MOLECULAR STUDIES ON HEREDITARY
HAEMORRHAGIC TELANGIECTASIA FAMILIES
WITH PULMONARY ARTERIOVENOUS
MALFORMATIONS

By

Gillian Margaret Fleming Wallace

MBChB, MRCP

Thesis submitted for Degree of
Doctor of Medicine

The University of Edinburgh

2000
CONTENTS

CONTENTS
PUBLICATIONS ARISING FROM THIS THESIS IX
ABSTRACT X
LIST OF TABLES XII
LIST OF FIGURES XIII
ABBREVIATIONS XV
DECLARATION XVII
ACKNOWLEDGEMENTS XVIII

1. INTRODUCTION 1

1.1. Clinical 2

1.1.1. History 2

1.1.2. Epidemiology 3

1.1.3. Vascular structure 4

1.1.4. Clinical features 4

1.1.4.1. Nose 4

1.1.4.2. Skin and buccal mucosa 5

1.1.4.3. Gastrointestinal tract 6

1.1.4.4. Hepatic 7

1.1.4.5. Urinary system 8

1.1.4.6. Cerebral 8
1.2. Pulmonary arteriovenous malformations

1.2.1. Epidemiology and presentation

1.2.2. Diagnosis

1.2.2.1. Oxygen saturation

1.2.2.2. Chest X-ray

1.2.2.3. Thoracic CT scanning

1.2.2.4. Intrapulmonary shunt investigations

1.2.2.5. Pulmonary angiography

1.2.3. Treatment

1.2.3.1. Embolisation

1.2.3.2. Surgery

1.2.3.3. Antibiotics

1.2.4. Pregnancy and oestrogen

1.2.4.1. Implications for management of HHT patients

1.3. Genetics of HHT

1.3.1. Phenotype-genotype correlations

1.3.2. Endoglin

1.3.3. Endoglin promoter

1.3.4. ALK1

1.4. TGFβ: the role of endoglin and ALK1 in the superfamily

1.5. Linkage analysis

1.5.1. Alleles and coinheritance

1.5.2. Polymorphic markers

1.5.3. Genetic distances
1.5.4. Lod scores 36
1.5.5. Potential pitfalls in linkage analysis 37
 1.5.5.1. Misphenotyping 37
 1.5.5.2. Non parentage 38
 1.5.5.3. Inherent limitations in linkage studies 39
 1.5.5.3.1. Marker distribution 39
 1.5.5.3.2. Reduced allele informativeness 40
 1.5.5.3.3. Genome instability 41
1.5.6. Linkage studies versus association studies 41
1.6. Introduction to experimental work 44

2. MATERIALS AND METHODS 52

2.1. Clinical 53
 2.1.1. Acquisition of subjects 53
 2.1.1.1. Linkage analyses 53
 2.1.1.2. Promoter analyses 53
 2.1.2. Clinical evaluation 54
 2.1.2.1. Screening for PAVMs 54
 2.1.2.2. Accurate phenotyping 55
 2.1.3. Designation of disease status 56
 2.1.4. Sample collection 56

2.2. DNA extraction 57
 2.2.1. Genomic DNA 57
 2.2.2. Plasmid DNA 59
 2.2.3. DNA extraction from an agarose gel 60
2.3. Preparation of leucocytes and plasma 62

2.4. DNA analysis 63

2.4.1. Gel electrophoresis 63

2.4.1.1. Agarose 63

2.4.1.2. Denaturing polyacrylamide 63

2.4.2. Detection systems 64

2.5. Enzyme manipulations of nucleic acids 65

2.5.1. Restriction endonuclease digests 65

2.5.2. Ligations 65

2.5.3. Labelling of PCR products 66

2.6. DNA amplification: polymerase chain reaction 67

2.6.1. Taq polymerase-based PCR 67

2.6.2. Tth/vent polymerase-based PCR 68

2.6.3. Primers 69

2.7. DNA amplification: cloning 71

2.7.1. Insert preparation and ligation 71

2.7.2. Transformation 71

2.8. Sequencing 73

2.9. Linkage 74

2.9.1. Ascertainment of phenotype and genotype 74

2.9.2. Linkage analyses 74

2.9.2.1. Multipoint analyses 75

2.9.2.2. Haplotype analyses 75

3. ENDOGLIN PROMOTER 76
3.1. Amplification of sequence 77
3.2. Sequencing 79
3.3. Fortuitous outcome of primer GW8 misannealing 81
3.4. Familial segregation of polymorphism 83
3.4.1. Restriction endonuclease digests to analyse family D 83
3.4.1.1. XbaI results 83
3.4.1.2. BsrI results 84
3.4.2. Cycle sequencing to analyse family D 84
3.5. Transcription factor binding sites disrupted by the CA deletion 85
3.6. Allele frequency of the polymorphism 86
3.7. Summary 87

4. LINKAGE 101
4.1. Family S 102
4.1.1. Results of clinical evaluation 102
4.1.1.1. Family S members with a diagnosis of PAVMs 102
4.1.1.2. Further details of family S members with a diagnosis of PAVMs 103
4.1.2. Linkage analyses 105
4.1.2.1. Exclusion of *endoglin* 105
4.1.2.2. Exclusion of *ALK1* 105
4.1.3. Allele frequencies 106
4.1.4. Haplotype analyses 106
4.1.5. Summary 107
4.2. Family P 108
4.2.1. Results of clinical evaluation

4.2.1.1. Family P members with possible PAVMs

4.2.2. Linkage analyses

4.2.2.1. Inconclusive endoglin linkage data

4.2.2.1.1. Haplotype analyses

4.2.2.1.2. Models constructed for inconclusive endoglin linkage data

4.2.2.1.2.1. Model 1: Analyses have failed to confirm linkage in an endoglin-linked family

4.2.2.1.2.2. Model 2: In family P there is a novel HHT disease gene sited approximately 20-30cM away from the endoglin locus

4.2.2.1.2.3. Model 3: There is no HHT disease gene in the region on chromosome 9. The D9S61 and HXB lod scores are spuriously high as a result of common alleles present in the population apparently segregating with disease

4.2.2.1.2.4. Conclusions from the models

4.2.2.2. Exclusion of ALK1

4.2.3. Allele frequencies

4.2.4. Summary

4.3. Families V and T- assessment of ALK1 linkage in known non-endoglin HHT-PAVM families

4.3.1. Family V
4.3.2. Family T 119
4.3.3. Summary 119
4.4. Conclusions 120

5. DISCUSSION 141

5.1. Clinical issues 142
5.1.1. Pregnancy 142
5.1.1.1. PAVM rescreening 142
5.1.2. Microscopic PAVMs 143

5.2. Molecular issues 145
5.2.1. The importance of finding a polymorphism close to the endoglin promoter 145
5.2.1.1. Should the endoglin promoter be screened for HHT mutations? 145
5.2.1.2. Functional effects of any promoter polymorphism found 146
5.2.1.3. Other regions to be screened 147
5.2.2. The importance of identifying the third gene 147
5.2.2.1. Elucidation of the biochemical role 149
5.2.3. Phenotype/Genotype correlations 150

5.3. Vascular biology issues 152
5.3.1. Why are some vessels abnormal and not others? 152

5.4. Concluding remarks 153

5.5. Further work 154
5.5.1. Clinical 154
5.5.2. Molecular 154
5.5.3. Vascular biology 155

BIBLIOGRAPHY 156

APPENDIX A – CLINICAL QUESTIONNAIRE 177

APPENDIX B – RECIPES 178

APPENDIX C – PRIMERS FOR THE ENDOGLIN PROMOTER 180

APPENDIX D – PRIMERS FOR ENDOGLIN LINKAGE 181

APPENDIX E – PRIMERS FOR ALKI LINKAGE 182
PUBLICATIONS ARISING FROM THIS THESIS

Chapter 1

Wallace GMF, Jackson JE, Hughes JMB, Shovlin CL
The risk of cerebral haemorrhage in families with HHT and pulmonary AVMs.
Thorax 1999; 54(suppl 3): A32.(Abstract)

Easey A, Wallace GMF, Jackson JE, Taylor W, Shovlin CL
Retrospective analysis of the risk of cerebral bleeding in hereditary haemorrhagic telangiectasia.
IVth HHT Scientific Conference-Conference programme and abstracts April 2001: 79
(Abstract) Full manuscript to be submitted in December 2001

Chapter 3

Wallace GMF, Bernabeu C, Shovlin CL
Analysis of the promoter region of the endoglin gene in families with hereditary haemorrhagic telangiectasia and pulmonary arteriovenous malformations.
(Abstract)

Chapter 4

Wallace GMF, Shovlin CL
An HHT family with pulmonary involvement is unlinked to the known HHT genes, endoglin and ALK1.
(Abstract).

Wallace GMF, Shovlin CL
A hereditary haemorrhagic telangiectasia family with pulmonary involvement is unlinked to the known HHT genes, endoglin and ALK1.

Cole SG, Begbie ME, Chaudhary M, Wallace GMF, Shovlin CL
Linkage studies on a PAVM-HHT family unlinked to endoglin or ALK-1.
IVth HHT Scientific Conference-Conference programme and abstracts April 2001: 74
(Abstract)
ABSTRACT

This thesis comprises two separate molecular studies on Hereditary Haemorrhagic Telangiectasia (HHT) families with pulmonary arteriovenous malformations (PAVMs).

PAVMs occur in over 25% of patients with the autosomal dominant disorder HHT. They account for some of the most devastating consequences of the disease. Mutations in two genes, endoglin and ALK1, are known to cause HHT. Both encode a protein expressed on vascular epithelial cells and are involved in signalling by members of the transforming growth factor (TGF)β superfamily. To date, PAVMs have not been detected in ALK1 families. It has been suggested therefore that clinical screening for PAVMs is restricted to endoglin-linked families. There is evidence from a single HHT family without pulmonary involvement that a third HHT gene may exist.

In one study in this thesis the endoglin promoter region was screened for mutations in four endoglin-linked families, and four other small families, in whom no mutations had previously been found studying all coding regions and splice sites of the gene. No mutations were found. However a two base pair CA deletion polymorphism, with an allelic frequency of 9% in the UK population, was found 2563 base pairs upstream of one of the major endoglin transcription start sites. It may prove a useful tool for association studies.

In the other study linkage analyses were performed on four PAVM-HHT families, two of which were expanded during this study. They had all previously been found
to be unlinked to endoglin. Linkage to both endoglin and ALK1 was significantly excluded in one family. Significant linkage to ALK1 was found in another. It is concluded that a third HHT gene exists and that PAVMs can occur in all genotypes with resulting clinical implications.

Confirmation by this work that at least a third HHT gene exists should precipitate identification of the gene and elucidation of its biochemical role. It seems reasonable to speculate that it will encode another component of the TGFβ signalling complex or a downstream effector, and so its identification should increase our understanding of this superfamily of signalling molecules. Further work however is still required to determine how the actions of the TGFβ signalling complex lead to abnormal vascular structures.
LIST OF TABLES

Table 4.1 Clinical features of family S 121
Table 4.2 Diagnoses of HHT 122
Table 4.3 Analysis of lod scores with equal and adjusted allele frequencies in family S 123
Table 4.4 Clinical features of family P 124
Table 4.5 Two point lod scores for family P with markers D9S60, D9S315, and D9S61 flanking the endoglin locus 126
Table 4.6 Two point lod scores for family P with additional chromosome 9 markers 127
Table 4.7 Two point lod scores for markers adjacent to ALK1 in family P 128
Table 4.8 Calculating allele frequencies of marker D9S315 in family P 129
Table 4.9 Analysis of lod scores with equal and adjusted allele frequencies in family P 130
Table 4.10 Two point lod scores for markers adjacent to ALK1 in family V and family T 131
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Histology of microscopic PAVMs</td>
<td>46</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Telangiectasia of the lips</td>
<td>47</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>CT head scan showing CAVM</td>
<td>48</td>
</tr>
<tr>
<td>Figure 1.4</td>
<td>Chest X-ray showing PAVM</td>
<td>49</td>
</tr>
<tr>
<td>Figure 1.5</td>
<td>Chest CT scan showing PAVM</td>
<td>50</td>
</tr>
<tr>
<td>Figure 1.6</td>
<td>Pulmonary angiogram pre and post embolisation</td>
<td>51</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Region around the endoglin promoter and the position of primers used</td>
<td>88</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>PCR products using primers GW1 and GW7 and genomic target DNA</td>
<td>89</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Restriction endonuclease digest with Aval and PvuII of PCR product using primers GW1 and GW7 on cloned genomic endoglin</td>
<td>90</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>PCR products using primers GW1 and GW3 and genomic endoglin</td>
<td>91</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Comparison of GenBank sequences AF035753 and X72012</td>
<td>92</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>The G track of sequence using primer GW8</td>
<td>93</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>Colonies digested with EcoRI to obtain cloned GW1/10 insert</td>
<td>94</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>The G track of 10 sequenced clones</td>
<td>95</td>
</tr>
<tr>
<td>Figure 3.9</td>
<td>Sequencing gels showing G and T bases absent in clone 2</td>
<td>96</td>
</tr>
<tr>
<td>Figure 3.10</td>
<td>Family tree of family D</td>
<td>97</td>
</tr>
</tbody>
</table>
Figure 3.11 Restriction endonuclease digest with XbaI and BsrI of PCR product using primers GW5 and 10 on DNA from members of family D

Figure 3.12 Family D sequencing gel

Figure 3.13 Terminations in G track sequencing with GW16 on GW5/10 PCR product to assess allele frequency of polymorphism

Figure 4.1 Family tree of family S

Figure 4.2 The position of endoglin and its flanking markers

Figure 4.3 Two point and multipoint lod scores spanning the endoglin locus in family S

Figure 4.4 The position of ALK1 and its flanking markers

Figure 4.5 Two point and multipoint lod scores spanning the ALK1 locus in family S

Figure 4.6 Limited haplotype analyses of chromosome 9 and 12 markers in family S

Figure 4.7 Family tree of family P

Figure 4.8 Illustration of allele inheritance of chromosome 9 markers in family P

Figure 4.9 Family tree of family V and family T
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Adenine</td>
</tr>
<tr>
<td>ABG</td>
<td>Arterial Blood Gas</td>
</tr>
<tr>
<td>ALKI</td>
<td>Activin Receptor-Like Kinase 1</td>
</tr>
<tr>
<td>AVM</td>
<td>Arteriovenous Malformation</td>
</tr>
<tr>
<td>BAEC</td>
<td>Bovine Aortic Endothelial Cells</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin</td>
</tr>
<tr>
<td>C</td>
<td>Cytosine</td>
</tr>
<tr>
<td>CAVM</td>
<td>Cerebral Arteriovenous Malformation</td>
</tr>
<tr>
<td>CLS</td>
<td>Dr Claire Shovlin</td>
</tr>
<tr>
<td>CT scan</td>
<td>Computed Tomographic scan</td>
</tr>
<tr>
<td>CVA</td>
<td>Cerebrovascular Accident</td>
</tr>
<tr>
<td>CXR</td>
<td>Chest X-ray</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulphoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribose Nucleic Acid</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetate</td>
</tr>
<tr>
<td>FBC</td>
<td>Full Blood Count</td>
</tr>
<tr>
<td>FEV1</td>
<td>Forced Expiratory Volume (in 1 second)</td>
</tr>
<tr>
<td>FVC</td>
<td>Forced Vital Capacity</td>
</tr>
<tr>
<td>G</td>
<td>Guanine</td>
</tr>
<tr>
<td>GI</td>
<td>Gastrointestinal</td>
</tr>
<tr>
<td>GKLF</td>
<td>Gut-Enriched Kruppel-Like Factor</td>
</tr>
<tr>
<td>GTE</td>
<td>Genomic Tris EDTA</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>HGMP</td>
<td>Human Genome Mapping Project</td>
</tr>
<tr>
<td>HHT</td>
<td>Hereditary Haemorrhagic Telangiectasia</td>
</tr>
<tr>
<td>IPTG</td>
<td>Isopropylthio-β-D-Galactoside</td>
</tr>
<tr>
<td>KCO</td>
<td>Transfer coefficient</td>
</tr>
<tr>
<td>MREC</td>
<td>Multicentre Research Ethics Committee of Scotland</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic Resonance Imaging</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Center for Biotechnology Information</td>
</tr>
<tr>
<td>PA</td>
<td>Posteroanterior</td>
</tr>
<tr>
<td>PAI</td>
<td>Plasminogen Activator Inhibitor</td>
</tr>
<tr>
<td>PAVM</td>
<td>Pulmonary Arteriovenous Malformation</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffered Saline</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic Acid</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium Dodecyl Sulfate</td>
</tr>
<tr>
<td>SNP</td>
<td>Single Nucleotide Polymorphism</td>
</tr>
<tr>
<td>T</td>
<td>Thymidine</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris Acetate EDTA</td>
</tr>
<tr>
<td>TBE</td>
<td>Tris Borate EDTA</td>
</tr>
<tr>
<td>TE</td>
<td>Tris-EDTA</td>
</tr>
<tr>
<td>TGFB</td>
<td>Transforming Growth Factor β</td>
</tr>
<tr>
<td>TLCO</td>
<td>Transfer Factor</td>
</tr>
</tbody>
</table>
DECLARATION

I declare that the work contained in this thesis is original. I have been solely responsible for the organisation and day-to-day running of the studies contained herein, as well as all aspects of data collection and the analysis of results, unless otherwise referenced.

Gillian M.F. Wallace
ACKNOWLEDGEMENTS

I would like to take this opportunity to thank those people who have been invaluable to this thesis in terms of their support, encouragement, and guidance over the past two years.

Firstly I would like to thank Dr Claire Shovlin (Respiratory Unit, Hammersmith Hospital, London and previously Respiratory Unit/ Rayne Laboratories, Edinburgh) for her expert knowledge and advice with this work.

I would also like to acknowledge Professor Chris Haslett and Professor Jonathan Lamb (Rayne Laboratories, Edinburgh) for letting me work in their laboratories.

I would like to thank Dr Karen Tan, Dr Grainne Cunnigham, Mr Mark Marsden, Dr Marie-Helene Ruchard-Sparagano and other members of the Rayne laboratories for their helpful advice.

I should also like to thank the British Heart Foundation for funding this work.

I would like to thank my family and friends for their support. I am particularly indebted to my husband, Dr Andrew Riley, for his enormous help with this work throughout the two years, both with encouragement and with greatly appreciated computing skills.
1. INTRODUCTION

The classical patient with HHT has epistaxis, telangiectasia around the lips and finger tips, and a similarly affected relative. However several other organs may also be involved accounting for some of the more devastating clinical complications of the disease. The manifestations are all due to abnormalities of vascular structure.

Mutations in two genes, *endoglin* and *ALK1*, are known to cause HHT. They both encode cell-surface proteins involved in signalling by the TGFβ superfamily. To date, PAVMs have not been detected in *ALK1*-linked families. There is evidence from one family with no pulmonary involvement that a third gene may exist.
1.1. CLINICAL

1.1.1. HISTORY

Recurrent epistaxis, often associated with haemoptysis and occurring in several family members, was first noted by Sutton in 1864. A hereditary tendency to epistaxis was confirmed one year later by Babington. The first report of skin lesions being associated with hereditary epistaxis was made in 1876 by Legg. His contribution was overlooked, as he suggested that the features were associated with haemophilia and described the skin lesions too imprecisely as "naevi." The naevi were redefined as telangiectases by Chiari in 1887 but haemophilia continued to be diagnosed. Rendu, in 1896, distinguished this disease from haemophilia, by the lack of haemorrhage from skin lacerations and tooth extractions. He also discussed associated gastrointestinal bleeding. The disease was brought to proper attention by Osler in 1901 who gave a classic description of the characteristic triad of recurrent epistaxis, hereditary pattern, and multiple cutaneous telangiectases. This provoked several other reports of telangiectasia with epistaxis but it was Weber in 1907 who most clearly further defined its clinical manifestations and behaviour leading, possibly unfairly, to the eponymous name Rendu-Osler-Weber syndrome. Hanes, in 1909, most clearly described the inheritance pattern of the disease, described the appearance of telangiectases under the light microscope, and gave the disease the name Hereditary Haemorrhagic Telangiectasia (HHT).

The existence of pulmonary capillaries was first described in 1661 by Malpighus. Churton in 1897 described abnormalities of the pulmonary vasculature in the form of
"aneurysms as large as walnuts" in a boy who had haemoptysis and epistaxis14. Pulmonary arteriovenous fistula was described in 1939 by Smith and Horton15. Rundles in 1945 described a pulmonary artery aneurysm in an HHT patient who also had gastric telangiectasia16. Gastric telangiectasia had been previously described by Renshaw in 193617. In 1947, Whitaker postulated that cyanosis associated with "cavernous haemangioma of the lung" is due to its shunt effect18.

1.1.2. EPIDEMIOLOGY

HHT occurs with a wide geographic distribution among many ethnic and racial groups including negro Americans19,20, Mexicans21, Chinese22, Indians23, Thai24, and Japanese25. Studies of prevalence give varying figures of 1 in 2351 in the French region of Ain26, 1 in 3500 on the Danish island of Funen27, 1 in 5155 in the Dutch Leeward Islands28, 1 in 16,500 in Vermont29, and 1 in 39,216 in northern England although this is thought to be almost certainly an underestimate30. These figures, and others recently published31, show that, at least in the population investigated, HHT is more prevalent than previously thought, at around 1 in 10,000. Figures of around 1 in 100,000 had been formerly reported32,33.

The disease is autosomal dominant with an estimated penetrance overall of 97\%30,34. This, however, is age-related with manifestations developing throughout life34,35 and varying between affected individuals even from the same family36,37. There are very few reports of homozygous cases38,39 in one of whom the condition was fatal. Thus affected individuals are almost exclusively heterozygous.
1.1.3. VASCULAR STRUCTURE

An AVM consists of a dilated aneurysmal sac of arterial and venous origin supplied by one or more feeding arteries and draining to one or more dilated veins. There is no intervening capillary bed\(^40\) (see Figure 1.1). 95% of PAVMs derive their arterial supply from the pulmonary rather than the systemic circulation\(^41\). Telangiectases are also abnormal vascular structures but instead are due to dilated arterioles, capillaries and postcapillary venules\(^42-44\).

1.1.4. CLINICAL FEATURES

1.1.4.1. NOSE

Spontaneous, recurrent nose bleeds from telangiectases of the nasal mucosa is the most common clinical manifestation of HHT. It occurs in more than 90% of affected individuals\(^45\) beginning by the age of 10 years in many and the age of 21 years in most\(^45\). Controversy exists regarding the progression of epistaxis with age. Some\(^46\) have demonstrated that it remains stable over time, McCaffrey et al have shown a group with 25% progressive, 45% static, and 17% regressive symptoms\(^47\), and some have found that it tends to be progressive in the majority\(^34 \ 45 \ 48\). The severity is very variable between individuals. A mortality rate of up to 4% has been quoted\(^49\) although no recent data is available.

Many require no treatment. Others may require nasal packing, multiple transfusions, and oral iron supplementation. Many other more definitive treatments have been tried. Argon and ND Yag laser treatment has a beneficial effect but data on long term effects is scarce\(^50 \ 51\). Septal dermoplasty in adept hands has good results in
patients with severe epistaxis but vessels usually regrow52, 53. Oral high dose oestrogen therapy (1-5mg oestradiol/day) has been tried. Oestrogens appear to be effective in uncontrolled studies48 but controlled studies do not support efficacy54, 55. The possible complications of long term oestrogen must also be considered48. Nevertheless oestrogen and progesterone receptors have been shown to be present in nasal telangiectases in females (progesterone receptors only in males) compared to none in normal controls56. The mechanism of any possible action remains unclear, but it has been suggested that oestrogens improve continuity of telangiectatic endothelium and so decrease bleeding tendency43, or they may act by inducing squamous metaplasia48. Transcatheter embolotherapy of arteries leading to the nasal mucosa has been tried. Older studies indicate it may be less effective in HHT patients than other individuals57-59 but there are no data regarding results using more modern methods.

1.1.4.2. SKIN AND BUCCAL MUCOSA

Telangiectases of the skin and buccal mucosa occur in about 75% of individuals34 (see Figure 1.2) typically presenting later in life than epistaxis34 from about the third decade of life49 and increasing in size and number with age60, 61. They mostly occur on the face, lips, tongue and buccal mucosa, and fingertips, but can occur elsewhere. They may bleed (bleeding from conjunctival telangiectasia causes "bloody tears" but this is rarely clinically important62). The main concern is cosmetic. Laser ablation can be used63.
1.1.4.3. GASTROINTESTINAL TRACT

Recurrent haemorrhage of the gastrointestinal (GI) tract occurs in a substantial minority (up to 44%) of HHT affected individuals and is the second most frequent site of haemorrhage. It often presents as an iron deficiency anaemia but occasionally as an acute GI haemorrhage. The onset is usually from the fifth or sixth decade. In half the patients the site of bleeding is telangiectases in the stomach or duodenum. Far fewer have blood loss due to colonic telangiectasia. They are visualised by endoscopy and are similar in size and appearance to mucocutaneous telangiectases but may be surrounded by an anaemic halo. Less commonly arteriovenous malformations (AVMs) and aneurysms may occur, depicted by GI angiography. Most patients are satisfactorily managed conservatively with, if necessary, blood transfusions or oral iron therapy. However laser therapy may also be used to control bleeding in the short term, but less commonly in the long term. Recurrence of bleeding is very common, due to missed or incompletely treated lesions or recurrent disease. Immediate or delayed haemorrhage from the laser treatment, or perforation, may occur. A low dose combination of oestrogen (0.05mg oestradiol/day (a “high contraceptive dose”)) and progesterone has been shown to be beneficial in controlling severe blood loss through GI telangiectasia, and for the effect to remain for several months after cessation of treatment. The mode of this effect has yet to be determined. Effectiveness of treatment with aminocaproic acid (antifibrinolytic) has been found to be variable. Surgery has limited success due to recurrent disease.

