Salghetti et al., 1999; Gu et al., 1994).

4.7 bcl-2/IgH translocations are not detected in PGL

Another translocation involving the Ig loci, and observed in more than 70% of follicular lymphomas and 20% of diffuse B cell lymphomas in the immunocompetent host, is the t(14:18), which involves the bcl-2 gene on chromosome 18 resulting in its deregulated expression (Yunis et al., 1987; Weiss et al., 1987). The relatively few studies that have looked for bcl-2 alterations in AIDS-associated lymphomas have found no evidence of bcl-2/IgH rearrangements (Subar et al., 1988; Gaidano et al., 1997b; Davi et al., 1998). Furthermore, t(14:18) rearrangements have also been detected in the peripheral blood B cells of up to 60% of healthy individuals (Limpens et al., 1991, 1995; Aster et al., 1992; Liu et al., 1997). These studies, however, have
only examined breakpoints within defined regions, the MBR and mcr, which harbour roughly 70% of translocations. In the present study, utilisation of the primers designed by Akasaka et al. (1998), allowed for the detection of breakpoints 5' of the mcr and 3' of the MBR, including >20kb of intervening sequence (Akasaka et al., 1998). This region has been shown to harbour approximately 30% of translocations (Akasaka et al., 1998). Despite the comprehensive methodology employed, no rearrangements were detected in the present study in either the HIV-infected or uninfected population. The most likely explanation for the lack of detection of translocation events in PGL is that the sensitivity of the LD-PCR assay used in this study is one translocation-positive cell in a background of 10^4 normal lymphoblastoid cells (see section 3.4.1.4). The prevalence of translocation-bearing clones in "normal" individuals, however, as assessed by previous studies, is 10-fold lower (Limpens et al., 1991; Aster et al., 1992). In conclusion, there was no evidence from the present studies that constitutive expression of bcl-2, secondary to deregulation due to chromosomal translocation, has a role in PGL.

4.8 Mutations in bcl-6 are frequently detected in PGL

The bcl-6 gene is characteristically altered by translocations and mutations in B cell NHL (Lo Coco et al., 1994; Migliazza et al., 1995). Greater than 90% of the mutations cluster within the 5' non-coding region of the gene, are often multiple in the same allele, frequently bi-allelic and have been reported in lymphomas displaying both normal and rearranged bcl-6 genes (Migliazza et al., 1995). Importantly, mutations in bcl-6 are observed at a similar frequency (70%) throughout the clinico-pathologic spectrum of AIDS-NHL and they represent the most commonly observed genetic alteration in these lymphomas (Gaidano et al., 1997d).

Interestingly, the gene is mutated both in lymphoma tissue and in normal B cells (Migliazza et al., 1995; Shen et al., 1998). The frequency of mutation in bcl-6 is estimated to be 1.4×10^{-3} to 1.6×10^{-2} per bp in B-NHL and 6.8×10^{-4} to 1.9×10^{-3} per bp in normal memory B cells (Pasqualucci et al., 1998; Shen et al., 1998). Consistent with this marked difference in mutation frequency, bcl-6 mutations in the present
study were observed at an increased incidence, by SSCP and sequencing analysis of a 735bp region within the first intron that represents a mutational hot-spot (Migliazza et al., 1995). The frequency of mutations was found to be 5-10 times higher (9.8x10^{-4} to 1.3x10^{-3} per bp) in the HIV-PGL samples than in the healthy controls (8.2x10^{-5} to 5x10^{-4} per bp). Intriguingly, this observation lends indirect support to the hypothesis that PGL lesions may serve as precursors of AIDS-NHL, as the mutation rate is similar in the two pathological entities and is significantly higher than that observed in normal B cells. Identifying identical mutations in the corresponding tumour tissue would help clarify whether these mutations are enriched and selected for in the GC, and highlight their usefulness as possible predictive markers of lymphoma outgrowth. These results should however be interpreted with caution, as one cannot definitively exclude the fact that contamination with normal B cells in the PGL tissue accounts for this difference.

It is currently unclear why \textit{bcl-6} is mutated more frequently in tumour cells than in normal B cells. \textit{bcl-6} mutations are regarded as a marker of a transition of a given B cell through the GC. Mutations arise only in tumours and normal B cells of GC or post-GC origin, whereas they are absent in precursor and virgin B cells (Gaidano et al., 1997d; Pasqualucci et al., 1998; Shen et al., 1998). One possible explanation to account for the increased frequency of mutations observed in the HIV-infected tissue in this study, is that the "explosive" nature of follicular hyperplasia seen in PGL maybe characterised by a greater number of follicular germinal centres than reactive lymph nodes and tonsils (Metroka et al., 1983). However, this hypothesis can be ascertained unequivocally only through histopathological examination of the tissues, but no such material was available during the period of study. Further substantiation of the origin of the mutations in this study would require micro-dissection of the PGL and control tissue, to verify whether these mutations, do in fact, arise from the GC B cells of these nodes.

