Cypriot Archaeological Sites in the Landscape: An Alluvial Geo-Archaeological Approach

By Katleen Deckers

Illustrations

Thesis submitted for the degree of PhD
Department of Archaeology
University of Edinburgh
2002
Cover fig.: Venetian bridge at Sarama-Skarphos. The Stavros-tis-Psokas has abandoned the channel under the bridge.

Plate 1
1. The Vita-Finzi model (Higgs et al. 1966: fig. 15). 1. In Palaeolithic times: stream flows over bedrock: patches of soils on hills. 2. Frost action and erosion of hill soil leads to alluvial fan development and to aggradation in valley bottoms. 3. The resulting deposit is trenched. 4. Renewed aggradation in historical times. 5. Stream downcutting leaves valley-floor alluvium as flat benches.

Plate 2
2. Diagram of destabilisation of slopes by climatic change or human impact (adapted from van Andel 1986: fig. 6)

Plate 3
3. Plot of Holocene alluvial units in Britain showing thickness of alluvium and lithofacies type. The frequency maxima of dated alluvial units deposited since 5000 years BP are shown by shading (Macklin et al. 1993: fig. 4)
4. Regional correlations among the Holocene alluvial records of Wolf Creek and the Kansas, Republican, Pawnee and South Loup rivers. A: alluviation, EN: entrenchment, ER: erosion, U: unreported (Abrogast et al. 1994: fig. 4)

Plate 4
5. Summary scheme of several variables that might have had impact on the evolution of the Cypriot Holocene landscape

Plate 5
6. Geological map of Cyprus (Pantazis 1969: fig. 3)

Plate 6
7. The Western Cyprus Geo-archaeological Survey area: investigated rivers and soil sections indicated.

Plate 7
8. Three sherds dated by typology (EZD1: 15th/16th century, TA105: Late Roman/Early Byzantine; KIS2: Late Roman/Early Byzantine). EZD1 is about 3 cm wide, 2 cm high (picture E. Peltenburg)
9. Lithic artefacts from the alluvial fan at Souskiou. The dated artefacts are underlined. Scale: approximately 1:2.5

Plate 8
10. Natural and 5 Gray glowing curves for sherd sample MA3
11. Natural Tl-glowing/5 Gray glowing curve. Plateau indicated between 325 and 375 °C.

Plate 9
12. Sherds from section TA (Sarama-Teracha)
13. Sherds from section TB (Sarama-Teracha)

Plate 10
14. Sherds from section TB (Sarama-Teracha)
15. Sherd KAG from section KAGA (Agriokalamos) (size: 4.1 x 1.5 x 1 cm)
16. Artefacts from section EZA (Ezousas-Ayia Varvara)
Plate 11
17. Rolled sherds from section EZD (Ezousas, Ayia Varvara)
18. Sherds from section KIS1 (Dhiarizzos, Kithasi)
19. Sherds from section KOL1

Plate 12
20. Sherds from section PR1 (Dhiarizzos, Prastio)
21. Sherds from section XD (Xeropotamos)

Plate 13
22. Dating precision of Tl-dated sherds
23. Gammaspectrometry in the field at section SOA (Dhiarizzos, Souskiou)

Plate 14
24. Map of the investigated area along the Stavros-tis-Psokas (adapted from cadastral map XXXV.38 and topographic map 35.XXII). Numbers indicate pit numbers, patterning represents morphologic units.

Plate 15
25. Pit 8 (Stavros-tis-Psokas)
26. Pit 8 (Stavros-tis-Psokas) : organic matter content

Plate 16
27. Pit 8 (Stavros-tis-Psokas)
28. pH values of pit 8

Plate 17
29. Particle size analysis on samples from pit 8 (Stavros-tis-Psokas) : coarse fraction
30. Particle size analysis of sample 1, pit 8 (Stavros-tis-Psokas)
31. Particle size analysis of sample 2, pit 8 (Stavros-tis-Psokas)

Plate 18
32. Particle size analysis expressed in number percentages : samples 1 and 2 pit 8 (Stavros-tis-Psokas)
33. Section TA (Stavros-tis-Psokas)

Plate 19
34. Section TA : drawing and description. Dates of sherds indicated on drawing

Plate 20
35. Organic matter content of samples from section TA (Stavros-tis-Psokas)
36. Mass specific susceptibility of samples from section TA (Stavros-tis-Psokas)
37. Frequency dependent susceptibility of samples from section TA (Stavros-tis-Psokas)

Plate 21
38. pH of samples from section TA (Stavros-tis-Psokas)
39. Lithology of the clasts in samples from section TA (Stavros-tis-Psokas)
40. Shape of the clasts in samples from section TA (Stavros-tis-Psokas)

Plate 22
41. Angularity of the clasts in samples from section TA (Stavros-tis-Psokas)
42. Particle size distribution of the samples from section TA (Stavros-tis-Psokas)
43. Particle size distribution of sample TA1 : small fraction

Plate 23
44. Particle size distribution of sample TA2 : small fraction
45. Particle size distribution of sample TA3 : small fraction
46. Particle size distribution of sample TA4 : small fraction
47. Particle size distribution of sample TA7: small fraction

Plate 24

48. Particle size distribution of sample TA8: small fraction

49. Section TB (Stavros-tis-Psokas)

Plate 25

50. Section TB: drawing and description. Dates of sherds indicated on drawing

Plate 26

51. Organic matter content of samples from section TB (Stavros-tis-Psokas)

52. Mass specific susceptibility of samples from section TB (Stavros-tis-Psokas)

53. Frequency dependent susceptibility of samples from section TB (Stavros-tis-Psokas)

Plate 27

54. pH of samples from TB (Stavros-tis-Psokas)

55. Lithology of the clasts in samples from section TB (Stavros-tis-Psokas)

56. Shape of the clasts in samples from section TB (Stavros-tis-Psokas)

Plate 28

57. Angularity of the clasts from section TB (Stavros-tis-Psokas)

58. Particle size distribution of the samples from section TB (Stavros-tis-Psokas)

59. Particle size distribution sample TB6, fine fractions

Plate 29

60. Particle size distribution of sample TB5, fine fractions

61. Particle size distribution of sample TB4, fine fractions

62. Particle size distribution of sample TB3, fine fractions

63. Particle size distribution of sample TB1, fine fractions

Plate 30

64. Particle size analysis (small fractions) expressed in number percentages for samples TB1, TB3, TB5 and TB6

65. View over the Agriokalamos river valley from the archaeological site of Lemba-Lakkous. The arrow indicates the approximate location of the investigated sections

Plate 31

66. Map of the investigated area along the Agriokalamos (adapted from cadastral map XLV.49 and topographic map 45.XXVI & part of XXV). Location of investigated sections as indicated on map.

Plate 32

67. Section KAGA (Agriokalamos): drawing and description. Date and location of sherd KAG indicated on drawing

68. Section KAGA (Agriokalamos)

Plate 33

69. Detail of exact location of sherd KAG in section KAGA (Agriokalamos) as indicated by black cross

70. Detail of gully (unit KAGB11) in section KAGB (Agriokalamos)

Plate 34

71. Drawing and description of section KAGB (Agriokalamos)

Plate 35

72. Picture of section KAGB (trowel as scale)

73. Organic matter content of samples from section KAGB (Agriokalamos)
<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>36.</td>
<td>Mass specific susceptibility of samples from section KAGB (Agriokalamos)</td>
</tr>
<tr>
<td>74.</td>
<td>Frequency dependent susceptibility of samples from section KAGB (Agriokalamos)</td>
</tr>
<tr>
<td>75.</td>
<td>pH of samples from section KAGB (Agriokalamos)</td>
</tr>
<tr>
<td>76.</td>
<td>Lithology of the clasts in samples from section KAGB (Agriokalamos)</td>
</tr>
<tr>
<td>77.</td>
<td>Shape of the clasts in samples from KAGB (Agriokalamos)</td>
</tr>
<tr>
<td>78.</td>
<td>Angularity of the clasts in samples from section KAGB (Agriokalamos)</td>
</tr>
<tr>
<td>37.</td>
<td>Particle size distribution (coarse fraction) of the samples from section KAGB (Agriokalamos)</td>
</tr>
<tr>
<td>80.</td>
<td>Particle size distribution of sample KAGB9, small fractions</td>
</tr>
<tr>
<td>81.</td>
<td>Particle size distribution of sample KAGB8, small fractions</td>
</tr>
<tr>
<td>39.</td>
<td>Lithology of the clasts in samples from section KAGC (Agriokalamos)</td>
</tr>
<tr>
<td>90.</td>
<td>Drawing and description of section KAGC (Agriokalamos)</td>
</tr>
<tr>
<td>42.</td>
<td>Picture of section KAGC (Agriokalamos)</td>
</tr>
<tr>
<td>91.</td>
<td>Detail of unit KAGC9 with rip-up clasts and unit KAGC10</td>
</tr>
<tr>
<td>43.</td>
<td>Organic matter content of samples from section KAGC (Agriokalamos)</td>
</tr>
<tr>
<td>93.</td>
<td>Mass specific susceptibility of samples from section KAGC (Agriokalamos)</td>
</tr>
<tr>
<td>96.</td>
<td>Frequency dependent susceptibility of samples from section KAGC (Agriokalamos)</td>
</tr>
<tr>
<td>44.</td>
<td>pH of samples from section KAGC (Agriokalamos)</td>
</tr>
<tr>
<td>97.</td>
<td>Lithology of the clasts in samples from section KAGC (Agriokalamos)</td>
</tr>
<tr>
<td>98.</td>
<td>Shape of the clasts in samples from section KAGC (Agriokalamos)</td>
</tr>
<tr>
<td>45.</td>
<td>Particle size distribution (coarse fraction) of the samples from section KAGC (Agriokalamos)</td>
</tr>
<tr>
<td>101.</td>
<td>Particle size distribution of sample KAGC11, small fractions</td>
</tr>
<tr>
<td>46.</td>
<td>Particle size distribution of sample KAGC9, small fractions</td>
</tr>
<tr>
<td>102.</td>
<td>Particle size distribution of sample KAGC8, small fractions</td>
</tr>
<tr>
<td>103.</td>
<td>Particle size distribution of sample KAGC7, small fractions</td>
</tr>
</tbody>
</table>
105. Particle size distribution of sample KAGC6, small fractions

Plate 47

106. Particle size distribution of sample KAGC5, small fractions
107. Particle size distribution of sample KAGC4, small fractions
108. Particle size distribution of sample KAGC3, small fractions
109. Particle size distribution of sample KAGC2, small fractions

Plate 48

110. Particle size analysis results (small fractions) expressed in number percentages for samples from section KAGC

Plate 49

111. Picture of section KAGD (Agriokalamos)

Plate 50

112. Drawing and description of section KAGD (Agriokalamos)

113. Organic matter content of samples from section KAGD (Agriokalamos)
114. Mass specific susceptibility of samples from section KAGD (Agriokalamos)
115. Frequency dependent susceptibility of samples from section KAGD (Agriokalamos)

Plate 51

116. pH of samples from section KAGD (Agriokalamos)
117. Lithology of clasts in samples from section KAGD (Agriokalamos)
118. Shape of the clasts in samples from section KAGD (Agriokalamos)

Plate 52

119. Angularity of the clasts in the samples from section KAGD (Agriokalamos)
120. Particle size distribution (coarse fraction) of the samples from section KAGD (Agriokalamos)
121. Particle size distribution for sample KAGD18, small fractions

Plate 53

122. Particle size distribution for sample KAGD16, small fractions
123. Particle size distribution for sample KAGD15, small fractions
124. Particle size distribution for sample KAGD14, small fractions
125. Particle size distribution for sample KAGD13, small fractions

Plate 54

126. Particle size distribution for sample KAGD11, small fractions
127. Particle size distribution for sample KAGD10, small fractions
128. Particle size distribution for sample KAGD9, small fractions
129. Particle size distribution for sample KAGD8, small fractions

Plate 55

130. Particle size distribution for sample KAGD7, small fractions
131. Particle size distribution for sample KAGD6, small fractions
132. Particle size distribution for sample KAGD5, small fractions
133. Particle size distribution for sample KAGD4, small fractions

Plate 56

134. Particle size analysis results (small fractions) expressed in number percentages for samples from section KAGD

Plate 57

135. Picture of section KOL1 (Dhiarizzos)

136. Location map of sections KOL1 and KOL2 (Dhiarizzos) (map adapted from cadastral map L1.48 and topographic map 51.XXIV)
137. Drawing and description of section KOL1 (Dhiarizzos). Dated sherds indicated on drawing
138. Organic matter content of samples from section KOL1 (Dhiarizzos)

139. Mass specific susceptibility of samples from section KOL1 (Dhiarizzos)
140. Frequency dependent susceptibility of samples from section KOL1 (Dhiarizzos)
141. pH of samples from section KOL1 (Dhiarizzos)
142. Lithology of clasts in samples from section KOL1 (Dhiarizzos)

143. Shape of the clasts in samples from KOL1 (Dhiarizzos)
144. Angularity of clasts in samples from KOL1 (Dhiarizzos)
145. Particle size distribution (coarse fraction) of the samples from section KOL1 (Dhiarizzos)
146. Particle size distribution of sample KOL1.4, small fractions

147. Particle size distribution of sample KOL1.3, small fractions
148. Particle size distribution of sample KOL1.2, small fractions
149. Particle size distribution of sample KOL1.1, small fractions
150. Particle size analysis results (small fractions) represented in number percentages of samples from section KOL1

151. Drawing and description of section KOL2 (Dhiarizzos)

152. Picture of section KOL2 (Dhiarizzos)
153. Organic matter content of samples from section KOL2 (Dhiarizzos)

154. Mass specific susceptibility of samples from section KOL2 (Dhiarizzos)
155. Frequency dependent susceptibility of samples from section KOL2 (Dhiarizzos)
156. pH of samples from section KOL2 (Dhiarizzos)

157. Lithology of the clasts in samples from section KOL2 (Dhiarizzos)
158. Shape of the clasts in samples from section KOL2 (Dhiarizzos)
159. Angularity of the clasts in samples from section KOL2 (Dhiarizzos)

160. Particle size distribution (coarse fraction) of samples from section KOL2 (Dhiarizzos)
161. Particle size distribution (small fractions) of sample KOL2.5 deriving from unit KOL2.3
162. Particle size distribution (small fractions) of sample KOL2.4 from unit KOL2.3

163. Particle size distribution (small fractions) of sample KOL2.3
164. Particle size distribution (small fractions) of sample KOL2.2
165. Particle size distribution (small fractions) of sample KOL2.1
166. Particle size analysis results (small fractions) from section KOL2 represented in number percentages

Plate 68
167. Location map of sections SOA, SOB, SOC and SOD (adapted from cadastral LII.25 and topographic map 52.IX)

Plate 69
168. Overview sketch of the alluvial fan at Souskiou. Investigated sections SOA and SOB indicated. (humans as scale)

Plate 70
169. Overview of the Dhiarizzos river valley. Souskiou village is built on the alluvial fan

170. Section SOA (Dhiarizzos)

Plate 71
171. Drawing and description of section SOA (Dhiarizzos)

Plate 72
172. Organic matter content of samples from section SOA (Dhiarizzos)
173. Mass specific susceptibility of samples from section SOA (Dhiarizzos)
174. Frequency dependent susceptibility of samples from section SOA (Dhiarizzos)

Plate 73
175. PH of sample from section SOA (Dhiarizzos)
176. Lithology of the clasts in samples from section SOA (Dhiarizzos)
177. Shape of the clasts of samples from section SOA (Dhiarizzos)

Plate 74
178. Angularity of the clasts in samples from section SOA (Dhiarizzos)
179. Particle size distribution (coarse fraction) of the samples from section SOA (Dhiarizzos)

Plate 75
180. Particle size distribution of sample SOA1, small fractions
181. Particle size distribution of sample SOA2, small fractions
182. Particle size distribution of sample SOA3, small fractions
183. Particle size distribution of sample SOA4, small fractions

Plate 76
184. Particle size distribution of sample SOA9, small fractions
185. Particle size distribution of sample SOA11, small fractions
186. Particle size distribution of sample SOA12, small fractions
187. Particle size distribution of sample SOA13, small fractions

Plate 77
188. Particle size distribution of sample SOA14, small fractions
189. Particle size distribution of sample SOA17, small fractions
190. Particle size analysis results (small fractions) from section SOA, represented in number percentages

Plate 78
191. Drawing and description of section SOB (Dhiarizzos)

Plate 79
192. Section SOB (Dhiarizzos) (length of section approximately 6m)
193. Lithology of the clasts in samples from section SOB (Dhiarizzos)
Plate 80
194. Shapes of the clasts in samples from section SOB (Dhiarizzos)
195. Angularity of the clasts in samples from section SOB (Dhiarizzos)
196. Particle size distribution (coarse fractions) of some samples from section SOB (Dhiarizzos)

Plate 81
197. Particle size distribution (small fractions) of sample SOB5
198. Particle size distribution (small fractions) of sample SOB8
199. Particle size distribution (small fractions) of sample SOB11
200. Particle size distribution (small fractions) of sample SOB13

Plate 82
201. Drawing and description of section SOC (Dhiarizzos)

Plate 83
202. Organic matter content of samples from section SOC (Dhiarizzos)
203. Mass specific susceptibility of samples from section SOC (Dhiarizzos)
204. Frequency dependent susceptibility of samples from section SOC (Dhiarizzos)

Plate 84
205. pH of samples from section SOC (Dhiarizzos)
206. Lithology of the clasts in samples from section SOC (Dhiarizzos)
207. Shape of the clasts in samples from section SOC (Dhiarizzos)

Plate 85
208. Angularity of the clasts in samples from section SOC (Dhiarizzos)
209. Particle size distribution (coarse fraction) of the samples from SOC (Dhiarizzos)
210. Particle size distribution of sample SOC5, fine fractions

Plate 86
211. Particle size distribution of sample SOC4, fine fractions
212. Particle size distribution of sample SOC3, fine fractions
213. Particle size distribution of sample SOC2, fine fractions
214. Particle size distribution of sample SOC1, fine fractions

Plate 87
215. Particle size analysis results (small fractions) of section SOC, represented in number percentages
216. Drawing and description of section SOD