Page 6
1.1.4.4. HEPATIC

Hepatic involvement may occur in up to 30% of HHT patients. Large arteriovenous malformations (AVMs) may occur between the hepatic artery and vein and can result in a substantial left to right shunt proven by a higher oxygen saturation in the hepatic vein than the inferior vena cava. This may give rise to high output cardiac failure. Shunts between the hepatic artery and portal vein occur more rarely and lead to hepatic encephalopathy particularly after GI tract bleeding. They can also lead to portal hypertension with associated oesophageal varices. Ascites has been reported in association with multiple AVMs but no portal hypertension. Spontaneous bleeding from liver AVMs has not been reported. AVMs can occur alone or in combination with fibrosis of the liver. Linkage of fibrous bands results in nodularity of the hepatic parenchyma but without disruption of the architecture within the nodules as in true cirrhosis. This is known as “cirrhosis of HHT”. The clinical significance of this is debated. True cirrhosis can also occur either due to coexisting disease, for instance cardiac failure or alcoholism, or due to treatment for HHT symptoms, for example massive blood transfusion or long term oestrogen treatment. Hepatic AVMs, suspected by hepatomegaly, a liver bruit, and sometimes raised γGT and alkaline phosphatase levels can be diagnosed by angiography, CT, MRI, or doppler sonography. Doppler sonography has been suggested to be the ideal method for screening although screening is not performed in the U.K. Treatment of AVMs is largely conservative. Embolisation of feeding vessels is performed but a 25% mortality
rate was calculated in 1996 from all the data available82. Liver transplantation may be necessary if disease is extensive83. Following several cases of fatal hepatic necrosis occurring after hepatic embolisation, the United States HHT physicians have placed a moratorium on embolisation of hepatic AVMs where portal shunting cannot be definitely excluded, unless supported by hepatic transplantation84.

\subsection*{1.1.4.5. URINARY SYSTEM}

Involvement of this system is rare (0.6\%)34. Telangiectasia can occur over the bladder and urethra85. Treatment other than iron therapy is rarely required85.

\subsection*{1.1.4.6. CEREBRAL}

5-10\% of HHT patients are thought to have cerebral involvement34, 86 with telangiectases, AVMs (cerebral AVMs (CAVMs)), aneurysms, or cavernous angiomas87 (see Figure 1.3). However screening of asymptomatic patients indicates a higher incidence86. In a literature review of 77 cases of cerebral involvement, 47\% had telangiectases, 22\% CAVMs, 8\% aneurysms, and 22\% spinal vascular malformations87. Most complications arise from CAVMs. They can lead to headache, seizures, ischaemia of the surrounding tissue due to a steal effect, or haemorrhage87. It is unclear whether the natural course of CAVMs in HHT is the same as for CAVMs unassociated with HHT, in whom the average yearly bleeding risk is between 2 and 3\%88, but it is usually assumed to be the same. The haemorrhage risk of a CAVM has been found to vary with certain features of the lesion: small size of CAVM88, deep venous drainage, feeding by perforators, intranidal aneurysm(s), multiple aneurysms, feeding by the vertebrobasilar system,
and location in the basal ganglia have been found to increase the risk of haemorrhage. Overall a haemorrhage risk of 2% per annum is used as the basis of risk-benefit analyses when screening is contemplated. Analyses suggest that in asymptomatic patients the risks of haemorrhage with expectant treatment outweigh the risk of intervention, particularly in young patients. However patient age, specific features of the lesion, and available expertise must be considered for each individual. Although screening is offered in USA and Canada, it is not yet offered in Europe and the question of whether it should be remains the subject of intense debate.

In order to justify a prospective study to establish the value of CAVM screening and treatment in asymptomatic HHT patients, particularly in younger groups, in the UK, a series of 80 HHT families identified by at least one individual from each presenting to the Hammersmith Hospital was studied by myself and Dr Shovlin. Full family histories revealed that out of 335 individuals, from these 80 families, 25 (7.5%) suffered catastrophic cerebral haemorrhages (almost all fatal or leaving severe residual impairment) with many of the haemorrhages being due to CAVMs and 7 of the patients being aged between 10 and 22. The proposed study therefore seems appropriate.

The best diagnostic approach varies with the different lesions. Telangiectases can only be detected by MRI. MRI is also the best method for detecting cavernous haemangiomas. MRI and angiography are more sensitive than CT in detecting CAVMs, but significant procedural morbidity and exposure to radiation and IV
contrast with angiography makes this unsuitable as a screening procedure. IV digital subtraction angiography avoids this but the resolution is low and vertebrobasilar system poorly visualised82. Therefore MRI seems to be the best technique for screening82. It should be noted however that MRI should not be performed in PAVM patients embolised with non-MRI compatible coils. This accounts for the majority of patients who were embolised before the late 1990s.

The method of treatment depends on site and type of lesion, availability, and local expertise. Surgery, embolisation, and stereotactic radiotherapy can be used alone or in combination82. A comparison of series of patients, treated by stereotactic radiotherapy or microsurgery, indicates that stereotactic radiotherapy is less efficacious and has a higher associated morbidity and mortality than microsurgery94.
1.2. PULMONARY ARTERIOVENOUS MALFORMATIONS

Further information can be found in an extensive recent review of pulmonary arteriovenous malformations in HHT95.

1.2.1. EPIDEMIOLOGY AND PRESENTATION

Involvement of the lungs, in the form of pulmonary arteriovenous malformations (PAVMs), occurs in 15-33\% of HHT patients60 86 96. Onset is in the relatively young (20\% of PAVMs in those under 20 years, 50\% in those under 38 years in one series34). At least 70\% of all PAVMs occur in HHT patients and so the possibility of HHT should be considered in anyone found to have a PAVM97 98. This is particularly so if there are multiple lesions which are especially common in HHT patients97-100. 70\% of PAVMs are localised in the lower lung fields97 100 101. PAVMs usually increase in size96 98 101, particularly if they are multiple101, and very rarely regress96. Complications from the PAVMs are more common in HHT than non HHT patients99 102. Mortality rates for untreated PAVM patients range from 4-22\%99-101 103. This may be due to PAVMs haemorrhaging into a bronchus or the pleural cavity104-106 causing haemoptysis (11\% on average) and haemothorax (less than 1\% on average) respectively95. The more common complications of PAVMs however arise from the right to left shunts resulting from the capillary-free communications between pulmonary and systemic circulations. Critically, paradoxical embolism can occur through these shunts due to material which is normally trapped by the small diameter capillaries being able to pass through the wider PAVMs. This may lead to transient ischaemic attacks (TIAs) or...
cerebrovascular accidents (CVAs) in, on average, 24%, and cerebral abscesses in, on average, 9% of PAVM patients. More rarely other systemic emboli may occur for instance to the kidneys or knee joints. PAVMs in fact account for two thirds of all neurological symptoms in HHT patients. A high incidence of migraine, in 43% of HHT patients with PAVMs, has been reported but the underlying reason not elucidated. This has not however been found by others and the data presented in this thesis does not support this finding (see Sections 4.1.1 and 4.2.1). Hypoxaemia occurs due to the shunted blood avoiding oxygenation. It is often well tolerated due to generation of a high cardiac output, facilitated by low pulmonary vascular resistance. It does, however, present as dyspnoea on exertion in, on average 47%, and chest pain (due to associated polycythaemia as well as hypoxia) in 12%. Central cyanosis, clubbing, or a vascular bruit are present in, on average, 30%, 36%, and 49% respectively of PAVM patients. Up to 50% of patients with these signs or an abnormal chest x-ray have no respiratory symptoms and for many of them the first presentation of lung involvement is with a neurological event. 13% of PAVM patients in fact die from fatal CVAs. As treatment for PAVMs is successful screening for them prior to these catastrophic events is vital.

1.2.2. DIAGNOSIS

It is recommended that PAVM screening is performed every 5-10 years or around pregnancy and puberty since these are associated with PAVM enlargement. All genotypes should be screened (see Section 5.2.3). Current recommendations for investigation of PAVMs vary for individuals suspected of
having them through clinical features or screening investigation. One recommendation is to perform a PA and lateral CXR, arterial blood gas (ABG) analysis and/or supine and erect oximetry. If these raise concern at least one non-invasive further investigation is recommended before pulmonary angiography is considered. Alternative strategies used in different institutions include use of contrast echocardiography as an initial screen, arterial blood oxygen levels rather than oximetry, measurement of the right to left shunt breathing 100% oxygen, and more extensive use of CT scanning.

1.2.2.1. OXYGEN SATURATION
As mentioned in Section 1.2.1, PAVMs lead to hypoxaemia due to the anatomic right-to-left shunt provided by the abnormal vessels which bypass the pulmonary capillary bed. The simplest method for detecting a right-to-left shunt is the demonstration of a low partial pressure of oxygen (PaO₂) in arterial blood by blood gas analysis. The detection of hypoxaemia alone using age-defined PaO₂ [104mmHg-0.24 x age] has been used as a single diagnostic test, but the differential diagnosis of hypoxaemia is wide and this results in low sensitivity (66.7%) and specificity (60.7%). The oxygen saturation (SaO₂) derived from pulse oximetry has been investigated as a potential test in view of simplicity and patient comfort, particularly for recurrent evaluations. The bias and precision of pulse oximeters has been found to compare favourably with conventional arterial blood samples for oxygen saturations of 80% and above. Data on reproducibility in normal subjects suggest a change of 1% in oxygen saturation above 90% and 2% in oxygen saturation below 90%, using pulse and conventional oximeters, indicates
clinical change has occurred113. This has been further validated in a PAVM population by an institution using Biomeda oximeters, taking the mean of 10 values obtained at one minute intervals114. In these authors’ hands, Sa02 in the erect posture of \(\leq 96\% \) gave a sensitivity of 73\% and specificity of 35\%, and \(\leq 97\% \) gave a sensitivity of 100\% and specificity of 10\%, for detection of PAVMs as defined by selective pulmonary angiography. Their erect Sa02 was a better predictor of disease than supine saturations. This reflects the preponderance of PAVMs in the lung bases leading to increased shunting in the erect posture due to gravitational pooling of blood115. This study also addressed whether the fall in oxygen saturation on assuming the upright posture, orthodeoxia, could be useful. Although this was no better a predictor of PAVM disease than erect SaO2 alone, the study demonstrated that the supine-erect Sa02 was significantly greater in the PAVM rather than non-PAVM group: 1.7\% (SD 2.7) compared to 0.3\% (SD1.5) \(p=0.01 114 \). Erect oxygen saturation and orthodeoxia measured by pulse oximetry are therefore published methods of identifying individuals requiring further investigation for possible PAVMs but are not complete diagnostic investigations, due to insufficient sensitivity and specificity86.

1.2.2.2. CHEST X-RAY

Chest X-ray (CXR) has also been suggested as a screening investigation since 40-83\% of PAVMs are revealed by CXR when interpreted by experienced radiologists with a high index of clinical suspicion86 98 101 111 116 (see Figure 1.4). However there is a lack of specificity100 101 and insufficient sensitivity, even when lateral CXR is used in addition to posteroanterior (PA) CXR, particularly for small or
diffuse PAVMs101, 116. It is reported to be better than oxygen saturation for detecting PAVMs which are large enough to embolise86. It is important to determine therefore the clinical significance of PAVMs smaller than this (see Section 5.1.2).

1.2.2.3. THORACIC CT SCANNING

Thoracic CT scans can detect small as well as large lesions and identifies thrombosed and recanalised structures. Exposure to radiation and a lack of specificity are problems112, 117 (see Figure 1.5). Helical scans with 1mm slices at 5mm intervals had 98.2\% sensitivity, compared to pulmonary angiography, for detecting PAVMs in one series112.

1.2.2.4. INTRAPULMONARY SHUNT INVESTIGATIONS

Intrapulmonary shunts can be detected using the 100\% inspired oxygen breathing method, radionuclide scanning using technetium 99m labelled albumin macroaggregates or microspheres, or by contrast echocardiography.

Some have found that results obtained with the 100\% oxygen breathing method and radionuclide scanning are similar118. Others however have found that 100\% oxygen breathing tends to underestimate the shunt probably as the "driving pressure" for oxygen diffusion is increased due to a much higher partial pressure of oxygen in the alveoli when breathing 100\% oxygen rather than room air119. Recently radionuclide shunting of more than 3.5\% has been found to have 87\% sensitivity and 61\% specificity for detecting PAVMs compared to pulmonary angiography, the "gold standard"114. Comparable figures, allowing for differences in patient selection,
exist for 100% oxygen breathing. The debate about which method is better therefore continues.

Contrast echocardiography utilises the fact that with an intracardiac shunt microbubbles are seen almost immediately in the left ventricle whereas with an intrapulmonary right to left shunt there is a 2-5 second delay. It has been found to be suggestive of intrapulmonary shunt in patients who have no PAVMs on pulmonary angiography- in 40% of patients in one series. It is not clear yet what the clinical relevance is of shunts detected by contrast echocardiography but not seen at pulmonary angiography.

1.2.2.5. PULMONARY ANGIOGRAPHY

This is still the gold standard investigation and is used as part of the therapeutic embolisation procedure (see Figure 1.6). It should be performed in all patients in whom clinical data and CT scanning or shunt measurements are highly suggestive of the presence of PAVMs. Despite pulmonary angiography being the gold standard, it can fail to detect PAVMs identified by CT scanning and shunt investigations, particularly contrast echocardiography. It is thought that this is due to these lesions being too small for detection since the abnormal shunts persist after apparently successful embolisation in about 60-75% of PAVM patients. The clinical relevance of these lesions is unknown (see Section 1.2.3.1).
1.2.3. TREATMENT

1.2.3.1. EMBOLISATION

Embolisation has now replaced surgery as the mainstay of treatment as it allows parenchymal sparing, which is particularly important as the disease is often recurrent. There is also a lower procedural morbidity. It is performed at the time of pulmonary angiography by positioning either a detachable balloon or coil in the vessel leading to the PAVM (see Figure 1.6)95. PAVMs with a feeding vessel of 3 mm or more in diameter are amenable to embolisation121. Thrombus then forms around the device. In the majority of patients it is efficacious, in terms of shunt measurement, although is operator dependent, requiring a highly skilled radiologist95. Recurrence of PAVMs occurs either due to recanalisation of original PAVMs through poorly occluded vessels, or due to new pulmonary or systemic feeding vessels supplying the original PAVM107, or because of new PAVMs forming due to the recurrent nature of the disease, particularly likely with the removal of a low resistance shunt95. Patients therefore require follow up after a few months and often several treatments are needed98 122 123.

Both balloons and coils must be small enough so that they can be placed sufficiently distally, thereby avoiding occlusion of a vessel leading to a normal capillary, otherwise pleurisy due to pulmonary infarction would occur. It is argued that balloons are less likely to cause this97 but around 10% of patients were found to develop pleurisy in 3 series, 2 using coils and 1 using balloons97 107 122. They must not be too small however otherwise they may embolise through the PAVM.
themselves107 122 123. Other complications that may arise include paradoxical embolism, angina and cardiac arrhythmias due to air embolism97, and postembolisation haemothorax98. After treatment of a PAVM, pulmonary hypertension and right heart failure due to high cardiac output from a coexistent hepatic AVM may be unmasked by removal of the low resistance shunt107 123.

Embolisation of vessels less than 3 mm in diameter has been attempted with more difficulty95. In one study patients with diffuse PAVMs showed no significant change in hypoxia after embolisation of large PAVMs and 5 episodes of CVA/TIA occurred in the 12 treated patients124. This, along with data presented in this thesis (see Section 4.1.1.2), suggests that microscopic PAVMs are clinically relevant, but further data is required.

1.2.3.2. SURGERY

PAVMs occur subpleurally in more than half of patients and so are amenable to video-assisted thoracoscopic wedge excision of the PAVM. This reduces the complications of surgery125. Bilateral lung transplantation for diffuse PAVMs in a patient without HHT has been described as being successful in that ABGs and a 6 minute walk test were normal 8 months after transplantation126. However long term follow up in this case is not known. In patients with diffuse disease it is suggested that the 2 year survival rate is poorer in those treated by lung transplantation than those treated conservatively124.
1.2.3.3. ANTIBIOTICS

Prophylactic antibiotic therapy prior to undergoing procedures that can evoke bacteraemia is recommended in all those suspected of having PAVMs. In view of concern over the significance of microscopic PAVMs this is being extended to include those in whom PAVMs have been treated unless they are one of the few in whom no residual shunts remain.

1.2.4. PREGNANCY AND OESTROGEN

The majority of women who are going to develop HHT have done so by the time they reach child-bearing age. Pregnancy tends to exacerbate HHT manifestations, in particular pulmonary haemorrhage and complications due to shunting through PAVMs, but deterioration is also seen in hepatic, cerebral, and mucocutaneous vascular beds. Various mechanisms are postulated for the deterioration. The increased cardiac output and vascular volume may precipitate haemorrhage from abnormal vasculature. An alternative possibility is that the associated fall in systemic and pulmonary vascular resistance may accelerate the dilation of existing lesions or precipitate their initial production. The latter mechanism would account for the majority of the complications seen.

In addition to the change in haemodynamic state during pregnancy potentially altering the course of the disease, there may also be a localised hormonal influence on the vessels. Oestrogen secretion increases markedly during pregnancy such that towards the end of pregnancy the equivalent of 20mg oestradiol/day is produced. Very high levels and very low levels of oestrogen have been shown to worsen HHT.
Very low levels (<50 micrograms of oestradiol equivalent per day) are thought to account for worsening of epistaxis in HHT patients during the low oestrogen states of the 5 days in the menstrual cycle prior to menstruation, the menopause, after oovarectomy, and on the low dose oestrogen oral contraceptive pill. Very high levels of oestrogens (20mg/day) are postulated as accounting for the increased frequency of PAVMs in females, and possibly the worsening of PAVMs during pregnancy. In spite of these findings, there is evidence that an intermediate dose of oestrogen at a "high contraceptive dose" of 50 micrograms oestradiol/day is definitely beneficial for HHT associated GI bleeding and doses of up to 5mg oestradiol/day may be efficacious for HHT associated epistaxis.

The mechanisms by which oestrogens have these effects are likely to vary according to dose. The benefits of high dose oestrogens in management of epistaxis has been ascribed to alterations in the vascular wall by induction of squamous metaplasia (see Section 1.1.4.1). This mechanism could not be responsible for the improvement in gastrointestinal bleeding at lower doses. Possible alternative explanations might include upregulation of transcription from the remaining endoglin gene in endoglin-deficient HHT patients (three oestrogen response elements have been identified in the endoglin promoter), a shift towards a prothrombotic tendency, or indirect effects on vascular function.

1.2.4.1. IMPLICATIONS FOR MANAGEMENT OF HHT PATIENTS

The current recommendations arising from these considerations are two-fold. First, the van Cutsem dose of female hormones (50 microgram ethinyloestradiol, 1mg
progesterone) is used to treat transfusion-dependent patients with gastrointestinal bleeding. More relevant to this study is the recommendation that, recognising the potential risk of pregnancy, whether or not it is due to the high oestrogen state, women should be screened for PAVMs ideally prior to, and, if necessary, during pregnancy. Physiological changes in pregnancy may mask hypoxaemia due to PAVMs (an elevation in the mixed venous oxygen content results from the elevated cardiac output and progesterone stimulation of the respiratory centre) and rescreening soon after delivery is warranted. Embolisation is safe up to and including the third trimester.
1.3. GENETICS OF HHT

Knowledge of the genetics of HHT is enabling understanding not only of the mechanisms underlying HHT but also, more broadly, those involved in vascular development and homeostasis generally, with far reaching clinical implications in many disease processes. It also establishes whether or not there is any correlation between HHT genotype and phenotype which would have important implications for clinical screening and prognosis.

HHT is known to result from mutations in two genes. An HHT locus, HHT1, was assigned by linkage studies to chromosome 9. The disease gene was later identified as endoglin. The initial chromosome 9 linkage studies indicated that a further gene existed and later a second HHT locus, HHT2, was mapped to chromosome 12. The mutated gene was ascertained to be ALK1. The existence of a third gene was suggested by linkage studies on one HHT family with extensive hepatic but no pulmonary involvement. This pedigree was unlinked to both endoglin and ALK1. The locus and gene have not been identified to date.

1.3.1. PHENOTYPE-GENOTYPE CORRELATIONS

Could there be any correlation between phenotype and genotype? Several reports suggested that PAVMs only occurred in endoglin-linked families and not in those unlinked to endoglin. The implication of this would be that only endoglin families need to be screened for PAVMs. However although PAVMs are significantly more common in endoglin-linked families they do not occur exclusively in them. The family found to be unlinked to endoglin and ALK1
had no pulmonary involvement140. However this is evidence from only one family and, as will be shown, my data shows otherwise. Moreover affected individuals in the same family can have very differing severities of disease so it is difficult to make a prognosis about the course of disease in any individual36 37.

1.3.2. ENDOGLIN

The endoglin gene lies on the long arm of chromosome 935 135. Various mutations including deletions and insertions, missense mutations and point mutations generating premature stop codons, have been identified37 136 145-148. Almost all mutations have been found to be unique to a particular family37 136 145-148 making mutational screening programmes problematic. In some endoglin-linked families no mutations have been found, studying all coding regions and splice sites of the gene37. With the apparent clustering of premature termination mutations, it was hypothesised that a truncated protein is translated which disrupts normal endoglin function via a dominant-negative effect145. However the identification of missense, frameshift, and nonsense mutations which all lead to very low or undetectable levels of messenger RNA transcripts suggested the prevailing nature of the mutations is to create a null (nonfunctional) allele37 148 the haploinsufficiency model. Furthermore when mutant proteins are translated they only exist transiently within the cell, not reaching the cell surface146. The haploinsufficiency model is now widely accepted as the mechanism by which these mutations act149.

This haploinsufficiency model has been further confirmed by a recent murine model of HHT150 where manifestations of HHT were seen in some mice expressing a
single copy of the endoglin gene. Previously embryonic lethality at gestational day 11.5 in mice completely lacking in endoglin, i.e. homozygous endoglin null mice, of 129/SvJ embryonic stem (ES) cell origin, was shown to occur due to defective vascular development. Lethality in endoglin null mice was also shown in ref. again due to defects in angiogenesis and also abnormalities in heart development. In these mice (129/Ola ES mice bred into C57BL/6 mice), however, death occurred at gestational age 10-10.5 days suggesting that phenotypic differences between endoglin null mice of different genetic backgrounds may be due to modifier genes and/or epigenetic factors. The role of modifier genes and epigenetic factors was further suggested when observing the heterozygous mice where the variability of organs affected, age of onset, and severity of disease was noted both between mice of different genetic backgrounds (129/Ola mice were most severely affected) and between mice of the same genetic background. This parallels human HHT and is thus an elegant and potentially extremely useful HHT model.

Endoglin (CD105) is predominantly expressed on all types of vascular endothelium and is recognised as an endothelial cell marker. It is also expressed on the syncytiotrophoblast (responsible for hormone synthesis and nutrient exchange) of the placenta, fibroblasts, smooth muscle cells, transiently on endocardial cushion tissue mesenchyme during heart septation and valve formation, pre-erythroblastic bonemarrow mononuclear cells, activated macrophages (it is upregulated on these compared to peripheral monocytes). It is upregulated on endothelial cells in tumour vasculature, inflamed tissues including skin lesions
e.g. psoriasis, in response to ionising irradiation, and in fibroblasts in pulmonary fibrosis.

The haploinsufficiency model allows screening for possible HHT1 patients to be performed by measuring the level of endoglin expressed on peripheral blood activated monocytes and umbilical vein endothelial cells. In the U.K., in contrast to the United States and Canada, ethical approval has not been granted for screening of newborns by measuring endoglin expressed on umbilical vein endothelial cells. HHT1 patients have decreased endoglin levels whereas HHT2 patients and unaffected individuals have normal levels of endoglin.

It had been suggested that endoglin mutations were loss-of-function alleles requiring somatic inactivation of the normal allele for vascular lesion development, in other words a two hit phenomenon similar to that hypothesised for tumour suppressor genes. However reduced levels of endoglin are also seen on the endothelial cells of apparently normal vessels of HHT1 patients compared to the levels seen in unaffected individuals and also compared to the normal levels of endothelial cell marker, PECAM1, in HHT patients. The same levels are also seen in abnormal vessels making it unlikely that the theory is correct that AVMs occur when the normal copy of the endoglin gene is inactivated by a second hit.

