This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated.
A copy can be downloaded for personal non-commercial research or study, without prior permission or charge.
This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author.
The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author.
When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given.
Mode of Action of Lymphostatin, a Key Virulence Factor of Attaching & Effacing
Escherichia coli

Andrew Graham Bease

Master of Science by Research (M.Sc)
The University of Edinburgh
2015
Declaration

I, Andrew Graham Bease have read and understood the University of Edinburgh guidelines on plagiarism and hereby declare that this thesis is all of my own work except where indicated in the text. This work has also not been submitted for any other degree or professional qualification from any other University.

Signed……………………………………………………………………

Acknowledgements

I would like to thank Prof. Mark Stevens, Dr. Robin Cassady-Cain, Dr. Liz Blackburn, the Stevens and MMBP Laboratories and the Edinburgh Protein Production Facility for their help and support throughout the course of this study and preparation of this thesis.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration</td>
<td>i</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>i</td>
</tr>
<tr>
<td>Contents</td>
<td>ii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>v</td>
</tr>
<tr>
<td>List of Tables</td>
<td>vii</td>
</tr>
<tr>
<td>List of commonly used abbreviations</td>
<td>viii</td>
</tr>
<tr>
<td>Abstract</td>
<td>x</td>
</tr>
<tr>
<td>Chapter 1: Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Escherichia coli</td>
<td>1</td>
</tr>
<tr>
<td>1.2 E. coli pathotypes</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Attaching and effacing E. coli</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Major virulence factors in A/E E. coli</td>
<td>5</td>
</tr>
<tr>
<td>1.4.1 The locus of enterocyte effacement</td>
<td>6</td>
</tr>
<tr>
<td>1.4.2 The Type III secretion system</td>
<td>8</td>
</tr>
<tr>
<td>1.4.3 E. coli secretion/secretion of E. coli proteins</td>
<td>10</td>
</tr>
<tr>
<td>1.4.4 E. coli secreted proteins</td>
<td>11</td>
</tr>
<tr>
<td>1.4.5 Non-LEE-encoded (Nle) proteins</td>
<td>12</td>
</tr>
<tr>
<td>1.4.6 Intimin</td>
<td>13</td>
</tr>
<tr>
<td>1.4.7 Translocated intimin receptor</td>
<td>13</td>
</tr>
<tr>
<td>1.5 Differences in virulence factor expression by EPEC and EHEC</td>
<td>14</td>
</tr>
<tr>
<td>1.5.1 Type IV bundle-forming pili</td>
<td>14</td>
</tr>
<tr>
<td>1.5.2 Shiga toxin</td>
<td>15</td>
</tr>
<tr>
<td>1.6 The discovery of lymphostatin</td>
<td>17</td>
</tr>
<tr>
<td>1.7 Homologous proteins and sequences to lymphostatin</td>
<td>18</td>
</tr>
<tr>
<td>1.8 Secretion of lymphostatin</td>
<td>19</td>
</tr>
<tr>
<td>1.9 Importance of lymphostatin as a virulence factor</td>
<td>21</td>
</tr>
<tr>
<td>1.10 Structural motifs of lymphostatin</td>
<td>23</td>
</tr>
<tr>
<td>1.11 Recent advances in understanding the mode of action of lymphostatin</td>
<td>24</td>
</tr>
</tbody>
</table>
1.12 Aims and objectives
Chapter 2: Materials and Methods
2.1 Bacterial growth media and chemicals
2.2 Bacterial strains, plasmids and oligonucleotides
2.3 Culture of mammalian cells
2.4 Plasmid DNA purification
2.5 Preparation of secreted proteins
2.6 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE)
2.7 Western blotting
2.8 Site-directed mutagenesis of the DXD motif of lymphostatin
2.8.1 PCR screening of putative mutant constructs
2.8.2 Not I digests of plasmids
2.8.3 Sanger sequencing of mutated plasmids
2.9 Pilot protein expression assays
2.10 Optimisation of DXD-AAA LifA protein production
2.11 Purification of DXD-AAA LifA
2.12 Dynamic light scattering (DLS)
2.13 Circular dichroism (CD)
2.14 Thermal shift assays
2.15 Determination of sugar-binding ability of WT and DXD-AAA LifA
2.16 Preparation of bovine lymphocytes and T cell enrichment
2.16.1 T lymphocyte proliferation assays
2.17 Cytotoxicity assays
2.18 Statistical analysis
Chapter 3: Results
3.1 LifA can be secreted via the Type III secretion system in EPEC
3.2 Generation of the pRham-LifA-6xHis DXD-AAA clone
3.3 Production of the LifA-6xHis DXD-AAA protein
3.4 DXD-AAA LifA purification
3.5 Biophysical characterisation of the purified DXD-AAA LifA
3.5.1 DLS shows that DXD-AAA LifA is of a similar size to WT LifA
3.5.2 CD shows that DXD-AAA LifA has a similar secondary structure to WT LifA
3.5.3 Thermal shift assays show that DXD-AAA LifA has a similar mid-point melting temperature to WT LifA
3.6 Mutation of the DXD motif to AAA abolished sugar binding
3.7 T cell proliferation assays
3.8 Cytotoxicity assays
Chapter 4: Discussion
References
Appendix 1: Composition of buffers and reagents
Appendix 2: Nucleotide sequence of the DXD-AAA lifA gene
Appendix 3: Relevant published papers
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1.</td>
<td>Transmission electron micrograph of EHEC O111:H-E45035N forming attaching and effacing lesions on a bovine calf colonocyte.</td>
<td>4</td>
</tr>
<tr>
<td>Figure 1.2.</td>
<td>Schematic of the locus of enterocyte effacement from EHEC O157:H7 showing the five polycistronic operons and the genes encoded within them.</td>
<td>7</td>
</tr>
<tr>
<td>Figure 1.3.</td>
<td>Schematic of the Type III secretion system showing the proteins required for its formation in attaching and effacing E. coli.</td>
<td>9</td>
</tr>
<tr>
<td>Figure 1.4.</td>
<td>Schematic of EHEC adhering to an enterocyte and injecting various effector proteins into it via the Type III secretion system.</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2.1.</td>
<td>The process of creating the DXD-AAA substitution mutant of LifA.</td>
<td>35</td>
</tr>
<tr>
<td>Figure 3.1.</td>
<td>Lymphostatin is secreted via the LEE-encoded T3SS in EPEC.</td>
<td>47</td>
</tr>
<tr>
<td>Figure 3.2.</td>
<td>Western blot of whole cell lysates of EPEC strains using anti-LifA antibody.</td>
<td>48</td>
</tr>
<tr>
<td>Figure 3.3.</td>
<td>Initial screening for putative pRham-LifA-6xHis DXD-AAA mutants with Dpn I digested DNA from the QuikChange mutagenesis reaction.</td>
<td>50</td>
</tr>
<tr>
<td>Figure 3.4.</td>
<td>Not I digestion products of purified pRham-LifA-6xHis DXD-AAA plasmid clones.</td>
<td>52</td>
</tr>
<tr>
<td>Figure 3.5.</td>
<td>Expression time course of DXD-AAA LifA.</td>
<td>54</td>
</tr>
</tbody>
</table>
Figure 3.6. Coomassie stain of whole cell lysates and soluble fractions of *E. cloni*® 10G transformed with the pRham-LifA-6xHis DXD-AAA plasmid grown at optimal conditions.

Figure 3.7. Ion metal affinity chromatography (IMAC) purification of DXD-AAA LifA using Ni²⁺-sepharose.

Figure 3.8. Purification of DXD-AAA LifA by ion exchange chromatography.

Figure 3.9. Coomassie stain of 1μg DXD-AAA LifA after second desalt.

Figure 3.10. The size distribution of DXD-AAA LifA by intensity and by volume, measured by dynamic light scattering.

Figure 3.11. Far UV spectrum of DXD-AAA LifA compared to WT LifA.

Figure 3.12. Thermal shift assays to evaluate the mid-point melting temperature (*Tₘ*) of WT LifA and DXD-AAA LifA.

Figure 3.13. Schematic of UDP-Glc binding in the active site of the large clostridial toxin (LCT) TcdA.

Figure 3.14. Sugar binding to WT LifA and DXD-AAA LifA.

Figure 3.15. Concentration titration of recombinant WT LifA and DXD-AAA LifA against ConA-stimulated peripheral bovine T lymphocytes.

Figure 3.16. Mechanism of fluorescence caused by LDH release.

Figure 3.17. Cytotoxicity of WT LifA against HeLa and Jurkat cells.
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Strains and plasmids used in this study</td>
<td>27</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Oligonucleotides used in this study</td>
<td>28</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>PCR programme used for site-directed mutagenesis of the pRham-LifA-6xHis plasmid.</td>
<td>34</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>PCR programme used for screening transformants.</td>
<td>36</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Average viable count of cultures and total protein concentration for each strain used in Figure 3.1.</td>
<td>47</td>
</tr>
</tbody>
</table>
List of commonly used abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/E</td>
<td>Attaching and effacing</td>
</tr>
<tr>
<td>Amp</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>BFP</td>
<td>Bundle-forming pili</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>CD</td>
<td>Circular dichroism</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony forming unit</td>
</tr>
<tr>
<td>ConA</td>
<td>Concanavalin A</td>
</tr>
<tr>
<td>DLS</td>
<td>Dynamic light scattering</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s Modified Eagle’s Medium</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>Efa-1</td>
<td>EHEC factor for adherence-1</td>
</tr>
<tr>
<td>EHEC</td>
<td>Enterohaemorrhagic Escherichia coli</td>
</tr>
<tr>
<td>EPEC</td>
<td>Enteropathogenic E. coli</td>
</tr>
<tr>
<td>Esc</td>
<td>E. coli secretion components</td>
</tr>
<tr>
<td>Esp</td>
<td>E. coli secreted protein</td>
</tr>
<tr>
<td>FCS</td>
<td>Foetal calf serum</td>
</tr>
<tr>
<td>Glc</td>
<td>Glucose</td>
</tr>
<tr>
<td>GlcNAc</td>
<td>N-Acetylglucosamine</td>
</tr>
<tr>
<td>HEPES</td>
<td>4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid</td>
</tr>
<tr>
<td>HRP</td>
<td>Horseradish peroxidase</td>
</tr>
<tr>
<td>HUS</td>
<td>Haemolytic uraemic syndrome</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>IMAC</td>
<td>Ion metal affinity chromatography</td>
</tr>
<tr>
<td>Kan</td>
<td>Kanamycin</td>
</tr>
<tr>
<td>LB</td>
<td>Lysogeny broth</td>
</tr>
<tr>
<td>LCTs</td>
<td>Large clostridial toxins</td>
</tr>
<tr>
<td>LDH</td>
<td>Lactate dehydrogenase</td>
</tr>
<tr>
<td>LDS</td>
<td>Lithium dodecyl sulphate</td>
</tr>
<tr>
<td>LEE</td>
<td>Locus of enterocyte effacement</td>
</tr>
<tr>
<td>LifA</td>
<td>Lymphocyte inhibitory factor A (Lymphostatin)</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>MEM</td>
<td>Minimum Essential Medium Eagle</td>
</tr>
<tr>
<td>Nal</td>
<td>Nalidixic acid</td>
</tr>
<tr>
<td>OD</td>
<td>Optical density</td>
</tr>
<tr>
<td>PAGE</td>
<td>Polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>PBMC</td>
<td>Peripheral blood mononuclear cell</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate-buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>RPMI</td>
<td>Roswell Park Memorial Institute-1640 media</td>
</tr>
<tr>
<td>RPMI-CJ</td>
<td>RPMI complete media for Jurkat cells</td>
</tr>
<tr>
<td>RPMI-CT</td>
<td>RPMI complete media for bovine T lymphocytes</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulphate</td>
</tr>
<tr>
<td>SEC</td>
<td>Size exclusion chromatography</td>
</tr>
<tr>
<td>Stx</td>
<td>Shiga toxin</td>
</tr>
<tr>
<td>T3S</td>
<td>Type III secretion</td>
</tr>
<tr>
<td>T3SS</td>
<td>Type III secretion system</td>
</tr>
<tr>
<td>TBS</td>
<td>Tris-buffered saline</td>
</tr>
<tr>
<td>TBS-T</td>
<td>Tris-buffered saline and Tween 20</td>
</tr>
<tr>
<td>Tir</td>
<td>Translocated intimin receptor</td>
</tr>
<tr>
<td>TRIS</td>
<td>Tris(hydroxymethyl)aminomethane</td>
</tr>
<tr>
<td>UDP</td>
<td>Uridine diphosphate</td>
</tr>
</tbody>
</table>
Abstract

Attaching and effacing *Escherichia coli* are significant diarrhoeal pathogens that can spread between humans or via animal reservoirs. One important virulence factor is a large multifunctional protein called lymphostatin (LifA), which has been reported to inhibit the mitogen-stimulated proliferation of lymphocytes and mediate adherence to epithelial cells. Mutants of Shiga toxin-producing *E. coli* lacking *lifA* are significantly impaired in their ability to colonise cattle. Little is known about the mode of action of LifA, however *in silico* analysis has identified a putative glycosyltransferase domain homologous to that of large clostridial toxins (LCTs). A shortened form of LifA has been shown to be Type III secreted, however it is not known if this is true for the full-length protein. Type III secretion assays using the prototype enteropathogenic *E. coli* strain E2348/69 and isogenic *lifA* and Type III secretion system mutants confirmed that LifA can be secreted through this transport system. Working in collaboration, I was also able to demonstrate that LifA can be purified in an active form that binds uridine diphosphate-N-Acetylglucosamine (UDP-GlcNAc) but not UDP-glucose. In order to probe the importance of a putative catalytic DXD motif within the glycosyltransferase domain, an in-frame DXD to AAA substitution mutant of full-length LifA was constructed. The ability of the purified wild-type and mutated protein to bind UDP sugars and inhibit bovine T cell proliferation were then examined. DXD-AAA substitution resulted in loss of binding of UDP-GlcNAc and the ability to inhibit mitogenic stimulation of bovine T cells, without obvious changes to the biophysical properties of the protein. Unlike LCTs, wild-type LifA did not appear to be directly cytotoxic to HeLa or Jurkat cells using a fluorescence-based assay for release of lactate dehydrogenase. Future studies will seek to define the cellular targets and consequences of GlcNAc modification by lymphostatin, as well as identifying other possible mechanisms of secretion and its ability to act as an adhesin.
Chapter 1: Introduction

1.1 *Escherichia coli*

Escherichia coli are Gram-negative facultative anaerobes that are commonly found living in the environment or as commensals in the gastrointestinal tract of animals and man (Winfield and Groisman, 2003). The survival of environmental *E. coli* populations is dependent on a number of factors including nutrient availability, temperature, the presence of toxic substances and predation (Carlucci and Pramer, 1959; Faust *et al*., 1975; Gerba and McLeod, 1976). The bacteria do not survive for long in temperate environments (Temple *et al*., 1980) and the population appears to be kept constant by the arrival of new bacteria from animal hosts (Savageau, 1983). However, several studies have shown that *E. coli* is capable of entering a viable but non-culturable state, meaning that the cells enter a state in which they are metabolically active but cannot be cultured by known laboratory methods, due to environmental stresses (Reissbrodt *et al*., 2002; Asakura *et al*., 2008; Li *et al*., 2014). Despite its poor survival in temperate climates, *E. coli* is capable of surviving in nutrient rich soil and fresh water in tropical environments where there is no obvious sign of faecal contamination (Solo-Gabriele *et al*., 2000; Rivera *et al*., 1988; Jiménez *et al*., 1989). Due to its prevalence in mammalian faeces and its relatively short survival time in the environment, *E. coli* is used as an indicator of faecal contamination of drinking water (Edberg *et al*., 2000). Its usefulness as an indicator in tropical countries, however, is limited due to the prevalence of the bacteria in the environment in such countries (Solo-Gabriele *et al*., 2000; Rivera *et al*., 1988; Jiménez *et al*., 1989).

E. coli primarily exist as a commensal in the lower intestines of warm blooded animals and reptiles, and make up a large component of the normal gut microflora (Leimbach *et al*., 2013). Its presence is usually beneficial to its host as *E. coli* is capable of synthesising vitamin K₂ (Bentley and Meganathan, 1982) and, along with the rest of the gut microflora, it exerts a protective effect against pathogenic bacteria (Hudault *et al*., 2001).
Although normally harmless to its host, *E. coli* is an opportunistic pathogen that, through the acquisition of mobile genetic elements, can become a serious pathogen (Croxen and Finlay, 2010). Pathogenic *E. coli* strains can be divided into two subgroups depending on the site of infection, with diarrhoeagenic *E. coli* infecting the intestines and extraintestinal *E. coli* (ExPEC) infecting sites beyond the intestines (Croxen and Finlay, 2010; Leimbach *et al.*, 2013).

1.2 *E. coli* pathotypes

The diarrhoeagenic *E. coli* and ExPEC subgroups can be further divided into distinct pathotypes based on particular characteristics. ExPEC consists primarily of uropathogenic *E. coli*, which infects the urinary tract, and neonatal meningitis *E. coli*, which infects the brain (Croxen and Finlay, 2010; Leimbach *et al.*, 2013). Other pathotypes of ExPEC exist such as septicaemia-associated *E. coli* and avian pathogenic *E. coli* although these are less well defined (Croxen and Finlay, 2010; Leimbach *et al.*, 2013). The main diarrhoeagenic *E. coli* pathotypes are enterotoxigenic *E. coli* (ETEC), enteroaggregative *E. coli* (EAEC), enteroinvasive *E. coli* (EIEC), diffusely adherent *E. coli* (DAEC), enteropathogenic *E. coli* (EPEC) and enterohaemorrhagic *E. coli* (EHEC; Croxen and Finlay, 2010; Leimbach *et al.*, 2013).

ETEC is the most common cause of traveller’s diarrhoea and it is also important in the farming industry, particularly as a cause of acute enteritis and colibacillosis in young pigs and calves (Nataro and Kaper, 1998; Croxen and Finlay, 2010). It is characterised by its adherence to enterocytes via colonisation factors and the secretion of heat-labile and heat-stable toxins, which cause diarrhoea (Nataro and Kaper, 1998; Croxen and Finlay, 2010). EAEC is the second most common cause of traveller’s diarrhoea and is characterised by forming biofilms on enterocytes using aggregative adherence fimbriae (Croxen and Finlay, 2010). EIEC, which include bacteria of the genus *Shigella*, is characterised by its facultative intracellular lifestyle. It achieves this by passing through microfold cells via transcytosis, replicating inside macrophages in the intestinal submucosa, then invading enterocytes from their basolateral side (Croxen and Finlay, 2010). DAEC is
characterised by forming diffuse attachments to enterocytes using fimbrial and afimbrial adhesins (Croxen and Finlay, 2010).

EPEC and EHEC are collectively known as attaching and effacing (A/E) *E. coli* (Croxen and Finlay, 2010; Stevens and Frankel, 2014) and are described in greater detail below.

1.3 Attaching and effacing *E. coli*

A/E lesions are characterised by intimate bacterial attachment to the surface of enterocytes on actin-rich ‘pedestals’ and the destruction of microvilli, thereby disrupting the absorption of nutrients by the gut, contributing to diarrhoea (Figure 1.1; Croxen and Finlay, 2010; Stevens and Frankel, 2014). The pedestals are also assembled with other cytoskeletal proteins besides actin, such as α-actinin, talin, ezrin and myosin light-chain (Finlay et al, 1992; Manjarrez-Hernandez et al, 1992). Recently, Law et al (2015) identified more than 90 proteins present in the pedestals formed by EPEC, 17 of which were in a significantly higher abundance than in uninfected cells. Actin-associated proteins such as cyclophilin A may only be present due to their interactions with actin, but non-actin-associated proteins such as transgelin may have other as yet undefined roles (Law et al, 2015). A/E lesion formation in *E. coli* is mediated by various virulence factors, which are only produced by A/E pathogens (Nataro and Kaper, 1998).
Figure 1.1. Transmission electron micrograph of EHEC O111:H- E45035N forming attaching and effacing lesions on a bovine calf colonocyte. Actin rich pedestals can be seen as electron dense regions beneath the EHEC cells. An uninfected cell to the right gives a comparison of a healthy cell surface and microvilli. Scale bar = 1μm (taken from Stevens et al, 2002).

