A functional analysis of Heterochromatin Protein 1 (HP1) in Xenopus laevis

Cheng-Fu Kao

A thesis submitted for the degree of Doctor of Philosophy

The University of Edinburgh
2002
DECLARATION OF ORIGINALITY

I declare that the composition of this thesis and the work presented herein is my own. Work performed by others as a part of collaboration is indicated in the text.

Cheng-Fu Kao 高承福
Table of Contents

Abstract
Acknowledgements

Chapter	Page
Chapter 1 Introduction | I-I
 1.1 Background | 1-1
 1.1.1 Aneuploidy | 1-1
 1.1.2 An Introduction to chromatin structure | 1-5
 1.2 Heterochromatin | 1-8
 1.2.1 The heterochromatic state | 1-9
 1.2.2 Heterochromatin formation | 1-11
 1.2.3 Long-range heterochromatic interactions | 1-12
 1.3 Heterochromatin and centromere | 1-13
 1.4 Heterochromatin and Position effect variegation | 1-15
 1.4.1 Position effect and heterochromatin | 1-16
 1.4.2 Mechanisms of position effect variegation | 1-19
 1.4.3 Modifier of Position Effect Variegation | 1-20
 1.5 Chromo domain proteins and chromatin organisation | 1-24
 1.5.1 Identification of the chromo domain | 1-24
 1.5.2 The three-dimensional structure of the chromo domains | 1-24
 1.5.3 Chromo domain proteins modulate chromatin organisation | 1-32
 1.6 HP1 protein and the chromo domains | 1-34
 1.6.1 Identification of HP1 | 1-34
 1.6.2 HP1 proteins and the chromo domains | 1-35
 1.7 HP1 function in chromatin organisation and gene expression | 1-37
 1.7.1 HP1 function in gene silencing | 1-37
 1.7.2 HP1 and Nuclear assembly | 1-38
 1.7.3 HP1 mediates transcription regulation | 1-40
 1.7.4 Phosphorylation of HP1 and the regulation of heterochromatin assembly | 1-41
 1.7.5 Mechanism of HP1-mediated silencing | 1-42
Chapter 2 Materials and methods .. 2-1

2.1 The methods for molecular biology ... 2-1
 2.1.1 5’RACE (5’-end of rapid amplification of cDNA ends) 2-1
 2.1.2 Sequencing ... 2-3
 2.1.3 Bacteriological solutions .. 2-3
 2.1.4 Preparation of competent cells .. 2-4
 2.1.5 Transformation of competent cells .. 2-5
 2.1.6 Plasmid DNA minipreps .. 2-5
 2.1.6.1 Telt miniprep ... 2-5
 2.1.6.2 Miniprep purification kits ... 2-6
 2.1.7 Subcloning and expression constructs making 2-6
 2.1.8 Recombinant protein expression ... 2-7
 2.1.9 Purification of recombinant protein ... 2-8
 2.1.9.1 Purification of glutathione S-transferase fusion protein 2-8
 2.1.9.2 Purification of 6x-histidine fusion protein 2-9

2.2 The methods for biochemical manipulation .. 2-9
 2.2.1 Antibody production and purification .. 2-9
 2.2.1.1 Immunising rabbit with fusion protein 2-9
 2.2.1.2 Affinity purification of antibodies ... 2-10
 2.2.2 Chemical Cross-linking of xHP1 proteins ... 2-11
 2.2.3 Preparation of chicken chromatin and chicken chromatin DNA 2-11
 2.2.4 Protein translation in-vitro using Rabbit Reticulocyte Lysate system ...
 ... 2-12
 2.2.5 Labelling PE190 Xenopus satellite clone .. 2-13
 2.2.6 GST pull-down assay .. 2-13
 2.2.7 Histone H3-tail pull down ... 2-15
 2.2.8 SDS - polyacrylamide gel electrophoresis ... 2-15
 2.2.9 Western blotting ... 2-17
 2.2.10 Far-western blotting .. 2-18

2.3 The methods for developmental studies .. 2-19
 2.3.1 Isolation of DNA from red blood cells .. 2-19
 2.3.2 Southern blotting .. 2-19
 2.3.3 Obtaining Xenopus embryos ... 2-20
 2.3.4 RNA isolation from Xenopus embryos .. 2-21
 2.3.5 Preparation of RNA (In vitro transcription) 2-22
Chapter 3 Cloning and sequencing of a candidate HP1α and HP1γ cDNA in Xenopus laevis

3.1 Introduction .. 3-1
3.2 Results .. 3-2
 3.2.1 Isolation of HP1 sequences .. 3-2
 3.2.2 HP1 expression in Xenopus embryos ... 3-5
 3.2.3 Spatial distribution of xHP1 expression 3-7
3.3 Discussion .. 3-8

Chapter 4 Self-association and heterologous interaction of Xenopus HP1 proteins

4.1 Introduction .. 4-1
4.2 Results .. 4-1
 4.2.1 Expression and Purification of Xenopus HP1 as recombinant proteins ... 4-1
 4.2.2 Chemical cross-linking of Xenopus HP1 proteins 4-2
 4.2.3 Self Association of Xenopus HP1 proteins 4-3
 4.2.4 The chromo shadow domain is necessary for the self-association .. 4-4
4.3 Discussion .. 4-5

Chapter 5 Xenopus HP1α can interact with DNA and Chromatin

5.1 Introduction .. 5-1
5.2 Results .. 5-2
 5.2.1 xHP1α has DNA binding activity, but not xHP1γ 5-2
 5.2.2 xHP1α can bind chromatin, but not xHP1γ 5-3
 5.2.3 Domain determination of xHP1α DNA and chromatin binding activity .. 5-4
 5.2.4 Both xHP1α & xHP1 bind histone H3 tails when methylated at lysine 9 ... 5-5
 5.2.5 xHP1α can bind to a specific population of chromatin and not histone H3-dependent 5-7
5.3 Discussion... 5-8

Chapter 6 The Role of linker histones and histone tails in xHP1-chromatin interaction .. 6-1
 6.1 Introduction.. 6-1
 6.2 Results... 6-3
 6.2.1 Preparation of chromatin, depleted H1/H5 of chromatin and trypsinised chromatin from chicken erythrocyte 6-3
 6.2.2 Fundamental analysis of xHP1-chromatin interaction 6-4
 6.2.2.1 xHP1 does not precipitate chromatin, depleted H1/H5 chromatin or chromatin DNA .. 6-4
 6.2.2.2 xHP1 does not compete with xHP1-chromatin interaction 6-4
 6.2.3 Characterisation of salt-dependent behaviour of xHP1α-chromatin interaction ... 6-5
 6.3 Discussion... 6-8

Chapter 7 HP1α and xHP1γ are required for post-MBT transcriptional gene regulation during Xenopus development.......................... 7-1
 7.1 Introduction.. 7-1
 7.2 Results... 7-2
 7.2.1 Controls for mRNA injection 7-2
 7.2.2 Depletion of maternally derived xHP1α, xHP1γ 7-4
 7.2.3 Overexpression of xHP1α induces dorsal defect in development and its function is conserved from Xenopus to Human 7-6
 7.2.4 Expression of Dominant negative xHP1α 7-7
 7.2.5 The role of xHP1 for the regulation of gene-expression in Xenopus embryo ... 7-9
 7.3 Discussion... 7-10

Chapter 8 General Discussion.. 8-1
 8.1 Summary of Results.. 8-1
 8.2 The HP1 proteins in Xenopus laevis 8-3
 8.3 Significance of the hinge region.. 8-6
 8.4 HP1 and chromatin folding ... 8-9
 8.5 Developmental role for Heterochromatin 8-11
8.6 HP1 and transcription regulation ... 8-15
8.7 Conclusion and subjects for future investigation 8-17

References .. R-1~25
Tables and Figures

Table 1-1 Relative Incidence of Human Ill Health due to Gene Mutation and to Chromosome Mutation .. 1-2
Table 1-2 Number and Type of Chromosomal abnormalities among spontaneous and Live Birth in 100,000 Pregnancies 1-3
Table 1-3 Distinction between euchromatic and heterochromatic regions of complex genomes ... 1-10
Table 1-4 Suppressors and enhancers of PEV .. 1-22
Table 1-5 members of the HP1 family .. 1-36

Table 2-1 Genotype of bacterial strain used in this work 2-5

Figure 1-1 Nucleosome core particle ... 1-6
Figure 1-2 A Microscopists' View of Chromosome Organization 1-8
Figure 1-3 Polytene Chromosomes in the salivary glands of Drosophila melanogaster ... 1-16
Figure 1-4 An example of PEV on white (w) .. 1-18
Figure 1-5 Comparison of the structure of the MOD1-N chromo domain with that of the DNA binding domain of Sac7d (Edmondson, et al. 1995) ... 1-26
Figure 1-6 Sequences of the chromo domains 1-28
Figure 1-7 Schematic diagram showing locations of CDs and CSDs. 1-30
Figure 1-8 Molecular surface of residues 22–69 of the CD of mouseMOD1. .. 1-31
Figure 2-1 Overview of the 5' RACE procedure 2-2

Figure 3-1. Cloning full length HP1α and HP1γ by the 5' RACE system ... 3-10
Figure 3-2 Comparison of the DNA sequences of Xenopus HP1α cDNA with the published HP1α cDNA sequence 3-11
Figure 3-3 Comparison of the DNA sequences of Xenopus HP1γ cDNA
with the published HP1γ cDNA sequence..3-12
Figure 3-4 Comparison of the derived protein sequences of Xenopus HP1α, γ with the published sequences..3-13
Figure 3-5 Comparison of HP1 α amino acid sequences from Xenopus lavies, Mus musculus, Homo sapiens...3-14
Figure 3-6 Comparison of HP1 γ amino acid sequences from Xenopus lavies, Mus musculus, Homo sapiens...3-15
Figure 3-7 Comparison of Xenopus lavies HP1 α, γ amino acid sequences. ...3-16
Figure 3-8 Autoradiographs of southern blots of Xenopus laevis DNA with HP1α, HP1γ and Polycomb2 probes...3-17
Figure 3-9 Basic stages of Xenopus lavies development..3-18
Figure 3-10 Formaldehyde-agarose gels of total RNA isolated from different Xenopus embryo stages and liver...3-19
Figure 3-11. Calibration of reverse transcription (RT)-PCR amplifications. ...3-20
Figure 3-12 RT-PCR Analysis of HP1α Expression in Different stages Xenopus embryos...3-21
Figure 3-13. RT-PCR Analysis of xHP1γ Expression in Different stages of Xenopus embryos...3-22
Figure 3-14. Localisation of xHP1 α transcripts during early Xenopus development by whole mount in situ hybridisation...3-23
Figure 3-15. Localisation of xHP1γ proteins in sections of Stage 32, tail bud embryos..3-24

Figure 4-1 Purification of Xenopus HP1 proteins as recombinant proteins. ...4-7
Figure 4-2 Chemical Cross-linking of His-xHP1α and His-xHP1γ............................4-8
Figure 4-3 xHP1α and xHP1γ self-associate and interact with each other. ...4-9
Figure 4-4 Expression and purification of the different domains of GST fusion xHP1 protein constructs...4-10
Figure 4-5 The shadow domain is responsible for the self-association and protein-protein interactions...4-11
Figure 4-6 The structure of the shadow chromo domain dimer from MOD1. ...4-12
Figure 5-1 Xenopus HP1α interacts with DNA .. 5-11
Figure 5-2 Xenopus HP1α DNA binding has no preference for Xenopus
satellite DNA ... 5-12
Figure 5-3 Xenopus HP1α interacts with chromatin......................... 5-14
Figure 5-4 Xenopus HP1α and HP1γ can heteromerize and then, bind to
chromatin ... 5-15
Figure 5-5 Identification of DNA binding Domain of Xenopus HP1α.. 5-16
Figure 5-6 Identification of chromatin binding Domain of Xenopus HP1α
... 5-17
Figure 5-7 Hinge region of Xenopus HP1α is necessary for Chromatin and
DNA binding.. 5-18
Figure 5-8 Xenopus HP1s are associate with core histones 5-19
Figure 5-9 Xenopus HP1α has specific interactions with histone H1 and
H3 .. 5-20
Figure 5-10 Xenopus HP1s bind to methylated histone H3 tails........ 5-21
Figure 5-11 The CD region of Xenopus HP1α shows a week chromatin
binding activity ... 5-22
Figure 5-12 The Xenopus HP1α binds to a specific population of
chromatin ... 5-23
Figure 5-13 The H3 tails do not interfere with interaction of GST-xHP1a
with chromatin ... 5-24
Figure 5-14 Schematic diagram of Xenopus HP1 DNA and Chromatin
binding ... 5-25

Figure 6-1 Background ... 6-11
Figure 6-2 Preparation of chromatin, depleted of H1/H5 chromatin and
trpsinised chromatin from chicken erythrocyte 6-12
Figure 6-3 HP1a does not precipitate chromatin, depleted H1/H5 chromatin
or DNA .. 6-13
Figure 6-4 xHP1g does not compete with xHP1a chromatin binding...... 6-14
Figure 6-5 The effect of a gradient of NaCl concentration on xHP1a
binding of chromatin.. 6-15
Figure 6-6 The effect of a gradient of NaCl concentration on xHP1a
binding of H1 & H5 depleted chromatin .. 6-16
Figure 6-7 The effect of a gradient of NaCl concentration on xHP1a
binding of trypsinised chromatin.. 6-16
Figure 6-8 The effect of gradient of NaCl concentration on xHP1a binding
Contents

IX

of DNA only ... 6-17
Figure 6-9 Without histone tails, HP1a chromatin binding has preference of
the fraction with longer DNA fragment 6-18
Figure 6-10 The increased concentration of xHP1a elevates chromatin
binding on a gradient of NaCl concentration 6-19
Figure 6-11 The increased concentration of xHP1a elevate the binding of
H1 & H5 depleted chromatin on a gradient of NaCl concentration 6-20
Figure 6-12 The increased concentration of xHP1a elevate the binding of
trypsinised chromatin on a gradient of NaCl concentration 6-21

Figure 7-1 β-galactosidase mRNA is translated in embryos and has a
limited distribution after targeted microinjection 7-13
Figure 7-2 Depletion of xHP1 in Xenopus embryos pertubs development.
... 7-14
Figure 7-3 Over-expression of xHP1a and xHP1g shows different
phenotypical defects in Xenopus embryos 7-16
Figure 7-4 Over-expression of human and xHP1a gives similar phenotypes
in Xenopus embryos .. 7-18
Figure 7-5 Expression of dominant negative mutants of HP1a in the
development of Xenopus embryos ... 7-20
Figure 7-6 Over-expression of xHP1 intrudes on gene-expression in
Xenopus embryos ... 7-22

Figure 8-1 The result of non-human/mouse EST database searching in
HP1β ... 8-5
Figure 8-2 An invariant sequences within the block is shaded and a region
that conforms to a bipartite NLS is indicated by brackets 8-7
Figure 8-3 One proposed temporal pathway leading to the establishment of
transcriptionally silent heterochromatic regions with regard to the
covalent modifications in the histone H3 tail 8-10
Figure 8-4 Localisation of xPolycomb transcripts during Xenopus early
development by whole mount in situ hybridization 8-14
Figure 8-5 Brachyury expression during Xenopus gastrulation 8-14
Figure 8-6 Role of HP1 complex in propagation of heterochromatin, gene
silencing and transcription regulation .. 8-16
Abstract

It is usually the centromere that is required to ensure an equal distribution of replicated chromosomes to daughter nuclei. From simple yeast to humans the process of chromosome duplication and segregation is highly conserved and occurs by attachment of sister centromeres to the spindle and separation. Studies on gene silencing mechanisms links chromatin structure to centromeric function. If a gene is located near a centromere then its expression can be repressed. One model suggests that it is the spreading of centromeric chromatin that leads to gene silencing, however the degree of repression can be variable and affected by environmental and genetic factors. Mutations that alleviate gene silencing at heterochromatin also interfere with chromosome segregation. This implies there is a critical link between chromosome structure and centromere function. In the fruit fly, Drosophila melanogaster, many genes have been identified that are required to maintain silencing at centromeres (position effect modifiers). Two of the genes involved, HP1 and Pc, contain sequence motifs called chromodomain. The chromodomains of HP1 are necessary for both its nuclear and heterochromatin localisation. Much of the work on the role of heterochromatin in centromere function has been done in genetically tractable organisms such as the fruit fly, D. Melanogaster and the yeast S. pombe. It would be useful if there were an animal biochemical system available for the molecular characterisation of heterochromatin formation.

In my study, I employed the South African clawed-toe frog, Xenopus laevis, as a vertebrate model system to address two questions. First, is HP1 protein necessary for Xenopus development? Second, What are the molecular partners for HP1? I
identified two full-length cDNA clones encoding HP1 homologues from *Xenopus*, xHP1α and xHP1γ. Both of these clones contain a chromodomain (CD) and chromoshadow domain (CSD). Functional analysis demonstrates that xHP1α and xHP1γ can homo- and heteromerdise *in vitro* and this is dependant on the CSD. A chromatin pull-down assay localised a novel chromatin-binding domain to the hinge region of xHP1α, which is not present in xHP1γ. Moreover, xHP1α shows a binding preference for histone H1 in a far-western assay. Additional analysis using salt-dependant folded chicken chromatin indicates that xHP1α favours binding to a highly compacted chromatin fibre containing linker histone. Taken together, it could be that this specific interaction is related to a particular type of chromatin, perhaps heterochromatin. It is also possible that this functional difference between xHP1α and xHP1γ is responsible for their differential sub-nuclear localisation.

RT-PCR analysis revealed that both xHP1α and xHP1γ are maternally abundant and their expression increases to a high level during neuralation stages. RNA *in situ* hybridisation demonstrates that xHP1α shares an overlapping pattern expression with xPolycomb 2. Expression was observed in the head and neural tube. To study the functional significance of HP1 in the development, we manipulated the expression of xHP1α and xHP1γ. Our data point towards an early development role for xHP1α and xHP1γ. Both the depletion and overexpression experiments clearly show that xHP1s are essential for early development after the mid-blastula transition (MBT). Moreover, when embryos overexpressed xHP1α and xHP1γ, or both xHP1α and xHP1γ together, these embryos also incorporated a significantly higher level of 32S-UTP after MBT. These observations are consistent with the prediction that HP1 acts as an essential player in the dynamic organisation of nuclear architecture. It is possible that HP1 acts at a hub of silencing chromatin mechanisms, which are
required to maintain the higher order structure and the homogeneous appearance of chromatin before the onset of transcription at MBT. More importantly, after MBT, HP1 is key for transcription regulation. Deleting or overexpressing the core of this HP1 associated complex could result in corruption of the higher order chromatin structure and disrupt HP1-dependant gene silencing. The loss of function experiments indicate that both the CD and the CSD may be involved in gene expression regulation during neurulation of *Xenopus* embryos and these two domains could likely play different roles during development. To facilitate the interpretation of the phenotypes, it would be important to identify the genes that are regulated by xHP1s.
Acknowledgements

There are three key persons to help and push me completing my Ph D. The first one is my wife, Yi-Chen Lo. She initiated the idea of doing a PhD, which had never been in my career plan. Then my supervisor, Dr Richard Meehan who was brave enough to take me as his Ph D student and help me along these years. Finally and most importantly, my PhD study was supported by my parents who are a hard-working couple in Taiwan. Without their financial support, I would be impossible to do my study in Edinburgh.

Also I would like to thank Dr Sari Pennings and Dr Irina Stancheva for generously sharing their experiences and sources in Xenopus and chromatin studies. And Dr Jim Allan kindly provided chromatin sample for initiating chromatin pull-down assays. Thanks also to Shanmugasundaram Venkataraman, Carmel Reilly and Dr Donncha Dunican for helpful discussions in thesis preparation and English corrections. A special thank-you goes to Dr. Colin Davey for his critical reading and advice to this thesis.

Chapter 1 Introduction

1.1 Background

1.1.1 Aneuploidy

Chromosome mutation in general plays a prominent role in determining genetic ill health in human. In fact, the incidence of chromosome mutations ranks close to that of gene mutation in human live births (Table 1-1). This is particularly surprising when we realize that virtually all the chromosome mutations listed in the table arise anew with each generation. In contrast, gene mutations owe their level of incidence to a complex interplay of mutation rates and environmental selection that acts over many human generations. When the frequencies of various chromosome mutations in live births are compared with the corresponding frequencies found in spontaneous abortions (Table 1-2), it becomes clear that the chromosome mutations that we know about as clinical abnormalities are just the tip of an iceberg of chromosome mutations.

Eukaryotic cells have to ensure the correct partition of their genetic material at every cell division (mitotic and meiotic) in order to prevent chromosomal imbalances (aneuploidy) occurring in their daughter cells. As demonstrated in the table 1-1, 2, it is clear that aneuploidy represents the most common form of chromosome abnormality in humans contributing to a high incidence of spontaneous abortion, genetic disease
Table 1-1 Relative Incidence of Human Ill Health due to Gene Mutation and to Chromosome Mutation

<table>
<thead>
<tr>
<th>Type of Mutation</th>
<th>Percentage of live births</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene mutation</td>
<td></td>
</tr>
<tr>
<td>Autosomal dominant</td>
<td>0.90</td>
</tr>
<tr>
<td>Autosomal recessive</td>
<td>0.25</td>
</tr>
<tr>
<td>X-linked</td>
<td>0.05</td>
</tr>
<tr>
<td>Total gene mutation</td>
<td>1.20</td>
</tr>
<tr>
<td>Chromosome mutation</td>
<td></td>
</tr>
<tr>
<td>Autosomal trisomies</td>
<td></td>
</tr>
<tr>
<td>(mainly Down syndrome)</td>
<td>0.14</td>
</tr>
<tr>
<td>Other unbalanced autosomal aberrations</td>
<td>0.06</td>
</tr>
<tr>
<td>Balanced autosomal aberrations</td>
<td>0.19</td>
</tr>
<tr>
<td>Sex chromosomes</td>
<td></td>
</tr>
<tr>
<td>XYY, XXY and other</td>
<td>0.17</td>
</tr>
<tr>
<td>XO, XXX, and other</td>
<td>0.05</td>
</tr>
<tr>
<td>Total chromosome mutation</td>
<td>0.61</td>
</tr>
</tbody>
</table>

(Derived from Sankaranarayanan, 1979)
Table 1-2 Number and Type of Chromosomal abnormalities among spontaneous and Live Birth in 100,000 Pregnancies

100,000 Pregnancies

<table>
<thead>
<tr>
<th></th>
<th>15,000 spontaneous abortions</th>
<th>85,000 live births</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7,500 chromosomally abnormal</td>
<td>550 chromosomally abnormal</td>
</tr>
<tr>
<td>Trisomy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>159</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>53</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>95</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6-12</td>
<td>561</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>128</td>
<td>17</td>
</tr>
<tr>
<td>14</td>
<td>275</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>318</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>1229</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>223</td>
<td>13</td>
</tr>
<tr>
<td>19-20</td>
<td>52</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>350</td>
<td>113</td>
</tr>
<tr>
<td>22</td>
<td>424</td>
<td>0</td>
</tr>
<tr>
<td>Sex chromosome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XYY</td>
<td>4</td>
<td>46</td>
</tr>
<tr>
<td>XXY</td>
<td>4</td>
<td>44</td>
</tr>
<tr>
<td>XO</td>
<td>1350</td>
<td>8</td>
</tr>
<tr>
<td>XXX</td>
<td>21</td>
<td>44</td>
</tr>
<tr>
<td>Translocation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balanced</td>
<td>14</td>
<td>164</td>
</tr>
<tr>
<td>Unbalance</td>
<td>225</td>
<td>52</td>
</tr>
<tr>
<td>Polyploid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triploid</td>
<td>1275</td>
<td>0</td>
</tr>
<tr>
<td>Teraploid</td>
<td>450</td>
<td>0</td>
</tr>
<tr>
<td>Other (mosaics, etc.)</td>
<td>280</td>
<td>49</td>
</tr>
<tr>
<td>Total</td>
<td>7500</td>
<td>550</td>
</tr>
</tbody>
</table>

(Derived from Sankaranarayanan, 1979)
and cancer progression. One example is Down's syndrome in which trisomy 21 is caused by nondisjunction of chromosome 21 in a parent that is chromosomally normal (Sankaranarayanan, 1979). Another example is somatic aneuploidy, which results in mosaicism with respect to chromosome content and is often observed in association with cancer (Watson et al., 1992). People suffering from chronic myeloid leukaemia (CML), a cancer of the white blood cells, frequently harbour cells containing the so-called Philadelphia chromosome. Chromosome disjunction usually introduces error in cell metabolism, and sometimes produces aneuploid gametes.

Many substructures are required for normal chromosome behaviour (e.g. centromeres, telomeres and replication origins); however, it is usually the centromere that is required to ensure the equal distribution of replicated chromosomes to daughter nuclei. From simple yeast to humans the process of chromosome segregation is highly conserved and occurs by attachment of sister centromeres to spindle and separation to opposite poles. The regions flanking the centromere often are rich in satellite DNA sequences and contain a considerable amount of constitutive heterochromatin. Recent cytogenetic and molecular studies complement many of genetic evidence that has revealed that heterochromatin is required for centromere function. Reduced chromosome transmission results from removal of flanking heterochromatin in Drosophila melanogaster (Wines and Henikoff 1992) and Schizosaccharomyces pombe (Steiner and Clarke 1994). In both organisms, modifiers that disrupt heterochromatic silencing impair chromosome transmission (Partridge et al., 2000; Wines and Henikoff 1992; Ekwall et al., 1997). One of the typical examples is 'Heterochromatin protein 1' (HP1). HP1 is associated with centromeric heterochromatin in Drosophila, mice and human (Chevillard et al., 1993; Wreggett et al., 1994; Kellum et al., 1995). Loss of function mutations in the gene
encoding HP1 in *Drosophila*, Su(var)2-5, decrease the mosaic repression observed for euchromatic genes that have been juxtaposed to centromeric heterochromatin (Eissenberg and Hartnett, 1993). These HP1 mutations also were associated with defects in chromosome morphology and segregation (Kellum and Alberts, 1995). Thus, flanking heterochromatin is a requirement for maintaining regional centromeres.

1.1.2 An Introduction to chromatin structure

A nucleosome is formed by the winding of a double stranded DNA twice around a protein called histone octamer. DNA in chromatin is organized in arrays of nucleosomes (Kornberg, 1977). Two copies of each histone protein, H2A, H2B, H3 and H4, are assembled into an octamer that has 145–147 base pairs (bp) of DNA wrapped around it to form a nucleosome core (of relative molecular mass 206K). This highly conserved nucleoprotein complex occurs essentially every 200 ± 40 bp throughout all eukaryotic genomes (McGhee and Felsenfeld, 1980). The repeating nucleosome cores further assemble into higher-order structures, which are stabilized by the linker histone H1 and these compact linear DNA. The nucleosome plays the role as the principal packaging element of DNA within the nucleus and it is the primary determinant of DNA accessibility. The physical properties of nucleosomes depend on solution conditions such as ionic strength, divalent-ion concentration, and on histone-modification state (Wallrath et al., 1994). The generally repressive nature of chromatin structure has long been related to transcription regulation (Wasylyk and Chambon, 1979). Chromatin organization can facilitate the activation of specific genes (Grunstein, 1990; Paranjape et al., 1994).
Figure 1-1 Nucleosome core particle:

Ribbon traces for the 146-bp DNA phosphodiester backbones (brown and turquoise) and eight histone protein main chains (blue: H3; green: H4; yellow: H2A; red: H2B. The views are down the DNA superhelix axis for the left particle and perpendicular to it for the right particle. For both particles, the pseudo-twowold axis is aligned vertically with the DNA centre at the top.
Evidence supporting two themes is accumulating. First, histones collaborate with transcription factors to provide for their own removal or structural modification, resulting in gene derepression. This may occur by stepwise invasion of DNA-binding proteins entering at the terminal segments of the nucleosomal DNA (Polach and Widom, 1996). This mechanism is apparently insufficient in general, however, because several ATP-dependent chromatin-remodelling factors have been discovered that cause the core histones partially to lose or alter their grip on DNA (Felsenfeld, 1996). Second, the bending and supercoiling of DNA on a nucleosome can promote binding of transcription factors and supplement interactions between different factors (Schild et al., 1993, Truss et al., 1995).

It is now clear that histones are integral and dynamic components of the machinery responsible for regulating gene transcription. A wide-ranging literature documents a detailed collection of post-translational modifications including acetylation, phosphorylation, methylation and ubiquitination (van Holde, 1988) that take place on the 'tail' domains of histones. These tails, which stick out from the surface of the chromatin polymer and are protease sensitive, comprise 25±30% of the mass of individual histones (van Holde, 1988; Wolffe and Hayes, 1999) thus providing an exposed surface for potential interactions with other proteins [for example, Sir3/4 and Tup1 proteins in yeast (Hecht et al., 1995; Edmondson et al., 1996)]. Because of the intrinsic disordered nature of histone tails, their precise location in higher-order fibres and the atomic details of their structure are not known (Luger et al., 1997; Luger and Richmond 1998). Long-standing models have suggested that histone modifications may alter chromatin structure by influencing histone-DNA and histone-histone contacts (Wolffe and Hayes, 1999; Hansen et al., 1998).
1.2 Heterochromatin

Chromatin can be divided into two types of material, which can be seen in the nuclear section of Figure 1-2. In most regions, the fibres are much less densely packed than in mitotic chromosome. This material is called euchromatin. It has a relatively dispersed appearance in the nuclear and occupied most of the nuclear region. Some regions of chromatin are very densely packed with fibres, displaying a condition comparable to that of the chromosome at mitosis. This material is called heterochromatin.

Heitz (1928) first identified heterochromatin as a differentially stained fraction of nuclear chromatin that is condensed throughout the cell cycle. Heterochromatin remains condensed in interphase, is transcriptionally repressed, replicates late in S phase, and sometimes is localized to the nuclear periphery. Heterochromatic regions are generally located at pericentric or telomeric locations. Heterochromatin is highly enriched in repetitive DNAs. The general picture is that heterochromatin is molecularly heterogeneous, with specific types of satellite and mild repetitive sequences preferentially clustered at certain chromosomal locations (Lohe et al.,...
1993). The fact that heterochromatin is less accessible to transcription and recombination factors suggest that it consists of a condensed, inaccessible chromatin structure or high-order structure (Allshire and Karpen, 1997). An alternative form of histone H3, CENP-A is found preferably in the nucleosome of centromeric chromatin (Sullivan et al., 1994). The functional significant of this has yet to be established. Heterochromatic regions are responsible for essential biological functions, including centromere activity, telomere function, nuclear organization, the most highly expressed genes in the genome (ribosomal RNA genes), and the pairing of homologues in meiosis. The ribosomal genes are organized into tandem arrays in the heterochromatin in multicellular organisms (Wakimoto, 1998).

1.2.1 The heterochromatic state

Heterochromatin is a chromatin state. For instance, the inactive heterochromatic X chromosomes present in mammalian females are no different in sequence from their euchromatic counterparts (Migeon, 1994). Although the DNA in the inactive X chromosome is also hypermethylated, methylation is not an obligate requirement for heterochromatin formation, which also occurs in organism that lack methylation, such as Drosophila melanogaster and Schizosaccharomyces pombe. The differences between heterochromatic and euchromatic state are indicated in Table 1-3. Heterochromatin consists of nucleosomes that have distinctly acetylated histone H3 and H4 tails (Braunstein et al., 1996); perhaps these acetylated tails interact with nucleosomes in proximity forming a higher order heterochromatic structure. Although it is less well known what such a putative structure looks like, it is thought that nucleosomes found in heterochromatin display more regular arrangement than those found in euchromatin (Wallrath and Elgin, 1995).
Table 1-3 Distinction between euchromatic and heterochromatic regions of complex genomes

<table>
<thead>
<tr>
<th>Feature</th>
<th>Euchromatin</th>
<th>Heterochromatin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interphase appearance</td>
<td>Relatively uncondensed</td>
<td>Condensed</td>
</tr>
<tr>
<td>Chromosomal location</td>
<td>Distal</td>
<td>Preicentromeric</td>
</tr>
<tr>
<td>Sequence composition</td>
<td>Mostly non-repetitive</td>
<td>Repetitive</td>
</tr>
<tr>
<td>Gene density</td>
<td>High</td>
<td>Low or absent</td>
</tr>
<tr>
<td>Replication timing</td>
<td>Throughout S phase</td>
<td>Late S phase</td>
</tr>
<tr>
<td>Meiotic recombination</td>
<td>Normal</td>
<td>Low or absent</td>
</tr>
<tr>
<td>Position-effect variegation</td>
<td>Rare</td>
<td>Frequent</td>
</tr>
<tr>
<td>Methylation state (in vertebrates)</td>
<td>CpG islands hypomethylated</td>
<td>Fully methylated</td>
</tr>
<tr>
<td>Histone acetylation</td>
<td>Low to high</td>
<td>Low</td>
</tr>
<tr>
<td>Nucleosome spacing</td>
<td>Variable</td>
<td>Regular</td>
</tr>
<tr>
<td>Nuclease accessibility</td>
<td>Variable</td>
<td>Low</td>
</tr>
</tbody>
</table>

Derived from Henikoff, 2000
We do not know precisely what constitutes a heterochromatic state but sensitive phenotypic assays for mosaic gene silencing, called position-effect variegation (PEV), allow us to detect its existence. Classical PEV in *Drosophila* and mouse occurs when a gene is juxtaposed to heterochromatin (Muller, 1932). PEV silencing can encompass genes that are hundreds of kilobases from the heterochromatin/euchromatin boundary. Related to classical PEV are examples in which transgenes are inserted into pericentric heterochromatic regions in flies (Wallrath and Elgin, 1995) and mammals (Festenstein et al., 1996; Milot et al., 1996). [There is a subsequent section (1.4) to discuss the phenomenon of PEV].