So why then do mutations occur both in tumour and normal B cells? Some researchers postulate that such mutations are a consequence of the same hypermutation mechanism that generates antibody diversity in germinal centre (GC)
B cells, during the process of affinity maturation (Chang and Casali, 1994; Capello et al., 1997; Migliazza et al., 1995). The characteristics of the bcl-6 mutations observed in this study lend further credibility to this hypothesis, and are consistent with reports from other studies (Migliazza et al., 1995; Gaidano et al., 1997d; Betz et al., 1993). Observed mutations were single nucleotide substitutions, with absence of deletions and insertions, somatic in nature, bi-allelic and multiple within the same allele. Transitions were favoured over transversions, with the 'T' residue being more frequently targeted than the 'A' residue. Although consistent with previous studies (Capello et al., 2000; Sahota et al., 2000), the T>A bias was at variance with that associated with somatic Ig hypermutation, which preferentially targets 'A' over 'T'. Studies of the cis-acting regulatory sequences on bcl-6 and Ig gene mutations might aid in the understanding of why this gene is targeted.

In contrast to mutations in p53, bcl-6 mutations target the non-coding region of the gene. The high frequency of mutation and the clustering of breakpoints in the 5' non-coding region of bcl-6 may reflect the importance of this region in the normal regulation of the gene (Ye et al., 1993; Lo Coco et al., 1994). Recently, Kikuchi and co-workers have provided provocative evidence of 2 cis-acting regulatory elements within the first exon (ES) and intron (IS) of bcl-6, which negatively regulate Bcl-6 expression. Interestingly, the IS region is entirely included within the 735bp region analysed in this study (Kikuchi et al., 2000). Thus, a functional consequence of the mutations that occur within these regions, as seen in this study, might be the derepression of negative inhibitory effects on Bcl-6 expression, leading to inappropriate expression and subsequent lymphomagenesis. However, the presence of mutations outside this region, and also within healthy individuals, questions the “oncogenicity” of all bcl-6 mutations, and suggests that these might simply reflect a GC-associated physiological process (see above).

Of further interest, 2 nucleotide substitutions likely to represent polymorphic variants were detected in this study. These variants, a G to C transversion at position +753, and a single base deletion (ΔT) at position +875, have been previously described (Migliazza et al., 1995; Sahota et al., 2000) and permitted the identification of bi-
allelic mutations in $bcl-6$. Interestingly, of all the mutations found to be associated with the individual polymorphic variants in both the study and control groups, 6/8 (75%) were found on the allele that had the 'C' residue at position +753, and 5/7 (71%) on the allele that had the 'T' residue at position +875, (see Tables 30 B and C, page 179). Of great interest is the fact that such an association of $bcl-6$ mutations with polymorphic variants has not been previously reported. These results however, need to be interpreted with caution due to the relatively limited number of samples analysed. Furthermore, it remains to be determined whether polymorphic association with $bcl-6$ mutant alleles has any biological relevance in the context of deregulation of $bcl-6$. Both questions represent issues that warrant further research.

To establish functional significance for the observed $bcl-6$ mutations it needs to be determined whether mutated alleles in HIV-PGL have altered transcriptional activity and consequently deregulate Bcl-6 expression. It would then be interesting to observe whether those mutants with altered transcriptional activity cluster with specific polymorphic alleles. In addition, analysis of $bcl-6$ translocations would also help ascertain whether this gene has any role in the pathogenesis of PGL.

The predictive value of $bcl-6$ mutations has been demonstrated in post-transplant lymphoproliferative disorders, arising in organ transplant recipients. Cesarman et al (1998) have shown that the presence of $bcl-6$ mutations predicted shorter survival and the need for aggressive therapeutic intervention (Cesarman et al., 1998). Therefore, the analyses of $bcl-6$ mutations in this study may be clinically relevant in the context of predictiveness of lymphoma outgrowth, although further investigations are clearly required to verify such a possibility.

Virological analysis of PGL

On account of their association with lymphoid malignancies in the immunocompromised host, the presence of DNA viruses, EBV and KSHV was analysed in the current study.
4.9 EBV is uniformly detectable in PGL

EBV is associated with approximately 30-90% of AIDS-NHL, unlike its invariable association with other malignancies of immunosuppressed hosts (Hamilton-Dutoit et al., 1991). However, the presence of EBV genomes in the lymph nodes of HIV-infected individuals has been considered as a predictive marker of subsequent lymphoma outgrowth (Shibata et al., 1991). Therefore, to address the presence of EBV in the lymph nodes of HIV-infected individuals, the BamH1 W fragment of the EBV genome was amplified in a semi-quantitative PCR. EBV was detectable in 23/23 (100%) cases in the HIV-infected group and in 12/14 (86%) tissues in the control group. In comparison to the HIV-uninfected group (median viral load: <10 genomes/10^6 EBV negative cells), a greatly increased viral load (median viral load: 10^4 genomes/10^6 EBV negative cells) was observed in the HIV-infected individuals (p<0.005, Mann-Whitney test). These findings are in agreement with previous studies carried out in HIV-infected (Birx et al., 1986) and healthy individuals (Miyashita et al., 1995), and can be explained as a loss of immune control of EBV consequent to the immunodeficiency induced by HIV. However, whether the increased levels of virus detected contributes directly to the pathogenesis of PGL or indirectly contributes to the polyclonal activation of B cells is not known. Interestingly, one HIV-uninfected individual (2478) was found to harbour 10^5 EBV copies/10^6 cells. The significance of this high viral load is unknown, as the case histories of these individuals were not available.