Plate 88
217. Organic matter content of samples from section SOD (Dhiarizzos)
218. Mass specific susceptibility of samples from section SOD (Dhiarizzos)
219. Frequency dependent susceptibility of samples from section SOD (Dhiarizzos)

Plate 89
220. pH of samples from section SOD (Dhiarizzos)
221. Lithology of the stones in samples from section SOD (Dhiarizzos)
222. Shape of the stones in samples from section SOD (Dhiarizzos)

Plate 90
223. Angularity of the stones in samples from section SOD (Dhiarizzos)
224. Particle size distribution (coarse fractions) of the samples from section SOD (Dhiarizzos)
225. Particle size distribution of sample SOD6 (from unit SOD5), small fractions
Plate 91
226. Particle size distribution of sample SOD4, small fractions
227. Particle size distribution of sample SOD3, small fractions
228. Particle size distribution of sample SOD2, small fractions
229. Particle size distribution of sample SOD1, small fractions

Plate 92
230. Particle size analysis results (small fractions) of section SOD, represented in number percentages
231. Section PH (Dhiairizzos) (length of section approximately 2 meters)

Plate 93
232. Drawing and description of section PH

Plate 94
233. Organic matter content of samples from section PH (Dhiairizzos)
234. Mass specific susceptibility of samples from section PH (Dhiairizzos)
235. Frequency dependent susceptibility of samples from section PH (Dhiairizzos)
236. pH of samples from section PH (Dhiairizzos)

Plate 95
237. Lithology of the stones in samples from section PH (Dhiairizzos)
238. Shape of the stones in samples from section PH (Dhiairizzos)
239. Angularity of the stones in samples from section PH (Dhiairizzos)
240. Particle size distribution (coarse fractions) of the samples from section PH (Dhiairizzos)

Plate 96
241. Particle size distribution of sample PH3, small fractions
242. Particle size distribution of sample PH2, small fractions
243. Particle size distribution of sample PH1, small fractions
244. Particle size analysis (small fractions) of section PH, represented in number percentages

Plate 97
245. Location map of section PR1 (Dhiairizzos) (adapted from cadastral maps LII.5, LII.4 and topographic maps 52.IV and 52.V)

Plate 98
246. Picture with indicated location (see arrow) of section PR1 (Dhiairizzos)
247. Section PR1 (length of section approximately 2.1 m)

Plate 99
248. Drawing and description of section PR1 (Dhiairizzos). Location of dated sherds indicated on drawing

Plate 100
249. Organic matter content of samples from section PR1 (Dhiairizzos)
250. Mass specific susceptibility of samples from section PR1 (Dhiairizzos)
251. Frequency dependent susceptibility of samples from section PR1 (Dhiairizzos)

Plate 101
252. pH of samples from section PR1 (Dhiairizzos)
253. Lithology of the stones in samples from section PR1 (Dhiairizzos)
254. Shape of the stones in samples from section PR1 (Dhiairizzos)
Plate 102
255. Angularity of the stones in samples from section PR1 (Dhiarizzos)
256. Particle size distribution (coarse fractions) of the samples from section PR1 (Dhiarizzos)
257. Particle size distribution of sample PR1.6, small fractions

Plate 103
258. Particle size distribution of sample PR1.5, small fractions
259. Particle size distribution of sample PR1.4, small fractions
260. Particle size distribution of sample PR1.3, small fractions
261. Particle size distribution of sample PR1.2, small fractions

Plate 104
262. Particle size distribution of sample PR1.1, small fractions
263. Particle size analysis results (small fractions) of section PR1, represented in number percentages
264. Picture of section MA (Dhiarizzos)

Plate 105
265. Location map of sections MA and MB (Dhiarizzos) (adapted from cadastral map LII.5, XLVI.61 and topographic maps 52.V and 46.XXIX)

Plate 106
266. Drawing and description of section MA (Dhiarizzos). Location of dated sherds indicated on drawing

Plate 107
267. Organic matter content of samples from section MA (Dhiarizzos)
268. Mass specific susceptibility of samples from section MA (Dhiarizzos)
269. Frequency dependent susceptibility of samples from section MA (Dhiarizzos)
270. pH of samples from section MA (Dhiarizzos)

Plate 108
271. Lithology of the stones from section MA (Dhiarizzos)
272. Shape of the stones in samples from section MA (Dhiarizzos)
273. Angularity of the stones in samples from section MA (Dhiarizzos)
274. Particle size distribution (coarse fractions) of the samples from section MA (Dhiarizzos)

Plate 109
275. Particle size distribution of sample MA3, small fractions
276. Particle size distribution of sample MA2, small fractions
277. Particle size distribution of sample MA1, small fractions

Plate 110
278. Drawing and description of section MB (Dhiarizzos). Locations of dated sherds indicated on drawing

Plate 111
279. Picture of section MB (Dhiarizzos). White papers mark the location of sherds
280. Organic matter content of samples from section MB (Dhiarizzos)

Plate 112
281. Mass specific susceptibility of samples from section MB (Dhiarizzos)
282. Frequency dependent susceptibility of samples from section MB (Dhiarizzos)
283. pH of samples from section MB (Dhiarizzos)

Plate 113
284. Lithology of the stones in samples from section MB (Dhiarizzos)
285. Shape of the stones in samples from section MB (Dhiarizzos)
286. Angularity of the stones in samples from section MB (Dhiarizzos)

Plate 114
287. Particle size distribution (coarse fractions) of the samples from section MB (Dhiarizzos)
288. Particle size distribution of sample MB11, small fractions
289. Particle size distribution of sample MB10, small fractions

Plate 115
290. Particle size distribution of sample MB9, small fractions
291. Particle size distribution of sample MB8, small fractions
292. Particle size distribution of sample MB7, small fractions
293. Particle size distribution of sample MB6, small fractions

Plate 116
294. Particle size distribution of sample MB5, small fractions
295. Particle size distribution of sample MB4, small fractions
296. Particle size distribution of sample MB3, small fractions
297. Particle size distribution of sample MB2, small fractions

Plate 117
298. Particle size distribution of sample MB1, small fractions
299. Particle size analysis results (small fractions) of section MB, represented in number percentages

300. Picture showing the location of section KIS1 (Dhiarizzos) (see arrow) (length of section is approximately 3.4 m)

Plate 118
301. Location map of section KIS1 (Dhiarizzos) (adapted from cadastral map XLVI.54 and topographic map 46.XXX).

Plate 119
302. Drawing and description of section KIS1 (Dhiarizzos). Location of sherds indicated on drawing.

Plate 120
303. Picture of section KIS1. White label cards indicate the location of sherds. The length of the section is 3.4 m.
304. Organic matter content of samples from section KIS1 (Dhiarizzos)

Plate 121
305. Mass specific susceptibility of samples from section KIS1 (Dhiarizzos)
306. Frequency dependent susceptibility of samples from section KIS1 (Dhiarizzos)
307. pH of samples from section KIS1 (Dhiarizzos)

Plate 122
308. Lithology of the stones in samples from section KIS1 (Dhiarizzos)
309. Shape of the stones in samples from section KIS1 (Dhiarizzos)
310. Angularity of the stones in samples from section KIS1 (Dhiarizzos)

Plate 123
311. Particle size distribution (coarse fraction) of the samples from section KIS1 (Dhiarizzos)
312. Particle size distribution of sample KIS1.7
313. Particle size distribution of sample KIS1.6

Plate 124
314. Particle size distribution of sample KIS1.5
315. Particle size distribution of sample KIS1.4
316. Particle size distribution of sample KIS1.3

Plate 125
317. Particle size distribution of sample KIS1.2
318. Particle size distribution of sample KIS1.1
319. Particle size analysis results (small fractions) from section KIS1, represented in number percentages

Plate 126
320. Location map of sections EZA, EZB and EZC (Ayia-Varvara – Ezousas) (adapted from cadastral map LI.22 and topographic map 51.XIV)

Plate 127
321. Drawing and description of section EZA (Ayia-Varvara – Ezousas). OSL-dates and dates of sherds indicated on drawing

Plate 128
322. Picture of section EZA (Ayia-Varvara – Ezousas) (length of the section is approximately 4 m)
323. Organic matter content of samples from section EZA (Ezousas)

Plate 129
324. Mass specific susceptibility of samples from section EZA (Ezousas)
325. Frequency dependent susceptibility of samples from section EZA (Ezousas)
326. pH of samples from section EZA

Plate 130
327. Lithology of the stones in samples from section EZA (Ezousas)
328. Shape of the stones in samples from section EZA (Ezousas)
329. Angularity of the stones in samples from section EZA (Ezousas)

Plate 131
330. Particle size distribution (coarse fractions) of the samples from section EZA (Ezousas)
331. Particle size distribution of sample EZA11, small fractions
332. Particle size distribution of sample EZA10, small fractions

Plate 132
333. Particle size distribution of sample EZA9, small fractions
334. Particle size distribution of sample EZA8, small fractions
335. Particle size distribution of sample EZA7, small fractions
336. Particle size distribution of sample EZA6, small fractions

Plate 133
337. Particle size distribution of sample EZA5, small fractions
338. Particle size distribution of sample EZA4, small fractions
339. Particle size distribution of sample EZA3, small fractions

Plate 134
340. Particle size distribution of sample EZA2, small fractions
341. Particle size distribution of sample EZA1, small fractions
342. Particle size analysis results (small fractions) from section EZA, represented in number percentages: samples EZA2, EZA3, EZA8 and EZA10

Plate 135
343. Particle size analysis results (small fraction) from section EZA, represented in number percentages: samples EZA6, EZA7, EZA9, EZA1 and EZA11
344. Picture of section EZB (length of section is approximately 4 m)

XII
Plate 136
345. Drawing and description of section EZB (Ezousas)

Plate 137
346. Organic matter content of samples from section EZB (Ezousas)
347. Mass specific susceptibility of samples from section EZB (Ezousas)
348. Frequency dependent susceptibility of samples from section EZB (Ezousas)
349. pH of samples from section EZB (Ezousas)

Plate 138
350. Lithology of the stones from section EZB (Ezousas)
351. Shape of the stones from section EZB (Ezousas)
352. Angularity of the stones from section EZB (Ezousas)
353. Particle size distribution (coarse fractions) of the samples from section EZB (Ezousas)

Plate 139
354. Particle size distribution of sample EZB4, small fractions
355. Particle size distribution of sample EZB3, small fractions
356. Particle size distribution of sample EZB2, small fractions
357. Particle size distribution of sample EZB1, small fractions

Plate 140
358. Particle size analysis results (small fractions) from section EZB, represented in number percentages
359. Picture of section EZC (Ezousas). Length of section is approximately 1.5 m

Plate 141
360. Drawing and description of section EZC (Ezousas)
361. Organic matter content of samples from section EZC (Ezousas)

Plate 142
362. Mass specific susceptibility of samples from section EZC (Ezousas)
363. Frequency dependent susceptibility of sample from section EZC (Ezousas)
364. pH of samples from section EZC (Ezousas)
365. Lithology of the stones in samples from section EZC (Ezousas)

Plate 143
366. Shape of the clasts in samples from section EZC (Ezousas)
367. Angularity of the stones in samples from section EZC (Ezousas)
368. Particle size distribution (coarse fractions) of the samples from section EZC (Ezousas)

Plate 144
369. Particle size distribution of sample EZC4, small fractions
370. Particle size distribution of sample EZC3, small fractions
371. Particle size distribution of sample EZC2, small fractions
372. Particle size distribution of sample EZC1, small fractions

Plate 145
373. Particle size analysis results (small fractions) from section EZC, represented in number percentages
374. Picture of section EZD (Ezousas) (length of section is approximately 3.2 m)

Plate 146
375. Location map of sections EZD, EZE and EZF (Ayia-Varvara – Ezousas) (adapted from cadastral map LI.14 and topographic map 51.VI)
Plate 147
376. Drawing and description of section EZD (Ezousas). Location of sherds indicated

Plate 148
377. Organic matter content of samples from section EZD (Ezousas)
378. Mass specific susceptibility of samples from section EZD (Ezousas)
379. Frequency dependent susceptibility of samples from section EZD (Ezousas)

Plate 149
380. PH of samples from section EZD (Ezousas)
381. Lithology of stones in samples from section EZD (Ezousas)
382. Shape of stones in samples from section EZD (Ezousas)

Plate 150
383. Angularity of stones in samples from section EZD (Ezousas)
384. Particle size distribution (coarse fractions) of samples from section EZD (Ezousas)
385. Particle size distribution of sample EZD5, small fractions

Plate 151
386. Particle size distribution of sample EZD4, small fractions
387. Particle size distribution of sample EZD3, small fractions
388. Particle size distribution of sample EZD2, small fractions
389. Particle size distribution of sample EZD1, small fractions

Plate 152
390. Drawing and description of section EZE (Ezousas)

Plate 153
391. Picture of section EZE (Ezousas) (Length of section is approximately 2.5 m)
392. Organic matter content of samples from section EZE (Ezousas)

Plate 154
393. Mass specific susceptibility of samples from section EZE (Ezousas)
394. Frequency dependent susceptibility of samples from section EZE (Ezousas)
395. Lithology of stones in samples from section EZE

Plate 155
396. Shape of stones in samples from section EZE (Ezousas)
397. Angularity of stones in samples from section EZE (Ezousas)
398. Particle size distribution (coarse fractions) of samples from section EZE (Ezousas)

Plate 156
399. Particle size distribution of sample EZE3, small fractions
400. Particle size distribution of sample EZE2, small fractions
401. Particle size distribution of sample EZE1, small fractions
402. Particle size analysis results (small fractions) of samples from section EZE, represented in number percentages

Plate 157
403. Drawing and description of section EZF (Ezousas)

Plate 158
404. Picture of section EZF (Ezousas) (Length of section approximately 3 m)
405. Organic matter content of samples from section EZF (Ezousas)

Plate 159
406. Mass specific susceptibility of samples from section EZF (Ezousas)
407. Frequency dependent susceptibility of samples from section EZF (Ezousas)
408. pH of samples from section EZF (Ezousas)

Plate 160
409. Lithology of stones in samples from section EZF (Ezousas)
410. Shape of stones in samples from section EZF (Ezousas)
411. Angularity of stones in samples from section EZF (Ezousas)

Plate 161
412. Particle size distribution (coarse fractions) of samples from section EZF (Ezousas)
413. Particle size distribution of sample EZF8 (retrieved from unit EZF7), small fractions
414. Particle size distribution of sample EZF7, small fractions

Plate 162
415. Particle size distribution of sample EZF6, small fractions
416. Particle size distribution of sample EZF5, small fractions
417. Particle size distribution of sample EZF4, small fractions

Plate 163
418. Particle size distribution of sample EZF3, small fractions
419. Particle size distribution of sample EZF1, small fractions
420. Particle size analysis results (small fractions) of samples from section EZF, represented in number percentages

Plate 164
421. Location map of section EZG and EZH (Kannaviou – Ezousas) (adapted from cadastral map XXXVI.49 and topographic map 36.XXV)

Plate 165
422. Drawing and description of section EZG (Ezousas)
423. Organic matter content of samples from section EZG (Ezousas)

Plate 166
424. Picture of section EZG (Ezousas)
425. Mass specific susceptibility of samples from section EZG (Ezousas)

Plate 167
426. Frequency dependent susceptibility of samples from section EZG (Ezousas)
427. pH of samples from section EZG (Ezousas)
428. Lithology of stones in samples from section EZG (Ezousas)
429. Shape of stones in samples from section EZG (Ezousas)

Plate 168
430. Angularity of stones in samples from section EZG (Ezousas)
431. Particle size distribution (coarse fractions) of samples from section EZG
432. Particle size distribution of sample EZG3, small fractions
433. Particle size distribution of sample EZG2, small fractions

Plate 169
434. Particle size distribution of sample EZG1, small fractions
435. Picture of section EZH (Ezousas) (length of section is 3.2 m)

Plate 170
436. Drawing and description of section EZH (Ezousas)

Plate 171
437. Organic matter content of samples from section EZH (Ezousas)
438. Mass specific susceptibility of samples from section EZH (Ezousas)
439. Frequency dependent susceptibility of samples from section EZH (Ezousas)

Plate 172
440. pH of samples from section EZH (Ezousas)
441. Lithology of stones in samples from section EZH (Ezousas)
442. Shape of stones in samples from section EZH (Ezousas)

Plate 173
443. Angularity of stones in samples from section EZH (Ezousas)
444. Particle size distribution (coarse fractions) of samples from section EZH (Ezousas)
445. Particle size distribution of sample EZH4, small fractions

Plate 174
446. Particle size distribution of sample EZH3, small fractions
447. Particle size distribution of sample EZH2, small fractions
448. Particle size distribution of sample EZH1, small fractions
449. Particle size analysis results (small fractions) of section EZH, represented in number percentages

Plate 175
450. Location map of sectionsXA, XB, XC, XD,XE and XF (Xeropotamos) (adapted from cadastral map L1.47 and topographic map 51. XXIII)

Plate 176
451. Drawing and description of section XA (Xeropotamos). Location of dated sherds indicated on drawing

Plate 177
452. Section XA (Xeropotamos). White label indicates the location of a sherd. Length of section is approximately 2.2 m.
453. Organic matter content of samples from section XA (Xeropotamos)

Plate 178
454. Mass specific susceptibility of samples from section XA (Xeropotamos)
455. Frequency dependent susceptibility of samples from section XA
456. PH of samples from section XA (Xeropotamos)

Plate 179
457. Lithology of stones in samples from section XA (Xeropotamos)
458. Shapes of stones in samples from section XA (Xeropotamos)
459. Angularity of stones in samples from section XA (Xeropotamos)

Plate 180
460. Particle size distribution (coarse fractions) of samples from section XA (Xeropotamos)
461. Particle size distribution of sample XA4, small fractions
462. Particle size distribution of sample XA3, small fractions

Plate 181
463. Particle size distribution of sample XA2
464. Particle size distribution of sample XA1
465. Particle size analysis results (small fractions) of samples from section XA (Xeropotamos), represented in number percentages

Plate 182
466. Drawing and description of section XB (Xeropotamos)
467. Organic matter content of samples from section XB (Xeropotamos)
Plate 183
468. Picture of section XB (Xeropotamos)
469. Mass specific susceptibility of samples from section XB (Xeropotamos)