1.3.3. ENDOGLIN PROMOTER

The promoter region of human endoglin was recently cloned and characterised. The relevant elements that participate in endoglin transcription were determined by comparing the activities of a series of endoglin promoter fragments. The fragments
were inserted into a reporter vector containing the luciferase gene. BAEC (bovine aortic endothelial cells) were transiently transfected with the constructs and luciferase activity measured. The largest construct, -851/+350, i.e. spanning from 851 base pairs upstream of one of the major transcription start sites to 350 base pairs downstream of it, had similar activities to its -400/+341 and -224/+341 derivatives (about 700 fold increase over a promoterless vector). However the construct -851/-400 showed no promoter activity and plasmids -141/+341 and -81/+350 showed a decreased level of activity compared to -400/+341 and -224/+341. This suggests that the region 81 base pairs upstream of the transcription start site can act as a basal promoter with additional regulatory elements in the 319 base pair fragment immediately 5' of this required for optimal transcription. An Alu sequence, often located upstream of regular transcription units, was found at -927/-666 supporting the view that the major transcription regulatory element was downstream of this.

Many transcriptional start sites have been identified within the -400/+341 fragment. Unusually no consensus TATA or CAAT boxes have been found but instead guanine and cytosine (GC) rich boxes at -47/-29 and -5/+16 have been found along with an Sp1 binding site at -37. These are a feature of TATA-less genes which have multiple transcription start sites. The lack of TATA and CAAT boxes is a common feature in components of the TGFβ superfamily.

Several potential transcription factor binding sites, also present in other endothelial gene promoters, have been identified. These include NFkB, GATA, AP2, Sp1, and ets and all lie within the 741 base pair fragment. Interestingly NFkB sequences are responsive to mechanical forces, by regulating shear stress response element-
dependent gene expression171, which could account for a potential role in regulating \textit{endoglin} transcription when endothelial cells are subjected to haemodynamic forces of the bloodstream, similar to mechanisms occurring in other endothelial genes171. GATA and ets are seen in other endothelial genes and, more specifically, AP2 and Sp1 sites are present in promoters of other components of the TGF\(\beta\) superfamily (TGF\(\beta\)1, \(\beta\)3, biglycan (a small proteoglycan which interacts with TGF\(\beta\)), and TGF\(\beta\) receptor types I and II166 169 170 172-174. An ets family member also regulates expression of TGF\(\beta\) receptor type II175.

Other potential TGF\(\beta\) responsive elements were identified within the 741 base pair fragment including 2 sites for the TGF\(\beta\)-related signalling proteins, Smads, 10 TGF\(\beta\) activation elements, 6 TGF\(\beta\) control elements, and 2 TGF\(\beta\) inhibitory elements. In keeping with this, promoter activity was found to be stimulated by TGF\(\beta\)1133. Interestingly 3 oestrogen response elements, 1 glucocorticoid response element, and 5 vitamin D response elements were found in this fragment. This could explain, at least partially, the contrasting effects of low, medium, and high oestrogen states, as discussed in Section 1.2.4.

It has recently been shown that two of the Smads, Smad3 and Smad4, components of the downstream signalling pathway for the TGF\(\beta\) superfamily, bind to specific DNA sequences inducing transcription of downstream target genes. They mimic the transcriptional effect of TGF\(\beta\)1 on the \textit{plasminogen activator inhibitor 1 (PAI-1)} promoter (the best characterised TGF\(\beta\)1-inducible promoter). Although specific Smad-response elements are present in the \textit{PAI-1} promoter, interestingly in at least
one study, mutations which eliminated particular Smad DNA binding sites did not interfere with TGFβ1-dependent or Smad-dependent transcriptional activity. However both TGFβ1-dependent and Smad-dependent transcription was eliminated by mutation of adjacent AP1 sites176. It would appear from this that Smads alter transcription through sequence-specific DNA binding and through potentiating AP1-dependent transcription176. A Smad4 mutation identified in a human pancreatic carcinoma abolished Smad4 DNA binding activity, preventing transactivation of TGFβ responsive genes. This emphasises the importance of the TGFβ superfamily and Smads in carcinogenesis177. The finding of two Smad responsive elements in the \textit{endoglin} promoter highlights the role of endoglin in TGFβ superfamily signalling.

1.3.4. \textit{ALK1}

The activin receptor-like kinase (ALK1) gene lies in the pericentromeric region on the long arm of chromosome 12137 138. Mutations in this gene, like in \textit{endoglin}, appear to be unique to a particular family. They include missense and nonsense mutations, and deletions and insertions, and are found in sequences encoding the highly conserved kinase, transmembrane, and extracellular ligand binding domains 139 178 179. Some mutant alleles lead to undetectable or low levels of an unstable messenger RNA transcript suggesting that haploinsufficiency is occurring here as in \textit{endoglin}178-180.

ALK1 is found, like endoglin, predominantly on human endothelial cells and in lung and placenta179 181 182 In the rat it has also been found on splenic macrophages
and in the bone marrow. The distribution of ALK1 is similar to that of endoglin and also TGFβ1 suggesting a close functional association.

As for endoglin, embryonic lethality has been demonstrated in homozygous ALK1 null mice occurring at gestational day 10.5-11.5 due, as in endoglin null mice, to vascular development abnormalities. However, unlike in endoglin null mice, the mice in ref. which were heterozygous for the ALK1 mutation showed no evidence of the HHT phenotype. It is not clear whether this reflects intrinsic differences with requirements for human and murine ALK1, or absence of appropriate environmental triggers in the ALK1 null mice.
1.4. TGFβ: THE ROLE OF ENDOGLIN AND ALK1 IN THE SUPERFAMILY

The structurally related peptides forming the transforming growth factor β (TGFβ) superfamily are factors which play diverse and fundamental roles in growth and differentiation. They include the TGFβ isoforms, β1, β2, β3, and β5, the activins, and the bone morphogenetic proteins (BMPs). They are involved in critical vascular processes such as development, angiogenesis, and vascular repair, and also in cellular proliferation (endoglin can modify TGFβ1 inhibition of cellular proliferation via downregulation of c-myc mRNA), stimulation of cell-matrix adhesion, haematopoiesis, immune regulation, inhibition of oncogenesis, and stimulation of wound repair. TGFβ1 null mice behave very similarly to endoglin null mice and ALK1 null mice dying at gestational age 9.5-11.5 days due to defects in yolk sac vasculogenesis and haematopoiesis.

Abnormalities in signalling by the TGFβ superfamily are thought therefore to contribute to many different disease processes including importantly oncogenesis, atherosclerosis, pulmonary hypertension and fibrosis. Signalling is mediated by two of a series of serine/threonine kinase receptors occurring in two forms, type I and type II, in a complex. The type I receptors transduce signals to downstream targets, Smads. These receptors however require first to be activated by a type II receptor which itself has been activated by binding of an appropriate ligand. The TGFβ isoforms and activin type I bind ligands only on coexpression of type II receptors. The ligand specificity of the type I
receptor is defined by the type II receptor197. For example, for TGFβ1 the type II receptor, TβRII, confers ligand specificity on the type I receptor TβRI. In the BMPs, the type I receptor can bind ligand independently but still requires a type II receptor for transduction of the signal199-201. TGFβ isoforms and activins can signal through the same downstream components, Smad2 and 3202-204. BMPs activate Smad1, 5, and 8 signalling pathways194 205-207. The possibility that Smad2 has a tumour suppressor function has been raised as Smad2 lies within a 3 megabase region of DPC4 on chromosome 18q21.1, a region often deleted in human cancers204.

Endoglin is a trans-membrane glycoprotein208. It was identified as a component of the TGFβ receptor system binding TGFβ1 and β3209 which was prompted by observations that endoglin had a similar structure and distribution to betaglycan, a type III receptor210. Betaglycan can bind TGFβ1, 2, and 3211. It presents the bound TGFβ ligand to the type II receptor which is able to bind the ligand with much greater affinity than it can bind unbound TGFβ211. This is especially so for TGFβ2 which has a particularly low affinity for the type I and II receptors in the absence of betaglycan211. Betaglycan is then displaced from the complex by the type I receptor211. Membrane bound betaglycan thus upregulates cell responsiveness to TGFβ unlike soluble betaglycan which binds TGFβ but, as it does not enhance binding to membrane receptors, acts as a downregulator of TGFβ effects212. It had been suggested that endoglin functions similarly by affecting the binding of TGFβ1 and β3 to the signalling receptors209 213 214. However recently it has been shown
that endoglin in fact needs coexpression of a ligand binding receptor in order to interact with a ligand. Furthermore it does not alter overall binding to the kinase receptors but mimics the specificity of the receptor with which it interacts. Since it cannot bind ligand it is not a true receptor but is better defined as an accessory protein for the TGFβ superfamily. Endoglin can bind TGFβ1 and β3 by interacting with the TβRII receptor and can bind activin-A and BMP-7 by association with activin type II receptors, regardless of which type I receptor is expressed. It also interacts with type I receptors ALK3 and ALK6 which bind BMP-2. Endoglin cannot however interact with BMP-7 bound to BMP type II receptors indicating specificity of its action. Since endoglin does not alter overall binding to kinase receptors and also as it interacts with many different signal transducing type I receptors, it has been postulated that endoglin could function to alter receptor activation of downstream signalling events such as Smad signalling or even could recruit new proteins into the signalling complexes. This suggests that it could perform a variety of regulatory roles in diverse cell types according to the kinase receptors, ligands, and Smad mediators present.

ALK1 is a serine/threonine kinase type I receptor that in vitro can associate with the TβRII receptor or activin type II receptor, binding TGFβ1 or activin respectively, although with low affinity. However ALK1 was defined as an orphan receptor since this receptor association had not been demonstrated in vivo and its in vivo ligand was not known. ALK1 has now been shown to bind TGFβ1 in conjunction with TβRII receptors in human umbilical vein endothelial cells.
ALK1 mediated signalling has also been shown to inhibit TGFβ1 activity mediated by the type I receptor, ALK5, suggesting that the balance between ALK1 and 5 may have a crucial role in angiogenesis. It has been shown to activate Smad1 and Smad5 pathways, involved with signalling for bone morphogenetic proteins which are implicated in various aspects of development.
1.5. LINKAGE ANALYSIS

Primary references for sections 1.5.1-1.5.4 may be found in references 215 and 216.

1.5.1. ALLELES AND COINHERITANCE

Linkage studies are based on analysing the inheritance of alleles. Alleles are different states of a locus (a discrete area of the genome for which a gene is one example). If two loci lie very close together on the same chromosome they will be inherited together from parent to child and so the child will have the same pattern of alleles as the parent. As the distance between the two loci increases, the chances of them being inherited together decreases, as there is an increasing chance of separation due to crossover at meiosis. This produces a non-parental combination known as a recombinant.

1.5.2. POLYMORPHIC MARKERS

These are published loci of known location in which a number of alleles are present. The type commonly used in linkage analysis, and used in my work, are loci which include a varying number of short tandem repeat sequences with repeats of 2 to 5 base pairs. Because they can be amplified by PCR, they allow more rapid analysis than previously used markers (restriction fragment length polymorphisms). They also have more than 2 different alleles so are usually more polymorphic. If the parents have 4 different alleles, i.e. both are heterozygous, then the allelic inheritance by the offspring is much more informative than otherwise i.e. it is possible to tell exactly which allele the offspring has inherited from which parent. The heterozygosity index (H.I.) provides a direct estimation of how many individuals will be heterozygotes. The polymorphism information content (P.I.C.) estimates the
probability that an offspring's genotype will allow the deduction of which of the affected parent's alleles it has received. These values are published with the marker. It is obviously prudent therefore to choose markers with a high H.I. and P.I.C. in order to obtain informative results. Since this work was initiated, a new technique for large-scale association genetics studies has been developed. This uses single nucleotide polymorphisms (SNPs) which occur once every 100-300 bases throughout the genome. A database of SNPs is available at The National Center for Biotechnology Information (NCBI), website http://www.ncbi.nlm.nih.gov/.

1.5.3. GENETIC DISTANCES

In one Morgan of genetic distance there will be, on average, one crossover per meiosis. Its derivative, the centiMorgan (cM), is approximately equal to a physical distance of one megabase assuming a sex-averaged genetic map of 3,000 cM and \(3 \times 10^9\) base pairs in the haploid genome. However genetic distances are not exactly the same as physical distances due to double crossovers and some areas being more prone to crossovers than others. 1 cM represents a \(\theta\) of 0.01. \(\theta\) is the recombination fraction where

\[
\theta = \frac{\text{the number of recombinants}}{\text{the total number of offspring}}
\]

Under conditions of free recombination, either because loci are on different chromosomes or because they are widely spaced on the same chromosome, \(\theta\) is 0.5 (the maximum value of \(\theta\)). As \(\theta\) decreases it reflects the appearance of fewer recombinants than would be expected by chance alone suggesting that the two loci lie close to each other.
1.5.4. LOD SCORES

To define the allelic inheritance of polymorphic markers known to lie close to the locus of interest (in this study the HHT disease-causing gene), mathematical qualification of the likelihood of marker positions is derived from the lod score. In the case of disease gene analyses, if the same polymorphic marker allele is always transmitted from affected parent to affected offspring, but not to unaffected offspring, it indicates that the marker is likely to lie close to the disease-causing gene in the pedigree as the mutant allele of the gene would be very unlikely to be separated from the marker allele at meiosis. However if the affected parent’s alleles are randomly inherited it suggests that the marker is not close to the disease-causing gene. Linkage analyses mathematically quantify the likelihood of two loci being linked, and therefore in this case a marker gene lying close to a disease-causing gene. The lod score Z represents:

\[
\text{Lod score (Z)} = \log_{10} \frac{\text{likelihood of observations if loci linked, distance } \theta \text{ apart}}{\text{likelihood of observations if free recombination (} \theta = 0.5)}
\]

By definition at \(\theta = 0.5 \) (free recombination) the lod score is 0. A positive lod score implies that the observation is more likely to reflect linkage than chance with a score of +3.6 or more indicating linkage to a new autosomal location at a significance level of \(p \leq 0.05 \). A score of only +1.2 or more is required to significantly (\(p < 0.05 \)) prove linkage to a known site. The more negative the lod score, the more likely that the observations are not due to linkage, with a score of –2 or less significantly excluding linkage at a significance level of \(p \leq 0.05 \). Two point lod scores were calculated in
this work using MLINK and GENEHUNTER computer programmes via the Human Genome Mapping Project, website http://www.nhgri.nih.gov/HGP/.

1.5.5. POTENTIAL PITFALLS IN LINKAGE ANALYSIS

Linkage analysis is an extremely powerful tool enabling the identification of the site of a disease-causing gene in families with inherited disease. The strength of the analysis can be reduced by either false generation of inappropriate lod scores, or lack of detection of true linkage. Potential ways in which these problems can result are outlined below, according to whether these derive from errors in family pedigree assignment, disease phenotyping or DNA sample numbering, or whether they reflect inherent limitations of the methodology.

1.5.5.1. MISPHENOTYPING

In the linkage programmes used in the work in this thesis, MLINK and GENEHUNTER computer programmes via the Human Genome Mapping Project, website http://www.nhgri.nih.gov/HGP/, affected individuals’ results are assumed to reflect inheritance of the disease gene, and therefore the analyses require the definition of affected disease status with 100% accuracy. Early studies of HHT linkage analyses were sometimes hampered or delayed by difficulties in phenotyping individuals, particularly by groups who used epistaxis alone as definite indicator of affected status. Because of this the HHT Foundation International scientific committee reviewed the then criteria for diagnosis of HHT\(^{34}\), and established stricter requirements for a definite diagnosis of HHT\(^{217}\). Throughout this work disease status was designated using these stricter international consensus criteria\(^{217}\) (see Section 2.1.3). Particular care was taken to avoid misinterpretation of epistaxis and
telangiectasia (see Section 2.1.2.2) with exclusion from further analysis, if necessary, of any individuals where interpretation was difficult (see Section 2.1.2.2). Exclusion of the diagnosis of HHT is more problematic clinically due to age-related penetrance (though, in practice, of less importance in the linkage analyses as the programme parameters may be set to allow for a degree of diagnostic uncertainty in clinically unaffected individuals). At less than 12 years of age, penetrance of HHT is low (less than 80\%)\(^5\), and there is little data derived from analyses if the penetrance value has to be set below 75\%. For this reason apparently unaffected children under the age of 12 years were excluded from molecular analysis (see Section 2.1.3). The linkage programme parameters were then used, in this work, to take age-related penetrance into account in older clinically unaffected individuals, setting penetrance values at \(p=0.8\) between ages 12 and 35 and \(p=0.95\) for individuals aged over 35, according to published data on penetrance in HHT\(^{30 34 35}\) (see Section 2.9.2).

1.5.5.2. NON PARENTAGE

Incorrect assigning of parentage as stated by the family, or erroneous sample mixing, is usually quickly highlighted as non-Mendelian patterns of inheritance of marker alleles result. The program MLINK will not proceed to generate lod scores in the presence of non-Mendelian inheritance. In theory Mendelian inheritance could occur in cases of non-parentage if the “false” parent had two alleles of which at least one and possibly both were the same as in the true parent. As over 50 different polymorphic markers with allele frequencies of between 0.1-0.3 have been studied in all of these families in the Shovlin laboratory, always with Mendelian inheritance, the probability of coincidental allele sharing on each occasion of non-parentage is
exceedingly remote (in the region of 0.3^{50} for any one family). The only realistic means in which non-paternity could be an issue is if there was genuine sharing of all alleles by the “false” and “true” parent being identical twins but, in this case, the parents would be genetically identical and linkage analysis would not be affected. Similar considerations apply in the case of offspring, for example adopted children would have no higher chance of sharing their adoptive parents’ alleles than the general population and the probability that we would miss this with over 50 markers studied would again be in the region of 0.3^{50}. We therefore did not consider non-parenthood to be an issue in these families studied in this work.

1.5.5.3. INHERENT LIMITATIONS IN LINKAGE STUDIES

The potential of linkage to determine the site of a locus or disease gene critically depends upon the presence of neighbouring polymorphic markers in which informative alleles are faithfully passed on to individuals’ descendants.

1.5.5.3.1. MARKER DISTRIBUTION

Lack of appropriate polymorphic markers was the major limitation to early linkage studies which were only able to compare the location of one gene with a known function to another218 219. The principles of creating a map using anonymous DNA markers throughout the human genome were delineated more recently, but this was initially again restricted to a relatively limited map of widely spaced markers220. With the discovery of the short tandem repeat polymorphisms, such as (CA)$_n$ repeats, virtually all areas of the genome became accessible to these studies. It is therefore now highly unlikely that lack of a suitable marker would be the reason
why linkage would be missed, even if the locus under study lay in a relative hot spot for recombination.

These considerations are advanced even further with the discovery and utilisation of single nucleotide polymorphisms (SNPs), although these were not used in this study. The human SNP map was published in February 2001 with 1.42 million SNPs, with a SNP on average every 1,000-2,000 nucleotides.

1.5.3.2. REDUCED ALLELE INFORMATIVENESS

If insufficiently polymorphic, there is a significant chance that for any given marker it will be impossible to assess which parent's alleles a particular offspring has received. This is the essential prerequisite for linkage studies, estimated for each marker as the polymorphism information content (PIC). If all markers in the vicinity of a particular locus have a low PIC, particularly in the families derived from common population pools, then the effective distance to the nearest informative polymorphic marker will be reduced. This results in the possibility that linkage might be missed.

Informativeness of markers is also reduced in extended families connected by numerous deceased ancestors, since it is impossible to assess whether the allele apparently segregating with disease is identical to that segregating elsewhere in the pedigree, rather than being brought in incidentally by an unaffected spouse. The latter is more likely to occur if the allele is particularly frequent in the population. Since disease allele frequencies are generally set at 10% to calculate initial lod scores, wherever co-inheritance stems through a deceased ancestor the linkage
programme will assign an artificially high probability of linkage. In this setting lod scores may be misleadingly high. This risk is reduced if the study focuses on large sibships which reflect fewer parental pairs.

1.5.5.3.3. GENOME INSTABILITY

Linkage depends on faithful transmission of alleles from parent to child. This will not occur if the polymorphic alleles undergo a spontaneous mutation during meiosis resulting in apparent non-parentage or, more rarely but of more concern to linkage analyses, apparent inheritance of a disease-associating allele. In general, the spontaneous mutation rate of human genomic DNA is approximately 10^{-9} to 10^{-12} errors per base per generation. Short tandem repeat sequences, which were used in this study as polymorphic markers, arose by replication slippage, and might be suspected to be prone to a higher mutation rate than other areas of the genome. However their spontaneous mutation rate was estimated as 0.03% in over 17,000 meioses. Certain diseases, such as familial non-polyposis colon carcinoma, generate genome instability causing an increased spontaneous mutation rate, thus reducing the power of linkage analysis. This has not been seen in the tens of thousands of parent-child allele transmissions in HHT performed in the Shovlin group, and was therefore not considered a limitation to linkage analysis in this disease.

1.5.6. LINKAGE STUDIES VERSUS ASSOCIATION STUDIES

Linkage analysis is an excellent tool for studying diseases determined by the action of a single gene. However it is less useful in non-Mendelian diseases, arising from the interaction of a number of genes and environmental influences, as studies of
small numbers of extended pedigrees containing large numbers of affected individuals will not yield the same results given that the mode of inheritance is unknown and a number of genes with segregating alleles in each generation is involved. One tool for tackling this is the association study. In this, genotypes in cases and controls at a genetic marker of interest are compared and the difference in the allele frequencies between cases and controls interpreted as evidence in favour of association of one or other allele at the marker of interest with disease. Unlike a linkage study it does not have to be carried out within a family group. Whereas linkage is a property of loci, separated by the same genetic distances in all populations, association (also known as linkage disequilibrium) is a property of alleles.

The feasibility of analysing more complex genetic traits demands a higher density map of polymorphisms than the series of short tandem repeats sequences used in linkage studies in monogenic disease. With a SNP on average every 1,000-2,000 nucleotides, SNPs are proving particularly useful in association studies looking at diseases with a complex, multigene basis. In addition each SNP can be classified as to whether it is likely to be directly functional as many occur in coding sequences (when the encoded protein may be altered) or regulatory regions of the genome.

Understanding of the genetic basis of disease, whether the disease is due to a single gene disorder, multigenic, or a combination of multigenic and environmental factors, through linkage and association studies should lead to enormous therapeutic
possibilities from gene therapy, through pharmacogenomics, to primary prevention227.
From our current knowledge of the molecular mechanisms underlying HHT and its clinical implications, my work has been based on two separate hypotheses. The first is that mutations in the endoglin promoter region could account for disease in endoglin-linked families. The second separate hypothesis is that pulmonary involvement could occur in HHT families unlinked to endoglin and ALK1 but instead linked to a third gene.

Hypothesis 1: Mutations in the endoglin promoter region could account for disease in endoglin-linked families

Not all mutations have been found in endoglin-linked families studying all coding regions and splice sites of the gene. Given that haploinsufficiency is the prevailing model in endoglin-linked families, it seems likely that mutations in the promoter region of the gene could account for disease.

The 8 HHT families identified for this work were chosen as 4 had previously been shown to be linked to endoglin but no mutations had been found by Southern blotting, cycle sequencing of all known exons and intron/exon junctions, and cycle sequencing of the entire cloned DNA. No mutations had been found in the other 4 families, using the same techniques, but they were too small to allow significant linkage to an HHT gene to be made.

In other work the term “mutation” has been used to describe any permanent variation between template and daughter sequences in DNA polymerisation. However in this
work mutation is defined as this variation occurring in an allele that is only present cosegregating with a particular disease trait and for which there is independent evidence that this variation is the cause of the disease. In this work a variation in an allele which is incidental to the gene product and not a disease causing mutation is described as a polymorphism.

Hypothesis 2: *HHT families with pulmonary involvement may be unlinked to the PAVM gene, endoglin, and may be unlinked to both known HHT genes, endoglin and ALK1*

The work of Piantanida suggests that a third gene for HHT could exist. While no pulmonary involvement was seen in this pedigree, PAVMs have been shown not to occur exclusively in *endoglin*-linked families. The hypothesis, therefore, seems plausible.

The HHT families chosen for this study were identified as being suitable as they had pulmonary involvement and initial analysis in 1992 suggested that they were unlinked to *endoglin*. Linkage analysis was undertaken using the principles as discussed in Section 1.5.
Haemotoxylin and eosin stained slide, viewed by light microscopy, showing microscopic PAVMs.

I would like to thank Dr D. Lamb and Professor W. MacNee for this figure.
Telangiectasia of the lips.

