Doing Aphasia

aphasic discourse from
a non-aphasic perspective

Andrew John Merrison
prologue

What I shall have to say here is neither difficult nor contentious; the only merit I should like to claim for it is that of being true, at least in parts.

J. L. Austin
abstract

Although this thesis is primarily about aphasia it is not about the linguistic abilities of aphasic individuals per se. Rather, its central topic is concerned with how people who do not have aphasia interact with people who do.

Human communication is a process involving interactive and collaborative effort and its success is dependent on the joint responsibility of both partners. If aphasic participants can effectively draw on their non-impaired partner’s abilities, then this strategy should not be ignored. The question we need to ask is How does it work? This dissertation attempts to provide a coherent answer to that question.

The data comprises 16 dialogues: eight dyads of previously unacquainted aphasic and non-aphasic individuals (abbreviated as ‘Aphasic Dialogues’ or ADs), and eight dyads of previously unacquainted non-aphasic interactants (abbreviated as ‘Control Dialogues’ or CDs).

The overall aim of this thesis is to show (i) how non-aphasic dialogue partners manage their interactions with aphasic individuals, and (ii) how their behaviour can be seen to be compensating for the apparent linguistic deficits of their aphasic interlocutor. More specifically, the thesis tests various hypotheses about the differences between AD and CD interactions.

Compared to data from the CDs, results indicate that when engaged in talk with aphasic dialogue partners, non-impaired speakers (i) do more of the collaborative work; (ii) attempt to avoid highlighting any non-competence on the part of their interlocutor by employing strategies of explicitness and reductionist simplification; and (iii) in so doing enable their interactants to demonstrate their ability to communicate much better than their linguistic impairments might otherwise suggest.

In short, when engaged in talk with aphasic dialogue partners, non-impaired speakers invest a great deal of effort into doing aphasia.
declaration

I hereby declare that this thesis has been composed by myself and that, unless otherwise stated, all the research reported herein has been conducted by myself.

Andrew John Merrison
Edinburgh, 30th March 1998
The most merciful thing in the world, I think, is the inability of the human mind to correlate all its contents.

H. P. Lovecraft

contents, figures & tables

Chapter 1 introduction
 1.1 aphasia
 1.1.1 aphasia defined
 1.1.2 causes of aphasia
 1.1.3 symptoms of aphasia
 1.1.3.1 wernicke's aphasia
 1.1.3.2 broca's aphasia
 1.1.3.3 anomic aphasia (hl & md)
 1.1.3.4 conduction aphasia (gm & ba)
 1.2 why study aphasic interaction?
 1.2.1 history of the research
 1.2.1.1 the pre-pilot data (1991)
 1.2.1.1 objections to the pre-pilot videos
 1.2.1.2 the pilot data (1992)
 1.3 hypotheses of the thesis
 1.4 organisation of the rest of the thesis

Chapter 2 a view from the shoulders of giants
 2.1 the giants' shoulders: a brief review of research
 2.1.1 the philosophy of language
 2.1.1.1 speech act theory
 2.1.1.1.1 logical positivism
 2.1.1.1.2 felicity conditions

Contents, Figures & Tables
Doing Aphasia | iv
2.1.1.1.3 tests for performatives 17
2.1.1.1.4 speech acts 19
 2.1.1.2 gricean pragmatics 22
 2.1.1.2.1 gricean maxims 22
 2.1.2 linguistics (discourse analysis) 23
 2.1.3 artificial intelligence (conversational games) 27
 2.1.4 cognitive science (risk-effort trade-off) 29
 2.1.4.1 merrison’s maxim 29
 2.1.5 ethnomethodology (conversation analysis) 31
 2.1.5.1 methodological principles of CA 31
 2.1.5.2 conversational mechanisms uncovered by CA 33
 2.1.5.2.1 turn-taking 33
 2.1.5.2.2 the adjacency pair (AP) 35
 2.1.5.2.3 preference organisation 37
 2.1.5.2.4 conversational repair 41
 2.1.5.3 CA in the study of aphasic discourse 50
 2.1.6 psychology of language: a clarkian perspective 53
 2.1.6.1 language as joint action 53
 2.1.6.2 common ground 54
 2.1.6.3 contributing to discourse 56
 2.1.6.3.1 evidence of understanding 57
 2.1.6.4 clark summary 61
 2.1.7 sociology (face-work) 62
 2.1.7.1 positive politeness strategies 66
 2.1.7.2 negative politeness strategies 66
 2.1.7.3 the conventional view of politeness 67
 2.1.8 aphasia (language & communication) 68
 2.2 a view from on high 73
 2.2.1 the philosophy of the thesis 73
 2.2.2 major contributions of the thesis 77

Chapter 3 data collection 79
 3.1 the task 79
 3.2 subjects 81
 3.2.1 aphasic subjects (IGs) 82
 3.2.2 non-neurologically impaired subjects (IFS) 82
 3.2.3 non-neurologically impaired controls (IGs) 83
 3.3 recording conditions (EC/NEC) 83
 3.4 map assignment 83
 3.5 recording schedules 84
 3.5.1 variable distribution 84
 3.5.1.1 task condition & dialogue order 85
 3.5.1.2 sex of information follower 85
 3.5.1.3 experience of information giver 85
 3.5.1.4 type of aphasia 85
 3.5.1.5 map assignment 86
 3.5.1.6 constant orderings 86
 3.6 design features of the map task 87
 3.7 reduction of the data set 88
 3.7.1 'natural' data 88
 3.7.2 EC, NEC and thesis metamorphosis 88
 3.7.3 resource allocation 89