Plate 184
470. Frequency dependent susceptibility of samples from section XB (Xeropotamos)
471. pH of samples from section XB (Xeropotamos)
472. Lithology of stones in samples from section XB (Xeropotamos)

Plate 185
473. Shape of stones in samples from section XB (Xeropotamos)
474. Angularity of stones in samples from section XB (Xeropotamos)
475. Particle size distribution (coarse fractions) of samples from section XB (Xeropotamos)

Plate 186
476. Particle size distribution of sample XB3, small fractions
477. Particle size distribution of sample XB2, small fractions
478. Particle size distribution of sample XB1, small fractions
479. Particle size analysis results (small fractions) from section XB (Xeropotamos), represented in number percentages

Plate 187
480. Drawing and description of section XC (Xeropotamos)

Plate 188
481. Picture of section XC (Xeropotamos) (length of section is approximately 3.2 m)
482. Organic matter content of samples from section XC (Xeropotamos)

Plate 189
483. Mass specific susceptibility of samples from section XC (Xeropotamos)
484. Frequency dependent susceptibility of samples from section XC (Xeropotamos)
485. pH of samples from section XC (Xeropotamos)

Plate 190
486. Lithology of stones in samples from section XC (Xeropotamos)
487. Shape of stones in samples from section XC (Xeropotamos)
488. Angularity of stones in samples from section XC (Xeropotamos)

Plate 191
489. Particle size distribution (coarse fractions) of samples from section XC (Xeropotamos)
490. Particle size distribution of sample XC4, small fractions
491. Particle size distribution of sample XC3, small fractions

Plate 192
492. Particle size distribution of sample XC2, small fractions
493. Particle size distribution of sample XC1, small fractions
494. Particle size analysis results (small fractions) of section XC, represented in number percentages

Plate 193
495. Drawing and description of section XD (Xeropotamos). Dated sherds indicated on drawing
Plate 194
496. Picture of section XD (Xeropotamos) (length of section is 2.8 m)
497. Organic matter content of samples from section XD (Xeropotamos)

Plate 195
498. Mass specific susceptibility of samples from section XD (Xeropotamos)
499. Frequency dependent susceptibility of samples from section XD (Xeropotamos)
500. pH of samples from section XD (Xeropotamos)

Plate 196
501. Lithology of the stones in samples from section XD (Xeropotamos)
502. Shape of the stones in samples from section XD (Xeropotamos)
503. Angularity of stones in samples from section XD (Xeropotamos)

Plate 197
504. Particle size distribution (coarse fractions) of samples from section XD (Xeropotamos)
505. Particle size distribution of sample XD6, small fractions
506. Particle size distribution of sample XD5, small fractions

Plate 198
507. Particle size distribution of sample XD4, small fractions
508. Particle size distribution of sample XD3, small fractions
509. Particle size distribution of sample XD1, small fractions
510. Particle size analysis results (small fractions) of section XD (Xeropotamos), represented in number percentages

Plate 199
511. Drawing and description of section XE (Xeropotamos)
512. Picture of section XE (Xeropotamos)

Plate 200
513. Organic matter content of samples from section XE (Xeropotamos)
514. Mass specific susceptibility of samples from section XE (Xeropotamos)

Plate 201
515. Frequency dependent susceptibility of samples from section XE (Xeropotamos)
516. pH of samples from section XE (Xeropotamos)
517. Lithology of stones in samples from section XE (Xeropotamos)

Plate 202
518. Shape of stones in samples from section XE (Xeropotamos)
519. Angularity of stones in samples form section XE (Xeropotamos)
520. Particle size distribution (coarse fractions) of samples from section XE (Xeropotamos)

Plate 203
521. Particle size distribution of sample XE5, small fractions
522. Particle size distribution of sample XE4, small fractions
523. Particle size distribution of sample XE3, small fractions

Plate 204
524. Particle size distribution of sample XE2, small fractions
525. Particle size analysis results (small fractions) of samples from section XE (Xeropotamos), represented in number percentages
526. Drawing and description of section XF (Xeropotamos)
Plate 205
527. Picture of section XF (Xeropotamos)

Plate 206
528. Organic matter content of samples from section XF (Xeropotamos)
529. Mass specific susceptibility of samples from section XF (Xeropotamos)

Plate 207
530. Frequency dependent susceptibility of samples from section XF (Xeropotamos)
531. pH of samples from section XF (Xeropotamos)
532. Particle size distribution (coarse fractions) of samples from section XF (Xeropotamos)

Plate 208
533. Particle size distribution of sample XF4, small fractions
534. Particle size distribution of sample XF3, small fractions
535. Particle size distribution of sample XF2, small fractions

Plate 209
536. Particle size distribution of sample XF1, small fractions
537. Particle size analysis results (small fractions) of samples from section XF (Xeropotamos)
538. Geological map of the survey area (Western Cyprus) (scale 1 :250000) (Bear 1963, Geological Survey Department Cyprus)

Plate 210
539. Lithological map of the Stavros-tis-Psokas area (Kluyver 1969 : fig. 2)

Plate 211
540. Lithological map of the Agriokalamos drainage (scale 1 :50000) (Geological map of the Polis-Paphos area – Geological Survey Department Cyprus)

Plate 212
541. Geological map of the Ezousas drainage near the investigated sections EZG and EZH (adapted from geological map of the Polis-Paphos area – Geological Survey Department Cyprus)

Plate 213
542. Soil developing at present on section TA and TB

Plate 214
543. Soil developing at present on section PR1
544. Soil developing at present on section KOL1

Plate 215
545. Soil developing at present on section MA

Plate 216
546. Soil developing at present on section MB
547. Soil developing at present on section KIS1

Plate 217
548. Soil developing at present on section EZC
549. Soil developing at present on section EZD

Plate 218
550. Soil developing at present on section EZE
551. Soil developing at present on section EZF
552. Soil developing at present on section EZG
Plate 219
553. Soil developing at present on section XB
554. Soil developing at present on section EZH
Plate 220
555. Soil developing at present on section XC
Plate 221
556. Soil developing at present on section XD
557. Soil developing at present on sectionXE
Plate 222
558. Soil developing at present on sectionXF
559. Palaeosol on unit TA3/TB5
Plate 223
560. Palaeosol on unit KAGB14
561. Palaeosol on unit KAGB8
562. Palaeosol on unit KAGB6
Plate 224
563. Palaeosol on unit KAGC7
564. Palaeosol on unit KAGC3
565. Palaeosol on unit KAGC10
566. Palaeosol on unit KAGD15
Plate 225
567. Palaeosol on unit KAGD12
568. Palaeosol on unit KAGD8
569. Palaeosol on unit KAGD5
570. Palaeosol on unit SOA2
Plate 226
571. Palaeosol on unit SOA12
572. Palaeosol on unit SOA14
573. Palaeosol on unit SOC3
574. Palaeosol on unit PR1.5
Plate 227
575. Palaeosol on unit KIS1.6
576. Palaeosol on unit EZA8
577. Palaeosol on unit EZA4
Plate 228
578. Palaeosol on unit EZD3
579. Palaeosol on unit XA2
Plate 229
580. Tentative scheme of alluviation in the Mediterranean region for the period between 10,000 and 8,000 BC (based on several studies as detailed in text); colour = alluviation, r = radiocarbon date, s = dated by sherds
581. Tentative scheme of alluviation in the Mediterranean region for the period between 8,000 and 6,000 BC (based on several studies as detailed in text); colour = alluviation
Plate 230
582. Tentative scheme of alluviation in the Mediterranean region for the period between 6,000 and 4,000 BC (based on several studies as detailed in text); colour = alluviation, s = dated using sherds, r = radiocarbon date
583. Tentative scheme of alluviation in the Mediterranean region for the period between 4,000 and 1,000 BC (based on several studies as detailed in text); colour = alluviation, s = dated using sherds, r = radiocarbon date

Plate 231

584. Tentative scheme of alluviation in the Mediterranean region for the period between 1000 BC until now (based on several studies as detailed in text); colour = alluviation, s = dated by the occurrence of sherds, r = radiocarbon date, l = lichenometry
Fig. 1: The Vita-Finzi model (Higgs et al. 1966: fig.15).
1. In Palaeolithic times: stream flows over bedrock: patches of soils on hills
2. Frost action and erosion of hill soil leads to alluvial fan development and to aggradation in valley bottoms
3. The resulting deposit is trenched
4. Renewed aggradation in historical times
5. Streams downcutting leaves valley-floor alluvium as flat benches
Fig. 2: Diagram of destabilisation of slopes by climatic change or human impact (adapted from van Andel 1986: fig. 6)
Fig. 3: Plot of Holocene alluvial units in Britain showing thickness of alluvium and lithofacies type. The frequency maxima of dated alluvial units deposited since 5000 years BP are shown by shading (Macklin et al. 1993: fig.4).

Fig. 4: Regional correlations among the Holocene alluvial records of Wolf Creek and the Kansas, Republican, Pawnee and South Loup rivers. A: alluviation, EN: entrenchment, ER: erosion, U: unreported (Abrogast et al. 1994: fig. 4).
Fig. 5: Summary scheme of several variables that might have had impact on the evolution of the Cypriot Holocene landscape
Fig. 6: Geological map of Cyprus (Pantazis 1969: fig. 3)
Fig. 7: The Western Cyprus Geo-archaeological Survey area: investigated rivers and soil sections indicated.
Fig. 8: Three sherds dated by typology (EZD1: 15th/16th century, TA105: Late Roman/Early Byzantine; KIS2: Late Roman/Early Byzantine). EZD1 is about 3 cm wide, 2 cm high. (picture E. Peltenburg)

Fig. 9: Lithic artefacts from the alluvial fan at Souskiou. The dated artefacts are underlined. Scale: approximately 1: 2.5
Fig. 10: Natural and 5 Gray glowing curves for sherd sample MA3.

Fig. 11: Natural Tl-glowing/5 Gray glowing curve. Plateau indicated between 325 and 375 °C.
Fig. 12: Sherds from section TA (Sarama-Teracha).

Fig. 13: Sherds from section TB (Sarama-Teracha): bag 2
Fig. 14: sherds from section TB (Sarama-Teracha): bag 6

Fig. 15: Sherd KAG from section KAGA (Agriokalamos) (size: 4.1 x 1.5 x 1 cm).

Fig. 16: artefacts from section EZA (Ezousas-Ayia Varvara)
Fig. 17: Rolled sherds from section EZD (Ezousas, Ayia Varvara)

Fig. 18: Sherds from section KIS1 (Dhlarizzos, Kithasi)

Fig. 19: Sherds from section KOL1
Fig. 20: Sherds from section PRI (Dhiarizzos, Prastio)

Fig. 21: Sherds from section XD (Xeropotamos)
Fig. 22: Dating precision of Tl-dated sherds

Fig. 23: Gammaspectrometry in the field at section SOA (Dhiarizzos, Souskiou).
Fig. 24: Map of investigated area along the Stavros-tis-Psokas (adapted from cadastral map XXXV.38 and topographic map 35.XXII). Numbers indicate pit numbers, patterning represents morphologic units.
1. Clayey silt
 2.5Y/5/2
 Matrix supported
 Clasts: few, chalcs, angular to sub-angular
 No grading
 Matrix supported

2. Silty sand
 2.5Y/6/3
 Matrix supported
 Clasts: few, angular to sub-angular, chalcs

3. Gravel in sand matrix
 2.5Y/6/3
 Clast supported
 Clasts: abundant, sub-rounded to sub-angular, shales, chalcs, diabase, basalt, sandstone
 Imbrication, orientation towards W
 Poorly sorted

4. Silty sand
 2.5Y/6/3
 Matrix supported
 Clasts: very few
 Well sorted

5. Gravel in sand matrix
 2.5Y/6/3
 Clast supported
 Clasts: abundant, sub-rounded to sub-angular, shales, chalcs, diabase, basalt, sandstone
 Imbrication, orientation towards W
 Poorly sorted

Fig. 25: Pit 8 (Stavros-tis-Psokas)

Fig. 26: Pit 8 (Stavros-tis-Psokas): organic matter content
Fig. 27: Pit 8 (Stavros-tis-Psokas)

Fig. 28: pH values pit 8
Particle size analysis: coarse fraction Pit 8

Fig. 29: Particle size analysis on samples from pit 8 (Stavros-tis-Psokas): coarse fraction

Fig. 30: Particle size analysis of sample 1, pit 8 (Stavros-tis-Psokas)

Fig. 31: Particle size analysis of sample 2, pit 8 (Stavros-tis-Psokas)
Fig. 32: Particle size analysis expressed in number percentages: samples 1 and 2 pit 8 (Stavros-tis-Psokas).

Fig. 33: Section TA (Stavros-tis-Psokas)
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
</table>
| 8. | Silty clay
Weak consistency
Colour: 10YR/5/3
Well sorted
No grading
Matrix supported
Clasts: few, small to medium |
| 7. | Silty clay
Weak consistency
Colour: 10YR/5/3
Well sorted
No grading
Matrix supported
Clasts: moderate, small to medium, chalks |
| 6. | Silty clay
Weak consistency
Colour: 10YR/6/3
Poorly sorted
Grading: upwardly fining
Matrix and clast supported
Clasts: abundant, medium to large, chalks |
| 5. | Silty clay
Weak consistency
Colour: 10YR/5/3
Poorly sorted
No grading
Matrix supported
Clasts: abundant, small to very large, chalks |
| 4. | Silty clay
Weak consistency
Colour: 10YR/6/2
Well sorted
Matrix supported
Clasts: few, very small, chalks |
| 3. | Silty clay
Weak consistency
Colour: 10YR/5/3
Well sorted
Massive structure
Matrix supported
Very well sorted
Clasts: few, very small to medium, chalks |
| 2. | Sandy silt
Weak consistency
Colour: 10YR/8/4, 10YR/4/4 and 10YR/3/4
Well sorted
Matrix supported
Clasts: moderate, very small to medium, whole |
| 1. | Silty clay
Weak consistency
Colour: 10YR/5/4
Well sorted
Matrix supported
Clasts: few, small to medium, whole, chalks |
Fig. 34: Section TA: drawing and description. Dates of sherds indicated on drawing.
Fig. 35: Organic matter content of samples from section TA (Stavros-tis-Psokas).

Fig. 36: Mass specific susceptibility of samples from section TA (Stavros-tis-Psokas).

Fig. 37: Frequency dependent susceptibility of samples from section TA (Stavros-tis-Psokas)
Fig. 38: pH of samples from section TA (Stavros-tis-Psokas).

Fig. 39: Lithology of the clasts in samples from section TA (Stavros-tis-Psokas).

Fig. 40: Shape of the clasts in samples from section TA (Stavros-tis-Psokas).
Fig. 41: Angularity of the clasts in samples from section TA (Stavros-tis-Psokas).

Fig. 42: Particle size distribution of the samples from section TA (Stavros-tis-Psokas): coarse fraction.

Fig. 43: Particle size distribution of sample TA1: small fraction
Fig. 44: Particle size distribution of sample TA2: small fraction

Fig. 45: Particle size distribution of sample TA3: small fraction

Fig. 46: Particle size distribution of sample TA4: small fraction

Fig. 47: Particle size distribution of sample TA7: small fraction
Fig. 48: Particle size distribution of sample TA8: small fraction.

Fig. 49: Section TB (Stavros-tis-Psokas).
<table>
<thead>
<tr>
<th></th>
<th>Silty clay</th>
<th>Weak consistency</th>
<th>Colour: 10YR/4/3</th>
<th>Matrix supported</th>
<th>Moderately sorted</th>
<th>No grading</th>
<th>Clasts: moderate, small, chalks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Silty clay</td>
<td>Weak consistency</td>
<td>Colour: 10YR/4/4</td>
<td>Matrix supported</td>
<td>Moderately sorted</td>
<td>No grading</td>
<td>Clasts: moderate, medium, chalks</td>
</tr>
<tr>
<td>2</td>
<td>Silty clay</td>
<td>Weak consistency</td>
<td>Colour: 10YR/4/3</td>
<td>Matrix supported</td>
<td>Poorly sorted</td>
<td>No grading</td>
<td>Clasts: moderate, small, chalks</td>
</tr>
<tr>
<td>3</td>
<td>Silty clay</td>
<td>Firm consistency</td>
<td>Colour: 2.5Y/5/3</td>
<td>No grading</td>
<td>Very well sorted</td>
<td></td>
<td>Clasts: very few</td>
</tr>
<tr>
<td>4</td>
<td>Silty clay</td>
<td>Firm consistency</td>
<td>Colour: 10YR/5/4</td>
<td>No grading</td>
<td>Well sorted</td>
<td>Matrix supported</td>
<td>Clasts: few, small, chalks</td>
</tr>
<tr>
<td>5</td>
<td>Sandy silt</td>
<td>Firm consistency</td>
<td>Colour: 10YR/4/3</td>
<td>Well sorted</td>
<td>Grading: pebbles - fine - pebbles</td>
<td>Matrix supported</td>
<td>Clasts: few, small, chalks</td>
</tr>
<tr>
<td>6</td>
<td>Silty clay</td>
<td>Firm consistency</td>
<td>Colour: 10YR/4/3</td>
<td>No grading</td>
<td>Moderately sorted</td>
<td>Matrix supported</td>
<td>Clasts: few, small to medium, chalks</td>
</tr>
<tr>
<td>7</td>
<td>Silty clay</td>
<td>Firm consistency</td>
<td>Colour: 10YR/4/3</td>
<td>No grading</td>
<td>Matrix supported</td>
<td>Clasts: few, small to medium, chalks</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 50: Section TB: drawing and description. Dates of sherds indicated on drawing.
Fig. 51: Organic matter content of samples from section TB (Stavros-tis-Psokas).

Fig. 52: Mass specific susceptibility of samples from section TB (Stavros-tis-Psokas).

Fig. 53: Frequency dependent susceptibility of samples from section TB (Stavros-tis-Psokas).
Fig. 54: pH of samples from TB (Stavros-tis-Psokas).

Fig. 55: Lithology of the clasts in samples from section TB (Stavros-tis-Psokas).