1.2.2 Heterochromatin formation

Blocks of repetitive DNA sequences have a common feature in that they can form heterochromatin. This phenomenon leads to the notion that sites buried within repeats could initiate the propagation of a heterochromatic state (Locke et al., 1988). However, at least some repetitive sequences have the intrinsic capacity to form heterochromatin: local duplications of a P transposon carrying a sensitive white gene reporter cause white gene PEV in flies (Dorer and Henikoff, 1994). As few as three copies of the transposon are sufficient, with increases in copy numbers leading to enhanced silencing. It was suggested that heterochromatin formation could account for the silencing of transgenes present in high copy number arrays in mammalian cells, and reduction of one such array led to activation of the reporter (Garrick et al., 1998). Thus, silencing of tandem transgene arrays has been assumed to result from insertion into an inactive site, rather than is due to local heterochromatin formation of the array itself (Dorer, 1997). Heterochromatic silencing of a near-by euchromatic gene by transgene arrays indicates that PEV does not require a specific initiation site
other than the repeat array itself. Taken together, these results suggest that repetitiveness alone is sufficient for formation of a heterochromatic state. What feature of local repetitiveness causes heterochromatin to form? In Henikoff’s original *Drosophila* white gene study, reversing a transposon within an array led to strengthening of silencing (Dorer and Henikoff, 1994), and this was confirmed using a brown eye colour gene as reporter (Sabl and Henikoff, 1996). These findings suggested that inverted repeats, formed by neighbouring reversed transposons, were pairing up, and such pairing could trigger the heterochromatic state.

1.2.3 Long-range heterochromatic interactions

An assay of silencing demonstrated that distance from blocks of heterochromatin has affects on heterochromatic silencing as well. A *Drosophila* satellite-repeat block called brown Dominant (bw D) caused stronger trans-inactivation when it was closer to pericentric heterochromatin than when it was farther away (Talbert et al., 1994). Similar observations were made for the interaction of white-bearing transposon repeat arrays with blocks of heterochromatin (Dorer and Henikoff, 1997). The effect on bw D was found to correlate with its frequency of association with pericentric heterochromatin, as though the large block of heterochromatin enhances silencing. Perhaps transcription factors that are needed for expression of a reporter gene are less able to penetrate the hugely blocked heterochromatic ‘compartment’.

Heterochromatic associations leading to silencing might represent a novel gene regulatory mechanism: inactive genes in human pre-B cells are found to associate with heterochromatic gamma satellite, whereas active B cell genes are not (Brown et al., 1997). In both *Drosophila* and human systems, associations between the reporter
gene and heterochromatin occur in a cell cycle-dependent manner (Csink and Henikoff, 1998). In Drosophila, associations are disrupted at S phase and only slowly reform during the G1 phase following mitosis. The cytological detection of interactions between genes and heterochromatin several megabases away can help rationalize many examples in which silencing and DNA methylation have been seen for distantly separated loci (Henikoff, 1997; Matzke and Matzke, 1998). Such findings challenge the assumption that genes are regulated solely by diffusible trans-acting factors. Rather, nuclear positioning may play a major role in gene regulation.

1.3 Heterochromatin and centromere

Heterochromatin, the major fractions of complex genomes, is found as blocks of repeats that may have no genes at all in the surrounding area. These consist primarily of tandemly repetitive satellite sequences and clusters of transposon-derived repeats, primarily around centromeres (Csink and Henikoff, 1998). Such heterochromatic regions are so large that the condensation is visible throughout the cell cycle. The consistent pericentric distribution of satellite sequences strongly suggests that the heterochromatic state plays an important role in centromere function. Thus, heterochromatin formation may have two distinct roles during the cell cycle: at interphase, heterochromatin may aid in gene regulation, and, at the onset of mitosis, heterochromatin may be needed for centromere function.

There is an implication from the occurrence of PEV and the inhibition of genetic recombination. Perhaps the very inertness of heterochromatin is key to centromere function (Csink and Henikoff, 1998). If heterochromatic compaction or
compartmentalization generally inhibits enzymatic processes during interphase, then
the onset of replication origins might be similarly inhibited. As a result, replication
forks that traverse heterochromatic blocks would initiate within flanking sequences.
Because heterochromatic blocks are so large, replication tracks in heterochromatin
would not finish until late in S phase. Centromeres are usually found within such late
replicating regions of chromosomes.

It has been proposed that this putative requirement for late replication drives the
evolution of pericentric regions (Csink and Henikoff, 1998). *Drosophila*
chromosomes consist of blocks of satellite repeats on the order of a megabase in
length separated by clusters of transposons (Lohe et al., 1993; Laurent et al., 1997).
A similar organization might be found in human pericentric regions (Laurent et al.,
1997), with the difference being that human centromeres are comprised of α-satellite
blocks separated by clusters of L1 elements. Nevertheless, in flies several different
satellites and transposons are found around centromeres. Multiple transposon
insertions into satellite blocks might disrupt a centromere by allowing for replication
origin initiating. The resulting premature replication would cause the chromosome to
be lost forever unless a region nearby can assume centromere function by replicating
sufficiently late. Over time, this process would lead to the accumulation of blocks of
satellites separated by clusters of transposons that would encompass regions much
larger than the centromere itself, as observed. By invoking a replication timing
requirement for centromere function, the evolution model can rationalize the
existence of human neocentric chromosomes that entirely lack satellite sequences but
nevertheless segregate normally (du Sart et al., 1997; Tyler-Smith et al., 1999): what
is necessary would not be satellite sequence per se, but rather replication behaviour
that is characteristic of heterochromatin.
Several observations are consistent with this model. Satellite sequences are the major component of all animal and plant centromeres studied so far (Willard, 1998; Sun et al., 1997; Round et al., 1997; Kaszas and Birchler, 1998). Centromeres are consistently found within the latest replicating regions, with the exception of baker's yeast, which entirely lacks centromeric repeats and has centromeres that replicate very early (McCarroll and Fangman, 1988). It is likely that the heterochromatic state can inhibit replication origin initiating.

1.4 Heterochromatin and Position effect variegation

Background: Polytene Chromosomes

Polytene chromosomes are giant chromosomes common to many dipteran (two-winged) flies. They are really used for cytological studies because of their particular huge size. Since 1930’s, scientists have discovered many cytological and phenotypical changes by observing polytene chromosomes. They begin as normal chromosomes, but through repeated rounds of DNA replication (~10) without any cell division (called endoreplication), they become large, banded chromosomes (see Figure 1.3). For unknown reasons, the centromeric regions of the chromosomes do not endoreplicate very well. As a result, the centromeres of all the chromosomes bundle together in a mass called the chromocenter.

Polytene chromosomes are usually found in some tissues of the larvae, like the salivary gland. Each cell now has many copies of each gene. Therefore it can transcribe at a much higher rate than with only two copies in diploid cells. The polytene chromosomes in Figure 1.3 are from the salivary glands of the fruit fly *Drosophila melanogaster*.
1.4.1 Position effect and heterochromatin

Position effects (PEs) leading to a change in the expected level of gene expression, have been associated with integration or translocation of a gene with other regions of the genome. One particular type of PE, first observed in *Drosophila* (Muller, 1930), occurs through relocalisation of a gene into a heterochromatic environment. This relocalisation leads to a shutdown of expression of the gene in some of the cells. The cell-to-cell variegated expression could be created by a differential spreading of heterochromatin. This phenomenon, which is clonal and heritable in daughter cells, is known as position-effect variegation (PEV; Karpen, 1994) and has yet to be explained fully at the molecular level.

PEV was first characterized by Muller (1930) as the variable, but heritable, inhibition of euchromatic gene activity when artificially juxtaposed with heterochromatin by chromosome rearrangement. This is a position effect on gene
expression rather than a permanent alteration in an affected gene, since in several cases it has been possible to select for full expression by moving a position-affected gene away from heterochromatin (Henikoff, 1990). PEV can reveal the presence of heterochromatin even when heterochromatic blocks are below the limits of cytological detection. For example, telomeric heterochromatin is revealed by telomere position effects in both flies (Hazelrigg et al., 1984) and yeast (Gottschling et al., 1990), although these phenomena involve different protein components from those found for classical PEV in flies (Wallrath and Elgin, 1995; Talbert et al., 1994). In some cases, the relationship to classical PEV has been confirmed by demonstrating trans-acting suppression with reduction in the dosage of HP1 (Wallrath and Elgin, 1995; Dorer and Henikoff, 1997).

Mosaic expression is the most striking feature of PEV. For example, PEV of an eye pigment gene generally leads to a noticeable mixture of very small spots and large clones. The presence of clones indicates that a decision made early in development has been inherited during subsequent cell division (Kellum and Schedl 1991). Thus, PEV provides an attractive model system for investigating the determined state of a gene. This state appears to be an unstable one since exactly which cells and clones are mutant and which are wild types differs from eye to eye.

An intriguing aspect of PEV is the distance between the rearrangement breakpoint and the affected gene, in some cases over 50 polytene chromosome bands, or about a megabase. The term ‘heterochromatinisation’ has been used to describe this spreading into euchromatin (Henikoff, 1990), as polytene chromosome bands adjacent to rearrangement breakpoints seem to disappear into the chromocenter. It is recognized that position effects include a broad array of phenomena, such as
An X linked gene necessary for pigments in the eye. Ionizing radiation causes chromosomal breaks, leading to inversion and translocations. A white-mottled (w⁺) allele can result when the gene is juxtaposed to heterochromatin (). Variegated expression is seen as numerous spots or clones of wild-type cells on a mutant background. An extra Y chromosome (for example in an XYY male) causes strong suppression of the phenotype, while lack of a Y chromosome in a male causes enhancement.
heterochromatin induced inhibition of transcription and reduction in DNA copy number, telomere-induced position effects, interaction between genes on separate chromosomes (trans-sensing effects), and inhibition of heterochromatic genes and chromosome and transmission function (Karpen, 1994).

1.4.2 Mechanisms of position effect variegation

PEV provides a model system to investigate the nature of an imprint that specifies the transcriptional state of a gene and the processes that influence its stability. Since heterochromatin can induce the inactivation of many euchromatic genes in *Drosophila*, studies of PEV more generally address the functional differences between heterochromatin and euchromatin. Two general models, cis-spreading and trans-interactions are proposed to explain the fundamental basis of PEV in *Drosophila*.

The cis-spreading model suggests that heterochromatin imposes an altered chromatin structure onto the euchromatic gene, preventing access of the transcriptional machinery and resulting in transcriptional repression. Variegation is accounted for by variation among cells. The hypothesis of the cis-spreading model arose from cytological observations on *Drosophila* polytene chromosomes (Spradling and Karpen, 1990). Euchromatin juxtaposed with heterochromatin via chromosome rearrangement can display diffuse banding and high compaction normally characteristic of the heterochromatic chromocenter. This visible 'heterochromatinisation' correlates with inhibition of gene function; those regions closest to the junction are most likely to appear compacted and to contain inactive genes. Grigliatti (1991) has devised elegant models that multimeric complexes of proteins normally present in heterochromatin are responsible for packing large
chromosomal domains in a repressed state. In these models, self-assembly of the complexes is responsible for euchromatic 'spreading' of repressed gene activity, clonal inheritance of inactivation, and sensitivity of PEV to the dosage of heterochromatin.

This cis-spreading model does not adequately explain some of the most impressive feature of PEV in Drosophila. For example, some rearrangement with heterochromatin-euchromatin breakpoints induce the variegation of genes located several megabases away from the breakpoint (Weiler and Wakimoto, 1995). Long-distance effects of such magnitude are difficult to explain by strict linear propagation of a chromatin state along the chromatin fibre. These features suggest that trans-interactions between different heterochromatic regions and the overall three-dimensional organization of chromosomes in the interphase nucleus are important for PEV. This type of position effect could act on genes located megabases away from the breakpoint.

Taken together, the current evidence supports the view that two epigenetic mechanisms contribute to the cell-to-cell phenotype variation: the cis-spreading effect of adjacent heterochromatin and the trans-effect due to chromosomal interactions mediated by heterochromatin. These two mechanisms are expected to influence each other. The type of heterochromatin at the breakpoint and the complexity of the rearrangement will determine their relative contributions to the final phenotypes.

1.4.3 Modifier of Position Effect Variegation

PEV can be altered by the products of a number of genes known as enhancers or suppressors of PEV, which are proteins that are thought to change chromatin
packing. A systematic genetic approach to identify trans-acting proteins that affect the severity of PEV has been conducted in the laboratory of Grigliatti (1991). Large-scale screens for mutations that act as dominant suppressors (Su(var)s) or enhancers (E(var)s) of the w^m4 phenotype have been carried out, with the aim of recovering genes that encode proteins involved in the assembly or maintenance of chromatin. Hundreds of modifiers, representing at least 50 loci, have been identified (Grigliatti, 1991; Reuter and Spierer, 1992).

Interestingly, many of these mutations have no effect on gene silencing at telomeres (Wallrath and Elgin, 1995). Cloned modifiers and other mutations that modify PEV are shown in Table 1-4. Some modifier genes encode chromatin structural proteins; others encode proteins that could play indirect roles in regulating the formation of chromatin. Histone modification is one way of regulating chromatin formation. Active regions of the genome are associated with increased levels of acetylated core histones (Grunstein, 1997); therefore, a mutation causing increased histone acetylation is predicted to suppress PEV.

However De Rubertis and colleagues made the contradictory discovery that mutations within the histone deacetylase RPD3 enhance PEV in flies and yeast (De Rubertis et al., 1996). The key to explain the phenomenon is the overall patterns of histone acetylation and the targets of the RPD3 deacetylase. Heterochromatin is generally hypoacetylated but, in Saccharomyces cerevisiae and Drosophila, H4 is exclusively acetylated at Lys12 (Grunstein, 1997). Acetylation at Lys5 and Lys12 of H4 is normally associated with newly synthesized DNA, followed by a rapid deacetylation. Yeast rpd3 mutants show an increase in H4 acetylation at Lys5 and Lys12.
Table 1-4 Suppressors and enhancers of PEV

<table>
<thead>
<tr>
<th>Mutant</th>
<th>Effect on PEV</th>
<th>Protein, features</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Su(var)2-5</td>
<td>Dominant Su(var)</td>
<td>HP1: chromo domain, chromo shadow domain, associate with heterochromatin</td>
<td>Eisenberg et al. 1990</td>
</tr>
<tr>
<td>Su(var)3-7</td>
<td>Dominant Su(var)</td>
<td>SU(VAR)3-7; seven widely spaced zinc fingers; associates with heterochromatin and HP1</td>
<td>Clelland et al. 1997</td>
</tr>
<tr>
<td>Su(var)3-9</td>
<td>Dominant Su(var)</td>
<td>Chromo domain, SET domain, associate with HP1, H3 methyltransferase</td>
<td>Tschiersch et al. 1994</td>
</tr>
<tr>
<td>Su(var)3-6</td>
<td>Dominant Su(var)</td>
<td>Protein phosphatase one; catalytic subunit</td>
<td>Bunka et al. 1993</td>
</tr>
<tr>
<td>K43</td>
<td>Dominant Su(var)</td>
<td>ORC2; associate with HP1</td>
<td>Pak et al. 1997</td>
</tr>
<tr>
<td>Modulo</td>
<td>Dominant Su(var)</td>
<td>Basic amino and carboxyl domains; binds DNA and RNA</td>
<td>Garzino et al. 1992</td>
</tr>
<tr>
<td>Suppressor of zeste 5</td>
<td>Dominant Su(var)</td>
<td>S-adenosyl methionine synthetase; regulates spermine levels</td>
<td>Larson et al. 1996</td>
</tr>
<tr>
<td>Lighten up</td>
<td>Dominant Su(var)</td>
<td>Dosage regulator of white, copia and blood</td>
<td>Csik et al. 1994</td>
</tr>
<tr>
<td>Weakerner of white</td>
<td>Dominant Su(var)</td>
<td>Dosage sensitive modifier of white, brown, scarlet and copia</td>
<td>Brechler et al. 1994</td>
</tr>
<tr>
<td>Modifier of white</td>
<td>Dominant Su(var)</td>
<td>Regulator of white</td>
<td>Bhadra and Birchler, 1996</td>
</tr>
<tr>
<td>Mutagen sensitive 209</td>
<td>Recessive Su(var)</td>
<td>PCNA; polymerase d processivity factor</td>
<td>Henderson et al. 1994</td>
</tr>
<tr>
<td>El(var)3-93D</td>
<td>Dominant El(var)</td>
<td>mod(mdg4); POZ domain; interacts with su(Hw); associates with euchromatin</td>
<td>Gerasimova et al. 1995</td>
</tr>
<tr>
<td>El(var)3-95E</td>
<td>Dominant El(var)</td>
<td>E2F transcriptional activator; cell cycle regulator</td>
<td>Seum et al. 1996</td>
</tr>
<tr>
<td>El(var)/62/melito-readlike</td>
<td>Dominant El(var)</td>
<td>GAGA factor; POZ domain; associates with euchromatin</td>
<td>Gerasimova et al. 1995</td>
</tr>
<tr>
<td>El(var)3-64BC</td>
<td>Dominant El(var)</td>
<td>RPD3; histone deacetylase</td>
<td>De Ribauius et al. 1996</td>
</tr>
<tr>
<td>El(var)3-64E</td>
<td>Dominant El(var)</td>
<td>Ubiquitin-specific protease</td>
<td>Hetrich et al. 1996</td>
</tr>
<tr>
<td>hel</td>
<td>Dominant El(var)</td>
<td>HEL; ATP-dependent RNA helicase; unusual DEAD box</td>
<td>Eberl et al. 1997</td>
</tr>
<tr>
<td>zeste</td>
<td>Recessive El(var)</td>
<td>DNA-binding protein; involved in transvection</td>
<td>Judd, 1995</td>
</tr>
</tbody>
</table>

Derived from Wallrath, 1998
Thus, the overall chromatin structure when \textit{rpd3} is mutated may be of a more closed configuration, leading to enhancement of PEV expression.

Mutations within other protein-modifying enzymes and DNA-replication factors lead to either suppression or enhancement of PEV (Table 1-4). In \textit{S. cerevisiae}, the multisubunit origin of replication complex (ORC) is required for both DNA replication and silencing at the mating type loci. Mutations in ORC subunits show that the processes are independent of each other (Fox et al., 1997; Dillin and Rine, 1997). ORC is hypothesized to recruit silencing factors, in particular SIR1, to the mating type loci. In \textit{Drosophila}, a subunit of ORC, ORC 2, localizes to heterochromatin and defects in ORC 2 suppress PEV (Pak et al., 1997). The involvement of ORC in both yeast and \textit{Drosophila} silencing suggests a conservation of silencing mechanisms. Supporting this, \textit{Drosophila} ORC can complement the silencing, but not the replication defect, of a yeast \textit{orc2} mutant (Ehrenhofer-Murray et al., 1995)

Defects in chromatin structural proteins also contribute to PEV. Heterochromatin protein 1 (HP1) and SU(VAR)3–7 are the structural building blocks of heterochromatin in \textit{Drosophila}; a depletion of either protein leads to a suppression of PEV. Conversely, a decrease in the amount of a protein required to form or limit euchromatin should lead to an enhancement of PEV. An in-depth characterization of these chromatin structural proteins and their complexes will be an effective approach for understanding the formation of heterochromatin (Wallrath, 1998).
1.5 Chromo domain proteins and chromatin organisation

1.5.1 Identification of the chromo domain

The chromo domain (chromatin organisation modifier) was originally defined as a 37 amino acid residue region of homology shared by two Drosophila polypeptides, HP1 and Polycomb (Pc) (Paro and Hogness, 1991). This motif is 77% identical between the two proteins. The chromo domain motif has been gradually extended to around 50 amino acids as more HP1 and Pc-like chromo domain protein has been identified in different species. The HP1 chromo domain proteins are small molecules, generally less than 200 amino acids long with a molecular weight of approximately 25 kDa. All share a N-terminus of the chromo domain, which is separated by a ‘hinge’ region from another extensive C-terminal homology, called the chromo shadow domain (Aasland and Stewart, 1995). The PC-like proteins are larger than HP1, being over 300 amino acids in length. They possess neither the stretch of negatively charged amino acids adjacent to the chromo domain nor the chromo shadow domain, but they share a C-terminal homology called Pc-box, which is important for their function. In addition to the HP1 and Pc families, chromo domains have been found in a variety of other proteins and these are discussed later in this section.

1.5.2 The three-dimensional structure of the chromo domains

CDs are independent, globular domains (Kellum and Alberts, 1995) and all HP1-like proteins, including Swi6, carry a carboxy-terminal chromo shadow domain (CSD) (Kellum and Alberts, 1995; Ekwall et al., 1995). CSDs have only been found in proteins that also bear a CD, whereas CDs can exist in many forms. The roles of
these two motifs appear to be distinct. The three-dimensional structures of the CD from the mouse MOD1 (HP1•) and the CSD from the mouse MOD1 (HP1•) and the yeast SWI6 have elucidated by nuclear magnetic resonance (NMR) or X-ray crystallography. The NMR structure of the mouse MOD1 (HP1•) CD suggested that it might act to mediate interactions with other proteins through an unusual hydrophobic groove at the amino terminus (Ball et al., 1997). Comparison of different chromo domain sequences reveals that the most highly conserved residues are contained within the hydrophobic core. Solving the CD structure has led to a better understanding of mutations that are known to disrupt function in Drosophila HP1 (Platero et al., 1995) and Polycomb (Messmer et al., 1992). For example (Figure 1-5), the valine at the position 23 is part of the hydrophobic core but it is also exposed in the groove. Targeted mutation of V23M, which is equivalent to the Drosophila Su(var)2-5 allele (Akam, 1987; Platero et al., 1995), disrupts the structure of the CD. Likewise, the I26F mutation and the 64/65 deletion that are found in Drosophila Pc mutants (Messmer et al., 1992) appears to disrupt CD structure since both mutations affect the hydrophobic core. Many of the conserved residues found in the MOD1 (HP1•) CD are also conserved in the CSD and the CD of Pc.

A search of the available databases has shown that a structure similar to the MOD1 (HP1•) chromo domain had previously been found in the two-archaebacterial histones-like proteins, Sac7d and Sso7d (Edmondson et al., 1995). The CD-like region of Sac7 is known to bind non-specifically to the major groove of DNA, a property that is reflected in the net positive charge on the exterior of its β-sheets. By contrast, the overall surface charge of the MOD1 (HP1•) is negative, suggesting that the MOD1 (HP1•) chromo domain is more likely to be a protein interaction motif.
Figure 1-5 Comparison of the structure of the MOD1-N chromo domain with that of the DNA binding domain of Sac7d (Edmondson, et al. 1995).

(a) MOLSCRIPT (Kraulis, 1991) plots showing a comparison of the chromo domain from MOD1 (left) with that of the DNA binding domain from Sac7d (right); the side chains of residues where mutation affects gene silencing and/or chromatin binding (Messmer et al., 1992; Platero et al., 1995) are shown.
Although analyses in *Drosophila* suggest that the Polycomb CD mediates interactions with other Polycomb-group (PcG) proteins (Horsley et al., 1996), no direct interactions with a CD have been reported. In contrast, a variety of factors are known to interact with HP1 proteins through their CSD (Le Douarin et al., 1996). Comparisons of the CSD-interacting domain of these proteins identified a common PxVxL motif. Mutation of this motif in TIF1β and CAF1 p150 prevents association with CSDs (Friedman et al., 1996; Margolin et al., 1994; Ryan et al., 1999). Moreover, CSDs themselves self-interact and interact with other CSDs (Friedman et al., 1996; Seeler et al., 1998).

To gain further insight into how CSDs might mediate protein–protein interactions, two groups have elucidated the structure of the Swi6 CSD after crystallisation and the mouse MOD1 (HP1•) CSD using NMR. (Cowieson et al., 2000; Brasher et al., 2000). The structure reveals that the CSD dimerises, with the dimer formed by contacts between helices from different molecules related by a non-crystallographic two fold axis. The most striking difference between the CD and the CSD structures is the helix H1. The CSD family has an insertion of 2-3 residues in this region, corresponding to an • helix H1 that is not seen in the mouse MOD1 (HP1•) CD structure. In addition, a proline [at position 157 of MOD1 (HP1β) or 311 of SWI6; Figure 1-6] that lies in the turn between helices H1 and H2 is absolutely conserved in the CSD family, but could be only sometimes found in the CD family. Interestingly, this proline and other conserved residues that are unique to the CSD family are all found at the dimer interface.

Comparison of the sequences and structures between the CD and CSD revealed that the CD displays more conservation in the three β strands than the CSD. When these regions of conservation were mapped onto the surface of the mouse MOD1
Figure 1-6 Sequences of the chromo domains.

(A) and the shadow chromo domain (B) form different HP1 proteins, numbered so that they are correspondent to MOD1. Secondary structure elements observed in MOD1 are shown above the alignments; cylinders represent 3_{10} (3-10) or α-helices (α1 and α2), arrows represents β-strands and circles indicate β-bulges. For each domain the residues that make up the hydrophobic core of a subunit are shaded in yellow and other residues considered important for the structure are shown in green (Gly and Pro). Charged residues in the chromo domain, which are replaced by hydrophobic residues in the shadow domain, are coloured blue (basic) and red (acidic). The red boxes enclose the structured parts of the proteins. The proteins are, from the top, mouse MOD1/human HP1β (residues 1-81 and 103-185), mouse and human HP1γ (1-80 and 97-173), human and mouse HP1α (1-80 and 106-191), Drosophila melanogaster HP1 (1-84 and 132-206), Drosophila virilis HP1 (1-84 and 139-213) and Schizosaccharomyces pombe SWI6 (59-145 and 252-328)
(HP1β) CD, it was clear that they lined up across the face of the sheet to form a non-polar stripe with contributions from all three strands, which wind around the structure.

The CSD structure has shown that the CD and CSD have distinct structures and binding motifs based on a common structural core (Figure 1-7). Homologies between the two structures reside in their hydrophobic core, generated by three β strands and helix H2. Notably, the structural analysis suggests that the CSD provides at least two modes of protein interaction: first, the formation of stable dimers and, second, dimerisation generates an interaction pit that may allow docking of molecules with a hydrophobic pentapeptide sequence (Figure 1-8). It is possible that interactions with pentapeptide proteins provide functions such as targeting CSD-containing proteins to particular sites of chromatin. The possibility of heterodimerisation of CSD proteins may further contribute to the diversity of proteins that interact with the interaction pit.
Figure 1-7 Schematic diagram showing locations of CDs and CSDs.

(a) in proteins involved in gene silencing and maintenance of heterochromatin. Light gray, CDs; dark gray, CSDs; hatched box, SET domain. Amino-acid numbers are indicated by a scale bar. Swi6 is S. pombe Swi6; mMod1 is Mus musculus MoMOD1 (identical to HP1β and M31); Pc is Polycomb from D. melanogaster; Clr4 is S. pombe Su(var) 3-9 homologue. (b) Monomer fold for Swi6 CSD residues 266–324. The secondary structure elements are numbered in order from amino to carboxyl terminus; B1, B2 and B3 are β strands, and H1 and H2 are α helices. (c) Superposition of the structures of Swi6 CSD (white) and MoMOD1 CD (black).
Figure 1-8 The Ribbon models of CD from mMOD1 and CSD from Swi6

Molecular surface of residues 22–69 of the CD of mouseMOD1. (a) White, carbon; red, oxygen; blue, nitrogen; yellow, sulphur. The residues of Swi6 CSD have been superimposed by a least-squares algorithm. The view is centred on a deep hydrophobic groove noted by Ball, et al. (1997) in the CD structure, and proposed to be conserved in CSDs (Smothers and Henikoff, 2000). In the CSD of Swi6, amino-terminal residues can be seen to cover this groove. (b) A surface representation is shown of a dimer in the same orientation as in (c), looking down the dimer axis from the carboxyl terminus of the helices. A non-polar pit is delineated by a pentapeptide carbon backbone (red). The figure was generated by GRASP. (c) A backbone trace of the dimer in a similar orientation as that in (b). The side chains of residues that line the non-polar pit are shown. The trace was generated using MOLSCRIPT, followed by RASTER3D.
1.5.3 Chromo domain proteins modulate chromatin organisation

The Polycomb family

The Polycomb-group (PcG) of protein are found to be non-randomly associated with over 100 chromosomal domains within polytene chromosomes (Zink and Paro, 1989; DeCamillis et al., 1992; Rastelli et al., 1993). Of particular interest are the homeotic genes that are regulated by PcG proteins. How PcG proteins are directed to particular regions such as the homeotic loci of the chromosome remains substantially unknown. Mutations in the gene encoding the PcG proteins generally lead to the activation of target genes. Changes in the expression of homeotic genes that control the segmental identity of the insect body following mutation of the PcG proteins have been studied in detail (Moehrle and Paro, 1994).

The Su(var)3-9 family

Su(var)3-9 is dominant over most PEV modifier mutations (Tschiersch et al., 1994) and mutants in the corresponding S. pombe clr4 gene (Ivanova et al., 1998), disrupt heterochromatin association of other modifying factors and result in chromosome segregation defects (Ekwall et al., 1996). Su(var)3-9 homologues are isolated from humans (SUV39H1) and mice (Suv39h1), and showed that they encode heterochromatic proteins that associate with mammalian HP1 (Aagaard et al., 1999). The SU(VAR)3-9 protein family combines two of the most evolutionarily conserved domains of the chromo (Aasland and Stewart, 1995; Koonin et al., 1995) and SET (Jenuwein et al., 1998) domains. The N-terminal chromo domain motif is smaller than the homology found when comparing HP1 and Pc. Mammalian SUV39 chromo domain encompass about 40 amino acid and share 20 % identity with the Drosophila proteins. The C-terminal 130 amino acid domain shares 36 % identity with the fly
protein. Whereas the 60-amino-acid chromo domain represents an ancient histone-like fold (Ball et al., 1997) that directs euchromatic or heterochromatic localizations (Platero et al., 1995), the molecular role of the 130-amino-acid SET domain has remained unknown. The evolutionarily conserved SET domain was initially characterized as a common motif in the PEV modifier SU(VAR)3-9, the Polycomb-group protein E(Z) (Jones and Gelbart, 1993) and the trithorax-group protein TRX (Stassen et al., 1995). Recently it was reported that mammalian SUV39H1 or Suv39h proteins are SET-domain-dependent, H3-specific histone methyltransferases (HMTases) which selectively methylate lysine 9 (Lys 9) of the histone H3 N terminus-modification that appears intrinsically linked to the organization of higher-order chromatin.

The CHD family

The most divergent group of chromodomain proteins are those of the CHD family (Woodage et al., 1997). Members of the CHD family are around 200 kDa and are highly modular with several sequence motifs that show a consistent position along the length of the proteins. Examination of their organisation reveals that they fall into two sub-families. The first includes CHD1 and CHD2, which process two truncated N-terminal chromo domains that share up to 96 % identity with each other. A central SNF-2-helicase/ATPase domain is followed by a DNA-binding domain. The DNA-binding domain of the mouse CHD has shown to have a preference for A + T-rich DNA. It is this unique combination of chromo domain, helicase/ATPase and DNA-binding domain that gives this family of proteins their name. The second sub-family contains CHD3 and CHD4. These proteins have the same basic organisation although each of the c h D motifs is more divergent from those on
CHD1. Both CHD 3 and CHD4 also contain paired N-terminal PHD Zn-fingers that are not found in the other CHD sub-family members. A pilot study of CHD in *Drosophila* proposed that CHD protein might be involved in transcriptional activation through the remodelling of chromatin structure (Stokes et al., 1996). However, pivotal experiments in *S. cerevisiae* and *Xenopus laevis* discovered a new vision on this family of proteins. A null *ScCHD1* mutant was shown to relieve transcriptional repression (Woodage et al., 1997). The xCHD3 and 4 were shown to be a part of large 1-1.5 mDa complexes that included several notable components of the histone deacetylase RPD3 and RbAp48/p46 proteins (Wade et al., 1998). These finding suggested that remodelling of chromatin via the helicase/ATPase domains of CHD3/4 might be intimately involved in deacetylation of histones. Moreover, it has also been shown that KAP-1 interacts with CHD3 in two hybrid screens (Schultz et al., 1998), suggesting that the process of histone deacetylation and assembly of heterochromatin-like complex may be integrated during KRAB-mediated repression, with the key player, the transcriptional co-repressors KAP-1.

1.6 HP1 protein and the chromo domains

1.6.1 Identification of HP1

As mentioned before, the collection of genes identified as modifiers of PEV overlaps with genes that regulate homeotic gene expression (Fauvarque and Dura, 1993; Gindhart and Kaufman, 1995; Reuter and Spierer, 1992). This overlap strengthen the hypothesis that related molecular mechanism may underlie PEV homeotic gene regulation, an idea first suggested by the discovery that the HP1 and Pc share a 52 amino acid 'chromo domain' (Paro and Hogness, 1991). The chromo
domain is highly conserved through evolution and can be found in *S. pombe* swi6 gene. The SWI 6 protein is involved in the assembly of the chromosome domain containing the transcriptionally silent mating type cassettes. The chromo domain does seem to have a role in the subnuclear compartmentalization such as HP1 and polycomb (Pc) (Woffle, 1995).

The molecular analysis of the gene encoding the heterochromatin-binding protein HP1 (James and Elgin, 1986) and the discovery that it corresponds to the Su(var)2-5 (Eissenberg et al., 1990) was particularly important since the protein is localized predominantly to the chromocenter of salivary gland nuclei (James, *et al.*, 1989). The conservation of HP1 in evolutionarily distant species [mealybugs (Epstein et al., 1992), Drosophila virilis (Clark and Elgin, 1992), mice (Hamvas et al., 1992), Human (Saunders et al., 1993); Table 1-5] and the lethality of HP1 null alleles (Eissenberg and Hartnett, 1993), has suggested that HP1-like proteins are important for cell viability and development.