I would like to thank Dr C.L. Shovlin for this figure.
CT head scan showing CAVM marked by the arrow.
FIGURE 1.4 CHEST X-RAY SHOWING PAVM

PAVM on chest X-ray indicated by the arrow.
CT scan of chest showing PAVM indicated by the arrow.
Pulmonary angiography showing PAVM before treatment in A) and after coil embolisation in B) (marked with arrows). I would like to thank Dr K. McBride for performing the investigation.
2. MATERIALS AND METHODS

Both clinical and molecular techniques were used.
2.1. CLINICAL

2.1.1. ACQUISITION OF SUBJECTS

Current studies were performed with the approval of the Multicentre Research Ethics Committee of Scotland (MREC). Families affected by HHT were initially identified in 1992\(^35\)\(^37\) when one individual from each presented to the Hammersmith Hospital for management of PAVMs. Families of the individuals were clinically evaluated at that time by Dr Claire Shovlin (CLS), my supervisor, in the same way as documented below.

2.1.1.1. LINKAGE ANALYSES

Two of the families (families S & P) were further assessed by myself and CLS six years later. These families were identified as being suitable for further linkage analyses as analysis in 1992 indicated that they were not linked to *endoglin*. Original members were reviewed and additional members were assessed. After linkage results were obtained for these two families, two additional families (families V and T) with PAVMs were studied. They had been reported as being unlinked to *endoglin*\(^35\)\(^37\). They had been assessed clinically in 1992 by CLS and were not assessed further clinically by myself.

2.1.1.2. PROMOTER ANALYSES

Eight of the families identified in 1992 were studied further. They were chosen for this work as four had previously been shown to be linked to *endoglin* but no mutations had been found. No mutations had been found in the other four families but they were too small to allow significant linkage to an HHT gene to be made\(^37\).
These families had been clinically evaluated by CLS in the same way as documented below. They were not assessed further clinically by myself.

2.1.2. CLINICAL EVALUATION

With written consent individuals were evaluated clinically in their own homes with a full medical history. This included questions regarding epistaxis, gastrointestinal bleeding, anaemia, dyspnoea and haemoptysis, and symptoms suggestive of transient ischaemic attacks (TIAs) (see Appendix A). Physical examination for telangiectasia on the lips, face, hands, and on the buccal and nasal mucosae was performed. The presence of central cyanosis and finger clubbing, which could be due to PAVMs, was noted. Full blood counts (FBCs) were performed when appropriate (to assess for anaemia or polycythaemia). If necessary, further information was obtained from GPs and local physicians, with patient consent.

2.1.2.1. SCREENING FOR PAVMS

Screening for PAVMs is recommended for all individuals with HHT in view of the risks of paradoxical embolism if PAVMs are left untreated and the safe therapeutic methods which exist to limit these complications. As respiratory physicians, in this study, we wanted to perform an assessment in addition to clinical history and examination, in order to direct potentially affected patients to local respiratory services for formal evaluation.

Although physiological considerations suggest that oxygen saturations (Sa02) detected by pulse oximetry might be too imprecise to use to predict for the presence of PAVMs, this method has been previously validated in PAVM patients.
Thompson *et al*114 used Biomeda pulse oximeters and a protocol of measurements for 10 minutes in both the supine and erect postures. In their hands, erect SaO\textsubscript{2} \leq 96\% had a sensitivity of 73\% and specificity of 35\%, and this value was recommended for a screening cut-off. In addition, in their population, supine-erect SaO\textsubscript{2} was significantly greater in the PAVM rather than non-PAVM group: 1.7 (SD 2.7\%) vs 0.3 (SD 1.5\%), p=0.01.

We elected to base a simple screen on these results. We purchased an Ohmeda 3800 oximeter and used the Thompson protocol of measurements for 10 minutes in both the supine and erect postures. Diagnostic cut-offs for results sufficiently suggestive of PAVMs to advise (with patient consent) referral to local respiratory physicians were established. These were suspicious symptoms (e.g. unexplained haemoptysis) or signs (e.g. clubbing, central cyanosis), SaO\textsubscript{2} erect of \leq 96\% (as recommended by 114), or SaO\textsubscript{2} supine-erect greater than 2SDs beyond the mean in the non-PAVM group in 114, i.e. \(0.3\% + [2 \times 1.5\%] = 3.3\%\).

2.1.2.2. ACCURATE PHENOTYPING

Accurate phenotyping is critical. Care was required particularly in evaluating certain manifestations of HHT. It is important that epistaxis is spontaneous and not precipitated by trauma. Two individuals gave a history of nose bleeds which had only occurred after possibly being hit on the nose. They could therefore not be given a definite phenotype and were given the disease status "unknown" (see Section 2.1.3). Telangiectasia may also be misdiagnosed. All telangiectasia were assessed by myself and CLS rather than individual reports of them being accepted. Differentiation from spider telangiectasia can be difficult, although they are
morphologically distinct228. One individual, with a history of heavy alcohol usage, had to be designated "unknown" (see Section 2.1.3) as her telangiectasia occurred in the presence of such extensive spider telangiectasia that we were not confident to diagnose a subset of HHT telangiectasia with certainty.

2.1.3. DESIGNATION OF DISEASE STATUS

Disease status was designated using the current international consensus criteria229. Affected status was assigned in the presence of any three criteria: affected first degree relative; recurrent, spontaneous epistaxis; telangiectasia; documented visceral manifestations. If only two of the four criteria were present (affected first degree relative and epistaxis or telangiectasia), unknown status was assigned and the individual excluded from molecular analyses. However if the offspring of the individual was affected, a diagnosis of obligate affected was made. Apparently unaffected children under the age of twelve years were designated unknown, as penetrance is less than 80\% at this age34 35.

2.1.4. SAMPLE COLLECTION

With consent each individual had 20mls of blood venesected into a heparinised 50ml Falcon tube. This was for later DNA extraction and, in some cases, leukocyte and plasma preparation. Where appropriate 2.7mls of blood was also placed in an EDTA tube for a full blood count (FBC) to be performed. The samples were collected on trips which lasted several days so were kept at ambient temperatures for about three days. The samples in the Falcon tubes were then placed at \(-70^\circ\text{C}\) while awaiting DNA extraction. FBC samples were sent to the haematology laboratory at the Royal Infirmary of Edinburgh for analysis.
2.2. DNA EXTRACTION

Standard proteinase K digestion and phenol-chloroform extraction methods were adopted230 with ethanol precipitation and resuspension in Tris-buffered EDTA:

2.2.1. GENOMIC DNA

Genomic DNA was extracted from all the whole blood samples obtained from families S and P, which had been previously placed at -70°C. Half of the total original sample for all family S members had already been used for leukocyte and plasma extraction. Half of the total remaining sample (half of the total original sample for family P members) was prepared so that more of each sample was available in case of problems. Frozen samples in heparinised Falcon tubes were thawed in a water bath at 37°C. They were diluted in an equal volume of autoclaved phosphate buffered saline (PBS) and centrifuged at room temperature at 3500g for 15 minutes. To commence deproteinisation the resulting cellular pellet was resuspended in extraction buffer (see Appendix B) (the volume of this used was three quarters of the original sample volume), and incubated at 37°C for one hour. The buffer contained the ionic detergent 10\% sodium dodecyl sulfate (SDS) (Gibco) and EDTA (Sigma) which inhibits DNA endonucleases (DNAses). RNaseA (Sigma) was added to the buffer at 20\(\mu\)g/ml to remove RNA. After this incubation, deproteinisation was completed with proteinase K (Sigma). Initially it was added to each sample to give a concentration of 20\(\mu\)g/ml and incubated at 50°C for 3 hours swirling regularly.

However, despite this being a higher concentration than suggested by Sambrook230, it was always insufficient, with several more additions of proteinase K usually being required. The samples were incubated after each addition either at 50°C for 3 hours
or 37°C overnight. Double the original volume of proteinase K was therefore added each time which decreased the number of additions required.

RNaseA and other lipid soluble cellular debris was removed by extraction with phenol and/or chloroform. For each extraction an equal volume of the appropriate phenol/chloroform solution was added and mixed by inversion by hand for 10 minutes. This minimised shearing forces on the DNA. The sample was then spun at 2000 rpm at room temperature for 15 minutes and the resultant supernatant removed using cell saver pipette tips, again to decrease shearing forces. The next extraction was then commenced on the supernatant. Two phenol extractions (equilibrated phenol (Sigma)), followed by a phenol:chloroform 50:50 extraction (phenol:chloroform isoamylalcohol 25:24:1 (Sigma)), and finally a chloroform extraction (chloroform isoamylalcohol (Sigma)) were performed.

To precipitate the DNA, 0.1× volume (of the final total volume) of 3M sodium acetate and 2.5× volume (of the volume of supernatant remaining from the final chloroform extraction) of 100% ethanol was added to the supernatant. The DNA precipitated at room temperature and could be lifted out with a sterile glass rod. The precipitated DNA was washed twice in 70% ethanol to remove salts and small organic molecules and air dried. Vacuum drying in a Savant speedvac was tried but tended to make resuspension more difficult. The DNA was resuspended in approximately 500μl of GTE.

The DNA concentration, integrity, purity, and resuspension were assessed by agarose gel electrophoresis of 1μl of extracted DNA in comparison to 1μl of λHindIII
marker. If residual contaminating DNA and protein had been excessive, relevant purification steps could be repeated, although this did not occur. If resuspension was problematic, aliquots of the DNA were diluted further with genomic TE, heated to 37°C and vortexed (gently to minimise shearing of the DNA), prior to use for PCR.

2.2.2. PLASMID DNA

Plasmid DNA clones were grown to saturation in 7mls LB (supplemented with 25-50 μg/ml ampicillin for ampicillin selection). After centrifuging at 2500 rpm, at room temperature for 5 minutes, the resulting cellular pellet was resuspended in 150μl Genomic tris EDTA (GTE) (see Appendix B). Bacterial lysis was performed by alkaline lysis by adding 300μl of 1% SDS (to denature all DNA). The reaction was vortexed vigorously and iced. Subsequent addition of 300μl of ice cold 5 molar (M) potassium acetate pH 5.0 followed by vortexing, icing for 5 minutes, and vortexing again, allowed the covalently-closed plasmid DNA to reanneal rapidly, while most of the chromosomal DNA proteins and DNA precipitated with the newly complexed SDS and potassium and was removed by centrifuging for 10 minutes at 4°C. 1μl of 10mg/ml RNaseA, to remove residual RNA, was added to the supernatant and incubated at 37°C for 30 minutes prior to proceeding to one phenol:chloroform 50:50 extraction using the same technique as for genomic DNA (See Section 2.2.1).

Precipitation of the DNA was performed using the same technique as for genomic DNA i.e. ethanol precipitation (See Section 2.2.1). Since plasmid DNA is composed of shorter fragments of DNA than genomic DNA precipitation occurs less readily. It
was enhanced by the addition of 1μl of glycogen to coprecipitate as a carrier molecule and the sample placed at −70°C for 20 minutes followed by centrifugation at 4°C for 20 minutes. The precipitated DNA was washed and dried in the same way as for genomic DNA and resuspended in 50μl of GTE.

The insert DNA was released from plasmid DNA (pGEM-T vector, Promega) by digestion with EcoRI using standard protocols (see Section 2.5.1). The digest was then assessed by agarose gel electrophoresis.

2.2.3. DNA EXTRACTION FROM AN AGAROSE GEL

This was performed using the Wizard PCR Preps DNA Purification System (Promega). PCR products were separated by TAE low melting point agarose gel electrophoresis (see Section 2.4.1.1). The DNA band was cut from the gel using a sterile blade aiming to obtain no more than 300μl of agarose. Exposure of the DNA to UV light was minimised by excising it quickly under a transilluminator UVP with the power in the “lo” position. The sample was melted in a 1.5ml eppendorfer tube by incubation at 70°C. 1ml of Wizard Preps resin was mixed with the melted agarose by pipetting for 20 seconds. Vortexing was avoided to minimise shearing forces on the DNA. The mix was drawn into a Wizard Minicolumn using a syringe. The minicolumn was washed with 1ml of 80% isopropanol and centrifuged at 12000g for 20 seconds to remove residual isopropanol. The DNA was eluted from the minicolumn by applying 50μl of double distilled water (at room temperature if the DNA fragment was less than 3kilobases (kb), at 65°C if the fragment was 3kb or
more), waiting for 1 minute, and centrifuging at 12000g for 20 seconds. The DNA was stored at 4°C.
2.3. PREPARATION OF LEUCOCYTES AND PLASMA

Half of the total volume of whole blood samples from all family S members was used to extract plasma and leukocytes using a Ficoll preparation. Samples were thawed in a water bath at room temperature and diluted with an equal volume of autoclaved phosphate buffered saline (PBS). The same volume as the original blood sample of histopaque 1077 (Ficoll) was overlaid in a 50ml Falcon tube with the diluted blood very slowly to prevent mixing of the two layers. This was centrifuged at 2200 rpm, for 20 minutes at room temperature, with no brake so as not to disrupt the cells. This separated the sample into 4 layers: plasma, leukocytes, histopaque 1077, and erythrocytes from top to bottom respectively. The plasma was removed and stored at −70°C. The leukocytes were removed and washed twice with 50mls PBS, with centrifugation at 1600 rpm for 15 minutes then 1200 rpm for 7 minutes between washes (both times at room temperature with no brake). Leukocytes from this preparation were stored by resuspending the pellets with 1ml RPMI-1640 medium (Sigma) containing previously added foetal calf serum, 10,000 units of a penicillin/streptomycin mix, and L-glutamine (5mls of 200mM stock), and placing on ice. 1ml of foetal calf serum containing dimethylsulphoxide (DMSO) (Sigma), previously iced, was mixed with this and the resulting mixture placed in a cryo tube, iced immediately, and stored at −70°C.
2.4. DNA ANALYSIS

2.4.1. GEL ELECTROPHORESIS

2.4.1.1. AGAROSE

A range of agarose concentrations (0.8-4%) were used according to the DNA fragment size to be studied. Low melting temperature products, seaplaque agarose (FMC Bioproducts), were used either if a sample was being gel purified or to enable a 4% gel to be used, as 3% seaplaque agarose, 1% normal agarose (seakem LE agarose (FMC Bioproducts)). Gels were prepared and run in 1× tris borate EDTA (TBE) (Gibco) (see Appendix B) or 1× tris acetate EDTA (TAE) (Gibco) buffers. TAE was always used if gel purification was being performed. 0.5µg/ml ethidium bromide was added to the gel to allow visualisation of the DNA. A loading buffer containing glycerol and bromophenol blue (see Appendix B) was used. Commercially supplied markers (φ×174HaeIII digest or λHindIII digest) were used. Negative controls were loaded for each reaction.

2.4.1.2. DENATURING POLYACRYLAMIDE

These gels were used to allow size separation of sequencing products, or radioactive PCR products in linkage analysis. Samples were denatured by the addition, for sequencing products, of 5µl of stop solution from the Stratagene Cyclist Taq DNA sequencing kit or 10µl of denaturing gel loading buffer (see Appendix B) for PCR products. Each sample was heated to 95°C for 7 minutes then snap cooled to 0°C. Samples were thereafter kept on ice until loading. 6% gels, used for PCR product separation and some of the sequencing, were made with 42g of urea, 12mls of 10× TBE, 20mls of acrylamide-bisacrylamide 30% (w/v) (37.5:1 solution) and made
up to a final volume of 100mls with double distilled water. For 5% gels, used to resolve larger sequencing products, 10mls of 50% longranger solution (Sigma) was used instead of the acrylamide-bisacrylamide 30%, with more water required, again giving a total volume of 100mls. All gels were polymerised with 50μl N,N,N',N'-tetramethylethylene diamine (TEMED) and 500μl of freshly made 10% ammonium persulphate. Gel plates were prepared by washing thoroughly with decon neutrocon detergent followed by 100% ethanol, and covering with a silicon containing solution, sigmacote (Sigma) to allow easy pouring and removal of the plates from the gel.

Gels were run in 0.6× TBE at 60W for one and a half to three and a half hours according to the size of the product being run. After transfer to Whatmann 3MM paper they were dried at 80°C on a vacuum slab dryer (BioRad).

2.4.2. DETECTION SYSTEMS

Agarose gels were visualised by ultraviolet illumination with a UVP transilluminator and detection with Grab-IT computer software. Polyacrylamide gels were exposed to Biomax Kodak film, using an intensifier screen, at -70°C. The film was developed in an X-ograph imaging systems processor. Areas of interest on some of the linkage gels, detected by Kodak film, were then analysed using a Molecular Dynamics phosphorimager to obtain intense banding rapidly.
2.5. ENZYME MANIPULATIONS OF NUCLEIC ACIDS

2.5.1. RESTRICTION ENDONUCLEASE DIGESTS

PCR and cloned products were purified by ethanol precipitation (see Section 2.2) and resuspension in double distilled water to remove buffers and other reagents which could interfere with the restriction enzyme activity. To maximise enzyme activity DNA was digested in a 20-50μl volume with a tenth volume of the appropriate 10x buffer, and less than a tenth enzyme volume (to prevent glycerol inhibition of the reaction) using a 2-10 fold excess of enzyme over DNA. Acetylated bovine serum albumin (BSA) was added to a final concentration of 0.1mg/ml, as recommended by the manufacturer, to improve the efficiency of digests of impure DNA. The digests were incubated for 1-4 hours at the optimum temperature as specified by each enzyme (for the majority 37°C, for BsrI 65°C). For double digests enzymes with compatible buffers were selected.

2.5.2. LIGATIONS

Tth/vent polymerase based PCR products have blunt ends. These were changed to cohesive ends, to improve the efficiency of the subsequent ligation, by the addition of an adenine nucleotide. This was achieved by incubating a particular PCR product in a Taq based 50μl reaction at 75°C for 2 hours, containing a fifth volume 5MM dATP. The ethanol precipitated product was then ligated using DNA ligase from the pGEM-T vector Promega kit to form phosphodiester bonds between adjacent 3'hydroxyl and 5'phosphate groups of cohesive ends. A 10μl reaction containing 1μl of 10x ligase buffer, 1μl of pGEM-T vector, 1–3 units of DNA ligase, and the
DNA to be ligated was incubated at 15°C overnight to optimise annealing versus enzyme activity.

2.5.3. LABELLING OF PCR PRODUCTS

PCR products were labelled using Redivue 33P γ-ATP (Amersham) for linkage analyses and thermal cycle sequencing. For linkage analyses only one primer and therefore one PCR product strand was labelled, instead of both, as this is generally known to achieve better resolution of the two alleles. 4µg of the 5’ primer was endlabelled at 37°C for 1 hour in a 25µl reaction containing tenth volume of 10× polynucleotide kinase buffer, 6µl of Redivue 33P γ-ATP, and 10 units of T4 polynucleotide kinase. A similar reaction was used to label the primer for thermal cycle sequencing except only 100ng of primer was labelled to improve specific activity.
2.6. DNA AMPLIFICATION: POLYMERASE CHAIN REACTION

Reactions were mainly performed in thin walled microtubes (Advanced Biotechnologies) where efficient heat conduction through the tubes allowed the use of short cycle times. They were amplified in a PTC-200 thermal cycler (MJ Research) which has a heated lid preventing evaporation, so no mineral oil was required. In the first few months of my work 500μl eppendorfer tubes were used instead, with amplification in an early Perkin-Elmer machine. Mineral oil and longer cycle times were required. Either enzyme derived from the thermophilic bacteria Thermus aquaticus (Taq) or two enzymes also from thermophilic bacteria Thermus thermophilus (Tth) and Thermococcus litoralis (vent) were used in reactions and are discussed below. The optimum concentration of template DNA was assessed by performing identical PCRs at different template DNA concentrations.

2.6.1. TAQ POLYMERASE-BASED PCR

25μl reaction volumes were used for non radioactive PCRs where short length fragments (up to 1.5 kb) were to be amplified. The reaction contained template DNA of optimum concentration as previously assessed (see Section 2.6), a tenth volume of 10× Taq buffer (containing 50mM Tris-HCl (pH 8.0 at 25°C), 100mM sodium chloride, 0.1 mM EDTA, 1mM MDTT, 50% glycerol, and 1% Triton X-100), 0.2mM of dNTPs, 0.25μg of 5' and 3' PCR primers and 1.25 units of Taq polymerase. Amplification generally used 35 cycles of 95°C for 30 seconds, published or calculated primer-specific annealing temperature (see Section 2.6.3) for 45 seconds, and 72°C for 1-2 minutes according to product length. To decrease the possibility of primers misannealing, manual "hot starts" were used in many cases by
adding the enzyme in a buffered 5μl volume at the first annealing step without stopping the PCR programme. Hot starts were not continued at temperatures higher than the extension temperature of 72°C for any particular cycle to prevent evaporation.

10μl reaction volumes were used for radioactive PCRs in linkage analysis. PCR product sizes no larger than 280 base pairs were studied. A tenth volume of 10× Taq buffer (as above) was used with 0.5 units of Taq, 0.2mM of dNTPs, and 40ng of labelled 5' and unlabelled 3' PCR primers. Amplification used similar steps to those used in 25μl reactions but only 30 cycles were performed with the final extension step prolonged by 5 minutes before ramping to 0°C. Hot starts were not used as they were not required and would have increased the risk of radioactive contamination.

2.6.2. TTH/VENT POLYMERASE-BASED PCR

Unlike the tris-based Taq polymerase buffer where its acidity increases with increasing temperatures leading to breaks in the DNA being amplified, Tth/vent polymerase buffer, which is tricine based, remains neutral. This, coupled with the "proof reading" activity of vent, allows PCR amplification of much longer fragments to be achieved. PCR products of 2.7 kb were easily obtained in this work from cloned and genomic template DNA. Tth/vent based reactions were therefore used in most of the promoter analysis in order to amplify long sections. 25μl reactions were used with all reactions employing a manual hot start with 0.6 units of rTth DNA polymerase XL (Perkin Elmer) in a buffered 5μl volume. The same technique was
used as for Taq hot starts. 0.33 of final volume of ×3.3 Tth XL buffer II (containing tricine, potassium acetate, glycerol, and DMSO) was used along with 0.1 mM of dNTPs, 1 μM of magnesium acetate, and 0.125 μg of 5' and 3' primers. Similar amplification programmes to those for Taq based reactions were used with longer extension times used (up to three and a half minutes) reflecting the longer fragments to be amplified.

2.6.3. PRIMERS

Primers for PCRs used in the endoglin promoter analysis were designed using the promoter sequence (GeneBank accession number AF035753) (see Appendix C). Oligonucleotides were between 21 and 24 base pairs in length with no more than 60% of the bases being guanine or cytosine. Since these bases have 3 hydrogen bonds compared to the 2 hydrogen bonds of adenine and thymine, PCR is less efficient as their percentage increases. This is because the melting temperature, and thus the annealing temperature, of a primer is dependent on the number of hydrogen bonds that it contains; the more hydrogen bonds the higher the melting temperature. It was ensured that there were no complementary sequences within the primer and that primer ends were not complementary either to each other or to those of the other primer in the primer pair. The melting temperature for the primer was calculated as $4 \times (G+C) + 2 \times (T+A) \degree C$. Primers in a pair were designed to have similar melting temperatures. The annealing temperature used in a PCR programme was calculated as 5°C less than the lower of the two primer melting temperatures. The calculated annealing temperature for a primer was not used if it was higher than the extension temperature. A lower one was used, but did not seem to lead to misannealing as
frequently as when shorter primers are used at inappropriately low annealing temperatures. Finally the designed primer was checked by the BLAST programme from The National Center for Biotechnology Information (NCBI), website http://www.ncbi.nlm.nih.gov/, to ensure that no similar sequences existed in the human genome to which it could misanneal.

Primers for PCR used in the linkage work had all been previously published231,232 (Appendices D and E).
2.7. DNA AMPLIFICATION: CLONING

2.7.1. INSERT PREPARATION AND LIGATION

PCR products were cloned. Products from Tth/vent polymerase based reactions were changed from having blunt ends to cohesive ends (see Section 2.5.2). The products were then ethanol precipitated and the concentration of product assessed by running a tenth on an agarose gel against a known marker. This allowed optimal insert:vector molar ratios (1:1 and 3:1) to be calculated for 50ng of a commercial vector, pGEM-T Vector (Promega). Vector and insert were then ligated (see Section 2.5.2). A control reaction containing no insert was also performed and used as a control in transformation.