Fig. 56: Shape of the clasts in samples from section TB (Stavros-tis-Psokas).
Fig. 57: Angularity of the clasts from section TB (Stavros-tis-Psokas).

Fig. 58: Particle size distribution of the samples from section TB (Stavros-tis-Psokas).

Fig. 59: Particle size distribution sample TB6, fine fractions
Fig. 60: Particle size distribution of sample TB5, fine fractions

Fig. 61: Particle size distribution of sample TB4, fine fractions

Fig. 62: Particle size distribution of sample TB3, fine fractions

Fig. 63: Particle size distribution of sample TB1, fine fractions
Fig. 64: Particle size analysis (small fractions) expressed in number percentages for samples TB1, TB3 TB4, TB5 and TB6

Fig. 65: View over the Agriokalamos river valley from the archaeological site of Lemba-Lakkous. The arrow indicates the approximate location of the investigated sections.
Fig. 66: Map of the investigated area along the Agriokalamos (adapted from cadastral map XLV.49 and topographic map 45.XXVI & part of XXV). Location of investigated sections as indicated on map.
<table>
<thead>
<tr>
<th>No</th>
<th>Description</th>
<th>Consistency</th>
<th>Colour/Grading</th>
<th>Matrix</th>
<th>Clasts/Imbrication/Orientation</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Silt</td>
<td>Firm</td>
<td>10YR/6/3</td>
<td>No</td>
<td>No clasts</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>grading</td>
<td>Well sorted</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
<td>No bedding</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Silt</td>
<td>Firm</td>
<td>10YR/7/3</td>
<td>Very</td>
<td>Valley supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>well</td>
<td>with imbrication, s-wards</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sorted</td>
<td>orientation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Clasts</td>
<td>abundant, sub-angular to</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>rounded, whole</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Gravel in sand matrix</td>
<td>Firm</td>
<td>10YR/6/3</td>
<td>No</td>
<td>Mostly supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>grading</td>
<td>No grading</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No clasts</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Well sorted</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Gravel in sand matrix</td>
<td>Weak</td>
<td>10YR/6/3</td>
<td>Grading</td>
<td>Fining upwards and again</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>coarser from top to bottom</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No imbrication, no orientation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Clasts</td>
<td>abundant, small to medium,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>from rounded to sub-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>angular, whole</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Silt</td>
<td>Firm</td>
<td>10YR/7/2</td>
<td>No</td>
<td>Poorly sorted</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>grading</td>
<td>No grading</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No clasts</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Gravel in sand matrix</td>
<td>Weak</td>
<td>10YR/7/3</td>
<td>No</td>
<td>Poorly sorted</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>grading</td>
<td>No grading</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No clasts</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Silt</td>
<td>Firm</td>
<td>10YR/6/4</td>
<td>No</td>
<td>Poorly sorted</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>grading</td>
<td>No grading</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No clasts</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Silty clay</td>
<td>Firm</td>
<td>7.5YR/7/3</td>
<td>No</td>
<td>No clasts</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Silty sand</td>
<td>Firm</td>
<td>10YR/6/4</td>
<td>Matrix</td>
<td>supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No clasts</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Clasts</td>
<td>abundant, sub-angular to</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>rounded, whole</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Sandy silt</td>
<td>Firm</td>
<td>10YR/6/4</td>
<td>Matrix</td>
<td>supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No clasts</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Clasts</td>
<td>abundant, small to medium,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>rounded to sub-rounded, whole</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Clayey silt</td>
<td>Firm</td>
<td>5YR/6/4</td>
<td>Matrix</td>
<td>supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Well sorted</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Clasts</td>
<td>small</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sub-rounded</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Sand</td>
<td>Weak</td>
<td>7.5YR/5/4</td>
<td>Clast</td>
<td>supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>supported</td>
<td>Imbrication, s-ward</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>orientation</td>
<td>orientation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Clasts</td>
<td>abundant, very small to medium,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>rounded to sub-rounded, whole</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Sandy silt</td>
<td>Firm</td>
<td>7.5YR/6/4</td>
<td>Matrix</td>
<td>supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Clasts: very few, small,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>rounded, whole</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Sandy silt</td>
<td>Firm</td>
<td>7.5YR/6/4</td>
<td>Matrix</td>
<td>supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Clasts: very few, small,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>rounded, whole</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 67: Section KAGA (Agriokalamos): drawing and description. Date and location of sherd KAG indicated on drawing.

Fig. 68: Section KAGA (Agriokalamos).
Fig. 69: Detail of exact location of sherd KAG in section KAGA (Agriokalamos) as indicated by black cross.

Fig. 70: Detail of gully (unit KAGB11) in section KAGB (Agriokalamos).
<table>
<thead>
<tr>
<th>1. Sandy silt</th>
<th>9. Gravel in silty sand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour: 2.5 Y/6/3</td>
<td>Colour: 2.5Y/7/3</td>
</tr>
<tr>
<td>Weak consistency</td>
<td>Weak consistency</td>
</tr>
<tr>
<td>Well sorted, no grading</td>
<td>Well sorted</td>
</tr>
<tr>
<td>Matrix supported</td>
<td>Some grading: slightly fining upwards</td>
</tr>
<tr>
<td>No imbrication</td>
<td>Poorly sorted</td>
</tr>
<tr>
<td>Clasts: moderate, small, sub-angular, whole</td>
<td>Clasts: abundant, small to medium, sub-rounded, whole</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Sandy silt</th>
<th>10. Silt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weak consistency</td>
<td>Colour: 2.5Y/7/3</td>
</tr>
<tr>
<td>Colour: 2.5 Y/7/3</td>
<td>Firm consistency</td>
</tr>
<tr>
<td>Matrix supported</td>
<td>Very well sorted</td>
</tr>
<tr>
<td>Clasts: moderate, small to medium, sub-angular, whole</td>
<td>No grading</td>
</tr>
<tr>
<td></td>
<td>Matrix supported</td>
</tr>
<tr>
<td></td>
<td>Clasts: very few, very small, sub-angular, whole</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour 2.5Y/7/3</td>
<td>Colour: 10YR/7/3</td>
</tr>
<tr>
<td>Clast supported</td>
<td>Poorly sorted</td>
</tr>
<tr>
<td>Well sorted</td>
<td>Grading: from small to large to small stones</td>
</tr>
<tr>
<td>No grading</td>
<td>Imbrication, S-ward orientation</td>
</tr>
<tr>
<td>No imbrication</td>
<td>Clasts: abundant, fine to large, sub-rounded, whole</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. Silt</th>
<th>12. Sandy silt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour: 2.5Y/7/2</td>
<td>Sharp boundary with unit 12</td>
</tr>
<tr>
<td>Well sorted</td>
<td>Colour: 10YR/6/3</td>
</tr>
<tr>
<td>Firm consistency</td>
<td>Firm consistency</td>
</tr>
<tr>
<td>Well sorted</td>
<td>Well sorted</td>
</tr>
<tr>
<td>No grading</td>
<td>No grading</td>
</tr>
<tr>
<td>Matrix supported</td>
<td>Matrix supported</td>
</tr>
<tr>
<td>Clasts: very few, very small, sub-angular, whole</td>
<td>Clasts: very few, sub-angular, small, shattered in situ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. Gravel in sand matrix</th>
<th>13. Clayey silt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour: 2.5 Y/5/3</td>
<td>Clear undulating boundary with unit 12</td>
</tr>
<tr>
<td>Clast supported</td>
<td>Colour: 10YR/7/3</td>
</tr>
<tr>
<td>Well sorted</td>
<td>Firm consistency</td>
</tr>
<tr>
<td>Firm consistency</td>
<td>Well sorted</td>
</tr>
<tr>
<td>Well sorted</td>
<td>No grading</td>
</tr>
<tr>
<td>No grading</td>
<td>Matrix supported</td>
</tr>
<tr>
<td>Matrix supported</td>
<td>Clasts: very few, very small, sub-angular, shattered in situ</td>
</tr>
<tr>
<td>Clasts: abundant, no imbrication, very small, sub-angular</td>
<td>Clasts: few, very small to medium, sub-rounded, whole</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour: 19YR/4/3</td>
<td>Clear, undulating boundary with unit 13</td>
</tr>
<tr>
<td>Firm consistency</td>
<td>Colour: 2.5Y/7/3</td>
</tr>
<tr>
<td>Well sorted</td>
<td>Firm consistency</td>
</tr>
<tr>
<td>No grading</td>
<td>Matrix supported</td>
</tr>
<tr>
<td>Matrix supported</td>
<td>Clasts: very few, very small, sub-angular, shattered in situ</td>
</tr>
<tr>
<td>Clasts: few, very small to medium, sub-rounded, whole</td>
<td>Clasts: few, medium, sub-angular, whole</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. Clayey silt</th>
<th>15. Clayey silt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour: 2.5Y/6/4</td>
<td>Clear, undulating boundary with unit 14</td>
</tr>
<tr>
<td>Firm consistency</td>
<td>Colour: 5Y/7/2</td>
</tr>
<tr>
<td>Well sorted</td>
<td>Firm consistency</td>
</tr>
<tr>
<td>No grading</td>
<td>Well sorted</td>
</tr>
<tr>
<td>Matrix supported</td>
<td>No grading</td>
</tr>
<tr>
<td>No imbrication</td>
<td>Matrix supported</td>
</tr>
<tr>
<td>Clasts: very few, very small, sub-angular, whole</td>
<td>No imbrication</td>
</tr>
<tr>
<td>Clasts: moderate, small, sub-angular, whole</td>
<td>Clasts: few, medium, sub-angular, whole</td>
</tr>
</tbody>
</table>
Fig. 71: Drawing and description of section KAGB (Agriokalamos).
Fig. 72: Picture of section KAGB (trowel as scale).

Fig. 73: Organic matter content of samples from section KAGB (Agriokalamos)
Fig. 74: Mass specific susceptibility of samples from section KAGB (Agriokalamos).

Fig. 75: Frequency dependent susceptibility of samples from section KAGB (Agriokalamos).

Fig. 76: pH of samples from section KAGB (Agriokalamos).
Fig. 77: Lithology of the clasts in samples from section KAGB (Agriokalamos).

Fig. 78: Shape of the clasts in samples from section KAGB (Agriokalamos).

Fig. 79: Angularity of the clasts in samples from section KAGB (Agriokalamos).
Fig. 80: Particle size distribution (coarse fraction) of the samples from section KAGB (Agriokalamos).

Fig. 81: Particle size distribution of sample KAGB9, small fractions

Fig. 82: Particle size distribution of sample KAGB8, small fractions
Fig. 83: Particle size distribution of sample KAGB7, small fractions

Fig. 84: Particle size distribution of sample KAGB6, small fractions

Fig. 85: Particle size distribution of sample KAGB5, small fractions

Fig. 86: Particle size distribution of sample KAGB3, small fractions
Fig. 87: Particle size distribution of sample KAGB2, small fractions

Fig. 88: Particle size distribution of sample KAGB1, small fractions

Fig. 89: Particle size analysis results (small fractions) expressed in number percentages for samples from section KAGB
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Colour</th>
<th>Consistency</th>
<th>Sorting</th>
<th>Matrix</th>
<th>Clasts Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Grass – impossible to sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Clayey silt</td>
<td>10YR/6/3</td>
<td>Firm</td>
<td>Moderately sorted</td>
<td>Matrix supported</td>
<td>Clasts: rare, medium, sub-rounded</td>
</tr>
<tr>
<td>3</td>
<td>Clayey silt</td>
<td>7.5YR/7/2</td>
<td>Massive</td>
<td>Moderately sorted</td>
<td>Matrix supported</td>
<td>Clasts: very few, small, sub-rounded, small to medium</td>
</tr>
<tr>
<td>4</td>
<td>Gravel in coarse sand</td>
<td>10YR/7/3</td>
<td>Moderate consistency</td>
<td>Poorly sorted</td>
<td>Matrix supported</td>
<td>Clasts: abundant, sub-rounded, from very small to large</td>
</tr>
<tr>
<td>5</td>
<td>Clayey silt</td>
<td>10YR/7/2</td>
<td>Firm consistency</td>
<td>Well sorted</td>
<td>Matrix supported</td>
<td>Clasts: very few, small, sub-rounded to rounded</td>
</tr>
<tr>
<td>6</td>
<td>Silty sand</td>
<td>10YR/6/3</td>
<td>Weak consistency</td>
<td>Moderately sorted</td>
<td>Matrix supported</td>
<td>Clasts: common, small, sub-rounded</td>
</tr>
<tr>
<td>7</td>
<td>Silty clay</td>
<td>10YR/8/2</td>
<td>Firm consistency</td>
<td>Matrix supported</td>
<td>No grading</td>
<td>Clasts: rare, medium, sub-rounded</td>
</tr>
<tr>
<td>8</td>
<td>Coarse sand</td>
<td>10YR/6/4</td>
<td>Weak consistency</td>
<td>Moderately sorted</td>
<td>Matrix supported</td>
<td>Clasts: abundant, sub-rounded to rounded, small to medium</td>
</tr>
<tr>
<td>9</td>
<td>Gravel in sandy silt</td>
<td>2.5Y/6/4</td>
<td>Firm consistency</td>
<td>Poorly sorted</td>
<td>Matrix supported</td>
<td>Clasts: moderate, medium, sub-angular</td>
</tr>
<tr>
<td>10</td>
<td>Sandy silt</td>
<td>5Y/8/1 and 5Y/7/2</td>
<td>Firm consistency</td>
<td>Matrix supported</td>
<td>Clasts: common, sub-rounded, small to large, sub-rounded, rip-up clasts</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Gravel in sand matrix</td>
<td>Multi-coloured</td>
<td>Weak consistency</td>
<td>Matrix supported</td>
<td>Clasts: abundant, sub-rounded to sub-angular, very small to medium</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Clayey silt</td>
<td>7.5YR/6/4</td>
<td>Firm consistency</td>
<td>Matrix supported</td>
<td>Clasts: few, medium, angular</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 90: Drawing and description of section KAGC (Agriokalamos).
Fig. 91: Picture of section KAGC (Agriokalamos).

Fig. 92: Detail of unit KAGC9 with rip-up clasts and unit KAGC10.
Fig. 93: Organic matter content of samples from section KAGC (Agriokalamos).

Fig. 94: Mass specific susceptibility of samples from section KAGC (Agriokalamos).

Fig. 95: Frequency dependent susceptibility of samples from section KAGC (Agriokalamos).
Fig. 96: pH of samples from section KAGC (Agriokalamos).

Fig. 97: Lithology of the clasts in samples from section KAGC (Agriokalamos).

Fig. 98: Shape of the clasts in samples from section KAGC (Agriokalamos).
Fig. 99: Angularity of the clasts from section KAGC (Agriokalamos).

Fig. 100: Particle size distribution (coarse fraction) of the samples from section KAGC (Agriokalamos).

Fig. 101: Particle size distribution of sample KAGC11, small fractions
Fig. 102: Particle size distribution of sample KAGC9, small fractions

Fig. 103: Particle size distribution of sample KAGC8, small fractions

Fig. 104: Particle size distribution of sample KAGC7, small fractions

Fig. 105: Particle size distribution of sample KAGC6, small fractions
Fig. 106: Particle size distribution of sample KAGC5, small fractions

Fig. 107: Particle size distribution of sample KAGC4, small fractions

Fig. 108: Particle size distribution of sample KAGC3, small fractions

Fig. 109: Particle size distribution of sample KAGC2, small fractions
Fig. 110: Particle size analysis results (small fractions) expressed in number percentages for samples from section KAGC.

Fig. 111: Picture of section KAGD (Agriokalamos)
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th></th>
<th>Description</th>
</tr>
</thead>
</table>
| 1 | grass layer — impossible to sample | 10| Sandy silt
 Colour: 7.5YR/5/4
 Weak consistency
 Well sorted
 Clasts: few, small to medium, sub-angular to sub-rounded, chalks |
| 2 | Clayey silt
 Colour: 5YR/5/R
 Very well sorted
 No grading
 Clasts: few, small to medium, silicified chalks, whole, sub-angular to sub-angular
 Massive structure | 11| Sandy silt
 Colour: 7.5 YR/7/2
 Firm consistency
 Very well sorted
 Clasts: few, very small to medium, sub-rounded to sub-angular |
| 3 | Gravel in silt matrix
 Colour: 5Y/7/3
 Weak consistency
 Poorly sorted
 Grading: upwards coarsening
 Clasts: abundant, small to very large, sub-rounded to sub-angular, whole | 12| Clayey silt
 Colour: 7.5YR/7/2
 Weak consistency
 Well sorted
 Matrix supported
 Clasts: few, sub-rounded, whole, small, silicified chalks |
| 4 | Clayey silt
 Colour: 5YR/6/4
 Very well sorted
 Few clasts | 13| Silty sand
 Colour: 7.5YR/7/2
 Weak consistency
 Moderate sorted
 Matrix supported
 Clasts: moderate, small to medium, rip-up clasts |
| 5 | Clayey silt
 Colour: 5YR/6/4
 Very well sorted
 Few clasts | 14| Sandy silt
 Colour: 10YR/4/2 and 10YR/7/6
 Weak consistency
 Very well sorted
 Matrix supported
 Clasts: few, small to medium, sub-rounded, silicified chalks |
| 6 | Gravel in silty sand
 Colour: 7.5YR/6/4
 Weak consistency
 W-ward orientation
 Well sorted
 Clast supported
 Clasts: abundant, sub-rounded to sub-angular, small to medium, whole, silicified chalks | 15| Clayey silt
 Colour: 7.5 YR/4/4
 Weak consistency
 Very well sorted
 No grading
 Matrix supported
 Clasts: few, very small to small, sub-angular to sub-rounded, silicified chalks
 Prismatic structure |
| 7 | Sandy silt
 Colour: 7.5 YR/6/4
 Weak consistency
 Very well sorted
 Matrix supported
 Clasts: very few, very small
 Massive structure | 16| Gravel in silt matrix
 Colour: 5Y/4/2 and 10YR/7/6
 Weak consistency
 Poorly sorted
 No grading
 Clast supported
 Clasts: abundant, sub-rounded to sub-angular, medium to large, rip-up clasts |
| 8 | Clayey silt
 Colour: 7.5 YR/6/4
 Weak consistency
 Very well sorted
 Matrix supported
 Clasts: very few, small to medium, silicified chalks, sub-angular to sub-rounded | 17| Silty sand
 Colour: 5Y/4/2 and 10YR/7/6
 Weak consistency
 Very well sorted
 No grading
 Matrix supported
 Clasts: very few, small, whole, sub-angular |
| 9 | Sandy silt
 Colour: 7.5 YR/6/3
 Weak consistency
 Very well sorted
 Matrix supported
 Clasts: very few, sub-rounded, small to medium, silicified chalks | 18| Silty clay
 Colour: 7.5 YR/6/4
 Very well sorted
 No grading
 Clasts: none
 Massive structure |
Fig. 112: Drawing and description of section KAGD (Agriokalamos).
Fig. 113: Organic matter content of samples from section KAGD (Agriokalamos).