1.6.2 HP1 proteins and the chromo domains

The HP1 proteins share a characteristic stretch of negatively charged amino acids immediately adjacent to the N-terminus of the chromo domain. The chromo domain (CD) is separated by a ‘hinge’ region from another extensive C-terminal homology, called the chromo shadow domain (CSD) (Aasland and Stewart, 1995). This motif is a repeat of the chromo domain and suggests that the HP1 genes arose from a duplication of a smaller sequence encoding a polypeptide. Chromo domain mutations in HP1 and Pc abolish the genetic activity of these proteins. Solving the CD structure has led to a better understanding of those mutants (See 1.5.1).
<table>
<thead>
<tr>
<th>Name</th>
<th>Organism</th>
<th>Size</th>
<th>Reported cytology</th>
<th>Silencing activity</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swi6p</td>
<td>S. pombe</td>
<td>328</td>
<td>Centromeres, telomeres, silent mating type cassettes</td>
<td>+</td>
<td>Lorentz et al., 1994</td>
</tr>
<tr>
<td>Hhp1p</td>
<td>T. thermophila</td>
<td>184</td>
<td>Absent in micronuclei; enriched in condensed chromatin of macronuclei</td>
<td>-</td>
<td>Huang et al. 1999</td>
</tr>
<tr>
<td>pchet1</td>
<td>P. citri</td>
<td>173</td>
<td>Male specific nuclear protein; not heterochromatin specific</td>
<td>ND</td>
<td>Epstein et al. 1992</td>
</tr>
<tr>
<td>pchet2</td>
<td>P. citri</td>
<td>194</td>
<td>ND</td>
<td>ND</td>
<td>Epstein et al. 1992</td>
</tr>
<tr>
<td>HP1</td>
<td>D. melanogaster</td>
<td>206</td>
<td>Pericentric heterochromatin, telomeres, several non-pericentric sites</td>
<td>+</td>
<td>James and Elgin, 1986</td>
</tr>
<tr>
<td>DvHP1</td>
<td>D. virilis</td>
<td>213</td>
<td>ND</td>
<td>ND</td>
<td>Clark and Elgin, 1992</td>
</tr>
<tr>
<td>emb</td>
<td>CAB07241</td>
<td>C. elegans</td>
<td>175</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>gi</td>
<td>B702834</td>
<td>C. elegans</td>
<td>184</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>xHP1α</td>
<td>X. laevis</td>
<td>199</td>
<td>ND</td>
<td>ND</td>
<td>This week</td>
</tr>
<tr>
<td>xHP1</td>
<td>X. laevis</td>
<td>174</td>
<td>ND</td>
<td>ND</td>
<td>This week</td>
</tr>
<tr>
<td>CHCB1</td>
<td>G. gallus</td>
<td>185</td>
<td>ND</td>
<td>ND</td>
<td>Yamaguchi et al., 1998</td>
</tr>
<tr>
<td>CHCB2</td>
<td>G. gallus</td>
<td>174</td>
<td>ND</td>
<td>ND</td>
<td>Yamaguchi et al., 1998</td>
</tr>
<tr>
<td>mHP1α</td>
<td>M. musculus</td>
<td>191</td>
<td>ND</td>
<td>ND</td>
<td>Le Douarin et al. 1996</td>
</tr>
<tr>
<td>M31;</td>
<td>M. musculus</td>
<td>185</td>
<td>Pericentric heterochromatin</td>
<td>-</td>
<td>Singh et al. 1991</td>
</tr>
<tr>
<td>M32;</td>
<td>MOD2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M32;</td>
<td>MOD2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HP1γ</td>
<td>M. musculus</td>
<td>173</td>
<td>Euchromatin; excluded from heterochromatin</td>
<td>-</td>
<td>Saunders et al., 1993</td>
</tr>
<tr>
<td>hHP1α</td>
<td>H. sapiens</td>
<td>191</td>
<td>Pericentric heterochromatin</td>
<td>+</td>
<td>Singh et al. 1991</td>
</tr>
<tr>
<td>hHP1β</td>
<td>H. sapiens</td>
<td>185</td>
<td>Pericentric heterochromatin</td>
<td>-</td>
<td>Singh et al. 1991</td>
</tr>
<tr>
<td>hHP1γ</td>
<td>H. sapiens</td>
<td>173</td>
<td>Euchromatin; excluded from heterochromatin</td>
<td>+</td>
<td>Ye and Worman, 1996</td>
</tr>
</tbody>
</table>

Derived from Eissenberg and Elgin, 2000
Additionally, a CD swap experiment has shown indication to the function of the CD (Platero et al., 1995; Messmer et al., 1992). β-galactosidase fusion proteins with the CD of Pc, or either the CD or CSD of HP1, target β-galactosidase to euchromatic Pc binding sites or heterochromatic HP1 binding sites, respectively (Platero and Hartnett, 1995; Messmer et al., 1992; Powers and Eissenberg, 1993). As expected, a chimeric HP1–Pc fusion protein (in which the CD of HP1 is replaced with the CD of Pc) targets β-galactosidase to both HP1 and Pc binding sites. Interestingly, the chimeric protein also mislocalizes endogenous HP1 to euchromatic Pc sites and endogenous Pc to heterochromatin (Platero et al., 1995, 1996). This latter behaviour implicates the chimera recruits the endogenous Pc via a CD of Pc and recruits the endogenous HP1 via CSD of HP1. Thus, it suggests that the CD of PC and CSD of HP1 in mediating protein–protein interactions in the nucleus.

1.7 HP1 function in chromatin organisation and gene expression

1.7.1 HP1 function in gene silencing

Self-association

HP1 family proteins undergo self-association, reported for P. citri HP1 proteins (Esptein et al., 1992), hHP1α and mHP1α (Le Douarin et al., 1996; Ye et al., 1997); heterologous interactions between hHP1α and hHP1γ have also been observed (Ye et al., 1997). In the case of the human proteins, the associations depend on the CSD. Thus, there appears to be a complex and potentially dynamic collection of HP1-dependent interactions occurring in a variety of eukaryotic cells. Most of the interactions, which have been mapped, involve the CSD. The structure studies using crystallisation and NMR have brought up that dimerisation through the CSD of HP1-like proteins results in the formation of a hydrophobic pit, which provide an
environment for a putative protein-protein interaction.

Origin recognition complex and HP1

In *S. cerevisiae*, the multisubunit origin of replication complex (ORC) is required for both DNA replication and silencing at the mating type loci. Mutations in ORC subunits show that the processes are independent of each other (Aagaard et al., 1999; Le Douarin et al., 1996). ORC is hypothesized to recruit silencing factors, in particular SIR1, to the mating type loci. In *Drosophila*, a subunit of ORC, ORC 2, localizes to heterochromatin and defects in ORC 2 suppress PEV (Pak et al., 1997). During mitosis, all detectable ORC2 concentrates in the pericentriotic heterochromatin at a subset of HP1 binding sites. In polytene nuclei, ORC2 is distributed widely across all euchromatic chromosome arms but is largely excluded from the chromocenter. ORC1 interacts strongly with HP1 and both the CD and CSD of HP1 are required for this interaction (Pak et al., 1997). The functional significance of an ORC–HP1 interaction is unclear; while HP1 appears to be spatially restricted, ORC is thought to function at replication origins distributed throughout the genome. The involvement of ORC in both yeast and *Drosophila* silencing suggests a conservation of silencing mechanisms.

1.7.2 HP1 and Nuclear assembly

Lamin B receptor and HP1

The lamin B receptor (LBR) is an integral membrane protein of the nuclear envelope; it binds B-type lamins and double-stranded DNA, and may function as a chromatin-docking site at the nuclear envelope (Pyrpasopoulou et al., 1996). Interaction of human LBR with the human HP1 family proteins HP1α and HP1γ was
demonstrated by affinity chromatography and by co-immunoprecipitation (Ye and Worman, 1996); the interaction utilizes the CSD (Ye et al., 1997). *In vitro* translated HP1 binds to a purified glutathione-S-transferase (GST)–LBR fusion protein, indicating direct interaction (Ye et al., 1997). Without genetic analysis, the functional significance of LBR–HP1 interaction is unclear but, in all eukaryotic cells, the inner nuclear membrane and nuclear lamina are closely associated with peripheral heterochromatin. It has been shown that nuclear membrane association can promote silencing in yeast (Andrulis et al., 1998). The possibility that HP1 could promote silencing through LBR-mediated association with the nuclear membrane is intriguing.

Inner centromere protein and HP1

Inner centromere protein (INCENP), a component of the mitotic chromosome scaffold, is associated with the centromere in early metaphase but moves progressively to the spindle fibres and the plasma membrane at the cleavage furrow. The centromere-targeting amino-terminal half of INCENP interacts with HP1\(\alpha\) and HP1\(\gamma\) in a yeast two-hybrid screen of a HeLa cell cDNA library (Ainsztein et al., 1998). This interaction does not appear to be involved in targeting INCENP to the centromeric heterochromatin. The interaction of HP1 homologues with INCENP requires the ‘hinge region’ of HP1 connecting the CD and CSD. The significance of the interaction remains unclear, however, as it does not seem to be required for INCENP function.
Chromatin assembly factor 1 and HP1

Chromatin assembly factor (CAF) is a three-polypeptide complex that mediates histone deposition on newly replicated DNA. A yeast two-hybrid protein screen of a mouse embryo cDNA library, using the mouse HP1 family protein MOD1 as bait, recovered cDNA clones encoding the large CAF-1 subunit p150 (Murzina et al., 1999). Comparing overlapping sequences of all cDNAs isolated in the screen, a MOD1 interacting region (MIR) was identified. MOD1 binds a GST–MIR fusion peptide \textit{in vitro}; the CSD of MOD1 is both necessary and sufficient for this interaction. These results suggest that the HP1-binding and heterochromatin-targeting activities of the CAF-1 large subunit are dispensable for its role in nucleosome assembly during replication. MOD1 synthesized in early S phase, prior to the initiation of DNA replication, was localized to heterochromatin normally, indicating that replication-dependent chromatin assembly is not required for proper MOD1 targeting. The functional significance of CAF-1 binding in heterochromatin outside of S phase is unknown.

1.7.3 HP1 mediates transcription regulation

The transcription intermediary factors TIF1\(\alpha\) and TIF1\(\beta\)/KAP-1 interact with nuclear hormone receptors and the Krüppel-associated box (KRAB) domains of several proteins; they may function as co-activators in ligand-dependent activation of transcription and co-repressors with KRAB-containing repressor proteins. Yeast two-hybrid protein screens of a mouse embryo cDNA library using TIF1\(\alpha\) as bait recovered clones encoding the HP1 family proteins mHP1\(\alpha\) and mMOD1 (Le Douarin et al., 1996). Mutations in TIF1\(\alpha\) gene that blocked mHP1\(\alpha\) and mMOD1 binding \textit{in vitro} reduce TIF1\(\alpha\)-mediated repression of a SV40 enhancer/promoter
reporter in NIH 3T3 fibroblasts (Ryan et al., 1999a). The physiological significance of the TIF1α–mHP1α association is unclear, as the HP1 binding domain proved dispensable for TIF1α-mediated repression in a transfection assay, and no significant subnuclear colocalization of mHP1α and TIF1α has been observed (Remboutsika et al., 1999). TIF1β/KAP-1 colocalises in heterochromatin with mouse M31, and in euchromatin with mouse M32 (Ryan et al., 1999b), consistent with an in vivo association between these proteins. A biochemical analysis has revealed that the CSD is responsible for the interaction (Lechner et al., 2000). The results suggest that TIF family could be a relevant target for HP1 in the nucleus and through these interactions HP1 might participate in transcription regulation.

1.7.4 Phosphorylation of HP1 and the regulation of heterochromatin assembly

In Drosophila, HP1 is multiply phosphorylated by serine/threonine kinases, one of which is casein kinase II (CKII) (Zhao and Eissenberg, 1999); CKII phosphorylation of HP1 is required for efficient heterochromatin targeting (Zhao and Eissenberg, 1999). There is also indirect evidence for tyrosine phosphorylation of HP1 (Platero et al., 1995). Biochemical fractionation of HP1 suggests that differential HP1 phosphorylation may be associated with distinct complexes (Huang et al. 1998). Human and Tetrahymena HP1 proteins are also differentially phosphorylated; hyperphosphorylation of the Tetrahymena Hhp1p is induced by starvation and is correlated with decreased nuclear volume (Huang et al., 1999). In humans, hyperphosphorylation of HP1α and HP1γ is correlated with mitosis (Minc et al., 1999). The dynamic nature of HP1 phosphorylation suggests a regulatory function for this process.
1.7.5 Mechanism of HP1-mediated silencing

Although genetic and cytological evidence in Drosophila clearly implicates HP1 in heterochromatic position effect silencing, both the mechanism of silencing and the role of HP1 in the mechanism remain unknown. The structure of the HP1 protein, with two related heterochromatin-targeting domains, suggests that it acts as a bifunctional cross-linker, perhaps organizing higher order chromatin structure by linking or anchoring chromatin subunits. At the biochemical level, heterochromatin silencing is correlated with reduced accessibility of promoter sequences to nuclease attack (Wallrath and Elgin, 1995), while suppression of PEV by HP1 mutation is correlated with increased accessibility (Cryderman et al., 1998). The mechanism by which HP1 mediates this differential accessibility is unknown. In Drosophila, the heterochromatin does include a number of genes, some of which have been shown to require a heterochromatin context for their normal expression (Wakimoto and Hearn, 1990; Eberl et al., 1993). In rearrangements that separate the genes from their flanking heterochromatin such genes are misregulated. Mutations in several loci that cause suppression of classical PEV enhance the misregulation of rearranged heterochromatic genes (Hearn et al., 1991); these mutations include alleles of Su(var)2-5, the locus encoding HP1. In addition, certain pairwise combinations of PEV modifiers including Su(var)2-5 result in misregulation of the heterochromatin gene light, when light remains in its normal chromosomal position (Clegg et al., 1998). Normally, HP1 may simply function as an organizer of higher order chromatin structure in the nucleus. This organizing property could serve to accommodate the transcription of genes that normally reside within heterochromatin. When the normal organization of heterochromatin is lost, through rearrangement to euchromatin or by depletion of structural subunits, misregulation of hetero-
chromatic genes would result. Conversely, rearrangements that place euchromatic genes next to a heterochromatic breakpoint could make genes near the breakpoint exposed to assembly into HP1-dependent heterochromatin, silencing those genes by template compaction.

1.8 Objectives of the research

The HP1 family of proteins represents the best-characterized heterochromatin-associated nonhistone chromosomal protein family in the eukaryotic kingdom. Its remarkable evolutionary conservation suggests a fundamental role for HP1 proteins in nuclear organization. The role of HP1 proteins in mediating position-effect silencing has proven especially useful in genetic strategies aimed at identifying candidate partners for HP1 in heterochromatin assembly. Future work on HP1 and its partners will be directed at defining its partial role as a subunit of heterochromatin, as a cofactor in gene regulation, and perhaps as an essential player in the dynamic organization of nuclear architecture.

Much of the work on underpinning the role of heterochromatin has been done in genetically tractable organisms such as the fruitfly, D. melanogaster and the yeast, S. pombe. In humans immunological studies with antibodies have elucidated the structure of the centeromere/kinetochore through the cell cycle. It would be useful if there were a biochemical system available for the molecular characterisation of heterochromatin formation.

In my study, I employed the South African clawed-toe frog, Xenopus laevis, as a vertebrate model system to address two questions. First, is HP1 protein necessary for Xenopus development? Second, What are the molecular partners for HP1? Xenopus
laevis is a gentle fresh water animal that can be induced by simple hormone injection to lay eggs repeatedly. In addition, their large size of embryos, which allows micromanipulation and microinjection, and rapid rate of development make *Xenopus* an excellent animal for analysing early vertebrate development. A typical example is the studies in Polycomb family, which has been addressed in developmental function using a *Xenopus* as a vertebrate model (Rijnen et al., 1995; Strouboulis et al., 1999).
Chapter 2 Materials and methods

2.1 The methods for molecular biology

2.1.1 5' RACE (5' -end of rapid amplification of cDNA ends)

5'-end of rapid amplification of cDNA ends is a procedure for amplification of nucleic acid sequences from a messenger RNA (mRNA) template (xHP1α, γ, in my cases) between a defined internal site and unknown sequences at 5'-end of the mRNA. The procedure is summarised in Figure 2-1. First strand cDNA is synthesised from total RNA using HP1α or γ specific primer (HSP1) and Reverse transcriptase. After first strand cDNA synthesis, the original mRNA template is removed by treatment with Rnase H, which is specific for RNA: DNA heteroduplex, and RNase T1. Unincorporated dNTPs, HSP1 and proteins are separated from cDNA using spin cartridges. A homopolymeric tail is then added to the 3'-end of the cDNA using dCTP and TdT (*terminal deoxynucleotidyl transferase*). PCR amplification is accomplished using Taq polymerase, and a nested, HP1 α or γ specific primer (HSP2) that anneals to a site located within the cDNA molecule, and a deoxyinosine-containing anchor primer. Deoxyinosine has the capacity to base-pair with all four bases. The selective placement of deoxyinosine residues in the 3' region of the anchor primer maintains low stability on the primer's 3' end and creates a melting temperature (Tm) for the 16-base anchor region (66.6 °C). This maximizes specific priming from oligo-dC tail, minimizes priming at internal C-rich regions of the cDNA.
Chapter 2 Materials and Methods

Materials and Methods

Anneal first strand primer, HP1 specific primer 1 (HSP1)

Copy mRNA into cDNA
With RNA transcriptase

Degrad RNA with RNase.
Purified cDNA

Tail purified cDNA with dCTP using TdT (terminal deoxynucleotidyl transferase)

PCR amplify dCTP-tailed cDNA using the abridged anchor primer and HP1 specific primer 2 (HSP2).

Figure 2-1 Overview of the 5' RACE procedure
Chapter 2 Materials and Methods

The primers for 5’RACE

5’RACE abridged anchor primer

\[
\begin{array}{c}
\text{MluI} & \text{SpeI} \\
5’ & 3’ \\
\text{GGC CAC GCG TCG ACT AGT ACG GGI IGG GII IIG} \\
\text{SalI}
\end{array}
\]

HSP1 α

5’-CGA GGC AGG TAG GGA GAG TAG G

HSP2 α

5’-GTG TGT GTC TGA ATG AAGAAG G

HSP1 γ

5’-AAT CTT GAA GGT TCC TGA AGTG

HSP2 γ

5’-TTT ATTGTG CTT CAT CCT CTG G

2.1.2 Sequencing

The services of DNA sequencing are provided by the Department of Veterinary Pathology in University of Edinburgh.

2.1.3 Bacteriological solutions

LB (Luria-Bertani) medium 1 litre

10 g Bacto®-tryptone
5 g Bacto®-yeast extract
10 g NaCl

LB plates

Add 15 g of Bacto®-agar to one litre of LB medium. Autoclave. Allow to cool
to 50°C before adding appropriate antibiotics.

TB (Terrific Broth)

- 12 g Bacto®-tryptone
- 24 g Bacto®-yeast extract
- 4 ml glycerol

Dissolve the above components in approximately 900 ml water. Autoclave this solution and let the solution cool, add 100 ml TB salt solution (0.017 M KH₂PO₄, 0.072 M K₂HPO₄) and adjust the final volume to 1000 ml.

2.1.4 Preparation of competent cells

1. Inoculate 10 ml of LB medium (with a single colony). Incubate at 37°C for 12-16 hours with vigorous shaking.
2. Using a 2 litre flask, inoculate 500 ml of LB medium with 5 ml of cells from the overnight culture.
3. Shake the culture at 150-200 rpm at 37°C until A₆₀₀ reaches 0.45-0.55.
4. Chill the cells in ice for 10 minutes and then spin down at 5 Krpm, 4°C for 5 minutes.
5. Resuspend the cells in 10-20 ml of ice-cold trituration buffer (100 mM CaCl₂, 70 mM MgCl₂) then dilute to 50 ml with the same buffer.
6. Incubate the cells on ice for one hour.
7. Centrifuge the cells at 1,800×g for 10 minutes and gently resuspend in 50 ml of ice-cold trituration buffer.
8. Pool the cells and add 80% glycerol dropwise with gentle swirling to a final concentration of 15% (v/v). Aliquot the cells in 0.2-1.0 ml quantities, freeze on dry ice and store at -80°C.
Table 2-1 Genotype of bacterial strain used in this work

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>XL-blue MRF</td>
<td>△(mcrA)183 △(mcrCB0hsdSMR-mrr)173 endA1 upE44 thi-1 recA1 gyrA96 relA1 lac[F' pro AB lac]Z△M15Tn10(Tet)</td>
</tr>
<tr>
<td>BL21(DE3)pLys</td>
<td>F', ompT, hsdSb (rB~ , mB~) , dcm , gal , λ(DE3) , pLys (Cam')</td>
</tr>
<tr>
<td>BL21CodonPlus(DE3)-RIL</td>
<td>F', ompT, hsdSb (rB~ , mB~) , dcm , Tet' , gal , λ(DE3) , endA The[argU ileY leuW Cam']</td>
</tr>
</tbody>
</table>

2.1.5 Transformation of competent cells

1. Thaw a 200μl aliquot of competent cells on ice.

2. Add 1 ng of DNA (approximately 1μl of the ligation reaction) to the competent cells and mix gently. Incubate on ice for 30 minutes.

3. Heat the tube at 42°C for 2 minutes. Place on ice to cool for 2 minutes.

4. Add 0.5 ml LB medium and incubate for 45 minutes at 37°C.

5. Plate 100-200 μl of the transformation mix onto selection plate (LB plate containing appropriate antibiotics, like ampicillin)

2.1.6 Plasmid DNA minipreps

2.1.6.1 Telt miniprep

1. Grow bacteria culture from a single colony in LB medium containing an appropriate antibiotic for 12-16 hours.

2. Spin down 2-3 ml in microcentrifuge tubes.

3. Resuspend in 600 μl TELT solution (50 mM Tris-HCl pH7.5, 62.5 mM EDTA, 2.5 M LiCl, 0.4% (v/v) Triton X100).

4. Add 40 μl 100mg lysozyme in TELT. Leave at room temperature for 2 minutes.

5. Heat the tubes at 100°C for 2 minutes.

6. Spin the tubes at top speed at a bench top centrifuge for 15 minutes.

7. Remove supernatant to fresh tubes. Add 0.6 volume of isopropanol and incubate
on ice for 2 minutes.

8. Spin the tubes at top speed at a bench top centrifuge for 20 minutes.

9. Wash the pellet in 70% (v/v) ethanol and air dry.

10. Resuspend the pellet in 100 μl TE buffer (10mM Tris-HCl, 1 mM EDTA, pH 8.0)

2.1.6.2 Miniprep purification kits

A commercial kit (Bio/Spin, Biogene) was also used in order to have higher quality of plasmid DNA preparation.

2.1.7 Subcloning and expression constructs making

5'RACE generated full-length xHP1α and xHP1γ DNA fragments were subcloned into a T vector, pXT [pGEM 7Zf based (Promega), modified by Harrison et al., 1994) and fully sequenced. PCR was used to generate full-length xHP1α and xHP1γ DNA fragments by designing sequence specific primers with NcoI restriction sites at the 5' end and BamHI at 3' end. These products were subcloned in-frame into pXT vectors then the fragments were released from the vector by NcoI and BamHI double digestion. Run the whole digested reaction into agarose gel and recover the released xHP1 DNA fragments from the gel using spin columns (Biogene). These products were then subcloned in-frame into the pET6H vectors [pET11D based (Novagen), modified by Cross et al. 1994) and the pGEX-2T vectors (Pharmacia Biotech).

PCR was also used to generate GST tagged constructs by designing sequence specific primers with EcoRI restriction sites at the 5' end and 3' end. These products were then subcloned into pXT vectors and relocated in-frame into the pGEX-2T vector (Pharmacia Biotech).
PCR primer for constructs making:

Nco-HP1α: 5’-GAC TGC CAT GGA CGC CAGTGACAC T
Bam- HP1α: 5’-AATATGGAT CCA ATG AAG AAG GGA AA
Nco-HP1γ: 5’-GCATGC CAT GGG GAA GAA ACA GAA T
Bam- HP1γ: 5’-ATA TGG ATC CTC ATC TCT TGG ACA A

5’GST - HP1α: 5’-TTT CGG AGA ATT CAA ATG GAC GCC AGT GAC
3’GST- HP1α: 5’-GTT AAA AGA ATT CTT TAA CTT TTC ACC GCT
3’GST-HP1α-CD: 5’-TCTTTGG AATTCG GCT CAG CCT CCT TCG CTT TCT
3’GST-HP1α-CD+H: 5’-TGT CAG AAT TCT CTC TCC TCC TCT TTG CCT TAA
5’ GST-HP1α-H+CSD: 5’-GAA GGG AAT TCA GCC AAA AGC CAA GAC GGA GAG
5’ GST-HP1α- CSD: 5’-AAA GAG AAT TCG AGA GAG CAA TGA CAT CTC
3’ GST- HP1α: 5’-TGA GAG TGA ATT CCC ATG GGG AAG AAA
5’ GST-HP1γ-H+CSD: GGC AGG ATT TCA AAA ACC AGA CAG CAA CAA
3’ GST- HP1γ: 5’-TGC AAG CGA ATT CAT TTA TTG TGC TTC ATC

2.1.8 Recombinant protein expression

1. Transformed the recombinant DNA plasmid into BL21(DE3)pLysS or BL21 codonplus® (Stratagene)

2. Pick recombinant colonies and grow them overnight at 37°C in 50 ml of LB medium containing the appropriate antibiotic.

3. The next day remove 10-20 ml and inoculate into 500 ml of fresh LB medium containing the antibiotic. Allow the culture to grow at 37°C to an A600 of 0.6.
4. Add 100mM IPTG to the bacterial culture to a final concentration of 0.5 mM

5. Incubate the culture for an additional 2-4 hours at 25 –30°C.

6. Harvest the cells by centrifugation at 8000×g for 10 minutes. Immediately proceed with the purification or freeze the cells at -20°C for later use.

7. Resuspend the cells by stirring 25 ml of PBS (GST tagged) or start buffer (6×histidine tagged). **PBS**: 140 mM NaCl, 2.7 mM KCl, 10 mM Na₂HPO₄, 1.8 mM KH₂PO₄. **Start buffer**: 20 mM Na₂HPO₄, 0.5 M NaCl, pH 7.4.

8. Sonicate the suspension on the ice bath using 30-second pulse with 15-second rest between pulses for 4 minutes.

9. Centrifuge the crude lysate at 10,000×g for 15 minutes at 4 °C to remove cellular debris. Clarify the sample by filtering the supernatant through 0.45 µm filter before apply to a column.

2.1.9 Purification of recombinant protein

2.1.9.1 Purification of glutathione S-transferase fusion protein

1. Remove sufficient gel (1 ml for 500ml culture) of glutathione Sepharose 4B (Pharmacia Biotech) for use and transfer to an appropriate column.

2. Equilibrate the gel bed with 3 bed volume PBS (140 mM NaCl, 2.7 mM KCl, 10 mM Na₂HPO₄, 1.8 mM KH₂PO₄)

3. Apply the sample to the column and incubate with gentle agitation for 30 minutes. Discard the eluent. Wash the column three times with 10 bed volumes of PBS.

4. Elute the bound material three times with 5 bed volumes of elution buffer (10-100 mM Glutathione in PBS) and collect the fractions.

5. Analyse the eluted protein using SDS-PAGE and western blotting.
2.1.9.2 Purification of 6xhistidine fusion protein

1. Remove enough volume of chelating sepharose (Pharmacia Biotech) and transfer to an appropriate column. Wash the gel three times with five-bed volume of water.
2. Charge the gel with 0.5 gel volume of 0.1 M NiSO₄ solution for 15 minutes.
3. Wash the gel three times with five gel-bed volume of H₂O. The equilibrate the gel with start buffer (20 mM Na₂HPO₄, 0.5 M NaCl, pH 7.4)
4. Apply the sample to the column and incubate with gentle agitation for 30 minutes.
5. Wash the column three times with 10 bed volumes of start buffer.
6. Elute the bound material using 5 different elution-buffers with gradually increased L-histidine concentrations (10-100 mM) and collect the fractions.
6. Analyse the eluted protein using SDS-PAGE and western blotting.

2.2 The methods for biochemical manipulation

2.2.1 Antibody production and purification

2.2.1.1 Immunising rabbit with fusion protein

Approximately 100µg of purified His-xHP1α or His-xHP1γ were emulsified with an emulsified with an equal volume of adjuvant (TiterMax®, CytRx) by votexing. (Total volume of sample + adjuvant + 1 ml). The samples then were sent to Scottish Antibody Production Unit (SAPU) to immunise two rabbits (one for His-xHP1α and one His-xHP1γ). The immunization programme was design by SAPU. The bloods were taken form the two rabbit after 4-week immunisation to obtain serums. The serums were stored frozen at -80°C for later use.

2.2.1.2 Affinity purification of antibodies

The sample containing antigen (in this case, a preparation of recombinant xHP1α or xHP1γ) was separated SDS-PAGE in a 10% gel (the sample was loaded
into all of the wells on the gel and transfer onto a nitrocellulose membrane. The membrane was stained in 0.2% Ponceau S in 0.5% acetic acid for 5 minutes then washed in water to remove the background staining. The band corresponding to the antigen (in this case the GST fusion xHP1α or xHP1γ appeared a broad band on the blot) was carefully excised from the blot using a scalpel. The Ponceau Swas removed from the affinity strip by washing in TBS (50 mM Tris-HCl, 150 mM NaCl, 0.5% Tween 20) several times (It is important to be able to determine which side of the strip has the antigen bound to it, especially once the Ponceau S is removed). The affinity strip was then incubated in blocking buffer (3% semi-skim milk in TBS) for 90 minutes in order to block any non-specific site on the membrane and then washed in TBS. The affinity strip was placed into a 15 ml Falcon tube full with immune serum and then was shaken gently at room temperature for 2 hours. The strip was remove from the serum and was washed three times for 5 minutes each in TBS to remove any unbound antibodies that may have been present. The antibodies specially bound to the antigen were removed from the strip by placing elution buffer (0.2 M glycine-HCl, pH 2.8) onto the strip (as much as could be held on the strip by surface tension) for 20 minutes. The elution buffer containing the eluted antibodies was removed from the affinity strip and neutralised immediately by adding an equal volume of 0.1 M Tris-HCl, pH 8.5. These affinity purified antibodies was store at 4 °C after addition of 0.1% sodium azide to them. If the affinity strip were to be reused, it was washed in TBS and stored at 4°C in TBS, 0.1% sodium azide.

2.2.2 Chemical Cross-linking of xHP1 proteins

The cross-linker was glutaraldehyde, which has a dialdehyde. Its two aldehyde-groups can react with amino and other group in protein and can thus form cross-links
two molecules. The purified histidine-tagged xHP1α and xHP1γ proteins were dialysed into a phosphate buffered saline (PBS) and then incubated for 30 minutes at room temperature with a titrated amount (1-50 mM) of glutaraldehyde, and separated in SDS-PAGE. The same samples were also transferred onto nitrocellulose membranes and the recombinant proteins were visualized by western blotting with an anti-histidine tag antibody.

2.2.3 Preparation of chicken chromatin and chicken chromatin DNA

540 µl Chicken erythrocyte nuclei were digested with 60 unit/ml micrococcal nuclease for 20 minutes at 37 °C in nuclease digestion buffer (250 mM sucrose, 10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl₂, 0.1 mM PMSF). The nuclease was activated by adding 1 mM CaCl₂ at 37°C. Digestion was stopped in digestion buffer + 5 mM EDTA. The nuclei were gently centrifuged down at 2 Krpm for 2 minutes.

The nuclei then were lysed by resuspending in a resuspending buffer (10mM Tris-HCl pH 7.4, 10 mM NaCl, 0.2mM EDTA), vortexing and pelleting. The pellet was washed twice in 150 µl of the resuspending buffer. The prepared ‘chicken chromatin’ was in the two supernatants, which were then pooled together and adjusted to 500 µl.

67 µl of chicken chromatin was digested with proteinase K and followed phenol-chloroform extraction, ethanol precipitation. The pellet was redissolved in 67 µl TE buffer (10mM Tris-HCl pH 7.4, 10 mM NaCl, 0.2 mM EDTA) as chromatin DNA.

292 µl of the chicken chromatin was bound onto 0.275g hydroxylapatite (HAP) in a binding buffer (10 mM KP pH 6.8). Linker histone was depleted by extracting
the HAP-chromatin with an extraction buffer (600 mM NaCl, 10 mM KP). ‘Depleted H1/H5 chromatin’ was eluted from HAP in an elution buffer (150 mM KP pH6.8).

Half of depleted H1/H5 chromatin (62 μl) was digested with 50 μg/ml of trypsin for 8 minutes at 37°C. Digestion was stopped with 200 μg/ml of TLCK on ice. The sample was the ‘trypsinised chromatin.’

2.2.4 Protein translation *in-vitro* using Rabbit Reticulocyte Lysate system

Denature the template mRNA (transcripts of *in-vitro*-translated xHP1α or xHP1γ) at 65°C for 3 minutes and immediately cool in an ice-water bath. This increases the efficiency of translation, especially of GC-rich mRNA, by destroying local regions of secondary structure. Gently mix the rabbit reticulocyte lysate by stirring with a pipette tip upon addition of each component. Assemble the following reaction components to 0.5ml polypropylene microcentrifuge tubes.