2.7.2. TRANSFORMATION

Plasmid and insert DNA (2μl of 10μl ligation reaction) were added to 50μl of high efficiency competent cells (JM 109 High Efficiency Competent Cells (Promega)), handling the very fragile cells carefully, and placed on ice for 20 minutes. To allow DNA insertion into the cells, they were heat shocked at 42°C for 45-50 seconds and then iced for at least 2 minutes. 950μl of room temperature SOC medium was added and the cells allowed to grow at 37°C for one and a half hours. The transformation mixture was plated onto previously prepared LB agar plates at a variety of concentrations and cultured at 37°C overnight. The plates were spread with ampicillin, using 1.25mg/plate, to select for cells with plasmids which contained an ampicillin resistance gene. To identify colonies containing the inserts they were also spread with Xgal (0.75mg/plate) and 1M Isopropylthio-β-D-galactoside (IPTG) for blue-white selection. White colonies generally contained inserts. Inserts could also
be present in blue colonies, however, as in-frame inserts allow read-through and β-galactosidase activity. Identification of colonies containing the insert was also performed in some cases by colony PCR. 10µl Tth/vent polymerase based reactions (see Section 2.6.2) were performed using part of a colony (picked up by cocktail sticks) as template DNA and primers to amplify the insert in question. Colonies of interest were then grown overnight and the DNA extracted by alkaline lysis (see Section 2.2.2).
2.8. SEQUENCING

This was performed by thermal cycle sequencing for products amplified both by PCR and cloning. The Stratagene Cyclist Taq DNA sequencing kit was used. A 30μl premix was prepared from double distilled water, 4μl of 10× buffer, 16ng of an oligonucleotide primer end-labelled with Redivue\(^{32}\)P \(\gamma\)-ATP (see Section 2.5.3), 5 units of Taq polymerase, and template DNA. Template DNA included 2.5μl of non-purified PCR product and 3μl of ethanol precipitated digested cloned product. 6.7μl of premix was dispensed to each of four termination tubes containing 3μl of the respective termination mixes (ddGTP, ddATP, DDT, dicta). Reactions were prepared on ice and transferred to the thermal cycler (PTC 100 MJ Research) when the block temperature exceeded the annealing temperature. Sequencing programmes used were typically 35 cycles of 95°C for 20 seconds, the calculated annealing temperature of the specific primer (see Section 2.6.3) for 20 seconds, 72°C for 20 seconds. Samples were then stored at -20°C or immediately size-separated by polyacrylamide gel electrophoresis after denaturing (see Section 2.4.1.2). After detection by autoradiography the sequences were read by eye.
2.9. LINKAGE

2.9.1. ASCERTAINMENT OF PHENOTYPE AND GENOTYPE

Disease status was assigned using the current international consensus criteria\(^{229}\) (see Section 2.1.3). Individuals who were designated status “unknown” were excluded from linkage analysis. Apparently unaffected children under the age of 12 were excluded as penetrance is less than 80% at this age\(^{35}\). Linkage studies were performed by analysis of short tandem repeat polymorphic markers. Markers of high heterozygosity were chosen on the basis of their position relative to the genes of interest and experience in molecular papers (Endoglin\(^{35\ 136}\), ALK1\(^{137\ 139}\)).

Primers used to amplify the markers had been previously published\(^{231\ 232}\) (Appendices D and E). The markers were amplified from the extracted genomic DNA from each individual using 40ng of labelled Redivue \(^{33}\)P \(\gamma\)-ATP 5’ primer and 40ng of unlabelled 3’ primer in a 10\(\mu\)l Taq polymerase based PCR reaction (see Section 2.6.1). The PCR products were denatured, size separated by denaturing polyacrylamide gel electrophoresis, detected initially by autoradiography, and, in some cases, further by phosphorimager. Allele patterns were assessed by eye by myself and a second observer (CLS), both of us being blinded to disease status.

2.9.2. LINKAGE ANALYSES

I performed two-point linkage analyses using the programme MLINK\(^{215}\) via Human Genome Mapping Project (HGMP) computational resources. Based on previously published estimates\(^{34}\) and previous studies of the families studied this time\(^{35}\), penetrance was set at \(P=0.8\) between ages 12 and 35 and \(P=0.95\) for individuals aged...
over 35 giving two liability classes. A disease gene frequency of 0.0001 was used, given that the prevalence of HHT in the population investigated is approximately 1 in 10,000 (see Section 1.1.2), and recombination rates in both sexes were assumed to be equal. Two point lod scores were calculated initially with equal allele frequencies and subsequently according to the allele frequencies in the population.

2.9.2.1. MULTIPOINT ANALYSES

The entered data for family S was subsequently compiled into two files (one including data from markers D9S60, D9S315, and D9S61, the other including data from markers D12S85, D12S347, D12S368, and D12S325) for multipoint analyses using GENEHUNTER215, again via HGMP computational resources.

2.9.2.2. HAPLOTYPE ANALYSES

Haplotype analysis of chromosome 9 in Family P was performed by initially converting the text data files for D9S60, D9S315, D9S61 and HXB to a format suitable for haplotype analyses using Mega2 via HGMP computational facilities233. Simwalk2 via the HGMP computational facility234 was then used to assess the number of possible haplotype solutions.
3. **ENDOGLIN PROMOTER**

Hypothesis: Mutations in the endoglin promoter region could account for disease in endoglin-linked families

Not all mutations have been found in *endoglin*-linked families studying all coding regions and splice sites of the gene\(^{37}\). Given that haploinsufficiency is the prevailing model in *endoglin*-linked families\(^{37 148}\), it seems likely that mutations in the promoter region of the gene could account for disease.

The 8 HHT families identified for this work were chosen as 4 had previously been shown to be linked to *endoglin* but no mutations had been found by Southern blotting, cycle sequencing of all known exons (starting 35 base pairs upstream of the transcription start site using endo1F) and intron/exon junctions, and cycle sequencing of entire cloned DNA\(^{37}\) (starting 85 base pairs downstream of the transcription start site). No mutations had been found in the other 4 families using the same techniques but they were too small to allow significant linkage to an HHT gene to be made\(^{37}\).
3.1. AMPLIFICATION OF SEQUENCE

A 3.2 kb sequence, encompassing the *endoglin* promoter and 605 base pairs spanning *endoglin* exon 1 and the start of the first intron, was kindly sent by a collaborator, Carmelo Bernabeu. At the time it had not as yet been published (it was published 10 months later). Primers were designed to amplify the entire 3.2 kb sequence using Tth/vent based reactions (see Figure 3.1) (see Section 2.6.2 and 2.6.3) (see Appendix C). Several different primer pairings were tried using DNA clones from a P1 library of human genomic DNA as the target DNA. The DNA clone spanned the entire *endoglin* gene. Primer pairing GW1 (starting 10 base pairs downstream of the 5' end of the sequence and replicating the sense strand (sense primer)) and GW7 (2.7 kilobases downstream in exon 1 and replicating the antisense strand (antisense primer)) had reasonable success. A large amount of PCR product using this primer pair was obtained when the target DNA was cloned DNA. Restriction endonuclease digest of the PCR product using Aval and PvuII confirmed that the correct region had been amplified (see Figure 3.3). Previously prepared DNA from one affected individual from each of the 6 smaller families and from 2 affected individuals from both of the 2 larger families (both of which were linked to *endoglin*) was then used as target DNA. PCR product was obtained with difficulty with primer pairing GW1 and 7 (see Figure 3.2) and it was not reliable enough to be used exclusively. Smaller regions of the sequence were therefore amplified using different primer pairings. Good PCR product, 1.7 kb in length, was obtained with primer pair GW1 and GW3 (see Figure 3.4) using genomic target DNA. Amplification of the sequence starting immediately 3' to the region amplified by GW1 and 3 and extending to the start of
exon 1 was far more difficult. This was particularly frustrating as the main regulatory element was suspected (in fact correctly so133) to be in this region of the sequence since it lay immediately upstream of the previously published exon 1 sequence. The difficulty with amplification and the importance of the region were probably not coincidental. Sequences for transcription factor binding sites and response elements in this region will occur in many other parts of the genome making specific amplification of this region alone problematic. Several different primer pairings were tried including nested primers on PCR products. Using sense primer GW11, starting 469 base pairs upstream of the transcription start site, with primer GW7, the region $-469/+154$ (with respect to the major transcription start site) was amplified. This was only achieved when 3 µl of PCR product obtained with primers GW11 and 7 was used as the target DNA for a further PCR using GW11 and 7 involving a total of 60 PCR cycles. This was not ideal because as the number of PCR cycles increases, the likelihood decreases of any polymorphism found being genuine rather than due to a replication error during PCR amplification.
3.2. SEQUENCING

An attempt to clone the PCR product spanning the entire 2.7 kilobase region between primers GW1 and 7 was made as this would allow cloned sequencing to be performed on a single product. However cloning this large fragment was not successful. Instead DNA from all individuals stated above which had been amplified with GW1 and 7, or GW1 and 3 and GW11 and 7, was cycle sequenced. Sequencing throughout the region of these PCR products was commenced (see Figure 3.1).

Using a 5% longranger gel GW3 was used to sequence 273 base pairs at the 3’ end of gel purified GW1 and 3 PCR product. No polymorphisms were found. GW4, starting 25 base pairs upstream of GW3 but acting as a sense primer unlike GW3, was used to sequence 390 base pairs from GW1 and 7 PCR product again using a longranger gel. This in fact encompassed the region -927/-666 later described as an Alu sequence133. Again no polymorphisms were seen. GW8, designed to be a nested primer to GW7 as it started 23 base pairs upstream of GW7 and acted in the same direction, was used to sequence the 3’ end of the GW1 and 7 product. GW8 however misannealed to another region of the product producing interesting results (see Section 3.3). Further sequencing was then focussed to the region immediately upstream of the major transcription start site. PCR product, from DNA from all individuals as described above, using primers GW11 and 7 was analysed. This was the region -469/+154133. It was fully sequenced in both directions using GW11 and GW9 (204 base pairs downstream of GW11) as sense primers and GW7, GW15 (63 base pairs upstream of GW7), and GW12 (263 base pairs upstream of GW7) as antisense primers. No polymorphisms were found in any individual with any primer.
Different groups have included different proportions of the untranslated sequence 5' to the ATG start codon in their mutational screens. More extensive sequence was spanned in mutational studies by Shovlin et al\(^7\) in which primer endo1F was derived from sequence 5' to the major transcriptional start sequence. This is 385 base pairs upstream of the ATG start codon as described by McAllister et al\(^6\) and Yamaguchi et al\(^7\) (who studied coding sequence only) (See Figure 3.5). Thus, although the region between the 5' untranslated region of exon 1 as described by Shovlin et al\(^7\), based on the GenBank sequence X72012, and coding sequence as described by Rius et al\(^3\), based on the GenBank sequence AF035753, was not screened in my work, it had previously been screened, in the families in my work, by Shovlin et al\(^7\).
3.3. FORTUITOUS OUTCOME OF PRIMER GW8

MISANNEALING

As mentioned above, primer GW8 was designed to sequence the 3' end of the GW1 and 7 product as it started 23 base pairs upstream of GW7 and was an antisense primer. The sequence obtained with it however was completely different to the expected sequence. When the sequence obtained was checked by the BLAST programme from The National Center for Biotechnology Information (NCBI), website http://www.ncbi.nlm.nih.gov/, it was found to be identical to sequence just downstream of GW1. Knowing the site of the sequence that had been obtained, it was possible to deduce the region where GW8 must have misannealed. In the expected site, using comparison by eye, ten base pairs (TGTCACTGCC) had identical sequence to that of the area for which GW8 had been designed, suggesting that this was likely to be the position of misannealing. The site of misannealing was the antisense strand starting 199 base pairs downstream of the 5’end of the GW1 and 7 fragment (see Figure 3.1). The region from the site of the misannealing to the 5’ start of the GW1 and 7 PCR product had therefore been sequenced with this primer.

The results of the misannealing were interesting. One individual, individual 54 from family D, one of the families which was too small to allow linkage to endoglin to be made37, showed dual sequence compared to the other individuals (see Figure 3.6). This appeared to be due to a 2 base pair deletion in one of the alleles. When sequencing the same region in the other direction using primer GW5, a nested primer to GW1 starting 9 base pairs downstream of GW1, dual sequence was again seen just in individual 54, again due to a 2 base pair deletion. Without separating the two
alleles for individual 54 it was difficult to pinpoint the exact site of the deletion although it was thought to be within 65 base pairs of the 5' end of the GW1 and 7 fragment. Therefore a small PCR product of 128 base pairs (126 base pairs if the deletion was present) was produced using primers GW1 and GW10 which encompassed the region of interest. This was successfully cloned (see Figure 3.7) (see Section 2.7) thus separating the two alleles. The cloned product was sequenced with primer GW10. This showed a 2 base pair CA deletion in 2 of the 10 clones, 46 and 47 base pairs respectively downstream of the 5' end of the GW1 and 7 fragment i.e. 2564 and 2563 base pairs upstream of the transcription start site (See Figure 3.8 and Figure 3.9).
3.4. FAMILIAL SEGREGATION OF POLYMORPHISM

To determine whether or not this CA deletion polymorphism cosegregated with disease in this pedigree, DNA from the other individuals in the family was then analysed (see Figure 3.10). A small PCR product encompassing the site of the deletion was obtained for individuals 53, 55, and 56, as well as further product for individual 54. Unfortunately the only way to obtain product was from a nested reaction using DNA amplified by primers GW1 and 10, as target DNA for a further 50 μl Tth/vent reaction using a nesting sense primer GW5, starting 9 base pairs downstream of GW1, and primer GW10. This meant that 60 PCR cycles in total were used. The presence or absence of the deletion in each individual was then assessed by analysing the PCR product by restriction endonuclease digests and cycle sequencing.

3.4.1. RESTRICTION ENDONUCLEASE DIGESTS TO ANALYSE FAMILY D

Restriction endonuclease digests of the GW5/10 PCR product for all family D individuals was performed (see Figure 3.11) with XbaI to confirm that the correct PCR product was being analysed and with BsrI to detect the deletion.

3.4.1.1. XBAI RESULTS

The GW5/10 product should be digested into fragments of 76 and 44 base pairs irrespective of whether or not the deletion is present. At first sight (see Figure 3.11) the expected digestion appeared to have occurred. However, on further inspection, the larger fragment was seen to be different in size in different individuals making the results impossible to interpret.
3.4.1.2. BSRI RESULTS

The deletion should abolish the BsrI restriction site so that a complete undigested 118 base pair product would be seen. If no deletion were present, digestion would occur giving two fragments of 83 and 37 base pairs in length. As can be seen in the gel in Figure 3.11, it appeared that digestion occurred in individual 53 but not in the other individuals suggesting that individual 53 was the only member of the family without the polymorphism. This again was inconclusive however because in individual 54, known to be heterozygous for the polymorphism and therefore having one wild type allele instead of two, no digested wild type allele was observed. This implied that the digestion might have failed. Alternatively, it is possible that the mutant allele had been preferentially amplified by the PCR. The GW5 and 10 PCR products for all family D individuals were therefore then cycle sequenced instead.

3.4.2. CYCLE SEQUENCING TO ANALYSE FAMILY D

The GW5 and 10 PCR products for all family D individuals were sequenced using GW16, a primer nested to GW10 starting 15 base pairs upstream of GW10 and acting on the antisense strand. This demonstrated that individuals 54, 55, and 56 had the deleted and normal alleles whereas individual 53 only had the normal alleles. This meant that the CA deletion was passed from the affected mother (individual 54) to the affected daughter (individual 56). However the deletion was also seen in the unaffected spouse of the daughter (individual 55) and so this indicated that it must be a polymorphism not a disease-causing mutation (see Figure 3.12).
3.5. TRANSCRIPTION FACTOR BINDING SITES DISRUPTED BY THE CA DELETION

To assess whether or not this polymorphism could have any effect on function, potential transcription factor binding sites which could be encoded by this region, and so be disrupted by the deletion, were searched for using computer programmes designed to test for transcription factor binding sites. Using MatInspector V 2.2. high similarity was found between this region and sequence encoding the retroviral oncogene viral myb, and the transcription factor gut-enriched Kruppel-like factor (GKLF). However other programmes, designed using more recent consensus sequence, did not detect the same similarities. Close inspection of the sequences from primary references indicated that there was insufficient homology for function to be possible.
3.6. ALLELE FREQUENCY OF THE POLYMORPHISM

To determine the allele frequency in the UK population of this polymorphism, 100 normal chromosomes were analysed. DNA from 50 unaffected spouses was amplified in the same way as previously with PCR product from a GW1 and 10 primed reaction being used as target DNA for a GW5 and 10 primed reaction. The product was sequenced with GW16. The polymorphism was seen in 8 of the 50 individuals, occurring in both alleles in one of them. This gave an allele frequency of 9% for this polymorphism (see Figure 3.13).
3.7. SUMMARY

In the families analysed no mutations in the endoglin promoter region were found that could account for disease in endoglin-linked families. The promoter region was fully sequenced in both directions in affected individuals from the 8 families identified with no mutation or polymorphism seen. This cannot fully discount the hypothesis that mutations in the endoglin promoter region could account for disease in endoglin-linked families as only a small number of families were analysed.

A two base pair CA deletion was found 2563 base pairs upstream of the transcription start site in an affected individual from one of the families. It was found to cosegregate with disease but was also seen in the unaffected spouse of the affected daughter indicating that it was a polymorphism rather than a mutation. It has been shown to have an allele frequency of 9% in the UK population.
Primer used, and direction they act in, are indicated by solid black arrows. The number below the long box represents the base pair number with respect to the major transcription start site at base pair +1.
PCR product 2763 base pairs in length was obtained with primers GW1 and GW7 and genomic target DNA from affected individuals.
The expected fragment lengths were obtained when GW1 and 7 PCR product was digested with Aval and PVUII. This confirmed that GW1 and 7 had amplified the region of DNA for which they had been designed.
PCR product 1596 base pairs in length was obtained with primers GW1 and 3 and genomic target DNA from affected individuals.
Primer endo1F was derived from sequence 5' to the major transcriptional start sequence and used in mutational studies by Shovlin et al.37. Primer GW7 was the most 3' primer used in my work. Thus, although the region between the 5' untranslated region of exon 1 as described by Shovlin et al.37, based on the GenBank sequence X72012, and coding sequence as described by Rius et al.133, based on the GenBank sequence AF035753, was not screened in my work, it had previously been screened, in the families in my work, by Shovlin et al.37.
Termination of a shorter allele, as well as the normal allele, seen in 54.

Dual sequence seen in 54 from this point until the termination, suggesting deletion is in this region.

Dual sequence was seen in affected individual 54 from family D when cycle sequencing with primer GW8 on GW1 and 7 PCR product.
A small PCR product of 128 base pairs was produced using primers GW1 and 10 on DNA from individual 54. This amplified the region where the deletion had been detected previously. The product was cloned to separate the 2 alleles and the cloned inserts were obtained by digestion with EcoRI.
2 base pair deletion, one of which is a g, occurring in clones 2 and 15 between the arrows.

GW1 and 10 PCR product from affected individual 54 was cloned and the clones sequenced with primer GW10. Two of the clones, numbers 2 and 15, showed a 2 base pair deletion.
GW1 and 10 PCR product from affected individual 54 was cloned and the clones sequenced with primer GW10. Two of the clones, numbers 2 and 15, showed a 2 base pair deletion. Looking at all four nucleotide tracks reveals that the deletion in clone 2 is due to an absent T and G base (marked with the solid black arrows in clone 9). As the antisense strand was sequenced this is a CA deletion in the published sense strand.
FIGURE 3.10 FAMILY TREE OF FAMILY D

The numbered family members are the ones which were analysed. Affected individuals are indicated by black symbols, unaffected by white symbols, and the individual with unknown disease status is in grey. Squares represent males and circles represent females.
The region where the deletion had been found in individual 54 was amplified with GW1 and 10 and then GW5 and 10 in other members of family D. The product was digested with XbaI to confirm that the correct PCR product was being analysed. It was then digested with BsrI. If the deletion was present it should abolish the BsrI restriction site preventing digestion (see Section 3.4.1 for further details).
The region where the deletion had been found in individual 54 was amplified with GW1 and 10 and then GW5 and 10 in other members of family D. The product was sequenced with GW16, a primer nested to GW10. This picture shows the termination of the C track of sequence for each member of family D. Dual sequence was seen in individuals 54, 55, and 56 with termination of a shorter, as well as a normal length, allele. This indicated that the deletion had been passed from the affected mother to the affected daughter but was also present in the unaffected husband of the daughter. The deletion was therefore a polymorphism not a disease-causing mutation.
The allele frequency in the UK population of the CA deletion polymorphism was calculated by amplifying DNA from 50 unaffected spouses with PCR product from a GW1 and 10 primed reaction being used as target DNA for a GW5 and 10 primed reaction. The product was sequenced with GW16. The polymorphism was seen in 8 of the 50 individuals (termination of a shorter allele as well as the normal allele is demonstrated in this gel), occurring in both alleles in one of them. This gave an allele frequency of 9% for this polymorphism.
4. LINKAGE

Hypothesis: HHT families with pulmonary involvement may be unlinked to the PAVM gene, endoglin, and may be unlinked to both known HHT genes, endoglin and ALK1

This hypothesis was suggested by two pieces of evidence. First, the work of an Italian group suggests that a third gene for HHT could exist\(^{140}\), although no pulmonary involvement was seen in the pedigree described by this group. Secondly, PAVMs have been shown not to occur exclusively in endoglin-linked families\(^{35,37}\), although ALK1 status was unknown.

As stated previously families S and P, initially identified in 1992 when one individual from each presented to the Hammersmith Hospital for management of PAVMs, were assessed further by myself and CLS six years later. They were considered as being suitable for testing the above hypothesis as they had pulmonary involvement and initial analyses in 1992 suggested that they were unlinked to endoglin, but there were insufficient numbers to allow ALK1 linkage analyses\(^{35}\). Clinical evaluation, venepuncture, DNA extraction, and linkage analyses were performed for each individual as described previously.
4.1. FAMILY S

4.1.1. RESULTS OF CLINICAL EVALUATION

The pedigree for family S is shown in Figure 4.1 with the results of the clinical investigations in Table 4.1. Family members who were not assessed are not shown. Table 4.2 shows that overall 11 new diagnoses were made, 3 in original members who had now reached phenotypable age, and 8 from the 10 additional members assessed. Four generations were assessed with 12 affected members identified from all generations. Individual IV.3 was given a diagnosis of obligate affected as she had affected offspring and also an affected parent, but her only manifestation was epistaxis. Individuals V.1, V.5, and V.11 had epistaxis only but no affected children and so were classified of unknown status and excluded from further analysis. Individual IV.3 had a geographical and fish tongue.

4.1.1.1. FAMILY S MEMBERS WITH A DIAGNOSIS OF PAVMS

As mentioned in Section 2.1.2.1, individuals were suspected of having PAVMs based on haemoptysis, central cyanosis, or clubbing, SaO2 erect ≤ 96% (as recommended by114), or supine-erect fall greater than 3.3% (thus exceeding 2SDs beyond the mean of 0.3% (SD1.5) in the non-PAVM group in114). Individual V.3 fulfilled these criteria by having an erect SaO2 of ≤ 96% and individual V.4 fulfilled the criteria by having a supine-erect fall in SaO2 of 4%. Individual IV.2 also fulfilled the criteria by having an erect SaO2 of ≤ 96%. He declined further investigation for PAVMs however.
4.1.1.2. FURTHER DETAILS OF FAMILY'S MEMBERS WITH A DIAGNOSIS OF PAVMS

Individual V.3 was the proband for this family, and had presented aged 23 years with a long-standing history of painless haemoptysis and a one year history of episodic dizziness and blurred vision. He was not dyspnoeic. Examination revealed bilateral early clubbing and a bruit was audible over the right lower lobe. He was polycythaemic (Hb 18.9, haematocrit 0.55), and hypoxaemic (pH 7.44, pCO2 4.5kPa, pO2 8.2kPa) with additional orthodeoxia (supine SaO2 92%, erect 87%). Spirometry was normal (FEV1 5.25 litres, FVC 5.95 litres) but the gas transfer was markedly reduced with TLCO 6.96 (52% predicted), KCO 1.87 (51% predicted). Chest X-rays and a thoracic CT scan confirmed the presence of several PAVMs. The right-to-left (R-L) shunt measured by 99mTechnetium-labelled albumin macroaggregates was 24% of the cardiac output. Following selective right pulmonary angiography, two large PAVMs were embolised with 21 steel coils resulting in immediate improvement in oxygen saturations (supine SaO2 97%, erect 96%). His initial family screening dates from this period. The improvement in SaO2 was sustained two years post embolisation. The R-L shunt remained at 4.2%, probably accounted for by a residual right basal PAVM with feeding arteries too small to embolise. When we assessed him 6 years post embolisation his dizzy spells had recurred, oxygen saturations fell to 96% supine, 95% erect. His haematocrit was mildly raised at 0.564 (normal range 0.40-0.54) but his haemoglobin was normal at 165g/l. He is due to be re-evaluated with further pulmonary angiography.
Individual V.4 had been first evaluated as part of a family screen (by CLS) at the age of 21 years when she had no epistaxes or telangiectasia and normal oxygen saturations (SaO2 100% in supine and erect postures). When reviewed by CLS and myself for this study, she was aged 27 years, and was 10 months post partum. She described the development of monthly epistaxes and frequent dizzy spells after her pregnancy. On examination, she was not clubbed or cyanosed, but she demonstrated significant desaturation in the erect posture (SaO2 99% supine, 94% erect). Her subsequent review five months later by respiratory physicians, following our recommendation to her general practitioner, indicated that her hypoxaemia had persisted (SaO2 97% supine, 93% erect, 92% post 90 watts of exercise). Her haematocrit was raised at 0.515 (normal range 0.37-0.47) but her haemoglobin was normal at 148g/l. Spirometry was normal (FEV1 4.00 litres, 117% predicted; FVC 4.3 litres, 109% predicted), but the gas transfer was marginally impaired (KCO, corrected for Hb, 1.59, 88% predicted). Contrast echocardiography indicated the presence of a R-L shunt, though a thoracic CT scan (axial scanning at 5mm intervals) did not reveal any macroscopic PAVMs. A diagnosis of microscopic PAVMs was made. On review six months later, her oximetry showed spontaneous improvement at rest (SaO2 98% in supine and erect postures) but post-exercise oximetry and gas transfer remained marginally impaired (SaO2 96% following 120 watts of exercise; corrected KCO 1.55, 85% predicted), and radionucleotide scanning quantitated the R-L shunt at 7.2% of the cardiac output (normal < 3.5%). She remains on prophylactic antibiotic therapy and under respiratory review, currently in her second pregnancy.
4.1.2. LINKAGE ANALYSES

4.1.2.1. EXCLUSION OF ENDOGLIN

The position of endoglin relative to the polymorphic markers used is shown in Figure 4.2. The HHT1 locus was originally mapped to a 2cM interval on chromosome 9 flanked by D9S60 and D9S61. The adjacent D9S61-D9S63 interval was suggested by other investigators but later revised by the same group to between D9S60 and D9S61. The endoglin gene has been mapped physically as equidistant between D9S315 and SPTAN which both lie within the interval flanked by D9S60 and D9S61. The relative positions of endoglin and AK1 have not been resolved. Markers D9S60, D9S315, and D9S61 were initially used.