4.10 Analysis of the presence of KSHV

Apart from its etiological association with KS and primary effusion lymphoma (PEL), KSHV has also been found to be present in lymphoproliferative disorders such as multicentric Castleman’s disease (MCD) (Cesarman and Knowles, 1999). Hence, the extent of its involvement in HIV-PGL was considered a relevant investigation. In a recent study by O’Leary et al KSHV was detected by PCR in 14.2% of AIDS-related lymphadenopathy cases, and all the positive cases either subsequently developed KS or had KS at the time of diagnosis (O’Leary et al., 2000).
Similarly, in the present study, 2/23 (8.7%) HIV-PGL cases was found to be positive by PCR amplification of KSHV-LNA. Since the presence of KSHV in AIDS related lymphadenopathy is predictive of KS development (O’Leary et al., 2000), it will be interesting to determine the clinical outcome of those individuals with detectable virus.

KSHV is also known to target non-neoplastic and reactive lymph nodes in immunocompetent individuals, albeit rarely (Chadburn et al., 1997, Trovato et al., 1999). The absence of KSHV in the HIV-uninfected lymph nodes and tonsils investigated in this study is thus not remarkable. Moreover, the PCR conditions used were sensitive enough to detect between 30 and 50 viral copies. Serological analysis using antibodies to KSHV LNA would help verify the absence of KSHV DNA, provided stored serum from these individuals is available for analysis.

4.11 Conclusions

The studies described in this thesis are an initial attempt to identify virological, genetic and epigenetic characteristics of HIV-associated PGL. The starting point of the work was to examine in PGL genes and viruses known from previous work to be implicated in lymphomagenesis in either the immunocompetent or the immunocompromised host. The principal results from the work are: i) the finding of p53 missense mutations in 5/23 cases studied; ii) a potentially interesting spectrum of polymorphisms and mutations in bcl-6; iii) over-expression of the trans-dominant p73 isoform, Δ2 p73, in a majority of cases; iv) the absence of genetic or epigenetic changes in any other tumour suppressor genes studied; v) the lack of detectable chromosomal translocations implicated in non-Hodgkin's lymphomas. A comprehensive overview of the results of this study is presented in Appendices 1 and 2.

The results suggest that loss of p53 function, mediated by mutation within the gene or perhaps by over-expression of trans-dominant members of the p53 family, may be an early event in the pathogenesis of PGL and perhaps in HIV-associated
lymphomagenesis. In contrast, inactivation of the \textit{INK4} gene locus, which occurs commonly in NHL, predominantly by methylation of CpG sequences in the gene promoters, does not appear to occur in PGL, implying that such changes are later events. Whereas the identification of p53 mutation can be regarded with confidence as a \textit{bona fide} result, other findings need to be interpreted within the limitations imposed by the lack of immunocytochemical analysis and micro-dissected tissue, enriched for hyperproliferating germinal centre B cells, for direct comparison with matched normal (see later). For example, it was not possible to definitely analyse p16INK4a expression in the presence of unknown amounts of normal tissue. Nevertheless, the sensitivity of the methylation analyses established in preliminary experiments does suggest that sensitivity was adequate to exclude methylation-dependent transcriptional silencing of the \textit{INK4} locus and the \textit{p73} genes in PGL. Whether such changes occur later in the natural history of the disease awaits further study, ideally by \textit{in situ} methylation analysis.

Throughout the course of this work, a major limiting factor was the unavailability of tissue sections from the lymph nodes analysed. It is highly likely that many of the candidate genetic and epigenetic changes sought are restricted to sub-populations of cells within the lymph node and therefore in a minority of cells within the population analysed. As a result, detection of these changes in nucleic acid preparations from whole lymph nodes will suffer from reduced sensitivity due to the dilutional effect of the normal tissue within the biopsy material. Future studies would undoubtedly benefit from the availability of tissue sections. For example, it would be of interest to determine what proportion of cells have detectable p53 protein, since the mutants detected in the present work would be predicted to be readily detectable by immunocytochemistry. The question could then be addressed of whether discrete clones of mutant p53 cells are present within the node.