Fig. 114: Mass specific susceptibility of samples from section KAGD (Agriokalamos).

Fig. 115: Frequency dependent susceptibility of samples from section KAGD (Agriokalamos).
Fig. 116: pH of samples from section KAGD (Agriokalamos)

Fig. 117: Lithology of clasts in samples from section KAGD (Agriokalamos).

Fig. 118: Shape of the clasts in samples from section KAGD (Agriokalamos)
Fig. 119: Angularity of the clasts in the samples from section KAGD (Agriokalamos).

Fig. 120: Particle size distribution (coarse fraction) of the samples from section KAGD (Agriokalamos).

Fig. 121: Particle size distribution for sample KAGD18, small fractions
Fig. 122: Particle size distribution for sample KAGD16, small fractions

Fig. 123: Particle size distribution for sample KAGD15, small fractions

Fig. 124: Particle size distribution for sample KAGD14, small fractions

Fig. 125: Particle size distribution for sample KAGD13, small fractions
Fig. 126: Particle size distribution for sample KAGD11, small fractions

Fig. 127: Particle size distribution for sample KAGD10, small fractions

Fig. 128: Particle size distribution for sample KAGD9, small fractions

Fig. 129: Particle size distribution for sample KAGD8, small fractions
Particle size distribution for sample KAGD7, small fractions

Fig. 130

Particle size distribution for sample KAGD6, small fractions

Fig. 131

Particle size distribution for sample KAGD5, small fractions

Fig. 132

Particle size distribution for sample KAGD4, small fractions

Fig. 133
Fig. 134: Particle size analysis results (small fractions) expressed in number percentages for samples from section KAGD.

Fig. 135: Picture of section KOL1 (Dhiarizzos)
Fig. 136: Location map of sections KOL1 and KOL2 (Dhiarizzos) (map adapted from cadastral map LI.48 and topographic map 51.XXIV)
1. Fine silt
 10YR/6/2
 Clasts: few, rounded and sub-rounded
 Granular soil structure
 Well sorted

2. Gravel in coarse sand matrix
 7.5 YR/6/2
 Moderately sorted
 Clast supported
 Clasts: abundant, very small to large, rounded and sub-rounded
 Grading: fining in middle of unit, larger stones near boundary with unit 3
 Imbrication, S-ward orientation

3. Gravel in coarse sand matrix
 2.5Y/7/2
 Clast supported
 Clasts: abundant, sub-rounded and rounded, very small to very large
 Imbrication, S-ward orientation

4. Gravel in coarse sand matrix
 10YR/6/3
 Clast supported
 Clasts: abundant, sub-rounded, rounded and sub-angular,
 Medium to large
 Imbrication, S-ward orientation
Fig. 137: Drawing and description of section KOL1 (Dhiarizzos). Dated sherds indicated on drawing.

Fig. 138: Organic matter content of samples from section KOL1 (Dhiarizzos)
Fig. 139: Mass specific susceptibility of samples from section KOL1 (Dhiarizzos)

Fig. 140: Frequency dependent susceptibility of samples from section KOL1 (Dhiarizzos)

Fig. 141: pH of samples from section KOL1 (Dhiarizzos)

Fig. 142: Lithology of clasts in samples from section KOL1 (Dhiarizzos)
Fig. 143: Shape of the clasts in samples from KOL1 (Dhiarizzos)

Fig. 144: Angularity of clasts in samples from KOL1 (Dhiarizzos)

Fig. 145: Particle size distribution (coarse fraction) of the samples from section KOL1 (Dhiarizzos)

Fig. 146: Particle size distribution of sample KOL1.4, small fractions
Fig. 147: Particle size distribution of sample KOL1.3, small fractions

Fig. 148: Particle size distribution of sample KOL1.2, small fractions

Fig. 149: Particle size distribution of sample KOL1.1, small fractions

Fig. 150: Particle size analysis results (small fractions) represented in number percentages for samples from section KOL1
Fig. 151: Drawing and description of section KOL2 (Dhiarizzos)
Fig. 152: picture of section KOL2 (Dhiarizzos)

Fig. 153: Organic matter content of samples from section KOL2 (Dhiarizzos)
Fig. 154: Mass specific susceptibility of samples from section KOL2 (Dhiarizzos)

Fig. 155: Frequency dependent susceptibility of samples from section KOL2 (Dhiarizzos)

Fig. 156: pH of samples from section KOL2 (Dhiarizzos)
Fig. 157: Lithology of the clasts in samples from section KOL2 (Dhiarizzos)

Fig. 158: Shape of the clasts in samples from section KOL2 (Dhiarizzos)

Fig. 159: Angularity of the clasts in samples from section KOL2 (Dhiarizzos)
Fig. 160: Particle size distribution (coarse fraction) of the samples from section KOL2 (Dhiarizzos)

Fig. 161: Particle size distribution (small fractions) of sample KOL2.5 deriving from unit KOL2.3

Fig. 162: Particle size distribution (small fractions) of sample KOL2.4 deriving from unit KOL2.3
Fig. 163: Particle size distribution (small fractions) of sample KOL2.3

Fig. 164: Particle size distribution (small fractions) of sample KOL2.2

Fig. 165: Particle size distribution (small fractions) of sample KOL2.1

Fig. 166: Particle size analysis results (small fractions) from section KOL2 represented in number percentages

Plate 67
Fig. 167: Location map of sections SOA, SOB, SOC and SOD (adapted from cadastral LII.25 and topographic map 52.1X).
Fig. 168: Overview sketch of the alluvial fan at Souskiou. Investigated sections SOA and SOB indicated. (humans as scale)
Fig. 169: Overview of the Dhiarizzos river valley. Souskiou village is built on the alluvial fan.

Fig. 170: Section SOA (Dhiarizzos)
<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Firm consistency</th>
<th>Well sorted</th>
<th>Massif</th>
<th>No clasts</th>
<th>Grading</th>
<th>Matrix supported</th>
<th>Clasts:</th>
<th>Consistency</th>
<th>Sorted</th>
<th>Bedding</th>
<th>Clasts:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Inorganic sandy silt</td>
<td>Poorly sorted</td>
<td>No grading</td>
<td></td>
<td></td>
<td></td>
<td>Clast supported</td>
<td>abundant, very small to small, silicified chalks & cherts, angular-sub-angular</td>
<td></td>
<td>Poorly sorted</td>
<td>No grading</td>
<td>No bedding</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>Poorly sorted</td>
<td>No grading</td>
<td></td>
<td></td>
<td></td>
<td>Clast supported</td>
<td>abundant, angular and sub-angular, medium, whole, silicified chalks & some cherts</td>
<td></td>
<td>Poorly sorted</td>
<td>No grading</td>
<td>No bedding</td>
</tr>
<tr>
<td>3.</td>
<td>Sandy silt</td>
<td>Weak consistency</td>
<td>No grading</td>
<td></td>
<td></td>
<td></td>
<td>Matrix supported</td>
<td>Clast: few, small, sub-rounded & sub-angular, whole, silicified chalks and some cherts</td>
<td></td>
<td>Weak consistency</td>
<td>No grading</td>
<td>No bedding</td>
</tr>
<tr>
<td>4.</td>
<td>Inorganic coarse sand</td>
<td>Well sorted</td>
<td>Massive</td>
<td></td>
<td></td>
<td></td>
<td>Clast: rare</td>
<td>Clast: abundant, small, angular, silicified chalks</td>
<td></td>
<td>Weak consistency</td>
<td>Poorly sorted</td>
<td>No bedding</td>
</tr>
<tr>
<td>5.</td>
<td>Silt</td>
<td>Very well sorted</td>
<td>No grading</td>
<td></td>
<td></td>
<td></td>
<td>No bedding</td>
<td>Clast: very few, very small, sub-angular, silicified chalk, whole</td>
<td></td>
<td>Weak consistency</td>
<td>Very well sorted</td>
<td>No bedding</td>
</tr>
<tr>
<td>6.</td>
<td>Tiny gravel layer in silt matrix</td>
<td>Poorly sorted</td>
<td>No grading</td>
<td></td>
<td></td>
<td></td>
<td>Clast: medium, silicified chalk, whole</td>
<td>Clast: abundant, medium, angular and sub-angular, whole, silicified chalks and limestone</td>
<td></td>
<td>Poorly sorted</td>
<td>No grading</td>
<td>Clast: abundant, small to medium, sub-rounded, silicified chalks & some cherts</td>
</tr>
<tr>
<td>7.</td>
<td>Silt</td>
<td>Weak consistency</td>
<td>No grading</td>
<td></td>
<td></td>
<td></td>
<td>Clast: very few, small, SA, whole, limestone and other</td>
<td>Clast: very few, small, SA, whole, limestone and other</td>
<td></td>
<td>Weak consistency</td>
<td>Well sorted</td>
<td>No grading</td>
</tr>
<tr>
<td>8.</td>
<td>Same as 7 but different colour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Clast:</td>
<td></td>
<td></td>
<td></td>
<td>Clast:</td>
</tr>
<tr>
<td>9.</td>
<td>Gravel in sandy silt</td>
<td>Poorly sorted</td>
<td>No grading</td>
<td></td>
<td></td>
<td></td>
<td>Clast supported</td>
<td>Clast: abundant, angular and sub-angular, medium, whole, silicified chalks & some cherts</td>
<td></td>
<td>Poorly sorted</td>
<td>No grading</td>
<td>No bedding</td>
</tr>
<tr>
<td>10.</td>
<td>Sandy silt</td>
<td>Weak consistency</td>
<td>No grading</td>
<td></td>
<td></td>
<td></td>
<td>Matrix supported</td>
<td>Clast: few, small, silicified chalks</td>
<td></td>
<td>Weak consistency</td>
<td>No grading</td>
<td>No bedding</td>
</tr>
<tr>
<td>11.</td>
<td>Gravel in silt matrix</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Clast:</td>
<td>Clast: abundant, small to medium, sub-rounded & sub-angular, whole, mostly silicified chalks</td>
<td></td>
<td>Poorly sorted</td>
<td>Some grading</td>
<td>No bedding</td>
</tr>
<tr>
<td>12.</td>
<td>Sandy silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Matrix supported</td>
<td>Clast:</td>
<td></td>
<td></td>
<td></td>
<td>Clast:</td>
</tr>
<tr>
<td>13.</td>
<td>Gravel in silty sand matrix</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Matrix supported</td>
<td>Clast:</td>
<td></td>
<td></td>
<td></td>
<td>Clast:</td>
</tr>
<tr>
<td>14.</td>
<td>Silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Matrix supported</td>
<td>Clast:</td>
<td></td>
<td></td>
<td></td>
<td>Clast:</td>
</tr>
<tr>
<td>15.</td>
<td>Gravel in sandy silt matrix</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Matrix supported</td>
<td>Clast:</td>
<td></td>
<td></td>
<td></td>
<td>Clast:</td>
</tr>
<tr>
<td>16.</td>
<td>Sandy silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Matrix supported</td>
<td>Clast:</td>
<td></td>
<td></td>
<td></td>
<td>Clast:</td>
</tr>
</tbody>
</table>
Fig. 171: Drawing and description of section SOA (Dhiarizzos)
Fig. 172: Organic matter content of samples from section SOA (Dhiarizzos)

Fig. 173: Mass specific susceptibility of samples from section SOA (Dhiarizzos)

Fig. 174: Frequency dependent susceptibility of samples from section SOA (Dhiarizzos)
Fig. 175: pH of samples from section SOA (Dhiarizzos)

Fig. 176: Lithology of the clasts in samples from section SOA (Dhiarizzos)

Fig. 177: Shape of the clasts in samples from section SOA (Dhiarizzos)
Fig. 178: Angularity of the clasts in samples from section SOA (Dhiarizzos)

Fig. 179: Particle size distribution (coarse fraction) of the samples from section SOA (Dhiarizzos)
Fig. 180: Particle size distribution of sample SOA1, small fractions

Fig. 181: Particle size distribution of sample SOA2, small fractions

Fig. 182: Particle size distribution of sample SOA3, small fractions

Fig. 183: Particle size distribution of sample SOA4, small fractions
Fig. 184: Particle size distribution of sample SOA9, small fractions

Fig. 185: Particle size distribution of sample SOA11, small fractions

Fig. 186: Particle size distribution of sample SOA12, small fractions

Fig. 187: Particle size distribution of sample SOA13, small fractions
Fig. 188: Particle size distribution of sample SOA14, small fractions

Fig. 189: Particle size distribution of sample SOA17, small fractions

Fig. 190: Particle size analysis results (small fractions) from section SOA, represented in number percentages
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>13. Silt</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weak consistency</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moderately sorted</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No grading</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Matrix supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clasts: few, 2cm, sub-angular, no imbrication, chalks</td>
<td></td>
</tr>
<tr>
<td>12. Silt</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weak consistency</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No grading</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Matrix supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clasts: few, small to medium, sub-angular, chalk</td>
<td></td>
</tr>
<tr>
<td>11. Sandy silt</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weak consistency</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Poorly sorted</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No grading</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No imbrication</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clasts: abundant, av. 2 cm, sub-angular, chalks</td>
<td></td>
</tr>
<tr>
<td>10. Silt</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weak consistency</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Very well sorted</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No grading</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Matrix supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clasts: rare, av. 3 cm, sub-angular, chalks</td>
<td></td>
</tr>
<tr>
<td>9. Ancient wall feature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Sandy silt</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weak consistency</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Well sorted</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No grading</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clasts: rare, sub-angular, whole, average 4 cm, chalks</td>
<td></td>
</tr>
<tr>
<td>7. Gravel in sandy silt</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weak consistency</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Matrix supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Poorly sorted</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No grading</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clasts: abundant, sub-angular, whole, average 3 cm</td>
<td></td>
</tr>
<tr>
<td>6. Silt</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weak consistency</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Poorly sorted</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Matrix supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clasts: few, sub-angular, whole, chalks and cherts</td>
<td></td>
</tr>
<tr>
<td>5. Gravel in silty sand</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Poorly sorted</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No grading</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Matrix supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Imbrication, orientation to N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clasts: abundant, sub-angular, 4 cm, whole, chalks, cherts</td>
<td></td>
</tr>
<tr>
<td>4. Silt</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weak consistency</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Well sorted</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No grading</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No imbrication</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clasts: rare, 2-12 cm, sub-angular, whole, chalks</td>
<td></td>
</tr>
<tr>
<td>3. Gravel in silty sand matrix</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weak consistency</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Poorly sorted</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No grading</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Matrix supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Imbrication, orientation to N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clasts: abundant, small to large, sub-angular, whole, chalks</td>
<td></td>
</tr>
<tr>
<td>2. Silt</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weak consistency</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Well sorted</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No grading</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Matrix supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No imbrication</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clasts: rare, small, silicified chalks and cherts</td>
<td></td>
</tr>
<tr>
<td>1. Gravel in silty sand</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Firm consistency</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10YR/8/3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Graded: fining upward sequence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Poorly sorted</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clast supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Imbrication, orientation to the N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clasts: abundant, medium, sub-angular, whole, silicified chalks and cherts</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 191: Drawing and description of section SOB (Dhiarizzos)
Fig. 192: Section SOB (Dhiarizzos) (length of section approximately 6 m)

Fig. 193: Lithology of the clasts in samples from section SOB (Dhiarizzos)
Fig. 194: Shapes of the clasts in samples from section SOB (Dhiarizzos)

Fig. 195: Angularity of the clasts in samples from section SOB (Dhiarizzos)

Fig. 196: Particle size distribution (coarse fractions) of some samples from section SOB (Dhiarizzos)
Fig. 197: Particle size distribution (small fractions) of sample SOB5

Fig. 198: Particle size distribution (small fractions) of sample SOB8

Fig. 199: Particle size distribution (small fractions) of sample SOB11

Fig. 200: Particle size distribution (small fractions) of sample SOB13
Fig. 201: Drawing and description of section SOC (Dhiarizzos)
Fig. 202: Organic matter content of samples from section SOC (Dhiarizzos)

Fig. 203: Mass specific susceptibility of samples from section SOC (Dhiarizzos)

Fig. 204: Frequency dependent susceptibility of samples from section SOC (Dhiarizzos)
Fig. 205: pH of samples from section SOC (Dhiarizzos)

Fig. 206: Lithology of the clasts in samples from section SOC (Dhiarizzos)

Fig. 207: Shape of the clasts in samples from section SOC (Dhiarizzos)
Fig. 208: Angularity of the clasts in samples from section SOC (Dhiarizzos)

Fig. 209: Particle size distribution (coarse fraction) of the samples from SOC (Dhiarizzos)

Fig. 210: Particle size distribution of sample SOC5, fine fractions
Fig. 211: Particle size distribution of sample SOC4, fine fractions

Fig. 212: Particle size distribution of sample SOC3, fine fractions

Fig. 213: Particle size distribution of sample SOC2, fine fractions

Fig. 214: Particle size distribution of sample SOC1, fine fractions
Fig. 215: Particle size analysis results (small fractions) of section SOC, represented in number percentages.

Fig. 216: Drawing and description of section SOD.