EPEC is a major cause of infantile diarrhoea in the developing world and causes both acute and chronic diarrhoea (Ochoa and Contreras, 2011). Once attached to an enterocyte, EPEC disrupts ion balance and water absorption resulting in diarrhoea (Croxen and Finlay, 2010). Sanger et al (1996) also found that EPEC are able to use A/E pedestals as a form of motility to travel across the surface of host cells at speeds of up to 0.07μm/second. EPEC strains can be further divided into typical EPEC, which possess bundle-forming pili (BFP), and atypical EPEC, which do not (Trabulsi et al, 2002). Prevalent EPEC serotypes include O55:H6, O127:H6, O128:H2 and O142:34 among others (Gomes et al, 1989; Trabulsi et al, 2002). The
genome of the prototypic EPEC strain E2348/69 consists of an ~5Mb circular chromosome, an ~97kb EPEC adherence factor (EAF) plasmid and a small ~6kb drug-resistant plasmid (Iguchi et al, 2008). The core genome is highly conserved with lab strains, commensal E. coli and other pathotypes of E. coli, but is broken up by 13 prophages and eight integrative elements (Iguchi et al, 2008). Iguchi et al, (2008) also identified 424 genes that were specific to EPEC E2348/69.

EHEC causes a zoonotic infection and ruminants are a key reservoir (Croxen and Finlay, 2010). Outbreaks in both the developing and developed world have been caused by cattle, due to faecally contaminated food or water (Ho et al, 2013). EHEC is responsible for haemorrhagic colitis and haemolytic uraemic syndrome in humans (HUS; Ho et al, 2013), which it causes by the production of one or more Shiga toxins (Stx; Croxen and Finlay, 2010). The pathogenesis of EHEC is similar to that of EPEC with the exception of the production of Stx, which acts as a cytotoxin (Croxen and Finlay, 2010). The most prevalent EHEC serogroups are O26, O45, O103, O111, O121, O145 and O157:H7 (Brooks et al, 2005). The chromosome of the prototypic EHEC O157:H7 strain EDL933 has a similar backbone sequence to E. coli K-12 except for a 422kb inversion, which spans the replication terminus (Perna et al, 2001). This backbone sequence is interrupted by 177 O-islands found in E. coli O157:H7 but not laboratory-adapted E. coli K-12, many of which encode known virulence proteins (Perna et al, 2001). There are also 18 prophages throughout the chromosome and various single nucleotide polymorphisms create proteins that are identical in size and function to E. coli K-12 homologues but overall only 25% of proteins are identical (Perna et al, 2001). EHEC O157:H7 also contains the pO157 plasmid, which encodes various virulence factors (Burland et al, 1998).

1.4 Major virulence factors in A/E E. coli

EPEC and EHEC produce several key virulence factors that aid their colonisation of human and animal hosts, many of which are required for the formation of A/E lesions.
1.4.1 The locus of enterocyte effacement (LEE)

The LEE is a pathogenicity island comprising over 40 contiguous genes, which encode virulence factors that aid colonisation of a host, some of which are required for attachment and effacement (Stevens and Frankel, 2014). It is a ≥ 35kb locus that is conserved amongst EPEC and EHEC as well as other A/E pathogens including certain strains of rabbit diarrhoeagenic \textit{E. coli} (RDEC), \textit{Hafnia alvei} and the mouse pathogen \textit{Citrobacter rodentium} (McDaniel \textit{et al}, 1995; Deng \textit{et al}, 2001). The GC content of the LEE is only 38.36\% (Elliot \textit{et al}, 1998) compared with 50.8\% across the whole \textit{E. coli} genome (Blattner \textit{et al}, 1997), which is typical of pathogenicity islands (Hacker \textit{et al}, 1997). The LEE consists of 41 open reading frames arranged into five polycistronic operons (Figure 1.2; Elliot \textit{et al}, 1998), three of which are involved in the production of proteins required for the assembly of a Type III secretion system (T3SS; Mellies \textit{et al}, 2007).

The LEE contains the \textit{E. coli} secretion (esc)/secretion of \textit{E. coli} proteins (sep) genes and genes that encode intimin, \textit{E. coli} secreted proteins (EspS) including translocated intimin receptor (Tir) as well as chaperones and regulatory genes (Elliot \textit{et al}, 1998). The 3' end of the LEE in EPEC is homologous to genes from \textit{Shigella sonnei} (Donnenberg \textit{et al}, 1997), however, the DNA sequences surrounding the LEE vary since it is inserted into different positions depending on the serotype and strain of bacteria (Ogura \textit{et al}, 2009). These variable end sequences along with the low GC content suggests that \textit{E. coli} and other A/E pathogens have acquired this DNA from another species, or that it once existed as a mobile genetic element (Donnenberg \textit{et al}, 1997).

The regulation of the LEE is complex, with different regulatory systems specific to different operons (Mellies and Lorenzen, 2014). The production of LEE proteins is tightly regulated by temperature and growth phase, with the most protein synthesis occurring at 37°C in the early logarithmic phase of growth (Rosenshine \textit{et al}, 1996). Regulatory systems of the LEE include silencing by histone-like nucleoid-structuring protein, the LEE-encoded regulatory cascade, post-transcriptional regulation and control by phage- or plasmid-encoded regulators (Mellies and Lorenzen, 2014).
Figure 1.2. Schematic of the locus of enterocyte effacement from EHEC O157:H7 showing the five polycistronic operons and the genes encoded within them (taken from Stevens and Frankel, 2014).
1.4.2 The Type III secretion system

T3SSs are widely used by a range of Gram-negative pathogens of animals and plants (Büttner, 2012). There are at least five other well characterised secretion systems in Gram-negative bacteria (Costa et al., 2015) but the T3SS is particularly important for the purpose of this study. The T3SS in A/E E. coli is encoded by the LEE and is composed of Esc/Sep proteins as well as EspA, B and D (Elliot 1998; Stevens and Frankel, 2014). It was discovered by Jarvis et al. (1995), who found that certain LEE-encoded proteins exhibited homology to proteins encoding T3SSs in other bacteria. T3SSs include flagella (Büttner, 2012) but for the purpose of this study, it is the translocation-associated T3SS that is being referred to. This T3SS is akin to a molecular syringe that can inject effector proteins directly into a host cell (Figures 1.3 and 1.4; Büttner, 2012; Stevens and Frankel, 2014). It consists of a region that spans both membranes of the bacterial cell, which is connected via EscF to the EspA filament and the translocon, which is composed of EspB and D (Büttner, 2012; Stevens and Frankel, 2014; Warawa et al., 1999).

The proteins SepL and SepD regulate the order that effector proteins are secreted in with mutations leading to hypersecretion of effector proteins rather than translocon components (Kresse et al., 2000; O’Connell et al., 2004; Wang et al., 2008). EspZ halts effector translocation from inside the host cell, possibly by interacting with EspD (Berger et al., 2012; Creasey et al., 2003). The secretion of effector proteins via the T3SS is contact-dependent in some bacteria such as Yersinia (Rosqvist et al., 1994) but contact between the T3SS and host cells is not required for the secretion of effector proteins in E. coli (Kenny et al., 1997b). Various inhibitors of the T3SS have been identified, many of which are part of a family of salicylidene acylhydrazides that inhibit the transcription of T3SS encoding genes (Gauthier et al., 2005; Rasko et al., 2008; Tree et al., 2009). This is in contrast to T3SS inhibitors that work against Shigella by interfering with T3SS protein assembly (Veenendaal et al., 2009). Vaccines including the LEE-encoded proteins EspA, intimin and Tir as well as the H7 flagellin have been shown to significantly reduce the shedding of EHEC O157:H7 in cattle faeces (McNeilly et al., 2010), consistent with a key role for this
system in intestinal colonisation of cattle (Dziva et al, 2004; Naylor et al, 2005; Vlisidou et al, 2006).

Figure 1.3. Schematic of the Type III secretion system showing the proteins required for its formation in attaching and effacing *E. coli*. Effector proteins are translocated through the needle complex spanning the inner and outer membranes, then the EspA filament and the transolcon composed of EspD and B into the host cell cytoplasm (adapted from Stevens and Frankel, 2014).
1.4.3 *E. coli* secretion/secretion of *E. coli* proteins

The Esc and Sep proteins are part of the same family but some Seps were renamed as Escs after Elliot *et al* (1998) sequenced the LEE in order to conform with the naming convention of homologous *Yersinia* proteins. Esc/Sep proteins comprise the *E. coli* T3SS and are essential for the translocation of effector proteins (Jarvis *et al*, 1995; Stevens and Frankel, 2014). EscN is the most relevant of these proteins in terms of this study as an EPEC strain lacking the *escN* gene (Garmendia *et al*, 2004)
is used as a T3SS deficient control. EscN is an ATPase that provides the energy for the secretion of effector proteins and the energy output of the protein increases when it oligomerises (Jarvis et al., 1995; Andrade et al., 2007). Two other proteins in this family that are important for the formation of A/E lesions are SepL and SepD, which act as gatekeeper proteins (Wang et al., 2008). These proteins form a complex in the bacterial inner membrane and SepL binds to Tir to prevent effector proteins from being secreted before translocator proteins such as EspA (Kresse et al., 2000; O’Connell et al., 2004; Wang et al., 2008).

1.4.4 *E. coli* secreted proteins

The Esp series of proteins consists of a large number of proteins, the functions of some of which have been extensively studied (Stevens and Frankel, 2014). EspA forms a hollow filamentous extension of the T3SS needle complex (Ebel et al., 1998; Knutton et al., 1998) that bridges the bacterial and host cells and allows the translocation of effector proteins such as Tir and EspB into the host cell (Kenny et al., 1997a; Wolff et al., 1998). EspA polymerises in a helical manner to form a channel that effector proteins can be secreted through (Daniell et al., 2003; Crepin et al., 2005). A/E *E. coli* lack these EspA filaments during intimate adhesion but the mechanism behind this is unknown (Steven and Frankel, 2014). EspB functions as both a component of the T3SS and an effector protein (Warawa et al., 1999; Taylor et al., 1998). It associates with EspD to form a pore in the host cell plasma membrane at the end of the EspA filament (Warawa et al., 1999) but is also injected into host cells by the T3SS (Wolff et al., 1998). As an effector protein it binds to myosin and inhibits the interaction of myosin with actin, resulting in microvillus effacement and the inhibition of phagocytosis (Iizumi et al., 2007). EspB also suppresses NF-κB activation, which results in the inhibition of proinflammatory cytokine production (Hauf and Chakraborty, 2003), although it is unclear if this reflects a direct role or the requirement for EspB in injection of other effectors.

EspD is another Type III secreted (T3S) protein (Lai et al., 1997) that is translocated into host cells before forming pore complexes with EspB in host cell plasma membranes (Kresse et al., 1999; Warawa et al., 1999; Wachter et al., 1999).
EspFu, also known as Tir-cytoskeleton coupling protein (TccP), is a secreted effector protein of EHEC O157:H7 that is particularly important in EHEC because it binds to the insulin receptor tyrosine kinase substrate (IRTKS)/insulin receptor substrate p53 (IRSp53) complex and neural Wiskott-Aldrich syndrome protein (N-WASP), resulting in the formation of A/E lesions (Garmendia et al., 2004; Brady et al., 2007; Stevens and Frankel, 2014). The homologous protein EspF has a wide range of functions including the disruption of mitochondrial function, cytoskeletal manipulation and the induction of apoptosis (Holmes et al., 2010; Stevens and Frankel, 2014). There are many other proteins in the Esp family but those described above are the major proteins, with the exception of EspF, that are required for A/E lesion formation.

1.4.5 Non-LEE-encoded (Nle) proteins

In addition to the LEE-encoded effector proteins, the Nle proteins are also secreted effector proteins but are encoded outwith the LEE (Stevens and Frankel, 2014). NleA disrupts tight junction integrity between enterocytes by inhibiting protein trafficking via COPII-dependent pathways, resulting in a breakdown of the intestinal epithelial barrier and causing diarrhoea (Thanabalasuriar et al., 2010). NleB is an immunomodulatory protein that disrupts tumour necrosis factor signalling in infected cells including NF-κB signalling, which in turn prevents the expression of pro-inflammatory cytokines, and apoptosis (Li et al., 2013). NleC, E and H also interfere with NF-κB signalling in different ways (Stevens and Frankel, 2014). NleC is a zinc metalloprotease that degrades NF-κB (Pearson et al., 2011) and NleE prevents the degradation of the NF-κB inhibitor IκB (Nadler et al., 2010). NleH interferes with NF-κB by both preventing the phosphorylation and translocation of NF-κB transcriptional complexes and by suppressing IκB degradation (Stevens and Frankel, 2014) as well as inhibiting apoptosis by binding the protein Bax inhibitor-1 (Hemrajani et al., 2009). NleD is another zinc metalloprotease that cleaves the host proteins JNK and MAPK to inhibit both apoptosis and pro-inflammatory cytokine expression via AP-1 activation (Baruch et al., 2011). NleF prevents apoptosis of infected cells by binding to caspases (Blasche et al., 2013) and the NleG acts in a
similar manner to RING-like E3 ubiquitin ligases from eukaryotic cells (Wu et al, 2010).

1.4.6 Intimin

Intimin is a 94kDa protein (Yu and Kaper, 1992) that is encoded by the *E. coli* attaching and effacing (*eae*) gene (Jerse et al, 1990) and has an 83% amino acid homology between EPEC and EHEC strains (Yu and Kaper, 1992). The protein also has sequence homology with the invasin proteins in *Yersinia pseudotuberculosis* and *Y. enterocolitica* with the lowest homology at the N- and C-terminal ends (Jerse et al, 1990; Yu and Kaper, 1992). The C-terminal end of intimin has been shown to bind to the surface of HEp-2 and HeLa cells (Frankel et al, 1994; Deibel et al, 2001) and it has been suggested the N-terminal end masks the C-terminus to prevent non-specific binding to host cells (Deibel et al, 2001).

Initmin is a membrane-bound protein that primarily targets Tir, which is translocated into host cells and expressed on their surface (Kenny et al, 1997a; Rosenshine et al, 1992; DeVinnney et al, 1999). Intimin is able to bind to the surface of epithelial cells independently of Tir by binding to host cell β1-integrins and the growth regulation protein nucleolin (Frankel et al, 1996; Sinclair and O’Brien, 2004). Intimin binds Tir preferentially but it is possible that nucleolin acts as a target for adhesion before Tir is translocated into host cells (Sinclair and O’Brien, 2004).

1.4.7 Translocated intimin receptor

As mentioned above, Tir is required for intimin binding to host cells and the formation of A/E lesions (Kenny et al, 1997a; Rosenshine et al, 1992; DeVinnney et al, 1999). It was independently described as EspE and is translocated into host cells via the T3SS (Deibel et al, 1998; Kenny et al, 1997a). In EPEC O127:H6, actin assembly requires phosphorylation of tyrosine 474 in Tir (Kenny, 1999), which results in the recruitment of the host cell proteins Nck, N-WASP and actin-related protein 2/ actin-related protein 3 (Arp2/3; Guenheid et al, 2001). The proteins CrkII
and Grb2 are recruited in EPEC infection but not in EHEC infection (Goosney et al., 2001).

In EHEC O157:H7 and O55:H7 strains, the phosphorylation of Tir is not required because these strains lack tyrosine 474 (DeVinney et al., 1999; DeVinney et al., 2001). Instead these strains utilise a 12 amino acid motif containing an asparagine-proline-tyrosine sequence that recruits the proteins IRTKS, IRSp53, EspFU, N-WASP and Arp2/3 in a manner independent of Nck (Brady et al., 2007; Stevens and Frankel, 2014). The tyrosine in the amino acid motif can be phosphorylated in EPEC strains to initiate Nck-independent pedestal formation but at a much lower efficiency than in EHEC (Campellone and Leong, 2005).

1.5 Differences in virulence factor expression by EPEC and EHEC

While most of the virulence factors mentioned above are produced by both EPEC and EHEC, each pathotype has unique virulence factors that differentiate them.

1.5.1 Type IV bundle-forming pili

Bundle-forming pili (BFP) are produced by EPEC and are part of the Type IV pili family, which are expressed by several bacterial pathogens (Girón et al., 1991; Strom and Lory, 1993). They are encoded on an ~97kb EAF plasmid (Girón et al., 1991; Nataro et al., 1987) by a cluster of 14 bfp genes, several of which are homologous to genes required for Type IV pilus production in other Gram-negative bacteria (Sohel et al., 1996; Stone et al., 1996). BfpA is the major subunit of BFP (Donnenberg et al., 1992) and is produced as a preprotein before being cleaved into a functional form by BfpP (Zhang et al., 1994). The proteins BfpD and BfpF bind nucleotides and act as ATPases to control pilin export and assembly (Sohel et al., 1996; Stone et al., 1996).

BFP expression is controlled by the EAF plasmid-encoded regulatory proteins BfpT, V and W as well as the chromosome-encoded protein DsbA (Tobe et al., 1996; Zhang and Donnenberg, 1996). DsbA stabilises BFP by catalysing the
formation of disulphide bonds (Zhan and Donnenberg, 1996). Environmental signals also control BFP expression, with expression occurring optimally between 35°C and 37°C during the exponential growth phase, in the presence of calcium (Puente et al, 1996). Puente et al (1996) also found that ammonium suppresses the expression of BFP.

BFP are important virulence factors for the colonisation of hosts, including humans, by EPEC (Bieber et al, 1998) and are required for the formation of microcolonies and adhesion to epithelial cells (Girón et al, 1991). BFP bind to N-Acetyllactosamine on the surface of host enterocytes (Hyland et al, 2008) and also act in conjunction with E. coli common pili to form microcolonies (Saldaña et al, 2009). They are important for initial adhesion of EPEC to host cells and are also involved in the dispersal of bacteria from microcolonies (Cleary et al, 2004; Knutton et al, 1999).

1.5.2 Shiga toxin

The Stx family of cytotoxins is composed of two major groups, Stx1 and Stx2, which are produced in various combinations by EHEC (Nataro and Kaper, 1998). Stx2, however, is more common in cases of haemorrhagic colitis and HUS (Croxen and Finlay, 2010). Stx1 is identical to Stx from Shigella dysenteriae serotype I and is highly conserved whereas Stx2 exhibits sequence variation and is separated into a series of subtypes (Nataro and Kaper, 1998). The stx genes are encoded by lysogenic lambdoid bacteriophages, which are integrated into the bacterial chromosome (O’Brien et al, 1984; Johansen et al, 2001) and Stx production is induced by activation of the phage lytic cycle (Nelly and Friedman, 1998). The regulation of Stx production is complex, with many different regulatory cues affecting gene expression including phage replication cycle, antibiotics, reactive oxygen species, iron concentration, temperature, growth phase and quorum sensing (Pacheco and Sperandio, 2012).

Stx is an AB₅ toxin consisting of an A subunit, which in turn is made from an A₁ and A₂ peptide, that is non-covalently bound to a pentameric ring of B subunits (Stein et al, 1992; Fraser et al, 1994). The Stx toxins are not secreted but are released
as a result of phage-mediated lysis of the bacterial cell in response to DNA damage and the SOS response (Toshima et al., 2007), meaning that certain antibiotics can induce the phage lytic cycle and Stx production (Zhang et al., 2000). The B subunit pentamer binds to the Gb3 variant of the glycolipid receptor globotriaosylceramide that is present on the surface of Paneth cells in the intestine and kidney epithelial cells (Jacewicz et al., 1987; Lindberg et al., 1987). Stx2e, which is typically associated with porcine oedema disease, uses the Gb4 variant of this receptor (Pierard et al., 1991). Cattle lack the vascular Gb3 receptor meaning that EHEC infection in cattle is asymptomatic (Pruimboom-Brees et al., 2000). There is evidence to suggest that Gb3 can be found on crypt epithelial cells in cattle, however, Stx does not appear to be cytotoxic in these cells as it is localised in lysosomes (Hoey et al., 2003).

Once Stx binds to its receptor, it is endocytosed by both clathrin-dependent and independent mechanisms (Sandvig et al., 1989; Römer et al., 2007), and a protease sensitive loop connecting the A1 and A2 subunits is cleaved by the enzyme furin (Garred et al., 1995; Lea et al., 1999). The A subunits remain connected by a disulphide bond (Lea et al., 1999). Stx bypasses the late endocytic pathway to undergo retrograde transportation to the trans-Golgi network and then to the endoplasmic reticulum (ER; Sandvig et al., 1992; Mallerd et al., 1998). The remaining disulphide bond is reduced in the ER and the A1 subunit is translocated into the cytoplasm of the host cell (Johannes and Römer, 2010; Tam and Lingwood, 2007). Once in the cytoplasm, the A1 subunit exhibits N-glycosidase activity and removes an adenine nucleotide from the 28S rRNA of the host cell’s ribosomes, resulting in the inhibition of protein synthesis and cell death (Endo et al., 1988).