Immunocytochemistry would also enable a more accurate assessment of the expression of other tumour suppressor genes such as p16INK4a and p15INK4b. Analysis of expression by RT-PCR of whole lymph node RNA preparations is clearly significantly affected by the presence of normal tissue and immunocytochemical
analysis would provide a definitive answer to the question of whether loss of expression occurs during HIV-associated lymphomagenesis. Furthermore, the availability of paraffin sections would enable micro-dissection of abnormal and normal tissue from the same node, allowing analysis of LOH and gene sequence in the PGL tissue and tumour, free from the masking effects of normal tissue contamination. Moreover, it would also permit conclusive analysis of the cell of origin of the $bcl-6$ mutations.

It would also have been extremely informative to have obtained clinico-pathological follow up data from the individual patients in this series of PGL. Since it was known that some of the individuals subsequently developed lymphoma, such data would have allowed several pertinent questions to be addressed. Primarily, whether p53 and $bcl-6$ mutations predict future lymphoma outgrowth, and also whether genetic and epigenetic changes not observed in PGL truly occur as later events in AIDS-lymphomagenesis.

4.12 A speculative model for AIDS-lymphomagenesis

AIDS-NHL is a strikingly heterogeneous disease. Based on the data summarised from several studies 3 major pathogenetic pathways can be identified. The first of these pathways associates with AIDS-SNCCL, which is characterised by relatively mild immunosuppression (Beral et al., 1991; Boyle et al., 1990) and more frequently than other AIDS-NHL, is preceded by a PGL phase (Kalter et al., 1985). These tumours harbour multiple genetic lesions including deregulation of c-myc (100%), deletions of 6q (15%), mutations in $p53$, $bcl-6$ and ras in 60, 70 and 15% of cases respectively and less frequently infection with EBV (30-60%) (Ballerini et al., 1993; Gaidano et al., 1993, 1994).

A second major pathway generally characterised by a marked disruption of immune function is associated with variants of AIDS-DLCL- AIDS-LNCCl and AIDS-IBL, as well as AIDS-PCNSL (Beral et al., 1991). These tumours are thought to be EBV-driven lymphoproliferations, a view supported by the presence of EBV in >90% of AIDS-IBL and 40% of AIDS-LNCCl, and the lack of molecular lesions in the
majority of these cases (Hamilton-Dutoit et al., 1993). Genetic lesions when present, include bcl-6 rearrangement and mutations (20% and 70%) and c-myc translocations (20%) (Ballerini et al., 1993; Gaidano et al., 1994).

A third and final pathway associates with AIDS-PEL. This rare lymphoma type consistently harbors KSHV and frequently also EBV (Nador et al., 1996). Apart from mutations in bcl-6 in 20% of cases, all other genetic lesions commonly detected among AIDS-NHL are consistently absent in AIDS-PEL (Nador et al., 1996; Carbone et al., 1996a).

Taken together the genetic and virological findings of this study permit construction of a speculative model for the evolution of AIDS-NHL in the context of the heterogeneous and multi-factorial nature of this disease (see above and figure 72). It is proposed that AIDS-lymphomagenesis begins with a complex interplay of one or more factors (outlined below) leading to the florid B cell hyperplasia within enlarged, reactive PGL lymph nodes. These factors include:

a) Chronic antigenic stimulation (Riboldi et al., 1994).

b) Viral infection: direct or indirect role for EBV and/or HIV (Kundu et al., 1999; Birx et al., 1986; Pelicci et al., 1986b).

c) Disturbance of cytokine (IL-6 and IL-10) and co-stimulatory (CD40/CD40L) networks that are critical to the growth and differentiation of B cells (Kundu et al., 1999; Moses et al., 1997).

Identification of EBV DNA in the lymph nodes of PGL patients in this study, does not solely justify a role for this virus in the pathogenesis of PGL. However, the virus may perhaps indirectly contribute to and maintain the characteristic B cell hyperproliferation by inducing IL-6 secretion (Liebowitz 1998) and/or inhibiting EBV-specific memory CTL response via upregulation of viral and cellular IL-10 (Bejarano and Masucci, 1998). In addition, the HIV-Tat gene product may similarly induce cellular IL-6 and IL-10 expression (Kundu et al., 1999) and possibly contribute to the B cell hyperplasia in PGL.
Figure 72. A speculative model for AIDS-lymphomagenesis

Lymphomagenesis in AIDS is believed to begin with the florid B cell hyperplasia that is characteristic of PGL. PGL results from the complex interplay of several factors of which the role of viruses such as HIV and EBV (either directly or through the disturbance of cytokine networks) and mutations in bcl-6 are indicated. Inactivation of tumour suppressor genes such as p53, either through mutation or trans-dominant inhibition by Δ2 p73 is the second step. Deregulation of c-myc would then be an obligatory event in the case of AIDS-SNCCL, whereas this genetic event might not be required for the progression of all DLCLs. A third and possible questionable step perhaps involves inactivation of the INK4 genes.