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rabbit Reticulocyte Lysate (Promega)</td>
<td>35μl</td>
</tr>
<tr>
<td>Amino Acid Mixture, Minus Methionine, 1mM (Promega)</td>
<td>1μl</td>
</tr>
<tr>
<td>[35S] methionine (1,200Ci/mmol)(Pharmacia Biotech)</td>
<td>2μl</td>
</tr>
<tr>
<td>Ribonuclease Inhibitor (40u/μl) (MBI)</td>
<td>1μl</td>
</tr>
<tr>
<td>RNA substrate in water (xHP1α or xHP1γ) (1μg/μl)</td>
<td>2μl</td>
</tr>
<tr>
<td>Nuclease-Free Water to a final volume of 50μl</td>
<td></td>
</tr>
</tbody>
</table>

Immediately incubate the translation reactions at 30°C for 90 minutes. Analyze the results by separating the whole lysate using SDS-PAGE and of translation and detecting 35S labeled proteins by autoradiography.
2.2.5 Labelling PE190 *Xenopus* satellite clone

PE190 *Xenopus* satellite DNA clone was digested with *Hind* III to release the satellite insert from the vector. Both the satellite DNA and the vector were then labeled with 32P-α CTP with the following protocol.

4 μg of digested DNA in 10-15μl of water

Add:

2 μl 10× reaction buffer (500mM Tris-HCl pH 8.0, 50 mM MgCl2, 10mM DTT)
20 μCi 32P-α dCTP
2.5 μl 2 mM dNTP (without dCTP) (0.25 mM-final concentration)
1 unit Klenow fragment
Deionised water to 20 μl
Incubate the mixture at 30°C for 15 minutes.
Stop the reaction by heating at 70°C for 10 minutes.

2.2.6 GST pull-down assay

Targets for pull-down reactions

- Chicken chromatin (In cooperation with Dr. Sari Pennings)
- Chicken chromatin DNA (In cooperation with Dr. Sari Pennings)
- Core histones (a gift of Dr. James Allan)
- PE190 *Xenopus* satellite DNA clone
- 6× histidine tagged recombinant xHP1α or xHP1γ
- *In vitro* translated 35S-labelled xHP1α or xHP1γ

Materials

- Glutathione Sepharose 4B
- GST tagged proteins
 - GST-xHP1α, GST-xHP1α-CD, GST-xHP1α-CD+H, GST-xHP1α-H+CSD,
 - GST-xHP1α-CSD
 - GST-hHP1α, GST-hHP1α-CD
GST-xHP1γ, GST-xHP1γ-H+CSD

Buffers

- 10× HEPES buffer: 100mM HEPES, 100mM KCl, 5mM EGTA
- 1× HEPES: 10mM HEPES, 10mM KCl, 0.5mM EGTA, 1mM DTT, 10% glycerol, Cocktail proteinases inhibitor

Protocol

1. Sepharose preparation (Glutathione Sepharose 4B, Pharmacia Biotech)
 - Use 25μl sepharose for each reaction. Wash a fresh aliquot of sepharose (in 20% ethanol) 3 times using 1× HEPES buffer and aliquot into 1.5 ml microcentrifuge tubes. Spin down the Sepharose at 8K rpm.

2. Immobilize GST fusion proteins on the Sepharose.
 - Use 5~10 μg protein for each reaction. Mix GST fusion protein with the washed Sepharose and incubate at room temperature for 30 minutes with shaking, then wash the protein-Sepharose matrix 3 times using 1× HEPES buffer. Then aliquot the Sepharose into 1.5 ml microcentrifuge tubes.

3. Add 1× HEPES buffer to the microcentrifuge with the protein-Sepharose matrix to a total volume of 200 μl. For different incubation condition, a different incubating buffer should be used.

4. Add 5μg of chicken chromatin/targeted proteins to the above 200 μl of the protein-Sepharose matrix and incubate at room temperature for 1 hour with shaking; then spin down the sepharose. Remove the supernatants into fresh microcentrifuge tubes and retain it for the following step.

5. Wash the pellet fraction 3 times using 1× HEPES buffer and add 200 μl 1× HEPES buffer back to the bead.

6. For the chromatin pull-down: digest both the pellet and supernatant fractions
respectively using proteinase K; followed by phenol/chloroform extraction, ethanol precipitation. Analyse the chromatin DNA on a 1.5% agarose gel.

6.2 For the protein pull-down: followed the final wash, mix the pellet with the protein sample buffer (see SDS-PAGE protocol) and analyse the targeted protein in SDS-PAGE.

2.2. 7 Histone H3-tail pull down

Targets for pull-down reactions

- GST-xHP1α-CD
- GST-xHP1α
- GST-hHP1α
- His-xHP1γ

Affinity matrices were generated and the pull-down reactions were performed by the same protocol with that in the GST pull-down assay but using tetrameric avidin resin preparation (TetraLink™, Promega) and biotinylated amino acids 1-21 of histones H3 either in the unmodified or dimethylated at lysine 9. A resin of 25 µl containing 0.1 mg of peptides was used for each pull-down reaction.

2.2.8 SDS-polyacrylamide gel electrophoresis

Standard SDS-PAGE gel preparation

1. Pour the separating gel

Set up the gel apparatus, prepare separating gel monomer. Add TEMED just prior to pouring gel. Allow to polymerize before adding stacking gel by overlaying gently with water.
2. Pour the stacking gel

After the separating gel has polymerized, decant the overlay, prepare the stacking monomer, add the TEMED, and pour. Insert the comb and allow to polymerize completely before running.

Stacking Gel, 4% gel in 0.125 M Tris, pH 6.8

<table>
<thead>
<tr>
<th>Component</th>
<th>% 4%</th>
<th>% 0.125 M Tris</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distilled water</td>
<td>3.300 ml</td>
<td>10 ml</td>
</tr>
<tr>
<td>1.5M Tris-HCl, pH 8.8</td>
<td>1.250 ml</td>
<td>10 ml</td>
</tr>
<tr>
<td>10% SDS</td>
<td>0.05 ml</td>
<td>10 ml</td>
</tr>
<tr>
<td>Acrylamide/Bis-acrylamide (30%/0.8% w/v)</td>
<td>0.670 ml</td>
<td>10 ml</td>
</tr>
<tr>
<td>Ammonium persulphate</td>
<td>0.015 ml</td>
<td>10 ml</td>
</tr>
<tr>
<td>TEMED</td>
<td>0.025 ml</td>
<td>10 ml</td>
</tr>
<tr>
<td>Total Stack monomer</td>
<td>5 ml</td>
<td>10 ml</td>
</tr>
</tbody>
</table>

3. Sample buffer

Dilute samples at least 1:4 with sample buffer, heat at 95°C for 5 minutes prior to loading.
Sample buffer

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distilled water</td>
<td>4.0 ml</td>
</tr>
<tr>
<td>0.5 M Tris-HCl</td>
<td>1.0 ml</td>
</tr>
<tr>
<td>Glycerol</td>
<td>0.8 ml</td>
</tr>
<tr>
<td>10% SDS</td>
<td>1.6 ml</td>
</tr>
<tr>
<td>β-mercaptoethanol</td>
<td>0.4 ml</td>
</tr>
<tr>
<td>bromophenol blue</td>
<td>0.2 g</td>
</tr>
</tbody>
</table>

4. Running the gel

Run the gel at constant voltage, 200V in 1× running buffer

5× Running Buffer, pH 8.3

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris Base</td>
<td>15 g</td>
</tr>
<tr>
<td>Glycine</td>
<td>72 g</td>
</tr>
<tr>
<td>SDS</td>
<td>5 g</td>
</tr>
<tr>
<td>Distilled water to 1 litre</td>
<td></td>
</tr>
</tbody>
</table>

2.2.9 Western blotting

Run a normal SDS protein gel on a small BioRad protein gel system. Then soak the gel in 1× transfer buffer (0.025 M Tris-HCl, 0.192 M glycine) for ten minutes to leach out the SDS in the gel. At the same time presoak a nitrocellulose membrane and two sheets of 3MM papers in the same buffer.

Transfer protein from the gel to the nitrocellulose membrane using BioRad transfer apparatus in the same transfer buffer at 200 mA for one hour. For core histones transfer, use a different transfer buffer: 0.025 M Tris-HCl, 0.192 M glycine, 0.1 % SDS, 20% methanol and transfer at 230 mA for 2 hours.

After transfer wash the membrane with water and then block the membrane with a blocking buffer [2-5 % semi-skim milk (Marvel, Nestle) in TBS (50 mM Tris-HCl pH7.4, 150 mM NaCl)] for at least one hour in order to block any non-specific site on the membrane and then wash in TBS.
Chapter 2 Materials and Methods

Incubate 1-4 hours (to overnight) with a proper dilution of primary antibody in the blocking buffer and then wash the membrane three times in TBS/0.5% Tween 20 (BDH), 15 minutes for each wash.

Followed a suitable secondary antibody incubation (conjugated with horse radish peroxidase, diluted in the blocking buffer) for one hour and then wash the membrane three times in TBS, 15 minutes for each wash.

Detect the desired signal using an ECL detection reagent (Pharmacia Biotech); follow the instruction provided by the manufacturer.

2.2.10 Far-western blotting

Run a 15 % normal protein gel of chromatin (including H1/H5) and core histones and transfer proteins on a nitrocellulose membrane. Block the membrane in an incubation buffer (50 mM Tris-HCl pH 7.5, 100 mM NaCl, 1 mg/ml BSA, 0.5% Tween 20) for one hour at room temperature. Incubate the blocked membrane with the incubation buffer plus 0.5 μg/ml of GST-xHP1α, the protein probe.

Wash the membrane three times with TBS/0.5% Tween 20, 15 minutes for each wash. Then incubate the membrane with a 1/5000 anti-GST antibody conjugated with peroxidase (Sigma) diluted in blocking solution.

After the incubation, wash the membrane three times with TBS/0.5% Tween 20, 15 minutes for each wash. Then develop the membrane with ECL system (Pharmacia Biotech).

2.3 The methods for developmental studies

2.3.1 Isolation of DNA from red blood cells

Collect the blood in a beaker containing 0.85×SSC from frogs and centrifuge
Chapter 2 Materials and Methods

the blood at about 2000rpm to collect the red blood cells. Pour off the supernatant and partially resuspend the pellet in the residue supernatant and lyse the cells in reticulocyte standard buffer (RSB) (10 mM NaCl, 10 mM Tris-HCl pH 8, 5 mM MgCl₂) containing 0.05% Nonidet P-40 (NP-40). Start with a small volume (~5ml), resuspend cells and then increase volume to approximately 50ml. Hold the sample on ice for 1 minutes and collect the nuclei by centrifuging at about 2000rpm. Pour off the supernatant gently and resuspend the loose pellet by vortexing. When the nuclei are thoroughly resuspended, adjust the volume to 50 ml with RSB containing 0.05% NP-40. Repeat the centrifugation and resuspending the nuclei few times until the nuclear pellet is white. Resuspend the pellet and add proteinase K to a final concentration of 200 μg/ml. Add one volume of 0.6 M NaCl, 20mM Tris-HCl (pH 7.4), 20 mM EDTA, and 1% SDS and mix thoroughly. Precipitate the DNA by adding 0.25 volume of 10 M ammonium acetate and mixing thoroughly.

Use a thin glass rod to spool the DNA out of the mixture and put the DNA into 70% ethanol and wash the DNA by gently inverting the tube until it is completely white. Draw off the ethanol and resuspend the DNA at an estimated concentration of 200 μg/ml.

2.3.2 Southern blotting

Alkaline Transfer

Electrophoresis EcoRI, BamHI and HindIII digested Xenopus genomic DNA in 1.5% agarose gels to separate the DNA. The gels then are rinsed in sterile water and subject to a transferring step. To perform the transfer, the gels are transferred to a buffer reservoirs containing supporting wicks (3MM Whatman paper) and alkaline transfer solution (0.4 M sodium hydrochloric acid). Dry transfer membranes
(Biodyne membrane, Pall) are placed directly on the gel. The transfers are allowed to proceed for overnight.

Hybridisation

After the transfer, remove the membrane from the gel surface. The membranes are fixed by exposure to 1000 µjoules of UV radiation. Then membranes can be hybridised with proper 32P-labelled probes in hybridisation buffer (1 mM EDTA, 0.5 M Na$_2$HPO$_4$ pH 7.2, 7% SDS) at 65°C with agitation for overnight.

Washes

1. Wash the membrane at 65°C, 2 times for 60 minutes each in the following

 1 mM EDTA, 40 mM Na$_2$HPO$_4$ pH7.2, 5% SDS

2. Wash the membrane at 65°C, 2 times for 60 minutes each in the following

 1 mM EDTA, 40 mM Na$_2$HPO$_4$ pH7.2, 1% SDS

3. After washing, the blotted membranes are ready for autoradiography.

2.3.3 Obtaining Xenopus embryos

Eggs were collected manually from female frogs one day after inducing ovulation by injection of human chorionic gonadotropin (hCG) into the dorsal lymph sac. Eggs are maintained in 1x MBS (88 mM NaCl, 1mM KCl, 0.7 mM CaCl$_2$, 1mM MgSO$_4$, 5 mM HEPES pH 7.8 and 2.5 mM NaHCO$_3$). Using freshly prepared testis does the in vitro fertilisation. The first sign of fertilisation (within a few minutes) is a contraction of the pigmented animal hemisphere to less than one half of the egg. Approximately 20 minutes after fertilisation the eggs rotate within the vitelline membrane so that the animal hemisphere faces upward.
Alternatively embryos can be obtained using natural mating. Induce females’ ovulation by injecting with 500-800 units of hCG and stimulate male sexual activity by injection of 50 units of hCG a few days before mating. Males and females can be allowed to mate naturally in containers. Natural mating is convenient way to obtain many different stages of embryos at once.

After the first cleavage, dejelly the embryos by swirling gently in 1× modified Marc’s Ringer (MMR) with 2% (w/v) cysteine at pH 8.0 [MMR: 0.1M NaCl, 2.0 mM KCl, 1 mM MgSO4, 2 mM CaCl2, 5mM HEPES (pH 7.8), 0.1mM EDTA.]. Gently swirl the embryos for 2-4 minutes until the jelly membranes are visible in the solution and eggs have started to pack.

2.3.4 RNA isolation from *Xenopus* embryos

Allow the embryos to settle and resuspend in 4 volumes of premixed proteinase K mix [20 mM Tris (pH 7.6), 100mM NaCl, 30 mM EDTA, 1% SDS and 0.5 mg/ml proteinase K]. Homogenise the embryos and incubate the proteinase reaction for 1.5 hours at 37°C. Then add the same volume of a 1:1 mix of phenol: chloroform to the sample. Vortex and centrifuge the sample at 12,000g for 5 minutes. Transfer the aqueous phase to a fresh tube. Extract the sample by another 1:1 of phenol: chloroform again and repeat the extraction two more times. Transfer the aqueous layer to a fresh tube and added 2.5 volumes of ethanol and collect the precipitated nucleic acid by centrifuging at 12,000 for 20 minutes. Carefully decant the ethanol and resuspend in TE and add 1/10 volume of 10x NEB4 (New England Biolabs). Add RNase-free DNase I to the concentration of 1unit/200 μl and incubate for 20 minutes at room temperature. Stop the DNase reaction by extracting with 2 volume of a 1:1 mix of phenol: chloroform and then 2 volume of chloroform. Transfer the
aqueous phase to a clean tube and add 135 μl per 400 μl sample of 10 M LiCl (autoclaved). Store at 4°C for several hours, or overnight. LiCl will highly preferentially precipitate RNA.

Centrifuge the sample for 20 minutes at 12,000g. Carefully discard the supernatant and resuspend the pellet in distilled water. Add 2.5 volumes of ethanol and 0.1 volume of sodium acetate (3M, pH4.8). Collect the precipitate RNA by centrifugation and redissolve the RNA in distilled water. Determine the concentration and quality of the solution by measuring the OD_{260/280}. Store the RNA as an aqueous solution at -80°C. Embryos contain approximately 5 μg of total RNA. This protocol routinely produces yields of 90%.

2.3.5 Preparation of RNA (In vitro transcription)

RNAs produced by in vitro transcription were introduced into embryos by microinjection and used to test the effects of overexpression, expression of dominant-negative constructs and antisense interference of gene expression. For a 20 μl reaction volume, assemble the following ingredients in a prewarmed tube.

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear template DNA (0.5-1 mg/ml)</td>
<td>2 μl</td>
</tr>
<tr>
<td>2× mRNA nucleotide triphosphate mix (6 mM ATP, CTP, UTP; 3mM GTP and 9 mM m7(5')Gppp(5')G cap analog (New England Biolabs)</td>
<td>10 μl</td>
</tr>
<tr>
<td>DTT (200mM)</td>
<td>2 μl</td>
</tr>
<tr>
<td>BSA (1mg/ml)</td>
<td>2 μl</td>
</tr>
<tr>
<td>10× mRNA transcription buffer (120 mM MgCl₂, 800mM HEPES pH7.5, 20mM spermidine-HCl)</td>
<td>2 μl</td>
</tr>
<tr>
<td>RNase inhibitor (20 units/ml)</td>
<td>0.5 μl</td>
</tr>
<tr>
<td>T7/SP6 polymerase (20 units/ml)</td>
<td>1.5 μl</td>
</tr>
</tbody>
</table>

2-22
Mix gently and incubate the reaction for 2 hours at 37°C. Then add 2 units of RNA-free DNase I and incubate for a further 10 minutes at 37 minutes. Precipitate the RNA with ethanol and resuspend in DEPC-treated water twice.

2.3.6 RT-PCR

First strand cDNA synthesis

A 20-µl reaction volume is used for 1-5 µg of total RNA. Add the following components to a nuclease-free microcentrifuge tube:

1 µl oligo (dT) 12-18 (500µg/ml)
1-5 µg of total RNA
Sterile, distilled water to 12 µl

Heat mixture to 70°C for 10 minutes and quick chill on ice. Collect the components of the tube by brief centrifugation and add

4 µl 5×First strand buffer [250mM Tris-HCl (pH8.3), 375 mM KCl, 15 mM MgCl₂]
2 µl 0.1 M DTT
1 µl 10 mM NTP Mix (10 mM each dATP, dGTP, dCTP and dTTP at pH7.0)

Mix contents of the tube gently and incubate at 42°C for 2 minutes. Add 1µl (200 unites) reverse transcriptase (GIBCOBRL, life Technology). Mix by pipetting up and down. Incubate 50 minute at 42°C. Inactivate the reaction by heating at 70°C for 15 minutes. The cDNA can be used as a template for amplification in PCR.

PCR reaction

Use 1µl of 1:10 dilution of cDNA for xHP1α and 1µl of cDNA for xHP1γ amplification. Add the following to a PCR reaction tube for a final reaction volume of 100 µl:
Chapter 2 Materials and Methods

<table>
<thead>
<tr>
<th>Amount</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 µl</td>
<td>10× PCR buffer (200 mM Tris-HCl pH8.4, 500mM KCl)</td>
</tr>
<tr>
<td>3 µl</td>
<td>50mM MgCl₂</td>
</tr>
<tr>
<td>2 µl</td>
<td>10 mM dNTP Mix</td>
</tr>
<tr>
<td>1 µl</td>
<td>5′HP1α/γ primer (10 µM)</td>
</tr>
<tr>
<td>1 µl</td>
<td>3′HP1α/γ primer (10 µM)</td>
</tr>
<tr>
<td>1 µl</td>
<td>Tag DNA polymerase</td>
</tr>
<tr>
<td>1 µl</td>
<td>1:10 dilution of cDNA for xHP1α or 1:1 cDNA for xHP1γ</td>
</tr>
<tr>
<td>80 µl</td>
<td>autoclaved, distilled water</td>
</tr>
</tbody>
</table>

The PCR programme are listed below:

- 95°C for 3 minutes for denature
- Denature: 95°C for 3 minutes
- Annealing: 51°C for 1 minutes
- Extention: 72°C for 1 minutes

Perform 36 cycles the above reaction cycle.

2.3.7 The whole mount in situ hybridisation

Reagent for in situ hybridisation

1. Nucleotide Stocks
 - 2.5 mM nucleotide mix with digoxigenin-11 UTP (Boehringer Mannheim)
 - 10 mM CTP: 10 µl
 - 10 mM GTP: 10 µl
 - 10 mM ATP: 10 µl
 - 10 mM UTP: 6.5 µl
 - 10 mM dig-11 UTP: 3.5 µl

2. MEMFA
 - 0.1 M MOPS (pH 7.4)
 - 2 mM EGTA
 - 1 mM MgSO₄
 - 3.7% formaldehyde

3. PTw
 - 1×PBS with 0.1% Tween-20

4. Triethanolamine, 0.1M (pH7.0-8.0, Sigma)
 - Make up 0.1M Triethanolamine in DEPC treated water.

5. hybridisation buffer
 - 50% formamide
 - 5× SSC
1 mg/ml Torula RNA
1× Dehart’s solution
0.1% CHAPS
6. 20×SSC, 1 litre, pH 7.0
175.3g NaCl
88.2 g sodium citrate
0.1% Tween 20
10 mM EDTA
100 μ/ml heparin
7. Maleic Acid buffer (MAB)
100 mM maleic acid
150 NaCl (pH 7.5)
8. Alkaline phosphatase buffer
100 mM Tris (pH 9.5)
100 mM NaCl
2 mM levamisol
50 mM MgCl₂
0.1% Tween

Probe synthesis

The same protocol with the preparation of RNA for *in vitro* transcription, except that using 2.5 mM dig-NTP stock instead of the 2× mRNA nucleotide triphosphate mix. After precipitating the RNA, remove the supernatant and resuspend the probe in hybridisation buffer.

Preparation of embryos

Albino embryos are prepared for in situ hybridisation by fixation with MEMFA and dehydration/storage with ethanol.

Hybridisation

1. Rehydrate fixed embryos by washing the embryos in each of the following solution for 5 minutes.
 - 75% ethanol, 25% water
 - 50% ethanol, 50% water
 - 25% ethanol, 75% PTw
100% PTw

2. Permeabilise the embryos by incubating them for approximately 15 minutes at room temperature in 10μg/ml of proteinase K.

3. Wash the embryos twice for 5 minutes in 0.1 M triethanolamine (pH 7.0-8.0; Sigma).

4. Add 12.5 μl of acetic anhydride (Sigma) and incubate for 5 minutes and repeat one more time.

5. Refix embryos for 20 minutes in PTw containing 4% paraformaldehyde and wash the embryos twice for 3 minutes in PTw.

6. Replace half volume of PTw with hybridisation buffer. (without mixing)

7. Once the embryos have settled down through the dense layer of buffer, remove the entire buffer and replace with fresh hybridisation. Incubate for 10 minutes at 60°C in a shaking water bath.

8. Replace hybridization buffer and replace with fresh hybridization buffer containing 0.5μg/ml probe. Hybridise overnight at 60°C.

9. Remove solution containing probe. Rinse the embryos for 10 minutes at 60°C in fresh hybridization buffer and then wash three times in 2×SSC for 20 minutes at 60 °C.

Antibody incubation

1. Replace 2×SSC with MAB and wash for one more time for a total 10 minutes.

2. Replace MAB with MAB containing 2% BMB locking reagent (Boeringer Mannheim) and incubate for 1 hour at room temperature with agitating.

3. Replace solution with fresh MAB containing 2% BMB blocking reagent and a 1/2000 dilution of the affinity-purified antidigoxigenin antibody coupled to
alkaline phosphatase (Boeringer Mannheim). Rock vertically overnight at 4°C.

4. Remove excess antibody by washing eight times 20-minute washes in MAB at room temperature.

5. For the chromogenic reaction, first wash embryos twice for 5 minutes at room temperature in alkaline phosphatase buffer and replace the last wash with BM purple or with alkaline phosphatase buffer containing 4.5 μl NBT and 3.5μl BCIP. Incubate at room temperature until staining becomes apparent.

6. When staining becomes apparent, replace the solution with fresh MEMFA and incubate at room temperature overnight.

7. Remove background with several washes of buffered 70% ethanol (prepare the ethanol with PTw as the aqueous component).

8. Dehydrate the embryos by incubating in two changes of methanol (5 minutes each).

9. Clear the embryos by removing most of the methanol and replacing it with 2:1 BB/BA. After the embryos settle through the BB/BA, replace with fresh BB/BA.

2.3.8 Microinjection of *Xenopus* embryos

Injection checklist

2% cysteine (w/v) in 1/3 × MMR or water, pH 8.0. Prepare fresh on day of injection.

70% ethanol (For sterilisation of instrument)

4% Ficoll in 1/3× MMR

Hairloop or blunt eyebrow knife (for pushing embryos around)

Microinjector

1/3 × MMR

1 × MMR
Chapter 2 Materials and Methods

mRNA (for injection). Prepare fresh dilution on day of injection

Injection needles (drawn-out micropipettes)

Injection dishes

Watchmakers forceps, sharp and blunt (for removing the vitelline membrane)

All of the reagents and equipment for injection and manipulation are assembled before beginning any microinjection procedure. After fertilisation, the dorsal side of the embryo can be distinguished reasonably accurately by the lighter pigmentation characteristic of the animal hemisphere. This allows specific targeting of injection.
Chapter 3 Cloning and sequencing of a candidate HP1\(\alpha\) and HP1\(\gamma\) cDNA in *Xenopus laevis*

3.1 Introduction

The molecular events, which lead to aneuploidy, will be only understood by investigating the biochemical basis of normal centromeric structures. Much of the work on underpinning the role of heterochromatin in centromere function has been done in genetically tractable organisms such as the fruit fly, *D. melanogaster* and the yeast, *S. pombe*. It would be useful if there were a biochemical system available for the molecular characterisation of heterochromatin formation. Nuclear and chromatin assembly has been reconstituted *in vitro* by using cell-free extracts from the eggs of the South African clawed toad *Xenopus laevis*, which contain large stockpiles of disassembled nuclear components intended for use during early development. Each unfertilised *Xenopus* egg contains sufficient stores for precursors to assemble up to 12,000 nuclei in the absence of *de novo* transcription. In addition the regulation of early development in *Xenopus* can be studied via the microinjection. *Xenopus* is now commonly used for development studies. A great advantage of using *Xenopus* is that its oocytes, eggs and embryos are easily obtained. In order to analyse the function of HP1 isoforms in *Xenopus*, four cDNA libraries: testis, Stage 3 oocyte, Stage 6 oocyte,
and Stage 28 embryo were screened for isolating the cDNA sequences encoding the HP1 sequences.

3.2 Results

3.2.1 Isolation of HP1 sequences

As a first step towards analysing heterochromatin proteins in *Xenopus*, the cDNAs for HP1 were isolated by standard methods. Preliminary experiments using antibodies to *Drosophila* HP1 and mammalian HP1 suggest there is HP1 in *Xenopus* oocyte extracts (R. Meehan unpublished data). Pak *et al.*, (1997) identified two subtypes of *Xenopus* HP1 homologues, HP1α, and HP1γ by a two-hybrid screen for proteins that were bound to the *Xenopus* homologue of Orc1p (Xorc1) fused to the Lex A DNA binding domain. The two clones they isolated are not full length as both lacked truncated parts of amino acid sequences in the N terminal region. The amino acid sequences of xHP1α and xHP1γ were compared to various chromo-domain containing proteins: *Drosophila* HP1, mouse HP1α, mouse HP1γ, human HP1α and human HP1γ homologues. This reveals that *Xenopus* HP1 protein is a member of the HP1 protein family and is highly conserved in evolution (Figure 5).

Following this study, a series of experiments was designed to clone the full length of *Xenopus* HP1 proteins by the Polymerase Chain Reaction (PCR) technique. Four different cDNA libraries: testis, Stage 3 oocyte, Stage 6 oocyte, Stage 28 embryo (cloned in the ZAP EXPRESS™ EcoRI/XhoI vector cloning kit, [Stratagene]) were screened. Using human HP1α and HP1γ DNA sequences as hybridisation
probes, xHP1α gene expressions were detected in testis, Stage6 oocyte, and Stage 28 embryo cDNA libraries (Data not shown). The result implies that there is abundant HP1 protein in Xenopus Stage 6 oocytes.

The strategy used was PCR amplification with a 3’ downstream specific primer and a 5’ universal primer located in the vector. This method was shown to amplify DNA methyltransferase I in the Xenopus St.28 cDNA library in this laboratory. However, no amplification of xHP1 genes in all libraries could be obtained.

Two nested-pairs of primers for xHP1α and xHP1γ were then designed to amplify truncated xHP1 cDNAs from oocyte cDNA library. The results demonstrated the existence of xHP1α and xHP1γ genes in this library. Consequently, the truncated xHP1 cDNAs were incorporated in the pET expression vector and the recombinant proteins were used to raise antibodies in rabbits against xHP1α and xHP1γ.

A subsequent strategy was to amplify the full length genes in oocyte cDNA libraries. To achieve this end, the 5’ RACE system (LIFE TECHNOLOGY) was used. Four positive PCR products were obtained from the PCR amplification of Stage 3 and Stage 6 oocyte library, two for xHP1α and two for xHP1γ (Figure 1). All the PCR products are over 750 base pairs. Following amplification, 5’ RACE products were cloned and sequenced. Both HP1α cDNAs contain an open reading frame (ORF) of 600 base pairs and the two HP1γ cDNAs contain an open reading frame of 525 base pairs. All of the ORFs start at ATG initiation cordons and in frame stop cordons, TAA. Potentially, these products include the full length of HP1 cDNAs.

To inspect the new xHP1 sequences, comparison of the newly obtained HP1 cDNAs and the published cDNA sequences (Figure 2, 3 and 4) were performed. The result shows that the new xHP1α cDNA sequence is 174 base pairs or 58 amino acids longer than the published sequences (Pak et al., 1997). However, the new
The xHP1γ cDNA sequence is only 10 base pairs or 4 amino acids longer than the previously published one. HP1 protein homologous alignments were performed with the protein sequences derived from *Xenopus laevis*, *Mus musculus* and *Homo sapiens* using GeneJockeyII software. However, for a technical reason, the GeneJockeyII software could not make an xHP1α sequences comparison. Thereafter, STRUCTURAL GENETIC matrix was used to compare the xHP1α homologues. The derived new xHP1α protein sequence shows 74% identity with that of *Mus musculus* and *Homo Sapiens* HP1α and the sequence contains the full sequences of the conserved chromo domain and chromo shadow domain (Figure 5). Both domains are 100% identical with that of *Mus musculus* and *Homo sapiens* HP1α. The comparison of HP1γ protein sequences shows a 90% identity between frog and mammalian HP1γ and 100% identity in chromo and chromo shadow domains (Figure 6). In addition, the alignment between xHP1α and xHP1γ shows 63% identity and the two protein sequences share the high conserved chromo and chromo shadow domains. To sum up, the two new xHP1 cDNAs are the full-length clones of HP1 homologues in *Xenopus laevis* and they contain the two functional chromo domains.

To examine the copy number of xHP1 DNA sequences in the frog genome, *Xenopus* genomic DNA was probed with xHP1α, xHPγ and xPolycomb2, which is also a member of the chromo protein family. As a result, both the xHP1α and xHPγ blots show simple patterns, compared to xPolycomb2. There is probably only a low copy-number of both xHP1α and xHPγ genes encoded in the *Xenopus* genome (Figure 8).

Nevertheless, there is a third isoforms of HP1 both in mammals and birds, called HP1β. In order to identify HP1β in frogs, the PCR screens were done in the *Xenopus* Stage 6 oocyte cDNA libraries. The degenerated primers were designed
from the highly conserved region of human HP1β. A number of different primers were tested in an attempt to generate specific fragments. Different strategies were tried to increase the stringency of hybridisation for example, by increasing the annealing temperatures during the PCR reaction to favour exactly matched DNA hybrids. However, in all the cases the results were difficult to analyse due to the presence of multiple PCR products.

3.2.2 HP1 expression in *Xenopus* embryos

The requirement for HP1 proteins during frog development were analysed initially by studying the expression levels of HP1 mRNA during development. To represent an entire frog’s development process, oocytes and embryos from different representative stages were collected. Those samples were including the two different stages of oocyte, 7 different stages of embryos, which were: egg, blastula, mid-blastula, gastrula, neurula, tail bud, and stage40 embryos. In addition, a liver sample from a mature male frog was also collected. The life cycle of *Xenopus laevis* development is shown in figure 9. The total RNAs in several different stages of *Xenopus* embryos were isolated by standard methods (see Chapter 2). The yields of total RNAs were determined spectrophotometrically at 260 nm. To determining the integrity of the RNAs, the RNAs were taken using equal amounts (10 µg) and run into a formaldehyde-agarose gel (Figure 10). All the RNAs exhibited the clear 28S and 18S ribosomal RNA in ethidium bromide staining with a near 2:1 ratio, indicating that no significant degradation of RNA had occurred.

To detect the expression levels of HP1 mRNAs during development, all the total RNAs were used to synthesise the first strand of cDNAs by reverse transcription
The cDNAs were amplified using xHP1α or xHP1γ primers. To determine the linear range of PCR amplification, xHP1α cDNAs were amplified using different volumes in descending order (1-7 μl) of 1:10 diluted Stage 6 oocyte first strand cDNA. A blank PCR was run for calibration purpose and to confirm the exclusion of DNA contamination from outside sources. The equivalent amount of PCR products were analysed on a 1% agarose gel followed by phosphor-imager quantification. A calibration of the quantification was performed by regression analysis using EXCEL software. The calibration showed a 0.9577 correlation coefficient and a linear range of between 0-7 μl of 1:10 dilution of first strand oocyte cDNA (Figure 11).