Stx enters Gb3-negative intestinal cells via macropinocytosis (Malyukova et al., 2008) and is translocated through the cells into the bloodstream in order to reach the kidneys (Acheson et al., 1996). Stx is also capable of retrograde transportation in these cells but does not inhibit protein synthesis (Schüller et al., 2004). Instead it modulates NF-κB activation and suppresses the host’s immune response (Gobert et al., 2007).
1.6 The discovery of lymphostatin

In 1995 Klapproth et al discovered that cell lysates of certain EPEC strains were capable of dose-dependent inhibition of cytokine expression by human peripheral blood mononuclear cells (PBMCs), but that lab strains, other E. coli pathotypes and whole bacteria lacked this ability. Lysates of EHEC O157:H7 strain EDL933 were found to inhibit cytokine expression but were not tested in a dose-dependent manner. Only one EPEC strain tested, O119:H6 0659-79, did not have inhibitory activity against PBMCs, which may be due to known variation in EPEC strains (Levine and Edelman, 1984). Klapproth et al (1995) were able to determine that inhibitory activity was caused by a protein or proteins encoded on the bacterial chromosome. They also found, using lysates of an E. coli lab strain transformed with an EPEC cosmid (pIV-8-A), that these lysates inhibited cytokine expression in human peripheral blood lymphocytes irrespective of the mechanism of lymphocyte activation. These cosmid clone lysates could also inhibit the mitogen-stimulated proliferation of lymphocytes. The inhibition observed in these experiments was not due to cellular toxicity.

In 1996, further experiments by Klapproth et al found that lysates of E. coli K-12 containing the EPEC pIV-8-A cosmid clone exhibited dose-dependent inhibition of interleukin-2 (IL-2) against lamina propria mononuclear cells (LPMCs). The inhibition of cytokine synthesis was non-selective and the inhibition of lymphocyte proliferation was not caused by the inhibition of IL-2 receptor expression. CD25 expression was not inhibited in CD45R0 cells by cosmid clone lysates. It was found that the inhibitory effect of EPEC O127:H6 strain E2348/69 lysates was similar in mitogen-stimulated PBMCs and LPMCs. The culture supernatants of EPEC were also found to inhibit IL-2 and IL-5 expression in mitogen-stimulated PBMCs. Lastly, Klapproth et al (1996) found that EPEC and cosmid clone lysates could inhibit cytokine expression in lymphocytes activated by non-pathogenic E. coli bacterial products.

Malstrom and James (1998) observed that EPEC O127:H6 strain E2348/69 lysates inhibited IL-2 expression in murine splenic cells stimulated with 12-myristate 13-acetate and phytohaemagglutinin without causing apoptosis. EPEC lysates
inhibited multiple cytokines but increased the production of IL-10, which itself inhibits inflammatory cytokine expression. However, the inhibitory activity of EPEC lysates was independent of IL-10 and the regulatory cytokine TGF-β. Macrophages were also not required for the increased production of IL-10. IL-2 expression was inhibited by EPEC lysates in mitogen-stimulated Jurkat cells as well as small intestinal intraepithelial and Peyer’s patches lymphocytes. Pre-exposure of murine splenic cells to EPEC lysates resulted in decreased IL-2 and increased IL-10 expression when the cells were both mitogen- and antigen-stimulated. Malstrom and James (1998) also found that lysates of EHEC O157:H7 strain ED933, RDEC-1 and C. rodentium had inhibitory activity against murine splenic lymphocytes and that this activity was not related to EspB, which was examined due its requirement for signal transduction in host cells and the activation of NF-κB transcription factors (Foubister et al, 1994; Savkovic et al, 1997).

In 2000 Klapproth et al discovered the protein responsible for the inhibitory activity, which they named lymphosatin or lymphocyte inhibitory factor A (LifA) due its ability to specifically inhibit lymphocyte proliferation and cytokine expression. DNA sequencing of the pIV-8-A cosmid determining inhibitory activity revealed the lifA gene to be 9,669bp encoding a predicted 365,950Da protein – the largest protein produced by E. coli. The deletion of the lifA gene from EPEC O127:H6 strain E2348/69 abolished the inhibitory activity of bacterial lysates but did not affect the A/E ability of intact cells. LifA homologues were found in non-O157 EHEC, RDEC, and C. rodentium. Sequence homology was also found with proteins from Chlamydia trachomatis and the large clostridial toxin (LCT) family, including a predicted conserved N-terminal glycosyltransferase domain. However, unlike LCTs, EPEC lysates did not disrupt actin distribution in HEp-2 cells, suggesting that LifA does not function in the same manner as LCTs.

1.7 Homologous proteins and sequences to lymphostatin

Nicholls et al (2000) discovered a protein in EHEC O111:H- strain E45035 that increased the adhesion of bacteria to Chinese hamster ovary (CHO) cells in vitro and named it EHEC factor for adherence (Efa-1). Efa-1 was identical in size to LifA.
and was predicted to be 99.9% identical to LifA at a nucleotide level and 97.4% identical at an amino acid level (Nicholls et al., 2000). As such, LifA and Efa-1 are thought of as the same protein and their names are used interchangeably in the literature.

LifA and homologous proteins have been found in EPEC, EHEC, RDEC, C. rodentium, H. alvei, and various Chlamydia species (Klapproth, 2010). EHEC O157:H7 does not produce LifA but rather encodes two homologous proteins. The first is LifA′, which is a truncated version of LifA that is encoded on open reading frames z4332 and z4333 on O-island 122 of the chromosome (Hayashi et al., 2001; Perna et al., 2001). LifA′ is identical to amino acids 1 – 433 and 435 – 710 of LifA (Hayashi et al., 2001; Perna et al., 2001). It is unclear if only the 433 amino acid protein is made or if a 710 amino acid protein can be made via ribosome frameshifting. The second is ToxB, which is of a similar predicted size to LifA and is encoded on the EHEC O157:H7 large plasmid pO157 (Burland et al., 1998; Makino et al., 1998). ToxB is overall 47% homologous at the nucleotide level and 28% homologous at the amino acid level to LifA (Burland et al., 1998; Makino et al., 1998). ToxB sequences have also been found in non-O157 EHEC strains and EPEC but the function of the encoded protein remains unclear (Badea et al., 2003; Tozzoli et al., 2005). In Chlamydia, C. psittaci contains a single lifA homologue, C. muridarum possesses three copies and C. trachomatis contains a pseudogene with frameshift mutations (Xie et al., 2003). Belland et al., 2001 have shown that these LifA homologues act as cytotoxins and suggested that it is possible that the immunomodulatory ability of LifA homologues may allow Chlamydia species to cause persistent infections.

1.8 Secretion of lymphostatin

Little work has been carried out towards understanding the mechanism of secretion of LifA. Recently, Deng et al (2012) reported that LifA appeared to be secreted by the T3SS based on quantitative proteomic (SILAC) analysis of proteins secreted by EPEC O127:H6 strain E2348/69 in a T3SS-dependent manner. This involved mapping peptides across the protein and detecting them using mass
spectrometry. Reporter assays using the N-terminal 50 – 100 amino acids of LifA fused to TEM-1/β-lactamase showed that this sequence of LifA was capable of being injected into HeLa cells and reacting with a β-lactamase substrate to cause a colour change in fluorescence. Due to the limitations of the cloning vector that was used, the N-terminal 50 – 100 amino acids were used instead of the full-length protein. This was suitable for examining Type III secretion as Charpentier and Oswald (2004) found that as little as 20 amino acids from the N-terminus of various T3S proteins is sufficient to mediate translocation through the T3SS. However, without examining the full-length protein it is not possible to determine if Type III secretion is the normal mechanism of LifA secretion, or whether the protein is secreted in its entirety or in processed forms. It is possible that LifA may be secreted via different secretion systems.

The mechanism of LifA secretion is important for understanding how it acts as both a lymphostatin and an adhesin. Studies by Klapproth et al (1995, 1996 and 2000), Malstrom and James (1998) and Stevens et al (2002) have all shown that bacterial lysates containing LifA have inhibitory activity against lymphocytes and mononuclear cells, indicating that injection is unlikely to be needed for lymphostatin activity. Moreover, activity can be transferred to laboratory-adapted E. coli K-12 containing cloned LifA even though it lacks the T3SS. Purified recombinant LifA has also been found to inhibit the mitogen-stimulated proliferation of lymphocytes (Stevens Laboratory unpublished data). This suggests that even if LifA is Type III secreted, it does not absolutely require T3SS-mediated injection into host cells in order to function.

Exactly how LifA acts as an adhesin is unclear but there are multiple possible methods of how it may achieve this. It may gain access to host cells via the T3SS or other means, where like Tir, it becomes a receptor for another bacterial protein or recruits other proteins to act a receptor. An alternative method is that LifA is secreted and then re-associates with the bacterial cell surface before binding to a receptor. This mechanism has been observed with the giant fibronectin-binding adhesin SiiE in Salmonella enterica serovar Typhimurium (Morgan et al, 2007; Gerlach et al, 2007).
1.9 Importance of lymphostatin as a virulence factor

LifA has been shown to be an important virulence factor in A/E pathogens (Stevens et al., 2002; Badea et al., 2003; Klapproth et al., 2005; Deacon et al., 2010). Stevens et al. (2002) found that deleting the lifA gene in EHEC O5:H- strain S102-9 caused a 19-fold reduction in adherence to HeLa cells. A reduction in adherence was not observed in the EPEC strain O127:H6 strain E2348/69 but this may have been due to the expression of BFP. Lysates of both EPEC O127:H6 strain E2348/69 and EHEC O5:H- strain S102-9 were found to inhibit the mitogen-stimulated proliferation of PBMCs, although the inhibition caused by EHEC may have been due to other toxins such as Stx. Stx is capable of inhibiting the proliferation of lymphocytes (Menge et al., 1999) and deleting the lifA gene did not relieve the inhibitory effect of the EHEC lysate. Deleting the lifA gene in EHEC O5:H- and O111:H- strain E45035N was found to reduce the adherence of bacteria to the intestinal epithelium of cattle, reduce the overall ability of the bacteria to colonise cattle and reduce pathology. It was also found that EHEC O5:H- ΔlifA mutants were reduced in their ability to produce and secrete EspA and Tir, but were still able to form A/E lesions. This suggests that the loss of LifA could have indirectly affected gut colonisation via indirect effects on Type III secretion, which is known to be vital for colonisation of the bovine gut by EHEC O157:H7 (Dziva et al., 2004; Naylor et al., 2005).

Badea et al. (2003) reported that LifA was necessary for the in vitro adherence of rabbit EPEC to epithelial cells. The rabbit EPEC strain used lacked BFP, which would otherwise have likely masked the effects of LifA. Rabbit EPEC with mutated LifA had reduced adherence to CHO and HeLa cells and polyclonal antibodies against LifA also reduced adherence. The mutation of the lifA gene did not disrupt EspA secretion and therefore the decrease in adherence could not be attributed such a disruption.

Klapproth et al. (2005) found that mutating the lifA gene in C. rodentium did not reduce the ability of the bacteria to colonise the colon of mice but did result in reduced pathology and accelerated clearance of the bacteria. In these experiments Klapproth et al. (2005) mutated the putative glycosyltransferase and cysteine protease...
domains as well as a domain between these two that does not encode any known activity. However, later it was discovered that the mutations created stop codons, which resulted in the truncation of the LifA protein (Deacon et al., 2010). This means that the results were invalid in relation to the effects of the specific domains but still proved that the protein as a whole is required for pathology in mice.

Deacon et al (2010) also investigated the importance of the putative glycosyltransferase and cysteine protease domains by substituting specific motifs within these domains in EHEC O26:H- strain 193 nalR. This strain was incapable of producing Stx1 in order to prevent it from masking the effects of LifA. It was found that LifA null mutants had a reduced ability to colonise cattle but mutants of the putative glycosyltransferase and cysteine protease domains did not. No effect of the lifA mutation on expression of EspA was observed in EHEC O26:H-. In contrast to Stevens et al (2002), this shows that LifA has a direct role in gut colonisation independently of EspA. LifA was not necessary to induce enteritis in bovine ileal loops. In contrast to previous experiments, LifA null and motif mutants did not have significantly reduced adherence to HeLa cells or ability to inhibit the mitogen-stimulated proliferation of lymphocytes. However, when the motif substitutions were transferred to the chromosome of EPEC O127:H6 E2348/69 it was observed that the ability to inhibit mitogen-stimulated proliferation of lymphocytes was significantly reduced in the motif mutants compared with parental EPEC E2348/69.

Stevens et al (2004) reported that the LifA homologues LifA’ and ToxB influenced the adherence of EHEC O157:H7 to HeLa cells but were not required for the colonisation of cattle or sheep. They also reported that mutations in the lifA’ and toxB genes reduced the production and secretion of proteins encoded by the LEE4 operon but did not affect the activity of the LEE1, 4 and 5 operon promoters. This is consistent with observations by Tatsuno et al (2001) that suggest that ToxB affects expression and secretion of LEE-encoded proteins at a post-transcriptional level. Abu-Median et al (2006) also performed experiments with lifA’ and toxB mutants and found that these proteins did not appear to confer lymphostatin-like activity against mitogen-stimulated peripheral blood lymphocytes, however, the assay relied on crude bacterial lysates and is relatively insensitive.
1.10 Structural motifs of lymphostatin

The N-terminal portion of LifA is ~40% homologous to the LCT family which includes TcdA and B from *Clostridium difficile*, the lethal and haemorrhagic toxins from *C. sordellii* and α-toxin from *C. novyi* (Klapproth *et al.*, 2000; Nicholls *et al.*, 2000; Busch *et al.*, 1998). This homologous region in LifA encompasses a catalytic DXD motif that is necessary for sugar binding in LCTs (Klapproth *et al.*, 2000; Nicholls *et al.*, 2000; Busch *et al.*, 1998). The LCTs are known glycosyltransferases (Triadafilopoulos *et al.*, 1987), most of which bind uridine diphosphate (UDP)-Glucose (Glc; Just *et al.*, 1995; Schirmer and Aktories, 2004). *C. novyi* α-toxin can bind UDP-Glc but its primary substrate is UDP-N-Acetylglucosamine (GlcNAc; Selzer *et al.*, 1996; Schrimer and Aktories, 2004). LCTs are known to act as cytotoxins by hydrolysing UDP-sugars and transferring the sugar onto Rho GTPases, thereby inhibiting RhoGTPase activity and causing the collapse of the actin cytoskeleton (Just *et al.*, 1995; Selzer *et al.*, 1996). Early experiments by Klapproth *et al.* (1995 and 2000) and Stevens *et al.* (2002) did not show LifA to act in this manner, however, recent experiments by Babbin *et al.* (2009) suggest that LifA from *C. rodentium* targets Rho GTPases in mice. It is unknown whether this is true for LifA produced by EPEC and EHEC. Deacon *et al.* (2010) were not able to replicate these results as they did not detect any activation of RhoA in cells infected with EPEC, and so the possible cytotoxic effects of LifA remain unclear.

LifA also contains a cysteine protease domain that is homologous to the YopT protein family in *Yersinia* (Shao *et al.*, 2002). YopT proteins cleave Rho GTPases near their C-terminal end, releasing them from the host cell membrane and disrupting the actin cytoskeleton (Shao *et al.*, 2002). The function of the cysteine protease domain in LifA is unknown. LCTs are autoproteolytic (Reinke *et al.*, 2007), using this domain to release the catalytic N-terminal portion into the cytoplasm after insertion of the LCT across endosome membranes. It is therefore possible that if LifA acts in the same manner as LCTs, that the target of the cysteine protease domain is LifA itself. It appears that these glycosyltransferase and cysteine protease domains are dispensable during intestinal colonisation of calves by EHEC O26:H-,
however, they influence LifA activity, at least when assayed using crude bacterial lysates (Deacon et al, 2010).

1.11 Recent advances in understanding the mode of action of lymphostatin

LifA clones are unstable and under-represented in cosmid libraries (Klapproth et al, 2000; Janka et al, 2002). Nicholls et al (2000) reported that they were unable to assemble the full-length lifA/efa-1 gene from cloned N- and C-terminal fragments and that the protein may be toxic to the E. coli cell. Recent work by the Stevens Laboratory has enabled the further study of LifA. Through the use of tightly inducible expression vectors, it has been possible to create a stable plasmid encoding recombinant LifA with a 6x-histidine (6xHis) tag. This recombinant LifA has been purified and biophysically characterised by our collaborators at the Edinburgh Protein Production Facility. It has been observed to bind UDP-GlcNAc but not UDP-Glc, suggesting it may act to some degree as a glycosyltransferase, and it is also capable of inhibiting the mitogen-stimulated proliferation of bovine T lymphocytes in a dose-dependent manner. Lastly, a rabbit polyclonal antibody has been produced against this recombinant LifA, allowing for the sensitive detection of the protein by western blotting.
1.12 Aims and objectives

Given that very little is understood about the molecular mechanisms of LifA activity, this study sought to determine a possible secretion mechanism for the full-length protein, to investigate the role of LifA as a putative glycoyltransferase and to examine the possible cytotoxic effects of LifA on mammalian cells. The overall objectives of this study were to:

1. Determine if full-length LifA can be secreted via the T3SS by examining the secretion of LifA by EPEC wild-type (WT) and mutant strains under T3S-inducing conditions.

2. Probe the role of a predicted DXD catalytic motif within the putative glycosyltransferase domain in LifA by:
 a) Creating a DXD-AAA substitution mutant and purifying the mutant protein.
 b) Comparing the sugar binding ability of the DXD-AAA mutant LifA protein with the WT protein.
 c) Comparing the ability of the DXD-AAA mutant LifA protein to inhibit the Concanavalin A (ConA)-stimulated proliferation of bovine T lymphocytes with the WT protein.

3. Determine if purified WT LifA has any direct cytotoxic effects against mammalian cells.
Chapter 2: Materials and Methods

2.1 Bacterial growth media and chemicals

Bacterial strains were cultured in suspension using lysogeny broth (LB) or on LB agar plates (Sigma Aldrich) and supplemented with antibiotics as indicated. Antibiotics were used at the following final concentrations: Nalidixic acid (Nal), 20µg/mL; Kanamycin (Kan), 30µg/mL; Ampicillin (Amp), 25µg/mL. Where indicated, cultures were supplemented with 0.5% (w/v) D-glucose. Glycerol stocks for bacteria were prepared from fresh liquid cultures and supplemented with glycerol at a final concentration of 15% (v/v). For Type III secretion assays, bacteria were cultured in Eagle’s Minimum Essential Medium (Sigma Aldrich) supplemented with 4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid (MEM-HEPES, Sigma Aldrich), 1g/L D-glucose and antibiotics as indicated (MEM-C; Kenny et al, 1997b).