Contents, Figures & Tables Doing Aphasia | v
<table>
<thead>
<tr>
<th>Chapter 4</th>
<th>data coding</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>game coding</td>
</tr>
<tr>
<td>4.1.1</td>
<td>kowtko et al.'s system of analysis</td>
</tr>
<tr>
<td>4.1.1.1</td>
<td>initiating moves</td>
</tr>
<tr>
<td>4.1.1.2</td>
<td>other moves</td>
</tr>
<tr>
<td>4.1.1.3</td>
<td>other game coding (qualifiers/riders)</td>
</tr>
<tr>
<td>4.1.2</td>
<td>adoption and extension of kowtko et al.'s analysis</td>
</tr>
<tr>
<td>4.1.2.1</td>
<td>initiating moves</td>
</tr>
<tr>
<td>4.1.2.2</td>
<td>responsive moves</td>
</tr>
<tr>
<td>4.2</td>
<td>layout of codes in the dialogues</td>
</tr>
<tr>
<td>4.2.1</td>
<td>layout of game codes</td>
</tr>
<tr>
<td>4.2.1.1</td>
<td>placement of *E lines</td>
</tr>
<tr>
<td>4.2.2</td>
<td>layout of other codes</td>
</tr>
<tr>
<td>4.3</td>
<td>why bother with data coding?</td>
</tr>
<tr>
<td>4.3.1</td>
<td>hypothesis 1</td>
</tr>
<tr>
<td>4.3.2</td>
<td>hypothesis 2</td>
</tr>
<tr>
<td>4.3.2.1</td>
<td>hypothesis 2.1</td>
</tr>
<tr>
<td>4.3.2.2</td>
<td>hypothesis 2.2</td>
</tr>
<tr>
<td>4.3.3</td>
<td>hypothesis 3</td>
</tr>
<tr>
<td>4.3.3.1</td>
<td>hypothesis 3.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 5</th>
<th>overview of the analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>type-i analyses</td>
</tr>
<tr>
<td>5.1.1</td>
<td>task success scores</td>
</tr>
<tr>
<td>5.1.1.1</td>
<td>deviation scores</td>
</tr>
<tr>
<td>5.1.1.2</td>
<td>time taken</td>
</tr>
<tr>
<td>5.1.1.3</td>
<td>efficiency rating (ER)</td>
</tr>
<tr>
<td>5.1.1.4</td>
<td>landmark negotiation</td>
</tr>
<tr>
<td>5.1.2</td>
<td>dialogue measures</td>
</tr>
<tr>
<td>5.1.3</td>
<td>turn distribution</td>
</tr>
<tr>
<td>5.1.3.1</td>
<td>number of turns</td>
</tr>
<tr>
<td>5.1.3.2</td>
<td>proportion of major turns</td>
</tr>
<tr>
<td>5.2</td>
<td>type-ii analyses</td>
</tr>
<tr>
<td>5.2.1</td>
<td>standardisation of data</td>
</tr>
<tr>
<td>5.2.2</td>
<td>game analysis</td>
</tr>
<tr>
<td>5.2.3</td>
<td>move analysis</td>
</tr>
<tr>
<td>5.2.3.1</td>
<td>basic moves</td>
</tr>
<tr>
<td>5.2.3.2</td>
<td>refined moves</td>
</tr>
<tr>
<td>5.2.3.3</td>
<td>mutation moves</td>
</tr>
<tr>
<td>5.3</td>
<td>type-iii analyses</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 6</th>
<th>in dialogue: gw & hi (aphasic); gw & pk (control)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>type-i analyses</td>
</tr>
<tr>
<td>6.1.1</td>
<td>task success scores</td>
</tr>
<tr>
<td>6.1.1.1</td>
<td>deviation scores</td>
</tr>
<tr>
<td>6.1.1.2</td>
<td>time taken</td>
</tr>
<tr>
<td>6.1.1.3</td>
<td>efficiency rating (ER)</td>
</tr>
<tr>
<td>6.1.1.4</td>
<td>landmark negotiation</td>
</tr>
<tr>
<td>6.1.1.5</td>
<td>dialogue measures</td>
</tr>
<tr>
<td>6.1.2</td>
<td>turn distribution</td>
</tr>
<tr>
<td>6.2</td>
<td>type-ii analyses</td>
</tr>
<tr>
<td>6.2.1</td>
<td>basic initiation</td>
</tr>
<tr>
<td>6.2.1.1</td>
<td>overall game initiation</td>
</tr>
<tr>
<td>6.2.1.2</td>
<td>basic game profiles</td>
</tr>
<tr>
<td>6.2.1.2.1</td>
<td>doing being ordinary</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>6.2.1.2.2</td>
<td>repair trajectories</td>
</tr>
<tr>
<td>6.2.1.2</td>
<td>basic game profiles (resumed)</td>
</tr>
<tr>
<td>6.2.2</td>
<td>refined initiation</td>
</tr>
<tr>
<td>6.2.2.1</td>
<td>checks</td>
</tr>
<tr>
<td>6.2.2.2</td>
<td>aligns</td>
</tr>
<tr>
<td>6.2.2.3</td>
<td>explain type games</td>
</tr>
<tr>
<td>6.2.2.3.1</td>
<td>explain elicits (EEs)</td>
</tr>
<tr>
<td>6.2.2.3.2</td>
<td>explain = acknowledgements (EAs)</td>
</tr>
<tr>
<td>6.2.2.3.3</td>
<td>explain games proper</td>
</tr>
<tr>
<td>6.2.2.4</td>
<td>instructs</td>
</tr>
<tr>
<td>6.2.2.4.1</td>
<td>instruct games proper</td>
</tr>
<tr>
<td>6.2.2.4.2</td>
<td>instruct = time outs (ITOs)</td>
</tr>
<tr>
<td>6.2.2.5</td>
<td>queries</td>
</tr>
<tr>
<td>6.2.2.5.1</td>
<td>query-w alt (QWA)</td>
</tr>
<tr>
<td>6.2.2.5.2</td>
<td>query-w = instruct (QWI & QWAI)</td>
</tr>
<tr>
<td>6.2.2.5.3</td>
<td>query-w prod (QWP)</td>
</tr>
<tr>
<td>6.2.2.5.4</td>
<td>query-w proper</td>
</tr>
<tr>
<td>6.2.3</td>
<td>game closure</td>
</tr>
<tr>
<td>6.2.4</td>
<td>basic moves</td>
</tr>
<tr>
<td>6.2.5</td>
<td>refined move analysis</td>
</tr>
<tr>
<td>6.2.5.1</td>
<td>simplificatory moves</td>
</tr>
<tr>
<td>6.2.5.2</td>
<td>simplificatory riders</td>
</tr>
<tr>
<td>6.2.5.2.1</td>
<td>repetition</td>
</tr>
<tr>
<td>6.2.5.2.2</td>
<td>game abandonment</td>
</tr>
<tr>
<td>6.2.5.2.3</td>
<td>fills</td>
</tr>
<tr>
<td>6.2.5.2.4</td>
<td>rider results</td>
</tr>
<tr>
<td>6.2.6</td>
<td>mutation moves</td>
</tr>
</tbody>
</table>

Chapter 7 in dialogue: gw & ba (aphasic); gw & dl (control)