As a consequence of the calibration result, all the different development stages of first strand cDNA were diluted in the ratio 1:10. The xHP1α cDNA amplification was performed using 1μl of the diluted first strand cDNAs. On the other hand, histone H4 expression levels were used to normalise the HP1 expression levels since histone H4 is a housekeeping gene that is fairly constant during the developmental stages. The highest-expression levels for both mRNAs were found in two stages of oocyte maturation. These mRNAs are of maternal origin (Figure 12A, B). Each unfertilised Xenopus egg contains sufficient stores of precursors to assemble up to 12,000 nuclei and transcription in the embryo, and is activated only after the mid-blastula transition (MBT). The presence of HP1α transcripts prepared during oogenesis indicates that xHP1α is one of many essential components present during early frog-embryo development. To characterise the transcription level of xHP1α during developmental stages, the intensities of HP1α PCR products were normalised to that of histone H4 and calibrated (Figure 12C). After normalisation, the zygotic transcription of xHP1α increases right after mid-blastulation and continues to increase to its highest level during neurulation. From then on the xHP1α expression
decreases to a similar level observed during blastula stages. Noticeable was the fact that xHP1α transcripts are almost undetectable in male frog liver. This implies that xHP1α may be essential to the early development in frogs and is closely correlated to neural development.

The same approach with xHP1α was used to analyse the xHP1γ expression level in several different developmental stages. In the initial experiments, PCR amplifications were unable to detect the xHP1γ expression, probably due to their lower abundance. However, using non-diluted first strand cDNA of xHP1γ, the resultant PCR products appear at a reasonable level (Figure 13A). The highest expression is found at Stage 6 oocyte. This also implies that xHP1γ may be essential in the early development of frogs. The intensities of xHP1γ PCR products are also normalised to that of histone H4. The graphic representation of xHP1γ expression (Figure 13B) shows that the highest expression level occurs during neurulation but only 1/2 the level of xHP1α transcription at the same stage. In summary, the results suggest that in frogs both xHP1α and xHP1γ are present during early development and may be significant for neurulation.

3.2.3 Spatial distribution of xHP1 expression.

The whole mount RNA in situ hybridisation technique was used to investigate the expression patterns of xHP1α in Xenopus embryos. The experiments reveal that xHP1α is predominantly expressed in the ectoderm of blastula embryos (Figure 14). Transcripts of XHP1α were expressed throughout the entire ectoderm. By Stage 20, (neurula stage) and Stage 25 (organeogenesis), xHP1α is expressed in the dorsal cell layers but the expression almost disappears from the ventral epidermis.
(Figure 14D, E). The gene is expressed along the entire anterior-posterior axis. In the tail bud stage transcripts of xHP1α are localised in the head region, along the entire spinal chord, and in somites.

However, using whole mount in situ hybridisation was unable to detect the expression patterns of xHP1γ transcripts. This may be due to the low abundance of the transcripts. Alternatively, a purified anti-xHP1γ antibody (purification protocol see Chapter 2) was used to determine the xHP1γ protein localisation in Xenopus embryos in collaboration with my wife, Yi-Chen Lo. However, since the early-stage embryos are still filled with abundant yolky materials, Xenopus embryos are extremely fragile and the sections are not easily prepared. Therefore, only tail bud stage embryos were used for the antibody staining. The immunostaining of xHP1γ protein (Figure 15) is localised in nuclei. The distribution of XHP1γ protein is found in the region of the head, along the entire spinal chord and in somites. The ventral epidermis showed less staining.

3.3 Discussion

xHP1α and xHP1γ full length cDNA sequences were isolated and sequenced. The results demonstrate that there is probably only a low copy number of both xHP1α and xHPγ genes encoded in the Xenopus genome. The alignments of cDNA and derived protein sequences show high identities both with mouse and human homologues. The results also confirm that both the chromo domain and chromo shadow domain are highly conserved from frogs to humans during evolution. Maternal transcripts of both genes are present, but the xHP1α gene in frogs is expressed at a higher level than xHP1γ at different developmental stages. Although
the xHP1γ transcripts pattern is undetectable using \textit{in situ} hybridisation, its protein localisation reveals a similar pattern with xHP1α transcripts.
Figure 3-1. Cloning full length HP1α and HP1γ by the 5' RACE system

Figure 3-1. cDNA templates were generated from Stage 3 oocyte and Stage 6 oocyte by reverse transcription and amplified by PCR (Stage 3 oocyte; lanes 1, 2, 5 & 6), (Stage 6 oocyte; 3, 4, 7, 8 lanes) Full length PCR amplifications (1, 3, 5, 7 lane) were amplified using Taq DNA polymerase, a nested, gene-specific primer for HP1α and HP1γ respectively, and an abridged anchor primer provided with the 5' RACE system (LIFE TECHNOLOGIES). Control PCR amplifications (2, 4, 6, 8 lane) were amplified using a pairs of nested primers for HP1 α & γ, which were used to produce two short clones of HP1 α & γ for making recombinant protein to raise HP1 antibodies.
Figure 3-2. The published sequence is abbreviated to PAK-HP1α which was published in Pak’s paper (Pak et al. 1997). The short HP1α was amplified with primer pairs, which were based on the published sequence. It was expressed as a recombinant protein used to raise an antibody in rabbits. Closed boxes correspond to the conserved chromo domain and chromo shadow domain.
Figure 3-3 Comparison of the DNA sequences of Xenopus HPIγ cDNA with the published HPIγ cDNA sequence.

<table>
<thead>
<tr>
<th>Sequence</th>
<th>ATGGGAAGAAGACAGGAGAAAGTGGAGGAGAACAGCGGCGCTGAGAAATT</th>
<th>ATGGGAAGAAGACAGGAGAAAGTGGAGGAGAACAGCGGCGCTGAGAAATT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full length XHPIγ</td>
<td>ATGGGAAGAAGACAGGAGAAAGTGGAGGAGAACAGCGGCGCTGAGAAATT</td>
<td>ATGGGAAGAAGACAGGAGAAAGTGGAGGAGAACAGCGGCGCTGAGAAATT</td>
</tr>
<tr>
<td>PAK-HPIγ</td>
<td>ATGGGAAGAAGACAGGAGAAAGTGGAGGAGAACAGCGGCGCTGAGAAATT</td>
<td>ATGGGAAGAAGACAGGAGAAAGTGGAGGAGAACAGCGGCGCTGAGAAATT</td>
</tr>
<tr>
<td>Short HPIγ</td>
<td>ATGGGAAGAAGACAGGAGAAAGTGGAGGAGAACAGCGGCGCTGAGAAATT</td>
<td>ATGGGAAGAAGACAGGAGAAAGTGGAGGAGAACAGCGGCGCTGAGAAATT</td>
</tr>
<tr>
<td>Full length XHPIγ</td>
<td>ATGGGAAGAAGACAGGAGAAAGTGGAGGAGAACAGCGGCGCTGAGAAATT</td>
<td>ATGGGAAGAAGACAGGAGAAAGTGGAGGAGAACAGCGGCGCTGAGAAATT</td>
</tr>
<tr>
<td>PAK-HPIγ</td>
<td>ATGGGAAGAAGACAGGAGAAAGTGGAGGAGAACAGCGGCGCTGAGAAATT</td>
<td>ATGGGAAGAAGACAGGAGAAAGTGGAGGAGAACAGCGGCGCTGAGAAATT</td>
</tr>
<tr>
<td>Short HPIγ</td>
<td>ATGGGAAGAAGACAGGAGAAAGTGGAGGAGAACAGCGGCGCTGAGAAATT</td>
<td>ATGGGAAGAAGACAGGAGAAAGTGGAGGAGAACAGCGGCGCTGAGAAATT</td>
</tr>
<tr>
<td>Full length XHPIγ</td>
<td>ATGGGAAGAAGACAGGAGAAAGTGGAGGAGAACAGCGGCGCTGAGAAATT</td>
<td>ATGGGAAGAAGACAGGAGAAAGTGGAGGAGAACAGCGGCGCTGAGAAATT</td>
</tr>
<tr>
<td>PAK-HPIγ</td>
<td>ATGGGAAGAAGACAGGAGAAAGTGGAGGAGAACAGCGGCGCTGAGAAATT</td>
<td>ATGGGAAGAAGACAGGAGAAAGTGGAGGAGAACAGCGGCGCTGAGAAATT</td>
</tr>
<tr>
<td>Short HPIγ</td>
<td>ATGGGAAGAAGACAGGAGAAAGTGGAGGAGAACAGCGGCGCTGAGAAATT</td>
<td>ATGGGAAGAAGACAGGAGAAAGTGGAGGAGAACAGCGGCGCTGAGAAATT</td>
</tr>
<tr>
<td>Full length XHPIγ</td>
<td>ATGGGAAGAAGACAGGAGAAAGTGGAGGAGAACAGCGGCGCTGAGAAATT</td>
<td>ATGGGAAGAAGACAGGAGAAAGTGGAGGAGAACAGCGGCGCTGAGAAATT</td>
</tr>
<tr>
<td>PAK-HPIγ</td>
<td>ATGGGAAGAAGACAGGAGAAAGTGGAGGAGAACAGCGGCGCTGAGAAATT</td>
<td>ATGGGAAGAAGACAGGAGAAAGTGGAGGAGAACAGCGGCGCTGAGAAATT</td>
</tr>
<tr>
<td>Short HPIγ</td>
<td>ATGGGAAGAAGACAGGAGAAAGTGGAGGAGAACAGCGGCGCTGAGAAATT</td>
<td>ATGGGAAGAAGACAGGAGAAAGTGGAGGAGAACAGCGGCGCTGAGAAATT</td>
</tr>
<tr>
<td>Full length XHPIγ</td>
<td>ATGGGAAGAAGACAGGAGAAAGTGGAGGAGAACAGCGGCGCTGAGAAATT</td>
<td>ATGGGAAGAAGACAGGAGAAAGTGGAGGAGAACAGCGGCGCTGAGAAATT</td>
</tr>
<tr>
<td>PAK-HPIγ</td>
<td>ATGGGAAGAAGACAGGAGAAAGTGGAGGAGAACAGCGGCGCTGAGAAATT</td>
<td>ATGGGAAGAAGACAGGAGAAAGTGGAGGAGAACAGCGGCGCTGAGAAATT</td>
</tr>
<tr>
<td>Short HPIγ</td>
<td>ATGGGAAGAAGACAGGAGAAAGTGGAGGAGAACAGCGGCGCTGAGAAATT</td>
<td>ATGGGAAGAAGACAGGAGAAAGTGGAGGAGAACAGCGGCGCTGAGAAATT</td>
</tr>
</tbody>
</table>

Figure 3-3 The published sequence is abbreviated to PAK-HPIγ which was published in Pak’s paper (Pak et al. 1997). The short HPIγ was amplified with primer pairs, which was based on the published sequence. It was expressed as a recombinant protein used to raise an antibody in rabbits. Closed boxes correspond to the conserved chromo domain and chromo shadow domain.
Figure 3-4 Comparison of the derived protein sequences of Xenopus HP1α, γ with the published sequences. Closed boxes indicate the conserved chromo domain and chromo shadow domain.
Figure 3-5 Comparison of HP1 α amino acid sequences from Homo sapiens, Mus musculus, Xenopus laevis.

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>hHP1ax1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mHP1ax2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xHP1ax0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prim.cons.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hHP1ax1</td>
<td>FSEEHNTWEPEKNLDCPELISEFMKYYKMMKKEGENKKRPKSESNKSNFSNSADDIKS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mHP1ax2</td>
<td>FSEEHNTWEPEKNLDCPELISEFMKYYKMMKKEGENKKRPKSESNKSNFSNSADDIKS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xHP1ax0</td>
<td>FSEEHNTWEPEKNLDCPELISEFMKYYKMMKKEGENKKRPKSESNKSNFSNSADDIKS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prim.cons.</td>
<td>FSEEHNTWEPEKNLDCPELISEFMKYYKMMKKEGENKKRPKSESNKSNFSNSADDIKS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hHP1ax1</td>
<td>KKKRSEQSNDIARGFERGLEPEKIGATDSCGDLMLKMKWDGDLEALVKEANVCPQI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mHP1ax2</td>
<td>KKKRSEQSNDIARGFERGLEPEKIGATDSCGDLMLKMKWDGDLEALVKEANVCPQI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xHP1ax0</td>
<td>KKKRSEQSNDIARGFERGLEPEKIGATDSCGDLMLKMKWDGDLEALVKEANVCPQI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prim.cons.</td>
<td>KKKRSEQSNDIARGFERGLEPEKIGATDSCGDLMLKMKWDGDLEALVKEANVCPQI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hHP1ax1</td>
<td>VIAFYEERTWHAYPEDAENKEKETAKS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mHP1ax2</td>
<td>VIAFYEERTWHAYPEDAENKEKESAKS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xHP1ax0</td>
<td>VIAFYEERTWHAYPEDAENKEKESAKS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prim.cons.</td>
<td>VIAFYEERTWHAYPEDAENKEKESAKS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3-5 The CLUSTAL programme was used to align HP1α from human, mouse and Xenopus. The N-terminal Chromo domain and C-terminal chromo shadow domain are underlined.
Figure 3-6 The CLUSTAL programme was used to align HP1γ from human, mouse and Xenopus. The N-terminal Chromo domain and C-terminal chromo shadow domain are underlined.
Figure 3-7 Comparison of Xenopus laevis HP1 α, γ amino acid sequences. Closed boxes correspond to the conserved chromo domain and chromo shadow domain. The sequences alignment shows Xenopus HP1 α and γ have a 63% identity.
Figure 3-8. Autoradiographs of southern blots of *Xenopus laevis* DNA with *HP1α*, *HP1γ* and Polycomb2 probes.

Figure 3-8. Genomic DNA isolated from female *Xenopus* blood nuclei was digested using three different restriction enzymes, *EcoR I*, *BamH I* and *Hind III*. The DNA fragments were transferred onto nitrocellulose membranes. Membranes were hybridised with HP1α, HP1γ and polycomb2 cDNA probes.
Figure 3-9 Basic stages of *Xenopus* larvae development.

This diagram is derived from *PRINCIPLES OF DEVELOPMENT* (Wolpert, 1998)
Figure 3-10 Formaldehyde-agarose gels of total RNA isolated from different Xenopus embryo stages and liver. Total RNA from liver was isolated from mature male frog liver. Approximately 10 μg of total RNA were loaded per lane.
Figure 3-11. Calibration of reverse transcription (RT)-PCR amplifications.

Figure 3-11. *Xenopus* oocyte total RNA (4 μg) was used to make 20μl cDNA by reverse transcription. A 1:10 dilution of cDNA was made. Different volumes (1, 3, 5, 7 μl) of the diluted cDNA were amplified by PCR amplification using a pair of *Xenopus* HP1 α primers. Equivalent amounts of PCR products were loaded per lane. The intensities of each lane were quantified using a phosphorimager (FLA-200, FUJI) and calibrated by EXCEL software.
Figure 3-12 RT-PCR Analysis of HPlα Expression in Different stages Xenopus embryos.

A. HPlα expression in different stages of Xenopus embryos.

B. H4 expression in different stages of Xenopus embryos.

C. A graphical representation of HPlα expression normalised to H4 expression over different stages of Xenopus embryos. The intensities of each lane were quantified by phosphoimager (FLA-200, FUJI) and calibrated by EXCEL software.
Figure 3-13. RT-PCR Analysis of xHP1γ Expression in Different stages of Xenopus embryos.

A.

B. HP1 Expression in Different Stages
Xenopus Embryos

The equivalent cDNAs used in Figure 12 without dilution were used in the analysis of HP1γ expression. Each cDNA (1 μl) of was used to amplify HP1γ cDNA. A. Expression of HP1γ varied in different stages of _Xenopus_ embryos. B. A graphical representation of HP1γ expression normalised to H4 expression over different stages _Xenopus_ embryo. The same quantification procedures with HP1 α expressions were also applied to HP1γ expressions but adjusted for the dilution factor.
Figure 3-14. Localisation of xHP1α transcripts during early Xenopus development by whole mount in situ hybridisation

Figure 3-14. Developing embryos at Stage 6 (A), Stage 8 (B), Stage 10 gastrula (C-1, C-2), Stage 20 neurula (D-1, D-2), Stage 25 organogenesis (E), Stage 32, tailbud (F) were hybridised with antisense xHP1α probe. (G) A Stage-32 embryo was hybridised with sense xHP1α probe hybridisation as a negative control.
Figure 3-15. Localisation of xHP1γ proteins in sections of Stage 32, tail bud embryos.

A. xHP1γ proteins are detected in the head region, brain, and along the spinal chord, and tail region. B. The whole mount in situ hybridisation of xHP1γ in developing embryos Stage32, tailbud. The picture is derived form Gawantka et al., 1998.
Chapter 4 Self-association and heterologous interaction of Xenopus HP1 proteins

4.1 Introduction

Previous studies have shown that HP1 family proteins undergo self-association. This self-association implies that HP1 might form multimeric complexes to organise higher order heterochromatin structure (Ryan et al., 1999; Eissenberg and Elgin, 2000; Wang et al., 2000). This self-association has been reported for P. citri (Citrus red mite) HP1 proteins (Epstein et al., 1992), HP1hsα and mHP1α (Ye et al., 1997). Heterologous interactions between HP1hsα and HP1hsγ have also been observed (Ye et al., 1997). In the case of human proteins, the associations depend on the chromo shadow domain (CSD).

To understand the evolution of the HP1 family protein, it is essential to identify whether the Xenopus HP1 proteins have the same biochemical features with their homologues in mammals. In order to characterize the biochemical function of Xenopus HP1 proteins, xHP1α and xHP1γ were synthesized bacterially and purified by chromatography. Chemical cross-linking and GST pull-down experiments were performed to determine the propensity of the two xHP1 proteins to self-associate.

4.2 Results

4.2.1 Expression and Purification of Xenopus HP1 as recombinant proteins

When conducting the self-association experiments, it is useful to express xHP1α
and xHP1γ bacterially with different N-terminal tags. To this end, the two full-length cDNAs of xHP1α and xHP1γ were introduced into E. Coli expression vectors with two different tags: the 6×histidine tag (Cross et al., 1994) and the GST (glutathione S-transferase) tag (Amersham Pharmacia). Using standard methods (See Chapter 2) the recombinant vectors were transformed a suitable strain of E. coli and induced to express the recombinant proteins. For the histidine-tag proteins, both xHP1α and xHP1γ were not expressed to a high degree. One affinity chromatograph did not produce a high yield of protein. Therefore, additional ion exchange chromatography (anion and cation exchange) was used in order to increase the purity of the end-products (Figure 4.1, A and B; see Chapter 2). The ion exchange resulted in adequate purity of the recombinant proteins.

Both GST-fusion xHP1α and xHP1γ were expressed at the high levels in the soluble E. coli fractions using standard methods. In particular, GST-xHP1γ was expressed at a very high degree (Figure 4.1, D). Purification of the GST-xHP1α and xHP1γ was obtained by single-step affinity purification. The end-products were pure enough to perform the assays.

4.2.2 Chemical cross-linking of Xenopus HP1 proteins

As the first attempt to determine if Xenopus HP1 protein can interact with itself, chemical cross-linking reactions are tested to reveal the association. The purified histidine-tagged xHP1α and xHP1γ proteins were incubated for 30 minutes with a titrated amount of cross-linking reagent, glutaraldehyde, and separated in SDS-PAGE (Figure 4.2, A and C). The same samples were also transferred onto nitrocellulose membranes and the recombinant proteins were visualized by western blotting with an anti-histidine tag antibody (Figure 4.2, B and D).
For xHP1α, the non cross-linked starting material had a molecular weight round 28 KD in the control (lane 1, H2O added instead of glutaraldehyde). xHP1α started to produce a band with a dimer size (56 KD) at 5 mM glutaraldehyde and the monomer was much reduced with 20 mM glutaraldehyde (Figure 4.2, A and B).

Similar but distinct cross-linking patterns were obtained with xHP1γ. The dimerising process of xHP1γ was not as efficient as that with xHP1α. The non cross-linked starting material of xHP1γ displayed a band of around 21 KD at all concentrations from 0 mM to 50 mM glutaraldehyde (Figure 4.2, C). A similar result was seen with immunoblotting. xHP1γ displayed a dimer band with a size of 42 KD at 10 mM glutaraldehyde and the dimer band became stronger when the higher concentrations of glutaraldehyde were added, in this case as high as 50 mM glutaraldehyde. However, in the immunoblotting experiment, as the monomer bands faded at 30 mM and 40 mM, the dimer bands also decreased in strength. A possible interpretation for this occurrence is that a tighter aggregation might occur in xHP1γ dimerisation, so masking the histidine-tag from the antibody. This could imply that xHP1γ has a different conformation of its dimerised structure when compared with xHP1α, and also as anti-his antibody was able to detect the xHP1α dimer at the high glutaraldehyde concentration.

4.2.3 Self Association of Xenopus HP1 proteins

Mouse HP1-type proteins self-associate in a yeast two-hybrid assay (Le Douarin et al., 1996). Human HP1hα and HP1hβ also self-associate and interact with each other in a pull-down assay (Ye et al., 1997). In order to examine the self-association of Xenopus HP1 proteins, two different types of in vitro pull-down assays are used. The first assay took the advantage of two different tagged recombinant HP1 proteins.
Chapter 4

GST- xHP1α and GST-xHP1γ fusion protein were used to pull down histidine tagged xHP1α (His-xHP1α), which was shown using immonoblotting with the anti-histidine monoclonal antibody. This pull-down reaction was stable in high salt concentrations up to 1.0 M NaCl. Furthermore, there was no protein in the pull-down reaction using GST (Figure 4.3, A). Similarly, histidine-HP1γ (His-HP1γ) was also pulled-down by the GST-xHP1γ fusion protein and shown using coomassie blue staining and immunoblotting. This pull-down reaction was also resistant to 1.0 M salt incubation and was not found in the GST pull-down fraction. (Figure 4.3, B). These results show that xHP1α and xHP1γ can both self-associate and associate with each other in vitro. Moreover, this interaction is stable in 1.0 M NaCl.

4.2.4 The chromo shadow domain is necessary for the self-association

To identify the domain of Xenopus HP1 proteins responsible for the self-associations and the heterologous interactions, various portions of Xenopus HP1 proteins were designed to fuse with GST. All the constructs are summarised in a schematic diagram in Figure 4.4-A. The various constructs of GST-fusion Xenopus HP1 proteins were expressed and purified as soluble proteins using the same method applied to the full-length fusion proteins. The SDS-PAGE illustrated in Figure 4.4-B shows the GST fusion protein constructs which include five different truncated xHP1α and one truncated xHP1γ. The truncated xHP1 proteins are: xHP1α chromo domain (GST-HP1α-CD); xHP1α hinge region and chromo shadow domain (GST-HP1α-H+CSD); xHP1α chromo domain and hinge region (GST-HP1α-CD+H); xHP1α chromo shadow domain (GST-HP1α-CSD); xHP1α hinge region (GST-HP1α-H) and xHP1γ hinge region and chromo shadow domain (GST-HP1γ-H+CSD). The gel also shows GST only and full-length xHP1α and
xHP1\(\gamma\) GST fusion proteins (GST-HP1\(\alpha\), GST-HP1\(\gamma\)).

To confirm the associations of xHP1 proteins and to discover the interaction region, pull-down assays were tested using \(S^{35}\)-labeled xHP1\(\alpha\) and \(S^{35}\)-labeled xHP1\(\gamma\) made by \textit{in vitro} translation instead of histidine-tagged xHP1 proteins (Figure 4.5). \(S^{35}\)-labeled xHP1\(\alpha\) was pulled down by the GST-HP1\(\alpha\), GST-HP1\(\alpha\)-H+CSD, GST-HP1\(\gamma\) and GST-HP1\(\gamma\)-H+CSD from reticulocyte lysates (Figure 4.5-A, lane 3, lane 5, lane 6 and lane 7), but not GST alone and GST-HP1\(\alpha\)-CD (Figure 4.5-A lanes 2 and 4). Furthermore, GST-HP1\(\gamma\), GST-HP1\(\gamma\)-H+CSD and GST-HP1\(\alpha\) pulled down \(S^{35}\)-labeled XHP1\(\gamma\) (Figure 4.5-B, lanes 3, 4 and 5). Hence, these results verify that xHP1\(\alpha\) both self-associates and xHP1\(\alpha\) associates with xHP1\(\gamma\). Additionally, the chromo domain is not necessary for these associations. These results are consistent with those in 4.2.3. The self-association of xHP1\(\alpha\) and xHP1\(\gamma\), and heterologous interaction between xHP1\(\alpha\) and xHP1\(\gamma\) are steady and stable \textit{in vitro}.

4.3 Discussion

Two previous studies have demonstrated that chromo domain and chromo shadow domain were chemically cross-linked independently (Cowell and Austin, 1997; Yamada et al., 1999). In contrast, the other two studies reported that only the CSD is necessary and sufficient for self-association and heterologous interaction between HP1\(\alpha\) and HP1\(\gamma\) in a two-yeast hybrid assay with human proteins (Le Douarin et al., 1996) and \textit{in vitro} binding assay with mouse proteins (Ye et al., 1997). The results I obtained via cross-linking assays and \textit{in vitro} assays reported here are consistent with the idea that the CSD is responsible for the associations. The CD and CSD have their greatest sequence divergence in their carboxyl-terminal regions.
(Aasland and Stewart, 1995; Koonin et al., 1995). One possibility to explain the associations is related to this divergence. The highly conserved aromatic amino acid (F167, Y168 in HP1α of mouse; F175, Y176 in xHP1α) might play important roles in protein-protein interactions (Ye et al., 1997). In fact, the chromo domain and chromo shadow domain NMR structure (Ball et al., 1997; Brasher et al., 2000) have been resolved and concluded that the HP1β of mouse (MOD 1) forms a dimer in solution. Furthermore, the structure studies show that the dimerisation occurs via the CSD, even though the two domains share a similar compact folding pattern. The interface of the dimer principally involves the c-terminal α-helices of each monomer. The main contact residues, which formed the dimer interface, are I161, Y164, L168 (I173, Y176, L182 in xHP1α). The highlighted residues referred to in are conserved in xHP1α and xHP1γ. The same principles should be able to apply onto Xenopus HP1 proteins. The sequence alignments show that xHP1 sequences are conserved throughout the evolution. The results recorded in this chapter suggest that the biochemical functions of mammalian HP1 are also conserved in Xenopus.
Figure 4-1 Purification of Xenopus HP1 proteins as recombinant proteins.

A. His-xHP1α

B. His-xHP1γ

C. GST-xHP1α

D. GST-xHP1γ

Figure 4-1. (A and B) xHP1 α and xHP1γ were expressed in E. coli with 6 histidine fused onto the N-terminal and purified chromatographically as soluble proteins. (C and D) N-terminal GST (glutathione S-transferase) fusion of xHP1 α and xHP1γ were expressed in E. coli and GST affinity purified as soluble proteins. A full description of the purification procedure is given in Chapter 2. Abbreviations: M, marker; L, crude lysate; F, flow through; W, wash; E, elution.
Figure 4-2 Chemical Cross-linking of His-xHP1α and His-xHP1γ

A. His-xHP1α Cross-linking

<table>
<thead>
<tr>
<th>Concentration (mM)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water (H2O)</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 mM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 mM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 mM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 mM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 mM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 mM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 mM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 mM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dimer
Monomer

B. Western blotting of His-xHP1α Cross-linking by anti-his MAb.

C. His-xHP1γ Cross-linking

D. Western blotting of His-xHP1γ Cross-linking by anti-his MAb.

Figure 4-2. (A and B) the purified His-xHP1α and His-xHP1γ was cross-linked with a titrated concentration of glutaraldehyde and separated in 10 % SDS-PAGE. The concentration of glutaraldehyde was from 0 mM to 50 mM. (C and D) The same cross-linked products of A and B were transferred onto nitrocellulose membranes and detected by anti-histidine tag antibody. Abbreviation: M, size marker.
Figure 4-3 xHP1α and xHP1γ self-associate and interact with each other.

A. Pull down

B. Purified His-xHP1α was incubated with GST, GST fusion xHP1α(GST-α) and xHP1γ(GST-γ) coupled to glutathione-Sepharose in PBS with the addition of 0.5 M and 1.0 M NaCl. The Sepharose was then spun down and washed. The bound proteins were separated by SDS-PAGE and examined by western blotting using anti-histidine tag antibody. (B) Purified His-HP1γ was incubated with GST-γ coupled to glutathione-Sepharose in PBS with the addition of 0.5 M and 1.0 M NaCl and analysed as the same method with (A). Abbreviation: M, size marker.
Figure 4-4 Expression and purification of the different domains of GST fusion xHP1 protein constructs.

A. Schematic diagram of GST fusion constructs.

<table>
<thead>
<tr>
<th>Full Length</th>
<th>GST</th>
<th>Chromo</th>
<th>Hinge</th>
<th>Shadow</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD</td>
<td>GST</td>
<td>Chromo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H + CSD</td>
<td>GST</td>
<td></td>
<td>Hinge</td>
<td>Shadow</td>
</tr>
<tr>
<td>CD + H</td>
<td>GST</td>
<td>Chromo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSD</td>
<td>GST</td>
<td></td>
<td></td>
<td>Shadow</td>
</tr>
<tr>
<td>H</td>
<td>GST</td>
<td></td>
<td>Hinge</td>
<td></td>
</tr>
</tbody>
</table>

B. The GST fusion HP1 constructs affinity purified as a soluble protein

Figure 4-4. (A) Schematic diagram of the GST-xHP1 constructs used in this study. (B) The indicated GST-fusion proteins were expressed in E. coli and affinity purified as soluble proteins and using in the binding assays. Abbreviation: M, size marker. GST is not drawn to scale.
Figure 4-5 The shadow domain is responsible for the self-association and protein-protein interactions.

Figure 4.5 (A and B) 35S-xHP1α and 35S-xHP1γ were prepared by in-vitro transcription-translation of full-length cDNAs, and the $[^{35}$S]methionine-labeled protein (arrow) was used in binding reactions with the indicated GST fusion proteins. All the GST-xHP1 constructs bound to $[^{35}$S] methionine-labeled protein were indicated by the plus signs. The input lanes represent the half amount of the total 35S-xHP1 in each reaction mixture. No binding was observed in reactions containing GST alone and chromo domain (CD) construct. Only 50% of inputs are shown in the gels.
Figure 4.6 The structure of the shadow chromo domain dimer from MOD1.

Figure 4.6 A model of CSD dimer structure published by Brasher et.al, 2000. (A) A stereo plot of the backbone traces of the ensemble of 16 calculated structures; the two monomers are depicted in red and blue. (B) A cartoon representation of the shadow chromo domain dimer (again red and blue) with the chromo domain from MOD1 (yellow) for comparison. (C) A close up stereo view of the inter-monomer interface with the side chains of interfacial residues shown; key residues are labelled.
Chapter 5 Xenopus HP1α can interact with DNA and Chromatin

5.1 Introduction

Three isoforms of heterochromatin protein 1, (HP1), α, β and γ have been identified in mammals, which localise to different sub-nuclear locations. In mouse cells, heterochromatin enriched in HP1α and HP1β is separate from less well-characterised nuclear regions enriched in HP1γ, which may correspond to euchromatin (Horseley et al., 1996). More diverse spatial patterns are evident in human cells, where each HP1 homologue targets distinct heterochromatin domains (Minc et al., 1999; Nielsen et al., 1999). HP1α was detected predominantly in heterochromatic region. The large blocks of condensed heterochromatin also contain endogenous HP1β and HP1γ. However, HP1β and HP1γ were detected in many additional sites dispersed with the nucleus in regions consistent with euchromatin.

HP1 is tentatively estimated to have a three-domain structure from several studies (Aasland and Stewart, 1995; Powers and Eissenberg, 1993; Platero et al., 1995) All three mammalian HP1 homologues share this tripartite structure. Two highly conserved regions have been identified at the both ends by comparing the Drosophila HP1 with the homologues of mealybug, mouse and human (Clark and Elgin, 1992; Epstein et al., 1992; Singh et al., 1991; Saunders et al., 1993). Near the N-terminus is located a “chromo domain” (CD), which is similar to the Drosophila Polycomb and Schizosaccharomyces Swi6 proteins (Lorentz et al. 1994), both of
which are also involved in mediating gene repression. Another evolutionarily conserved region, called “chromo shadow domain” (CSD), existed at the C-terminus (Aasland and Stewart, 1995). Cytological analysis of HP1-β-gal fusions of *Drosophila* showed that the CSD corresponds to the nuclear localisation domain (Powers and Eissenberg, 1993). In addition, a central less conserved region (Hinge) is important for the “heterochromatin binding” of the β-gal fusion in the cell nucleus in conjunction with the CSD (Powers and Eissenberg, 1993). It is thought that this binding event occurs via direct binding of HP1 with chromatin, as *Drosophila* HP1 binds to nucleosomes and DNA in vitro (Zhao et al., 2000). In this chapter, I aim to reveal biochemical differences between the different HP1 isoforms that may underlie their different chromatin locations. The two HP1 isoforms (α and γ) from *Xenopus laevis* were characterised in terms of DNA and chromatin binding.

5.2 Results

5.2.1 xHP1α has DNA binding activity, but not xHP1γ

In a previous study, Sugimoto and colleagues used gel mobility shift assays and South-Western-type blotting to demonstrate the DNA binding activity of the recombinant human HP1α. The minimum DNA-binding region was limited to the internal 64 amino acid stretch that is less-conserved between human and fruit fly but retains one half portion of the chromo domain. To determine if *Xenopus* HP1α and γ had similar properties, GST-xHP1 fusion proteins were immobilised on glutathione S-sepharose beads and challenged with EcorI or HpaII digested plasmid DNA (Bluescript), or MNase digested chicken chromatin DNA (Figure 5.1). In these three cases, only GST-xHP1α retained the DNA on the matrix, whereas GST-xHP1γ or GST alone did not. GST-xHP1α retained different lengths of DNA equally well
As a result, this experiment showed that only Xenopus HP1α, but not HP1γ has DNA binding ability in vitro. Also, this binding activity has no length preference.