2.2 Bacterial strains, plasmids and oligonucleotides

The strains and plasmids used in this study are listed in Table 2.1. The pRham-LifA-6xHis plasmid encodes the lifA gene, which is controlled by a rhamnose-inducible promoter. The pRham empty plasmid was a re-ligated pRham vector backbone and was used as a negative control. The oligonucleotides used for site-directed mutagenesis and double stranded sequencing are shown in Table 2.2.
Table 2.1. Strains and plasmids used in this study. Properties of strains and plasmids used are shown with references.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Description</th>
<th>Antibiotic resistance</th>
<th>Reference/source</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli E2348/69 ΔlifA</td>
<td>Lacks lifA.</td>
<td>NalR</td>
<td>Stevens et al, 2002</td>
</tr>
<tr>
<td>E. coli E2348/69 ΔescN::KanR</td>
<td>Defective T3SS.</td>
<td>KanR</td>
<td>Garmendia et al, 2004</td>
</tr>
<tr>
<td>E. cloni® 10G</td>
<td>Chemically competent cells for transformation. F° mcrA Δ(mrr-hsdRMS-merBC) endA1 recA1 q80lacZΔM15 ΔlacX74 araD139 Δ(ara,leu)7697 galU galK rpsL (StrR) nupG λ− tonA</td>
<td>StrR</td>
<td>Lucigen</td>
</tr>
<tr>
<td>XL 10-Gold Ultracompetent cells</td>
<td>Chemically competent cells for transformation. TetR Δ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 gyrA96 relA1 lac Hte [F° proAB lacIqZΔM15 Tn10 (TetR) Amy CamR]</td>
<td>TetR, CamR</td>
<td>Agilent Technologies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Description</th>
<th>Antibiotic resistance</th>
<th>Reference/source</th>
</tr>
</thead>
<tbody>
<tr>
<td>pRham-LifA-6xHis</td>
<td>Encodes 6xHis tagged LifA with rhamnose inducible promoter.</td>
<td>KanR</td>
<td>Courtesy of Dr. Robin Cassady-Cain, Roslin Institute</td>
</tr>
<tr>
<td>pRham empty</td>
<td>Re-ligated pRham vector backbone.</td>
<td>KanR</td>
<td>Courtesy of Dr. Robin Cassady-Cain, Roslin Institute</td>
</tr>
<tr>
<td>pRham-LifA 6xHis DXD-AAA</td>
<td>Encodes 6xHis tagged LifA with rhamnose inducible promoter and DXD motif substituted with AAA.</td>
<td>KanR</td>
<td>Made in this study</td>
</tr>
<tr>
<td>pWhitescript</td>
<td>Mutagenesis control. Allows for colour screening.</td>
<td>AmpR</td>
<td>Agilent Technologies</td>
</tr>
<tr>
<td>pUC18</td>
<td>Transformation control. Allows for colour screening.</td>
<td>AmpR</td>
<td>Agilent Technologies</td>
</tr>
</tbody>
</table>
Table 2.2. Oligonucleotides used in this study.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence (5' to 3')</th>
<th>Purpose</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>LifA-DXD-1</td>
<td>GGATGTATATCCTTTAAGAGCATGGT GGTTTTATACAGCGGCCCAGGATGC CTGCATATCCTAAACAAGTAATT TTAAAT</td>
<td>DXD-AAA substitution using QuikChange mutagenesis</td>
<td>Sigma Aldrich</td>
</tr>
<tr>
<td>LifA-DXD-2</td>
<td>TTAAAAAATTACCTGTATAGCAT GCAGGCCATCATGCGGCCCAGGATGTA AAATTACCCCATGCTCTTTAAGGATAC ACATCC</td>
<td>As LifA-DXD-1</td>
<td>Sigma Aldrich</td>
</tr>
<tr>
<td>pRham forward</td>
<td>GAAGGAATATATCATATGAGACCTGC CAGGAAAGGTCTT</td>
<td>Replication and sequencing of the pRham vector backbone</td>
<td>Lucigen</td>
</tr>
<tr>
<td>pETite reverse</td>
<td>GTGATGGTGATGATGATGTTAAA AGGTTGTCACCATT</td>
<td>Replication of the pRham vector backbone</td>
<td>Lucigen</td>
</tr>
<tr>
<td>LifA FL For1</td>
<td>GCAGGAGAGATAGCTGGTAAC</td>
<td>Sequencing of the DXD-AAA lifA gene from 5' to 3'</td>
<td>Sigma Aldrich</td>
</tr>
<tr>
<td>LifA FL For2</td>
<td>GTTCCCCACCTGAAAGCATT</td>
<td>As LifA FL For1</td>
<td>Sigma Aldrich</td>
</tr>
<tr>
<td>LifA FL For3</td>
<td>GGTGAAAACCCATTTCAAT</td>
<td>As LifA FL For1</td>
<td>Sigma Aldrich</td>
</tr>
<tr>
<td>LifA FL For4</td>
<td>CGTGGGCTCTATGGATTACAG</td>
<td>As LifA FL For1</td>
<td>Sigma Aldrich</td>
</tr>
<tr>
<td>LifA FL For5</td>
<td>CCGTTCAAAGATGTGTTCAAC</td>
<td>As LifA FL For1</td>
<td>Sigma Aldrich</td>
</tr>
<tr>
<td>LifA FL For6</td>
<td>GACTCCTGAAAACCTGGGAAG</td>
<td>As LifA FL For1</td>
<td>Sigma Aldrich</td>
</tr>
<tr>
<td>LifA FL For7</td>
<td>CCGACTAGGAATAAAGTGTTG</td>
<td>As LifA FL For1</td>
<td>Sigma Aldrich</td>
</tr>
<tr>
<td>LifA FL For8</td>
<td>GGATTACCAACTTTGCGC</td>
<td>As LifA FL For1</td>
<td>Sigma Aldrich</td>
</tr>
<tr>
<td>LifA FL For9</td>
<td>CCAACGAATCGCTACTACA</td>
<td>As LifA FL For1</td>
<td>Sigma Aldrich</td>
</tr>
<tr>
<td>LifA FL For10</td>
<td>CTGGCCGCACAGTTCTGAC</td>
<td>As LifA FL For1</td>
<td>Sigma Aldrich</td>
</tr>
<tr>
<td>LifA FL For11</td>
<td>CCGAAGCAACTCTCGGACGC</td>
<td>As LifA FL For1</td>
<td>Sigma Aldrich</td>
</tr>
<tr>
<td>LifA FL For12</td>
<td>CAGTCTCCTCCTCCTCTTG</td>
<td>As LifA FL For1</td>
<td>Sigma Aldrich</td>
</tr>
<tr>
<td>LifA FL For13</td>
<td>CCGGAAGAGGTTTCCGCTCACC</td>
<td>As LifA FL For1</td>
<td>Sigma Aldrich</td>
</tr>
<tr>
<td>LifA FL For14</td>
<td>CAGGCTGTTTATCCCGAAG</td>
<td>As LifA FL For1</td>
<td>Sigma Aldrich</td>
</tr>
<tr>
<td>LifA FL For15</td>
<td>GGTCATAACCAACCGGTAAC</td>
<td>As LifA FL For1</td>
<td>Sigma Aldrich</td>
</tr>
<tr>
<td>LifA FL For16</td>
<td>GAACAGCGGTATCGGACAG</td>
<td>As LifA FL For1</td>
<td>Sigma Aldrich</td>
</tr>
<tr>
<td>LifA FL For17</td>
<td>CTTATCAGAAAATCCCTCAG</td>
<td>As LifA FL For1</td>
<td>Sigma Aldrich</td>
</tr>
</tbody>
</table>
2.3 Culture of mammalian cell lines

HeLa cells were cultured at 37°C, 5% CO\(_2\) in Dulbecco’s Modified Eagle’s Medium (DMEM, Gibco and Sigma Aldrich) with 10% (v/v) heat-inactivated foetal calf serum (FCS, Gibco) and 20mM L-glutamine (Gibco; DMEM-C). The cells were grown to a confluence of 80 – 90% then passaged into fresh medium as follows. The cell monolayer was washed with 10mL Hank’s balanced salt solution (HBSS, Gibco) and cells lifted by incubation with 2mL trypsin (1x; 0.05% (w/v) trypsin; 0.02% (w/v) EDTA in HBSS, Sigma Aldrich) at 37°C for ~2 – 3 minutes. The cells were dislodged from the flask by rinsing with 10 volumes (V) DMEM-C. The cells were then centrifuged at 1200g for 10 minutes at room temperature. The cells were resuspended in fresh medium, counted by trypan blue exclusion (0.4% (w/v) trypan blue, HyClone) using disposable haemocytometer grids (Kova International) and re-seeded at a density of 0.5x10\(^6\) cells/mL in a T175 filter cap flask (Fisher Scientific). TIB-152 (Jurkat) cells were cultured in suspension at 37°C, 5% CO\(_2\) in RPMI-1640 medium (Gibco) with 10% (v/v) FCS (Gibco) and 20mM L-glutamine (Gibco; RPMI-CJ) to a density of 3x10\(^6\) – 7x10\(^6\) cells/mL. The cells were centrifuged as above and the pellet was resuspended in fresh RPMI. Jurkat cells were counted as above and re-seeded at a density of 0.5x10\(^6\) cells/mL. For long-term storage at -150°C, cells were spun down and resuspended in RecoveryTM Cell Culture Freezing Medium (10% (v/v) DMEM with 10% (w/v) dimethylsulphoxide, Invitrogen) at a density of 1x10\(^6\) cells/mL, frozen in a cell freezer at -80°C overnight, followed by transfer to -150°C.

<table>
<thead>
<tr>
<th>Primer (cont.)</th>
<th>Sequence (5' to 3')</th>
<th>Purpose</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>LifA FL For18</td>
<td>GCGGCTACCAAGTGATTATC</td>
<td>As LifA FL For1</td>
<td>Sigma Aldrich</td>
</tr>
<tr>
<td>LifA FL Rev15</td>
<td>CCATCAGATATTGCACGACG</td>
<td>Sequencing of the DXD-AAA lifA gene from 3' to 5'</td>
<td>Sigma Aldrich</td>
</tr>
<tr>
<td>LifA FL Rev16</td>
<td>GTAGCATAAGCTCTCTTGAG</td>
<td>As LifA FL Rev 15</td>
<td>Sigma Aldrich</td>
</tr>
</tbody>
</table>
2.4 Plasmid DNA purification

Plasmid DNA was prepared from small-scale stationary phase bacterial cultures (5 – 10mL, Miniprep) or larger-scale cultures (50 – 100mL, Midiprep). To perform a Miniprep, 3mL from overnight cultures were each added to two 1.5mL microcentrifuge tubes and centrifuged at 17,949g for 10 minutes. DNA from the pellets was purified using a QIAprep Spin Miniprep Kit (Qiagen) following the manufacturer’s instructions. One QIAprep spin column was used for each 3mL culture and columns were left to dry for 10 minutes. The DNA was eluted in 30µL of nuclease free distilled water (nH₂O), which was left to stand for 5 minutes before being centrifuged for 1 minute.

To perform a Midiprep, 50mL overnight cultures were centrifuged at 6000g, 4°C for 15 minutes. Plasmid DNA from the pellets was purified using a QIAprep Spin Midiprep Kit with filter cartridges (Qiagen) following the manufacturer’s instructions and the final DNA pellet was dissolved in 50µL of nH₂O.

The DNA concentrations were measured in ng/µL using a NanoDrop (ND-1000) Spectrophotometer (Thermo Scientific).

2.5 Preparation of secreted proteins

Duplicate mid-logarithmic phase cultures of the EPEC E2348/69 (WT), E2348/69 ΔlifA (ΔlifA) and E2348/69 ΔescN::KanR (ΔescN) strains were grown from 1.5mL of overnight LB cultures in 25mL of MEM with appropriate antibiotics. They were incubated at 37°C for 5 hours so that the OD₆₀₀ of the cultures was between 0.3 and 0.6. Each set of cultures was pooled and 100µL was taken from each to enumerate viable bacteria by plating of serial dilutions onto LB agar plates with appropriate antibiotics with incubation at 37°C overnight. The number of colonies on plates with 30 – 300 colonies were counted and multiplied by the dilution factor, and this value was divided by the volume plated in mL to give the number of colony forming units (CFUs).

The pooled cultures were centrifuged at 3220g, 4°C for 10 minutes, before the supernatants were decanted and filtered through a 0.2µm filter (Ministart
Sartorius) to remove any residual bacteria. Proteins were precipitated by the addition of trichloroacetic acid (Sigma Aldrich) to a final concentration of 10% (v/v) with incubation at 4°C overnight. The samples were centrifuged at 3220g, 4°C for 1 hour, the supernatant was decanted, and the pellets were left to air dry before being resuspended in 200µL of 1.5M Tris(hydroxymethyl)aminomethane (TRIS) buffer (pH 8.8). Protein samples were denatured by the addition of an appropriate volume of sample reducing agent (Novex) and 1x lithium dodecyl sulphate (LDS) sample buffer (Novex) and heated at 70°C for 10 minutes. Samples were stored at -20°C until analysis.

The bacterial pellets were resuspended in 50mL of phosphate-buffered saline (PBS) and 1mL was processed to make whole cell lysates. The samples were washed by centrifugation at 17,949g, 4°C for 10 minutes, washed in PBS and centrifuged again. The pellets were lysed using 100µL of BugBuster MasterMix (Novagen) and mixed for 10 minutes at room temperature. Protein concentration was quantified using the Direct Detect system (Merck Millipore) according to the manufacturer’s instructions using BugBuster as the buffer control. The samples were then denatured in sample reducing agent and LDS sample buffer as above. Samples were stored at -20°C until analysis.

2.6 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE)

Proteins were analysed by SDS-PAGE using the Novex (Life Technologies) gel system. Where the detection of LifA was required, 3 – 8% Tris-Acetate gels (Novex) were used. For analysis of proteins <100kDa, 4 – 12% Tris-Glycine gels (Novex) were used. The Tris-Acetate and Tris-Glycine gels were run with 1x Tris-Acetate SDS running buffer (Novex), with 0.25% (v/v) antioxidant (Invitrogen) in the buffer that was in contact with the anode of the gel tank, and 1x Tris-Glycine SDS running buffer (Novex) respectively. HiMark pre-stained protein standards (Invitrogen) and Precision Plus Protein pre-stained standards (Bio-Rad) were used with the Tris-Acetate and Tris-Glycine gels respectively. The gels were run at 150V until the dye front had left the bottom of the gel. Gels were analysed by staining with Coomassie stain (Bio-Rad), according to the manufacturer’s instructions, or by
western blot detection. Where the gels were stained, the images were captured using a Gel Doc EZ system (Bio-Rad).

2.7 Western blotting

Proteins were transferred to polyvinylidene fluoride (PVDF) membranes (Amersham Hybond) for western blotting. The gels were soaked in 2x transfer buffer (Novex) with 0.04% (w/v) SDS for 15 minutes while PVDF membranes were washed in methanol then distilled water before being soaked and gently rocked in 2x transfer buffer with 10% (v/v) methanol and 0.1% (v/v) antioxidant for 15 minutes. To get efficient transfer of large proteins (>100kDa), the Tris-Acetate gels were transferred using a wet transfer at 30V for 75 minutes, using an XCell II Blot Module (Thermo Scientific). The Tris-Glycine gels were transferred using the semi-dry method at 15V for 60 minutes in a Trans-Blot Turbo Transfer System (Bio-Rad). Membranes were blocked in Tris-buffered saline/0.1% (v/v) Tween 20 (TBS-T, VWR International) and 5% (w/v) bovine serum albumin (BSA, Merck Millipore) for 1 hour on a rocker, then rinsed briefly with TBS-T and washed for 15 minutes, followed by an additional two washes of 5 minutes. Each membrane was treated with either rabbit polyclonal anti-LifA (Stevens Laboratory, Clone 45), mouse monoclonal anti-RecA (LifeSpan Biosciences) or mouse monoclonal anti-EspD (Ebel et al, 1998) antibody at dilutions of 1/25,000, 1/10,000 and 1/5000 respectively in TBS-T/5% (w/v) skimmed milk powder (Chem Cruz). All of the membranes were incubated at 4°C overnight.

Blots were washed with TBS-T as above. Horseradish peroxidase (HRP)-conjugated secondary antibodies were applied at the following concentrations in TBS-T/2% (w/v) skimmed milk powder: goat anti-rabbit HRP (Bio-Rad), 1/10,000; goat anti-mouse HRP (AbD Serotec), 1/10,000. The membranes were incubated at room temperature for 1 hour and the blots washed TBS-T as above. The membranes were dried and developed using SuperSignal West Pico Chemiluminescent Substrate (Thermo Scientific) following the manufacturer’s instructions and exposed to Amersham Hyperfilm for various times to achieve clear images. Films were developed using an SRX-101A film processor (Konica Minolta).
2.8 Site-directed mutagenesis of the DXD motif of lymphostatin

Mutagenesis of the DXD motif was performed using a QuikChange II XL Site-Directed Mutagenesis Kit (Figure 2.1, Agilent Technologies) following the manufacturer’s instructions with some modifications. The primers LifA-DXD-1 (forward) and LifA-DXD-2 (reverse; see Table 2.2) were designed using the QuikChange Primer Design Program (www.agilent.com/genomics/qcpd), with the aim of replacing DXD at amino acid positions 557–559 of E2348/69 lifA with 3 alanine residues using codons that simultaneously create a Not I restriction site. Polymerase chain reaction (PCR) was performed using 10ng of the pRham-LifA-6xHis plasmid as a template, 1x reaction buffer, 125ng of each of the forward and reverse primers, 2% (v/v) dNTP mix, 6% (v/v) QuikSolution reagent and nH2O to make up to 50µl reaction volume. PfuUltra HF DNA polymerase was added to the reaction mixture at 2.5U/µL. PCR was used to introduce the AAA sequence by complete replication of the plasmid, followed by digestion of the parent plasmid using 10U/µL Dpn I, which digests methylated template DNA but not DNA generated in the PCR reaction. A commercial pWhitescript plasmid was used as a positive mutagenesis control, using primers (sequence not disclosed by manufacturer) that repair a mutation in the β-galactosidase gene, which can be detected by blue-white screening using a chromogenic β-galactosidase substrate. The PCR parameters are listed in Table 2.3.

XL 10-Gold Ultracompetent cells were thawed on ice and prepared according to the manufacturer’s instructions. The Dpn I-treated DNA samples were added to separate aliquots of cells. A quantity of 0.01ng of pUC18 plasmid was added to an aliquot of cells for use as a transformation control. The transformation reactions were gently swirled and incubated on ice for 30 minutes. The cells were transformed by heat shock at 42°C for 30 seconds and incubated on ice for 2 minutes. The cells were suspended in NZY broth (see Appendix 1), which was used as a recovery medium before plating, and incubated at 37°C for 1 hour with shaking at 225 – 250rpm. The cells transformed with the mutant plasmid were spread onto LB/Kan agar with 0.5% (w/v) glucose and cells transformed with the pWhitescript and pUC18 plasmids were spread onto LB/Amp agar. The LB/Amp plates also had 250µL of 80µg/mL X-gal
(Promega) and 250µL of 20mM IPTG (Sigma Aldrich) spread onto the agar before the cells were added to allow for blue-white screening. The plates were incubated at 37°C for >16 hours.

Table 2.3. PCR programme used for site-directed mutagenesis of the pRham-LifA-6xHis plasmid.

<table>
<thead>
<tr>
<th>Segment</th>
<th>No. of cycles</th>
<th>Temperature (°C)</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>95</td>
<td>1 minute</td>
</tr>
<tr>
<td></td>
<td></td>
<td>95</td>
<td>50 seconds</td>
</tr>
<tr>
<td></td>
<td></td>
<td>68</td>
<td>50 seconds</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>68</td>
<td>13 minutes (1 minute/kb of plasmid)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>68</td>
<td>7 minutes</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>68</td>
<td>7 minutes</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>15</td>
<td>∞</td>
</tr>
</tbody>
</table>
Figure 2.1. The process of creating the DXD-AAA substitution mutant of LifA. (A) Nucleotide and amino acid sequence of the part of the catalytic DXD motif within the putative glycosyltransferase domain of LifA, highlighting the codons that were targeted for site-directed mutagenesis in order to create an AAA substitution mutant. It was also possible to incorporate a new *Not* I restriction site (GCGGCGCGC) at this location. (B) Schematic of the procedure for QuikChange Mutagenesis. Mutant strand synthesis is carried out using the mutagenic primers to replicate the entire plasmid using PCR. This is followed by *Dpn I* digestion of methylated and hemimethylated template DNA to remove the parental plasmid DNA. Finally, the mutated plasmid is transformed into chemically competent cells (adapted from Agilent Technologies, 2015).
2.8.1 PCR screening of putative mutant constructs

Putative clones of pRham-LifA-6xHis with the DXD-AAA change were initially screened by PCR to verify that they contained plasmid harbouring the \textit{lifA} gene. Glycerol stocks were made from each of the cultures, which were stored at \(-80^\circ\text{C}\) for further use and 2\,\mu L of each culture was lysed in 198\,\mu L of nH\textsubscript{2}O. The lysed cells were mixed with 1x PCR master mix, which contained 1x HF buffer (Thermo Scientific), 10\,\mu M pRham forward primer, 10\,\mu M pETite reverse primer (see Table 2.2), 10mM dNTPs and 2U/\mu L Phusion polymerase (Thermo Scientific) to make up 20\,\mu L reaction volume. A no-template negative control and a parent plasmid DNA pRham-LifA-6xHis positive control were included. The PCR parameters are listed in Table 2.4. The PCR products were analysed on a 0.8\% (w/v) agarose (Invitrogen) gel against a 1kb DNA ladder (Promega). Gels stained with SYBRsafe (Invitrogen) were run at 120V for 20 minutes.

<table>
<thead>
<tr>
<th>Segment</th>
<th>No. of cycles</th>
<th>Temperature (\textdegree\text{C})</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>98</td>
<td>10 seconds</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>98</td>
<td>10 seconds</td>
</tr>
<tr>
<td></td>
<td></td>
<td>55</td>
<td>15 seconds</td>
</tr>
<tr>
<td></td>
<td></td>
<td>72</td>
<td>10 minutes</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>72</td>
<td>10 minutes</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>\infty</td>
</tr>
</tbody>
</table>

2.8.2 Not I digests of plasmids

\textit{Not I} was used to distinguish between mutated \textit{lifA}, which contains a \textit{Not I} restriction site at the location of the DXD-AAA substitution (see Figure 2.1), and false positives. Miniprep DNA from the colonies that tested positive for the presence of \textit{lifA} were mixed with 1x \textit{Not I} master mix, which contained 1x buffer D, 10mg/mL BSA, 10U/\mu L \textit{Not I} (all from Promega) and nH\textsubscript{2}O. A negative and positive control of nH\textsubscript{2}O and pRham-LifA-6xHis plasmid were also treated with \textit{Not I}. The DNA was
digested at 37°C for 1 hour and the digestion products were analysed on a 0.8% (w/v) agarose gel against a 1kb DNA ladder. Gels were run as previously described.