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>type-i analyses</td>
</tr>
<tr>
<td>7.1.1</td>
<td>task success scores</td>
</tr>
<tr>
<td>7.1.1.1</td>
<td>deviation scores</td>
</tr>
<tr>
<td>7.1.1.2</td>
<td>time taken</td>
</tr>
<tr>
<td>7.1.1.3</td>
<td>efficiency rating (ER)</td>
</tr>
<tr>
<td>7.1.1.4</td>
<td>landmark negotiation</td>
</tr>
<tr>
<td>7.1.1.5</td>
<td>dialogue measures</td>
</tr>
<tr>
<td>7.1.2</td>
<td>turn distribution</td>
</tr>
<tr>
<td>7.2</td>
<td>type-ii analyses</td>
</tr>
<tr>
<td>7.2.1</td>
<td>basic initiation</td>
</tr>
<tr>
<td>7.2.1.1</td>
<td>overall game initiation</td>
</tr>
<tr>
<td>7.2.1.2</td>
<td>basic game profiles</td>
</tr>
<tr>
<td>7.2.2</td>
<td>refined initiation</td>
</tr>
<tr>
<td>7.2.2.1</td>
<td>checks</td>
</tr>
<tr>
<td>7.2.2.2</td>
<td>aligns</td>
</tr>
<tr>
<td>7.2.2.3</td>
<td>explain type games</td>
</tr>
<tr>
<td>7.2.2.3.1</td>
<td>explain elicits (EEs)</td>
</tr>
<tr>
<td>7.2.2.3.2</td>
<td>explain = acknowledgements (EAs)</td>
</tr>
<tr>
<td>7.2.2.3.3</td>
<td>explain games proper</td>
</tr>
<tr>
<td>7.2.2.4</td>
<td>instructs</td>
</tr>
<tr>
<td>7.2.2.5</td>
<td>queries</td>
</tr>
<tr>
<td>7.2.2.5.1</td>
<td>query-yn = instruct (QYNI)</td>
</tr>
<tr>
<td>7.2.2.5.2</td>
<td>query-w alt (QWA)</td>
</tr>
<tr>
<td>7.2.2.5.3</td>
<td>query = instruct (QWI & QYNI)</td>
</tr>
<tr>
<td>7.2.2.5.4</td>
<td>query-w prod (QWP)</td>
</tr>
<tr>
<td>7.2.2.5.5</td>
<td>query-w proper</td>
</tr>
<tr>
<td>7.2.3</td>
<td>game closure</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>7.2.4</td>
<td>basic moves</td>
</tr>
<tr>
<td>7.2.5</td>
<td>refined move analysis</td>
</tr>
<tr>
<td>7.2.5.1</td>
<td>simplificatory moves</td>
</tr>
<tr>
<td>7.2.5.2</td>
<td>simplificatory riders</td>
</tr>
<tr>
<td>7.2.6</td>
<td>mutation moves</td>
</tr>
</tbody>
</table>

Chapter 8
corpus results

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>type-i analyses</td>
</tr>
<tr>
<td>8.1.1</td>
<td>task success scores</td>
</tr>
<tr>
<td>8.1.1.1</td>
<td>deviation scores</td>
</tr>
<tr>
<td>8.1.1.1.1</td>
<td>map effect</td>
</tr>
<tr>
<td>8.1.1.1.2</td>
<td>condition effect</td>
</tr>
<tr>
<td>8.1.1.3</td>
<td>group means</td>
</tr>
<tr>
<td>8.1.1.2</td>
<td>time taken</td>
</tr>
<tr>
<td>8.1.1.3</td>
<td>efficiency rating (ER)</td>
</tr>
<tr>
<td>8.1.1.4</td>
<td>landmark negotiation</td>
</tr>
<tr>
<td>8.1.1.5</td>
<td>dialogue measures</td>
</tr>
<tr>
<td>8.1.2</td>
<td>turn distribution</td>
</tr>
<tr>
<td>8.2</td>
<td>type-ii analyses</td>
</tr>
<tr>
<td>8.2.1</td>
<td>basic initiation</td>
</tr>
<tr>
<td>8.2.1.1</td>
<td>overall game initiation</td>
</tr>
<tr>
<td>8.2.1.2</td>
<td>basic game profiles</td>
</tr>
<tr>
<td>8.2.2</td>
<td>refined initiation</td>
</tr>
<tr>
<td>8.2.2.1</td>
<td>checks</td>
</tr>
<tr>
<td>8.2.2.2</td>
<td>aligns</td>
</tr>
<tr>
<td>8.2.2.3</td>
<td>explain type games</td>
</tr>
<tr>
<td>8.2.2.3.1</td>
<td>explain elicits (EEs)</td>
</tr>
<tr>
<td>8.2.2.3.2</td>
<td>explain = acknowledgements (EAs)</td>
</tr>
<tr>
<td>8.2.2.3.3</td>
<td>explain games proper</td>
</tr>
<tr>
<td>8.2.2.4</td>
<td>instructs</td>
</tr>
<tr>
<td>8.2.2.5</td>
<td>queries</td>
</tr>
<tr>
<td>8.2.2.5.1</td>
<td>query-yn = instruct (QYNI)</td>
</tr>
<tr>
<td>8.2.2.5.2</td>
<td>query-w alt (QWA)</td>
</tr>
<tr>
<td>8.2.2.5.3</td>
<td>query = instruct</td>
</tr>
<tr>
<td>8.2.2.5.4</td>
<td>query-w prod (QWP)</td>
</tr>
<tr>
<td>8.2.2.5.5</td>
<td>query-w proper</td>
</tr>
<tr>
<td>8.2.3</td>
<td>game closure</td>
</tr>
<tr>
<td>8.2.4</td>
<td>basic moves</td>
</tr>
<tr>
<td>8.2.5</td>
<td>refined move analysis</td>
</tr>
<tr>
<td>8.2.5.1</td>
<td>simplificatory moves</td>
</tr>
<tr>
<td>8.2.5.1.1</td>
<td>explicit simplification</td>
</tr>
<tr>
<td>8.2.5.1.2</td>
<td>reduction simplification</td>
</tr>
<tr>
<td>8.2.5.1.3</td>
<td>non-simplificatory moves</td>
</tr>
<tr>
<td>8.2.5.2</td>
<td>simplificatory riders</td>
</tr>
<tr>
<td>8.2.6</td>
<td>mutation moves</td>
</tr>
</tbody>
</table>