To test whether xHP1α had any sequence preference, a 741 bp Satellite1 repeat sequence was tested in a pull-down assay. The Satellite1 repeat sequence is present at around 2-4×10^4 copies in the Xenopus genome and localises to pericentromeric DNA in half of its chromosomes (Lam and Carroll, 1983). It is possible that the Satellite1 sequence is the endogenous binding site for xHP1α, since it also shows a pericentromeric localisation. In this case, a satellite clone (PE190 requested from Lam and Carroll) was used in the pull-down assay. The PE190 clone was digested to release the Satellite1 insert from the parental vector and both the insert and the vector were end-labelled with ^32P-α-ATP. In addition a number of pull-down reactions were carried out in the presence of increasing amounts of E.coli competitor DNA. As shown in Figure 5.2, xHP1α did not appear to have any sequence preference for the Satellite1 repeat sequence compared to the vector sequence despite the presence of a large molar excess of competitor DNA. As a conclusion, Xenopus HP1α but not HP1γ has a non-specific DNA binding activity.

5.2.2 xHP1α can bind chromatin, but not xHP1γ

It has been recently shown that Drosophila and mammalian HP1 are associated with nucleosomal core particles in vivo (Nielsen et al. 2001). To test whether Xenopus HP1 proteins can bind to chromatin directly, the pull-down assay was repeated with purified chicken chromatin instead of chromatin DNA. Any resulting interaction was identified by determining whether there was chicken DNA present in the supernatant (S) or the pellet (P). Under a 20 mM salt condition with an increasing
GST-xHP1α concentration, more chromatin was retained in the matrix (Figure 5.3). Nevertheless up to 20 μg of GST-xHP1γ and GST alone did not bound chromatin. Although HP1α and HP1γ are localised to different sub-nuclear locations, there is still a possibility that HP1 isoforms can form a complex, which interacts with chromatin. To test this hypothesis, 6×histidine xHP1α was added to GST-xHP1γ, which had been coupled to a glutathione bead and used in a pull-down assay. Under these conditions, shown in figure 5.4, the chromatin could be retained on the matrix. Therefore, at least in vitro, *Xenopus* HP1α and HP1γ can combine together and interact with chromatin. This result implied that there might be an undetectable amount of HP1α spreading over large areas of chromatin, which complexes with many other proteins, including HP1γ. Thus, although HP1γ does not show DNA and chromatin binding activities, with the assistance of HP1α and other proteins, HP1γ then is able to associate with chromatin.

These results clearly show that only xHP1α, but not xHP1γ interacts with chromatin directly, nevertheless the two isoforms of *Xenopus* HP1 can form a complex and bind to chromatin.

5.2.3 Domain determination of xHP1α DNA and chromatin binding activity

To investigate whether *Xenopus* HP1 proteins bound chromatin by one of their domains, additional experiments were performed to localise the DNA and chromatin binding activity of xHP1α using various truncated GST fusions (Figure 4.4). Figure 5.5 demonstrates that part of the DNA binding activity resides in the hinge (H) region, as the CSD, by itself, cannot bind DNA. However, a fusion comprising of the H and CSD domains can bind DNA. This implies that the H region has intrinsic
DNA binding activity; despite this, it is also apparent that the CD of xHP1α has a DNA binding activity that is enhanced in the presence of the H region. In fact, the H region by itself binds DNA avidly, as shown in figure 5.7. This result actually agrees with the previous report published by Himeno’s group (Sugimoto et al., 1996) As controls the CD and full length of human HP1α were also tested in the pull-down assays. These two proteins also bound DNA in the same assay condition. Succinctly, *Xenopus* HP1α, like human HP1α, has a non-specific DNA binding activity that is localised to the H and CD region.

HP1 is defined as a non-histone chromosomal protein primarily associated with heterochromatin region in *Drosophila* (James et al. 1989). The chromatin consists of arrays of nucleosomes with approximately 145 bp of DNA wound around an octamer of core histones. Although the above results indicate the DNA binding activity resides in the hinge and CD region, it is important to know that whether they also bind chromatin. Further experiments (Figure 5.6) were carried out to localise the chromatin-binding domain by using the same series of truncated GST fusions that were used to identify the DNA binding domain. In this case the chromatin-binding domain was localised to the H region (Figure 5.6 and 5.7), which is a 23 amino acid motif. This result differs from the previous report from Eissenberg and colleagues. They suggested that *Drosophila* HP1 can bind directly to nucleosomes but intact native HP1 is required for such interactions (Zhao et al. 2000).

5.2.4 Both xHP1α & xHP1γ bind histone H3 tails when methylated at lysine 9

The above results clearly show that xHP1α can interact with nucleosome DNA and chromatin. The protein core of this nucleoprotein complex is an octamer
containing two of each of the histones H3, H4, H2A and H2B. Thus, another question occurs to us: would Xenopus HP1 proteins directly interact with H2A, H2B, H3 or H4, the components of the core particle. To answer this question, the GST-xHP1 fusion proteins coupled to beads were challenged with purified chicken core histones. As shown in Figure 5.8, the interactions between both xHP1α and xHP1γ and all core histones were observed. In addition, the interactions between xHP1α and core histones were assayed by far western blot analysis, using GST-xHP1α as a probe and detecting the interaction using anti-GST anti-body. The result was that the GST-xHP1α bound to the histones H3 and linker histone H1 specifically (Figure 5.9).

Two reports (Bannister et al. 2001; Lachner et al., 2001) demonstrate that mammalian HP1 can bind to histone H3 tails when methylated at lysine 9 and the chromo domain of HP1 is responsible for the binding activity. One possibility may explain why we were unable to detect pull down chromatin with xHP1γ and the CD of xHP1α. The chicken chromatin that we are using may not contain any methylated histone H3. To check this possibility, we also surveyed the chicken chromatin using an antibody which specifically detects dimethylated H3-tails and found that (Figure 5.9) at least, a proportion of histone H3 in the chicken chromatin is methylated. It has been known that the globular domains of each individual histone are responsible for most of the histone-histone and histone-DNA interactions, which hold this complex macromolecular assembly together. In addition the N-terminal regions (tails) of the histones are flexible and highly mobile (Cary et al. 1978). Therefore, we considered a role for histone H3 tail binding in the HP1-nucleosome interaction. We tested this possibility by challenging recombinant HP1 proteins with affinity matrices that containing amino acids 1-21 of histones H3 either in the unmodified or dimethylated
at lysine 9 (Figure 5.10). Using the same conditions as Jenuwein and colleagues (Lachner et al. 2001), we found that, as expected, human HP1α preferentially binds to the methylated H3 peptide (Me-H3-tail) but not its unmodified counterpart (H3-tail). The same preference for Me-H3-tail is exhibited by xHP1γ and xHP1α, however, the affinity for xHP1α appears to be lower than its human counterpart and xHP1γ. When we tested the CD domain of xHP1α in isolation, it had the same preference for the Me-H3-tail as xHP1γ. It is possible that this is due to sequence differences in the N-terminal tail and hinge region of xHP1α, which affects its overall conformation and will be the subject of future investigations.

In a conclusion, the methylated histone H3 tails interacts with the CD of *Xenopus* HP1s; however, this interaction seems not to be responsible for the binding activity of xHP1α and chromatin under our assay conditions.

5.2.5 xHP1α can bind to a specific population of chromatin and not histone H3-dependent

Our assays routinely employ 5-10 μg of chromatin in our pull-down assays, which differs from the protocol used by Bannister and colleagues (Bannister et al. 2001), who used 200 μg in their assays with mouse HP1β (m HP1β). In their case, approximately 1%, or less, of the input chromatin was found to be associated with the GST-mHP1β. In my assays, 20 mM salt condition, neither the CSD nor the CD domain can bind chromatin, although the CD domain could bind DNA very well (Figure 5.7). The same assay showed that the full length human HP1α could bind chromatin but no chromatin binding activity for the isolated CD could be detected although it too could bind DNA well. We repeated the pull-down experiment using 300 μg, instead of 3 μg of chromatin and found that the CD could not fish out a
significant portion of chromatin from the input chromatin. Full-length xHP1\(\alpha \) was very efficient in interacting with this substrate whereas as an equal amount of xHP1\(\gamma \) was very inefficient in binding chromatin (Figure 5.11). We reasoned that the ability of the CD of xHP1\(\alpha \) to interact with chromatin is maybe masked by the presence of the H region.

Interestingly, the nucleosomal pattern of the chromatin was altered relatively to the input chromatin pulled down by xHP1\(\alpha \) (Figure 5.11 and 5.12). In this case I am gratefully got the help of Sari Pennings, she analysed the two populations of chromatins using the phosphor-imager. As representing in figure 5.12, xHP1 actually pulled a specific population of chromatin, which had a shorter interval DNA 200 \(\pm \) 3 base pairs compared to 210 \(\pm \) 1 base pairs of the input chromatin, and had a longer DNA sticking out at the end of the nucleosomal arrays, 59 \(\pm \) 13 base pairs compared to 0\(\pm \)7 base pairs of the input chromatin. This may represent chromatin of a specific sequence context or alternatively has an altered confirmation with respect to bulk chromatin. Therefore, it is possibility that this chromatin represents the chromatin with methylated histone H3, which may interact with xHP1\(\alpha \) specifically. To test this possibility, we repeated the pull-down assay using 300 \(\mu \)g chromatin in the presence of unmodified histone H3 tails and dimethylated histone H3 tails. However, we found that neither unmodified nor dimethylated histone H3 tails altered the efficiency of xHP1\(\alpha \) chromatin binding. It is possible the small hinge region has a universal chromatin-binding activity whereas the CD is only able to interact with a specific population of chromatin, which might consist a type of classical satellite DNA and will be the subject to future investigations.
5.3 Discussion

The DNA binding assays in this chapter provide a clear evidence for the interaction between DNA and xHP1α, but not xHP1γ. Neither length nor sequence preference was observed for this DNA binding activity. These results are consistent with a recent study based on Drosophila HP1 (Zhao et al. 2000). While it makes sense that HP1 could interact with DNA, a general and sequence-nonspecific affinity for DNA cannot explain the relatively restricted chromosomal distribution in vivo. Also, the evidence that only one of xHP1 isoforms has DNA binding activity cannot explain their differential sub-nuclear localisations. Similar but different from DNA binding, the chromatin-binding assays give evidence that only xHP1α can bind chromatin and the binding domain is even shorter. Only the hinge region is sufficient for the chromatin binding. The hinge region consists of 23 amino acids and shows only 50% consensus to mammalian counterparts (Figure 5.14). This observation actually differs from the two recent reports, which claim that the chromo domain of mammalian and Swi6 can specifically bind to lysine 9 methylated-H3 in vivo (Lachner et al. 2001; Bannister et al. 2001). This chromo domain H3-binding activity has been related to the propagation of heterochromatic subdomains in native chromatin. Thus, this binding is required for the heterochromatin localisation and also for propagation of heterochromatin. However, our results cannot see such strong binding of CD domain to chromatin. In contrast, we observed a very weak chromatin-binding activity in CD domain and a fairly strong binding activity in the hinge region. Eissenberg and colleagues demonstrate that Drosophila HP1 can bind directly to nucleosomes but intact native HP1 is required for such interactions (Zhao, et al. 2000). The important point is that the same constructs, xHP1γ and the CD of xHP1α that can bind an exposed methylated H3 tails are unable to interact with
native chicken chromatin. The far western analysis of native core histones confirmed the specificity of the interaction between xHP1α and histone H3. These data further support the notion that it is the hinge region of xHP1α that has intrinsic chromatin binding activity. In the far western assay, xHP1α was able to interact with linker histone H1. Linker histones are believed to absolutely required for the in vitro formation of highly folded 30 nm chromatin fibres. Nucleosomal arrays interact with linker histones to form a highly folded transcriptionally repressive '30 nm diameter' chromatin fibre (van Holde, 1988; Wolffe, 1995; Fletcher and Hansen, 1996), and with different chromatin-associated protein to form other types of specific functional chromosomal domains (Wolffe, 1995; Hansen, 1997). In our results, xHP1 shows a preference for histone H1, but not H5. Intriguingly, Nielsen and colleagues also demonstrate that mouse HP1α can interact with linker histone H1 and the interaction domain is localised to the hinge region (Nielsen et al. 2001). Taken together, it could be this specific interaction is related to a particular formation of chromatin, which composes the heterochromatin. That is an interesting point to be investigated in the future.

Our assay also demonstrates that the xHP1α can pick up a specific population of chromatin out of the bulk chromatin; however, we do not know if this particular population of chromatin has any specific properties, with respect to sequence or chromatin organisation. Presumably, there are other HP1 interacting factors that confer additional specificity on HP1 binding in heterochromatin. Although we did not see that methylated H3 tails interrupts xHP1α chromatin-binding activity, one still cannot preclude that the tails may play a role in the targeting of HP1 proteins to specific chromosomal sites. Relevant to this is the recent demonstration that in vivo abrogation of the histone H3 methyltransferase activity of Suv39h1 prevents that
heterochromatin association of HP1 proteins. This result indicate that methylation of H3 tails may be critical in directing the localisation of HP1s to heterochromatin (Rea et al., 2000). Whether or not other post-translational modifications, such as acetylation and/or phosphorylation, may also be involved remains to be determined.
Figure 5-1 Xenopus HP1α interacts with DNA

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>S</th>
<th>P</th>
<th>S</th>
<th>S</th>
<th>50% INPUT</th>
<th></th>
<th>P</th>
<th>S</th>
<th>P</th>
<th>S</th>
<th>S</th>
<th>50% INPUT</th>
<th></th>
<th>P</th>
<th>S</th>
<th>P</th>
<th>S</th>
<th>S</th>
<th>50% INPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>xHP1α</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>xHP1γ</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>GST</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>GST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5.1 (A) EcoRI digested pBS plasmid, (B) HpaII digested pBS plasmid and (C) digested chicken chromatin DNA were incubated with GST fusion xHP1α 10 µg, GST fusion xHP1γ 10 µg and GST 10 µg coupled to Glutathione-Sepharose in the incubation buffer of 10 mM HEPES, 10 mM KCl, 0.5 mM EGTA, 0.1% NP-40, 10% glycerol and proteinase inhibitors. Glutathione-Sepharose was then spun down and washed. The DNA in the pellet and the supernatant fractions were separated by 1.5% agarose gel and visualised by ethidium bromide staining. The GST- xHP1α, which bound to DNA, is indicated by the plus (+) signs. Abbreviation: M, DNA size maker; P, pellet; S, supernatant.
Figure 5-2 Xenopus HP1α DNA binding has no preference for Xenopus satellite DNA

A.

B.

C. | P | S | P | S | P | S | P | S | P | S | P | S | P | S |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 ng</td>
<td>1000 ng</td>
<td>0 ng</td>
<td>10 ng</td>
<td>20 ng</td>
<td>50 ng</td>
<td>100 ng</td>
<td>200 ng</td>
<td>500 ng</td>
<td>1000 ng</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GST | GST-xHP1α

D.

Ecoli DNA
Figure 5.2 (A) pE190 *Xenopus* satellite DNA clone was digested with *Hind* III to release the satellite insert from the vector. Both the satellite DNA insert and the vector were radio-labeled with 32P-α CTP with Klenow fragment. The labeled satellite insert and vector were incubated with GST fusion xHP1α (10 µg) and GST (10 µg) coupled to Glutathione-Sepharose in the incubation buffer as in Figure 5.1. In addition, different amount of *EcoRI* digested *E. coli* genomic DNA was included as competitor, as indicated in (C). Glutathione-Sepharose was then spun down and washed. The DNA in the pellet and the supernatant fractions were separated on a 1.5% agarose gel. The gel then was dried and detected by autoradiography. (C) Prior to the gel drying, the *E. coli* genomic DNA was detected by ethidium bromide staining. (D) The satellite insert and the vector indicated here are as in (A). The diagram shows that in the pellet fractions, there are no dramatic changes in the interaction between the satellite DNA and the vector DNA with GST-HP1α in different amount of *E. coli* genomic DNA are included. Abbreviation: M, DNA size maker; P, pellet; S, supernatant.
Figure 5.3 MNase digested chicken chromatin (3 μg) were incubated with increased amounts of GST fusion xHP1α (GST-xHP1α: 5, 10 or 20 μg) and GST fusion xHP1γ (GST-xHP1γ: 5, 10 or 20 μg), and GST (10 μg) coupled to Glutathione-Sepharose in the incubation buffer as in Figure 5.1. Glutathione-Sepharose was then spun down and washed. The chromatin in the pellet and the supernatant fractions were phenol/chloroform extracted and separated on a 1.5% agarose gel and visualised by ethidium bromide staining. Abbreviation: M, DNA size maker; P, pellet; S, supernatant.
Figure 5.4 Xenopus HP1α and HP1γ can heteromerize and then, bind to chromatin

Figure 5.4 MNase digested chicken chromatin (3 µg) were incubated with Histidine tag xHP1α (His-xHP1α 10 µg) in the incubation buffer as in Figure 5.1 for 10 minutes and followed by adding GST fusion xHP1γ (GST-xHP1γ 10 µg) coupled to Glutathione-Sepharose. GST (10µg) coupled to Glutathione-Sepharose played a control reaction. Glutathione-Sepharose matrices was then spun down and washed. The chromatin in the pellet, the supernatant and the washing fractions were phenol/chloroform extracted and separated on a 1.5% agarose gel and visualised by ethidium bromide staining. Abbreviation: M, DNA size maker; P, pellet; S, supernatant; W1: wash 1; W2: wash 2.
Figure 5.5 Identification of DNA binding Domain of Xenopus HP1α

<table>
<thead>
<tr>
<th></th>
<th>GST</th>
<th>HPlα</th>
<th>HPlα CD</th>
<th>HPlα H+CSD</th>
<th>Human HP1α CD</th>
<th>GST</th>
<th>HPlα CD+H</th>
<th>HPlα CSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>S</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
</tbody>
</table>

Figure 5.5 MNase digested chicken chromatin DNA (3 µg) was incubated with GST fusion xHP1α constructs (10µg) and GST (10µg) coupled to Glutathione- Sepharose in the incubation buffer as in Figure 5.1. Glutathione-Sepharose matrices was then spun down and washed. The chromatin DNA in the pellet and the supernatant fractions were separated on a 1.5% agarose gel and visualised by ethidium bromide staining. The GST-xHP1 constructs, which bound to DNA were indicated by the plus (+) signs. Abbreviation: M, DNA size marker; P, pellet; S, supernatant; CD, chromo domain; H, hinge region; CSD, shadow domain.
Figure 5.6 MNase digested chicken chromatin (3 µg) was incubated with GST fusion xHP1α 10 µg constructs and GST (10 µg) coupled to Glutathione-Sepharose in the incubation buffer as in Figure 5.1. Glutathione-Sepharose matrices was then spun down and washed. The chromatin DNA in the pellet and the supernatant fractions were phenol/chloroform extracted and separated on a 1.5% agarose gel and visualised by ethidium bromide staining. The GST-xHP1 constructs, which bound to chromatin were indicated by the plus (+) signs. Abbreviation: M, DNA size marker; P, pellet; S, supernatant; CD, chromo domain; H, hinge region; CSD, shadow domain.
Figure 5.7 MNase digested chicken chromatin (3 µg) was incubated with GST fusion xHP1α full length (10 µg), hinge region (10 µg), GST fusion human HP1α full length (10 µg) and GST (10 µg) coupled to Glutathione-Sepharose in the incubation buffer as in Figure 5.1. Glutathione-Sepharose matrices was then spun down and washed. The chromatin DNA in the pellet and the supernatant fractions were phenol/chloroform extracted and separated on a 1.5% agarose gel and visualised by ethidium bromide. The GST-xHP1 constructs, which bound to chromatin were indicated by the plus (+) signs. Abbreviation: M, DNA size marker; P, pellet; S, supernatant; CD, chromo domain; H, hinge region.
Figure 5-8 Xenopus HP1s are associate with core histones

Figure 5.8 Chicken core histones (H2A, H2B, H3 and H4; 5 μg) were incubated with GST fusion xHP1α (GST-xHP1α, 10 μg) and GST fusion xHP1γ (GST-xHP1γ, 10 μg), and GST (10 μg) coupled to Glutathione-Sepharose in the incubation buffer as in Figure 5.1, in addition of 0.5 % albumin. Glutathione-Sepharose matrices was then spun down and washed. The core histones in the pellet and the supernatant fractions were separated by 1.5% SDS-PAGE and visualised by coomassie blue staining. Abbreviation: M, protein size marker; P, pellet; S, supernatant.
Figure 5.9 Xenopus HP1α has specific interactions with histone H1 and H3

Figure 5.9 (A) Chicken chromatin preparation that includes histone H/ H5 (10 µg) and chicken core-histones stripped of H1/H5 (5 µg) were analysed by SDS-PAGE and visualised by coomassie blue staining. (B) The same samples shown in (A) were electro-blotted onto nitrocellulose membrane and western-blotted with anti-methyl-H3. (C) Far Western with GST-xHP1α. The same membranes in (B) was probed with GST-xHP1α (0.5 µg/ml) and western-blotted with anti-GST.
Figure 5.10 in vitro pull-down assays were performed with affinity matrices that present either (A) Unmodified (H3-tail) or (B) Lys-9 dimethylated (Me-H3-tail) N-terminal sequences of histone H3. The matrices were incubated with beads/GST only, GST-xHP1α-CD, GST-hHP1α-FL, GST-xHP1α-FL or His-xHP1γ-FL in the PBS buffer. The matrices was then spun down and washed. The proteins in the pellet were separated by 10% SDS-PAGE and visualised by coomassie blue staining. (C). The input proteins. Abbreviation: M: size marker, CD: chromo domain, FL: full length, PBS: phosphate buffer saline.
Figure 5.11 MNase digested chicken chromatin (300 µg) was incubated with GST fusion xHP1α full length (GST-xHP1α-FL) (10 µg), CD region (GST-xHP1α-CD) (10 µg), GST fusion xHP1γ full length (GST-xHP1γ-FL) (10 µg) and GST (10 µg) coupled to Glutathione-Sepharose in the incubation buffer as in Figure 5.1. Glutathione-Sepharose matrices were then spun down and washed. The chromatin DNA in the pellet and the supernatant fractions were phenol/chloroform extracted and separated on a 1.5% agarose gel and visualised by ethidium bromide. The 1/100 input of chromatin was loaded on to the gel as indicated. The GST-xHP1 constructs that bound to chromatin were indicated by the plus (+) signs. Abbreviation: M, DNA size marker; CD, chromo domain; FL: full length.
Figure 5.12 The Xenopus HPIα binds to a specific population of chromatin

Figure 5.12 The schematic analysis of the chromatin bound to xHP1α compared to the input chromatin. The input and xHP1α-FL lanes in Figure 5.11 were analysed using phosphoimager (A) and plotted (B) by oligonucleosome length versus nucleosomes.
Figure 5-13 The H3 tails do not interfere with interaction of GST-xHP1α with chromatin

Figure 5.13 MNase digested chicken chromatin (300 µg) was incubated with GST fusion xHP1α full length (10 µg), GST (10 µg) coupled to Glutathione-Sepharose and the Sepharose (beads) in the incubation buffer as in Figure 5.1 in the presence of H3-tails or Me-H3 tails as indicated. Glutathione-Sepharose matrices were then spun down and washed. The chromatin DNA in the pellet and the supernatant fractions were phenol/chloroform extracted and separated on a 1.5% agarose gel and visualised by ethidium bromide. The 1/100 input of chromatin was loaded on to the gel as indicated. The samples that bound to chromatin were indicated by the plus (+) signs. Abbreviation: M, DNA size marker. C: control. H3: histone H3. Me-H3: methylated histone H3. CD: chromo domain. FL: full length
Figure 5.14 Schematic diagram of Xenopus HP1 DNA and Chromatin binding

A. Chromatin Binding motif (This work)

<table>
<thead>
<tr>
<th>Species</th>
<th>Amino Acid Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse</td>
<td>PREKSEGNSNSADDIKSRRK</td>
</tr>
<tr>
<td>Human</td>
<td>PREKSEGNSNSADDIKSRRK</td>
</tr>
<tr>
<td>Xenopus</td>
<td>PKAKTESTKRKA GSDDIKAKRRR</td>
</tr>
</tbody>
</table>

Consensus: PKESKRK DDIKR

B. Schematic representation of the generic HP1. (A) Amino acid alignment of hinge region of *Xenopus*, mouse and human HP1α. This motif is responsible for HP1α chromatin binding. In *Xenopus*, this motif is only 23 amino acids long. A single amino terminal chromo domain motif (CD) and a single carboxy-terminal chromo shadow domain (CSD) motif are separated by a variable length linker (hinge) region. The DNA and protein-protein interaction regions are indicated.
Chapter 6 The Role of linker histones and histone tails in xHP1-chromatin interaction

6.1 Introduction

The nucleosome core particle consists of approximately 146 base pairs of DNA wrapped around a histone core in one and three-quarter left-handed super-helical turns. The protein core of this nucleoprotein complex is an octamer containing two of each of the histones H3, H4, H2A and H2B, organised in a tripartite structure consisting of two histone H2A-H2B dimers associated with a histone H3-H4 tetramer which serves as a scaffold (Arents et al. 1991).

Characterisation of defined model systems reconstituted from core histone octamers and tandemly repeated 5S rDNA has demonstrated that nucleosomal arrays possess the intrinsic ability to form both moderately folded and extensively folded conformational states in the presence of cations (Hansen et al. 1989; Garcia-Ramirez et al., 1992; Schwarz and Hansen 1994; Fletcher and Hansen 1995; Tse and Hansen 1997). Experiments with proteolytic fragments of histone H1 and nucleosomes containing mixtures of all the DNA sequences in the genome suggest that the structured domain of histone H1 binds where DNA enters and exits the nucleosome and across the few central turns of DNA in the structure (Allan, et al. 1980, 1981, 1986). This interaction at the periphery of the particle has been proposed
to seal two turns of DNA around the histone octamer, leading to further stabilisation of the interaction of DNA with the octamer (Simpson, 1978). In histone-depleted chromatin, the fibres are more extended, which is consistent with the entry and exit point of DNA wrapping around the octamer being further apart (Thoma, 1979). Linker histones are believed to be required for the in vitro formation of highly folded 30 nm chromatin fibres (Allan et al., 1981, 1986; Thoma and Koller, 1977; Thoma et al. 1979). Folding experiments performed in NaCl and MgCl₂ have shown that H5 binding markedly stabilises both the intermediate and extensively folded states of nucleosomal arrays without fundamentally altering the intrinsic nucleosomal array folding pathway (Carruthers et al., 1998, see also Figure 6.1.1-6.1.3). Furthermore, it is now well established that high-order folding of nucleosomal arrays is strictly dependent on the core histone N termini acting through multiple molecular mechanisms (Allan et al. 1982; Garcia-Ramirez et al., 1992; Fletcher and Hansen, 19995; Tse and Hanssen, 1997; Tse et al., 1998; Moore and Ausio, 1997). The electron micrograph in Figure 6.1.4, shows that the salt-dependent folding of oligonucleosomes in the absence of linker histones involves the bending of the linker DNA region connecting adjacent nucleosomes (Garcia-Ramirez et al., 1992). In figure 6.1.5, it is also shown that removal by trypsin of the N-terminal tails of the core histones prevents the oligonucleosomes from folding. The cartoon in figure 6.1.6 shows a representation summarising the conformational transition of the nucleosome core particles.

HP1 is known as a functional subunit of heterochromatin and performs a chromatin binding activity (Chapter 5). However, it is still unknown how HP1 participates in the chromatin folding and interacts with the linker histones and the core histones N termini. In this chapter, I have examined the role of the
 Chapter 6

salt-dependent folded state of native chromatin in the interactions between xHP1α and three different species of chromatin (chromatin, chromatin depleted of H1/H5 and trypsinised chromatin). I also have investigated the function of linker histones and histones N-terminal tails in the association of xHP1α and chromatin. For this purpose, the chicken erythrocyte chromatin was prepared and one portion of the chromatin was carefully stripped of linker histones. Trypsin treatment resulting histone N-terminal removal chromatin was also performed. All the different species of chromatin were used to perform a series of pull-down assays in the presence of a gradient of NaCl concentrations. The possible functional relevance of these results is discussed.

6.2 Results

6.2.1 Preparation of chromatin, depleted H1/H5 of chromatin and trypsinised chromatin from chicken erythrocyte

In order to obtain the material for the following experiment, we collaborated with Sari Pennings who processed the preparation of chicken erythrocyte chromatin using a standard methods described in Chapter 2. Following the preparation, the chromatin was stripped off linker histones using a centrifugal filtration step in the presence of 600mM NaCl, which resulted in a 64% depletion of linker histones from chromatin. The 64% depleted chromatin was used for the experiment in figure 6.3-6.9. The previous studies (van Hole, 1988) have shown that linkers are necessary for the chromatin salt-dependent folding and to achieve this, it requires 1-2 linkers histones per nucleosome. Therefore, 64 % depletion of linker histones should have disrupted the higher level of chromatin folding. The chromatin was subsequently treated by trypsin for digesting off the N-terminal histone tails (Figure 6.2, A). For
the experiment in figure 6.10-6.12, the depletion of linker histones was completed by applying chromatin onto a hydroxylapatite column, which resulted in completely depleting linker histones from chromatin. The chromatin consequently was treated with trypsin for digesting off the N-terminal histone tails (Figure 6.2, B)

6.2.2 Fundamental analysis of xHP1α-chromatin interaction

6.2.2.1 xHP1α does not precipitate chromatin, depleted H1/H5 chromatin or chromatin DNA

As mentioned in the introduction, nucleosomal arrays possess the intrinsic ability to form both moderately folded and extensively folded conformational states in the presences of cations. In order to investigate the mechanistic roles of xHP1 in chromatin salt-dependent folding, the first step was to understand if xHP1 took part in chromatin folding. This was achieved by observing whether xHP1 could oligomerise chromatin, chromatin depleted of H1/H5 or nucleosomal DNA at physiological NaCl concentrations. A recombinant 6×histidine xHP1α was used to test the potential possibility of precipitating chromatin, depleted H1/H5 chromatin or chromatin DNA at three different NaCl concentrations (0 mM, 40 mM and 80 mM). Samples subsequently were spun to verify if the precipitation occurred. The pellets and supernatant fractions were analysed in agarose gels. As shown in figure 6.3, in all three cases, two different amount of xHP1α (10 or 20 µg) did not precipitate chromatin, depleted H1/H5 chromatin or nucleosomal DNA at 0, 40, and 80 mM NaCl. The results demonstrated that xHP1 does not induce oligomerisation of chromatin in vitro in the case of either with or without linker histones.

6.2.2.2 xHP1γ does not compete with xHP1α-chromatin interaction

The α and γ forms of mammalian HP1 have been defined to localise to
heterochromatic and euchromatic regions respectively (Nielsen et al. 2001). However, the biochemical results show that $x\text{HP1}_\alpha$ and $x\text{HP1}_\gamma$ interact in vitro, and only $x\text{HP1}_\alpha$ shows DNA and chromatin binding activities (Chapter 4 and 5). It would be important to know whether $x\text{HP1}_\gamma$ played a role in or interfered with DNA- and chromatin-binding activities by $x\text{HP1}_\alpha$. To answer this question, the same pull-down protocol as described in chapter 4, has used with a recombinant GST-$x\text{HP1}_\alpha$ to perform pull-down assays of chromatin, chromatin depleted of H1/H5 or nucleosomal DNA in the presence of 6xhistidine $x\text{HP1}_\gamma$. As shown in figure 6.4, A and B, the increased concentration of $x\text{HP1}_\gamma$ (10-20 µg) did not interfere with $x\text{HP1}_\alpha$ chromatin binding activity in the samples with or without linker histones. Interestingly, in the case of chromatin DNA, the increased concentrations of $x\text{HP1}_\gamma$ interfered with the $x\text{HP1}_\alpha$ DNA binding (Figure 6.4, C). These results further demonstrate that $x\text{HP1}_\alpha$ processes different binding activities with DNA and chromatin in vitro, which are possibly because the distinct protein-protein interaction domains (CD and CSD) are separated from the chromatin-binding domain (Hinge region). There is also an implication that $x\text{HP1}_\gamma$ may require an euchromatin binding adaptor to attach onto chromatin, involving $x\text{HP1}_\alpha$ and the aid of other proteins, which generate a $x\text{HP1}_\gamma$-specific binding site.