2.8.3 Sanger sequencing of mutated plasmids

Mutant plasmids were verified by conventional Sanger sequencing by GATC Biotech. The LifA forward primers FL For1 – 18, the reverse primers FL Rev15 and 16 and the pRham forward primer (see Table 2.2) were used to sequence the entire lifA gene.

The sequences were assembled using Lasergene SeqMan Pro (DNASTAR). Briefly, the sequence was clipped using SeqMan Pro to remove any areas of low sequence quality. The complete sequence was constructed by creating a contig of overlapping sequences in SeqMan Pro and differences in the original sequences were resolved by comparison of overlapping sequences with reference to sequencing chromatograms if needed. The complete sequence was compared with the WT E. coli E2348/69 genome using NCBI Blast (Iguchi, 2009; Madden, 2003) to identify any undesirable mutations that may have been introduced to the sequence (see Appendix 2).

2.9 Pilot protein expression assays

Protein was overexpressed in E. cloni® 10G and XL 10-Gold Ultracompetent cells transformed with the pRham-LifA-6xHis and pRham-LifA-6xHis DXD-AAA plasmids respectively. E. cloni® 10G with the pRham empty plasmid was used as a negative control. Fresh 50mL LB subcultures were made from overnight cultures inoculated with single colonies. The subcultures were incubated at 30°C until they reached an OD$_{600}$ between 0.5 and 0.6. Uninduced samples were collected and 0.2% (w/v) L-rhamnose was added to induce LifA production. At 2 hours post-induction, the induced and uninduced samples were centrifuged at 3220g, 4°C for 20 minutes and the pellets were collected, washed in PBS and centrifuged again. Protease inhibitors (Roche) were added to the cell suspension, which was then lysed by cell disruption (20kpsi, Constant Cell Disruption Systems). The lysates were centrifuged
at 3220g, 4°C for 20 minutes, the supernatant was decanted, and pellets were further lysed in 1mL BugBuster for analysis by SDS-PAGE.

Protein concentrations of the soluble lysates were measured and the samples were denatured as previously described. The samples were centrifuged at 17,949g for 10 minutes to separate the large cell debris and analyzed by western blotting as described above.

2.10 Optimisation of DXD-AAA LifA protein production

Overnight cultures of *E. coli*® 10G transformed with the pRham-LifA-6xHis DXD-AAA plasmid, grown in LB/Kan broth were diluted 10-fold in Enpresso B media (BioSilta) and grown at 37°C to an OD₆₀₀ of 0.5. Cultures were cooled to the appropriate induction temperature and induced with the addition of 0.2% (w/v) L-rhamnose when the OD₆₀₀ reached 0.6. The cultures were incubated at either 20 or 30°C and OD₆₀₀ measurements were taken 30 minutes, 1, 2, 3 and 4 hours after induction. Aliquots of 1mL of culture were taken at each time point. The aliquots were centrifuged at 12,500g in a benchtop centrifuge for 10 minutes, the supernatant was discarded and the pellets were stored at -20°C until ready for further processing. The pellets were dissolved in 6µL of BugBuster for every 0.01 OD₆₀₀ unit measured and sonicated with 3 x 10 second bursts using a Soniprep 150 Ultrasonic disintegrator (MSE). The pellets were kept on ice in between sonication bursts. A volume of 5µL from each lysate was mixed with 5µL of 10x sample reducing agent and 5µL of 4x LDS sample buffer then boiled at 100°C for 2 minutes and run on a 4 – 12% Tris-Glycine gel (Bio-Rad) at 250V for 22 minutes.

Large-scale protein production was carried out by first inoculating 2 x 25mL LB/Kan overnight cultures with a single colony each. From these overnight cultures, 5mL was added to each of 10 x 500mL LB and grown at 30°C for 3 hours with 0.2% (w/v) L-rhamnose. The cultures were centrifuged at 6000g, 4°C for 20 minutes, the supernatant was discarded, and the pellets were flash frozen in liquid nitrogen and stored at -80°C until required for protein purification.
2.11 Purification of DXD-AAA LifA

The DXD-AAA LifA protein was purified using a five-step process using ion metal affinity chromatography (IMAC), size exclusion chromatography (SEC), ion exchange chromatography and two desalt columns on a fast protein liquid chromatography (FPLC) unit (ÄKTA Explorer 10 UV900 LC system, GE Healthcare Life Sciences ÄKTA). All buffers used throughout the purification process were filtered and degassed to remove particulate matter (see Appendix 1 for their compositions). The presence of the DXD-AAA LifA protein in the filtrates throughout the purification was monitored using SDS-PAGE and UV absorbance at 280nm. The operation of the FPLC unit was carried out by Dr Liz Blackburn throughout the purification process at The Edinburgh Protein Production Facility.

Initially, the protein lysate was subjected to HiTrap nickel-Sepharose IMAC column chromatography (GE Healthcare Life Sciences). Cell pellets were thawed, lysed with IMAC lysis buffer (IMAC buffer A (see Appendix 1) with 500mM non-detergent sulphobetaine 201, 1 protease inhibitor tablet/1L of cell culture, 0.1mg/mL benzamidine and 0.1% (v/v) phenylmethanesulphonylfluoride to prevent protein degradation) and lysed further by cell disruption (30kpsi, Constant Cell Disruption Systems). The lysed pellet lysate was centrifuged at 50,000g, 4°C for 1 hour then run over the column at a flow rate of 2mL/minute, followed by a wash of 22 column volumes (CV) of 4% IMAC buffer B (see Appendix 1), equivalent to 20mM imidazole. The DXD-AAA LifA protein was eluted with 3 CV of 100% IMAC buffer B containing 500mM imidazole and collected in 1mL fractions.

The fractions of the IMAC filtrate that contained DXD-AAA LifA were pooled and applied to a Superose-6pg XK16/60 SEC column (GE Healthcare Life Sciences), for size exclusion, using SEC buffer. The most pure IMAC fractions, determined by SDS-PAGE, were run through the column first, followed by the less pure fractions.

The fractions of the SEC filtrates that contained DXD-AAA LifA, determined by SDS-PAGE, were run through a HiPrep 26/10 desalt column (GE Healthcare Life Sciences) in a 50mM NaCl low salt buffer to remove excess salt that may interfere with binding to the ion exchange chromatography column.
The desalt fractions containing DXD-AAA LifA, determined by SDS-PAGE, were applied to a Mono Q strong anion exchange column (GE Healthcare Life Sciences) to separate proteins based on their net charge. The percentage of 1M NaCl buffer in the column was increased gradually from 0% to 50%, then sharply to 100%. The fractions of the ion exchange filtrates that contained LifA were then run through another desalt column to remove excess salt. The most pure fractions were pooled into a single aliquot, which was used in all further experiments involving DXD-AAA LifA. Protein concentration was quantified using a NanoDrop Lite Spectrophotometer (Thermo Scientific). Two batches of DXD-AAA LifA were desalted into either assay buffer or CD buffer (see Appendix 1) before use in the biophysical characterisation and sugar binding experiments.

2.12 Dynamic light scattering (DLS)

Assay buffer with 1.1µM DXD-AAA LifA was passed through a 0.22µm Ultrafree-MC filter (Merck Millipore) and centrifuged at 12,000g, 4°C for 15 minutes. The mean hydrodynamic radius of DXD-AAA LifA was measured using a Zetasizer Automated Plate Sampler (Malvern Instruments, UK) equipped with a 50mW laser light source, with a wavelength of 830nm. DLS data were collected at a scattering angle of 90° for 10 seconds. This was repeated 12 times in triplicate and the values were averaged. Autocorrelation data were fit to a model of a multiple-exponential form suitable for polydisperse solutions using the protein-specific software supplied with the instrument. This generated a distribution of particles by size (Maslon et al, 2010). Assay buffer was used as a background control. Experimental data collection and analysis was carried out by Liz Blackburn, observed and supported by the candidate.

2.13 Circular dichroism (CD)

Samples of 0.11µM WT and DXD-AAA LifA in CD buffer were centrifuged at 12,000g, 4°C for 15 minutes. The samples were first checked for aggregation in CD buffer by DLS as described above. The mean residue ellipticity ([θ]) for each
protein was measured using a J-810 Spectropolarimeter (Jasco; Kelly *et al*, 2005) between wavelengths of 190 and 260nm. The [θ] for each protein was plotted against wavelength using Microsoft Excel 2013. The percentage of different secondary structure motifs were determined using DichroWeb (http://dichroweb.cryst.bbk.ac.uk/html/home.shtml; Lobley *et al*, 2002). Experimental data collection and analysis was carried out by Liz Blackburn.

2.14 Thermal shift assays

WT and DXD-AAA LifA proteins at a concentration of 0.1µM in assay buffer, along with a buffer control were mixed with 5x SYPRO orange and put into a 96 well plate. The plate was sealed and centrifuged at 3220g for 2 minutes to remove air bubbles then put into an IQ5 Multicolor Real-Time PCR Detection System (Bio-Rad). The temperature was increased from 15 to 70°C in 0.5°C increments every 30 seconds and the fluorescence was recorded at each increment. A second thermal shift assay was performed with the addition 0.2µM DXD-AAA LifA to determine whether the concentration of protein would affect the unfolding temperature of the protein. Normalised relative fluorescence units (RFU) for each sample were plotted against temperature using Microsoft Excel 2013. The unfolding transition temperature (T_m) of each protein was calculated from the steepest part of the melting curve. To find the steepest part of the melting curve, the curves were differentiated with respect to temperature (T; -dRFU/dT), therefore the T_m of each protein was the average of the lowest -dRFU/dT values.

2.15 Determination of sugar-binding ability of WT and DXD-AAA LifA

Samples were excited at 295nm and fluorescent emission was collected from 310 to 400nm in 1nm increments every second. The temperature of all samples was held at 20°C in the temperature controlled cuvette holder of the spectrophotometer (Fluoromax 3 Spectrophotometer, HORIBA Jobin Yvon). Assay buffer was put in a quartz cuvette to measure the background fluorescence. Protein was added at a concentration of 0.05µM and the fluorescence was measured again. Titrations of
increasing UDP-sugar concentrations were carried out, the fluorescence of each titration point was measured and background fluorescence subtracted. The fluorescence of the solutions was recorded in triplicate and the values were averaged. UDP-sugar was added between each triplicate of scans. UDP-GlcNAc and UDP-Glc (both Sigma Aldrich; both >98% pure) were titrated against buffer as a negative control. The experiment in which UDP-GlcNAc was titrated against WT LifA was performed by Liz Blackburn while all others were performed by myself. The results were analysed by Liz Blackburn using the law of mass action and the Stern-Volmer relationship.

2.16 Preparation of bovine lymphocytes and T cell enrichment

Peripheral blood was collected into heparinised bags from 3 different 12 – 18 month old Holstein-Friesian calves. Blood was centrifuged at 1200g for 15 minutes with no brake and the lymphocyte interfaces were removed, pooled into two centrifuge tubes, and made up to 30mL with PBS. Each 30mL was overlaid onto 20mL Ficoll-Paque Plus density medium (GE Healthcare Life Sciences) and centrifuged at 1200g for 25 minutes with no brake. The lymphocyte cells at the interface were removed and pooled for each donor and made up to 50mL with PBS and centrifuged at 1200g for 10 minutes. Where the cells were contaminated with erythrocytes, the pellet was resuspended in 1mL of red blood cell lysis buffer (see Appendix 1) and then made up to 50mL with RPMI-1640 medium (Gibco) with 10% (v/v) FCS (Gibco), 20mM HEPES (Sigma Aldrich), 1mM sodium pyruvate (Gibco), 20mM L-glutamine (Gibco) and 100µg/mL penicillin/streptomycin (Sigma Aldrich; RPMI-CT). The cells were washed twice in RPMI-CT and resuspended in 2mL RPMI-CT. The cells were then counted as described above.

To enrich for T cells, a nylon wool fiber column (Polyscience Inc.) was conditioned by adding 10mL RPMI-CT, tapping to remove air bubbles, and draining the media. The column was washed twice with RPMI-CT, filled with 5mL RPMI-CT, sealed and incubated at 37°C, 5% CO₂ for 1 hour. The media was drained from the column, cells were applied at a density of 1x10^8 cells/mL and run into the column. The column was sealed and incubated at 37°C, 5% CO₂ for 1 hour. The cells
were eluted from the column, which was then washed twice with RPMI-CT to remove any cells residual cells. The cells were counted as described above and the concentration was adjusted to be 4×10^6 cells/mL.

2.16.1 T lymphocyte proliferation assays

Wells of a 96 well plate were seeded in triplicate with 2×10^5 cells in 50µL RPMI-C. Serial dilutions were made for the WT and DXD-AAA LifA at concentrations of 400 – 0.004ng/mL and 40µg/mL – 0.4ng/mL respectively. The buffer that the mutant protein was dissolved in (see Appendix 1) was diluted using the same volumes as the DXD-AAA LifA dilution series as a control. Titrations of protein and buffer were added in triplicate to the appropriate wells at the following concentrations in 25µL: WT LifA, 100 – 0.001ng/mL; DXD-AAA LifA, 10µg/mL – 0.1ng/mL; dilutions of buffer representing 10µg/mL, 100ng/mL and 0.1ng/mL of mutant LifA. Concanavalin A (ConA) at a concentration of 50µg/mL was added to the cells in a volume of 25µL RPMI-CT. A background control was set up using 100µL RPMI-CT. Cells alone and cells with ConA, made up to 100µL with RPMI-CT, were used as negative and positive controls respectively. Empty wells were filled with PBS to prevent evaporation of the media.

The plates were incubated at 37°C, 5% CO$_2$ for 3 days and at 16 hours before the end of the assay 20µL CellTitre 96 AQUeous One Solution (Promega) was added to each well. The absorbance was read at 492nm using a Multiskan Ascent Spectrophotometer (Thermo Scientific). Ratios of the absorbance value for each titration against the positive control were calculated using averaged experimental (E), maximum proliferation (Mp) and background (B) absorbance values with the following formula:

$$\text{Ratio of cells+LifA/cells+ConA alone} = \frac{(E - B)}{(Mp - B)}$$

The ratios were plotted against the concentration of WT or DXD-AAA LifA protein added with standard deviations using Microsoft Excel 2013. The ED$_{50}$ for the WT and DXD-AAA LifA was calculated using R with the drc package (R Core...
The standard error of the mean was calculated for each ED$_{50}$ using Minitab 17.

2.17 Cytotoxicity assays

HeLa and Jurkat cells were seeded in triplicate at a density of 25x103 cells/50µL in opaque sided 96 well plates (Costar). Cells alone were used as a positive control. Media alone and buffer only were included as background and negative controls respectively. WT LifA titrations of 10µg/mL – 1ng/mL were applied in 50µL DMEM-C or RPMI-CJ to the appropriate cells, which were incubated at 37°C, 5% CO$_2$. Two identical plates were set up for each assay and one was incubated for 24 hours and the other for 48 hours. Empty wells were filled with PBS to prevent evaporation of the media.

At 24 and 48 hours, a cytotoxicity assay was performed on the cells using a CytoTox-ONE Homogeneous Membrane Integrity Assay Kit (Promega) following the manufacturer’s instructions. The cells were equilibrated to 22°C and maximum signal was determined by total cell lysis of the positive control cells with Triton X-100. A volume of CytoTox-ONE Reagent equal to the volume present in each well (100µL) was added to each well and incubated at 22°C for 10 minutes. A volume of Stop Solution equal to half the volume of CytoTox-ONE Reagent used was added to each well and shaken for 10 seconds. The fluorescence was measured with an excitation wavelength of 560nm and an emission wavelength of 590nm using a Glomax Multi Detection System (Promega). The percent cytotoxicity of LifA was calculated using averaged experimental (E), maximum signal (Ms) and background (B) fluorescence values with the following formula:

$$\text{Percent cytotoxicity} = \frac{(E - B)}{(Ms - B)} \times 100$$

The percent cytotoxicity values for the HeLa and Jurkat cells were plotted against the concentration of LifA protein added with standard deviations using Microsoft Excel 2013.
2.18 Statistical analysis

The P value was generated for the T cell proliferation assay ED$_{50}$s using a Two-Sample T-Test created in Minitab 17. A P value ≤ 0.05 was taken to be significant.
Chapter 3: Results

3.1 LifA can be secreted via Type III secretion in EPEC

Very little is known about the processing and production of LifA. Although Deng et al (2012) reported LifA could be secreted via the T3SS in a hypersecreting strain by SILAC analysis, secretion of the full-length LifA protein has not been demonstrated in WT E. coli. Recently, a polyclonal rabbit antibody against highly purified 6xHis-tagged LifA was produced, allowing the investigation of whether full-length LifA protein can be secreted and the role of the LEE-encoded T3SS in this process.

The WT EPEC E2348/69 strain was used to identify whether or not LifA is a T3S effector protein while the E2348/69 ΔlifA strain, which lacks the ability to produce LifA, served as a negative control. An additional strain, E2348/69 ΔescN, which cannot produce the T3S-associated ATPase EscN (Garmendia et al, 2004), was used to examine any T3S-dependent secretion of LifA. Equal quantities of protein in culture supernatants were loaded based on protein concentration in whole cell lysates. Full-length LifA was successfully detected by western blotting in the culture supernatant of WT E. coli E2348/69 under T3S-inducing conditions but not in the supernatant from the ΔlifA and ΔescN strains (Figure 3.1).

In order to be sure that the LifA detected in the culture supernatants was derived solely from secretion, the proteins RecA and EspD were also probed for as controls. RecA is an intracellular protein (Clark and Margulies, 1965), and so should not be found in supernatants derived from culture of intact bacterial cells. In contrast, EspD is a known Type III secreted protein (Lai et al, 1997) that should not be present in the supernatant of the ΔescN strain, which is deficient in T3S (Garmendia et al, 2004). All controls worked as expected. There was no secretion of LifA detected in supernatants derived from the culture of the ΔescN strain even though it was produced in whole cell lysates of this strain, indicating that secretion of lymphostatin occurs via the T3SS.
Figure 3.1. Lymphostatin is secreted via the LEE-encoded T3SS in EPEC E2348/69. Western blot of whole cell lysates and culture supernatants for EPEC strains E2348/69 (WT), E2348/69 ΔlifA (ΔlifA) and E2348/69 ΔescN::KanR (ΔescN). Equal quantities of protein were loaded based on the protein concentration of the whole cell lysates. Samples were probed for LifA to analyse production and secretion, EspD to show that the ΔescN strain is defective in T3S, and RecA to show that no lysis of bacteria had occurred during the assay. Three independent assays were carried out and a representative blot is shown.

The average viable counts of cultures and protein concentration of the whole cell lysates for the WT and ΔlifA strains were similar, while the viable count and protein concentration for the ΔescN strain was lower (Table 3.1).

Table 3.1. Average viable count of cultures and total protein concentration for each strain used in Figure 3.1.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Average viable count (CFU/mL)</th>
<th>Total protein concentration (mg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>6.75x10^8</td>
<td>2.752</td>
</tr>
<tr>
<td>ΔlifA</td>
<td>5.89x10^8</td>
<td>2.273</td>
</tr>
<tr>
<td>ΔescN</td>
<td>1.39x10^8</td>
<td>1.634</td>
</tr>
</tbody>
</table>
Finally, it is noteworthy that there are protein species reactive to anti-LifA antibody that were present in the whole cell lysates of the WT and ΔescN strains but not present in the ΔlifA strain (Figure 3.2). It is possible that these may be processed or truncated forms of LifA but investigation of the nature of these bands was beyond the scope of the present study.

![Western blot of whole cell lysates of EPEC strains using anti-LifA antibody](image)

Figure 3.2. Western blot of whole cell lysates of EPEC strains using anti-LifA antibody. Protein species marked with arrows are not present in the ΔlifA strain, suggesting that these protein species may be processed or truncated forms of LifA. However, their function within the cell and possible secretion mechanisms remain unknown. Some species in the ΔlifA strain appear not to be in the WT or ΔescN strain but these likely correspond to the nearby bands at a slightly lower molecular weight. This gel was run using the same samples as Figure 3.1 but at a higher protein concentration.
3.2 Generation of the pRham-LifA-6xHis DXD-AAA clone

The N-terminal portion of LifA is homologous to large clostridial toxins (LCTs) and contains a putative glycosyltransferase domain homologous to that in *C. difficile* toxins TcdA and B (Busch *et al.*, 1998). LCTs contain a catalytic DXD motif that Busch *et al.* (1998) reported was essential for catalysis as substitution of the amino acids in this motif caused an ~5000 fold decrease in enzyme activity. Given this homology it was hypothesized that LifA may act as a glycosyltransferase and that substituting the DXD motif in LifA for other residues may result in a decrease in the activity of LifA. In order to test this hypothesis, site-directed mutagenesis was used to substitute the DTD amino acid sequence that forms the DXD motif in LifA for an AAA sequence. AAA was chosen because alanine residues are small, non-polar and unreactive, which should allow the protein to fold correctly in the same manner as WT LifA.