Chapter 9
type-iii analyses

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>ADC-specific type-iii analyses</td>
</tr>
<tr>
<td>9.1.1</td>
<td>sensitivity</td>
</tr>
<tr>
<td>9.1.1.1</td>
<td>active transactional restoration</td>
</tr>
<tr>
<td>9.1.1.2</td>
<td>inactive transactional restoration</td>
</tr>
<tr>
<td>9.1.1.3</td>
<td>active restoration of face</td>
</tr>
<tr>
<td>9.1.1.4</td>
<td>restoration of face by inaction</td>
</tr>
<tr>
<td>9.1.1.5</td>
<td>conflict between transactional and face-wants</td>
</tr>
<tr>
<td>9.1.2</td>
<td>mismatch</td>
</tr>
<tr>
<td>9.2</td>
<td>CDC-specific type-iii analyses</td>
</tr>
</tbody>
</table>

Contents, Figures & Tables
Doing Aphasia | viii
9.2.1 explicitness
9.2.2 zero acknowledgement
9.3 type-iii analyses common to both the ADC & CDC
9.3.1 preference organisation
9.3.1.1 the power of preference organisation
9.3.1.1.1 preference & task-oriented dialogue
9.3.1.1.2 preference & aphasia
9.3.1.2 the power of merrison's maxim
9.3.1.2.1 merrison's maxim (clause 1) & task-oriented dialogue
9.3.1.2.2 merrison's maxim (clause 1) & aphasia
9.3.2 weaker grounding

Chapter 10 summary & conclusion
10.1 summary of the thesis
10.1.1 evidence for hypothesis I
10.1.2 evidence for hypothesis 2 (doing being ordinary)
10.1.2.1 evidence for hypothesis 2.1
10.1.2.2 evidence for hypothesis 2.2
10.1.2.3 non-simplificatory mitigation of non-competence
10.1.3 evidence for hypothesis 3
10.2 contribution of the research
10.2.1 merrison's maxim
10.2.2 extension of the system of game coding
10.2.3 extension of clark's notion of grounding
10.2.4 fusion of conversation and discourse analysis
10.3 future research
10.4 conclusion

epilogue
references
appendix i: subject details
appendix ii: recording details
appendix iii: maps from the aphasic dialogue corpus
appendix iv: maps from the control dialogue corpus
appendix v: cartoons
postscript

figures

Figure 2-1: Ranks within Sinclair & Coulthard's Model of Classroom Interaction
Figure 2-2: Levels of Evidence of Understanding

Figure 3-1: Participant Orientation in the Map Task

Figure 5-1: Percentage of GW's IF Games in GW & HL (AD) and GW & PK (CD)
Figure 5-2: Distribution of GW's IF Games in GW & HL (AD) and GW & PK (CD)

Figure 6-1: Deviation Scores (cm²) for HL & GW (AD) and PK & GW (CD)
Figure 6-2: Time Taken (minutes) for HL & GW (AD) and PK & GW (CD)
Figure 6-3: Efficiency Rating Scores for HL & GW (AD) and PK & GW (CD)
Figure 6-4: Incorrect Entity Scores for HL & GW (AD) and PK & GW (CD)
Figure 6-5: CD Dialogue Measures
Figure 6-6: AD Dialogue Measures
Figure 6-7: Questions Asked in the AD and CD
Figure 6-8: Non-Align Questions in the AD and CD
Figure 6-9: CD turn distribution
Figure 6-10: AD turn distribution
Figure 6-11: Distribution of PK's (IG) major and minimal turns in the CD
Figure 6-12: Distribution of HL's (IG) major and minimal turns in the AD
Figure 6-13: Distribution of GW's (IF) major and minimal turns in the CD
Figure 6-14: Distribution of GW's (IF) major and minimal turns in the AD
Figure 6-15: CD major/minor turn distribution
Figure 6-16: AD major/minor turn distribution
Figure 6-17: Games Initiated in the CD and AD
Figure 6-18: IG and IF Initiation of Games in the CD
Figure 6-19: IG and IF Initiation of Games in the AD
Figure 6-20: Percentage of GW's IF Games in HL & GW (AD) and PK & GW (CD)
Figure 6-21: Distribution of GW's IF Games in HL & GW (AD) and PK & GW (CD)
Figure 6-22: Percentage of IF Refined Games Initiated in the AD and CD
Figure 6-23: Distribution of IF Refined Games Initiated in the AD and CD
Figure 6-24: Levels of Evidence of Understanding
Figure 6-25: Types of Game Closure
Figure 6-26: Game Closure in the CD
Figure 6-27: Game Closure in the AD
Figure 6-28: Distribution of IF Moves in the AD and CD
Figure 6-29: Distribution of IF Games in the AD and CD
Figure 6-30: Distribution of IF Moves in the AD and CD as a proportion of all IF moves
Figure 6-31: IF Explicit Simplificatory Moves as a proportion of initiating moves only
Figure 6-32: IF Reduction Simplificatory Moves as a proportion of initiating moves only
Figure 6-33: IF Non-Simplificatory Moves as a proportion of initiating moves only
Figure 6-34: IF Non-Simplificatory Moves (combined Checks)
Figure 6-35: IF (GW) Rider Distribution as a proportion of IF moves

Figure 7-1: Deviation Scores (cm²) for GW & BA (AD) and GW & DL (CD)
Figure 7-2: Time Taken (minutes) for BA & GW (AD) and DL & GW (CD)
Figure 7-3: Efficiency Rating Scores for BA & GW (AD) and DL & GW (CD)
Figure 7-4: Incorrect Entity Scores for BA & GW (AD) and DL & GW (CD)
Figure 7-5: CD Dialogue Measures
Figure 7-6: AD Dialogue Measures
Figure 7-7: Questions Asked in the AD and CD
Figure 7-8: Non-Align Questions in the AD and CD
Figure 7-9: CD turn distribution
Figure 7-10: AD turn distribution
Figure 7-11: Distribution of DL's (IG) major and minimal turns in the CD
Figure 7-12: Distribution of BA's (IG) major and minimal turns in the AD
Figure 7-13: Distribution of GW's (IF) major and minimal turns in the CD
Figure 7-14: Distribution of GW's (IF) major and minimal turns in the AD
Figure 7-15: CD major/minor turn distribution
Figure 7-16: AD major/minor turn distribution
Figure 7-17: Games Initiated in the CD and AD
Figure 7-18: Basic Game Initiation in DL & GW (CD)
Figure 7-19: Basic Game Initiation in BA & GW (AD)
Figure 7-20: Distribution of GW's IF Games in BA & GW (AD) and DL & GW (CD)
Figure 7-21: Distribution of IF Refined Query Games Initiated in the AD and CD
Figure 7-22: Distribution of IF Refined Non-Query Games Initiated in the AD and CD
Figure 7-23: CD Game Closure
Figure 7-24: Games Initiated in the CD and AD
Figure 7-25: Distribution of IF Moves in the AD and CD
Figure 7-26: Distribution of IF Games in the AD and CD
Figure 7-28 Ratios of AD:CD Moves and AD:CD Games
Figure 7-29 Non-Simplificatory IF Moves in the AD and CD
Figure 7-30 Simplificatory IF Moves in the AD and CD
Figure 7-31 IF Rider Distribution as a proportion of IF moves