HIV, human immunodeficiency virus; EBV, Epstein-Barr virus; SNCCL, small non-cleaved cell lymphoma; DLCL, diffuse large cell lymphoma.
Apart from the known effects of viruses on B cell proliferation, a contributory role for bcl-6 is also proposed in this model. Deregulation of bcl-6 via alterations observed within the cis-acting negative regulatory elements present within the first intron, might relieve the inhibitory effects on Bcl-6 expression. Such constitutive or inappropriate expression of Bcl-6 within the germinal centre (GC) B cells would then impede B cell differentiation within the GC by repression of target genes (Shaffer et al., 2000) and consequently sustain these cells in a permanent proliferative state.

Although a role for EBV and HIV in the pathogenesis of PGL cannot entirely be discounted, it is clearly apparent that other factors are required before a cell acquires a growth/clonal advantage. Inactivation of tumour suppressor genes and/or deregulation of oncogenes might provide a second crucial step in the cascade of events to lymphomagenesis. Mutation in the tumour suppressor, p53, as observed in the panel of PGL tissue examined, is one genetic event that would be predicted to have such a role. It is known that only a subset of AIDS-NHL harbour p53 mutations, in particular 60% of AIDS-BL, whereas such alterations are only occasionally observed in the other subtypes (Gaidano et al., 1997b; Ballerini et al., 1993). Therefore, one can predict that the p53 mutations observed in this study predispose to the development of AIDS-BL. However, although c-myc translocations are a consistent feature of BL, such findings were not validated in this study, leading to the premise that deregulation of c-myc, secondary to translocation might occur as a later event in lymphomagenesis. Such a scenario is certainly viable in light of the studies by Polack and co-workers wherein activation of c-myc, secondary to EBV-induced B cell immortalisation, is sufficient to maintain the immortalised state that is initially effected by EBV (Polack et al., 1996).

It is interesting to speculate that in those tumours with absence of p53 mutations, other mechanisms of inactivation of p53 may exist. It is known that the N-terminal deleted variants of p63 and p73, ΔN p63 and Δ2 p73 respectively, can trans-dominantly inhibit wild-type p53 (Pozniak et al., 2000; Crook et al., 2000). Predominant high level expression of Δ2 p73 in the current series of HIV-PGL suggests that this mechanism of inactivation of wild-type p53 function might be
operative, at least in a subset of AIDS-NHL. Furthermore, inactivation of ARF and hMDM2, in tumours with wild type p53, could be proposed as an alternative to p53 mutation. Inactivation of the p53-ARF-hMDM2 pathway, by deletion and/or overexpression of ARF and hMDM2 respectively, in tumours that retain wild-type p53 function, has recently been shown to be an essential step in Burkitt’s lymphomagenesis (Lindstrom et al., 2001; Eischen et al., 1999).

Lastly, the absence of genetic and epigenetic lesions in members of the INK4 locus, either predicts that these genes have no role in the pathogenesis of AIDS-NHL, or that they are altered late in lymphomagenesis.

An important consideration in the proposed speculative model is that it must be viewed in the light of the absence of micro-dissected PGL and lymphoma tissue. The availability and analysis of such tissue would help definitively to conclude whether the molecular genetic alterations observed in this study truly represent predictive markers of AIDS-NHL.
REFERENCES

Different p73 splicing variants are expressed in distinct tumour areas of a multifocal neuroblastoma [letter]. Cell Death and Differentiation 6, 391-393.

Mutations in the first exon are associated with altered transcription of c-myc in Burkitt lymphoma. Science 238, 1272-1275.

Chang, B. and Casali, P. (1994). The CDR1 sequences of a major proportion of human germline Ig VH genes are inherently susceptible to amino acid replacement. Immunology Today 15, 367-373.

Proceedings of the National Academy of Sciences of the United States of America 79, 6497-6501.

associated Burkitt's lymphomas produce specific anti-i IgM cold agglutinins using somatically mutated VH4-21 segments. *Blood* **83** (**10**), 2952-2961.

APPENDIX 1

Overview of the genetic, epigenetic and virological analysis in HIV-PGL

<table>
<thead>
<tr>
<th>Case No.</th>
<th>p53 mutation</th>
<th>p73</th>
<th>p63</th>
<th>p16(^{INK4a})</th>
<th>p15(^{INK4b})</th>
<th>p14(^{ARF})</th>
<th>c-myc</th>
<th>bcl-2</th>
<th>bcl-6 mutation</th>
<th>Viral status</th>
</tr>
</thead>
<tbody>
<tr>
<td>LN</td>
<td>C-term</td>
<td>ΔN</td>
<td>Meth</td>
<td>ΔN</td>
<td>Expn</td>
<td>Meth</td>
<td>Expn</td>
<td>Meth</td>
<td>Expn</td>
<td>EBV</td>
</tr>
<tr>
<td>1</td>
<td>+</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>+</td>
<td>ND</td>
<td>-</td>
<td>-</td>
<td>ND</td>
<td>-</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>+</td>
<td>ND</td>
<td>-</td>
<td>-</td>
<td>ND</td>
<td>-</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>-</td>
<td>+</td>
<td>ND</td>
<td>-</td>
<td>-</td>
<td>ND</td>
<td>-</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
APPENDIX 1 continued