QuikChange mutagenesis was performed using the existing pRham-LifA-6xHis plasmid as a template to create the AAA substitution in the *lifA* gene, which also created a new *Not* I restriction site in the plasmid. Different concentrations of template plasmid were used in separate reactions to optimise the yield of putative mutants. The process was controlled using a negative control consisting of template plasmid but no primers. The pWhitescript plasmid and oligonucleotide control primers were used as a positive mutagenesis control. The oligonucleotide control primers repair a mutation in the β-galactosidase gene, which can be detected by blue-white screening using a chromogenic β-galactosidase substrate. The pUC18 plasmid was used as a positive transformation control because it contains part of the *E.coli lac* operon, which complements the host cell’s defective *lac*ZΔM15 gene, which can be detected by blue-white screening using a chromogenic β-galactosidase substrate.

Thirty of the largest colonies from across the plates with cells transformed with *Dpn* I digested DNA derived from 100 and 200ng of the original pRham-LifA-6xHis plasmid were cultured overnight, with only one failing to grow. The expected yield of colonies was 10 to 1000 colonies per plate. No colonies grew on the plates with cells transformed with 500ng of the original plasmid digested with
Dpn I or the negative control. The pWhitescript control had a mutagenesis efficiency of >80% and the pUC18 control had a transformation efficiency of >10^9 CFU/µg.

The 29 colonies that had grown overnight were screened by colony PCR, using primers to amplify the full-length lifA gene and vector, and analysed by agarose gel electrophoresis to test whether the cells has been transformed with the plasmid. Out of the 29 colonies that were screened, 25 tested positive for the presence of the full-length plasmid (Figure 3.3). The colonies were screened against purified parental plasmid as a positive control and a no template negative control. To test whether these transformed colonies actually contained the mutant insert and were not simply false positives, 10 clones that tested positive for the presence of the plasmid were selected to be screened by Not I digestion.

![Figure 3.3. Initial screening for putative pRham-LifA-6xHis DXD-AAA mutants with Dpn I digested DNA from the QuikChange mutagenesis reaction.](image)

29 transformants of XL 10-Gold Ultracompetent cells were screened by colony PCR using primers that amplified the full plasmid and examined by gel electrophoresis. A positive control of purified pRham-LifA-6xHis plasmid was used and a no template sample was included as a negative control. A product of ~12kb is expected in positive reactions. 25 colonies were positive, 2 gave a reduced amplicon size (200/10 and 100/2), and 3 were negative.
In designing the primers for DXD mutagenesis, it was possible to use alanine codons to introduce a new \(\text{Not} I \) restriction site. As there is only one other \(\text{Not} I \) restriction site in the parent plasmid (Figure 3.4), this makes a useful diagnostic tool to quickly identify putative mutant clones. Digestion of the putative mutant plasmid DNA was expected to give fragments of \(~4\) and \(8\)kb on a gel if the plasmid was mutated successfully (Figure 3.4). If the mutant insert was not present, a linear single band of \(~12\)kb would be expected. Five of the 10 clones tested were found to contain the mutant insert. The clones were screened against \(\text{Not} I \) digested and undigested purified template plasmid, undigested clone DNA and a no template negative control. It is possible that three other plasmids contained the mutation but were not digested by \(\text{Not} I \) to completion (200/6, 200/10 and 200/11).

From the putative mutant clones identified, three clones were verified by sequencing, initially at the site of mutation to confirm that the expected sequence was present. Once this was confirmed, the entire \(\text{lifA} \) gene was sequenced in all three clones to verify that no additional mutations were introduced during the mutagenesis process. Although all three clones were verified to contain the appropriate mutation, two of the clones sequenced were found to contain additional mutations in the \(\text{lifA} \) gene outside the site of mutation. Only one clone was found to contain the expected sequence of the mutated E2348/69 \(\text{lifA} \) gene and was carried forward for further characterisation (see Appendix 2 for full sequence).
Figure 3.4. *Not* I digestion products of purified pRham-LifA-6xHis DXD-AAA plasmid clones. Of the 25 colonies that tested positive for the presence of the pRham-LifA-6xHis DXD-AAA plasmid, 10 were selected to be screened by *Not* I digestion. Purified plasmid DNA from putative clones was digested with *Not* I and analysed by gel electrophoresis. Each sample analysed on the gel contained 2µg of plasmid DNA. Undigested plasmid DNA was included as a control and digested parent plasmid DNA was included as a negative control. Positive clones show bands at ~4 and 8kb. Plasmids without the insert show a single band at ~12kb. Out of the 10 colonies selected only 5 tested positive for the presence of the DXD-AAA insert. The three plasmids 200/6, 200/10 and 200/11 may have contained the DXD-AAA insert but were not digested completely by *Not* I.

3.3 Production of the LifA-6xHis DXD-AAA protein

Initially, the pRham-LifA-6xHis DXD-AAA plasmid was examined for its ability to produce full-length DXD-AAA LifA when induced by rhamnose. Production of DXD-AAA LifA was compared to protein produced from the parental
pRham-LifA-6xHis plasmid. Cells transformed with the pRham empty plasmid were used to show that LifA is only produced by cells containing the lifA gene. An uninduced sample from the mutant plasmid-containing cells was used to ensure that the DXD-AAA LifA was not being produced without being induced by rhamnose.

LifA was detected by western blotting of crude lysates of the different strains. In pilot experiments, cells transformed with the mutant plasmid were capable of producing full-length DXD-AAA LifA when induced by the addition of rhamnose to the culture and the DXD-AAA LifA protein can be found in the soluble and insoluble fractions (data not shown). LifA was not present in the pRham empty plasmid-containing cells or the uninduced mutant plasmid-containing cells.

Once it had been verified that the clone could produce soluble DXD-AAA LifA, optimization of protein production was carried out. The optimal growth conditions for the production of WT LifA were previously determined to be growth in LB media incubated at 30°C for 3 hours with 0.2% (w/v) rhamnose. To determine the optimal growth conditions for the production of the DXD-AAA LifA protein, time courses were conducted using different media, temperatures and rhamnose concentrations. A time course using Enpresso B media, which allows cells to achieve a higher density than in normal media, was performed at temperatures of 20°C and 30°C with a final rhamnose concentration of 0.2% (w/v). Samples were taken for SDS-PAGE at 30 minutes, 1, 2, 3 and 4 hours (Figure 3.5). This was based on the optimal conditions for WT LifA production. Production of DXD-LifA could be detected at 30°C optimally after 3 hours (Figure 3.5). Two protein species were observed under these conditions in Enpresso B media. Time courses using LB and 2xTY media were also run with additional temperatures, final rhamnose concentrations and sample collection time points (carried out by Liz Blackburn). The optimal conditions for large-scale production of the DXD-AAA LifA protein was ultimately determined to be the same as for the WT protein (Figure 3.6). A single species was detected but appeared to only be 250kDa instead of the expected ~366kDa, however, this was actually the result of running the whole cell lysates on a small Tris-Glycine gel rather than the Tris-Acetate gel used for western blotting.
Figure 3.5. Expression time course of DXD-AAA LifA. A time course was run using Enpresso B media as part of determining the optimal growth conditions for mutant protein production. The cells were grown at either 20 or 30°C after induction with 0.2% (w/v) rhamnose and samples were taken at 30 minutes, 1, 2, 3 and 4 hours post-induction. A pre-induction sample was also taken. Incubation at 30°C for 3 hours produced the most DXD-AAA LifA in the cells grown in Enpresso B media. Two protein species are seen in the optimum sample and the identity of the second species is unknown, although it is possible that it is a degraded or processed form of LifA.

Figure 3.6. Coomassie stain of whole cell lysates and soluble fractions of E. cloni® 10G transformed with the pRham-LifA-6xHis DXD-AAA plasmid grown at optimal conditions. The optimal conditions for mutant protein production were found by Liz Blackburn to be LB media at 30°C with 0.2% (w/v) rhamnose for 3 hours, the same as for WT protein production. The protein appears to have a lower molecular weight than expected due to being run on a small Tris-Glycine gel rather than a Tris-Acetate gel.
3.4 DXD-AAA LifA purification

Large-scale production of DXD-AAA LifA was carried out once the optimal conditions for its production were determined and the protein was isolated to a high purity via a five-step process, which was monitored at each step. The DXD-AAA LifA protein was eluted from the IMAC, SEC and ion exchange chromatography columns in a single absorbance peak (Figures 3.7 – 3.9). Ion exchange chromatography was able to separate full-length DXD-AAA LifA from truncated versions of the protein. The DXD-AAA LifA protein was also run through a desalt column before and after the ion exchange to remove excess salt. Although two fractions of high or lower purity were separately handled at each stage (e.g. panels A and B of Figures 3.8 and 3.9) only the fractions of highest purity were taken forward for biophysical characterisation. After purification, the DXD-AAA LifA protein was estimated to be >90% pure (Figure 3.10).
Figure 3.7. Ion metal affinity chromatography (IMAC) purification of DXD-AAA LifA using Ni²⁺-sepharose. The absorbance of elution buffer at 280nm shows the presence of DXD-AAA LifA where the concentration of imidazole is increased from 20µM to 500µM (marked with an arrow) to elute the protein from the nickel-Sepharose beads. The large absorbance peak between ~0 and 250mL corresponds to large cell debris that do not bind the column. Inset: Coomassie stain of 5µL from 1mL IMAC filtrate fractions showing the DXD-AAA LifA eluted. The protein appears to have a lower molecular weight than expected due to being run on a small Tris-Glycine gel rather than a Tris-Acetate gel.
Figure 3.8. Purification of DXD-AAA LifA by size exclusion chromatography (SEC). The absorbance peaks marked with arrows correspond to the presence of DXD-AAA LifA in the filtrates of the Superose 6 SEC columns used to filter (A) the most pure IMAC fractions and (B) the less pure IMAC fractions. Inset: Coomassie stains of 5µL from 1mL SEC filtrate fractions showing the DXD-AAA LifA eluted. The protein appears to have a lower molecular weight than expected due to being run on a small Tris-Glycine gel rather than a Tris-Acetate gel.
Figure 3.9. Purification of DXD-AAA LifA by ion exchange chromatography. The absorbance peaks marked with arrows correspond to the presence of DXD-AAA LifA in the filtrates of the Mono Q columns used to filter (A) the most pure SEC fractions and (B) the less pure SEC fractions. The most pure and less pure fractions were pooled into separate aliquots after the ion exchange chromatography but only the most pure aliquot was used for further experiments. Inset: Coomassie stains of 5 µL from 1mL ion exchange filtrate fractions showing the DXD-AAA LifA eluted. The mutant protein was eluted with 140mM NaCl (12.9% of 1M NaCl elution buffer). The small absorbance peak to the right of the marked peaks corresponds to truncated DXD-AAA LifA. The protein appears to have a lower molecular weight than expected due to being run on a small Tris-Glycine gel rather than a Tris-Acetate gel.
Figure 3.10. Coomassie stain of 1μg DXD-AAA LifA after second desalt. Batches of the most pure DXD-AAA LifA from the ion exchange chromatography were put through another desalt column to remove excess salt that may interfere with the biophysical characterisation of the protein or its sugar binding ability. The estimated purity of the DXD-AAA LifA protein is >90%. The protein appears to have a lower molecular weight than expected due to being run on a small Tris-Glycine gel rather than a Tris-Acetate gel.
3.5 Biophysical characterisation of the purified DXD-AAA LifA

In order to determine whether the DXD-AAA LifA protein was folded and behaved in the same manner as the WT LifA protein, several biophysical measurements were carried out, including dynamic light scattering (DLS), circular dichroism (CD) and thermal shift assays.

3.5.1 DLS shows that DXD-AAA LifA is of a similar size to WT LifA

DLS was used to determine the size and state of the DXD-AAA LifA protein. DLS works by measuring the different intensities of laser scattering caused by the Brownian motion of particles in suspension. This allows protein-specific software supplied with the Zetasizer Auto Plate Sampler to calculate the velocity of the Brownian motion and therefore the size of the particles by using the Stokes-Einstein relationship (Malvern, 2015; Folta-Stogniew, 1999). This allows an approximate size determination and gives some insight into whether the protein is aggregated or multimeric.

Twelve scans of the DXD-AAA LifA protein were performed in triplicate. The size distribution of the protein was measured by the intensity of light scattering and by volume. The distribution by volume provides a more accurate size of the protein and distribution by the intensity of light scattering was used to detect large aggregates, which scatter light at much higher intensity than monomeric protein. Both distribution graphs have one tight peak between 9 and 30nm. The mode hydrodynamic radius of the DXD-AAA LifA protein as measured by intensity and volume is 16.24 and 13.5nm respectively (Figure 3.11). DLS confirmed that DXD-AAA LifA has a hydrodynamic radius of 13.5nm, similar to that of the WT protein (determined by Liz Blackburn). DLS also provided an approximate molecular weight of 358kDa for DXD-AAA LifA based on its size but this is less accurate than measuring the molecular weight by size exclusion chromatography-multi-angled laser light scattering.
Figure 3.11. The size distribution of DXD-AAA LifA by intensity and by volume, measured by dynamic light scattering (DLS). DXD-AAA LifA at a concentration of 1.1µM was measured by DLS to determine the size of the mutant protein and ensure that any loss of function was not caused by the protein forming large aggregates. The size distribution by volume provides a more accurate size of the protein than the distribution by intensity, which is primarily used to detect large aggregates that scatter light at a higher intensity than monomeric protein. DLS is also capable of providing an approximate molecular weight for the protein. The peak shift of the volume graph is possibly caused by random aggregation that is picked up by the intensity measurements but not by the volume measurements. The protein was scanned 12 times and the measurements were averaged. This was repeated in triplicate. DLS confirmed that the mutant protein has a hydrodynamic radius of 13.5nm, similar to that of the WT protein (data not shown). Experimental data collection and analysis was carried out by Liz Blackburn, observed and supported by the candidate.
3.5.2 CD shows that DXD-AAA LifA has a similar secondary structure to WT LifA

CD was used to determine if the DXD-AAA LifA protein had folded correctly on a secondary structure level and to observe whether it deviated significantly from the profile obtained for the WT protein. CD works by detecting the difference in absorption between clockwise and anti-clockwise polarised light. CD signals only arise where the absorption of radiation occurs therefore spectral bands can be assigned to distinct structural features of a molecule. The different secondary structures of a protein can be detected because they give rise to characteristic CD spectra in the far UV (Kelly et al, 2005).

The protein also had to be scanned by DLS before being subjected to CD because it was desalted into CD buffer rather than the assay buffer used in other experiments. CD buffer, which contains sodium fluoride rather than the sodium chloride used in assay buffer, had to be used for the CD experiment as chloride ions interfere with CD at short wavelengths. The CD profile confirmed that the DXD-AAA LifA had folded correctly and did not significantly differ from WT LifA (Figure 3.12). The mean residue ellipticity peak and trough on the graph correspond to the number of β-sheets and α-helices present in the protein respectively. The percentage of α-helices and β-sheets in DXD-AAA LifA were 31±3% and 25±4% respectively, compared with 37±3% and 22±3% in WT LifA. The percentage of turns and unstructured amino acids in DXD-AAA LifA were 15±4% and 29±5% respectively, compared with 13±3% and 27±6% in WT LifA. Overall, the DXD-AAA LifA protein was folded and had a very similar structural profile to that of the WT protein.
Figure 3.12. Far UV spectrum of DXD-AAA LifA compared to WT LifA. DXD-AAA LifA at a concentration of 0.11μM was measured by CD to compare the secondary structure of the mutant protein with 0.11μM of the WT protein. The mean residue ellipticity peak between 190 and 200nm corresponds to β-sheets and the trough between 200 and 240nm corresponds to α-helices. Each protein was scanned 5 times and the measurements were averaged. The data were analysed using DichroWeb (http://dichroweb.cryst.bbk.ac.uk/html/home.shtml; Lobley et al, 2002). The DXD-AAA LifA protein has a similar spectrum to that of the WT protein. WT LifA protein supplied by Liz Blackburn. Experimental data collected and analysis was carried out by Liz Blackburn.
3.5.3 Thermal shift assays show that DXD-AAA LifA has a similar mid-point melting temperature to WT LifA

Thermal shift assays were used to measure the thermal stability of DXD-AAA LifA in comparison to the WT protein. This was carried out by using a fluorescence-based assay using the fluorophore SYPRO orange, which fluoresces weakly in hydrophilic conditions and strongly in hydrophobic conditions, across a range of temperatures. As the temperature increases and the target protein unfolds it reveals hydrophobic amino acid chains that cause the SYPRO orange to increase its fluorescence. The fluorescence intensity is proportional to how much the protein has unfolded (Lo et al., 2004; Pantoliano, 2001).

In the first assay, using 0.1µM WT LifA and DXD-AAA LifA, the mid-point melting temperatures (T_m) of the WT LifA and DXD-AAA LifA proteins were 44.2 and 43°C respectively. The second assay included the addition of 0.2µM DXD-AAA LifA to examine whether increasing the concentration of the protein affected the T_m. The T_m for the WT LifA, 0.1µM DXD-AAA LifA and 0.2µM DXD-AAA LifA were 45.5°C, 44.2°C and 44°C respectively (Figure 3.13). Both thermal shift assays that were conducted showed that the DXD-AAA substitution resulted in a decrease of T_m of ~1°C. Increasing the concentration of the DXD-AAA LifA protein did not result in a significantly different T_m. This decrease in T_m was not unexpected due to possible minor structural instability caused by the DXD-AAA substitution.
Figure 3.13. Thermal shift assays to evaluate the mid-point melting temperature (T_m) of WT LifA and DXD-AAA LifA. The fluorescence of SYPRO orange dye mixed with WT LifA and DXD-AAA LifA was measured in triplicate over a temperature range of 15 – 70°C to determine the T_m of each protein. WT LifA at a concentration of 0.1μM and DXD-AAA LifA at concentrations of 0.1μM and 0.2μM were compared. Each fluorescence measurement was performed in triplicate. Increasing the concentration of DXD-AAA LifA does not cause any significant change to the T_m. A reproducible decrease of ~1°C in the T_m of the mutant protein is observed.
3.6 Mutation of the DXD motif to AAA abolished sugar binding

LCTs are known glycosyltransferases and contain a conserved DXD motif (Busch et al., 1998). *Clostridium novyi* α-toxin is known to bind uridine diphosphate (UDP)-N-Acetylglucosamine (GlcNAc; Selzer et al., 1996), while others such as *Clostridium difficile* enterotoxin (TcdA) bind UDP-Glucose (Glc) (Just et al., 1995). The DXD motif is known to be essential for activity in these molecules and is likely to be important in sugar-binding because it forms bonds with UDP-Glc and a manganese ion in the active site of TcdA (Figure 3.14; Pruitt et al., 2012). Recombinant WT LifA has been observed to bind UDP-GlcNAc (Stevens Laboratory, unpublished data) and therefore the dependence of sugar binding on the DXD motif contained within LifA was examined for UDP-GlcNAc and UDP-Glc.

Changes in intrinsic tryptophan (Trp) fluorescence were used to identify the binding of UDP-sugars to WT and DXD-AAA LifA. The fluorescence intensity of Trp residues can indicate whether they are surface-bound or buried within a protein (Eftink and Ghiron, 1976; Price and Nairn, 2009). Intrinsic Trp fluorescence can either decrease via quenching (Price and Nairn, 2009) or increase (Weljie and Vogel, 2000). Fluorescence quenching occurs when an excited Trp residue loses energy by either colliding with molecules in the solvent (collisional quenching) or by forming long-lasting interactions with molecules (static quenching; Price and Nairn, 2009). The exposure of each Trp residue to the quenching molecule determines how easily it is quenched (Eftink and Ghiron, 1976). Intrinsic Trp fluorescence increases when a protein undergoes a conformational change that exposes Trp residues to the solvent, but is stabilised by the binding of another molecule that prevents quenching (Weljie and Vogel, 2000). UDP-GlcNAc should therefore be able to cause a change in the fluorescence of Trp residues in the glycosyltransferase active site if it is able to bind to the purified LifA proteins.
Figure 3.14. Schematic of UDP-Glc binding in the active site of the large clostridial toxin (LCT) TcdA. The putative glycosyltransferase domain of LifA is homologous to LCTs. The glycosyltransferase domain of TcdA also contains a DXD motif with a DVD amino acid sequence rather than the DTD in LifA. This amino acid sequence forms both metal bonds with a manganese ion (yellow sphere) and hydrogen bonds with UDP-Glc (shown in black with bond lengths in Angstroms). It was hypothesised that the DTD sequence in LifA may form bonds with UDP-GlcNAc and an unknown metal ion, making it important for sugar-binding. Therefore the sequence is an ideal target for substitution in order to study whether LifA may act as a glycosyltransferase. UDP-Glc is the green and orange stick model, and the DXD motif is the blue and red stick model. The structure of TcdA was determined by Pruitt et al (2012). The schematic was constructed using the 3SRZ.pdb file and Ligand Explorer (both http://www.rcsb.org/pdb/explore/explore.do?structureId=3SRZ), and PyMOL v1.7.6 (http://pymol.org/).