1. Clayey silt
 - No clasts
 - Moderate consistency

2. Gravel in silty sand matrix
 - Clasts: abundant, small to large, rounded and sub-rounded
 - Imbrication, SW-ward orientation
 - No grading
 - Clast supported

3. Clayey silt
 - No clasts
 - Moderate consistency

4. Gravel in silty sand matrix
 - Clasts: abundant, small, rounded and sub-rounded
 - Imbrication, SW-ward orientation
 - No grading
 - Poorly sorted
 - Clast supported

5. Gravel in sand matrix
 - Clasts: abundant, small to large, rounded and sub-rounded
 - Imbrication, SW-ward orientation
 - No grading
 - Poorly sorted
 - Clast supported
Fig. 217: Organic matter content of samples from section SOD (Dhiarizzos)

Fig. 218: Mass specific susceptibility of samples from section SOD (Dhiarizzos)

Fig. 219: Frequency dependent susceptibility of samples from section SOD (Dhiarizzos)
Fig. 220: pH of samples from section SOD (Dhiarizzos)

Fig. 221: Lithology of the stones in samples from section SOD (Dhiarizzos)

Fig. 222: Shape of the stones in samples from section SOD (Dhiarizzos)
Fig. 223: Angularity of the stones in samples from section SOD (Dhiarizzos)

Fig. 224: Particle size distribution (coarse fractions) of the samples from section SOD (Dhiarizzos)

Fig. 225: Particle size distribution of sample SOD6 (from unit SOD5), small fractions
Fig. 226: Particle size distribution of sample SOD4, small fractions

Fig. 227: Particle size distribution of sample SOD3, small fractions

Fig. 228: Particle size distribution of sample SOD2, small fractions

Fig. 229: Particle size distribution of sample SOD1, small fractions
Fig. 230: Particle size analysis results (small fractions) of section SOD, represented in number percentages

Fig. 231: Section PH (Dhiarizzos) (length of section approximately 2 meters)
1. Gravel in silty sand matrix
 10YR/6/2
 weak consistence
 clast supported
 poorly sorted
 no grading
 clasts: abundant, small to very large, sub-rounded to sub-angular
 imbrication, W-ward orientation
 granular soil structure

2. Gravel in coarse sand
 10YR/6/4
 weak consistence
 moderately sorted
 no grading
 clast supported
 clasts: abundant, very small to medium, sub-rounded
 imbrication, W-ward orientation
 granular sediment structure

3. Gravel in silty sand matrix
 10YR/6/3
 weak consistence
 poorly sorted
 no grading
 clast supported
 clasts: abundant, very small to very large, sub-angular to sub-rounded
 imbrication, W-ward orientation
 granular soil structure

Fig. 232: Drawing and description of section PH
Fig. 233: Organic matter content of samples from section PH (Dhiarizzos)

Fig. 234: Mass specific susceptibility of samples from section PH (Dhiarizzos)

Fig. 235: Frequency dependent susceptibility of samples from section PH (Dhiarizzos)

Fig. 236: pH of samples from section PH (Dhiarizzos)
Fig. 237: Lithology of the stones in samples from section PH (Dhiarizzos)

Fig. 238: Shape of the stones in samples from section PH (Dhiarizzos)

Fig. 239: Angularity of the stones in samples from section PH (Dhiarizzos)

Fig. 240: Particle size distribution (coarse fractions) of the samples from section PH (Dhiarizzos)

Plate 95
Fig. 241: Particle size distribution of sample PH3, small fractions

Fig. 242: Particle size distribution of sample PH2, small fractions

Fig. 243: Particle size distribution of sample PH1, small fractions

Fig. 244: Particle size analysis results (small fractions) of section PH, represented in number percentages.
Fig. 245: Location map of section PR1 (Dhiarizzos) (adapted from cadastral maps LII.5, LII.4 and topographic maps 52.IV and 52.V).
Fig. 246: Picture with indicated location (see arrow) of section PR1 (Dhiarizzos).

Fig. 247: Section PR1 (length of section approximately 2.1 m)
<table>
<thead>
<tr>
<th>1.</th>
<th>Sandy silt</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5Y/5/3</td>
<td>matrix supported</td>
</tr>
<tr>
<td>clasts: moderate, very small to medium, rounded to angular</td>
<td></td>
</tr>
<tr>
<td>no imbrication, no orientation</td>
<td></td>
</tr>
<tr>
<td>moderate sorting</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.</th>
<th>Silty clay</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5Y/5/3</td>
<td>matrix supported</td>
</tr>
<tr>
<td>clasts: few, very small to large, rounded to sub-angular</td>
<td></td>
</tr>
<tr>
<td>well sorted</td>
<td></td>
</tr>
<tr>
<td>no grading</td>
<td></td>
</tr>
<tr>
<td>no imbrication</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.</th>
<th>Medium sand</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5Y/6/3</td>
<td>matrix supported</td>
</tr>
<tr>
<td>clasts: abundant, very small to large, angular to rounded</td>
<td></td>
</tr>
<tr>
<td>moderately sorted</td>
<td></td>
</tr>
<tr>
<td>grading: large-small-large</td>
<td></td>
</tr>
<tr>
<td>no imbrication, W-ward orientation</td>
<td></td>
</tr>
<tr>
<td>granular soil structure</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.</th>
<th>Sandy silt</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5Y/6/3</td>
<td>matrix supported</td>
</tr>
<tr>
<td>clasts: few, small to large, sub-rounded to sub-angular</td>
<td></td>
</tr>
<tr>
<td>well sorted</td>
<td></td>
</tr>
<tr>
<td>no grading</td>
<td></td>
</tr>
<tr>
<td>massive soil structure</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5.</th>
<th>Sandy silt</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5Y/5/3</td>
<td>matrix supported</td>
</tr>
<tr>
<td>clasts: few, medium, sub-angular to sub-rounded</td>
<td></td>
</tr>
<tr>
<td>moderately sorted</td>
<td></td>
</tr>
<tr>
<td>no imbrication</td>
<td></td>
</tr>
<tr>
<td>no grading</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6.</th>
<th>Sandy silt</th>
</tr>
</thead>
<tbody>
<tr>
<td>10YR/5/2</td>
<td>matrix supported</td>
</tr>
<tr>
<td>clasts: very few, medium, sub-angular-sub-rounded</td>
<td></td>
</tr>
<tr>
<td>well sorted</td>
<td></td>
</tr>
<tr>
<td>no grading</td>
<td></td>
</tr>
<tr>
<td>no imbrication, no orientation</td>
<td></td>
</tr>
<tr>
<td>massive soil structure</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7.</th>
<th>Coarse sand</th>
</tr>
</thead>
<tbody>
<tr>
<td>10YR/2/6</td>
<td>clast supported</td>
</tr>
<tr>
<td>clasts: abundant, very small to large, rounded-sub-rounded</td>
<td></td>
</tr>
<tr>
<td>poorly sorted</td>
<td></td>
</tr>
<tr>
<td>no grading</td>
<td></td>
</tr>
<tr>
<td>imbrication: W-ward orientation</td>
<td></td>
</tr>
<tr>
<td>granular soil structure</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 248: Drawing and description of section PR1 (Dhiarizzos). Location of dated sherds indicated on drawing.
Fig. 249: Organic matter content of samples from section PR1 (Dhiarizzos)

Fig. 250: Mass specific susceptibility of samples from section PR1 (Dhiarizzos)

Fig. 251: Frequency dependent susceptibility of samples from section PR1 (Dhiarizzos)
Fig. 252: pH of samples from section PR1 (Dhiarizzos)

Fig. 253: Lithology of the stones in samples from section PR1 (Dhiarizzos)

Fig. 254: Shape of the stones in samples from section PR1 (Dhiarizzos)
Fig. 255: Angularity of the stones in samples from section PR1 (Dhiarizzos)

Fig. 256: Particle size distribution (coarse fractions) of the samples from section PR1 (Dhiarizzos)

Fig. 257: Particle size distribution of sample PR1.6, small fractions
Fig. 258: Particle size distribution of sample PR1.5, small fractions

Fig. 259: Particle size distribution of sample PR1.4, small fractions

Fig. 260: Particle size distribution of sample PR1.3, small fractions

Fig. 261: Particle size distribution of sample PR1.2, small fractions
Fig. 262: Particle size distribution of sample PR1.1, small fractions

Fig. 263: Particle size analysis results (small fractions) of section PR1, represented in number percentages

Fig. 264: Picture of section MA (Dhiarizzos)
Fig. 265: Location map of sections MA and MB (Dhiarizzos) (adapted from cadastral map LII.5, XLVI.61 and topographic maps 52.V and 46.XXIX)
Fig. 266: Drawing and description of section MA (Dhiarizzos). Location of dated sherds indicated on drawing.
Fig. 267: Organic matter content of samples from section MA (Dhiarizzos)

Fig. 268: Mass specific susceptibility of samples from section MA (Dhiarizzos)

Fig. 269: Frequency dependent susceptibility of samples from section MA (Dhiarizzos)

Fig. 270: pH of samples from section MA (Dhiarizzos)
Fig. 271: Lithology of the stones in samples from section MA (Dhiarizzos)

Fig. 272: Shape of the stones in samples from section MA (Dhiarizzos)

Fig. 273: Angularity of the stones in samples from section MA (Dhiarizzos)

Fig. 274: Particle size distribution (coarse fractions) of the samples from section MA (Dhiarizzos)
Fig. 275: Particle size distribution of sample MA3, small fractions

Fig. 276: Particle size distribution of sample MA2, small fractions

Fig. 277: Particle size distribution of sample MA1, small fractions
<table>
<thead>
<tr>
<th></th>
<th>Sandy silt</th>
<th></th>
<th>Sandy silt</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>weak consistency</td>
<td></td>
<td>weak consistency</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Colour: 10YR/5/2</td>
<td></td>
<td>Colour: 2.5Y/7/3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Well sorted</td>
<td></td>
<td>No grading</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Matrix supported</td>
<td></td>
<td>Matrix supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No imbrication</td>
<td></td>
<td>No imbrication</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No orientation</td>
<td></td>
<td>No orientation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clasts: moderate quantity, medium, whole, silicified chalks</td>
<td></td>
<td>Clasts: abundant, very small to small, sub-rounded</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Silty sand</th>
<th></th>
<th>Silty sand</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weak consistency</td>
<td></td>
<td>Weak consistency</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Colour: 10YR/8/2</td>
<td></td>
<td>Colour: 2.5Y/7/3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No grading</td>
<td></td>
<td>No grading</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Poorly sorted</td>
<td></td>
<td>Poorly sorted</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No bedding</td>
<td></td>
<td>No bedding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clast supported</td>
<td></td>
<td>Clast supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Imbrication, NW-ward orientation</td>
<td></td>
<td>No imbrication</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clasts: abundant, small to very large, whole-some shattered, silicified chalks</td>
<td></td>
<td>Clasts: rare, sub-angular, small, silicified chalks, whole</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Silty sand</th>
<th></th>
<th>Silty sand</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weak consistency</td>
<td></td>
<td>Weak consistency</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Colour: 2.5Y/6/8</td>
<td></td>
<td>Colour: 2.5Y/7/3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No grading</td>
<td></td>
<td>No grading</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Well sorted</td>
<td></td>
<td>Very well sorted</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No bedding</td>
<td></td>
<td>No bedding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Matrix supported</td>
<td></td>
<td>Clasts: rare, sub-angular, small to very large, silicified chalks/shale, whole</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Sandy silt</th>
<th></th>
<th>Silty sand</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>weak consistency</td>
<td></td>
<td>weak consistency</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No grading</td>
<td></td>
<td>Colour: 2.5Y/7/3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Well sorted</td>
<td></td>
<td>No grading</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No bedding</td>
<td></td>
<td>Poorly sorted</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clasts: abundant, small to very small, sub-rounded, silicified chalks</td>
<td></td>
<td>Clasts: rare, medium, whole, silicified chalks, sub-rounded</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Silty sand</th>
<th></th>
<th>Silty sand</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>weak consistency</td>
<td></td>
<td>weak consistency</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Colour: 2.5Y/6/3</td>
<td></td>
<td>Colour: 2.5Y/7/3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No grading</td>
<td></td>
<td>No grading</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Well sorted</td>
<td></td>
<td>Poorly sorted</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No bedding</td>
<td></td>
<td>Clast supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clasts: rare, small, sub-rounded, whole, silicified chalk</td>
<td></td>
<td>Clasts: abundant, small to large, sub-rounded, silicified chalks</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 278: Drawing and description of section MB (Dhiarizzos). Location of dated sherds indicated on drawing.
Fig. 279: Picture of section MB (Dhiarizzos). White papers mark the locations of sherds.

Fig. 280: Organic matter content of samples from section MB (Dhiarizzos)
Fig. 281: Mass specific susceptibility of samples from section MB (Dhiarizzos)

Fig. 282: Frequency dependent susceptibility of samples from section MB (Dhiarizzos)

Fig. 283: pH of samples from section MB (Dhiarizzos)
Fig. 284: Lithology of the stones in samples from section MB (Dhiarizzos)

Fig. 285: Shape of the stones in samples from section MB (Dhiarizzos)

Fig. 286: Angularity of the stones in samples from section MB (Dhiarizzos)
Fig. 287: Particle size distribution (coarse fractions) of the samples from section MB (Dhiarizzos)

Fig. 288: Particle size distribution of sample MB11, small fractions

Fig. 289: Particle size distribution of sample MB10, small fractions
Fig. 290: Particle size distribution of sample MB9, small fractions

Fig. 291: Particle size distribution of sample MB8, small fractions

Fig. 292: Particle size distribution of sample MB7, small fractions

Fig. 293: Particle size distribution of sample MB6, small fractions
Fig. 294: Particle size distribution of sample MB5, small fractions

Fig. 295: Particle size distribution of sample MB4, small fractions

Fig. 296: Particle size distribution of sample MB3, small fractions

Fig. 297: Particle size distribution of sample MB2, small fractions
Fig. 298: Particle size distribution of sample MB1, small fractions

Fig. 299: Particle size analysis results (small fractions) of section MB, represented in number percentages

Fig. 300: Picture showing the location of section KIS1 (Dhiarizzos) (see arrow) (length of section is approximately 3.4 m)
Fig. 301: Location map of section KIS1 (Dhiarizzos) (adapted from cadastral map XL.VI.54 and topographic map 46.XXX).
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>clayey silt 5YR/6/2</td>
</tr>
<tr>
<td></td>
<td>firm consistence</td>
</tr>
<tr>
<td></td>
<td>poorly sorted</td>
</tr>
<tr>
<td></td>
<td>matrix supported</td>
</tr>
<tr>
<td></td>
<td>no grading</td>
</tr>
<tr>
<td></td>
<td>clasts: moderate, very small to medium, sub-angular to sub-rounded</td>
</tr>
<tr>
<td></td>
<td>blocky structure</td>
</tr>
<tr>
<td></td>
<td>no imbrication</td>
</tr>
<tr>
<td>2.</td>
<td>clayey silt 10YR/7/2</td>
</tr>
<tr>
<td></td>
<td>firm consistence</td>
</tr>
<tr>
<td></td>
<td>clast supported</td>
</tr>
<tr>
<td></td>
<td>clasts: abundant, very small to large, sub-rounded</td>
</tr>
<tr>
<td></td>
<td>poorly sorted</td>
</tr>
<tr>
<td></td>
<td>some grading: upward coarsening</td>
</tr>
<tr>
<td></td>
<td>massive soil structure</td>
</tr>
<tr>
<td></td>
<td>imbrication, orientation towards S</td>
</tr>
<tr>
<td>3.</td>
<td>silty clay 10YR/7/2</td>
</tr>
<tr>
<td></td>
<td>firm consistency</td>
</tr>
<tr>
<td></td>
<td>matrix supported</td>
</tr>
<tr>
<td></td>
<td>clasts: few, small to large, sub-rounded</td>
</tr>
<tr>
<td></td>
<td>poorly sorted</td>
</tr>
<tr>
<td></td>
<td>no imbrication</td>
</tr>
<tr>
<td></td>
<td>massive soil</td>
</tr>
<tr>
<td>4.</td>
<td>coarse sand 10YR/7/2</td>
</tr>
<tr>
<td></td>
<td>firm consistence</td>
</tr>
<tr>
<td></td>
<td>clast supported</td>
</tr>
<tr>
<td></td>
<td>clasts: abundant, very small to very large, sub-rounded</td>
</tr>
<tr>
<td></td>
<td>no grading</td>
</tr>
<tr>
<td></td>
<td>slight imbrication, orientation towards S</td>
</tr>
<tr>
<td></td>
<td>massive soil structure</td>
</tr>
<tr>
<td>5.</td>
<td>sandy silt 10YR/7/2</td>
</tr>
<tr>
<td></td>
<td>firm consistence</td>
</tr>
<tr>
<td></td>
<td>matrix supported</td>
</tr>
<tr>
<td></td>
<td>clasts: moderate, sub-rounded-rounded, very small to large</td>
</tr>
<tr>
<td></td>
<td>no grading</td>
</tr>
<tr>
<td></td>
<td>moderately sorted</td>
</tr>
<tr>
<td></td>
<td>no imbrication, no orientation</td>
</tr>
<tr>
<td>6.</td>
<td>sandy clay 10YR/7/2</td>
</tr>
<tr>
<td></td>
<td>moderate consistence</td>
</tr>
<tr>
<td></td>
<td>clast supported</td>
</tr>
<tr>
<td></td>
<td>clasts: abundant, small to large, sub-rounded-rounded</td>
</tr>
<tr>
<td></td>
<td>moderately sorted</td>
</tr>
<tr>
<td></td>
<td>imbrication, orientation towards S</td>
</tr>
<tr>
<td></td>
<td>massive soil structure</td>
</tr>
<tr>
<td>7.</td>
<td>sandy clay 10YR/7/2</td>
</tr>
<tr>
<td></td>
<td>matrix supported</td>
</tr>
<tr>
<td></td>
<td>clasts: moderate, small to medium, sub-rounded</td>
</tr>
<tr>
<td></td>
<td>moderately sorted</td>
</tr>
<tr>
<td></td>
<td>no grading</td>
</tr>
<tr>
<td></td>
<td>no imbrication</td>
</tr>
</tbody>
</table>
Fig. 302: Drawing and description of section KIS1 (Dhiairizzo). Location of sherds indicated on drawing.
Fig. 303: Picture of section KIS1. White label cards indicate the location of sherds. The length of the section is 3.4 m.