6.2.3 Characterisation of salt-dependent behaviour of $x\text{HP1}_\alpha$-chromatin interaction

HP1α is heterochromatin localised, chromatin-binding protein. Little is known about the role of HP1α on chromatin folding and organisation. As a first step in a long-term investigation of the mechanistic roles of HP1 in chromatin organization, we have combined a standard protocol of salt-dependent chromatin folding with a
pull-down assay. Based on these assays, we could obtain knowledge of whether HP1 chromatin-binding activity preferred different types of chromatin folding, and whether there was a structural and functional interplay between the linker histones and the core histone N-termini tails. As an initial approach, 10 μg xHP1 was used to perform pull-down assays, which were carried out in three different species of chromatins, (chromatin, chromatin depleted of H1/H5, trypsinised chromatin) and nucleosomal DNA in a gradient of NaCl (0-100mM) incubating buffer (Figure 6.5-6.8). As a result, we exploited the fact that xHP1α prefers binding with a more compact folding of chromatin. Furthermore, in the case of chromatin lacking linker histones and core histone tails, xHP1α may interact with linker DNA (Figure 6.9). These data yields some key observations. First, xHP1α bound better to the longer chromatin (> dimer) at 20 mM to 100 mM NaCl and mono-nucleosomes stayed behind in the supernatant fractions (Figure 6.5). Second, a similar phenomenon also appeared in the pull-down assays using chromatin depleted of H1/H5 and trypsinised chromatin, however there were few important differences in those two species of chromatin. In the assay of chromatin depleted of H1/H5, the trend of preferring the long chromatin lost at around 80mM NaCl and was most unapparent totally at 100 mM NaCl (Figure 6.6). The possible interpretation is that the chromatin depleted of H1/H5 forms irregular clumps at higher NaCl, on which xHP1α has no longer any binding activity. Third, at 0-40 mM NaCl, xHP1α could not bind to trypsinised chromatin well but the trend of preferring the long chromatin began at the 0 mM NaCl and became more apparent as the NaCl concentration increased (Figure 6.7). At 80 and 100 mM NaCl, the fractions of long trypsinised chromatin began to be lost in the washing steps. In addition to low-resolution agarose analysis, the samples from the assays of depleted H1/H5 chromatin and trypsinised chromatin were run
into acrylamide gels to get higher resolution of the size of the DNA fragments (Figure 6.9). It clearly shows that in the absence of the histones tails, the xHP1α bound to the fractions of chromatin with longer linker DNA. Finally, In the case of chromatin DNA, there were lower activities of xHP1α DNA binding at 0 and 10 mM NaCl, but at 20-100 mM the xHP1α bound to DNA equally well and there were no longer any length preference for these binding activities.

To understand more about the stoichiometry of xHP1α chromatin binding, 20 μg of xHP1α was used instead of 10 μg in a repeat of the pull-down assays with a gradient of NaCl concentration (Figure 6.10-12). It appeared that xHP1α pulled down the three different species of chromatin equally well at moderate NaCl concentration (20-60mM). The main differences were shown at the two ends of the gradient NaCl treatments. At the end of high NaCl concentration, the assays of chromatin and chromatin depleted of H1/H5 shared the same trend (Figure 6.10,11). The binding affinity of all length of chromatin started to drop at 60 mM NaCl, although there was large portion of mono-nucleosome left in supernatant at 80 and 100 mM NaCl. In contrast, xHP1α could pull down most of the trypsinised chromatin at 40-100 mM NaCl. Nonetheless, at low NaCl end the results were different. At 0 mM-40mM NaCl, most of the chromatin was shifted to the pellet fraction. However, xHP1α preferred to bind the short fraction (< trimer) of depleted H1/H5 and trypsinised chromatin at 0,10 mM NaCl.

In a conclusion, doubling the xHP1α concentration to 20 μg narrowed the difference in the pull-down assays with these three species of chromatin. Nonetheless, it appeared that xHP1 preferred a more compact folding of the chromatin and the depleted H1/H5 chromatin at the high concentration of NaCl. In addition, in the case of lacking of the linker histones and the core histone tails,
xHP1α preferred to interact with the short fraction of depleted and trypsinised chromatin at very low NaCl concentration. The chromatin depleted of H1/H5 has a characteristic that was intermediate between chromatin and trypsinised chromatin.

6.3 Discussion

In the absence of other chromatin-associated proteins, nucleosomal arrays are capable of forming extensively folded structures through a mechanism that is dependent on cations (Schwarz and Hassen, 1994) and multiple distinct functions of the core histone N-termini (Garcia-Ramirez et al., 1992; Fletcher and Hansen, 1995; Tse and Hansen, 1997; Tse et al. 1997). In this work, the results demonstrates that xHP1α does not impair or participate in intrinsic chromatin folding, although HP1 is an essential component of heterochromatin, which is required in a precise stoichiometry to properly set up and/or maintain the inactivated state of genes (Nielsen et al., 2001). The results in figure 6.4 show that xHP1γ does not compete with xHP1α chromatin binding activity. It indicates that while xHP1α and xHP1γ are associated with each other, this association does not interfere with the chromatin and DNA binding by xHP1α. A recent report provides evidence that mouse HP1α, β, γ homo- and heteromerise in living cells, however, these proteins exhibit different patterns of sub-nuclear localisation (Minc et al. 1999, 2000; Nielsen et al. 1999), which in the case of HP1γ, are highly dynamic during the cell cycle (Minc et al. 1999). Furthermore, the immunodetection all three isoform of mouse HP1 in interphase nuclei revealed a substantial proportion that fluoresce strongly with AT-rich satellite DNA found in constitutive heterochromatin. Thus, the result in figure 6.4 supports the hypothesis that HP1 isoforms can become a complex, which interacts with chromatin and the α form of the protein plays a role as a chromatin
adaptor of the HP1 associated protein complex (Also, see Figure 5.4). Therefore, the AT-rich heterochromatin area may represent regions in which HP1α anchors. However, how HP1α recognises this specific region is still unknown.

It has been observed by electron microscopy (EM) that in low ionic strengths (2mM < I < 20mM) chromatin strands depleted of linker histones appear as an extended "beads-on-string" structure (Thoma et al., 1979), whereas H1-containing chromatin adopts a zigzag-like conformation (Thoma et al., 1979; Worcel et al., 1981). At > 60 mM NaCl, H1-containing chromatin compacts into 30-nm fibre, while strands of H1-depleted chromatin tend to form poorly defined clumps on the EM grid (Figure 6.1.4). In this work, the possible participation of xHP1α in chromatin folding has been suggested by my results in this chapter. Taken these observations together, the results indicate that xHP1α favours binding to a linker histone-containing highly compacted chromatin fibre. Using the Far Western blotting study, it has been shown in chapter 5 that xHP1α can interact specifically with histone H3 and linker histones but not with the other core histones. This interaction supports the idea that chromatin binding by xHP1α involves an interaction with linker histones-containing chromatin. It is still not clear what the xHP1α interaction with histone H3 could actually mean as histone tails are important in chromatin folding and important in the regulation of transcription and functions in gene silencing (Hartzog and Wintson, 1997; Strahl and Allis, 2000). In fact, HP1s also has essential roles in these two activities.

It is clear from the results in figure 6.1.5 that upon removal of the histones tails, the oligonucleosome fibres remain in essentially unfolded conformation and are unable to achieve higher levels of compaction. It also has been shown that the trypsinised chromatin displays a sharper and narrower transition in salt-dependent
sedimentation tests (Garcia-Ramirez et al., 1992) than that observed for the non-trypsinised chromatin. The transit midpoint is centred at 10-12 mM NaCl compared to the midpoint of 25 mM NaCl observed for its non-trypsinised counterpart. The result in Figure 6.7 also demonstrated a pattern transition of chromatin binding by xHP1α, which is in agreement with the above observation. In fact, without histone tails xHP1α has a preference of binding to linker DNA but it has no preference in chromatin depleted of H1/H5. Therefore, it may imply that without the assistance of histone tails, xHP1α and chromatin will not form a proper association. It also implicates that through the histone tails modification (acetylation, methylation and phosphorylation) and the dynamic of linker histones, xHP1α may slide around in nucleosome arrays via this activity to regulate cis- and trans-acting regulatory factors, which control transcription and chromatin folding.
Figure 6.1.1 (a and b) soluble chromatin from chicken erythrocyte nuclei vitrified in \(\approx 5 \) mM NaCl and imaged unfixed and unstained in the frozen hydrated state. Arrows denote nucleosomes with the linker histone-dependent “stem” conformation. (c) Stereo pair of a 3D model of a 9-nucleosome segment of a chicken erythrocyte chromatin fiber imaged in \(\approx 5 \) mM NaCl. Nucleosomes and their associated “stems” are represented by pear-shaped solids, all of which point toward the fibre interior. (Bar = 30nm) (Taken from Bednar et al., 1998)

Figure 6.1.2 Electron cryomicroscopy from COS-7 cells (a-c) vitrified in \(\approx 40 \) mM NaCl and chicken erythrocyte nuclei (d and e) imaged in \(\approx 15 \) mM NaCl. The fibre structure is consistent with an accordion-like compaction of the loose zigzags. (f) Stereo pair of a 3D model of a chicken erythrocyte oligonucleosome vitrified in \(\approx 80 \) mM NaCl and reconstructed from a tomographic tilt series. The quality of the the reconstruction allowed nucleosome locations and linker path to be identified, but details of nucleosome orientation and linker entry-exit sites were not resolved. (Bar = 30nm) (Taken from Bednar et al., 1998)

Figure 6.1.3 Electron cryomicroscopy of native chicken erythrocyte chromatin (\(N = 5-7 \)) vitrified in 5mM NaCl, can see clearly individual nucleosome and linker DNA. The zigzag architecture produces a starlike conformation and the linker DNA stem motif is common (arrows) (Bar = 30nm) (Taken from Carruthers et al., 1998)
Figure 6.1.4 Oligonucleosome complex depleted linker histones at different ionic strength

(A), DNA template in 5 mM TEA, pH 7.0, 0.2 mM EDTA. (B), oligonucleosome complex depleted linker histones in under the same ionic conditions as in (A). (C-G), oligonucleosome complexes in 0, 20, 40, 80 and 100 mM NaCl in 5 mM TEA, pH 7.0, 0.2 mM EDTA buffer. The bar is 0.2 μm.

Figure 6.1.5 Trypsinised oligonucleosome complex at different ionic strength

(A), 0 mM NaCl; (B), 20 mM NaCl; (C), 40 mM NaCl; and (D), 100 mM NaCl in 5 mM TEA, pH 7.0, 0.2 mM EDTA buffer. The bar is 0.2 μm.
Figure 6.1.6 Schematic representation of the salt dependent conformational transition of native nucleosome core particles and trypsinized nucleosome core particles.

(García-Ramírez et al., 1992)

Figure 6.1.6 A, Native nucleosome core particles and B, trypsinised nucleosome core particles. The black circle indicates the histone octamer and the open ribbon the DNA. The shared region ~10bp located 20 bp away from the DNA end represents the site of interaction of the histone H2A-H2B tails (Ausio et al., 1989). There are two such regions symmetrically positioned in each nucleosome. For clarity, only one of them is shown.
Figure 6.2 Preparation of chromatin, depleted of H1/H5 chromatin and trypsinised chromatin from chicken erythrocyte

The chromatin used in the pull down experiments were prepared from chicken erythrocyte nuclei as in chapter 5. The protein content in the chromatins were separated using 15% SDS-PAGE and visualized by coomassie blue staining. (A) The chromatins used for the experiments in figure 6.3-6.9. Lane 1: chromatin with H1 & H5. Lane2: H1 & H5 were depleted by 64% using centrifugal filtration step. Lane3: The H1 & H5 depleted chromatin was treated with trypsin. (B) The chromatins used for the experiments in figure 6.10-6.12. Lane 4: chromatin with H1 & H5. Lane 5: H1 & H5 were depleted 64% using hydroxylaptite binding. Lane 6: The H1 & H5 depleted chromatin was treated with trypsin.
Figure 6.3 HP1α does not precipitate chromatin, depleted H1/H5 chromatin or DNA

A. Chromatin

<table>
<thead>
<tr>
<th>NaCl</th>
<th>40</th>
<th>80</th>
<th>0</th>
<th>20</th>
<th>40</th>
<th>80</th>
<th>0</th>
<th>20</th>
<th>40</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td>P</td>
<td>S</td>
</tr>
</tbody>
</table>

20 μg GST 10 μg His-xHP1α 20 μg His-xHP1α

B. 64% depleted H1 & H5

<table>
<thead>
<tr>
<th>NaCl</th>
<th>40</th>
<th>80</th>
<th>0</th>
<th>20</th>
<th>40</th>
<th>80</th>
<th>0</th>
<th>20</th>
<th>40</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td>P</td>
<td>S</td>
</tr>
</tbody>
</table>

20 μg GST 10 μg His-xHP1α 20 μg His-xHP1α

C. Chromatin DNA

<table>
<thead>
<tr>
<th>NaCl</th>
<th>40</th>
<th>80</th>
<th>0</th>
<th>20</th>
<th>40</th>
<th>80</th>
<th>0</th>
<th>20</th>
<th>40</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td>P</td>
<td>S</td>
</tr>
</tbody>
</table>

20 μg GST 10 μg His-xHP1α 20 μg His-xHP1α

Figure 6.3 (A) chromatin, (B) 64% depleted H1 & H5 chromatin (C) digested chicken chromatin DNA were incubated with 20 μg GST, 10 μg His-xHP1α and 20 μg His-xHP1α, which were dissolved in the incubation buffers, with different NaCl concentrations (0–80 mM). After 30 minutes incubation, all the samples were spun at 13,000 rpm. The pellets and the supernatant fractions were separated by 1.5% agarose gel and visualized by ethidium bromide staining. Abbreviation: P: pellet; S: supernatant.
Figure 6.4 xHP1γ does not compete with xHP1α chromatin binding

(A) Chromatin

- Nucleosome DNA were incubated with 10 μg GST or 10 μg GST-xHP1α coupled to Glutathione-Sepharose with 20 mM NaCl for 30 minutes and added 10 μg or 20 μg His-xHP1γ into the incubation buffers for another 30 minutes incubation. All the samples were spun at 13,000 rpm and were washed two time with the same buffer. The pellets, the supernatant and the washing fractions were separated by 1.5% agarose gel and visualized by ethidium bromide staining. Abbreviation: P: pellet; S: supernatant. W1,W2: 1st and 2nd washing elute.
Figure 6.5 The effect of a gradient of NaCl concentration on xHP1α binding of chromatin

(A) Chromatin was incubated with 10 μg GST or 10 μg GST-xHP1α coupled to Glutathione-Sepharose with a different concentration of NaCl (0-100 mM) for 30 minutes. All the samples were spun at 13,000 rpm. The pellets and the supernatant were separated by 1.5% agarose gel and visualized by ethidium bromide staining. (B&C) The monomer and the dimer + trimer revealed in the gel were quantified using phosphor imager and plotted by relative intensity versus NaCl concentration. Abbreviation: P: pellet; S: supernatant; D+T: the dimer + trimer.
Figure 6.6 The effect of a gradient of NaCl concentration on xHP1α binding of H1 & H5 depleted chromatin

(A) 64% H1 & H5 depleted chromatin was incubated with 10 μg GST or 10 μg GST-xHP1α coupled to Glutathione-Sepharose with a different concentration of NaCl (0-100 mM) for 30 minutes. All the samples were spun at 13,000 rpm. The pellets and the supernatant were separated by 1.5% agarose gel and visualized by ethidium bromide staining. (B&C) The monomer and the dimer + trimer revealed in the gel were quantified using phosphor imager and plotted by relative intensity versus NaCl concentration. Abbreviation: P: pellet; S: supernatant; D+T: the dimer + trimer.
Figure 6.7 The effect of a gradient of NaCl concentration on x:HP1α binding of trypsinised chromatin

(A) Trypsinised chromatin was incubated with 10 μg GST or 10 μg GST-XHP1α coupled to Glutathione-Sepharose with a different concentration of NaCl (0-100 mM) for 30 minutes. All the samples were spun at 13,000 rpm. The pellets and the supernatant were separated by 1.5% agarose gel and visualized by ethidium bromide staining. (B&C) The monomer and the dimer + trimer revealed in the gel were quantified using phosphor imager and plotted by relative intensity versus NaCl concentration. Abbreviation: P: pellet; S: supernatant; D+T: the dimer + trimer.
Figure 6.8 The effect of gradient of NaCl concentration on xHP1α binding of DNA only

(A) Chromatin DNA was incubated with 10 μg GST or 10 μg GST-xHP1α coupled to Glutathione-Sepharose with a different concentration of NaCl (0-80 mM) for 30 minutes. All the samples were spun at 13,000 rpm. The pellets and the supernatant were separated by 1.5% agarose gel and visualized by ethidium bromide staining. (B&C) The monomer and the dimer + trimer revealed in the gel were quantified using phosphor imager and plotted by relative intensity versus NaCl concentration. Abbreviation: P: pellet; S: supernatant; D+T: the dimer + trimer.
Figure 6.9 Without histone tails, HP1α chromatin binding has preference of the fraction with longer DNA fragment.

A. 64% Chromatin

[B. Trypsinised Chromatin](#)

Figure 6.9 The same samples with figure 6.3 (A) and 6.4 (B) were separated using 6% PAGE. The monomers in the pellet and supernatant fractions are indicated by arrow heads (↓).
Figure 6.10 The increased concentration of xHP1α elevates chromatin binding on a gradient of NaCl concentration

(A) Chromatin was incubated with 20 μg GST or 20 μg GST-xHP1α coupled to Glutathione-Sepharose with a different concentration of NaCl (0-100 mM) for 30 minutes. All the samples were spun at 13,000 rpm. The pellets and the supernatant were separated by 1.5% agarose gel and visualized by ethidium bromide staining. (B&C) The monomer and the dimer + trimer revealed in the gel were quantified using phosphor imager and plotted by relative intensity versus NaCl concentration. Abbreviation: P: pellet; S: supernatant; D+T: the dimer + trimer.
Figure 6.11 The increased concentration of xHP1α elevates the binding of H1 & H5 depleted chromatin on a gradient of NaCl concentration

(A) H1 & H5 depleted chromatin was incubated with 20 μg GST or 20 μg GST-xHP1α coupled to Glutathione-Sepharose with a different concentration of NaCl (0-100 mM) for 30 minutes. All the samples were spun at 13,000 rpm. The pellets and the supernatant were separated by 1.5% agarose gel and visualized by ethidium bromide staining. (B&C) The monomer and the dimer + trimer revealed in the gel were quantified using phosphor imager and plotted by relative intensity versus NaCl concentration. Abbreviation: P: pellet; S: supernatant; D+T: the dimer + trimer.
Figure 6.12 The increased concentration of xHP1α elevate the binding of trypsinised chromatin on a gradient of NaCl concentration

(A) Trypsinised chromatin was incubated with 20 μg GST or 20 μg GST-xHP1α coupled to Glutathione-Sepharose with a different concentration of NaCl (0-100 mM) for 30 minutes. All the samples were spun at 13,000 rpm. The pellets and the supernatant were separated by 1.5% agarose gel and visualized by ethidium bromide staining. (B&C) The monomer and the dimer + trimer revealed in the gel were quantified using phosphor imager and plotted by relative intensity versus NaCl concentration. Abbreviation: P: pellet; S: supernatant; D+T: the dimer + trimer.
Chapter 7 xHP1α and xHP1γ are required for post-MBT transcriptional gene regulation during *Xenopus* development

7.1 Introduction

In *Drosophila melanogaster*, the genetic dissection of heterochromatin is aided by the availability of numerous rearrangements, which lead to variegated expression of euchromatic genes that have come to be relocated near the heterochromatic breakpoint. A number of loci have been identified which, when mutated, act as dominant modifiers of such variegating position effects (Reuter et al., 1982; Sinclair et al., 1989; Reuter and Wolffé, 1981; Reuter et al., 1982; Locke et al., 1988; Wustmann et al, 1989). Many of these loci are believed to encode chromatin proteins or factors that modify chromatin structure. One of these loci, *Su(var)*2-5 that encodes heterochromatin protein 1 (HP1), has been identified and characterised in *Drosophila melanogaster*. Loss of function mutations in the gene of *Su(var)* 2-5 encoding HP1 in *Drosophila* decrease the mosaic repression observed for euchromatic genes that have been juxtaposed to centromeric heterochromatin (Kellum and Alberts 1995). Mutations in *Su(var)*2-5 gene also cause recessive embryonic lethality, which is found to be associated with defects in chromosome morphology and segregation. While some of these defects are seen throughout
embryonic development, both the frequency and severity of the defects are greatest between cycles 10 and 14 when zygotic transcription apparently begins (Edgar and Schubiger, 1986).

Xenopus laevis is a vertebrate model organism widely used in the field of development biology. To investigate the function of newly cloned genes, over-expression or ectopic expression by microinjection of DNA or mRNA has been performed in *Xenopus* embryos. Methods for loss of function analysis used in the Xenopus system are injections of antisense RNAs (Streinbeisser et al. 1995), DNA expression constructs generating antisense RNA (Lantinkic and Smith, 1999), or mRNA encoding dominant negative constructs, which have been applied for studies of ligands, receptors, intracellular signaling components, or transcription factors. I employed *Xenopus laevis* in this study as a vertebrate model to address the embryonic roles of xHPlα and xHP1γ. I demonstrate that both the deletion and the overexpression of xHP1s RNA result in abnormality in gastrulation that is reflective of the functional requirement of these proteins in gastrulation and subsequent neural development.

7.2 Results

7.2.1 Controls for mRNA injection

Injection of cleavage-stage embryos with mRNA has been the most popular way to overexpress genes in *Xenopus*. This straightforward procedure allows up to 5 ng of RNA to be introduced into the embryos (Krieg and Melton, 1987) and the injected mRNAs are generally translated immediately. Although the usefulness of mRNA injection is clear, the interpretation of results requires appropriate controls. A successful control mRNA must meet several requirements: (1) it must be non-toxic
and non-reactive so that it does not change the development fate of the labelled cell; (2) it must be small enough to diffuse quickly through the injected cell, before the cell divides, so that all of the descendants are evenly and completely labelled, but large enough not to pass through the numerous junctions between adjacent blastomeres (Guthrie et al, 1988); (3) it must remain detectable throughout development and not be diluted by cell mitosis or intracellular degradation; and (4) it should be easily detectable by simple histological procedures.

In my injection experiments, β-galactosidase (β-gal) mRNA was chosen as a control injection in paralleled with the xHP1 mRNAs injections. β-gal is derived from a non-vertebrate (bacteria) and can be easily distinguished from endogenous vertebrate proteins. It has no known deleterious effects on developing vertebrate cells, is very stable and can be detected in the descendant cells as late as up to the tadpole stages 45-48 by simple histological procedures. The β-gal mRNA injected embryos are normally fixed with formaldehydes and the enzyme activity of β-gal can be detected by applying a substrate that undergoes a colorimetric reaction, producing an insoluble, blue coloured precipitate. The location of the precipitate indicates the cellular location of the β-gal, which was encoded by the injected mRNA. An advantage of this technique is that the preparations are essentially permanent and can be used as reference material for years. (Sive et al., 1998).

As a control injection experiment, the albino embryos were injected into one blastomere of two-cell stages embryos with 340 pg of β-gal mRNA, or mixed mRNAs of β-gal (340 pg) and anti-sense RNA of xHP1α (720 pg) or xHP1γ (530 pg). After fixing and performing colour reactions, the embryos showed a one-sided, even blue colour pattern on the surfaces (Figure 7.1 A, D, E). I also performed an injection of 340 pg of β-gal mRNA into 44 wild-type embryos and left them to grow until tail
buds. As a result, 31 embryos out of 44 (70.5%) grew normally until the tailbud stage 35 and 10 out of 44 (22.7%) survived with a non-specific defective phenotype. 3 injected embryos (6.8%) died before tailbud (Figure 7.1 B, C). In parallel, a collection of 60 non-injected wild type embryos developed normally until the tailbud stage 35 with only 5% (n=3) defective embryos.

In conclusion, first of all, the microinjection technique performed in the injection experiment was able to deliver mRNAs into the embryo blastomere without damaging the cells. Most of the injected embryos survived until the tailbud stage 35. Second, the injected mRNAs could be translated into protein that can be histologically detected in the embryos. Finally, the in vitro translated mRNA was not toxic to the embryos, as most of the β-gal mRNA-injected embryos grew normally.

7.2.2 Depletion of maternally derived xHP1α, xHP1γ

To determine whether the maternal xHP1α and xHP1γ are essential for the early Xenopus embryo development, I used antisense RNA microinjection to deplete maternally derived xHP1α and xHP1γ mRNAs. Early embryos were injected with antisense RNA derived from full length of xHP1α or xHP1γ cDNA. Control and injected embryos were cultured until the equivalent of the tadpole stage 35 and monitored and recorded for their phenotypic appearance at blastula, gastrula and neurula respectively. Figure 7.2-A and Figure 7.2-B summarise the results of the experiments with the microinjection of antisense RNA. As mentioned previously, the injection of 340 pg of β-gal of sense RNA into the one blastomere of two-cell stages embryos had no noticeable effect on embryos survival or appearance. In contrast, significant development abnormalities appeared when antisense xHP1α or xHP1γ RNA was injected. Embryos injected with 720 pg of antisense xHP1α RNA exhibited
a considerable delay in development during the blastula and gastrula stages when compared to the control embryos of the same stages. When the injected embryos were allowed to develop further, nearly 30% of them died during neurulation while 40% of the embryos exhibited a defect in dorsal development and stopped growth at this stage (Figure 7.2 C). Only few embryos (less than 3%) survived during the neurulation and grew up to tailbud showing severe axis truncation.

A much more dramatic phenotype was caused by injection of antisense xHP1γ RNA. A considerable number of embryos injected with 530 pg antisense xHP1γ RNA died during blastula and more than 50% of the embryos died during gastrulation. Virtually, the development of most of the embryos (more than 90%) was arrested during early gastrula stage, not showing any sign of narrowing (convergence) and elongation (extension) of dorsal ectoderm, which will form all of the components of the central nervous system (Egaleson and Harris, 1990). Furthermore, the dead phenotype presented an abnormal pigmentation on the animal pole and membrane-bound bodies (apoptotic bodies). These features are similar to characters of ionising-radiation-induced apoptosis in early Xenopus embryos (Anderson et al, 1997). The possibility of apoptosis induced by depletion of xHP1γ in early development is subject to future investigation.

In conclusion, both maternally xHP1α and xHP1γ are crucial for early development in Xenopus. The depletions of maternally stock of xHP1α or xHP1γ, although having different phenotypic effects, impair the normal embryo development in Xenopus.
7.2.3 Overexpression of xHP1α induces dorsal defect in development and its function is conserved from *Xenopus* to Human

In order to test whether interference with the expression levels of xHP1α and xHP1γ proteins might influence early embryonic development, as a pilot experiment, xHP1α or xHP1γ RNA derived from full length of xHP1α or xHP1γ cDNA (200 pg of each RNA) was injected into one blastomere of two-cell embryos (Figure 7.3). Blastopore formation during gastrulation occurred normally in both xHP1α and xHP1γ RNA injected embryos. However, the formation of the neural plate proceeded aberrantly in xHP1α RNA-injected embryos that had apparently normally head structure but almost completely missing the dorsal trunk tissues and had a very short axis (Figure 7.3 D). This phenotype was observed in approximately 40% (n = 49) of the embryos (Figure 7.3 C). In the case of xHP1γ RNA injection, the embryos developed a normal formation of the neural plate and displayed a clear anteroposterior axis in neurula. However, an elongated anteroposterior axis became apparent at tailbud stage and caused the embryos bent to one side (Figure 7.3 E). Approximately 30% (n = 38) of the embryos displayed the dorsalisation phenotype (Figure 7.3 C). This suggest that xHP1α and xHP1γ essential for the formation of embryo dorsal tissues.

The above results clearly show that embryo development at the stage of neuralation is altered by overexpressed xHP1α and xHP1γ during early stages. Nevertheless, xHP1α overexpression displayed a more dominant defect in the formation of the anteroposterior axis. To understand more about the influence of xHP1α overexpression in early development, I decided to repeat the overexpression experiment of xHP1α using a higher dose of RNA for the microinjection. In addition, I performed the injection of the human HP1α (hHP1α,) RNA into the early stage of
Xenopus embryo to address whether the function of HP1α is conserved in early development of different organisms. xHP1α RNA (940 pg) (Figure 7.4-A) was injected into both blastomeres of two-cell embryos. Approximately 53% of injected embryos develop normally as evidenced by blastopore formation during gastrulation. The rest of the embryos became arrested during gastrulation (47%) (Figure 7.4-B). The dorsal defect of the embryos became apparent at late neurula and tailbud stages (Figure 7.4-C). A significant number of the embryos (45.2%) exhibited a severe bending from ventral to dorsal and truncated axis during neurulation, implying that a perturbation of axis formation during neural development occurred (Figure 7.4-C). In addition to the xHP1α overexpression, the expression of hHP1α also displayed a severe bending from ventral to dorsal during neurulation with an almost identical phenotype to its Xenopus counterpart. Although only 26% of the embryos exhibited the phenotype, much less than the proportion exhibited by the embryos with xHP1α overexpression, it is possible that this is due to experimental variations during the two injections, or that it represents functional differences between the protein sequences. A previous study has shown that the CD of M31 can functionally replace the CD of swi6p, demonstrating that the classical CD function is conserved from yeast to humans (Wang et al. 2000). Given the similarity of the phenotypes and the conservation in the amino acid sequences, these experiments imply that xHP1α function could be substituted by cross-specious HP1α during Xenopus embryo development.

7.2.4 Expression of Dominant negative xHP1α

HP1 contains two protein-interaction modules that correspond to the amino chromo domain (CD) and carboxyl chromo shadow domain (CSD). A variety of
studies implicate these domains in HP1 function, including nuclear organisation, chromosome segregation, and gene silencing (Henikoff, 2000). However, it has never been addressed what role these two chromo domains may play during early embryo development. To address this question, I decided to carry out the loss of function analysis by injection of hHP1α mRNAs that contain mutation in the CD and CSD domain.

According to the results in the previous section, the xHP1α function is conserved from Xenopus to human; it would be convenient to do a test using the mutant form of human HP1α generated from previous studies. To this end, we obtained mutant forms of hHP1α, which has previously characterised in detail (Lechner et al. 2000), from the laboratory of Frank Rauscher III's. One of the mutants has a point mutation in amino acid sequence 129 (A129R), which is located in CSD. This mutation essentially abolishes the interaction between hHP1α and many partner proteins, such as KAP-1, SP100, LBR and CAF-1p150. The other amino acid substitution is places in CD, amino acid sequence 21 (V21M), which correspondent to the lethal mutation in Drosophila HP1 encoded by Suvar 2-5. I performed an injection experiment using sense RNAs derived from the two mutant form of hHP1α cDNAs, accompanying an injection of wild type hHP1α RNA (WT) (Figure 7.5 A). A considerable number of embryos grew normally in WT, A129R and V21M injected embryos until gastrula (Figure 7.5). However, intriguing phenotypes became obvious during neurulation. WT and A129 displayed a similar phenotype, which was the dorsal bending of the embryos. In contrast, V21M injected embryos exhibited a normal neural development and axis formation. However, most of the embryos that survived to neurula were arrested at this stage and displayed an increased growth of the two sides of embryos, where were probably derived from
lateral plate in mesoderm (Figure 7.5 E). The results interestingly indicate that both CD and CSD may be involved in the regulation of genes during neurulation of *Xenopus* embryos and these two domains are likely to play different roles during development.

7.2.5 The role of xHP1 for the regulation of gene-expression in *Xenopus* embryo.

In order to test whether in *Xenopus* embryos xHP1 operates as a transcription regulator, we decided to investigate on the level of transcription when xHP1α or xHP1γ were overexpressed during *Xenopus* embryo development. This was done by measuring the incorporation of ¹⁵⁵S-UTP into total RNA after injection of xHP1α or xHP1γ sense RNA (Figure 7.6 A). In collaboration with Dr. Irina Stancheva, embryos were injected with 500 pg of xHP1α or xHP1γ RNA or a mixed RNA of 250pg xHP1α and 250pg xHP1γ into both blastomeres of 2-cell *Xenopus* embryos. Surprisingly, we found that the embryos overexpressing xHP1α or xHP1γ incorporated nearly double amount of ¹⁵⁵S-UTP during gastrulation, in comparison to the control, non-injected embryos. In the case of the embryos injected both xHP1α and xHP1γ RNA together, the incorporation level was four times higher than that of the control embryos or two times higher than the embryos overexpressing xHP1α or xHP1γ only (Figure 7.6 B). In neurula, the incorporation of ¹⁵⁵S-UTP in the embryos overexpressing xHP1α or xHP1γ remained two times higher than the control embryos. The embryos injected with both xHP1α and xHP1γ RNA incorporated approximately 30% more ¹⁵⁵S-UTP than the control embryos but less than xHP1α or xHP1γ RNA overexpressing siblings.

The increased incorporation of ¹⁵⁵S-UTP indicated that transcription regulation
in *Xenopus* embryos was altered by the overexpressions of xHP1 proteins. This suggests that xHP1s plays a key role in maintaining normal level of transcription.

7.3 Discussion

It is generally believed that HP1 may simply function as an organiser of higher order chromatin in the nucleus. This organising property may serve to accommodate the transcription of genes that reside within heterochromatin. Conversely, rearrangements that place euchromatin genes next to a heterochromatin breakpoint could make genes assembly into HP1 dependent heterochromatin and silence those genes by template occlusion (Eissenberg and Elgin, 2000).

In *Drosophila*, loss of function mutations in the gene encode HP1 suppress the position-effect variegation, and also causes embryonic lethality. The lethality was found to be associated with defects occurring between cycles 10 and cycles 14 of early embryo cell divisions when gene transcription is activated (Kellum and Alberts 1995). This study concluded that HP1 is required for normal nuclear morphology and mitosis. The early embryonic development in *Drosophila* (Edger et al, 1986) and amphibians (Gurdon and Woodland, 1968; Newport and Kirschner, 1982) is characterised by a period of rapid cell/nuclear cycles, little or no transcription, and a homogeneous appearance of chromatin. Both types of embryos undergo an analogous transition period that involves a slowing of the cell cycle, the onset of transcription of most genes, and an increased heterogeneity in chromatin appearance. This transition takes place during nuclear cycles 10 to 14 in *Drosophila* (Edger and Schubiger, 1986). In *Xenopus*, transcription in early development remains fully repressed until the 13th cell cycle post-fertilisation. At this stage, the mid-blastula transition (MBT) occurs relatively abruptly with a generalised reactivation of gene
expression. The distinct properties of heterochromatin are thought to be due to a specialised nucleoprotein organisation during this transition.