Two point lod scores obtained with markers D9S60, D9S315, and D9S61 were sufficient to exclude linkage to endoglin in family S (see Figure 4.3). Using the definition of a score of -2 or less indicating no linkage at a significance level of 0.05, these data exclude linkage to a region of about 15 cM on both sides of the endoglin locus. This is also demonstrated by multipoint analysis (see Figure 4.3).

4.1.2.2. EXCLUSION OF ALK1

Analysis of linkage to ALK1 was performed. Figure 4.4 shows the location of ALK1 relative to its flanking polymorphic markers. Two original assignments of the HHT2 locus were given, one between D12S339 and D12S359, and the other in a neighbouring interval between D12S345 and D12S339 (marked with a broken line in Figure 4.4). The latter was revised on subsequent analyses and the ALK1 gene is now known to lie in the 4cM interval between D12S347 and D12S359.
(marked with a solid black line with grey extension in Figure 4.4), most likely in the 1cM interval between D12S347 and D12S368139 (marked with a solid black line in Figure 4.4). Nevertheless I considered it prudent to examine both disease intervals using markers D12S331, D12S85, D12S347, and D12S368 initially.

In family S marker D12S368 did not exclude linkage to the region flanked by it and D12S325 (see Figure 4.5), although the region between it and D12S331 was excluded. Marker D12S325 was therefore analysed. Lod scores obtained for it were sufficiently negative to exclude linkage to the D12S368-D12S325 region. Two point lod scores therefore excluded ALK1 linkage in family S and this exclusion was further confirmed by multipoint analysis for these markers in family S (see Figure 4.5).

4.1.3. ALLELE FREQUENCIES

Lod scores were initially analysed using equal allele frequencies. Some of the markers were reanalysed using altered allele frequencies reflecting the frequencies seen in the pedigree studied. This did not significantly alter any of the lod scores obtained (see Table 4.3).

4.1.4. HAPLOTYPE ANALYSES

Limited haplotype analyses in families S were performed.

In family S, on both chromosome 9 and chromosome 12, of the four affected individuals in generation IV (three of whom were parents or grandparents of affected individuals so must have been correctly phenotyped), two displayed one haplotype which could be traced to their affected parent and two the other. Analysis of the
haplotypes transmitted to and by the individuals with proven PAVMs (V.3, V.4), who clearly also have the correct disease status assignment, was particularly instructive (see Figure 4.6). It can be seen that on both chromosomes 9 and 12, both V.3 and V.4 have inherited the haplotype (B) from their affected mother that she inherited from her unaffected father (with a recombination event between D12S85 and D12S347 in V.4 on chromosome 12). Moreover, on both chromosomes, V.3 has transmitted to his affected daughter (VI.1) the haplotype that he inherited from his unaffected father (C). This confirms that HHT in this family cannot result from mutations in either endoglin or ALK1.

4.1.5. SUMMARY

Family S is an HHT-PAVM family unlinked to the two known HHT genes, endoglin and ALK1.
4.2. FAMILY P

4.2.1. RESULTS OF CLINICAL EVALUATION

The pedigree of family P is shown in Figure 4.7 along with the results of the clinical investigations in Table 4.4. Family members who were unavailable for assessment are not shown. As shown in Table 4.2, 2 new diagnoses were made in original members due to these members reaching phenotypable age, and 20 additional members were assessed enabling 17 further new diagnoses. In total, 19 new diagnoses were made. 24 members spanning 4 generations were affected by HHT as defined by the consensus criteria229. Individuals III.1, IV.9, and IV.10 were classified as obligate affected as they all had affected offspring although personally fulfilled only two diagnostic criteria. Individuals V.4 and V.10 had epistaxis only and no affected children. They were categorised as being of unknown status and further analysis was not performed. Individual IV.13 had no epistaxis. She had possible telangiectasia but they were difficult to distinguish from spider telangiectasia and she had a history of heavy alcohol usage. Her son, individual V.15 had several episodes of epistaxis each year but this was possibly traumatic in nature. He had only a possible telangiectasia and no affected offspring. They were both therefore also classified as being of unknown status and not analysed further. It would be interesting to obtain a CT head scan for individual V.15 given his history of epilepsy, as this could possibly be due to HHT related CAVMs. Strictly speaking, however, even if a diagnosis of CAVMs was confirmed, this would still not be enough to allow disease status to be assigned to him or his mother229. Individual V.3 had a large telangiectatic lesion on her thumb during the third trimester of her
pregnancy which improved markedly after the delivery of her daughter. It is possible
that her pregnancy had also worsened or precipitated PAVMs. Her oxygen
saturations were worse postpartum probably since the pregnancy had masked PAVM
associated hypoxaemia. She had had normal oxygen saturations 6 years previously.
In contrast individual IV.5 demonstrated the often deleterious effect that a low
oestrogen state has on HHT since her epistaxis had become more severe, and she had
started to have GI bleeds (although the cause is unknown), since the menopause.
Individual IV.5 had a fish tongue and individual V.7 had a geographical tongue.
These features have not been associated with HHT previously and could, of course,
be incidental, but it is interesting to note that one of the affected individuals from
family S (individual IV.3) had a geographical and fish tongue.

4.2.1.1. FAMILY P MEMBERS WITH POSSIBLE PAVMS
The same criteria for PAVM screening (see Section 2.1.2.1) as when screening
family S members were used to screen family P members. Individual V.3 had an
erect SaO2 of \(\leq 96\% \) post partum and individual V.5 also had an erect SaO2 of \(\leq 96\% \) and was clubbed. Individual III.1 was suspected of having PAVMs on clinical
examination alone (clubbing) and individuals V.7, VI.1, and VI.3 were suspected on
clinical history alone (haemoptysis). Further investigation for PAVMs was therefore
recommended for all of these: some declined follow up and the remainder are under
review by local respiratory physicians.
4.2.2. LINKAGE ANALYSES

4.2.2.1. INCONCLUSIVE ENDOGLIN LINKAGE DATA

The position of endoglin relative to the polymorphic markers used is shown in Figure 4.2. The HHT1 locus was originally mapped to a 2cM interval on chromosome 9 flanked by D9S60 and D9S61. The adjacent D9S61-D9S63 interval was suggested by other investigators but later revised by the same group to between D9S60 and D9S61. The endoglin gene has been mapped physically as equidistant between D9S315 and SPTAN which both lie within the interval flanked by D9S60 and D9S61. The relative positions of endoglin and AK1 have not been resolved. Markers D9S60, D9S315, and D9S61 were initially used.

Lod scores obtained for markers D9S60, D9S315, and D9S61 did not suggest linkage to the endoglin locus between D9S315 and D9S61 (if the disease gene in this family were linked to endoglin, markers D9S60, D9S61 and D9S315 would be expected to show strongly positive lod scores at low recombination values at $\theta < 0.02^{35}$).

However, in contrast to Family S, positive lod scores were obtained with some of these markers (see Table 4.5). The significantly positive lod scores obtained with marker D9S61 could not be interpreted as excluding linkage to endoglin. In particular the score of 1.27 at $\theta = 0.2$ with marker D9S61, indicated that the regions 20-30 cM from the region spanned by the three markers should be analysed further. Further markers were therefore studied to clarify this (see Table 4.6). Significantly positive lod scores were again obtained with marker HXB, but there was no consistent pattern to confirm or refute linkage to the region.
4.2.2.1.1. HAPLOTYPE ANALYSES

Given the inconclusive data obtained for family P when assessing *endoglin* linkage using two point analyses, I attempted to obtain additional information by performing haplotype analyses of chromosome 9 markers. Data was converted using Mega 2.233 and analysed using Simwalk2.234 both via HGMP computational facilities. Limited analyses using *HXB*, *D9S60*, *D9S315*, and *D9S61* indicated that there were three potential haplotype solutions preventing the derivation of additional data by this method. Figure 4.8 illustrates allele inheritance for the purposes of discussion of allele frequencies in the pedigree.

4.2.2.1.2. MODELS CONSTRUCTED FOR INCONCLUSIVE *ENDOGLIN* LINKAGE DATA

Three possible models were constructed for this inconclusive data: firstly that family P was linked to *endoglin* and that the method did not detect this linkage, secondly that the disease gene lay approximately 20-30cM away, and thirdly that the family was unlinked to both *endoglin* and neighbouring markers and spuriously high lod scores had been obtained with some of the markers.

4.2.2.1.2.1. MODEL 1: ANALYSES HAVE FAILED TO CONFIRM LINKAGE IN AN *ENDOGLIN*-LINKED FAMILY

If the disease gene in this family were linked to *endoglin*, markers *D9S60*, *D9S315*, and *D9S61* would be expected to show strongly positive lod scores at low recombination values of $0 < 0.02^{35}$. Negative lod scores at low values of 0 hypothetically could have arisen by one of a number of potential limitations of linkage analyses as discussed in the introduction (see Section 1.5.5). Specifically:
1) Misphenotyping- The negative lod scores within 1-2 cM of the endoglin gene could have resulted from misphenotyping of genetically unaffected individuals as affecteds, as in this setting the MLINK program assigns a probability of 1.0 that the assigned phenotype is correct. This is in contrast to an unaffected diagnosis which is made with <100% confidence (defined in our age-related penetrance model as being at probabilities of 0.8 at ages 12-35 and 0.95 at ages >35).

Proband IV.3, IV.5, IV.7 and V.8 are concordant across D9S60-61, but IV.1 could only be concordant at D9S60 (see Figure 4.8). As endoglin lies between D9S315 and D9S61, that would imply IV.1 and descendants (V.2, VI.1, and VI.2), III.1 and descendant (IV.12) and V.7 would all have had to be misphenotyped. This possibility was considered carefully, particularly as none of these individuals had documented visceral involvement (although of note VI.1 had haemoptysis when running, III.1 was clubbed, and V.7 had haemoptysis daily for 4 months) (see Table 4.4). It must be noted that III.1 did not have epistaxis and was designated obligate affected due to having telangiectasia and an affected offspring (IV.12) according to the current international criteria. All of the other probands had epistaxis and they all, including III.1, had telangiectasia. While spontaneous nosebleeds can occur in non-HHT patients, a non-HHT cause of classical HHT telangiectasia cosegregating with disease in this family to result in these misdiagnoses would be highly unlikely, but remains hypothetically possible. Therefore misphenotyping to generate artificially negative lod scores could only have occurred if we were to postulate the unlikely scenario of a second condition (genetic or environmental) contributing to these clinical features in these probands.
2) Incorrect assignment of parentage- Although it is hypothetically possible that non-parentage could have contributed, this would require the affected father of IV.1 to be different to the affected father of IV.3, IV.5, and IV.7, and neither of these fathers to be the brother of III.1. IV.7 would also not be the father of V.7 who would have a different affected father. This is highly unlikely. In any case there was no evidence of non-parentage in this family as in all markers studied expected Mendelian segregation was seen (see Section 1.5.5.2).

Conclusion: This model does not appear likely. Furthermore it should be noted that endoglin mutational analysis has been conducted on 2 probands in the pedigree (IV.7 and V.8) and indicated no evidence for mutations in the genomic DNA (Southern blotting, cycle sequencing of all known exons and introns on junctions) or cloned DNA supporting the conclusion that endoglin is unlikely to be the disease gene in this family.

4.2.2.1.2.2. MODEL 2: IN FAMILY P THERE IS A NOVEL HHIT DISEASE GENE SITED APPROXIMATELY 20-30CM AWAY FROM THE ENDOGLIN LOCUS

The significantly positive lod scores obtained with marker HXB were not obtained with the other markers in the vicinity, markers D9S261, D9S289, and D9S195, which demonstrated lod scores of -2.30 at $\theta = 0.05$, -7.37 at $\theta = 0.00$, and -3.33 at $\theta = 0.01$ respectively (see Table 4.6). Normally, such findings would be taken to exclude linkage but the model in question demands that we should consider whether or not the analyses of D9S261, D9S289, and D9S195 could be spurious. Possible causes for this could include:
1) Incorrect siting of markers on the genetic map so that distances are inappropriately low between these markers. This would have been a significant concern in the early days of linkage mapping, but is less likely given the extensive work by Genethon and other investigators that went into siting these markers. It is particularly unlikely since HXB lies in the middle of the markers, between D9S289 and D9S195. Since recombination mapping using Genethon pedigrees was used to site the markers, errors in order are significantly less likely than errors in distance, as this would require frequent double recombinations in small genetic distances between two adjacent markers.

2) Sample mix-up. A key feature of my laboratory training was to take judicious care never to mix up samples at any stage of DNA preparation or analysis. Nevertheless the possibility will be discussed to assess whether this was feasible based on the results. If samples had been mixed up when working with markers D9S261, D9S289, and D9S195, but not when working with marker HXB, this could produce the results obtained in this work. However this would mean that for marker D9S261 the key “mixed up” samples would be for individuals III.1, IV.11, IV.12, and V.7 whereas for markers D9S289 and D9S195 samples for different groups of individuals would need to be mixed up (III.1, IV.1, IV.12, V.2, VI.1, and VI.2 for D9S289; III.1, IV.10, IV.12, V.7, and V.12 for D9S195) (see Figure 4.8). Furthermore it should be noted that it is often an individual plus the individual’s affected descendants whose samples would need to be mixed up rather than random individuals’ samples e.g. the samples for IV.1 plus all her descendants would need to be mixed up when marker D9S289 was used. Sample
mix up is rendered even less likely as non-Mendelian patterns of inheritance of marker alleles would result and this was not seen.

Conclusion: From the data in this thesis alone, linkage to this region of chromosome 9 cannot be excluded. While HXB in itself is not a good candidate, there are other candidates in the region including the type 1 TGFB receptor, ALK-5. Further linkage studies are underway in the Shovlin laboratory and the results are awaited.

4.2.2.1.2.3. MODEL 3: THERE IS NO HHT DISEASE GENE IN THE REGION ON CHROMOSOME 9. THE D9S61 AND HXB LOD SCORES ARE SPURIOUSLY HIGH AS A RESULT OF COMMON ALLELES PRESENT IN THE POPULATION APPARENTLY SEGREGATING WITH DISEASE

In this setting we should consider whether the lod scores for markers HXB and D9S61 are artificially high. For HXB this possibility could arise if the allele shared at HXB by IV.1, IV.3, IV.5, and IV.7, (designated allele 1), is common in the general population and the affected father of IV.1, IV.3, IV.5 and IV.7 was homozygous for allele 1. Although the heterozygosity index for HXB is 0.79, it could be lower in this particular population. Since two of the ten spouses’ alleles (from IV.2, IV.4, IV.6, IV.8, and V.1) are allele 1, this very limited survey indicates this might be a relatively common allele in the local population, and the possibility that the affected father of IV.1, IV.3, IV.5 and IV.7 was homozygous for allele 1 must be considered. The fact that his sister was homozygous for allele 5 does not exclude this possibility. Similar considerations can be applied to discussions of the positive lod scores with D9S61.
The possession of particular alleles by non-affected spouses was specifically analysed to investigate the possibility that artificially high lod scores might be generated by their bringing the allele designated as "disease" allele into the pedigree. For all the markers, except GSN, ABL, and D9S66, at least one of the five unaffected spouses carried the allele shared by affected individuals IV.3, IV.5, and IV.7.

Conclusion: Model 3 is plausible.

4.2.2.1.2.4. CONCLUSIONS FROM THE MODELS

It can be seen from these three models that the data remains inconclusive although the most likely model appears to be the third one- that the family is unlinked to both endoglin and neighbouring markers and spuriously high lod scores were obtained with some of the markers.

4.2.2.2. EXCLUSION OF ALK1

Analysis of linkage to ALK1 was performed. Figure 4.4 shows the location of ALK1 relative to its flanking polymorphic markers. Two original assignments of the HHT2 locus were given, one between D12S339 and D12S359\(^{137}\), and the other in a neighbouring interval between D12S345 and D12S339\(^{138}\) (marked with a broken line in Figure 4.4). The latter was revised on subsequent analyses and the ALK1 gene is now known to lie in the 4cM interval between D12S347 and D12S359 (marked with a solid black line with grey extension in Figure 4.4), most likely in the 1cM interval between D12S347 and D12S368\(^{139}\)(marked with a solid black line in Figure 4.4). Nevertheless I considered it prudent to examine both disease intervals using markers D12S331, D12S85, D12S347, and D12S368 initially.
Two point lod scores obtained for family P (see Table 4.7) significantly excluded linkage to ALK1. Although marker D12S325 was not analysed in this pedigree, results obtained with marker D12S368 significantly excluded linkage to a region extending to about 18 cM from it and so easily excluded the region flanked by D12S325.

4.2.3. ALLELE FREQUENCIES

Lod scores were initially analysed using equal allele frequencies. Some of the markers were reanalysed using altered allele frequencies reflecting the frequencies seen in the pedigree studied (see Table 4.8). This did not significantly alter any of the lod scores obtained (see Table 4.9).

4.2.4. SUMMARY

Family P is an HHT family with probable pulmonary involvement which is unlinked to ALK1 but the data regarding endoglin linkage is inconclusive.
4.3. FAMILIES V AND T- ASSESSMENT OF ALK1 LINKAGE IN KNOWN NON-ENDOGLIN HHT-PAVM FAMILIES

Two additional HHT families with pulmonary involvement, families V and T, had previously been reported as being unlinked to endoglin (No positive lod scores obtained for either family; family V: Z = -2.58, \(\theta = 0.00 \), D9S315; family T: Z = -2.06, \(\theta = 0.01 \), D9S61). No mutations had been found by Southern blotting of the entire endoglin gene, cycle sequencing of all known exons and intron/exon junctions, and cycle sequencing of the entire cloned DNA. DNA obtained when the families were clinically assessed in 1992 was used for analysis. The families were not assessed further clinically by myself. The family trees for families V and T are shown in Figure 4.9. Individual III.1 from family V had a PAVM (25% R-L shunt at presentation with associated clubbing). Individual III.4 from family T had a symptomatic PAVM (R-L shunt 15.5% at presentation). I hypothesised that in these families HHT could result from either a mutation in the ALK1 gene (not previously associated with HHT leading to the development of PAVMs) or that they could represent further families unlinked to the known HHT genes endoglin and ALK1.

Six years ago they had also been assessed for ALK1 linkage with no significant results obtained. However since then the disease interval has been refined allowing markers much closer to ALK1 to be used and so increasing the likelihood of obtaining significant results. Markers D12S347 and D12S368 were used initially (see Table 4.10).
4.3.1. FAMILY V
Two point lod scores obtained with D12S368 exceed +1.2 over the interval spanning the ALK1 locus, and a possible extension if earlier, now superseded work, was current137-139. This indicates significant linkage to the known ALK1 locus in family V. In the course of this project, due to time constraints, I was unable to pursue this to identify the causative ALK1 gene mutation.

4.3.2. FAMILY T
In family T the negative two point lod scores obtained with D12S368 suggested that this family could be a non-endoglin, non-ALK1 HHT-PAVM family, but the scores with this marker, and the adjacent marker D12S339, were insufficiently informative. In the course of these studies there was insufficient time to pursue these analyses further.

4.3.3. SUMMARY
Family V is an HHT-PAVM family linked to ALK1. Family T is an HHT-PAVM family unlinked to endoglin with inconclusive ALK1 linkage data.
4.4. CONCLUSIONS

1. These results demonstrate that not all HHT families with pulmonary involvement are linked to the known HHT-PAVM gene, endoglin, and furthermore that one family, family S, is unlinked to the two known HHT genes, endoglin and ALK1.

2. The most important finding is that family S, an HHT-PAVM family, is unlinked to the two known HHT genes, endoglin and ALK1. Since endoglin and ALK1 are both involved in the regulation of response to ligands of the TGFβ superfamily, it seems likely that the gene mutated in family S may encode another component of the TGFβ signalling complex or a downstream effector. Its identification should significantly enhance our understanding of signalling by TGFβ family members. The finding also has an immediate clinical implication since it is clear from this work that all HHT families, not just endoglin-linked families, require PAVM screening.

3. The linkage of an HHT-PAVM family, family V, to ALK1 indicates that PAVM screening should be performed in ALK1-linked families. This reinforces the implication regarding PAVM screening derived from the family S data.