Fig. 304: Organic matter content of samples from section KIS1 (Dhiarizzos)
Fig. 305: Mass specific susceptibility of samples from section KIS1 (Dhiarizzos)

Fig. 306: Frequency dependent susceptibility of samples from section KIS1 (Dhiarizzos)

Fig. 307: pH of samples from section KIS1 (Dhiarizzos)
Fig. 308: Lithology of the stones in samples from section KIS1 (Dhiarizzos)

Fig. 309: Shape of the stones in samples from section KIS1 (Dhiarizzos)

Fig. 310: Angularity of the stones in samples from section KIS1 (Dhiarizzos)
Fig. 311: Particle size distribution (coarse fraction) of the samples from section KIS1 (Dhiairizzos)

Fig. 312: Particle size distribution of sample KIS1.7

Fig. 313: Particle size distribution of sample KIS1.6
Fig. 314: Particle size distribution of sample KIS1.5

Fig. 315: Particle size distribution of sample KIS1.4

Fig. 316: Particle size distribution of sample KIS1.3
Fig. 317: Particle size distribution of sample KIS1.2

Fig. 318: Particle size distribution of sample KIS1.1

Fig. 319: Particle size analysis results (small fractions) from section KIS1, represented in number percentages
Fig. 320: location map of sections EZA, EZB and EZC (Ayia Varvara – Ezousas) (adapted from cadastral map LI.22 and topographic map 51.XIV)
<table>
<thead>
<tr>
<th></th>
<th>Silt</th>
<th></th>
<th>Silt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Silt</td>
<td>7</td>
<td>Silt</td>
</tr>
<tr>
<td></td>
<td>10YR/7/3</td>
<td></td>
<td>Compact</td>
</tr>
<tr>
<td></td>
<td>moderate consistence</td>
<td></td>
<td>7.5YR/7/2</td>
</tr>
<tr>
<td></td>
<td>matrix supported</td>
<td></td>
<td>strong consistence</td>
</tr>
<tr>
<td></td>
<td>clasts: few, angular to rounded, small to large</td>
<td></td>
<td>matrix supported</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>no clasts</td>
</tr>
<tr>
<td>2</td>
<td>Clayey silt</td>
<td>8</td>
<td>Clayey silt</td>
</tr>
<tr>
<td></td>
<td>7.5YR/6/3</td>
<td></td>
<td>Compact</td>
</tr>
<tr>
<td></td>
<td>moderate consistence</td>
<td></td>
<td>10YR/6/3</td>
</tr>
<tr>
<td></td>
<td>matrix supported</td>
<td></td>
<td>strong consistence</td>
</tr>
<tr>
<td></td>
<td>clasts: medium, angular to sub-rounded, small to medium</td>
<td></td>
<td>Matrix supported</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>no clasts</td>
</tr>
<tr>
<td>3</td>
<td>Clayey silt</td>
<td>9</td>
<td>Silty sand</td>
</tr>
<tr>
<td></td>
<td>7.5YR/6/4</td>
<td></td>
<td>10YR/6/3</td>
</tr>
<tr>
<td></td>
<td>moderate consistence</td>
<td></td>
<td>Weak consistence</td>
</tr>
<tr>
<td></td>
<td>matrix supported</td>
<td></td>
<td>Matrix supported</td>
</tr>
<tr>
<td></td>
<td>clasts: medium, angular to rounded, small to medium</td>
<td></td>
<td>Clasts none</td>
</tr>
<tr>
<td>4</td>
<td>Clayey silt</td>
<td>10</td>
<td>Sand</td>
</tr>
<tr>
<td></td>
<td>5YR/5/3</td>
<td></td>
<td>10YR/5/3</td>
</tr>
<tr>
<td></td>
<td>moderate consistence</td>
<td></td>
<td>Weak consistence</td>
</tr>
<tr>
<td></td>
<td>matrix supported</td>
<td></td>
<td>Clast supported</td>
</tr>
<tr>
<td></td>
<td>clasts: few, small, angular to rounded</td>
<td></td>
<td>Clasts: abundant, small, rounded</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Grading: sandy, pebbles, sandy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Imbrication, orientation W</td>
</tr>
<tr>
<td>5</td>
<td>Clayey silt</td>
<td>11</td>
<td>Sandy silt</td>
</tr>
<tr>
<td></td>
<td>10YR/6/3</td>
<td></td>
<td>10YR/6/3</td>
</tr>
<tr>
<td></td>
<td>Moderate consistence</td>
<td></td>
<td>Weak consistence</td>
</tr>
<tr>
<td></td>
<td>Clasts: none</td>
<td></td>
<td>Matrix supported</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Clasts: none</td>
</tr>
<tr>
<td>6</td>
<td>Clayey silt</td>
<td>12</td>
<td>Sand</td>
</tr>
<tr>
<td></td>
<td>10YR/7/2</td>
<td></td>
<td>10YR/5/3</td>
</tr>
<tr>
<td></td>
<td>moderate consistence</td>
<td></td>
<td>Weak consistence</td>
</tr>
<tr>
<td></td>
<td>matrix supported</td>
<td></td>
<td>Clast supported</td>
</tr>
<tr>
<td></td>
<td>clasts: none</td>
<td></td>
<td>Clasts: abundant, large-medium-very small</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Imbrication, orientation to W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No grading</td>
</tr>
</tbody>
</table>
Fig. 321: Drawing and description of section EZA (Ayia-Varvara – Ezousas). OSL-dates and dates of sherds indicated on drawing.
Fig. 322: Picture of section EZA (Ayia-Varvara- Ezousas) (length of the section is approximately 4 m)

Fig. 323: Organic matter content of samples from section EZA (Ezousas)
Fig. 324: Mass specific susceptibility of samples from section EZA (Ezousas)

Fig. 325: Frequency dependent susceptibility of samples from section EZA (Ezousas)

Fig. 326: pH of samples from section EZA
Fig. 327: Lithology of the stones in samples from section EZA (Ezousas)

Fig. 328: Shape of the stones in samples from section EZA (Ezousas)

Fig. 329: Angularity of the stones in samples from section EZA (Ezousas)
Fig. 330: particle size distribution (coarse fractions) of the samples from section EZA (Ezousas)

Fig. 331: Particle size distribution of sample EZA11, small fractions

Fig. 332: Particle size distribution of sample EZA10, small fractions
Fig. 333: Particle size analysis of sample EZA9, small fractions

Fig. 334: Particle size analysis of sample EZA8, small fractions

Fig. 335: Particle size analysis of sample EZA7, small fractions

Fig. 336: Particle size analysis of sample EZA6, small fractions
Fig. 337: Particle size analysis of sample EZA5, small fractions

Fig. 338: Particle size analysis of sample EZA4, small fractions

Fig. 339: Particle size analysis of sample EZA3, small fractions
Fig. 340: Particle size analysis of sample EZA2, small fractions

Fig. 341: Particle size analysis of sample EZA1, small fractions

Fig. 342: Particle size analysis results (small fractions) from section EZA, represented in number percentages: samples EZA2, EZA3, EZA8 and EZA10.
Fig. 343: Particle size analysis results (small fraction) from section EZA, represented in number percentages: samples EZA6, EZA7, EZA9, EZA1 and EZA11.

Fig. 344: Picture of section EZB (length of section is 4 m)
Fig. 345: Drawing and description of section EZB (Ezousas)
Fig. 346: Organic matter content of samples from section EZB (Ezousas)

Fig. 347: Mass specific susceptibility of samples from section EZB (Ezousas)

Fig. 348: Frequency dependent susceptibility of samples from section EZB (Ezousas)

Fig. 349: pH of samples from section EZB (Ezousas)
Fig. 350: Lithology of the stones from section EZB (Ezousas)

Fig. 351: Shape of the stones from section EZB (Ezousas)

Fig. 352: Angularity of the stones from section EZB (Ezousas)

Fig. 353: Particle size distribution (coarse fractions) of the samples from section EZB (Ezousas)
Fig. 354: Particle size distribution of sample EZB4, small fractions

Fig. 355: Particle size distribution of sample EZB3, small fractions

Fig. 356: Particle size distribution of sample EZB2, small fractions

Fig. 357: Particle size distribution of sample EZB1, small fractions
Fig. 358: Particle size analysis results (small fractions) from section EZB, represented in number percentages

Fig. 359: Picture of section EZC (Ezousas). Length of section is approximately 1.5 m
Fig. 360: Drawing and description of section EZC (Ezousas)

Fig. 361: Organic matter content of samples from section EZC (Ezousas)
Fig. 362: Mass specific susceptibility of samples from section EZC (Ezousas)

Fig. 363: Frequency dependent susceptibility of samples from section EZC (Ezousas)

Fig. 364: pH of samples from section EZC (Ezousas)

Fig. 365: Lithology of the stones in samples from section EZC (Ezousas)
Fig. 366: Shape of the clasts in samples from section EZC (Ezousas)

Fig. 367: Angularity of the stones in samples from section EZC (Ezousas)

Fig. 368: Particle size distribution (coarse fractions) of the samples from section EZC (Ezousas)
Fig. 369: Particle size distribution of sample EZC4, small fractions

Fig. 370: Particle size distribution of sample EZC3, small fractions

Fig. 371: Particle size distribution of sample EZC2, small fractions

Fig. 372: Particle size distribution of sample EZC1, small fractions
Fig. 373: Particle size analysis results (small fractions) from section EZC, represented in number percentages

Fig. 374: Picture of section EZD (Ezousas) (length of section is approximately 3.2 m)
Fig. 375: Location map of sections EZD, EZE and EZF (Ayia-Varvara-Ezousas) (adapted from cadastral map LI.14 and topographic map 51 : VI)
Fig. 376: Drawing and description of section EZD (Ezousas). Location of sherds indicated.
Fig. 377: Organic matter content of samples from section EZD (Ezousas)

Fig. 378: Mass specific susceptibility of samples from section EZD (Ezousas)

Fig. 379: Frequency dependent susceptibility of samples from section EZD (Ezousas)
Fig. 380: pH of samples from section EZD (Ezousas)

Fig. 381: Lithology of stones in samples from section EZD (Ezousas)

Fig. 382: Shape of stones in samples from section EZD (Ezousas)
Fig. 383: Angularity of stones in samples from section EZD (Ezousas)

Fig. 384: Particle size distribution (coarse fractions) of samples from section EZD (Ezousas)

Fig. 385: Particle size distribution of sample EZD5, small fractions
Fig. 386: Particle size distribution of sample EZD4, small fractions

Fig. 387: Particle size distribution of sample EZD3, small fractions

Fig. 388: Particle size distribution of sample EZD2, small fractions

Fig. 389: Particle size distribution of sample EZD1, small fractions
1. Sandy silt
7.5YR/5/2
firm consistence
well sorted
no grading
matrix supported
clasts: few, angular to sub-rounded, up to large
no imbrication
merging boundary with unit 2

2. Fine sandy silt
7.5YR/6/3
firm consistence
graded: downward fining
50-50 matrix-clast supported
clasts: frequent, sub-rounded, large
S-ward orientation
poorly sorted
some root activity throughout section
clear boundary with unit 3

3. Silt
10YR/5/3
firm consistence
well sorted
no grading
no imbrication
matrix supported
clasts: very few, sub-angular
massive soil structure
clear boundary with unit 4

4. Silty sand
10YR/7/2
weak consistence
clast supported
poorly sorted
clasts: up to very large, sub-angular to rounded
imbrication, S-ward orientation

Fig. 390: Drawing and description of section EZE (Ezousas)
Fig. 391: Picture of section EZE (Ezousas) (Length of section is approximately 2.5 m)

Fig. 392: Organic matter content of samples from section EZE (Ezousas)
Fig. 393: Mass specific susceptibility of samples from section EZE (Ezousas)

Fig. 394: Frequency dependent susceptibility of samples from section EZE (Ezousas)

Fig. 395: Lithology of stones in samples from section EZE
Fig. 396: Shape of stones in samples from section EZE (Ezousas)

Fig. 397: Angularity of stones in samples from section EZE (Ezousas)

Fig. 398: Particle size distribution (coarse fractions) of samples from section EZE (Ezousas)
Fig. 399: Particle size distribution of sample EZE3, small fractions

Fig. 400: Particle size distribution of sample EZE2, small fractions

Fig. 401: Particle size distribution of sample EZE1, small fractions

Fig. 402: Particle size analysis results (small fractions) of samples from section EZE, represented in number percentages
1. Gravel in sandy silt matrix
 10YR/6/2
 firm consistence
 clast supported
 clasts: abundant, up to large
 no imbrication, no grading
 poorly sorted

2. Silty sand
 10YR/6/2
 firm consistence
 matrix supported
 clasts: few, medium
 no imbrication, no grading
 moderately sorted

3. Gravel in silty sand (coarser than 2)
 10YR/6/3
 firm consistence
 clast supported
 clasts: abundant, up to very large
 no imbrication
 poorly sorted

4. Same as 2

5. Same as 3 except clasts up to large

6. Sandy silt
 10YR/6/2
 firm consistence
 matrix supported
 clasts: few, medium
 no imbrication, no grading
 moderately sorted

7. Gravel in silty sand
 10YR/5/3
 clast supported
 poorly sorted
 clasts: up to very large
 grading: larger stones towards bottom
 imbrication, S-ward orientation

Fig. 403: Drawing and description of section EZF (Ezousas)
Fig. 404: Picture of section EZF (Ezousas) (Length of section approximately 3 m)

Fig. 405: Organic matter content of samples from section EZF (Ezousas)
Fig. 406: Mass specific susceptibility of samples from section EZF (Ezousas)

Fig. 407: Frequency dependent susceptibility of samples from section EZF (Ezousas)

Fig. 408: pH of samples from section EZF (Ezousas)
Fig. 409: Lithology of stones in samples from section EZF (Ezousas)

Fig. 410: Shape of stones in samples from section EZF (Ezousas)

Fig. 411: Angularity of stones in samples from section EZF (Ezousas)
Fig. 412: Particle size distribution (coarse fractions) of samples from section EZF (Ezousas)

Fig. 413: Particle size distribution of sample EZF8 (retrieved from unit EZF7), small fractions

Fig. 414: Particle size distribution of sample EZF7, small fractions
Fig. 415: Particle size distribution of sample EZF6, small fractions

Fig. 416: Particle size distribution of sample EZF5, small fractions

Fig. 417: Particle size distribution of sample EZF4, small fractions
Fig. 418: Particle size distribution of sample EZF3, small fractions

Fig. 419: Particle size distribution of sample EZF1, small fractions

Fig. 420: Particle size analysis results (small fractions) of samples from section EZF, represented in number percentages
Fig. 421: Location map of section EZG and EZH (Kanaviou - Ezousas) (adapted from cadastral map XXXVI.49 and topographic map 36.XXV)
1. Silty sand
 firm consistence
 5Y/6/3
 matrix supported
 clasts: infrequent, sub-rounded to sub-angular, small to large
 no imbrication, no orientation
 moderately sorted
 blocky soil structure

2. Gravel in coarse sand
 colour: 10YR/5/3
 weak consistence
 no imbrication, SW-ward orientation
 matrix supported
 clasts: abundant, rounded to sub-rounded
 granular soil structure

3. Gravel in coarse sand
 weak consistence
 colour: 7.5YR/5/0
 matrix supported
 clasts: abundant, small to large, sub-rounded to sub-angular
 moderately sorted
 imbrication, SW-ward orientation
 grading: 4 laminated layers

Fig. 422: Drawing and description of section EZG (Ezousas)

Fig. 423: Organic matter content of samples from section EZG (Ezousas)
Fig. 424: Picture of section EZG (Ezousas)

Fig. 425: Mass specific susceptibility of samples from section EZG (Ezousas)
Fig. 426: Frequency dependent susceptibility of samples from section EZG (Ezousas)

Fig. 427: pH of samples from section EZG (Ezousas)

Fig. 428: Lithology of stones in samples from section EZG (Ezousas)

Fig. 429: Shape of stones in samples from section EZG (Ezousas)
Fig. 430: Angularity of stones in samples from section EZG (Ezousas)

Fig. 431: Particle size distribution (coarse fractions) of samples from section EZG

Fig. 432: Particle size distribution of sample EZG3, small fractions

Fig. 433: Particle size distribution of sample EZG2, small fractions
Fig. 434: Particle size distribution of sample EZG1, small fractions

Fig. 435: Picture of section EZH (Ezousas) (Length of section is 3.2 m)
Fig. 436: Drawing and description of section EZH (Ezousas)
Fig. 437: Organic matter content of samples from section EZH (Ezousas)

Fig. 438: Mass specific susceptibility of samples from section EZH (Ezousas)

Fig. 439: Frequency dependent susceptibility of samples from section EZH (Ezousas)
Fig. 440: pH of samples from section EZH (Ezousas)

Fig. 441: Lithology of stones in samples from section EZH (Ezousas)

Fig. 442: Shape of stones in samples from section EZH (Ezousas)
Fig. 443: Angularity of stones in samples from section EZH (Ezousas)

Fig. 444: Particle size distribution (coarse fractions) of samples from section EZH (Ezousas)

Fig. 445: Particle size distribution of sample EZH4, small fractions
Fig. 446: Particle size distribution of sample EZH3, small fractions

Fig. 447: Particle size distribution of sample EZH2, small fractions

Fig. 448: Particle size distribution of sample EZH1, small fractions

Fig. 449: Particle size analysis results (small fractions) of section EZH, represented in number percentages
Fig. 450: Location map of sections XA, XB, XC, XD,XE and XF (Xeropotamos) (adapted from cadastral map LI.47 and topographic map 51.XXIII)
Fig. 451: Drawing and description of section XA (Xeropotamos). Location of dated sherds indicated on drawing
Fig. 452: Section XA (Xeropotamos). White label indicates the location of a sherd. Length of section is approximately 2.2 m.