<table>
<thead>
<tr>
<th>Case No.</th>
<th>p53 mutation</th>
<th>p73</th>
<th>p63</th>
<th>p16(^{\text{INK}4a})</th>
<th>p15(^{\text{INK}4b})</th>
<th>p14(^{\text{ARF}})</th>
<th>c-myc</th>
<th>bel-2</th>
<th>bel-6 mutation</th>
<th>Viral status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C-term</td>
<td>ΔN</td>
<td>Meth</td>
<td>TA</td>
<td>ΔN</td>
<td>Expn</td>
<td>Meth</td>
<td>Expn</td>
<td>Meth</td>
<td>Expn</td>
</tr>
<tr>
<td>21</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>22</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>23</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>24</td>
<td>-</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>25</td>
<td>-</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>27</td>
<td>-</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
</tbody>
</table>

+, positive; -, negative; ND, Not done; C-term, C terminus; Meth, methylation; Expn, Expression; EBV, Epstein-Barr virus; KSHV, Kaposi's-sarcoma associated herpes virus.
APPENDIX 2

Overview of the genetic, epigenetic and virological analysis in HIV-uninfected lymph nodes and tonsils

<table>
<thead>
<tr>
<th>Case No.</th>
<th>p53 mutation</th>
<th>p73</th>
<th>p63</th>
<th>p16<sup>ID</sup></th>
<th>p15<sup>ID</sup></th>
<th>p14<sup>ARF</sup></th>
<th>c-myc</th>
<th>bcl-2</th>
<th>bcl-6 mutation</th>
<th>EBV</th>
<th>KSHV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C-term</td>
<td>ΔN</td>
<td>Meth</td>
<td>TA</td>
<td>ΔN</td>
<td>Expn</td>
<td>Meth</td>
<td>Expn</td>
<td>Meth</td>
<td>Expn</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>ND</td>
<td>-</td>
<td>+</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>T2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ND</td>
<td>-</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T3</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>ND</td>
<td>-</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>T4</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>ND</td>
<td>-</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>T5</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>ND</td>
<td>-</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>T6</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>ND</td>
<td>-</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>T7</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>2425</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>ND</td>
<td>-</td>
<td>+</td>
<td>ND</td>
<td>-</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2435</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>-</td>
<td>ND</td>
<td>-</td>
<td>ND</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2437</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ND</td>
<td>-</td>
<td>+</td>
<td>ND</td>
<td>-</td>
<td>ND</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>2462</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>-</td>
<td>ND</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>2478</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ND</td>
<td>-</td>
<td>+</td>
<td>ND</td>
<td>-</td>
<td>ND</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>2495</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ND</td>
<td>+</td>
<td>-</td>
<td>ND</td>
<td>-</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2498</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>-</td>
<td>ND</td>
<td>-</td>
<td>ND</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>2499</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>-</td>
<td>ND</td>
<td>-</td>
<td>ND</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>2512</td>
<td>-</td>
<td>ND</td>
<td>-</td>
<td>ND</td>
<td>-</td>
<td>+</td>
<td>ND</td>
<td>-</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

+, positive; -, negative; ND, Not done; C-term, C terminus; Meth, methylation; Expn, Expression; EBV, Epstein-Barr virus; KSHV, Kaposi's-sarcoma associated herpes virus.
APPENDIX 3