4. The inconclusive nature of the analyses in family P highlights some of the limitations of linkage analyses. The modelling of theoretical possibilities was a useful exercise to critically analyse the methodology and physical basis of linkage studies.
TABLE 4.1 CLINICAL FEATURES OF FAMILY S

<table>
<thead>
<tr>
<th>No.</th>
<th>Age</th>
<th>Epistaxis</th>
<th>Telangiectasia</th>
<th>PAVM Screen</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Onset</td>
<td>Current</td>
<td>Clinical</td>
<td>SaO2(S)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>severity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III.1</td>
<td>76</td>
<td>-</td>
<td>-</td>
<td>ANPS</td>
<td>97</td>
</tr>
<tr>
<td>III.2</td>
<td>69</td>
<td>childhood</td>
<td>occasional</td>
<td>ANPS</td>
<td>98</td>
</tr>
<tr>
<td>III.3</td>
<td>72</td>
<td>-</td>
<td>-</td>
<td>ANPS</td>
<td>-</td>
</tr>
<tr>
<td>IV.1</td>
<td>45</td>
<td>-</td>
<td>-</td>
<td>ANPS</td>
<td>-</td>
</tr>
<tr>
<td>IV.2</td>
<td>49</td>
<td>childhood</td>
<td>none</td>
<td>ANPS</td>
<td>96</td>
</tr>
<tr>
<td>IV.3</td>
<td>48</td>
<td>childhood</td>
<td>none since</td>
<td>ANPS</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cauterised aged</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV.4</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>ANPS</td>
<td>-</td>
</tr>
<tr>
<td>IV.5</td>
<td>48</td>
<td>childhood</td>
<td>2 monthly</td>
<td>ANPS</td>
<td>100</td>
</tr>
<tr>
<td>IV.6</td>
<td>48</td>
<td>-</td>
<td>-</td>
<td>ANPS</td>
<td>-</td>
</tr>
<tr>
<td>IV.7</td>
<td>42</td>
<td>childhood</td>
<td>frequent, several</td>
<td>ANPS</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cauterisations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V.1</td>
<td>40</td>
<td>-</td>
<td>-</td>
<td>ANPS</td>
<td>-</td>
</tr>
<tr>
<td>V.2</td>
<td>36</td>
<td>-</td>
<td>-</td>
<td>ANPS</td>
<td>-</td>
</tr>
<tr>
<td>V.3</td>
<td>28</td>
<td>preschool</td>
<td>almost daily</td>
<td>ANPS</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>buccal, tongue,</td>
<td>previously</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>fingers</td>
<td>embolised for</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PAVMs</td>
<td></td>
</tr>
<tr>
<td>V.4</td>
<td>27</td>
<td>aged 26</td>
<td>monthly</td>
<td>"dizzy spells"</td>
<td>98</td>
</tr>
<tr>
<td>V.5</td>
<td>22</td>
<td>childhood</td>
<td>none since</td>
<td>ANPS</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>childhood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V.6</td>
<td>19</td>
<td>childhood</td>
<td>occasional</td>
<td>ANPS</td>
<td>99</td>
</tr>
<tr>
<td>V.7</td>
<td>17</td>
<td>childhood</td>
<td>weekly</td>
<td>ANPS</td>
<td>99</td>
</tr>
<tr>
<td>V.8</td>
<td>9</td>
<td>aged 4</td>
<td>several each year</td>
<td>ANPS</td>
<td>98</td>
</tr>
<tr>
<td>V.9</td>
<td>18</td>
<td>childhood</td>
<td>occasional</td>
<td>ANPS</td>
<td>98</td>
</tr>
<tr>
<td>V.10</td>
<td>17</td>
<td>-</td>
<td>-</td>
<td>ANPS</td>
<td>98</td>
</tr>
<tr>
<td>V.11</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>ANPS</td>
<td>98</td>
</tr>
<tr>
<td>VI.1</td>
<td>9</td>
<td>preschool</td>
<td>several each year</td>
<td>ANPS</td>
<td>98</td>
</tr>
</tbody>
</table>

*=prepartum **=postpartum ***= no blood sample obtained

Clinical: positive features of respiratory history and examination

ANPS= asymptomatic, no physical signs S= supine E= erect

Pedigree numbers correspond to Figure 4.1. See text for additional clinical information about V.3 and V.4. Method for PAVM screening was adapted from Thompson et al114 in which SaO2 in the erect posture of \(\leq 96\% \) gave a sensitivity of 73\% and specificity of 35\%, for detection of PAVMs as defined by selective pulmonary angiography, and in which the supine-erect SaO2 was significantly greater in the PAVM rather than non-PAVM group: 1.7\% (SD 2.7) compared to 0.3\% (SD1.5) \(p=0.01 \). Therefore SaO2 erect \(\leq 96\% \) or supine-erect fall greater than 3.3\% (thus exceeding 2SDs beyond the mean of 0.3\% (SD1.5) in the non-PAVM group in 114) was used to suggest possible PAVMs requiring further investigation.
Table 4.2 Diagnoses of HHT

<table>
<thead>
<tr>
<th>Family</th>
<th>S</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total no. seen</td>
<td>23</td>
<td>36</td>
</tr>
<tr>
<td>No. of new members seen</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Affected</td>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td>Obligate affected</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Unaffected</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Unknown</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Unaffected spouse</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>New Diagnoses in Original Members</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>New Diagnoses in New Members</td>
<td>8</td>
<td>17</td>
</tr>
</tbody>
</table>

Summary of number of family members of families S and P clinically assessed and diagnoses made.
TABLE 4.3 ANALYSIS OF LOD SCORES WITH EQUAL AND ADJUSTED ALLELE FREQUENCIES IN FAMILY S

<table>
<thead>
<tr>
<th>Family</th>
<th>Locus</th>
<th>Allele freq.</th>
<th>Recombination fraction (θ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>S</td>
<td>D9S315</td>
<td>equal</td>
<td>-16.07</td>
</tr>
<tr>
<td>S</td>
<td>D9S315</td>
<td>adjusted</td>
<td>-15.95</td>
</tr>
<tr>
<td>S</td>
<td>D12S347</td>
<td>equal</td>
<td>-9.07</td>
</tr>
<tr>
<td>S</td>
<td>D12S347</td>
<td>adjusted</td>
<td>-9.06</td>
</tr>
</tbody>
</table>

No significant difference was found between lod scores obtained using equal and adjusted allele frequencies.
<table>
<thead>
<tr>
<th>No.</th>
<th>Age</th>
<th>Epistaxis</th>
<th>Telangiectasia</th>
<th>PAVMs</th>
<th>Other possible HHT manifestations</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SaO2 supine</td>
<td>SaO2 erect</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III.1</td>
<td>66</td>
<td>-</td>
<td>nasal, lip, buccal</td>
<td>clubbed</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>IV.1</td>
<td>61</td>
<td>Childhood</td>
<td>none</td>
<td>lips, buccal</td>
<td>ANPS</td>
<td></td>
</tr>
<tr>
<td>IV.2</td>
<td>62</td>
<td>none</td>
<td>-</td>
<td>buccal, hands</td>
<td>ANPS</td>
<td></td>
</tr>
<tr>
<td>IV.3</td>
<td>58</td>
<td>childhood</td>
<td>occasional</td>
<td>facial, buccal, hands</td>
<td>ANPS</td>
<td></td>
</tr>
<tr>
<td>IV.4</td>
<td>62</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ANPS</td>
<td></td>
</tr>
<tr>
<td>IV.5</td>
<td>54</td>
<td>childhood</td>
<td>daily</td>
<td>lips, buccal, hands</td>
<td>ANPS</td>
<td>97</td>
</tr>
<tr>
<td>IV.6</td>
<td>51</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IV.7</td>
<td>50</td>
<td>teenage</td>
<td>daily despite laser treatment</td>
<td>facial</td>
<td>ANPS</td>
<td>98</td>
</tr>
<tr>
<td>IV.8</td>
<td>53</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IV.9</td>
<td>55</td>
<td>-</td>
<td>-</td>
<td>lip</td>
<td>ANPS</td>
<td>97</td>
</tr>
<tr>
<td>IV.10</td>
<td>42</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ANPS</td>
<td>-</td>
</tr>
<tr>
<td>IV.11</td>
<td>37</td>
<td>childhood</td>
<td>several each year</td>
<td>facial, lips, buccal, tongue</td>
<td>ANPS</td>
<td>97</td>
</tr>
<tr>
<td>IV.12</td>
<td>46</td>
<td>childhood</td>
<td>weekly</td>
<td>tongue</td>
<td>ANPS</td>
<td>98</td>
</tr>
<tr>
<td>IV.13</td>
<td>45</td>
<td>-</td>
<td>-</td>
<td>round lips</td>
<td>ANPS</td>
<td>96</td>
</tr>
<tr>
<td>V.1</td>
<td>38</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V.2</td>
<td>38</td>
<td>childhood</td>
<td>none since aged 10</td>
<td>buccal</td>
<td>ANPS</td>
<td>96</td>
</tr>
<tr>
<td>V.3</td>
<td>35</td>
<td>childhood</td>
<td>several each week</td>
<td>facial, buccal, hands</td>
<td>98∗</td>
<td>94/5**</td>
</tr>
<tr>
<td>V.4</td>
<td>34</td>
<td>childhood</td>
<td>several per year</td>
<td>-</td>
<td>ANPS</td>
<td>96</td>
</tr>
<tr>
<td>V.5</td>
<td>32</td>
<td>childhood</td>
<td>twice weekly</td>
<td>facial</td>
<td>clubbed for 6 years</td>
<td>96</td>
</tr>
<tr>
<td>V.6</td>
<td>29</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ANPS</td>
<td>98</td>
</tr>
<tr>
<td>V.7</td>
<td>23</td>
<td>aged 21</td>
<td>weekly</td>
<td>facial, lip, hands</td>
<td>haemoptysis daily for 4 months</td>
<td>99</td>
</tr>
<tr>
<td>V.8</td>
<td>21</td>
<td>teenage</td>
<td>monthly</td>
<td>facial, fingers</td>
<td>ANPS</td>
<td>98</td>
</tr>
<tr>
<td>V.9</td>
<td>30</td>
<td>teenage</td>
<td>several each year</td>
<td>lips</td>
<td>ANPS</td>
<td>97</td>
</tr>
<tr>
<td>V.10</td>
<td>27</td>
<td>aged 22</td>
<td>twice monthly</td>
<td>-</td>
<td>haemoptysis once years ago</td>
<td>98</td>
</tr>
</tbody>
</table>

Continued on next page.
<table>
<thead>
<tr>
<th>No.</th>
<th>Age</th>
<th>Epistaxis</th>
<th>Telangiectasia</th>
<th>PAVMs</th>
<th>Other possible HHT manifestations</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Onset</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Current severity</td>
<td></td>
</tr>
<tr>
<td>V.11</td>
<td>26</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ANPS 97</td>
<td>Unaffected</td>
</tr>
<tr>
<td>V.12</td>
<td>16</td>
<td>aged 15</td>
<td>monthly</td>
<td>lip</td>
<td>ANPS 99</td>
<td>Affected</td>
</tr>
<tr>
<td>V.13</td>
<td>13</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ANPS 97</td>
<td>Unaffected</td>
</tr>
<tr>
<td>V.14</td>
<td>8</td>
<td>aged 3</td>
<td>several each</td>
<td>buccal, hands, arms</td>
<td>ANPS 98</td>
<td>Affected ***</td>
</tr>
<tr>
<td>V.15</td>
<td>23</td>
<td>teenage</td>
<td>2-3 each year</td>
<td>top lip</td>
<td>ANPS 96</td>
<td>epilepsy Unknown</td>
</tr>
<tr>
<td>VI.1</td>
<td>14</td>
<td>childhood</td>
<td>monthly</td>
<td>nasal, buccal</td>
<td>haemoptysis when running</td>
<td>Affected</td>
</tr>
<tr>
<td>VI.2</td>
<td>12</td>
<td>childhood</td>
<td>several each</td>
<td>lip, hand</td>
<td>ANPS 97</td>
<td>migraines Affected</td>
</tr>
<tr>
<td>VI.3</td>
<td>17</td>
<td>childhood</td>
<td>daily</td>
<td>hands</td>
<td>haemoptysis every 2 weeks</td>
<td>Affected</td>
</tr>
<tr>
<td>VI.4</td>
<td>11</td>
<td>childhood</td>
<td>several each</td>
<td>lip, hands</td>
<td>ANPS 97</td>
<td>Affected</td>
</tr>
<tr>
<td>VI.5</td>
<td>9</td>
<td>childhood</td>
<td>monthly</td>
<td>buccal, arms</td>
<td>ANPS 98</td>
<td>Affected ***</td>
</tr>
<tr>
<td>VI.6</td>
<td>12</td>
<td>preschool</td>
<td>several each</td>
<td>hands</td>
<td>ANPS 97</td>
<td>Affected ***</td>
</tr>
<tr>
<td>VI.7</td>
<td>7</td>
<td>childhood</td>
<td>several each</td>
<td>hands</td>
<td>ANPS 97</td>
<td>Affected</td>
</tr>
</tbody>
</table>

*=prepartum **=postpartum ***= no blood sample obtained

Clinical: positive features of respiratory history and examination
ANPS= asymptomatic, no physical signs S= supine E= erect

Pedigree numbers correspond to Figure 4.7. Method for PAVM screening was adapted from Thompson et al114 in which SaO2 in the erect posture of \(\leq 96\% \) gave a sensitivity of 73\% and specificity of 35\%, for detection of PAVMs as defined by selective pulmonary angiography, and in which the supine-erect SaO2 was significantly greater in the PAVM rather than non-PAVM group: 17\% (SD 2.7) compared to 0.3\% (SD1.5) \(p=0.01 \). Therefore SaO2 erect \(\leq 96\% \) or supine-erect fall greater than 3.3\% (thus exceeding 2SDs beyond the mean of 0.3\% (SD1.5) in the non-PAVM group in 114) was used to suggest possible PAVMs requiring further investigation.
TABLE 4.5 TWO POINT LOD SCORES FOR FAMILY P WITH MARKERS D9S60, D9S315, AND D9S61 FLANKING THE ENDOGLIN LOCUS

<table>
<thead>
<tr>
<th>Recombination Fraction (θ)</th>
<th>D9S60</th>
<th>D9S315</th>
<th>D9S61</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>-17.14</td>
<td>-11.86</td>
<td>-6.27</td>
</tr>
<tr>
<td>0.01</td>
<td>-4.88</td>
<td>-3.79</td>
<td>-2.28</td>
</tr>
<tr>
<td>0.02</td>
<td>-3.40</td>
<td>-2.68</td>
<td>-1.71</td>
</tr>
<tr>
<td>0.03</td>
<td>-2.54</td>
<td>-2.01</td>
<td>-1.15</td>
</tr>
<tr>
<td>0.04</td>
<td>-1.95</td>
<td>-1.53</td>
<td>-0.70</td>
</tr>
<tr>
<td>0.05</td>
<td>-1.49</td>
<td>-1.17</td>
<td>-0.34</td>
</tr>
<tr>
<td>0.10</td>
<td>-0.21</td>
<td>-0.08</td>
<td>0.67</td>
</tr>
<tr>
<td>0.20</td>
<td>0.64</td>
<td>0.72</td>
<td>1.27</td>
</tr>
<tr>
<td>0.30</td>
<td>0.72</td>
<td>0.81</td>
<td>1.17</td>
</tr>
<tr>
<td>0.40</td>
<td>0.45</td>
<td>0.54</td>
<td>0.71</td>
</tr>
<tr>
<td>0.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Lod scores were calculated at different recombination fractions.
Table 4.6

Two Point LOD Scores for Family P with Additional Chromosome 9 Markers

<table>
<thead>
<tr>
<th>Locus</th>
<th>Recombination fraction (θ)</th>
<th>0.00</th>
<th>0.01</th>
<th>0.05</th>
<th>0.10</th>
<th>0.20</th>
<th>0.30</th>
<th>0.40</th>
<th>0.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>D9S261</td>
<td></td>
<td>-14.50</td>
<td>-5.76</td>
<td>-2.30</td>
<td>-1.82</td>
<td>-0.78</td>
<td>-0.32</td>
<td>-0.09</td>
<td>0.00</td>
</tr>
<tr>
<td>D9S289</td>
<td></td>
<td>-7.37</td>
<td>-0.77</td>
<td>0.47</td>
<td>0.83</td>
<td>0.90</td>
<td>0.67</td>
<td>0.35</td>
<td>0.00</td>
</tr>
<tr>
<td>HXB</td>
<td></td>
<td>1.48</td>
<td>1.45</td>
<td>1.33</td>
<td>1.17</td>
<td>0.81</td>
<td>0.44</td>
<td>0.11</td>
<td>0.00</td>
</tr>
<tr>
<td>D9S195</td>
<td></td>
<td>-17.17</td>
<td>-3.33</td>
<td>-0.32</td>
<td>0.69</td>
<td>1.17</td>
<td>0.94</td>
<td>0.44</td>
<td>0.00</td>
</tr>
<tr>
<td>GSN</td>
<td></td>
<td>-14.23</td>
<td>-6.58</td>
<td>-3.08</td>
<td>-1.61</td>
<td>-0.42</td>
<td>0.00</td>
<td>0.09</td>
<td>0.00</td>
</tr>
<tr>
<td>D9S60</td>
<td></td>
<td>-17.14</td>
<td>-4.88</td>
<td>-1.49</td>
<td>-0.21</td>
<td>0.64</td>
<td>0.72</td>
<td>0.45</td>
<td>0.00</td>
</tr>
<tr>
<td>D9S315</td>
<td></td>
<td>-11.86</td>
<td>-3.79</td>
<td>-1.17</td>
<td>-0.08</td>
<td>0.72</td>
<td>0.81</td>
<td>0.54</td>
<td>0.00</td>
</tr>
<tr>
<td>D9S61</td>
<td></td>
<td>-6.27</td>
<td>-2.28</td>
<td>-0.34</td>
<td>0.67</td>
<td>1.27</td>
<td>1.17</td>
<td>0.71</td>
<td>0.00</td>
</tr>
<tr>
<td>ABL</td>
<td></td>
<td>-19.34</td>
<td>-8.11</td>
<td>-3.69</td>
<td>-1.95</td>
<td>-0.55</td>
<td>-0.07</td>
<td>0.04</td>
<td>0.00</td>
</tr>
<tr>
<td>D9S66</td>
<td></td>
<td>-22.67</td>
<td>-5.40</td>
<td>-1.88</td>
<td>-0.55</td>
<td>0.37</td>
<td>0.53</td>
<td>0.36</td>
<td>0.00</td>
</tr>
<tr>
<td>D9S67</td>
<td></td>
<td>-7.91</td>
<td>-0.84</td>
<td>0.35</td>
<td>0.68</td>
<td>0.74</td>
<td>0.55</td>
<td>0.29</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Lod scores were calculated at different recombination fractions. Endoglin lies between D9S315 and D9S61.
Table 4.7: Two Point Lod Scores for Markers Adjacent to ALK1 in Family P

<table>
<thead>
<tr>
<th>Locus</th>
<th>Recombination fraction (θ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>D12S331</td>
<td>-19.30</td>
</tr>
<tr>
<td>D12S85</td>
<td>-3.77</td>
</tr>
<tr>
<td>D12S347</td>
<td>-24.37</td>
</tr>
<tr>
<td>D12S368</td>
<td>-20.77</td>
</tr>
</tbody>
</table>

Lod scores were calculated at different recombination fractions.
TABLE 4.8 CALCULATING ALLELE FREQUENCIES OF MARKER D9S315 IN FAMILY P

<table>
<thead>
<tr>
<th>Allele number</th>
<th>Total visualised on gel</th>
<th>Calculated allele frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.017</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>0.155</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>0.242</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>0.172</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.017</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>0.138</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>0.069</td>
</tr>
<tr>
<td>8</td>
<td>11</td>
<td>0.190</td>
</tr>
</tbody>
</table>

Lod scores with altered allele frequencies reflecting those present in family P could then be calculated.
TABLE 4.9 ANALYSIS OF LOD SCORES WITH EQUAL AND ADJUSTED ALLELE FREQUENCIES IN FAMILY P

<table>
<thead>
<tr>
<th>Family</th>
<th>Locus</th>
<th>Allele freq.</th>
<th>Recombination fraction (θ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>P</td>
<td>D9S315</td>
<td>equal</td>
<td>-11.86</td>
</tr>
<tr>
<td>P</td>
<td>D9S315</td>
<td>adjusted</td>
<td>-11.61</td>
</tr>
<tr>
<td>P</td>
<td>D9S61</td>
<td>equal</td>
<td>-6.27</td>
</tr>
<tr>
<td>P</td>
<td>D9S61</td>
<td>adjusted</td>
<td>-6.69</td>
</tr>
</tbody>
</table>

No significant difference was found between lod scores obtained using equal and adjusted allele frequencies.
TABLE 4.10 TWO POINT LOD SCORES FOR MARKERS ADJACENT TO *ALK1* IN FAMILY V AND FAMILY T

Family V

<table>
<thead>
<tr>
<th>Locus</th>
<th>0.00</th>
<th>0.01</th>
<th>0.05</th>
<th>0.10</th>
<th>0.20</th>
<th>0.30</th>
<th>0.40</th>
<th>0.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>D12S347</td>
<td>-0.04</td>
<td>-0.02</td>
<td>0.03</td>
<td>0.65</td>
<td>0.07</td>
<td>0.05</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>D12S368</td>
<td>1.48</td>
<td>1.45</td>
<td>1.33</td>
<td>1.17</td>
<td>0.81</td>
<td>0.43</td>
<td>0.11</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Family T

<table>
<thead>
<tr>
<th>Locus</th>
<th>0.00</th>
<th>0.01</th>
<th>0.05</th>
<th>0.10</th>
<th>0.20</th>
<th>0.30</th>
<th>0.40</th>
<th>0.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>D12S339</td>
<td>-6.25</td>
<td>-1.82</td>
<td>-0.97</td>
<td>-0.58</td>
<td>-0.23</td>
<td>-0.08</td>
<td>-0.02</td>
<td>0.00</td>
</tr>
<tr>
<td>D12S347</td>
<td>0.49</td>
<td>0.47</td>
<td>0.43</td>
<td>0.37</td>
<td>0.24</td>
<td>0.12</td>
<td>0.03</td>
<td>0.00</td>
</tr>
<tr>
<td>D12S368</td>
<td>-5.98</td>
<td>-1.31</td>
<td>-0.51</td>
<td>-0.19</td>
<td>0.03</td>
<td>0.05</td>
<td>0.02</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Lod scores were calculated at different recombination fractions.
The numbered family members are the ones which were assessed clinically. Affected individuals are indicated by black symbols, unaffected by white symbols, and those with unknown diagnosis by grey symbols. Squares represent males, circles represent females, and a slashed symbol indicates a deceased individual.
The position of *endoglin* relative to flanking markers. *Endoglin* lies in a 2 centiMorgan (cM) interval between *D9S60* and *D9S61*. The relative positions of *endoglin* and *AK1* have not been resolved. Distances in the upper part of the diagram, within the 2 cM region, are physical distances in megabases (Mb). Distances in the lower part of the diagram, showing the position of the *D9S60-D9S61* interval relative to other markers are genetic distances in centiMorgans. They are represented by the numbers below the horizontal line.
FIGURE 4.3 TWO POINT AND MULTIPOINT LOD SCORES SPANNING THE ENDOGLIN LOCUS IN FAMILY S

A: Two point lod scores

<table>
<thead>
<tr>
<th>Locus</th>
<th>Recombination fraction (θ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>D9S60</td>
<td>-16.67</td>
</tr>
<tr>
<td>D9S315</td>
<td>-16.07</td>
</tr>
<tr>
<td>D9S61</td>
<td>-10.33</td>
</tr>
</tbody>
</table>

B: Multipoint lod scores

Data obtained using GENEHUNTER via HGMP.
Figure 4.4 The position of Alk1 and its flanking markers

Position of Alk1 relative to flanking markers. The numbers below the horizontal line are the genetic distances in centiMorgans. The probable Alk1 site is indicated by a solid black line, with possible extension indicated by a solid grey bar139. The broken line indicates one of the original intervals138 which has now been revised139.
FIGURE 4.5 TWO POINT AND MULTIPOINT LOD SCORES
SPANNING THE ALK1 LOCUS IN FAMILY S

A: Two point lod scores

<table>
<thead>
<tr>
<th>Locus</th>
<th>Recombination fraction (θ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>D12S331</td>
<td>-4.81</td>
</tr>
<tr>
<td>D12S85</td>
<td>-4.67</td>
</tr>
<tr>
<td>D12S347</td>
<td>-9.07</td>
</tr>
<tr>
<td>D12S368</td>
<td>-5.27</td>
</tr>
<tr>
<td>D12S325</td>
<td>-8.78</td>
</tr>
</tbody>
</table>

Lod scores were calculated at different recombination fractions.

B: Multipoint lod scores

Data obtained using GENEHUNTER via HGMP.
The analyses are limited to a section of the family S pedigree which includes the two PAVM individuals (V.3 and V.4). The pedigree shown on the left displays markers spanning *endoglin*. In affected individuals V.3, V.4, and VI.1 all haplotypes (B, C, and D) are derived from unaffected spouses. The pedigree on the right shows markers spanning *ALK1*. In affected individuals V.3, V.4, and VI.1 all haplotypes (B, C, and D) are derived from unaffected spouses. There is a recombination event in V.4 between *D12S85* and *D12S347*.
The numbered family members are the ones which were assessed clinically. Affected individuals are indicated by black symbols, unaffected by white symbols, and those with unknown diagnosis by grey symbols. Squares represent males, circles represent females, and a slashed symbol indicates a deceased individual.
The analyses are limited to a section of the family P pedigree. Simwalk 2 indicates that there are 3 possible haplotype solutions for these alleles and therefore no suggestion of chromosomal assignment is made.
Family V

The numbered family members are the ones which were assessed clinically. Affected individuals are indicated by black symbols, unaffected by white symbols, and those with unknown diagnosis by grey symbols. Squares represent males, circles represent females, and a slashed symbol indicates a deceased individual. Individual III.1 from family V and individual III.4 from family T had proven PAVMs.
5. DISCUSSION

This work has shown that a two base pair CA deletion polymorphism, with allele frequency of 9% in the UK population, occurs just over 2 kb upstream of the endoglin promoter. No polymorphisms or mutations have been found in the endoglin promoter in the HHT families studied.

The work has also shown that an HHT family is unlinked to the two known genes, endoglin and ALK1, indicating that at least a third gene exists for HHT. Moreover it has shown that PAVMs occur in the family linked to this third gene and also occur in an ALK1-linked family.

A number of issues arise from this work as detailed below.
5.1. CLINICAL ISSUES

5.1.1. PREGNANCY

A number of important clinical features have been highlighted by the work on families S and P. Family S member V.4 demonstrated that pregnancy can precipitate the onset of HHT manifestations. It is unknown whether family P member V.3’s PAVMs were present prior to her pregnancy but family S member V.4 demonstrates that pregnancy can precipitate symptomatic PAVMs. The difficulty in diagnosing PAVMs during pregnancy, due to hypoxaemia being masked, is shown by individual V.3 from family P who had saturations of 98% supine, 97% erect during pregnancy but of 94/95% supine, 93/92% erect after delivery. The tendency for pregnancy to exacerbate HHT manifestations has been demonstrated by the deterioration of a telangiectatic lesion of the thumb in family P member V.3 during pregnancy, which improved after delivery of her child. It is not clear the extent to which haemodynamic changes or the very high oestrogen state contribute to the exacerbating effect of pregnancy on HHT manifestations.

5.1.1.1. PAVM RESCREENING

It can be seen from the discussion on pregnancy that rescreening for PAVMs is critical following pregnancy. Family P members V.5, VI.1, and VI.3 in whom pregnancy has obviously not occurred, have also shown that PAVMs have possibly developed since screening 6 years previously. This emphasises the need for rescreening all HHT patients. Family S member V.3 demonstrates that rescreening for PAVMs should be performed in patients with previously embolised PAVMs since his had possibly redeveloped.
The importance for rescreening for the HHT phenotype is highlighted by the work as 5 new diagnoses were made in individuals assessed 6 years previously. As age-related penetrance occurs in this disease the probability of becoming affected decreases with age, but should never be completely overlooked.

5.1.2. MICROSCOPIC PAVMS

Individual V.4 from family S demonstrates a case of microscopic PAVMs. Their clinical significance is under debate both in terms of their possible interference with gas exchange, and the possibility of paradoxical embolism occurring through them. As they may allow gas exchange, and so may lead to underestimation of the shunt using the 100% inspired oxygen breathing method, technetium scanning may be more appropriate in these cases. Individual V.4's oximetry would suggest otherwise. Her frequent dizzy spells, possibly indicative of TIA's, would suggest that paradoxical embolism can occur.