Figure 8-1: Mean Aphasic Deviation Scores for Maps 1-4
Figure 8-2: Mean Control Deviation Scores for Maps 1-4
Figure 8-3: Mean Aphasic Scores for each Condition
Figure 8-4: Mean Control Scores for each Condition
Figure 8-5: Mean Dialogue Times
Figure 8-6: Mean ER Scores
Figure 8-7: Mean IE Scores
Figure 8-8: Mean CDC Dialogue Measures
Figure 8-9: Mean ADC Dialogue Measures
Figure 8-10: Questions Asked
Figure 8-11: Non-Align Questions
Figure 8-12: CDC Turn Distribution
Figure 8-13: ADC Turn Distribution
Figure 8-14: CDC Mean IG Turns
Figure 8-15: ADC Mean IG Turns
Figure 8-16: CDC Mean IF Turns
Figure 8-17: ADC Mean IF Turns
Figure 8-18: Turn Distribution in the CDC
Figure 8-19: Turn Distribution in the AD
Figure 8-20: Mean percentage of games initiated by the IG and IF
Figure 8-21: Basic Mean Game Initiation in the CDC
Figure 8-22: Basic Mean Game Initiation in the AD
Figure 8-23: Percentage of Mean IG Games in the ADC and CDC
Figure 8-24: Distribution of Mean IG Games in the ADC and CDC
Figure 8-25: Mean Basic IF Games Initiated in the ADC and CDC
Figure 8-26: Differences between AD & CD Percentages of IF query-w games
Figure 8-27: Refined IF Align & Check Games
Figure 8-28: Refined IF Explain & Instruct Games
Figure 8-29: Refined IF Query Games
Figure 8-30: CDC Game Closure
Figure 8-31: ADC Game Closure
Figure 8-32: Game Closure in GM & ND
Figure 8-33: CDC Game Closure without DL & GW
Figure 8-34: ADC DC Game Closure without GM & ND
Figure 8-35: Mean Basic IF Initiating Moves in the ADC and CDC
Figure 8-36: Mean Basic IF Games Initiated in the ADC and CDC
Figure 8-37: Ratios of ADC:CDC Moves and ADC:CDC Games
Figure 8-38: Explicit IF Moves in the ADC and CDC
Figure 8-39: IF EA Moves in the ADC and CDC (excluding dialogue PK1)
Figure 8-40: IF EA Moves in the ADC and CDC (excluding PK’s and HL’s dialogues)
Figure 8-41: IF Ready Moves in the ADC and CDC (excluding DL4)
Figure 8-42: IF Ready Moves in the ADC and CDC
Figure 8-43: IF Reduction Moves in the ADC and CDC
Figure 8-44: Combined Reduction IF Moves in the ADC and CDC
Figure 8-45: IF Check Moves in the ADC and CDC
Figure 8-46: Other Non-Simplificatory IF Moves in the ADC and CDC
Figure 8-47: IF Rider Distribution as a proportion of all IF moves
Figure 8-48: Levels of Evidence of Understanding

Figure 9-1: Levels of Evidence of Understanding
Figure 9-2: Strengths and Mutual Exclusivity of Types of Acceptance
tables

Table 2-1: Sentence Type & Related Prototypical Speech Act 20
Table 2-2: Examples of Adjacency Pairs 36
Table 2-3: Preferred/Dispreferred Seconds of Adjacency Pairs 38
Table 2-4: Six-way Categorisation of Repair Types 44

Table 6-1: IF Check Games with HL (AD) 155
Table 6-2: IF Check Games with PK (CD) 155
Table 6-3: Refined Games 159
Table 6-4: Refined Check Games 159
Table 6-5: Refined Align Games 164
Table 6-6: Refined Games 166
Table 6-7: Explain Elicit Games 169
Table 6-8: Explain = Acknowledge Games 173
Table 6-9: Explain Games 173
Table 6-10: Refined Instruct Games 174
Table 6-11: Instruct = Time Out Games 177
Table 6-12: Refined Query Games 178
Table 6-13: Query-w alt Games 182
Table 6-14: Query-w = Instruct Games 182
Table 6-15: Query-w prod Games 185
Table 6-16: Refined Query Games 188
Table 6-17: Refined Query Games 189
Table 6-18: Types of Game Closure 201
Table 6-19: Distribution of IF Simplificatory & Non-Simplificatory Moves 210
Table 6-20: IF Riders (as a proportion of all IF moves) in the AD and CD 221
Table 6-21: IG Mutations in the AD and CD 226

Table 7-1: Refined Games 246
Table 7-2: Refined Check Games 247
Table 7-3: Refined Check Games 249
Table 7-4: Refined Align Games 250
Table 7-5: Refined Explain Games 250
Table 7-6: Explain Elicit Games 251
Table 7-7: Explain = Acknowledge Games 254
Table 7-8: Refined Explain Games 256
Table 7-9: Refined Instruct Games 256
Table 7-10: Refined Query Games 259
Table 7-11: Refined Query-w Games 260
Table 7-12: Refined Query Games 261
Table 7-13: Refined Query-w Games 264
Table 7-14: Refined Query Games 265
Table 7-15: Distribution of IF Non-Simplificatory Moves 271
Table 7-16: Distribution of IF Simplificatory Moves 272
Table 7-17: IG Mutations 276
Table 7-18: Revised IG Mutations 277