The data were produced by the candidate, with the exception of WT LifA and UDP-GlcNAc (carried out by Liz Blackburn), and analysed using the law of mass
action and the Stern-Volmer relationship (data analysis was carried out by Liz Blackburn). The addition of increasing concentrations of UDP-GlcNAc to WT LifA causes the intrinsic Trp fluorescence to increase before decreasing after the concentration of UDP-GlcNAc is increased beyond ~250µM (Figure 3.15A), indicating that WT LifA binds UDP-GlcNAc. An increase in UDP-GlcNAc concentration causes an increase in sugar-binding. The addition of UDP-Glc to WT LifA or either UDP-sugar to DXD-AAA LifA results in a gradual decrease in fluorescence, indicating that no sugar-binding is occurring, since collisional quenching causes the fluorescence to decrease over time. The binding of UDP-GlcNAc to WT LifA is seen as a curve on the Stern-Volmer plot (Figure 3.15B/C), whereas the lack of binding of UDP-Glc and WT LifA as well as both UDP-sugars with DXD-AAA LifA is evident as straight lines. The Stern-Volmer plot displays the fluorescence of the solution in the absence of UDP-GlcNAc divided by the fluorescence in the presence of UDP-GlcNAc, against the concentration of UDP-GlcNAc added to the solution. In the absence of the DXD motif, UDP-GlcNAc binding by LifA is abolished indicating dependence on this motif.
Figure 3.15. Sugar binding to WT LifA and DXD-AAA LifA. UDP-GlcNAc and UDP-Glc were titrated against 0.05μM WT LifA and DXD-AAA LifA and the intrinsic Trp fluorescence was measured in triplicate at 340nm. F₀ and F denote the fluorescence of the solution in the absence and presence of UDP-sugar respectively. (A) Example of raw data of the intrinsic Trp fluorescence of WT LifA against increasing concentrations of UDP-GlcNAc. (B) Stern-Volmer plot of the intrinsic Trp fluorescence of WT LifA against increasing concentrations of UDP-GlcNAc and UDP-Glc. (C) Stern-Volmer plot of the intrinsic Trp fluorescence of DXD-AAA LifA against increasing concentrations of UDP-GlcNAc and UDP-Glc. There is a marked loss of UDP-GlcNAc binding to the DXD-AAA LifA protein. Experiments examining WT LifA with UDP-GlcNAc were carried out by Liz Blackburn. Experimental data was analysed by Liz Blackburn.
3.7 T cell proliferation assays

It has been observed that cell lysates containing LifA inhibit the mitogen-stimulated proliferation of peripheral blood lymphocytes (Klapproth et al., 1995; Klapproth et al., 1996; Malstrom and James, 1998; Klapproth et al., 2000; Stevens et al., 2002). In addition, our laboratory recently showed that purified recombinant WT LifA also inhibits mitogen-stimulated proliferation of bovine T cells. As a result, this is an ideal system to test whether the DXD motif is essential for the biological activity of LifA against T cells.

Peripheral blood T lymphocytes from 3 independent donors were used to test the activity of purified DXD-AAA LifA against ConA-stimulated T cells in comparison to the WT LifA protein using a colourimetric plate-based assay. The assay measures the conversion of an MTS tetrazolium compound into a coloured formazan product by metabolically active cells, the absorbance of which can be detected at around 490nm. The quantity of formazan produced is directly proportional to the metabolic activity of dividing cells in the culture (Promega, 2012).

Titration of WT LifA produces a sigmoid curve, with higher concentrations of LifA causing an increase in inhibition (Figure 3.16). The ratio of proliferation of cell treated with LifA+ConA/ConA alone decreases sharply from 0.98±0.11 at 0.001ng/mL of WT LifA to 0.41±0.04 at 0.1ng/mL, then the curve levels out and decreases to a ratio of 0.3±0.07 at 100ng/mL. DXD-AAA LifA produces a curve that sees the ratio of LifA+ConA/ConA alone gradually decrease from 1.01±0.09 at 0.1ng/mL to 0.49±0.15 at 10µg/mL. It requires an ~100,000 fold increase in concentration for the DXD-AAA LifA protein to have the same inhibitory effect as that of the WT protein. The effective dose at which 50% of lymphocyte proliferation is inhibited (ED$_{50}$) was 0.014±0.006 for WT LifA and 304.1±16.9ng/mL for DXD-AAA LifA (P value < 0.05). The buffer that the DXD-AAA LifA was dissolved in did not have any effect on the assay. The addition of ConA resulted in an average 3-fold increase of T cell proliferation above the negative control across the 3 experimental repeats.
Figure 3.16. Concentration titration of recombinant WT LifA and DXD-AAA LifA against ConA-stimulated peripheral bovine T lymphocytes. An absolute number of 200,000 cells were seeded into the wells of a 96 well plate. Titrations were carried out in triplicate and the results are the average obtained from 3 independent experiments using 3 donors. Error bars indicate the standard deviation of the average ratios from across the 3 experiments. Data were normalised against cells with ConA alone to give a ratio index of proliferation.
3.8 Cytotoxicity assays

The LCTs are well known to have a cytotoxic effect on enterocytes (Triadafilopoulos et al, 1987), however, there is no formal evidence that LifA has a direct cytotoxic effect on mammalian cells. As a result, cytotoxicity assays were performed using recombinant WT LifA. As the two main cell types affected by LifA, the adherent HeLa cell line was used as a model for epithelial cells and the suspension Jurkat cell line was used as a model for T cells.

Release of the intracellular protein lactate dehydrogenase (LDH) can be used as a marker of cytotoxicity. Here, a fluorometric plate-based assay was used to measure LDH release (Promega, 2009). The mechanism of LDH detection can be seen in Figure 3.17.

![Figure 3.17. Mechanism of fluorescence caused by LDH release.](image)

Cells with a compromised membrane activity release LDH. This drives the conversion of NAD\(^+\) to NADH in the conversion of lactate to pyruvate, which is coupled to a reaction that converts resazurin to the fluorescent product resorufin in the CytoTox-ONE substrate mix. The generation of fluorescent resorufin is proportional to the quantity of LDH released (adapted from Promega, 2009).
At both 24 and 48 hours of incubation of cells with LifA, no sign of cytotoxicity was observed. At 24 hours incubation, the percent cytotoxicity observed with the HeLa and Jurkat cell negative controls was 32.6±18.1% and 9.6±3.2% respectively at buffer dilutions equivalent to 10µg/mL LifA. In the presence of LifA at 10µg/mL the percent cytotoxicity was 10.7±2% for the HeLa cells and 31.4±15% for the Jurkat cells. After 48 hours incubation, the percent cytotoxicity observed with the HeLa and Jurkat cell negative controls was 13.9±3.1% and 24.7±13.4% respectively at buffer dilutions equivalent to 10µg/mL LifA. In the presence of LifA at 10µg/mL the percent cytotoxicity was 12.3±4.2% for the HeLa cells and 18.8±10.3% for the Jurkat cells. (Figure 3.18). In addition, a concentration-dependent titration of the protein had no significant effect on LDH release. The results are an average of 3 experimental repeats carried out in triplicate. Regardless of the concentration, the percent cytotoxicity of LifA did not significantly increase above that of the negative control for the HeLa or Jurkat cells at 24 or 48 hours post-addition.
Figure 3.18. Cytotoxicity of WT LifA against HeLa and Jurkat cells. An absolute number of 25,000 cells of each cell type were seeded into the wells of a 96 well opaque sided plate. After incubation with the protein, the percent cytotoxicity of cells at each protein concentration, as well as negative controls, were calculated in comparison to a positive control of maximum possible cell lysis. (A) Cytotoxicity at 24 hours. (B) Cytotoxicity at 48 hours. Titrations were carried out in triplicate and the results are an average of 3 independent experiments. Error bars indicate the standard deviation of the average percent cytotoxicity from across the 3 experiments.
Chapter 4: Discussion

LifA is a large multifunctional protein produced by EPEC and non-O157 EHEC. Although its ability to act as an adhesin and to inhibit the mitogen-stimulated proliferation of lymphocytes and cytokine expression are well documented, little has been done to identify exactly how it functions in the 20 years since its effects were first recorded by Klapproth et al (1995). This has most likely been due the inability to produce stable cloning vectors containing the full-length lifA gene (Klapproth et al, 2000; Nicholls et al, 2000; Janka et al, 2002). Recent advances in understanding the mode of action of LifA have allowed for the findings reported in this study.

The mechanism(s) of LifA secretion is poorly understood and must be addressed to better understand how LifA is able to act as both a lymphostatin and an adhesin. In this study, the ability of full-length LifA to be secreted via the LEE-encoded T3SS was investigated. This study has shown for the first time that full-length LifA is a Type III secreted effector protein under in vitro conditions in WT E. coli O127:H6 E2348/69. Full-length LifA was detected in the culture supernatant of the WT strain under T3S-inducing conditions but not in the ΔescN strain that lacks the T3SS ATPase. The LifA species detected on the western blots appeared much fainter than other T3S proteins such as EspD, which suggests that LifA may be secreted in lower quantities than these proteins, however, reactivity is a function of antibody affinity and avidity and may not reflect absolute quantities. The RecA control confirmed that secretion of LifA was not the product of cell lysis. Although this finding suggests that LifA may enter enterocytes via translocation through the T3SS, it does not explain how the protein enters lymphocytes, which E. coli may not encounter with the same frequency. LifA does not necessarily need to be secreted directly into host cells since Type III secretion is not contact dependent in E. coli (Kenny et al, 1997b). Thus, some LifA may be injected into cells and some may be secreted into the extracellular milieu by T3SS needle complexes not in contact with host cells. Overall, this study advances our understanding of the secretion of LifA as very little was known about the secretion mechanism(s) of LifA until Deng et al (2012) reported that it appeared to be secreted via the T3SS by SILAC analysis, which mapped peptides across the protein. These authors confirmed
that the N-terminal 50 – 100 amino acids were necessary and sufficient to direct secretion of a TEM-1 β-lactamase reporter. This amino acid sequence was chosen because as little as 20 amino acids from the N-terminus of various Type III secreted proteins are required to mediate translocation of these proteins through the T3SS (Charpentier and Oswald, 2004). Deng et al (2012) also used a hypersecreting EPEC E2348/69 strain in their experiments and suggested that LifA may only be detectable under hypersecreting conditions. This study has proven that a hypersecreting strain is not necessary to detect LifA and that it can in fact be detected in WT bacteria using our LifA-specific antiserum.

A possible improvement to this experiment would be to use DMEM as a culture medium to induce Type III secretion, as performed by Deng et al (2012), rather than MEM to improve the yield of LifA that is secreted. Nicholls et al (2000) tested the effects of different media on the expression of a LifA-PhoA fusion and found that Todd-Hewitt broth was the most effective liquid medium for increasing the expression of LifA in EHEC O111:H- E45035N. To achieve optimal LifA secretion, time courses could be run under different T3S-inducing conditions to find which media allows the bacteria to secrete the maximum quantity of LifA before lysing.

Although LifA was not detected in the culture supernatant of the ΔescN strain, this does not mean that undetectable quantities of LifA are not being secreted via other mechanisms. There is evidence to suggest that LifA is not strictly dependent on Type III secretion for activity. For instance, cell lysates containing LifA, including laboratory-adapted strains lacking a T3SS, and purified LifA protein have been observed to inhibit the mitogen-stimulated proliferation of T lymphocytes (Klapproth et al, 1995; Klapproth et al, 1996; Klapproth et al, 2000; Stevens et al, 2002). A future question to be addressed is how LifA enters target cells when not injected directly as above. It may be that LifA can be both translocated into cells and enter through receptor-mediated endocytosis or other uptake pathways. It is difficult to postulate the exact mechanism of cell entry of LifA considering that its target protein(s) remains unknown. In order to investigate how LifA is taken up by host cells, specific inhibitors that target different endocytic pathways could be used to examine their impact on LifA activity. For instance, bafilomycin could be used to
study the potential requirement for endosome acidification for the escape of LifA from entry vesicles, as is the case for LCTs (Schirmer and Aktories, 2004). In order to understand the mechanism(s) of activity of LifA it is critical to identify its host cell binding partners. Putative protein-protein interactions could be identified by far-western blotting and/or immuno-precipitation studies using cell lysates treated with recombinant LifA. Affinity chromatography, whereby recombinant LifA could be bound to a column via the 6xHis tag, could also be used to isolate binding partners. Putative binding partners could then be identified using mass spectrometry. The yeast two-hybrid system may also be useful for examining the interactions between purified suspected binding partners and LifA.

Western blotting for LifA detected protein species present in the supernatant of WT EPEC and ΔescN strains that the ΔlifA strain lacked. It is possible that these correspond to shortened versions LifA that are secreted by other mechanisms. The identification of these protein species was outwith the scope of this study but discerning their identity could be grounds for future study. N-terminal sequencing could be used in conjunction with bioinformatic approaches to identify a Sec- or Tat-peptide signal sequence indicative of Type II secretion (Filloux, 2010; von Heijne, 1990; Voulhoux et al, 2001).

While this study has detected LifA secretion under T3S-inducing in vitro conditions, future research could seek to determine whether LifA production and/or translocation could be detected in the gut of infected animals using reporter fusions (as was carried out by Geddes et al (2007) for Salmonella Type III secreted proteins) or LifA antiserum. Another area to address is why LifA mutations have an indirect post-transcriptional effect on the expression and secretion of other T3S proteins, such as EspA and Tir in some strains (Stevens et al, 2002). It is possible that it may be involved in the hierarchy of secretion of T3S proteins (Wang et al, 2008; Mills et al, 2013).

LifA’s homology with LCTs, including the catalytic DXD motif, suggests that the protein may act at least in part as a glycosyltransferase. In order to test this hypothesis a mutant variant of the pRham-LifA-6xHis plasmid was successfully created during this study, replacing the DTD amino acid sequence in the DXD motif with an AAA sequence. An AAA sequence was chosen for the substitution because
alanine residues are small, non-polar and unreactive. Similar experiments were performed by Deacon et al (2010), in which a DXD-AAA substitution was created in the lifA gene on the chromosome of EHEC O26:H- rather than on a plasmid vector as in this study. It was found that the colonisation of cattle by EHEC O26:H- was dependent on LifA but not the DXD motif, however, when the mutation was transferred to the chromosome of EPEC O127:H6 E2348/69, the DXD motif was found to be required for lymphostatin activity, albeit in a relatively insensitive assay reliant on crude bacterial lysates. The latter observation is consistent with the observations made in this study although Deacon et al (2010) did not make a connection between the LifA protein’s function and its sugar binding ability. It is possible that the DXD motif was not required for the effective colonisation of cattle as other activities of LifA exist, for example in promoting adherence, although no defect in adherence to HeLa cells was observed by Deacon et al (2010).

The creation of the pRham-LifA-6xHis DXD-AAA plasmid provides a useful tool alongside the existing pRham-LifA-6xHis plasmid for producing recombinant LifA proteins that can be used to examine both the sugar binding ability and function of LifA as a lymphostatin. In order to ensure that the purified DXD-AAA LifA protein was as similar to the WT recombinant LifA as possible, the DXD-AAA LifA protein was subjected to three different biophysical characterisation experiments. Dynamic light scattering confirmed that the DXD-AAA LifA protein was monomeric by measuring the hydrodynamic radius of the protein. Circular dichroism (CD) confirmed that the DXD-AAA LifA protein had a similar secondary structure to that of the WT protein. The CD spectrum of DXD-AAA LifA was not an exact copy of the spectrum for WT LifA and in particular the percentage of the secondary structure consisting of α-helices appeared to be slightly reduced. However, the error values for each structural motif in the WT and DXD-AAA LifA proteins overlap and so the differences in percentages are acceptable. Thermal shift assays confirmed that the DXD-AAA LifA protein has a similar Tm to that of the WT protein. A reproducible decrease in the Tm of DXD-AAA LifA of ~1°C was observed, which is not unexpected since changing the active site of the protein may result in the loss of the putative metal ion. Assuming that the metal ion also binds to other amino acids in the
active site as it does in TcdA (Pruitt et al., 2013), its loss would result in an overall loss of some structural stability. These experiments were performed to ensure that the results seen in future experiments were genuine and not due to the incorrect synthesis and folding of the DXD-AAA LifA protein.

Previous experiments with LifA have shown that it is capable of binding UDP-GlcNAc but not UDP-Glc (Stevens Laboratory, unpublished data). These particular UDP-sugars were chosen as they are both known to bind LCTs (Schirmer and Aktories, 2004). For the first time, the ability of LifA to bind UDP-GlcNAc has been shown in this study to be dependent on the DXD motif. This was done by comparing the ability of both WT and DXD-AAA LifA to bind UDP-GlcNAc and UDP-Glc. The sugar binding ability of these proteins was examined by measuring changes in the intrinsic tryptophan (Trp) fluorescence of the proteins in the presence of each UDP-sugar. Trp fluorescence quenching is commonly used to identify interactions between proteins and ligands when there are Trp residues at the suspected binding pocket, but becomes less sensitive with more Trp residues (Price and Nairn, 2009). There are seven Trp residues in proximity to the glycosyltransferase binding pocket in LifA, making specific interactions between the protein and the UDP-GlcNAc more difficult to detect. However, the fluorescence of WT LifA instead increases in the presence of UDP-GlcNAc, which is likely to be caused by a conformational change in the protein that is stabilised by UDP-GlcNAc binding (Weljie and Vogel, 2000).

It is possible that sugar binding is dependent on the presence of a metal ion in the active site as seen in TcdA from C. difficile (Pruitt et al., 2012). However, it has not yet been shown that sugar binding in LifA is dependent on a metal ion. A possible method to identify the putative metal ion would be to subject the glycosyltransferase domain of LifA to X-ray crystallography in a similar manner as to how Pruitt et al. (2012) determined the structure of TcdA. However, Pruitt et al. (2012) artificially introduced manganese to TcdA. Since the putative metal ion of LifA could be lost or replaced during the production and purification process or LifA may bind multiple different metal ions, crystallography would have to be performed using different metals to find which ones bind. To date, UDP-GlcNAc binding and thermal stability have not proven sensitive to different exogenous metal ions but it is
possible the recombinant protein acquired metal ions during expression and/or purification. The binding of UDP-GlcNAc to LifA is not actually indicative of sugar transfer and so a sugar hydrolysis assay could be used in future work to determine if UDP-GlcNAc is the natural substrate of LifA. Other UDP-sugars should also be tested for their ability to bind LifA. While most LCTs bind only UDP-Glc, *C. novyi* α-toxin is capable of binding UDP-GlcNAc and UDP-Glc, but to a much lesser extent (Schirmer and Aktories, 2004; Busch *et al.*, 2000). It is therefore conceivable that LifA may be capable of binding multiple UDP-sugars. If this is the case we can also then determine whether the binding of these UDP-sugars is DXD dependent.

This study has shown that the DXD motif is important for the function of LifA to inhibit the mitogen-stimulated proliferation of bovine T lymphocytes. The ED_{50} of the DXD-AAA LifA was ~10,000 fold greater than the ED_{50} of the WT LifA protein but activity may not have been abolished altogether. Whether the ability of DXD-AAA LifA to inhibit T cell proliferation at high concentrations reflects residual activity or the presence of co-purified proteins or contaminants requires further study. Indeed, even lysates of *E. coli* lacking LifA become inhibitory to bovine PBMCs if used at high concentrations. There are multiple reasons why mutation of the DXD motif could fail to completely abolish the ability of LifA to inhibit the mitogen-stimulated proliferation of T cells: the DXD-AAA LifA protein could still be able to bind small amounts of UDP-GlcNAc that are not detected by the sugar binding assays; the protein is capable of binding other UDP-sugars; or LifA may not act solely as a glycosyltransferase.