Commercial Suppliers

Amersham Pharmacia Biotec (UK) Ltd, Little Chalfont, Buckinghamshire, UK
Anachem/Scotlab, Luton, Bedfordshire, UK
Beckman Instruments, High Wycombe, Bucks, UK
Beckton-Dickinson (UK) Ltd, Cowley, Oxford, UK
Bibby Sterilin Ltd, Stone, Staffordshire, UK
Biogenesis, Yeomans Way, Bournemouth, UK
Bio-Rad Laboratories Ltd, Hemel Hempstead, Hertfordshire, UK
BioWhittaker, Wokingham, Berkshire, UK
Clontech Laboratories, Basingstoke, Hampshire, UK
CP Laboratories, Saffron Walden, Essex, UK
Cryotechnics, Edinburgh, Lothian, UK
Dynal AS, Wirral, Merseyside, UK
Flowgen, Lichfield, Staffordshire, UK
Fred Baker, Runcorn, Cheshire, UK
Fuji Photo (UK) Ltd, London, UK
Harlan SeraLab, Hill Crest, Belton, Loughborough, UK
Heraeus, Brentwood, Essex, UK
Hybaid Ltd, Ashford, Middlesex, UK
ICN Biomedicals Ltd, Basingstoke Hampshire, UK
Intergen Company, Oxford Science Park, Oxford, UK
Invitrogen Corporation, NV Leek, Holland
Jencons, Leighton Buzzard, Bedfordshire, UK
Jet X-ray, London, UK
Leitz, Wild Leitz UK Ltd, Knowlhill, Milton Keynes, Buckinghamshire, UK
Life Technologies, Paisley, Scotland, UK
Merck EuroLab Ltd, Poole, Dorset, UK
Millipore (UK) Ltd, Watford, Hertfordshire, UK
National Diagnostics, Hessle, Hull, UK
Oswel DNA Services, Southampton, Hampshire, UK
PE Biosystems, Warrington, Cheshire, UK
Philip Harris, London, UK
Promega, Southampton, UK
Qiagen, Crawley, West Sussex
Roche, Welwyn Garden City, Herts, UK
Sanyo Gallenkamp PLC, Loughborough, Leicestershire, UK
Scientific Lab Supplies Ltd, Coatbridge, Lanarkshire, UK
Shandon Scientific, Runcorn, Cheshire, UK
Sigma Chemical Company, Poole, Dorset, UK
Stratagene, Cambridge, UK
Stuart Scientific, Poole, Dorset, UK
Ultra Violet Products Ltd., Science Park, Cambridge, UK
Whatman, Maidstone, Kent, UK
APPENDIX 4