Table 8-1: Deviation Scores for all 32 dialogues 279
Table 8-2: Ranges & Means of Deviation Scores in all 32 dialogues 281
Table 8-3: Ranges & Means of Deviation Scores in the 16 Eye Contact dialogues 281
Table 8-4: Ranges & Means of Deviation Scores in the 16 No Eye Contact dialogues 281
Table 8-5: Distribution of IF Query-w Games in the ADC 301
Table 8-6: Distribution of IF Query-w Games in the CDC 301
Table 8-7: Percentage Differences between IF Query-w Games in the ADC and CDC 302
Table 8-8:	Percentage Differences between IF Query-w Games in the ADC and CDC	302
Table 8-9a:	Refined Games	305
Table 8-9b:	Refined Games	306
Table 8-10:	Refined Check Games	306
Table 8-11:	Face-Threatening versus Non-Face-Threatening IF Checks in the ADC	311
Table 8-12:	Face-Threatening versus Non-Face-Threatening IF Checks in the CDC	311
Table 8-13:	Refined Align Games	312
Table 8-14:	IF Align Games in the ADC	312
Table 8-15:	Refined Explain Games	319
Table 8-16:	Explain Elicit Games	319
Table 8-17:	Sequential Environments of IF EE in the ADC	325
Table 8-18:	Sequential Environments of IF EE in the CDC	325
Table 8-19:	Combined Sequential Environments of IF EE in the two Corpora	326
Table 8-20:	Explain = Acknowledge Games	327
Table 8-21:	Refined Explain Games	328
Table 8-22:	Refined Instruct Games	329
Table 8-23:	Refined Query Games	338
Table 8-24:	Refined Query Games	340
Table 8-25:	Open versus Closed Query Games	340
Table 8-26:	Query = Instruct Games	341
Table 8-27:	Query-w prod Games	345
Table 8-28:	Refined Query-w Games	346
Table 8-29:	Refined Query Games	347
Table 8-30:	Pre-Exclusion of Abandoned Games from all 16 dialogues	353
Table 8-31:	Post-Exclusion of Abandoned Games from all 16 dialogues	353
Table 8-32:	Pre-Exclusion of Abandoned Games from all dialogues except GM3 and DLI	353
Table 8-33:	Post-Exclusion of Abandoned Games from all dialogues except GM3 and DLI	353
Table 8-34:	IF Explicit Moves in the ADC and CDC	358
Table 8-35:	IF EAs in the CDC in rank order	361
Table 8-36:	IF EAs in the ADC in rank order	362
Table 8-37:	IF Ready Moves in the CDC in rank order	364
Table 8-38:	IF Ready Moves in the ADC in rank order	364
Table 8-39:	IF Reduction Moves in the ADC and CDC	366
Table 8-40:	Combined Reduction IF Moves in the ADC and CDC	367
Table 8-41:	Non-Simplificatory IF Check Moves in the ADC and CDC	368
Table 8-42:	Other Non-Simplificatory IF Moves in the ADC and CDC	371
Table 8-43:	IG Mutations	381
Table 8-44:	Revised IG Mutations (excluding IG Mutation from DL & GW)	382
Table 8-45:	IF Mutations	382
Table 8-46:	Expurgated IF Mutations	386

Table 9-1a:	Double Interpretations of Mismatch Evidence	427
Table 9-1b:	Double Interpretations of Mismatch Evidence	428
Table 9-1c:	Double Interpretations of Mismatch Evidence	429
And here I wish I could record all of their names
but they know who they are, the men and women and children I love
and those who love me and may the two lists always coincide.

Adrian Mitchell

The acknowledgements section is customarily the last to be written. Since I didn't wish to go against custom I take double the pleasure in writing these words. Firstly because I know that my ordeal will very soon be at an end. The second reason I have to feel good is that by going through the list of people who I have to thank, I realise how very fortunate I am that so many people in so many ways have taken the trouble to help me along the way. So in order to avoid what might be construed as favouritism, with a glass of 18 year old Glenmorangie in my hand (cheers Ray) I express my deepest and warmest thanks in alphabetical order to:

Katy Auty for pointing out the potential ambiguity in my use of 'threat'.

Bonky & Zan for reminding me that there is more to life than work. Thank you for your friendship since New Year 1995/6 – long may it continue. I sincerely hope you win the AASS Challenge spoon this year!

Sue Brace, not for losing her credit cards but for her generosity on their return. I will think of you the very first time I go to the theatre as Dr. Merrison.

The British Aphasiology Society Newsletter (see the entry under Wilkinson).

Karen Corrigan for employing me for two years once my faculty funding ran out. Without you, I might have had trouble keeping body and soul together!

The Creators Syndicate International for eventually charging me $25 to use the ‘Cows’ cartoon by Gary Larson, © 1984. (I hope you think it was worth it!)

Bethan Davies for finishing before me: your thesis was very useful – I hope it becomes a best-seller.
Liz Dean for allowing me to use the recording facilities at Queen Margaret College and for some really wonderful Bridge suppers.

Dr Michael Dodd for giving me more insight into the true nature of dysphasia than any book-learning ever could! I am proud to call you my friend.

Gwyneth Doherty-Sneddon for teaching me how to Game Code. At the time it frustrated me greatly, but as this thesis passed I guess it was all worth it.

Rupert Fawcett for very kindly allowing me to use his ‘Fred’ cartoon (© 1992).

Marian Firth for her secretarial skills which were so very useful in the preparation of the references.

Patrick Griffiths for all manner of things – from your references that got me where I am today, to your teachings that got me where I am today, to the highest standards that you set which forever prove to be my inspiration (and no doubt helped to get me where I am today). With Jim Miller being PhD supervisor to us both, I reckon this makes us doctoral brothers.

Steve Isard who I am sure would have always been available had I ever needed the services of my second supervisor!

Ethel Jack, not because she actually helped my thesis in any way, but just because she rightfully deserves thanking – as do all departmental secretaries everywhere (especially Betty Hughes and Chris Lockwood who have also had to put up with me in my academic past).

Jacqueline Kowtko, together with Steve Isard and Gwyneth Doherty-Sneddon for showing me the mileage to be had in Game Coding analysis. You will always be in my reference list.

Andrew Lang at Angle Photography + Design for scanning the maps and cartoons which appear in the Appendices. Not only did he do a very fine job, I am exceedingly grateful that he waived his regular fee (you do realise, don’t you, that I actually let you win at Coulsdon)!

John Local for his inestimable role in my academic career. While I was still very much on track to become a trainee chartered accountant I visited my friend Graham Turner who was an undergraduate in the Department of Language & Linguistic Science at York. Instead of sitting alone in his room awaiting his return, I went with him to some of his lectures, but the only one I can remember was the one taught by an incredibly enthusiastic man in a bright green jumper making strange sounds with his vocal tract. This was John and consequently it is because of him that I eventually abandoned accountancy and applied to York (where I ended up (via Kiel and UCSC) with a BA in Language & Linguistics). Then came an MSc in Cognitive Science here at Edinburgh and now, finally, I am back in my home discipline of Linguistics. I didn’t become a phonetician nor a phonologist, but John’s philosophies have been and always will be a steering force in my academic life: respect your data; don’t be afraid to initiate a new order of things; do what you do with passion – never lose that important feeling of excitement and enthusiasm and discovery; and, above all, remember that absolutely anything could be of vital importance.
Alison MacDonald for allowing me my very first insight into aphasia by letting me sit in on group therapy sessions at Queen Margaret College.

