Towards a Tailored Sensor Network for Fire Emergency Monitoring in Large Buildings

Rochan Upadhyay
Athanasia Tsertou, David Laurenson, Steve McLaughlin
Presentation Topics

- Introduction to the FireGrid project
- Fire Scenarios and Applications
 - Smoke Movement Monitoring
 - Fire Growth Monitoring
- Initial Communication Architecture
- Clustered Architecture Based on Fire Statistics
- Key Features of a Suitable Algorithm
- Conclusions
Wireless Communications in FireGrid

- Smoke/CO sensors
- Smoke Particle Velocity sensors
- Temperature pressure sensors

Wireless links
- WiFi/Zigbee/other

WiFi/Radio

FireGrid

TCP/IP
- Building status/Fire prediction

Local/Remote Database

TCP/IP
- Command & Control Coordination of Actuators

WiFi

WiMax
Drawbacks of a wired infrastructure

- Large buildings of the future that use FireGrid would require a network of 1000s of sensors
- For a wired infrastructure, data is transmitted reliably (no congestion or multi-path fading) but ...
- Wiring is vulnerable to fire
- Wiring cost is not predicted to drop
- Wired sensors are not easily reconfigurable
- Key challenge: Extend and complement the existing wired infrastructure with **Wireless Sensors**
Why Wireless Sensor Networks?

Enabled by the convergence of
- micro-electro-mechanical systems technology
- wireless communications
- digital electronics

- Extended range of sensing
- Redundancy
- Improved accuracy
- Cost expected to go down
Research Challenges and Approach

Research Issues
- Dense sampling and frequent transmitting causes packet losses due to collisions / energy depletion
- For critical events such as a fire packet losses / latency cannot be tolerated

Approach
- Use spatial and temporal correlations in the sensed data to reduce transmission
Fire Scenarios: Smoke Monitoring

3 rooms with corridor
(Rack with 4 thermocouples in each room)

4 rooms with corridor
(Rack with 4 thermocouples in each room)

8 rooms with cellular architecture
(4-thermocouple rack in each room)

Thermocouple racks used to monitor the movement of smoke
Network Simulation (NS2) Results

3 room and 4 room topologies used with 4 thermocouple sensors per room

Single Hop, Flat architecture with all sensors speaking to a sink

Constant transmission rate of 1 packet per second

Significant packet losses due to collisions
Fire Data Characteristics

Temperature reading of topmost thermocouples of each room in 3 room scenario

Same for 8 room scenario

- Similar temperature profiles in each room but lagged in time
- Sensors in other rooms need not transmit for certain time intervals
- Time sliding effect can be exploited to reduce transmissions
Correlation Structure in Multiple Room Fires

Example: Dynamic Correlation Structure

- Sensors that are correlated can be clustered together
- Correlations among sensors change with time
- Similar phenomena at different rooms but with a time lag

NC: NOT Correlated
C: Correlated

Time t_1
C: Correlated
NC: NOT Correlated

Later time t_2
C (with time lag)
NC

Room 1
Room 2

FireGrid
Clustered Network Architecture

How to group the sensors into clusters?

What is the error in sensor field representation at the sink?

NEED TO EXPLOIT CORRELATIONS IN THE FIRE DATA FOR CLUSTERING!
Dense coverage by wireless sensors provides very early detection, precise localisation of fire and continuous monitoring of growth.
Direct one-hop uplink traffic from every sensor to the sink.

Packet size 11 octets, constant rate of transmission of 1 sample/second.

- WiFi (802.11) has LOW Packet Loss but SHORT Lifetime.
- Zigbee (802.15.4) has HIGH Packet Loss but LONGER Lifetime.
Various stages of fire growth and spread

Stage 1: Ignition and Growth of Fire in the Main Room

Stage 2: Secondary Fire ignites in the corridor

Stage 3: Secondary Fire grows
Difficulties in signal processing

Highly non-stationary signal to be measured:

Neither differencing nor log-differencing result in stationarity!
Example of Signals measured by Wall Sensors

- Heat Flux / Temperature directly above the fire peaks first and a front propagates along the walls.
- Spatio-Temporal Correlations of advancing front can be leveraged in the communications protocol.
Suppose a Centralized Medium Access Control Scheme is used in a single hop network with star topology…

- Sink should dynamically select a subset of sensor nodes based on a minimum distortion criterion
- Correlations change with time and the number and optimal selection of sensors depend on them
- Sink should be able to determine when the correlations change and assign appropriate nodes to transmit
Conclusions

- FireGrid concept requires a highly dense network of sensors and wireless seems to be an attractive option.
- Dense sampling + high transmission rates cause degradation of performance of widely used communication protocols.
- Correlations in the fire data can be used to reduce transmissions.
- Clustering is a method of exploiting these correlations.
- Key features of a suitable algorithm were discussed.
Thank You