Clinical data on HIV-infected individuals with PGL

<table>
<thead>
<tr>
<th>No.</th>
<th>DOB</th>
<th>Total lymphocyte count ((x10^9/L))</th>
<th>HIV Viral load (viral RNA copies/ml)</th>
<th>Clinical presentation</th>
<th>Other viruses</th>
<th>ARV</th>
<th>Dead/Alive</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26.1.47</td>
<td>0.8</td>
<td>nk</td>
<td>Multiple cutaneous KS</td>
<td>CMV, HSV, Adenovirus</td>
<td>nk</td>
<td>Died 25.9.83</td>
</tr>
<tr>
<td>2</td>
<td>nk</td>
<td>nk</td>
<td>nk</td>
<td>nk</td>
<td>nk</td>
<td>nk</td>
<td>nk</td>
</tr>
<tr>
<td>3</td>
<td>10.1.48</td>
<td>3.7</td>
<td>nk</td>
<td>Cutaneous KS</td>
<td>HepB, CMV, HSV</td>
<td>nk</td>
<td>Last seen 8.88</td>
</tr>
<tr>
<td>4</td>
<td>25.7.55</td>
<td>1.4</td>
<td>nk</td>
<td>Cryptococcal meningitis and pneumonia</td>
<td>Perianal oral warts, Perianal HSV, Hep B</td>
<td>AZT</td>
<td>Last FU 3.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cerebral atrophy on MRI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OHL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>21.7.49</td>
<td>1.3</td>
<td>500,000</td>
<td>Hepatosplenomegaly</td>
<td>HepB, Hep A, HSV, CMV, Adenovirus, measles</td>
<td>nk</td>
<td>Transferred to King's 11.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OHL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Shingles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3.9.45</td>
<td>1.5</td>
<td>nk</td>
<td>Oral KS</td>
<td>Hep B, CMV</td>
<td></td>
<td>Alive under care MMC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3.4.48</td>
<td>2.6</td>
<td>nk</td>
<td>Cutaneous KS</td>
<td>HepA, HepB, CMV</td>
<td>nk</td>
<td>nk</td>
</tr>
<tr>
<td>9</td>
<td>3.12.55</td>
<td>2.4</td>
<td>nk</td>
<td>Lung lobectomy</td>
<td>HepB</td>
<td>AZT</td>
<td>Died 4.89</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Presumptive PCP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CMV retinitis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cutaneous KS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cerebral Toxoplasmosis?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.9.56</td>
<td>1.2</td>
<td>nk</td>
<td>Cryptococcal meningitis (Treated), PCP</td>
<td>nk</td>
<td>AZT</td>
<td>Died</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Spastic paraparesis MRI brain atrophy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>DOB</td>
<td>Total lymphocyte count (x10⁹/L)</td>
<td>HIV Viral load (viral RNA copies/ml)</td>
<td>Clinical presentation</td>
<td>Other viruses</td>
<td>ARV</td>
<td>Dead/Alive</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>-------------------------------</td>
<td>-----------------------------------</td>
<td>---</td>
<td>--------------</td>
<td>--------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>12</td>
<td>18.3.48</td>
<td>nk</td>
<td>nk</td>
<td>nk</td>
<td>nk</td>
<td>nk</td>
<td>Transferred to St Stephens C&W 2.12.86</td>
</tr>
<tr>
<td>14</td>
<td>27.7.51</td>
<td>1.3</td>
<td>105,500</td>
<td>No AIDS defining diagnosis</td>
<td>HepB</td>
<td>nk</td>
<td>Alive and well (MMC)</td>
</tr>
<tr>
<td>15</td>
<td>nk</td>
<td>nk</td>
<td>nk</td>
<td>Typical KS, cutaneous, palatal, lymphedema Left pleural effusion</td>
<td>Herpes, CMV, HepB</td>
<td>nk</td>
<td>? Death</td>
</tr>
<tr>
<td>16</td>
<td>24.6.53</td>
<td>1.1</td>
<td>nk</td>
<td>Shingles, PCP CMV retinitis, MAI spleen and mesenteric LNs, cardiomegaly</td>
<td>HepB, VZV, CMV</td>
<td>AZT</td>
<td>Died 15.11.92</td>
</tr>
<tr>
<td>17</td>
<td>13.7.50</td>
<td>nk</td>
<td>nk</td>
<td>Cutaneous, palatal KS Thrombocytopenia, Presumptive PCP Hepatosplenomegaly HIV encephalopathy</td>
<td>HepB, Genital HSV</td>
<td>nk</td>
<td>Died 10.6.87</td>
</tr>
<tr>
<td>18</td>
<td>12.11.54</td>
<td>2.4</td>
<td>nk</td>
<td>Shingles</td>
<td>CMV, HSV</td>
<td>nk</td>
<td>Emigrated to Australia</td>
</tr>
<tr>
<td>19</td>
<td>10.4.63</td>
<td>1.8</td>
<td>nk</td>
<td>nk</td>
<td>HepB, HepA, CMV, HSV, Perianal warts</td>
<td>nk</td>
<td>Last seen 1.91</td>
</tr>
<tr>
<td>20</td>
<td>31.3.55</td>
<td>nk</td>
<td>nk</td>
<td>Thrombocytopenia PCP 21.9.86</td>
<td>HepB, Perianal warts, CMV, Measles</td>
<td>nk</td>
<td>Died</td>
</tr>
<tr>
<td>21</td>
<td>4.3.46</td>
<td>2</td>
<td>nk</td>
<td>PGL only</td>
<td>HepA, HepB, CMV, HSV, Measles, Adenovirus, Molluscum contagiosum, Perianal warts</td>
<td>nk</td>
<td>Transferred</td>
</tr>
<tr>
<td>22</td>
<td>12.7.53</td>
<td>1.9</td>
<td>60,300</td>
<td>KS palate</td>
<td>CMV, HSV, Measles</td>
<td>d4T, DDI, NFV, NVP</td>
<td>Alive (MMC)</td>
</tr>
<tr>
<td>No.</td>
<td>DOB</td>
<td>Total lymphocyte count (x10^9/L)</td>
<td>HIV Viral load (viral RNA copies/ml)</td>
<td>Clinical presentation</td>
<td>Other viruses</td>
<td>ARV</td>
<td>Dead/Alive</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>---------------------------------</td>
<td>-------------------------------------</td>
<td>-----------------------</td>
<td>---------------</td>
<td>-----</td>
<td>------------</td>
</tr>
<tr>
<td>23</td>
<td>nk</td>
<td>nk</td>
<td>nk</td>
<td>nk</td>
<td>nk</td>
<td>nk</td>
<td>nk</td>
</tr>
<tr>
<td>24</td>
<td>30.3.56</td>
<td>1.6</td>
<td>nk</td>
<td>Cutaneous KS AIDS defining</td>
<td>HepB, CMV</td>
<td>nk</td>
<td>Last FU 5.91</td>
</tr>
<tr>
<td>25</td>
<td>12.8.50</td>
<td>nk</td>
<td>nk</td>
<td>PCP Pulmonary TB</td>
<td>Perianal warts, Genital HSV, Measles positive</td>
<td>nk</td>
<td>Last seen C&W 8.85</td>
</tr>
<tr>
<td>27</td>
<td>5.11.63</td>
<td>3.3</td>
<td>nk</td>
<td>Splenectomy Bacterial pneumonia OHL</td>
<td>HepB, Perianal warts, Genital HSV</td>
<td>nk</td>
<td>Last FU 1992</td>
</tr>
</tbody>
</table>

HIV, Human immunodeficiency virus; PGL, persistent generalised lymphadenopathy; DOB, date of birth; nk, not known; pos, positive; FU, follow up; KS, Kaposi’s sarcoma; PCP, pneumocystic carinii pneumonia; OHL, oral hairy leukoplasia; CMV, cytomegalovirus; HSV, herpes simplex virus; HepB, Hepatitis B; HepA, Hepatitis A; MRI, Magnetic resonance imaging; ARV, antiretrovirals; AZT, zidovudine (azidothymidine); DDC, zalcitabine (dideoxycytidine); DDI, dideoxyinosine; d4T, stavudine; SQV, saquinavir mesylate; NFV, nelfinavir mesylate; NVP, nevirapine; MAI, Mycobacterium avium intracellulare; LN, lymph node; MMC, Mortimer Market Centre; C&W, Chelsea and Westminster Hospital