Given that LifA binds UDP-GlcNAc, and that the DXD motif is important for this activity, it is likely that LifA acts as a glycosyltransferase to arrest lymphocyte proliferation. A future goal would be to attempt to identify the target protein(s) of glycosyltransferase activity. This would be challenging, however, due to the abundance of proteins in mammalian cells that are capable of accepting GlcNAc. A possible method for identifying the glycosylation target would be to mix radiolabeled UDP-GlcNAc with purified WT LifA and add this mix to T cell lysates. The size of the T cell proteins that have been glycosylated with radiolabeled GlcNAc could be determined by autoradiography. Western blotting using antibodies against O-GlcNAc is an alternative to autoradiography but the O-GlcNAc proteome of
mammalian cells is likely to be complex and we cannot be certain that GlcNAc is transferred to an O-linkage. Shot-gun quantitative mass spectrometry could also be used to look for proteins that shift in size by the mass of UDP-GlcNAc, accounting for different linkage types and the possible addition of multiple GlcNAc molecules. Once protein binding partners have been identified, recombinant forms could be made and mixed with purified LifA and labelled UDP-GlcNAc to confirm the glycosylastion of putative target proteins. This method was used to identify the glycosyltransferase targets of NleB (Li et al, 2013; Pearson et al, 2013). NleB serves as potential model for LifA activity as it is a T3S effector protein, it contains a DXD motif and binds UDP-GlcNAc, and it inhibits the expression of pro-inflammatory cytokines without acting as a cytotoxin (Gao et al, 2013; Li et al, 2013; Pearson et al, 2013).

Despite LifA’s homology with LCTs, which are known to act as cytotoxins by transferring UDP-sugars onto Rho GTPases (Triadafilopoulos et al, 1987; Just et al, 1995; Selzer et al, 1996), LifA itself has never been observed to act as a cytotoxin against T cells or epithelial cells (Klapproth et al, 1995; Stevens et al, 2002). These experiments used crude bacterial lysates, however, and so in this study, purified recombinant LifA was examined for its potential cytotoxic effects using a fluorometric LDH release assay. Consistent with the previous experiments, this study has shown that the addition of LifA to either HeLa (epithelial cell model) or Jurkat (T cell model) cells does not cause any obvious direct cytotoxic effects to these cell types. Moreover, no direct cytotoxicity has been observed against bovine T cells during lymphostatin assays, indicating that inhibition of proliferation does not involve killing (Stevens Laboratory, unpublished data). This contrasts with the observations by Babbin et al (2009) that suggest that LifA produced by C. rodentium targets Rho GTPases in mice. However, the actin cytoskeleton did not collapse in a manner similar to that of LCTs but rather tight junctions and subjacent adherens junctions between host cells were disrupted. Deacon et al (2010) attempted to replicate the observation that LifA targets Rho GTPases but did not observe any increase in RhoA activation in cells infected with EPEC O127:H6 strain E2348/69, EHEC O26:H- strain 193 nalR or LifA null mutants of these strains. It does not seem that LifA necessarily acts as a direct cytotoxin or as a cytotoxin at all. An example of
a non-cytotoxic glycosyltransferase is NleB, a T3S effector of EPEC and EHEC, which binds UDP-GlcNAc and GlcNAcylates an arginine residue on the TRADD death domain host receptor (Li et al., 2013; Pearson et al., 2013). This disrupts tumour necrosis factor signalling in EPEC-infected cells including NF-κB signalling and apoptosis (Li et al., 2013; Pearson et al., 2013). It seems plausible that LifA may act in a manner akin to NleB, whereby it targets signalling pathways to inhibit both lymphocyte proliferation and cytokine expression, and experiments are planned to determine if LifA acts on key signal transduction pathways. A possible future experiment would be to use ATP assays rather than LDH release assays. This would allow the quantity of energy actually available in LifA treated cells to be measured and indicate whether the cells are healthy even though they are intact.

It is of interest to examine the localisation of LifA inside and on the surface of both bacterial and mammalian cells. This would give further insight into where the target protein(s) of LifA is located and also how LifA acts as an adhesin. The localisation of LifA in bacterial cells could be analysed by fractionating bacterial whole cell lysates and examining the different cell compartments for LifA using western blotting. Alternatively, fluorescent or confocal microscopy could be used to detect recombinant LifA in or on cells using fluorescently labelled anti-His tag antibodies.

Due the success in this study of substituting the DXD motif with an AAA sequence, other regions could be substituted using QuikChange mutagenesis. This technique could be used to mutate other areas of the glycosyltransferase domain to determine how important they are. Alternatively, this technique could be used to make mutations in the putative cysteine protease domain of LifA in order to determine whether it is necessary for the function of LifA. Mutated LifA proteins could be compared against WT LifA in their ability to inhibit T cell proliferation.

To determine which parts of the LifA protein are required for activity, nested truncations or linker scanning mutagenesis could be used to generate fragments of LifA. These fragments could be mixed in different combinations and used in T cell proliferation assays to determine whether particular combinations of LifA fragments can exhibit activity or whether the protein must be whole in order to function.
The ability of LifA to act as an adhesin has not been the focus of this study but it is still an interesting point to consider for future work. Adhesion assays could be used to examine the ability of LifA to mediate adherence to epithelial cells. *E. coli* lab strains transformed with the pRham-LifA-6xHis plasmid and the E2348/69 Δ*lifA* strain could be compared in their ability to adhere to HeLa cells using light microscopy and viable counts of bound bacterial cells. The Δ*lifA* strain could also be transformed with the pRham-LifA-6xHis plasmid to see if the plasmid can restore adherence. Alternatively, mixing recombinant LifA with lab strains and HeLa cells could be used to see if the bacteria show an increase in adherence. Dominant adhesins such as intimin and BFP may mask a subtle role played by LifA, as previously found in masking the role of EspA (Cleary *et al*., 2004), and so would have to be non-functional to see the effects of LifA as an adhesin.

Future research could also focus on areas that are not directly related to LifA function. The role of the truncated LifA’ and ToxB in EHEC O157:H7 as well as the *Chlamydia* cytotoxins could be investigated for instance. Both LifA’ and ToxB were found to be Type III secreted by Deng *et al* (2012) but LifA’ lacks the DXD motif. Abu-Median *et al* (2006) found that both these proteins did not have lymphostatin-like activity but the assays used were insensitive and relied on crude bacterial lysates. With the ability to make stable plasmid clones of these proteins, LifA homologues could be examined for both lymphostatin-like activity and UDP-sugar binding. This study and previous publications have primarily used mitogens to stimulate the proliferation of lymphocytes in lymphostatin assays, however, it is unlikely that lymphocytes would encounter such chemicals *in vivo*. Re-stimulating the lymphocytes with antigens, as performed by Malstrom and James (1998), would be more reflective of how LifA actually functions during an infection. Another avenue of research would be to investigate whether LifA interferes with the development of adaptive immunity against EPEC and EHEC during infection, for example, by immunisation with a model antigen.

Continued studies of the molecular basis of lymphostatin activity have the potential to reveal novel biology, both in understanding bacterial virulence and the processes underlying lymphocyte activation.
References

Appendix 1: Composition of buffers and reagents

TRIS buffer was composed of 50mL distilled water (dH₂O) with 1.5M TRIS base buffer and made up to pH 8.8 using NaOH and HCl.

To make 300mL of NZY⁺ broth, 2g of NZ amine, 1g of yeast extract and 1g of NaCl was dissolved in dH₂O and made up to pH 7.5 using NaOH and HCl. The media was autoclaved then 2.5mL of sterile 1M MgCl and 1M MgSO₄ was added along with 0.4% (w/v) glucose.

IMAC buffer A was composed of 500mL dH₂O with 20mM NaH₂PO₄, 300mM NaCl, 5% (v/v) glycerol and 0.1% (v/v) Tween 20. It was made up to pH 7.8 using NaOH and HCl and 1mM fresh DTT was added before use. It was kept on ice or at 6°C when not in use.

IMAC buffer B was composed of 200mL dH₂O with 20mM NaH₂PO₄, 5% (v/v) glycerol, 0.1% (v/v) Tween 20 and 500mM imidazole. It was made up to pH 7.8 using NaOH and HCl and 1mM fresh DTT was added before use. It was kept on ice or at 6°C when not in use.

The low salt buffer used for SEC was composed of 200mL dH₂O with 10mM NaH₂PO₄, 50mM NaCl, 5% (v/v) glycerol and 0.025% (v/v) Tween 20. It was made up to pH 7.8 using NaOH and HCl and 1mM fresh DTT was added before use. It was kept on ice or at 6°C when not in use.

The low salt buffer used for ion exchange chromatography was composed of 200mL dH₂O with 10mM NaH₂PO₄, 1mM NaCl, 5% (v/v) glycerol and 0.025% (v/v) Tween 20. It was made up to pH 7.8 using NaOH and HCl and 1mM fresh DTT was added before use. It was kept on ice or at 6°C when not in use.
Assay buffer was composed of 200mL of dH₂O with 15mM NaH₂PO₄, 150mM NaCl and 5% (v/v) glycerol. It was made up to pH 7.8 using NaOH and HCl and 1mM fresh DTT was added before use. It was kept on ice or at 6°C when not in use.

CD buffer was composed of 200mL of dH₂O with 15mM NaH₂PO₄, 150mM NaF and 5% (v/v) glycerol. It was made up to pH 7.6 using NaOH and HCl and 1mM fresh DTT was added before use. It was kept on ice or at 6°C when not in use.

Red blood cell lysis buffer was composed of 1L dH₂O with 100mM KHCO₃, 1.5mM NH₄Cl and 10mM EDTA. It was made up to pH 8 using NaOH and HCl split into 10 x 100mL aliquots and autoclaved.

WT LifA buffer is the buffer that WT LifA was in after being filtered through the desalt column. It contains 15mM NaH₂PO₄, 180mM NaCl, 1mM DTT, 10% (v/v) glycerol and 0.05% Tween 20 in dH₂O.

DXD-AAA LifA buffer is the buffer that DXD-AAA LifA was in after being filtered through the desalt column. It contains 10mM NaH₂PO₄, 180mM NaCl, 1mM DTT, 20% (v/v) glycerol and 0.025% Tween 20 in dH₂O.
Appendix 2: Nucleotide sequence of the DXD-AAA lifA gene

The substituted DXD motif-encoding codons are highlighted in yellow.

ATGAGACTGCCAGAGAAATCTTTTTCCTCCTGTCACCTAGTGCTGCT
AGGGCAAGAAAAACAAAAAAAAACAGCAAGGACATTTACCGGATTTCAGGA
AAATTATCAACGCATATACGGCAATCACAACACAGCATCAGAAGCCGAAA
CTACGCTTCTCTGTTACATCACACAGGTAACGTGAAATATGAGATGTG
TGTTTTATTAGTTGAATATTTTACATACGAGGAATTTATGCCGATGAACAA
GAACATTTTCACCGGTTCATCTACACATAGTTAATCCTGAAACTCGGAAA
ACAATACCCTAACCCTTCGAAAGAGATGTTATAAAAGTAGTAACCTT
TTAGAGAATACATTATTTGCAAAAAACAAGAAGACTCCAGAGATAATTTTG
GGAAAGGAAATACATCTGCAACATGCAAAATCCATACATGAGAACAGAC
AAATTATACGATACCTGAAAATATGAGATCCTAGTTTTACTAACAAATAAT
TGAGGATACCTCCCTACATGAAAATTTTTTACTTTGACAAAAATCACGAGATGC
TGATAAAGGTTTAAAAACTGTTTACACAGCAGAAATTTTTTGTCAGAAAAAT
TCACCTGATTGAGCTTAAACAAAAATATGAGAAATGTTAAATTCAGGAAAC
TAAAAATACGTGTTTCAATGCAAGGAAAGATCTGCTGAAAATGCTGAAA
GACTTATTAAAGACTTTTCTCAACAAGAGTTTTACTTTTACTTACTCT
TTCAGTTTGAAGAGATGTTGACATGAGATGGGGTTATTACCTTATTGC
GGACAAATTTGCAACAGAATCAGATTTTTTACTTACTACAGAAGCAAGCTG
TTATTACTAAATACCAACCGGCTAAAGCCAGGAGGATATTTATGATGGG
TTAAATTTATCAAGAAGAAGTATTTTTCTAAGATATGATGATTTTACG
AAGAGATGAGAGTTACGAATACCTTAAAAATGTAATAAAACGTCAGG
AATCTTTTGCTCCTTCTTCTTCGCAAATCAAGAAATTTATTGGTACATAGT
TTAGGATTTGGTAATAACAAAAAAATGTCATTAGAATAATGGAAGATGG
TTATTACAGAAGTATTTTTTTTTATATGAGATGTAAGGAGGAGGAGGAGG
TTAGGATTTGGAAGATTTGAGCTACGTCGTGCACATATCTGATGGT
TTAAGATATGTTAATAACAAAAATTTGTAAGTTAACTATATAGGAAATA
ACTAGTGATGCAAAAAACTTAAATCATCAAGAAGATAGTTTTTTACTA
GCTAAGATACGAAACAAAAATAAGATGACAGAGTTTTTATATGAGATGTAAG
TTAGGATTTGGTAATAACAAAAAAATGTCATTAGAATAATGGAAGATGG
TTATTACAGAAGTATTTTTTTTTATATGAGATGTAAGGAGGAGGAGGAGG
TTAGGATTTGGAAGATTTGAGCTACGTCGTGCACATATCTGATGGT
TTAAGATATGTTAATAACAAAAAAATTTGTAAGTTAACTATATAGGAAATA
ACTAGTGATGCAAAAAACTTAAATCATCAAGAAGATAGTTTTTTACTA
GCTAAGATACGAAACAAAAATAAGATGACAGAGTTTTTATATGAGATGTAAG
GTCGGTCATGCTGAAAACACCAGACGATGAGGTGCCGGTAATGACCATT
ACCCAGAAGGGAATAAACACCTCGGTAGTACAGCCGCGGTTAAGACC
GACTATCGGTAACGATAAGGACAATAACCTTCCATCACAGCTCTGCGG
CGGTACAGTCATCTCCGGAGGCGGGAATAACCGCTATATTATCCCCGGG
ATTAAAAAGCCGTTGAACCTGACGTGTCCAGTAACTCAGTCTCCTAC
GAAACTTTTCTGCCAAAGACACCCATAGTGAATTTAAACTGTCGCCCT
TGAGCTGAGTTTTGATTTACTGCGGGAGGAACACATAAATTGTTAACAG
AGGATGAAAGCCTGAAACACACTTCTTCCGCCGAAACTTCAGGGGTGATC
CCGTGATGGCACGACTCTGGAAGCGGCTTTCCCCGGGAAAAGTTGATATT
TGCGCATTTCCATATTGGAATGTCACCTCCGCAATACCTCGTCGTTTAATCGG
GAAAATAACGAGGACGTCGACTACGTGGAACAGGCTGACATGATGATG
CCGACACAAACTACATCGGCTGGTAGAATTAACGACCCTCCGGGAAGAT
ATTACTGGAAGCCTGACTCTGTCTTCTGTTGGAAGGAAAAAGACAABAAC
CAGCGTGTAACTTATGATATTACGTACATGATTATTCTCTTAACCTGACAA
TATCCCCGTGAAGACCTGTCGCCAGAAGCTGGCAGATTTAGCTGAAATTC
GCCCTAGGATTACCGTTTTACAGTTGGACGCTACTCGGATTCTACGATA
ATGTTAAGTGGGGGATTCTTTCCGGGATGGTCATACACCAACGGTAAAAT
CCGAGCTGGAAATTTTGATGCGACTGAATCATGGAATGCCTTCGCTCC
GGTGATCCGGAGCTAACGAGGCTTATATGAGCTGGCAATTTCCCAGG
CTAAGGGAAAAAGTGGAGGGGAGATTCTGACGGAAGCTGGAAAGAG
TCGCGTGAAGCAGAGGTGAACTACCTCAGGTAATTTATCTCGACAT
TAAATGCTCCACACCTATTTCCATCTGCTATCTGATTATTTGGAAGGGAAT
AAATGTTGGCTACGAGAATACGACTTCGGATTCTGCAATGATTTATC
TCATCGTTTCACATTTTCCTCCGGTAAATTTTACATGATGTCG
CCATCAGGGTATGTGTCGGCGATCCGACCAGATCATTTACGTCGAGATT
GTCAGTCACTCAGGCGAGCTTCTGAGTATCTCTGAAAAAGAGCAGGT
GAAAATATATTTGAGTAAATACCAAGAGTGGTAGATTCCAGAGAACACT
CATCAGTTGGAAGATGATGCAACACTGATGACAGGACACCCGCTTTATCAAGCC
GCATCAAATAATCATGTGATATCCAAATGGGAGATGTTGGAAGCAT
GCCGACATTTGTTGCGGAATACGCCTGATTCAAAAAAGGAGAAACATCA
AAAATTGTGTAATACAAATGAGGCTTACGAGGAAAACACAGATGAC
CATCCTGTGTAAGAGATGCGCATTGAGACACTACTGTGCAACAGATG
TTCGTGAAACTTTCTCCACCGGCGGTGTTAAGCAGTTATCTAGAG
GCCTTATAAAGGCGTACTCATTGAGGAAGAAAAGCAGATATTTGTATACC
TGACACAAATAAGGTAATCTACAGATATATATAGGACTCAAAATAT
GGTGAATCACCGGATGATTGTATCTCCTGCCAAACTACCCGACAGGATG
GAAAAATATATAATGAGCTTATCCCGAATATCTCAGAAACAATATAC
TGTTGACTATCAACCGGTTAGTTAATGCCAAACAGAGTGCACA
CAATTTGACTACAGAGGAAAGGATGAAAACAAATCCCATAGTATCTTTTT
GATACAAACCTTCTACAAATGTTGGAACAGATGTTGGAATGACTCCGCAT
ATCAGGGCGAGTCTATTTCCAGAGAAGAATATATGATGAGGTGGAATTGC
CAACCGGATACAGGCTTCCAGTGGCAGCTGGGAAACAGGATTTGCAG
TGGATGCAGCGGTAAGAAACGGAGAATGGAAGATCACACCAGAATTATT
ACGTCACACACCCGGGATATATCGGAGTACGGTATCGAAATGGTCCAGA
GGATGGCTGAAAACCGGCACAATACTCCAGACTCCAGAAGACAGAATA
CGGATGTATACCTGACTACCATACAGAACAATGTATTTAGTCGTCAGGGG
GGCGGCTACCAAGTGATATTATCGGATGTGGAATGGCTGGTGCGGATAT
AGCGGATAATGCACCAGGGAAACCCGCTGCACTCCATCGGCCCGGAACA
TGTTTGAAGTGAAGTGTGGATGAAAGGCAATATGAGTGGAATATACAT
TTATGTACGCTGAAACCTGTCGAGCCTGAAATGGCCAAAGCAAA
ACGCCGAATGCTGACAGCCTTTTTAACCATACTCACTCAACCGTCACAA
GAGCGGCAGCCACCCGCTGAGCAATAACTACGATAACCCCTTGGGGCCTCT
AAACGGGTCTTGAAGGTGTTTTTTGCTGAAAGGAAACTATATCCGGGTA
ACGAAATCTCAGCTTGATATCATCCAGGACGAGCCTCAGACTCCAGCAGTAA
CTGGAAGCTCAGCAGTACCTACCTGAGCCTACCTTCACGGGTGGGCTGGTTTC
GGTAGAATAGAGGACAGCTCTTTCTTGGAGATCTCTTTTTCTTCGCGGTAATCT
GCTGCTTTGCAAAACAAAAACCCACCGTACCAGCGGTGTTTGTGTTGGCCGG
GATCAAGAGCTACCAACTCTTTTCTCGAGGTAAGCTGCTCCCAGCAGCC
CAGATACCAATACCTTCTTCTACTGTTAGGCTGAGTTAGGCCCACACTTT
CAAGAAGCTCTGAGACGCCCCCTACCATACCTGCCTGCTCTATCTCGTTAC
CAGTGCTGCTGCTGCGAAGTGCGATAAGTGGTCTGCTCTCCGAGGTTCGAGCTCA
AGACGATAAGTTACCCGATAAGGGGCAGCGGCTGCGGTGAAAGGGGCTTT
CTGCGACACAGCCAGCTTGGAGCGAAGCAGTACACCGGAACCTGCGAGA
TCCCTACAGCCGTCGACTCTTATGAGAAAGCGCCACCGCTTCCGCCGAAAG
GGGAAAGAGGCGGGACAGGATATCCGCTCAAAGGGGCAGGGGCTGGCG
GAAACAAAGGAAAGCGCCACAGGGGAGCTTTTCCCAGGGGAGGAAAA
CAGCGCCCTGGGGATATCTCTTTATAGTTCCCTGCTGCGGGTTTCGCCCAA
CCCTCCTGGAACCTTTGGAGCCTCCGTTTTTTTTTGCGG
Appendix 3: Relevant published papers

The following published paper incorporates work from this thesis. This paper is included with the author’s permission. It was published in The Journal of Biological Chemistry, January 2016. The paper can also be found at: http://www.jbc.org/content/early/2016/01/20/jbc.M115.709600.full.pdf+html?sid=14b9be92-1284-4a90-a991-b79e370db717.