If these microscopic PAVMs are clinically relevant then they must be detected. Nearly 50% of patients in whom contrast echocardiography is suggestive of PAVMs will not have PAVMs demonstrated at pulmonary angiography. While it is not clear whether these patients have microscopic PAVMs or whether they represent a subgroup of normal appearances, there is an increasingly prevalent view that contrast echocardiography may represent an appropriate first line screen for PAVMs. V.4's case suggests that contrast echocardiography may not detect all PAVMs however, since the contrast echocardiography was negative on the same day that her right to left shunt was quantified by technetium scanning as 7.8%. It would
support the view that contrast echocardiography should be used in conjunction with other investigations.

It could be argued that it is pointless detecting these microscopic PAVMs, even if they are clinically relevant, since embolisation is usually not possible. It is important however if they are clinically relevant for these patients to take prophylactic antibiotics before undergoing procedures that could cause bacteraemia95. It is also vital to detect these patients so that they can be studied further, thus increasing our knowledge of the clinical implications and course of their disease.
5.2. MOLECULAR ISSUES

5.2.1. THE IMPORTANCE OF FINDING A POLYMORPHISM CLOSE TO THE ENDOGLIN PROMOTER

As discussed in Section 1.5.6 a polymorphism is useful as a tool for association and linkage studies. The polymorphism found just over 2 kb upstream of the endoglin promoter was detected prior to the publication of the human SNP map. Although of less importance now, at the time this finding was useful because the polymorphism has a reasonably high allele frequency, and there were then only seven known polymorphisms in the endoglin gene, the closest to the promoter being in exon 1.

5.2.1.1. SHOULD THE ENDOGLIN PROMOTER BE SCREENED FOR HHT MUTATIONS?

Since no mutations or even polymorphisms were seen in the endoglin promoter region in the eight HHT families screened in this work, the question arises as to whether or not the promoter should be screened in other HHT families. It remains possible that promoter mutations could account for disease in other endoglin-linked families given that they have null alleles. Moreover polymorphisms in the promoter regions of many other genes lead to disease. For instance in the promoter region of the Factor VII gene encoding a key component of the coagulation cascade, polymorphisms have been found which influence the binding properties of nuclear proteins and thereby alter the transcription rate of the gene. A further polymorphism in this promoter has been found to alter factor VII levels and to be associated with differing risk of myocardial infarction amongst patients with an equal
extent of coronary atherosclerosis, independent of other risk factors. Similarly polymorphisms in the protein C promoter region lead to different protein C levels and to different thrombotic risks. These promoter polymorphisms are not just restricted to members of the coagulation cascade. Interestingly a polymorphism in the TNFα promoter causing increased transcription of the gene has been found to lead to an increased risk of cerebral malaria independent of HLA class I and II variation.

It therefore seems appropriate to continue screening the endoglin promoter region for polymorphisms in other HHT families which may harbour polymorphisms that are functional and possibly disease-causing.

5.2.1.2. FUNCTIONAL EFFECTS OF ANY PROMOTER POLYMORPHISM FOUND

Although it is tempting on finding a sequence variation in the coding or regulatory regions of the gene to assume this will lead to a functional difference, scientific rigour is needed to confirm the hypothesis. Where present in an inherited disease, cosegregation of the variant with the disease in question needs to be demonstrated. Lack of cosegregation of the promoter polymorphism described previously (see Section 3.4.2) significantly reduced its likely functional importance.

Direct functional studies can be performed relatively easily by ligating either the wild-type promoter, or the promoter containing the promoter polymorphism, into separate reporter vectors containing a promoterless gene, where transcription of the gene can be assayed in transiently transfected cells. (This approach was used for
analysis of luciferase gene expression controlled by the wild-type endoglin promoter, with luciferase activity measured using a luminometer\(^\text{133}\).

Similarly, confirmation of a disruption of function in a gene in which a coding sequence variation is found supports the hypothesis that the sequence variation is significant, and may shed light on the molecular mechanism of a particular pathological process. cDNA containing the wild-type or variant sequence can be ligated into a vector carrying a strong eukaryotic cell promoter, and either biochemical studies of the encoded proteins, or studies of downstream effects on cell function, may be compared. This approach was successfully used to confirm the haploinsufficient disease mechanism for endoglin in HHT\(^\text{149}\), and disruption of normal endoglin function in ongoing studies in my supervisor's laboratory\(^\text{241}\).

5.2.1.3. OTHER REGIONS TO BE SCREENED

Although the promoter region and entire coding sequence of endoglin has been screened without detecting the disease-causing mutation in four endoglin-linked HHT families, further regions of the gene may contain the disease-causing mutation. Introns (the first intron in particular) and 3’ untranslated regions tend to contain regulatory elements for many genes, and a testable hypothesis would be that haploinsufficiency of endoglin could also result due to mutations in these regulatory elements.

5.2.2. THE IMPORTANCE OF IDENTIFYING THE THIRD GENE

As described in the introduction chapter, endoglin and ALK1 are both involved in the regulation of response to ligands of the TGF\(\beta\) superfamily. It seems reasonable to speculate that the gene mutated in family S, the family unlinked to endoglin and
ALK1, may encode another component of the TGFβ signalling complex or a downstream effector. Its identification should significantly enhance our understanding of signalling by TGFβ family members which, although increasing, still has many areas yet to be elucidated.

As discussed in the introduction chapter, the TGFβ superfamily is implicated in many different pathological processes including vascular development, homeostasis, and repair, and cellular proliferation\(^1\)\(^8\)\(^5\)\(^1\)\(^8\)\(^6\)\(^1\)\(^8\)\(^8\)\(^1\)\(^8\)\(^9\). These are important in a wide range of disease processes including atherosclerosis, oncogenesis, pulmonary hypertension and fibrosis in addition to HHT. There are therefore compelling clinical as well as scientific reasons why understanding the mechanism by which TGF-β family members act is so important.

The confirmation by this work that at least a third HHT gene exists has precipitated work to identify the gene. Using genomic DNA of affected and unaffected members of family S, the family unlinked to *endoglin* and *ALK1*, PCR-based analysis of polymorphic markers in the vicinity of candidate genes selected from the TGFβ superfamily has been performed. No linkage was found to these genes\(^2\)\(^4\)\(^2\) and so a genome-wide search using fluorescently-labelled polymorphic markers with an average 10cM resolution has been commenced. Over a third of the genome has been excluded to date. Further details of the findings of this part of the analysis are not available to me. Any regions in which lod scores are suggestive of linkage in the initial screen using markers at 10cM intervals will be saturated by analysis of further polymorphisms in the vicinity. Once a lod score greater than 3.0 is obtained,
analyses of GenBank (http://www.ncbi.nlm.nih.gov) and Ensembl (http://www.ensembl.org) databases will be performed to identify potential candidate genes in the region. This will lead to mutational screening of the suspected gene in this family by Southern blotting and sequencing of PCR products from genomic DNA and cDNA. The genomic DNA analyses will be substantially assisted by the Ensembl database of genomic DNA sequence which can be scrutinised using short DNA sequences analogous to Blast searches of the GenBank databases.

5.2.2.1. ELUCIDATION OF THE BIOCHEMICAL ROLE

In this study, the work did not reach the stage of identification of the third gene and therefore elucidation of its biochemical role. However, as mentioned previously, my work has precipitated work to identify the third gene and thereafter its biochemical role. Analyses are first likely to include clarification as to whether or not the mutant protein is required for the pathogenesis of the disease, by assessment of production of mRNA or protein by the mutant allele. A low level of rogue mRNA transcription is predicted in all cells and therefore the cDNA of the gene in question is likely to be amplified by reverse transcriptase PCR (RT-PCR) amplification of mRNA isolated from peripheral blood leukocytes or EBV-transformed lymphoblastoid lines of an affected individual. Protein analysis requires significantly higher levels of transcription and production of a stable protein. This is best performed in overexpression systems by transiently transfecting eukaryotic cells such as Chinese Hamster Ovary (CHO) cells with the normal (wild type) gene under investigation and with various mutant constructs of the gene. The effects of the mutant constructs can then be studied by a number of biochemical methods including
immunoprecipitation with radiolabelled ligands or radiolabelled antibodies to the encoded protein, Western blot analysis, or flow cytometry if antibodies to the new gene are available (alternative metabolic labelling methods are also available if monoclonal antibodies are not available)146 149. Functional studies can be performed assessing for general physiological effects such as alterations of cellular proliferation or migration189 244, or effects on specific genes by assessment of the cellular concentrations of particular mRNA species by Northern blots189, or altered function of a promoter thought likely to be affected by the signalling from the wild-type protein (analysed using a luciferase reporter plasmid known to be affected by the protein under investigation241). Ultimately, many studies of gene function progress to assessment of transgenic animals in which the gene has been deleted by homologous recombination (leading to null or "knock-out" mice), or in which a gene is overexpressed, a technique applicable to all species as it is not dependent on the availability of pleuripotential embryonal stem (ES) cells, currently available for mice only150 245.

5.2.3. PHENOTYPE/GENOTYPE CORRELATIONS

PAVMs have previously been seen predominantly in \textit{endoglin}-linked families37 143 144. This led to the suggestion that a correlation could be made between pulmonary involvement and genotype141 142. This work shows that PAVMs also occur in families linked to \textit{ALK1} and at least a third gene. There is therefore no absolute association between pulmonary involvement and genotype. This has significant implications for clinical PAVM screening, the importance of which has been discussed previously. From these data it can be recommended that all HHT patients
are screened clinically for PAVMs. These data are also important for mutational screening programmes. Patients with pulmonary involvement, whose underlying disease gene is unknown, should not be limited to endoglin screening but should have linkage analysis performed first if family size permits.

Since PAVMs cannot be used as an indicator of genotype, the question arises as to whether there are any phenotypic differences in HHT manifestation between family S, the family unlinked to endoglin and ALK1, and other HHT families linked to these genes. There do not appear to be phenotypic differences. As with other families this pedigree showed a range of severity of disease. The PAVM clinical presentation and response to embolisation of V.3 reflect the majority of PAVM patients who present symptomatically. The apparent precipitation of V.4’s symptoms and PAVMs by pregnancy is well recognised. The incidence of cerebral and hepatic involvement in this family is unknown as asymptomatic screening for these complications is not performed routinely in the UK. The geographical and fish tongue seen in IV.3 could be coincidental or could be associated with HHT, although it has not been described previously. It was however also seen in members of family P which has not been proven to be linked to a third gene. At the moment, therefore, possible phenotypic indicators of underlying genotype remain elusive.
5.3. VASCULAR BIOLOGY ISSUES

5.3.1. WHY ARE SOME VESSELS ABNORMAL AND NOT OTHERS?
A fundamental question remains which is why do abnormal vascular structures, in particular PAVMs, develop? *Endoglin* and *ALK1* are both involved in the TGFβ superfamily which has a role in vasculogenesis and angiogenesis so one might expect low levels of *endoglin* or *ALK1* in HHT affected individuals to lead to abnormal vessel morphology. However AVMs and apparently normal vessels in affected individuals have similar levels of *endoglin* (and presumably *ALK1*) so there must be additional factors leading to AVM formation. Altered blood flow and/or hormonal changes could initiate the process in vessels already susceptible due to decreased *endoglin*/*ALK1* levels. Vessel remodelling could then be exacerbated through a lack of the homeostatic mechanisms normally orchestrated by TGFβ. It could be that other genetic factors, as yet undetermined, could influence which vessels develop AVMs.
5.4. CONCLUDING REMARKS

Although much is now known about *endoglin*, and to a lesser extent *ALK1*, regarding specific gene mutations and the biochemical actions of the proteins they encode, a clear understanding of the pathophysiology of HHT has yet to be achieved.

Identification of a third gene and elucidation of its encoded protein should increase our knowledge of the actions of the TGFβ superfamily, but may not immediately improve our understanding of why disruption of these actions can lead to abnormal vascular structures. It is vital that research continues in this fascinating area to improve our knowledge of the pathophysiology of both HHT and also the many other diseases in which the TGFβ superfamily is clearly involved.
5.5. FURTHER WORK

The results of my work highlight a number of areas requiring further study, several of which have already commenced:

5.5.1. CLINICAL

- From a clinical point of view, further study of patients with microscopic PAVMs is important to determine their clinical significance, diagnosis, and possible treatment. The risks versus the benefits of screening and treating asymptomatic cerebral AVMs needs to be determined so that a decision can be made on screening for these CAVMs. Continuing clinical assessment of HHT families is vital if we are to identify any phenotypic indicators of genotype.

5.5.2. MOLECULAR

- The *endoglin* promoter region should be screened in further *endoglin*-linked HHT families: (I have been asked by a Canadian group, currently screening the endoglin gene for mutations, to supply them with the primer sequences and screening methods used in this study.)

- Regions of the first intron (unlikely to be in its entirety as the intron is over 12kb long) and the area 3' to exon 14 should be screened in the families studied in this work, and further families in which the *endoglin* mutation is elusive.

- The confirmation of the existence of at least a third HHT gene necessitates the identification of the gene. Once the gene is identified this will precipitate further work to elucidate its biochemical role. Since this thesis was first written this work has commenced, first by analysing for linkage to candidate genes from the
TGFβ superfamily and then by a genome-wide search using conventional linkage techniques.242

5.5.3. VASCULAR BIOLOGY

- More generally, further work is required to identify the endoglin and ALK1 ligand and the particular TGFβ superfamily ligands involved in HHT. The mechanism by which the TGFβ superfamily leads to the abnormal vascular structures of HHT, and indeed to the other many pathological processes with which it is involved, must be elucidated if molecular therapies are going to be offered in the future.
BIBLIOGRAPHY

8. Kelly AB. Multiple telangiectases of the skin and mucous membranes of the nose and mouth. Glasgow Medical Journal 1906;65(6).

10. Waggett EB. A case of multiple telangiectases. Proceedings of the Royal Society of Medicine, Laryngological Section 1908;1(6).

207. Barbara NP, Wrana JL, Letarte M. Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the

APPENDIX A – CLINICAL QUESTIONNAIRE

<table>
<thead>
<tr>
<th>Epistaxis-</th>
<th>when started</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>how often</td>
</tr>
<tr>
<td></td>
<td>how serious-?hospital</td>
</tr>
<tr>
<td>Telangiectasia-</td>
<td>where</td>
</tr>
<tr>
<td>PAVMs-</td>
<td>CXR- when</td>
</tr>
<tr>
<td></td>
<td>?normal</td>
</tr>
<tr>
<td></td>
<td>cyanosis- at rest/on exertion</td>
</tr>
<tr>
<td></td>
<td>haemoptysis</td>
</tr>
<tr>
<td></td>
<td>TIA/AV/CA</td>
</tr>
<tr>
<td>GI involvement-</td>
<td>upper</td>
</tr>
<tr>
<td></td>
<td>lower</td>
</tr>
<tr>
<td>Obs. and gynae.-</td>
<td>effect of periods, pregnancy, menopause</td>
</tr>
<tr>
<td>Misc.-</td>
<td>anaemia</td>
</tr>
<tr>
<td></td>
<td>anything else</td>
</tr>
</tbody>
</table>
APPENDIX B - RECIPES

10x Tris Borate EDTA (TBE)

108 grams (g) Tris base
55g Boric acid
40mls 0.5M EDTA pH 8.0
Double distilled water to one litre

Phosphate Buffered Solution (PBS)

1 tablet (made by oxoid) to 100mls double distilled water

Extraction Buffer

70mls double distilled water
5mls 2M Tris pH 8.0
20mls 0.5M EDTA

Genomic Tris EDTA (GTE)

99.3mls double distilled water
0.5mls 2M Tris pH 8.0
0.2mls 0.5M EDTA

3M Sodium Acetate

123g anhydrous sodium acetate
800mls double distilled water- pH to 5.2 with acetic acid then made up to 1 litre
with double distilled water
Agarose Gel Loading Buffer

15mls glycerol

35mls double distilled water

A few grains of bromophenol blue

Denaturing Polyacrylamide Gel Loading Buffer

10mls formamide

10mg xylene cyanol FF

10mg bromophenol blue

200μl 0.5M EDTA pH 8.0
APPENDIX C – PRIMERS FOR THE ENDOGLIN PROMOTER

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequence</th>
<th>Melting Temperature (degC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GW1</td>
<td>TCC.CAA.TCT.CTT.CCT.TCC.TCC.ATG.A</td>
<td>74</td>
</tr>
<tr>
<td>GW2</td>
<td>GCC.AGA.GAC.CAG.GGT.TAA.AGT.GAA.A</td>
<td>74</td>
</tr>
<tr>
<td>GW3</td>
<td>CTG.GGT.TCA.AAT.CCG.ATT.CTG.CT</td>
<td>68</td>
</tr>
<tr>
<td>GW4</td>
<td>GTC.CAA.GGT.CTC.ATG.GCT.AGG.AG</td>
<td>72</td>
</tr>
<tr>
<td>GW5</td>
<td>TCT.TCC.TTC.CTC.CAT.GAG.GTG.T</td>
<td>66</td>
</tr>
<tr>
<td>GW6</td>
<td>TTA.AAG.TGA.AAG.AGT.CAG.CCC.AGT</td>
<td>68</td>
</tr>
<tr>
<td>GW7</td>
<td>GCT.GGA.GTT.GCT.GTC.CGA.AGG.A</td>
<td>70</td>
</tr>
<tr>
<td>GW8</td>
<td>CTC.CAA.TGG.ATG.GCA.GTG.ACA</td>
<td>64</td>
</tr>
<tr>
<td>GW9</td>
<td>CTG.TTA.GGG.TGA.TTG.TTT.TCA.TCT</td>
<td>66</td>
</tr>
<tr>
<td>GW10</td>
<td>CTG.TCC.CCA.TCC.ACG.TTG.TAA.ACA</td>
<td>72</td>
</tr>
<tr>
<td>GW11</td>
<td>GCC.CCA.TGT.CAA.CTG.CAC.TTA.GTA</td>
<td>72</td>
</tr>
<tr>
<td>GW12</td>
<td>CAG.GCT.CTA.GGC.TTG.TCT.CCC.CAA</td>
<td>76</td>
</tr>
<tr>
<td>GW13</td>
<td>TTC.AGT.TTT.CCT.GCC.TGT.TAG.GCA</td>
<td>70</td>
</tr>
<tr>
<td>GW14</td>
<td>GAG.GGT.CAG.GAG.AAG.TGG.ACA.CAG.GGA</td>
<td>86</td>
</tr>
<tr>
<td>GW15</td>
<td>GCG.CAG.ATG.AAG.GCT.GTG.GTA.TGA</td>
<td>74</td>
</tr>
<tr>
<td>GW16</td>
<td>GTT.GTA.AAC.AAG.ACC.CAA.TGG.ATT</td>
<td>66</td>
</tr>
</tbody>
</table>
APPENDIX D – PRIMERS FOR ENDOGLIN LINKAGE

<table>
<thead>
<tr>
<th>Name</th>
<th>Sense primer</th>
<th>Antisense primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>D9S261</td>
<td>AGG.CTG.TGG.TAT.TCC.CAT.T</td>
<td>AGG.TTG.CAA.GAT.GTT.TGA.TT</td>
</tr>
<tr>
<td>D9S289</td>
<td>TGC.ATT.AGA.AAA.CCT.TCC.A</td>
<td>CCC.AGC.CTA.TTT.GCA.T</td>
</tr>
<tr>
<td>HXB</td>
<td>ATA.GCC.AAA.GAG.AGG.TGC.CC</td>
<td>AGA.GCC.CTT.CTG.TCT.TCT.CC</td>
</tr>
<tr>
<td>D9S195</td>
<td>AGC.TCA.GCA.CGG.AG.G</td>
<td>AGG.GCA.GGT.TCC.TAC.AA</td>
</tr>
<tr>
<td>GSN</td>
<td>CAG.CCA.GCT.TTG.GAG.ACA.AC</td>
<td>TCG.CAA.GCA.TAT.GAC.TGT.AA</td>
</tr>
<tr>
<td>D9S60</td>
<td>TTC.TGG.GAA.GCC.TTC.CCT.GA</td>
<td>TGA.ATG.CCA.CTA.TTC.ATG.ATG</td>
</tr>
<tr>
<td>D9S315</td>
<td>TTC.TCT.TTG.TCA.TCA.CTT.TTG.G</td>
<td>CTC.AAA.GTA.ACA.CGC.CTG.TG</td>
</tr>
<tr>
<td>D9S61</td>
<td>TGA.GAG.ACC.CTC.ACT.CCC.TA</td>
<td>ACA.GAT.GTC.TGT.AGT.CGG.TC</td>
</tr>
<tr>
<td>ABL</td>
<td>TTT.ACA.CCT.TCA.CCC.AGA.GA</td>
<td>GGC.TGT.GTT.CAG.TTA.AAC.G</td>
</tr>
<tr>
<td>D9S66</td>
<td>CAG.ACC.AGG.AAT.GCA.TGA.AG</td>
<td>CAC.GGG.CAC.ACA.TGT.ATG.C</td>
</tr>
<tr>
<td>D9S67</td>
<td>CCA.GGC.TGT.TTA.CTT.TGG.CA</td>
<td>GCC.GGG.AGG.ATG.ACA.TGT.A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Heterozygosity</th>
<th>Size range (base pairs)</th>
<th>Annealing temperature (deg C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D9S261</td>
<td>0.63</td>
<td>90-104</td>
<td>49</td>
</tr>
<tr>
<td>D9S289</td>
<td>0.75</td>
<td>75-87</td>
<td>43</td>
</tr>
<tr>
<td>HXB</td>
<td>0.79</td>
<td>107-121</td>
<td>57</td>
</tr>
<tr>
<td>D9S195</td>
<td>0.74</td>
<td>204-240</td>
<td>51</td>
</tr>
<tr>
<td>GSN</td>
<td>0.70</td>
<td>111-130</td>
<td>51</td>
</tr>
<tr>
<td>D9S60</td>
<td>0.81</td>
<td>136-154</td>
<td>53</td>
</tr>
<tr>
<td>D9S315</td>
<td>-</td>
<td>~110</td>
<td>55</td>
</tr>
<tr>
<td>D9S61</td>
<td>0.80</td>
<td>112-150</td>
<td>55</td>
</tr>
<tr>
<td>ABL</td>
<td>0.67</td>
<td>90-117</td>
<td>51</td>
</tr>
<tr>
<td>D9S66</td>
<td>0.79</td>
<td>109-135</td>
<td>55</td>
</tr>
<tr>
<td>D9S67</td>
<td>0.67</td>
<td>71-113</td>
<td>55</td>
</tr>
</tbody>
</table>
APPENDIX E – PRIMERS FOR ALK1 LINKAGE

<table>
<thead>
<tr>
<th>Name</th>
<th>Sense primer</th>
<th>Antisense primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>D12S331</td>
<td>TAA.CAT.TTA.TTC.A/TC.CCA.ATA.CTG.A</td>
<td>ACA.TGT.AAG.AGA.GNA.AGT.TTA.CAA.A</td>
</tr>
<tr>
<td>D12S85</td>
<td>GCA.CCT.CTC.ACT.CCA.TTA.CA</td>
<td>AAA.TGA.AAG.TCA.AGG.GGA.AC</td>
</tr>
<tr>
<td>D12S339</td>
<td>TCA.GGG.TTT.GAG.ACT.NGC.C</td>
<td>GTC.ACG.CCT.GGC.TAG.TGT</td>
</tr>
<tr>
<td>D12S347</td>
<td>TTT.TTT.GAG.TCC.AGG.CCA</td>
<td>CCA.GCA.GAG.TTT.TGC.CTT.T</td>
</tr>
<tr>
<td>D12S368</td>
<td>GCA.ACA.CCT.TTG.TGA.TGA.AAA.T</td>
<td>AGT.CTG.CAC.AGC.CTG.TCC</td>
</tr>
<tr>
<td>D12S325</td>
<td>GGG.CAC.TAT.GGT.GTC.TTC.A</td>
<td>AGG.GCA.TTG.TCT.TAC.TGA.CTG</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Heterozygosity</th>
<th>Size range (base pairs)</th>
<th>Annealing temperature (deg C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D12S331</td>
<td>0.61</td>
<td>175-181</td>
<td>59</td>
</tr>
<tr>
<td>D12S85</td>
<td>0.67</td>
<td>105-125</td>
<td>51</td>
</tr>
<tr>
<td>D12S339</td>
<td>0.85</td>
<td>257-277</td>
<td>53</td>
</tr>
<tr>
<td>D12S347</td>
<td>0.62</td>
<td>96-114</td>
<td>50</td>
</tr>
<tr>
<td>D12S368</td>
<td>0.81</td>
<td>200-216</td>
<td>56</td>
</tr>
<tr>
<td>D12S325</td>
<td>0.66</td>
<td>209-229</td>
<td>53</td>
</tr>
</tbody>
</table>