Jim Miller for his constant support which never failed to uplift me just when I needed it most. There were times when you had more faith in me than I had in myself – I’m glad we stuck it out. You can come to dinner anytime.

Margaret Miller for her proficiency in cracking her husband’s supervisorial whip. Where Jim uplifted me, you scared the pants off me. I don’t think Jim realised that I needed that!

Mum for what all good mums should always be thanked for – everything. I do wish, however, that you had thought to mention your blind psychic’s 1959 prophecy of ‘a son who would become a doctor’ – it certainly would have saved me a lot of stress!

Paperlink Ltd. for kindly allowing me to reproduce Taxi by Steve Best, © 1992.

Tom Searle and Andrew Lang (again!) for letting me use their fax numbers for my frenetic (and somewhat protracted) communications with Gary Larson’s ‘people’ in California.

Cathy Sotillo for making sure there was always coffee in the HCRC fridge – that and the fact that it is always comforting to see someone get their PhD when they have been at it for so much longer than you have!

Graham Turner who has already been mentioned in relation to his part in introducing me to linguistics. That in itself deserves a place in this list. But Graham is worth more than that. So what can I say? If I am allowed to be unspecific, then after my wife, he is my best friend. But if I have to mention something in particular, then I guess I would like to thank him for his guidance through my first year at York – and especially for his part in Marjorie and Joan’s cooking experiences (don’t think of it as burnt lasagne, Joan – think of it as a new experience). He is also my source for most of the quotations that appear at the head of each Chapter within this thesis.

Michael John Turner for giving me a stern talking to when I really needed it eleven years ago.

The Vans Dunlop Faculty of Arts Scholarship which partially funded this research. When my applications for both ESRC and SERC funding fell through, I spent two weeks contemplating a career as a chartered accountant. This scholarship saved me from a humourless life for which my soul will be eternally grateful (if not my bank manager).

Candace West for introducing me to Goffman’s work in the Fall of 1989 while I was at the University of California at Santa Cruz. Knowing what I know now, I really wish I had taken your course on conversation analysis!

Ray Wilkinson who is a man to whom I owe a great great deal. I met him through an advert in the BAS Newsletter. Never could I have realised how important that meeting would be. He truly has been my academic ‘guru’ for the past few years. I thank him for his enthusiasm for aphasic data and for doing a large part of my photocopying. I never should have embarrassed you in that pub in Manchester, Ray, but what I said was true. Oh, and those flowers? They were from me!
And finally there is my wife, Sally. How can I ever hope to do justice here to all that she is to me? Whatever we do in life, whether it be music-making, golfing, hill-walking, bridge-playing, studying, cooking, shopping, cleaning, theatre-going, curry-eating, whisky-drinking, thesis-editing or even night-clubbing (!), we do it together. And that’s how I like it. And I’m pretty sure that’s how she likes it, too. We’re a team, a unit, an inseparable Einheit with a memorable past, an intoxicating present and a future that is so very full of wondrous hopes and dreams and love.

Goffman has written that when two people meet for but a moment of talk in a communion of reciprocally sustained involvement there is a spark that lights up the world. Having what we have together, and meaning what we mean to each other, our communion of reciprocally sustained life-time involvement is not a spark but the brightest star. You are my light, Sally. You are my joy and the most wonderful person in my world — I just hope Mike Scott doesn’t mind me borrowing his words again:

How long will I love you?
As long as stars are above you
And longer if I can

How long will I need you?
As long as the seasons need to
Follow their plan

How long will I be with you?
As long as the sea is bound to
Wash upon the sand

How long will I want you?
As long as you want me to
And longer by far

How long will I hold you?
As long as your father told you
As long as you are

How long will I give to you?
As long as I live to you
However long you say

How long will I love you?
As long as stars are above you
And longer if I may

with all my love, u. a. t. f.

AJM

xxx
And, of course, there are those who may not know who they are. To them I dedicate the following passage from a book by Robert Fulghum (1988: 76ff). For those who have known me in the last six months this passage should have an added relevance!

Hair grows at the rate of about half an inch a month. I don’t know where he got his facts, but Mr. Washington came up with that one when we were comparing barbers. That means that about eight feet of hair had been cut off my head and face in the last sixteen years by my barber.

I hadn’t thought much about it until I called to make my usual appointment and found that my barber had left to go into building maintenance. What? How could he do this? My barber. It felt like death in the family. There was so much more to our relationship than sartorial statistics ...

Without realizing it, we fill important places in each other’s lives. It’s that way with a minister and congregation. Or with the guy at the corner grocery, the mechanic at the local garage, the family doctor, teachers, neighbors, co-workers. Good people, who are always “there,” who can be relied upon in small, important ways. People who teach us, bless us, encourage us, support us, uplift us in the dailiness of life. We never tell them. I don’t know why, but we don’t.

And, of course, we fill that role ourselves. There are those who depend on us, watch us, learn from us, take from us. And we never know. Don’t sell yourself short. You may never have proof of your importance, but you are more important than you think.

It reminds me of an old Sufi story of a good man who was granted one wish by God. The man said he would like to go about doing good without knowing about it. God granted his wish. And then God decided that it was such a good idea, he would grant that wish to all human beings. And so it has been to this day.

My warmest thanks go to all those who have helped me without ever knowing about it.
Keep up the good work! Me? I’m off to get my hair cut!
For their part in this research I would like to pay tribute to GW, MB, ND, DN, PK, CM, TS, DL, MD, GM, BA, and to the memory of HL.

But for more reasons than I could ever write down, this thesis is dedicated to Sally!
It is very important not to have a rigid distinction
between what's flippant and what is serious.

Harold Macmillan

A preface in a thesis? What’s all this about? Surely the abstract is sufficient to set the academic scene and the acknowledgements adequate for any personal frivolities! Maybe. But I do like to have my Sara Lee Double Chocolate Layer Cake and eat it (and as often as possible). So what I want to do here is make two points about the rest of this thesis.

Firstly, you will have already noticed that it is heavier than the average thesis. The reason for this is almost entirely due to my philosophy of following a data-driven approach to language study (see §2.2.1). Within the text we present 201 examples of dialogue. These 201 extracts account for 19,703 words (over one sixth of the thesis text). I have provided these data extracts within the text for the benefit of the reader (personally I just hate constantly having to flip between text and appendix when reading). Because I am a firm believer of the indisputable importance of studying language in use, for each extract I have provided what I believe to be the necessary associated context. Although this additional material is given, in each case the points of particular relevance are demarcated either with arrows in the margins or with bold type.