To study the functional significance of HP1 in the development, I manipulated the expression of the *Xenopus* homologues of these proteins, xHP1α and xHP1γ. My data point towards an early development role for xHP1α and xHP1γ. Both the depletion and overexpression experiments clearly show that xHP1 proteins are essential for early development after the MBT. This observation is consistent with the prediction that HP1 may act as an essential player in the dynamic organisation of nuclear architecture.

My observation in the S35-incorporation experiment suggests that xHP1 may act as a core component in the higher order chromatin structure, in which many other factors are involved. The functional heterogeneity of heterochromatin is reflected by the fact that regions of heterochromatin contain actively transcribed gene. The ribosomal genes are organised into tandem arrays in the heterochromatin in multicellular organisms. *Drosophila* has on the order of 20-protein-encoding, heterochromatic genes. Importantly, at least seven of these genes have been shown to require proximity to heterochromatin for their normal expression. Thus, the results of the S35-incorporation experiment have to be interpreted by at least two different directions. First, depleting or overexpressing the core of this HP1-associated complex would result in corruption of the higher order chromatin structure and disrupt HP1-dependent gene silencing and then result in the increased transcription level of affected genes. Second, the activation of heterochromatic genes, for instances, the ribosomal genes could be affected by this structure disruption. Alternatively, the hundreds copies of the genes previous may be in the control of heterochromatic mediating, then burst into high level of transcription. Thus, the
increased S35-incorporation level may only be sourced from heterochromatic genes.

More importantly, HP1 may still be key for transcriptional regulation. The RT-PCR analysis in Chapter 3 has shown that the expression level of xHP1\(\alpha\) increases to its highest level during neurulation. The whole mount \textit{in situ} hybridisation of xHP1\(\alpha\) and immunostaining of xHP1\(\gamma\) also show that xHP1s have a strong expression in the head and in the neural tube. There is a strong implication that xHP1\(\alpha\) may be functionally significant for neural development. The results in Figure 7.5 interestingly indicate that both CD and CSD may be involved in regulation of gene expression during neurulation of \textit{Xenopus} embryos and these two domains are likely to play different roles during development. To facilitate the interpretation of the phenotypes, it would be important to identify the affected genes, which are regulated by HP1\(\alpha\). This will be the subject of future investigations to reveal whether there is a pattern of HP1-related gene expression.
Figure 7.1 β-galactosidase mRNA is translated in embryos and has a limited distribution after targeted microinjection

A. Animal pole

Albino embryo injected β-gal RNA in one cell

B. Wild type embryo injected β-gal RNA in both cells

C.

<table>
<thead>
<tr>
<th>Inhibitory Reagents</th>
<th>Dosage of injection samples</th>
<th>Number of injected embryos</th>
<th>Normal</th>
<th>Defective phenotype</th>
<th>Dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild type</td>
<td>0</td>
<td>60</td>
<td>57 (95%)</td>
<td>0</td>
<td>3 (5%)</td>
</tr>
<tr>
<td>β-gal</td>
<td>340 pg</td>
<td>44</td>
<td>31 (70.5%)</td>
<td>10 (22.7%)</td>
<td>3 (6.8%)</td>
</tr>
</tbody>
</table>

D. Animal pole

β-gal + Anti-xHP1α RNA injected in one cell

E. Animal pole

β-gal + Anti-xHP1γ RNA injected in one cell

Figure 7.1 (A) Albino embryos at the 2-cell stage were injected with 340 pg of β-galactosidase (β-gal) sense RNA into one of the cells. The injected embryos were collected at stage 9 (late blastula) and fixed. The β-gal expression was detected using a colorimetric reaction. (B) Wide type embryos at 2-cell stage were injected with 340 pg of β-gal sense RNA into both cells and 70% of the injected embryos grew normally to tadpole stage 35. (C) Table showing dosages of β-galactosidase RNA injected into both cells of 2-cell stage embryos and number of embryos that were injected, in parallel with wild type embryos. (D & E) Albino embryos at the 2-cell stage were injected with 340 pg of (β-gal) sense RNA and anti-xHP1α (720 pg)/anti-xHP1γ RNA (530 pg) into one of the cells. The injected embryos were collected at stage 9 (late blastula) and fixed. The β-gal expression was visualized using the method in (A).
Figure 7.2 Depletion of xHP1 in *Xenopus* embryos perturbs development.

A.

<table>
<thead>
<tr>
<th>Injected RNAs</th>
<th>Dosage of injection samples</th>
<th>Number of injected embryos</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta)-gal</td>
<td>340 pg</td>
<td>44</td>
</tr>
<tr>
<td>Anti-sense xHP1(\alpha)</td>
<td>720 pg</td>
<td>94</td>
</tr>
<tr>
<td>Anti-sense xHP1(\gamma)</td>
<td>530 pg</td>
<td>102</td>
</tr>
</tbody>
</table>

B.

![Graph showing survival rate at different stages of development](image)

- **Surviving Rate (%)**
- **Stages**: Blastula, Gastula, Neurula
- **Groups**: Normal, Defective phenotype, Dead
- **Legend**:
 - b-Gal
 - Antisense HP1\(\alpha\)
 - Antisense HP1\(\gamma\)
Figure 7.2 (A) Table showing dosages of β-galactosidase, xHP1α anti-sense or xHP1γ anti-sense RNA injected into both cells of wild type 2-cell stage embryos and number of embryos that were injected. (B) The schematic diagram of phenotypes of the injected embryos. (C) The phenotypes of the xHP1α anti-sense RNA injected embryos at stage 9, 20 and tadpole stage 32-35. (D) All the xHP1γ anti-sense RNA injected embryos died at stage 9. The phenotype was similar to that of X-ray induced apoptosis.
Figure 7.3 Over-expression of xHPlα and xHPlγ shows different phenotypical defects in Xenopus embryos

A.

Wild type

B.

<table>
<thead>
<tr>
<th>Injected RNAs</th>
<th>Dosage of injection samples</th>
<th>Number of injected embryos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sense xHPlα</td>
<td>200 pg</td>
<td>49</td>
</tr>
<tr>
<td>Sense xHPlγ</td>
<td>200 pg</td>
<td>38</td>
</tr>
</tbody>
</table>

C.

Surviving Rate (%)

<table>
<thead>
<tr>
<th></th>
<th>HPlα</th>
<th>HPlγ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>Defective</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>Dead</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Tadpole (Stage 35)
Figure 7.3 (A) Sense RNAs of xHP1α and xHP1γ were injected into 1 cell of 2-cell stage pigmented embryo and the injected embryos were grown to the equivalent of tadpole stage 35 (Wild type embryos is shown.) (B) The table showing dosages of xHP1α sense or xHP1γ sense RNA were injected into one cell of wide type 2-cell stage embryos and the number of embryos were injected. (C) A schematic diagram of phenotypes of the injected embryos at stage 35. (D) The phenotypes of the xHP1α sense RNA injected embryos at tadpole stage 35. (E) The phenotypes of the xHP1γ sense RNA injected embryos at tail bud stage 35.
Figure 7.4 Over-expression of human and xHP1α gives similar phenotypes in Xenopus embryos

A.

<table>
<thead>
<tr>
<th>Injected RNAs</th>
<th>Dosage of injection samples</th>
<th>Number of injected embryos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sense XHP1α RNA</td>
<td>940 pg</td>
<td>93</td>
</tr>
<tr>
<td>Sense Human HP1αRNA</td>
<td>960 pg</td>
<td>96</td>
</tr>
</tbody>
</table>

B.

![Graph showing survival rates at different stages (Blastula, Gastula, Neurula) for different conditions: Normal, Defective phenotype, Dead. The graph compares survival rates for Sense HP1a (yellow bars) and Human Sense HP1a (red bars).]
Figure 7.4 (A) The table showing dosages of xHP1α sense or human HP1α sense RNA were injected into both cells of wide type 2-cell stage embryos and number of embryos were injected. (B) The schematic diagram of phenotypes of the injected embryos. (C) The phenotypes of the xHP1α sense RNA injected embryos at stage 9, 20 and tadpole stage 35. (D) The phenotypes of the human HP1α RNA injected embryos at stage 20 and tadpole stage 35.
Figure 7.5 Expression of dominant negative mutants of HP1α in the development of *Xenopus* embryos

A.

<table>
<thead>
<tr>
<th>Human HP1α</th>
<th>Dosage of Injection samples</th>
<th>Number of injected embryos</th>
<th>T<sub>x</sub> repression</th>
<th>KAP-1/ TIF1-β</th>
<th>SP100</th>
<th>LBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>960 pg</td>
<td>41</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>A129R (CSD)</td>
<td>960 pg</td>
<td>70</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V21M (CD)</td>
<td>960 pg</td>
<td>59</td>
<td>Corresponding to lethal mutation in Drosophila</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Lechner et al, 2000, MCB)

B.

![Graph showing survival rates in developmental stages]
Figure 7.5 (A) Table showing dosages of wild type (WT) and mutant form (A129R and V21M) human HP1α sense RNA, which were injected into both cells of wide type 2-cell stage embryos and the number of injected embryos. (B) The schematic diagram of phenotypes of the injected embryos. (C, D & E) The phenotypes of the WT, A129R and V21M human HP1α sense RNA injected embryos at stage 20 (early tailbud).
Figure 7.6 Overexpression of xHP1 intrudes on gene–expression in *Xenopus* embryos.

A.

![Diagram of embryo development process](image)

Analysis of 35S-UTP incorporation

Embryos were injected 500pg of XHP1α, XHP1γ or 250pg α + 250pg γ sense RNA at 2 Cells stages, both cells.

B.

Incorporation of 35S-UTP into embryos overexpressing HP1 protein

![Graph showing incorporation of 35S-UTP](image)

Figure 7.6 The effect of over-expression of xHP1 on embryo development as measured by the level of the incorporation of 35S-UTP after the injection of xHP1α and xHP1γ sense RNA. (A) The schematic diagram showing the procedure of the incorporation experiments. (B) The schematic diagram showing the levels of 35S-UTP incorporated in the wide type (WT) and the injected embryos.
Chapter 8 General Discussion

8.1 Summary of Results

The work presented in this thesis describes the characterisation of two homologues of HP1 (heterochromatin protein 1) in Xenopus laevis. Two full-length cDNA clones of HP1 homologues, xHP1α and xHP1γ are identified from Xenopus. Both of these clones contain a chromo domain (CD) and chromo shadow domain (CSD). RT-PCR analysis revealed that both xHP1α and xHP1γ are maternally abundant and their expression increases to a high level during neurulation stages, but xHP1α gene is expressed in higher level than xHP1γ at different developmental stages in frogs. RNA in situ hybridisation demonstrates that xHP1α shares an overlapping pattern expression with xPolycomb2. Expression was observed in the head and neural tube. Although the xHP1γ transcripts pattern is undetectable using RNA in situ hybridisation, its protein localisation reveals a similar pattern with xHP1α transcripts.

The results of the self-association assays demonstrate that xHP1α and xHP1γ can homo- and heteromerdise in vitro and the associations are dependent on the CSD. The result is consistent with the other two studies reported that only the CSD is necessary and sufficient for self-association and heterologous interaction between HP1α and HP1γ in a two-yeast hybrid assay with human proteins (Le Douarin et al., 1996) and in vitro binding assay with mouse proteins (Ye et al., 1997).

The DNA binding assays provide a clear evidence for the interaction between DNA and xHP1α, but not xHP1γ. Neither length nor sequence preference was observed...
for this DNA binding activity. The chromatin pull-down assay localised a novel chromatin-binding domain to the hinge region of $xHPl\alpha$, which is not present in $xHPl\gamma$. The hinge region consists of 23 amino acids and shows only 50% consensus to mammalian counterparts. This result differs from the previous report from Eissenberg and colleagues. They suggested that *Drosophila* HP1 can bind directly to nucleosomes but intact native HP1 is required for such interactions (Zhao et al. 2000).

Additional analysis using salt-dependent folded chicken chromatin indicates that $xHPl\alpha$ favours binding to a highly compacted chromatin fibre containing linker histone. The results demonstrate that $xHPl\alpha$ does not impair or participate in intrinsic chromatin folding, although HP1 is an essential component of heterochromatin, which is required in a precise stoichiometry to properly set up and/or maintain the inactivated state of genes (Nielsen et al., 2001). In the case of the interaction between $xHPl\alpha$ and the chromatin without histone tails, $xHPl\alpha$ has a preference of binding to linker DNA but it has no preference in chromatin depleted of H1/H5. Therefore, it may imply that without the assistance of histone tails, $xHPl\alpha$ and chromatin will not form a proper association. Using the Far Western blotting study, it shows that $xHPl\alpha$ can interact specifically with histone H3 and linker histones but not with the other core histones. This interaction supports the idea that chromatin binding by $xHPl\alpha$ involves an interaction with linker histones-containing chromatin. Taken together, it could be that this specific interaction between $xHPl\alpha$ and chromatin is related to configuration of a particular type of chromatin, perhaps heterochromatin. It is also possible that this functional difference between $xHPl\alpha$ and $xHPl\gamma$ is responsible for their differential sub-nuclear localisation.

To study the functional significance of HP1 in the development, I manipulated the expression of $xHPl\alpha$ and $xHPl\gamma$. My data point towards an early development role for $xHPl\alpha$ and $xHPl\gamma$. Both the depletion and overexpression experiments clearly show...
that xHP1s are essential for early development after the mid-blastula transition (MBT). The results interestingly indicate that both CD and CSD may be involved in the regulation of genes during neurulation of *Xenopus* embryos and these two domains are likely to play different roles during development. Moreover, when embryos overexpressed xHP1α and xHP1γ, or both xHP1α and xHP1γ together, these embryos also incorporated a significantly higher level of 32S-UTP after MBT. These observations are consistent with the prediction that HP1 acts as an essential player in the dynamic organisation of nuclear architecture. It is possible that HP1 acts at a hub of silencing chromatin mechanisms, which are required to maintain the higher order structure and the homogeneous appearance of chromatin before the onset of transcription at MBT. More importantly, after MBT, HP1 is key for transcription regulation. Deleting or overexpressing the core of this HP1 associated complex could result in corruption of the higher order chromatin structure and disrupt HP1-dependent gene silencing. The loss of function experiments indicate that both the CD and the CSD may be involved in gene expression regulation during neurulation of *Xenopus* embryos and these two domains could likely play different roles during development.

8.2 The HP1 proteins in *Xenopus laevis*

In this study, I identified two full-length cDNA clones encoding HP1 homologues from *Xenopus*, xHP1α and xHP1γ. The alignments of cDNA and derived protein sequences show high identities with mouse and human homologues. Both of these clones contain a chromo domain (CD) and chromo shadow domain (CSD). The results confirm that the chromo domain and chromo shadow domain are highly conserved from frogs to humans throughout evolution. Nevertheless, there is a third isoform of HP1 in mammals and avia, called HP1β. A recent report describes two newly discovered
Drosophila HP1-like proteins (HP1b and HP1c), and characterises the subnuclear localization patterns of comparing them with that of the originally described fly HP1 protein (here designated HP1a) (Smother and Henikoff, 2001). The data reveal a similar localisation pattern, comparing them with HP1 homologues in mammals and avian.

In order to identify HP1β in frogs, the PCR screens have been done in the *Xenopus* cDNA libraries. However, in all the cases the results were difficult to analyse due to the presence of multiple PCR products. To prevent the technical difficulties, the coding sequences of mammalian HP1β were used to search non-human/mouse expressed sequence tag (EST) database (PSI-BLAST protein database). The searching generated three *Xenopus* cDNA clones as candidates of HP1β homologue (as indicated by arrows in Figure 8-1), however most of the high-score alignments were located at both chromo domains, but not at the hinge region, which is the most discriminated sequences among HP1 homologues. None of the sequences were likely to be *Xenopus* HP1β. Also there is no trace of zebra fish’s HP1β in the up-to-date database. However, recently another two homologues of HP1 are identified from Drosophila EST database. It could be that the database of frog and fish contain limited information or this isoform of HP1 does not exist in *Xenopus laevis.*
Figure 8-1 The result of non-human/mouse EST database searching in HP1β

Color Key for Alignment Scores

<table>
<thead>
<tr>
<th>Score Range</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td><40</td>
<td>Black</td>
</tr>
<tr>
<td>40-50</td>
<td>Red</td>
</tr>
<tr>
<td>50-80</td>
<td>Yellow</td>
</tr>
<tr>
<td>80-200</td>
<td>Green</td>
</tr>
<tr>
<td>≥200</td>
<td>Blue</td>
</tr>
</tbody>
</table>

Sequences producing significant alignments:

<table>
<thead>
<tr>
<th>GI</th>
<th>Value</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>111670815</td>
<td>1116708151gbIBF561085.11IBF561085</td>
<td>UL-R-E1-1e-03-0-Ul.rl.......................... 212 7e-53 Rattus norvegicus cDNA</td>
</tr>
<tr>
<td>11537379</td>
<td>115373791gbIB1533212.11IB1533212</td>
<td>fr79a05.xl zebrafish adu. 147 4e-33</td>
</tr>
<tr>
<td>115374091</td>
<td>115374091gbIB1533492.11IB1533492</td>
<td>fr79a05.yl zebrafish adu. 135 1e-29</td>
</tr>
<tr>
<td>17282591</td>
<td>17282591gbIBI533492.11IBI533492</td>
<td>fb30f06.yl zebrafish fin. 123 5e-26</td>
</tr>
<tr>
<td>111783461</td>
<td>111783461gbIB1512636.11IB1512636</td>
<td>df09a05.yl Wellcome CRC. 98 3e-18</td>
</tr>
<tr>
<td>161955698</td>
<td>1619556981gbIA147802.11IA147802</td>
<td>da04b10.yl Xenopus laevis. 98 3e-18</td>
</tr>
<tr>
<td>128215131</td>
<td>128215131gbIBI917065.11IBI917065</td>
<td>fk75d02.yl Zebrafish Rese. 96 1e-17</td>
</tr>
<tr>
<td>115565844</td>
<td>115565844gbIBI554064.11IBI554064</td>
<td>dah78e05.yl NICHD XGC Em. 86 1e-14</td>
</tr>
<tr>
<td>163421341</td>
<td>163421341gbIAW164958.11IAW164958</td>
<td>da20b04.y3 normalized Xen... 86 1e-14</td>
</tr>
</tbody>
</table>

8.3 Significance of the hinge region

A large number of detailed studies focus on the role of chromo domains. In contrast, there is only a minimal characterisation of the HP1 hinge, which is thought to be merely a linker that connects the two chromo-domains of HP1. A few studies indicate that the hinge may function as more than just a linker and might contribute more directly to HP1 function. First, the *in vitro* binding capacity of the HP1 chromo shadow domain for lamin B receptor is increased by addition of the hinge sequence, suggesting that the hinge may cooperate with chromo domain modules or contribute to their stability (Ye et al., 1997). Second, yeast two-hybrid experiments map HP1’s interaction with inner centromere protein (INCEP) to the hinge, indicating that the segment may selectively interact with other proteins *in vivo* (Ainsztein et al., 1998). Third, artificially truncated forms of HP1 that localize to heterochromatin and contain chromo shadow domain also include a substantial portion of the hinge (Platero et al., 1995; Powers and Eissenberg, 1993), suggesting that the hinge might contribute to targeting. Fourth, recent studies in *S. pombe* describe a nuclear localization signal (NLS) within the hinge that effectively targets the HP1 homologue Swi6 to the nucleus (Wang, et al. 2000).

Finally, Comparison of HP1 homologues also reveal a conserved block of 25 amino acids contained within the hinge [Smothers and Henikoff, 2001 (Figure 8-2)]. They find that not only the NLS is conserved but also an invariant KRK sequence is also present. The hinge sequence is largely hydrophilic, lacking hydrophobic core residues that could contribute to a globular tertiary structure. The NLS consists of two basic amino acids (K or R), followed by a 10-residue spacer region and another three basic amino acids within the next five positions. Furthermore, the spacer residues found within bipartite NLS sequences are largely acidic.
Figure 8-2 An invariant sequences within the block is shaded and a region that conforms to a bipartite NLS is indicated by brackets. The colour is used to discriminate amino acids based on the chemistry side chain (i.e., blue = basic and red = acidic)

(Derived from Smothers and Henikoff, 2001)
Despite these data, a role for the hinge in animal HP1 proteins beyond that of a connector for chromo domains remains speculative. In my finding, the hinge regions of \(x\text{HP1}\alpha \) and \(x\text{HP1}\gamma \) display strikingly different activities in DNA and chromatin binding. Although the KRK blocks are conserved in the hinge regions of both \(x\text{HP1}\alpha \) and \(x\text{HP1}\gamma \), the spacers in the hinge of \(x\text{HP1}\alpha \) have more neutral amino acids than acidic amino acids. In fact, there are four acidic amino acids (D or E; pKa = 4.4) in the spacer of \(x\text{HP1}\gamma \) on average rather than two in the \(x\text{HP1}\alpha \). It could be this difference in the spacer contributes to an increase of positive charge in the hinge, which may make \(x\text{HP1}\alpha \) accessible to interact with the DNA and chromatin. Interestingly, \(x\text{HP1}\beta \) has a basic (K) and four acidic amino acids in the spacer; in addition, another two acidic residues follow the spacer and right before the ‘KPKKK’ block of the NLS. This prototype of the spacer is in the middle between \(x\text{HP1}\alpha \) and \(x\text{HP1}\gamma \). This may be functionally reflected to the spatial pattern of \(x\text{HP1}\alpha \), \(x\text{HP1}\beta \) and \(x\text{HP1}\gamma \) in cell. In mouse cells, heterochromatin enriched in \(x\text{HP1}\alpha \) and \(x\text{HP1}\beta \) is separated from less well-characterised nuclear regions enriched in \(x\text{HP1}\gamma \), which may correspond to euchromatin (Horsley et al. 1996). More diverse spatial patterns are evident in human cells, where each HP1 homologue targets distinct heterochromatin domains (Mine et al., 1999). Properties of the hinge may help explain distinct localisation patterns observed among different HP1 homologues. The chromo domains of \(x\text{HP1}\alpha \), \(x\text{HP1}\beta \) and \(x\text{HP1}\gamma \) are almost indistinguishable, suggesting that interactions with these modules alone would be redundant unless features outside of the chromo domains help determine function. The hinge sequences among all of these homologues differ in their length and composition and might therefore function to discriminate these proteins \textit{in vivo}. There is no data available concerning the biochemical properties of \(x\text{HP1}\beta \). It would be essential to make an investigation of \(x\text{HP1}\beta \) by means of DNA and chromatin interacting.
8.4 HP1 and chromatin folding

Distinct levels of chromatin organisation are dependent on the dynamic higher order structuring of nucleosomes, which represent the basic repeating unit of chromatin. In each nucleosome, roughly two superhelical turns of DNA wrap around an octamer of core histone proteins forms by four histone partners: an H3-H4 tetramer and two H2A-H2B dimers (Luger et al., 1997). Histones are small basic proteins consisting of a globular domain and a more flexible and charged N-terminus (histone tails) that protrudes from the nucleosome. It remains unclear how nucleosomal arrays containing linker histone (H1) twist and fold this chromatin fibre into increasingly more compacted filaments to defines high-order structures.

Recently much attention has been drawn to the interaction between HP1 and methylated histone H3. Two independent research groups have recently shown that the chromo domain, but not the chromo shadow domain, of HP1 and Swi6 preferentially bind to methylated H3 Lys9 in vitro (Lachner et al., 2001; Bannister et al., 2001). The chromo domain of HP1β was selective for the H3 Lys9-methyl modification, as demonstrated by the lack of binding to an H3 unmodified or H3 Lys4-methyl peptide (Bannister et al., 2001). Interestingly, HP1 chromo domain binding affinity was significantly less than that of the full-length HP1, suggesting that native HP1 (or an HP1 dimer) is required for high-affinity binding in vivo (Lachner et al., 2001; Bannister et al., 2001). Therefore, chromo-domain containing proteins, such as HP1 and Swi6, are predicted to bind to the H3 Lys9-methyl modification catalysed by the Su(var)3-9 family of histone methyltransferases (HMTs) in order to establish silent regions of heterochromatin (Figure 8-3).

However, my results differ from this model. I have demonstrated that the hinge region of HP1α, but not HP1γ has a chromatin-binding activity and using western-
Figure 8-3 One proposed temporal pathway leading to the establishment of transcriptionally silent heterochromatic regions with regard to the covalent modifications in the histone H3 tail.

The acetyl group on H3 Lys9, a modification often associated with transcriptionally active regions, is removed by an HDAC prior to methylation by an HMT. The CD of HP1 selectively recognizes and binds to the H3 Lys9-methyl modification resulting in the self-assembly and propagation of heterochromatin and transcriptional silencing.
blotting, I show that HP1α interact specifically with histone H3 and linker histone H1, but not H5. In addition, HP1α shows an intrinsic chromatin binding activity to tailed or tailless chromatin. These findings are supported by a recent report (Nielsen et al. 2001). They show that all three mammalian HP1s bind to tailed and tailless nucleosomes in vitro and specifically interacts with the histone-fold domain of histone H3, but not the H3 tails. Moreover, HP1α binds to histone H3 and H1 through its chromo domain and hinge region respectively. Therefore, the model in Figure 8-3 may over-simplify what role HP1 may play in chromatin folding and compaction. Especially while the linker histone interacts with HP1α, it supports the notion that HP1 acts at a hub of silencing chromatin mechanisms, which are required to maintain the higher order structure and the appearance of heterochromatin. Indeed, a more intriguing story is ahead of us and waited to be discovered.

8.5 Developmental role for Heterochromatin

Heterochromatin-mediated silencing is developmentally regulated in Drosophila. The best-characterisation example is heterochromatic PEV in Drosophila. Two developmental stages for the regulation of heterochromatic silencing have been proposed: (1) the initiation of variegated silencing in cellularised, gastulating embryos and (2) the relaxation of silencing at the onset of terminal differentiation in imaginal tissues (Lu et al., 1998). In development of Drosophila, cytological visible heterochromatin first appears in the end of syncytial blastoderm embryos at approximately 1.5 hours of embryogenesis (Vlassova et al. 1991). Establishment of variegated silencing of heat-shock lacZ (HS-lacZ) at the end of the blastoderm stage coincides with G2 of the 14th cell cycle (Foe et al., 1993). During the interphase of the 14th cell cycle, heterochromatin undergoes a rapid compaction and remains consistently
condensed thereafter (Foe et al., 1993; Hiraoka et al., 1993). Also beginning in the 14th cell cycle, heterochromatin is replicated progressively later during subsequent S phase (Edgar and O'Farrell, 1990, Foe et al., 1993). It is proposed that the initiation of heterochromatic PEV, beginning at the end of blastoderm stage. This reflects the coincidences of the silencing of HS-lacZ being initiated and the functional maturation of heterochromatin (Lu et al., 1998).

In addition, the observation linking development repression to heterochromatic associations in lymphocyte development (Brown et al., 1997) suggests that differentiation-dependent remodelling of heterochromatin may have wider implications in the maintenance of developmental silencing. This silencing effect has been shown to be mediated in part by heterochromatin-associated protein, of which the best characterised is HP1. Direct evidence that HP1 is involved in gene silencing is from the experiment in which the levels of HP1 were modulated. Mutations in the gene encoding HP1 are homozygous lethal in Drosophila (Eissenberg et al., 1990), HP1 heterozygotes show a loss of silencing of transgenes at centric localisation, which correlates with a more 'open' (euchromatic-like) chromatin structure (Cryderman et al., 1998). In contrast, HP1 overexpression leads to an increase in gene silencing (Eissenberg et al., 1990, 1992). In mice, increased silencing of a centric transgene was observed upon overexpression of a mouse HP1-like protein M31(Festenstein et al., 1999).

In Xenopus, the transcription is activated at 13th cell cycles. At this stage, the mid-blastula transition (MBT) occurs with a generally activation of gene expression. It is still unknown whether heterochromatin maturation in Xenopus is coincident with the onset of transcription, the equivalent with what happens in Drosophila. Nevertheless, in my data both the depletion and overexpression experiments clearly show that xHP1s are essential for early development after the MBT. Moreover, when embryos overexpressed
xHP1α and xHP1γ, or both xHP1α and xHP1γ together, these embryos also incorporated a significantly higher level of 32S-UTP after MBT. This suggests that frog may have the same programming of heterochromatin formation with fruit fly during the development.

As discussed before, xHP1α may be functionally essential for neural development. This vision is supported by the previous studies in another chromo-domain containing protein, xPolycomb. The transcripts of xPolycomb are expressed in a pattern that is almost identical with xHP1α. (Figure 8-4) (Reijnen et al., 1995). However, the expression also has been found in the somites via carefully examining the sections of embryos hybridized with xPolycomb. As the similarity of expression pattern and the common feature of chromo-domain protein families, it cannot be excluded that xHP1α could also involve in somite, notochord and muscle development, which are derived from mesoderm cells during early development. In fact, xHP1α also share a overlapping expressing pattern with a mesoderm marker, *Xenopus Brachyury* (Xbra) in gastrulation (Conlon et al., 1996) (Figure 8-5, A&B). Strikingly, the overexpressing and depleting xHP1α in *Xenopus* embryo display a truncated axis, this phenotype is similar to that with inhibition of Xbra function. (Conlon et al., 1996) (Figure 8-5, C). Taken together, the HP1 protein family may be involved in the progress of varied germ layers during early development. Although this speculation is yet conclusive, HP1 might play as a global suppresser or regulator in gene expression during early development.
(Derived from Reijnen et al., 1995)

Figure 8-4 Localisation of xPolycomb transcripts during *Xenopus* early development by whole mount in situ hybridization.

(A) Stage 15, early neurula, (B) Stage 19 late neurula, (C) Stage 28 tailbud.

(Derived from Conlon et al., 1996)

Figure 8-5 Brachyury expression during *Xenopus* gastrulation.

(A) Before gastrulation, the expression of Brachyury (dark stain) marks the future mesoderms. (B) As gastrulation proceeds, the mesoderm that will form notochord converges and extends along the midkine and only notochord cells continue to express Brachyury. (C) Inhibition of Brachyury function leads to a loss of posterior and axial mesodermal structures. Control *Xenopus* tadpole embryo shown at top and corresponding embryo injected with a construct that interferes with Brachyury function shown at bottom of panel.
8.6 HP1 and transcription regulation

Recent reports broaden our comprehension of HP1-mediated regulation of gene expression. HP1α protein levels are significantly depleted in metastatic breast cancer cells (Kirschmann et al., 2000). Despite the presence of normal HP1β and HP1γ protein level, an increase in HP1α expression alone eliminates their invasive and metastatic properties. HP1 is also involved with the repressive function of the retinoblastoma (Rb) protein (Nielsen et al., 2001). Rb associates with SUV39H1 and HP1 in vivo and SUV39H1 cooperate with Rb to repress the cyclin E promoter.

HP1 is found associated with a number of transcriptional repressors, suggesting that it may have a role in repressing other promoters. Thus, my results support the role of HP1 beyond heterochromatic gene silencing to a more general function in regulating gene transcription. A recent report shows that Drosophila HP1 normally represses the expression of four euchromatic genes in a dosage-dependent manner (Hwang et al. 2001). The repressive effect of HP1 is decreased by mutation in Su(var)3-9 and Su(var)2-1, which is correlated with histone H4 deacetylation. These data provide genetic evidence that an HP1-family protein repress the expression of euchromatic genes in a metazoan, and that histone modifiers cooperate with HP1 in euchromatic gene expression. The model in Figure 8-6 summarises the prediction that HP1 acts as an essential player in the dynamic organisation of nuclear architecture. It is possible that HP1 acts at a hub of silencing chromatin mechanisms, which are required to maintain the higher order structure. More importantly, HP1 is key for transcription regulation.
Chapter 8 General Discussion

HP1 protein is probably a structural component of heterochromatin.

Figure 8-6 Role of HP1 complex in propagation of heterochromatin, gene silencing and transcription regulation.
8.7 Conclusion and subjects for future investigation

A fuller understanding of heterochromatin function and the mechanism of its formation are likely to have important consequences for human health, especially cancer. Although recent discoveries help us to understand more the formation of heterochromatin, the correlation between heterochromatin regulation in gene expression and cancers is poorly understood. The study indicates that HP1 is down regulated in invasive breast cancer cell line, giving the link between heterochromatin and tumorigenesis (Kirschmann et al., 2000). HP1 interacts with three categories of proteins, including transcription factors (Le Douarin et al., 1996; Ryan et al., 1999), nuclear assembly factors (Ye et al., 1997; Ainsztein et al., 1998; Murzina et al., 1999; Pak et al., 1997) and the other components of heterochromatin (Aagaard et al., 1999; Cleard et al., 1997; Le Douarin et al., 1996; Ye et al., 1997). There are many implications in those interactions At least, that means heterochromatin is very active in gene expression regulation and post cell-division nuclear assembly.

The HP1 family of proteins represents the best-characterized heterochromatin-associated non-histone chromosomal protein family in the eukaryote. Its evolutionary conservation suggests a fundamental role for HP1 proteins in nuclear organization and a highly conserved set of macromolecular interactions. Future work on HP1 and its partners will be directed at defining its roles as a subunit of heterochromatin, as a cofactor in gene regulation, and as an essential player in the dynamic organization of nuclear architecture. It will be also important to fully understand the HP1/heterochromatin-mediated transcription regulation and identify the affected genes, which are regulated. This will be the subject of future investigations to reveal whether there is a pattern of HP1-related gene expression. Key to the achievement of these goals will be the application of genetic and developmental assays to test the functional
significance of cytological and biochemical correlations.
References

mouse HP1 suggests a unique mode of single peptide recognition by the shadow chromo domain dimer. EMBO J. 19, 1587-1597.

Muller HJ (1930) Types of visible variations induced by X-rays in Drosophila

References (Book)