Fig. 453: Organic matter content of samples from section XA (Xeropotamos)
Fig. 454: Mass specific susceptibility of samples from section XA (Xeropotamos)

Fig. 455: Frequency dependent susceptibility of samples from section XA (Xeropotamos)

Fig. 456: pH of samples from section XA (Xeropotamos)
Fig. 457: Lithology of stones in samples from section XA (Xeropotamos)

Fig. 458: shapes of stones in samples from section XA (Xeropotamos)

Fig. 459: Angularity of stones in samples from section XA (Xeropotamos)
Fig. 460: Particle size distribution (coarse fractions) of samples from section XA (Xeropotamos)

Fig. 461: Particle size distribution of sample XA4, small fractions

Fig. 462: Particle size distribution of sample XA3, small fractions
Fig. 463: Particle size distribution of sample XA2

Fig. 464: Particle size distribution of sample XA1

Fig. 465: Particle size analysis results (small fractions) of samples from section XA (Xeropotamos), represented in number percentages
1. Gravel in clayey silt
 strong consistence
 5YR/5/6
 matrix supported
 no grading
 slight imbrication, orientation towards S.
 clasts: abundant, small to large
 poorly sorted
 massive structure

2. Gravel in silty sand
 strong consistence
 7.5YR/5/8
 massive structure
 matrix supported
 no grading
 no imbrication
 clasts: moderate, small
 poorly sorted

3. Silty sand
 10YR/5/4
 clast supported
 no grading
 imbrication, orientation towards S.

Fig. 466: Drawing and description of section XB (Xeropotamos)

Fig. 467: Organic matter content of samples from section XB (Xeropotamos)
Fig. 468: Picture of section XB (Xeropotamos)

Fig. 469: Mass specific susceptibility of samples from section XB (Xeropotamos)
Fig. 470: Frequency dependent susceptibility of samples from section XB (Xeropotamos)

Fig. 471: pH of samples from section XB (Xeropotamos)

Fig. 472: Lithology of the stones in samples from section XB (Xeropotamos)
Fig. 473: Shape of the stones in samples from section XB (Xeropotamos)

Fig. 474: Angularity of the stones in samples from section XB (Xeropotamos)

Fig. 475: Particle size distribution (coarse fractions) of samples from section XB (Xeropotamos)
Fig. 476: Particle size distribution of sample XB3, small fractions

Fig. 477: Particle size distribution of sample XB2, small fractions

Fig. 478: Particle size distribution of sample XB1, small fractions

Fig. 479: Particle size analysis results (small fractions) from section XB (Xeropotamos), represented in number percentages
<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Clayey silt 7.5YR/3 firm consistence moderately sorted no grading matrix supported clasts: few, large, small to large, sub-rounded and rounded no imbrication granular soil structure</td>
</tr>
<tr>
<td>2.</td>
<td>Gravel in coarse sand 10YR/5/2 weak consistence moderately sorted clast supported clasts: abundant, small to large, sub-rounded no grading imbrication, orientation not clear</td>
</tr>
<tr>
<td>3.</td>
<td>Coarse sand 5.5YR/5/2 weak consistence matrix supported moderately sorted grading: 4 laminated layers clasts: moderate, very small to small no imbrication</td>
</tr>
<tr>
<td>4.</td>
<td>Gravel in coarse sand 5YR/5/2 weak consistence clast supported poorly sorted clasts: abundant, very small to large, sub-angular to rounded imbrication, S-ward orientation</td>
</tr>
</tbody>
</table>

Fig. 480: Drawing and description of section XC (Xeropotamos)
Fig. 481: Picture of section XC (Xeropotamos) (length of section is approximately 3.2 m)

Fig. 482: Organic matter content of samples from section XC (Xeropotamos)
Fig. 483: Mass specific susceptibility of samples from section XC (Xeropotamos)

Fig. 484: Frequency dependent susceptibility of samples from section XC (Xeropotamos)

Fig. 485: pH of samples from section XC (Xeropotamos)
Fig. 486: Lithology of stones in samples from section XC (Xeropotamos)

Fig. 487: Shape of stones in samples from section XC (Xeropotamos)

Fig. 488: Angularity of stones in samples from section XC (Xeropotamos)
Fig. 489: Particle size distribution (coarse fractions) of samples from section XC (Xeropotamos)

Fig. 490: Particle size distribution of sample XC4, small fractions

Fig. 491: Particle size distribution of sample XC3, small fractions
Fig. 492: Particle size distribution of sample XC2, small fractions

Fig. 493: Particle size distribution of sample XC1, small fractions

Fig. 494: Particle size analysis results (small fractions) of section XC, represented in number percentages
<table>
<thead>
<tr>
<th>Layer</th>
<th>Type</th>
<th>Color</th>
<th>Consistency</th>
<th>Matrix</th>
<th>Clasts Description</th>
<th>Grading</th>
<th>Imbrication</th>
<th>Orientation</th>
<th>Sorting</th>
<th>Soil Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Silty sand</td>
<td>10YR/6/3</td>
<td>Weak</td>
<td>Matrix supported</td>
<td>Clasts: few, sub-rounded, large well sorted</td>
<td>no grading, no imbrication</td>
<td>massive soil structure pores rare and fine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Coarse sand</td>
<td>10YR/6/2</td>
<td>Weak</td>
<td>Clast supported</td>
<td>Clasts: abundant, medium-large, rounded-sub-rounded</td>
<td>grading: see drawing</td>
<td>imbrication slightly, S-ward orientation</td>
<td>granular soil structure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Medium sand</td>
<td>5Y/6/1 (lots of variation)</td>
<td>Weak</td>
<td>Matrix supported</td>
<td>Well sorted</td>
<td>Grading: laminated</td>
<td>Clasts: moderate, angular to rounded, very small-small</td>
<td>granular soil structure insect activity in this layer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Coarse sand</td>
<td>2.5Y/6/2</td>
<td>Weak</td>
<td>Clast supported</td>
<td>Clasts: abundant, medium-very large, rounded-sub-rounded</td>
<td>S-ward orientation</td>
<td>no grading</td>
<td>poorly sorted</td>
<td>granular soil structure</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Coarse sand</td>
<td>2.5Y/5/2</td>
<td>Weak</td>
<td>Matrix supported</td>
<td>Clasts: abundant, small-large, rounded to sub-angular</td>
<td>S-ward orientation</td>
<td>granular soil structure pores common</td>
<td>moderately sorted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Coarse sand</td>
<td>2.5Y/5/2</td>
<td>Weak</td>
<td>Matrix supported</td>
<td>Clasts: abundant, medium-large, rounded-sub-angular laminated grading (3)</td>
<td>orientation towards sea</td>
<td>very poorly sorted</td>
<td>granular soil structure</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 495: Drawing and description of section XD (Xeropotamos). Dated sherds indicated on drawing.
Fig. 496: Picture of section XD (Xeropotamos) (length of section is 2.8 m)

Fig. 497: Organic matter content of samples from section XD (Xeropotamos)
Fig. 498: Mass specific susceptibility of samples from section XD (Xeropotamos)

Fig. 499: Frequency dependent susceptibility of samples from section XD (Xeropotamos)

Fig. 500: pH of samples from section XD (Xeropotamos)
Fig. 501: Lithology of the stones in samples from section XD (Xeropotamos)

Fig. 502: Shape of the stones in samples from section XD (Xeropotamos)

Fig. 503: Angularity of stones in samples from section XD (Xeropotamos)
Fig. 504: Particle size distribution (coarse fractions) of samples from section XD (Xeropotamos)

Fig. 505: Particle size distribution of sample XD6, small fractions

Fig. 506: Particle size distribution of sample XD5, small fractions
Fig. 507: Particle size distribution of sample XD4, small fractions

Fig. 508: Particle size distribution of sample XD3, small fractions

Fig. 509: Particle size distribution of sample XD2, small fractions

Fig. 510: Particle size distribution of sample XD1, small fractions
Fig. 511: Particle size analysis results (small fractions) of section XD (Xeropotamos), represented in number percentages.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Material</th>
<th>Color Code</th>
<th>Consistency</th>
<th>Sorting</th>
<th>Grading</th>
<th>Clast Support</th>
<th>Clast Description</th>
<th>Soil Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>sandy silt</td>
<td>10YR/5/3</td>
<td>weak</td>
<td>sorted</td>
<td>no</td>
<td>matrix</td>
<td>moderate, very small to large, angular to sub-rounded granular</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>consistency</td>
<td></td>
<td>grading</td>
<td>supported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>silty sand</td>
<td>10YR/5/2</td>
<td>weak</td>
<td>sorted</td>
<td>no</td>
<td>matrix</td>
<td>abundant, very small to medium, sub-rounded to rounded granular</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>silty sand</td>
<td>10YR/5/3</td>
<td>weak</td>
<td>sorted</td>
<td>no</td>
<td>matrix</td>
<td>few, very small, sub-angular to rounded granular</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>consistency</td>
<td></td>
<td>grading</td>
<td>supported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>coarse sand</td>
<td>10YR/5/2</td>
<td>weak</td>
<td>sorted</td>
<td>slight</td>
<td>imbricated</td>
<td>abundant, very small to very large, sub-angular to rounded granular</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>consistency</td>
<td></td>
<td>grading</td>
<td>S-ward orientation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>coarse sand</td>
<td>7.5YR/5/2</td>
<td>weak</td>
<td>sorted</td>
<td>poor</td>
<td>slightly</td>
<td>abundant, very small to large, angular to rounded poorly sorted granular</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>consistency</td>
<td></td>
<td>grading</td>
<td>imbricated, S-ward orientation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 512: Drawing and description of section XE (Xeropotamos).
Fig. 513: Picture of section XE (Xeropotamos)

Fig. 514: Organic matter content of samples from section XE (Xeropotamos)
Fig. 515: Mass specific susceptibility of samples from section XE (Xeropotamos)

Fig. 516: Frequency dependent susceptibility of samples from section XE (Xeropotamos)

Fig. 517: pH of samples from section XE (Xeropotamos)
Fig. 518: Lithology of stones in samples from section XE (Xeropotamos)

Fig. 519: Shape of stones in samples from section XE (Xeropotamos)

Fig. 520: Angularity of stones in samples from section XE (Xeropotamos)
Fig. 521: Particle size distribution (coarse fractions) of samples from section XE (Xeropotamos)

Fig. 522: Particle size distribution of sample XE5, small fractions

Fig. 523: Particle size distribution of sample XE4, small fractions
Fig. 524: Particle size distribution of sample XE3, small fractions

Fig. 525: Particle size distribution of sample XE2, small fractions

Fig. 526: Particle size analysis results (small fractions) of samples from section XE (Xeropotamos), represented in number percentages
Section XF (Xeropotamos)

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Silty sand</td>
</tr>
<tr>
<td></td>
<td>7.5YR/6/2</td>
</tr>
<tr>
<td></td>
<td>weak consistence</td>
</tr>
<tr>
<td></td>
<td>matrix supported</td>
</tr>
<tr>
<td></td>
<td>clasts: few, very small-medium, sub-rounded and rounded</td>
</tr>
<tr>
<td></td>
<td>well sorted</td>
</tr>
<tr>
<td></td>
<td>no grading</td>
</tr>
<tr>
<td></td>
<td>massive soil structure</td>
</tr>
<tr>
<td>2</td>
<td>Gravel in coarse sand matrix</td>
</tr>
<tr>
<td></td>
<td>10YR/5/3</td>
</tr>
<tr>
<td></td>
<td>clast supported</td>
</tr>
<tr>
<td></td>
<td>clasts: abundant, very small to large, sub-rounded</td>
</tr>
<tr>
<td></td>
<td>no grading</td>
</tr>
<tr>
<td></td>
<td>S-ward orientation</td>
</tr>
<tr>
<td></td>
<td>poorly sorted</td>
</tr>
<tr>
<td></td>
<td>granular structure</td>
</tr>
<tr>
<td>3</td>
<td>Clayey silt</td>
</tr>
<tr>
<td></td>
<td>10YR/4/3</td>
</tr>
<tr>
<td></td>
<td>no clasts</td>
</tr>
<tr>
<td></td>
<td>well sorted</td>
</tr>
<tr>
<td></td>
<td>firm consistence</td>
</tr>
<tr>
<td></td>
<td>platy soil structure</td>
</tr>
<tr>
<td>4</td>
<td>Sandy silt</td>
</tr>
<tr>
<td></td>
<td>7.5YR/3/4</td>
</tr>
<tr>
<td></td>
<td>no clasts</td>
</tr>
<tr>
<td></td>
<td>well sorted</td>
</tr>
<tr>
<td></td>
<td>firm consistence</td>
</tr>
<tr>
<td></td>
<td>laminar structure</td>
</tr>
</tbody>
</table>

Fig. 527: Drawing and description of section XF (Xeropotamos)
Fig. 528: Picture of section XF (Xeropotamos)

Fig. 529: Organic matter content of samples from section XF (Xeropotamos)
Fig. 530: Mass specific susceptibility of samples from section XF (Xeropotamos)

Fig. 531: Frequency dependent susceptibility of samples from section XF (Xeropotamos)

Fig. 532: pH of samples from section XF (Xeropotamos)
Fig. 533: Particle size distribution (coarse fractions) of samples from section XF (Xeropotamos)

Fig. 534: Particle size distribution of sample XF4, small fractions

Fig. 535: Particle size distribution of sample XF3, small fractions
Fig. 536: Particle size distribution of sample XF2, small fractions

Fig. 537: Particle size distribution of sample XF1, small fractions

Fig. 538: Particle size analysis results (small fractions) of samples from section XF (Xeropotamos)
Fig. 539: Geological map of the survey area (Western Cyprus) (scale: 1:250000) (Bear 1963, Geological Survey Department Cyprus)

Plate 210
Fig. 540: Lithological map of the Stavros-tis-Psokas area (Kluvyer 1969: fig. 2)
Fig. 541: Lithological map of the Agriokalamos drainage (scale 1:50000) (Geological map of the Polis-Paphos area – Geological Survey Department Cyprus)
Fig. 542: Geological map of the Ezousas drainage near the investigated sections EZG and EZH (adapted from geological map of the Polis-Paphos area – Geological Survey Department Cyprus)
Fig. 543: Soil developing at present on section TA and TB

Fig. 544: Soil developing at present on section PR1.
Fig. 545: Soil developing at present on section KOL1
Fig. 546: Soil developing at present on section MA

Fig. 547: Soil developing at present on section MB
Fig. 548: Soil developing at present on section KIS1

Fig. 549: Soil developing at present on section EZC
Fig. 550: Soil developing at present on section EZD

Fig. 551: Soil developing at present on section EZE

Fig. 552: Soil developing at present on section EZF
Fig. 553: Soil developing at present on section EZG

Fig. 554: Soil developing at present on section XB
Fig. 555: Soil developing at present on section EZH
Fig. 556: Soil developing at present on section XC

Fig. 557: Soil developing at present on section XD
Fig. 558: Soil developing at present on section XE

Fig. 559: Soil developing at present on section XF
Fig. 560: Palaeosol on unit TA3/TB5

Fig. 561: Palaeosol on unit KAGB14

Fig. 562: Palaeosol on unit KAGB8

Plate 223
Fig. 563: Palaeosol on unit KAGB6

Fig. 564: Palaeosol on unit KAGC7

Fig. 565: Palaeosol on unit KAGC3

Fig. 566: Palaeosol on unit KAGC10
Fig. 567: Palaeosol on unit KAGD15

Fig. 568: Palaeosol on unit KAGD12

Fig. 569: Palaeosol on unit KAGD8

Fig. 570: Palaeosol on unit KAGD5
Fig. 571: Palaeosol on unit SOA2

Fig. 572: Palaeosol on unit SOA12

Fig. 573: Palaeosol on unit SOA14

Fig. 574: Palaeosol on unit SOC3
Fig. 575: Palaeosol on unit PR1.5

Fig. 576: Palaeosol on unit KIS1.6

Fig. 577: Palaeosol on unit EZA8
Fig. 578: Palaeosol on unit EZA4

Fig. 579: Palaeosol on unit EZD3

Fig. 580: Palaeosol on unit XA2

Fig. 581: Tentative scheme of alluviation in the Mediterranean region for the period between 10,000 and 8,000 BC (based on several studies as detailed in text) colour = alluviation, r = radiocarbon date, s = dated by sherds.

| 7.9 | 7.8 | 7.7 | 7.6 | 7.5 | 7.4 | 7.3 | 7.2 | 7.1 | 7.0 | 6.9 | 6.8 | 6.7 | 6.6 | 6.5 | 6.4 | 6.3 | 6.2 | 6.1 | 6 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
Fig. 583: Tentative scheme of alluviation in the Mediterranean region for the period between 6,000 and 4,000 BC (based on several studies as detailed in text) colour=alluviation; s = dated using sherds, r = radiocarbon date

<table>
<thead>
<tr>
<th>Region</th>
<th>Date (BC)</th>
<th>Colour</th>
<th>Sherds</th>
<th>Radiocarbon Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turkey</td>
<td>6000-4000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kuyuk Menderes</td>
<td>6000-4000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carsamba</td>
<td>6000-4000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sakarya</td>
<td>6000-4000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karsallı fan</td>
<td>6000-4000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ibrala fan</td>
<td>6000-4000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sakarya</td>
<td>6000-4000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euphrates/Kurban Hoyuk</td>
<td>6000-4000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tilirish Hoyuk</td>
<td>6000-4000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Israel</td>
<td>6000-4000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ain el Gudeirat</td>
<td>6000-4000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nahal Lachish</td>
<td>6000-4000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qadesh Barnea</td>
<td>6000-4000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crete</td>
<td>6000-4000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southern Argolid</td>
<td>6000-4000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argive plain</td>
<td>6000-4000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panaee Plains-Thessaly</td>
<td>6000-4000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parnassus peninsula (E-Euboia)</td>
<td>6000-4000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voidomatis basin, NW Greece</td>
<td>6000-4000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syria</td>
<td>6000-4000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hlabor</td>
<td>6000-4000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euphrates river Jeralbus-Tahtanli</td>
<td>6000-4000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euphrates/Tell Sweyhat</td>
<td>6000-4000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balik/Karzane Hoyuk</td>
<td>6000-4000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 584: Tentative scheme of alluviation in the Mediterranean region for the period between 4,000 and 1,000 BC (based on several studies as detailed in text); colour=alluviation, s = dated using sherds, r = radiocarbon date
Fig. 585: Tentative scheme of alluviation in the Mediterranean region for the period between 1000 BC until now (based on several studies as detailed in text); colour = alluviation, s = dated by the occurrence of sherds, r = radiocarbon date, l = lichenometry