And secondly, I want to make it clear that I know that my writing style will not be to everyone’s taste. As you will see from the following comment, I have in the past been criticised for appearing somewhat flippant:

My major comment concerns your essay writing style. I have enjoyed reading this essay – and indeed the other two which I read during the summer term; they are refreshingly different from many tutorial essays that come my way. But I am not at all sure that all potential readers of your writing will find yours an appropriate style for linguistic argument.

Section ii: Preface
The humour and imagery might give the impression of lack of seriousness about the subject in hand – which would be a pity, given your level of commitment to the study of linguistics.

Joan Russell (1988)

I wholeheartedly agree with you, Joan. I have taken no notice however, and, at the risk of offending some readers, I make no apology for this. Since my commitment to the study of linguistics should be self-evident (PhDs are not written for the money!), I therefore choose to write in a style which I hope demonstrates my enthusiasm – that and in the vague hope that my readers won’t fall asleep!

My writing style? I’m with Macmillan!

Andrew John Merrison
Edinburgh, March 1998
transcription conventions

If it could fight or dream or mate, what other creature would sit making marks on paper through the night?

Anon

The transcription conventions used in this thesis are heavily based on the transcription system developed by Gail Jefferson which is basic to much of the work done under the framework of conversation analysis.¹

Where extracts of dialogue transcripts are provided, they are introduced with a header indicating (i) the chapter in which the extract is situated, (ii) the number of the extract within that chapter, (iii) the initials of the participant in the role of **Information Giver** (see §3.1) who will always be either an aphasic individual or the age-matched control for an aphasic individual, (iv) the initials of the participant in the role of **Information Follower** (see §3.1) who will always be a non-aphasic individual. Hence the first extract used below is headed *Extract iii-1 BA & GW* because it appears in section iii, it is the first extract within section iii and it is taken from the dialogue between the (aphasic) Information Giver, BA and the non-aphasic Information Follower, GW.

The following conventions are used within the transcripts.²

Simultaneous Contributions

(1) // The onset of simultaneous contributions from both participants are marked using double slashes //. In the following extract the //s indicate that *Er* and *Okay* are produced simultaneously.

¹ For further discussion of this particular transcription system see Psathas & Anderson (1990). For a more general discussion of the theory behind transcription see Ochs (1979).

² In the extracts which are used to show the convention in action superfluous coding has been omitted.
Overlapping Contributions

(2) / Single slashes demarcate the onset of overlapped talk. In this extract overlap occurs with GW saying Two when BA starts to say only.

Extract iii-2 BA & GW

*TA006

→ //Er:* () two inches /"only"*/

*TB005

/Two in*ches

(3) *

The dialogues are spatially organised so that when overlaps occur, the overlapping contribution is arranged on the page directly below the relevant part of the already on-going contribution. Following Perkins (1993), the offset of all overlapped contributions is demarcated by an asterisk * at the appropriate points in the turns of both participants. For example, the * in B’s turn in the extract below denotes that talk emerges from overlap at the end of the word only from BA and at the end of the first syllable of inches from GW.

Extract iii-3 BA & GW

*TA006

→ //Er:* () two inches /"only"*/

*TB005

/Two in*ches
Latched Contributions

(4) = An utterance that immediately follows the preceding utterance without a gap is said to be a latched utterance and is transcribed with a pair of = signs: one at the end of the preceding stretch of talk and one immediately prior to the onset of the latched utterance.

Extract iii-4 HL & GW

*TB005
→ I've only {iconic gesture} got {head shake} one pine tree.=

*TA004
→ ="Oh."=

*TB006
→ =Have you got a {nods} pine tree by the caravans?

*TA005
Ah (coughs) {nods} aye

Pauses within and between contributions

(5) (.) A micro pause (less than 0.2 seconds) is transcribed by (.).

Extract iii-5 HL & GW

*TA060
'(LS) =>(••) So you’re< going right around to (.) the er () finish

(6) (0.0) Pauses are timed to the nearest tenth of a second and are transcribed within parentheses within an on-going contribution.

Extract iii-6 HL & GW

*TB047 ctd
Where’s the well?

*TA044
→ Er (3.1) "(hh)" (3.2) "thE erm" (LS) (5.4) "Mm." (0.8) "the well"
→ (1.3) "is" (7.4) right under the sheep

(7) (0.0) Where (rarely) pauses cannot easily be attributed to either dialogue partner the pause is marked on its own *T line.

Extract iii-7 MD & ND

*TA064
er immediately after the crocodile (-hh) turn () due: south.

*TB063
(4.6) "Right." Is this () towards the left of the page now?
Pauses which occur with overlapped talk are marked by + signs so that the point of overlap can be marked. Each + represents a pause of approximately (0.1) second in length.

Extract iii-8 DL & GW

*TB021
→ Aha! /(DRAWING = (++++)+)/*

*TA023
→ /(LS)=*(hh)* /And* then you make a:
<wide detour round the windmill> to the east.

Long (but as yet) untimed pauses are marked by ()..

Extract iii-9 HL & GW

*TA060
→ (LS)=>(hh) So you’re< going right around to() the er () finish

Characteristics of delivery

Talk that is delivered at a faster rate than the surrounding talk is transcribed within angled brackets pointing inwards on the talk. Talk that is delivered at a much faster rate is transcribed within double angled brackets.

Extract iii-10 TS & MB

*TA41
You proceed further along
/and then* you start () to bear: "(LS)" left and south,

*TB61
Yeah*

*TB62
Yeah

*TA42
So you turn down again and=

*TB63
→ =>> And I’m level with<=>

Section iii: Transcription Conventions

Doing Aphasia | xxv
Talk that is delivered at a slower rate than the surrounding talk is transcribed within angled brackets that point outwards from the talk.

Extract iii-11 TS & MB

*A TA43
"°°(hh)°° You’re going straight down.°°

*TB65
= Yeah

*TA44
"°°(hh)°° and then (.) <you should have a volcano.

→ > up ahead of you< on your right. Do you have that?

*TB66
→ (LS)=(hhh) Um: (LS)=Yes:. >So- (hhh)< now let- just- (.) get this right.

(11) <>

A - indicates that the utterance is cut off mid-flow

Extract iii-12 DL & GW

*TA046
= Just a wall. °°yes°°*

*TB044
→ />(::hh) So it< so it’s°° just to the left of the castle
°°isn’t it just°° °°a bit°°*

*TA047
→ /It i-* it’s a: fair {nods} distance from the cas/tle!*
(13) A : represents the elongation of the preceding sound.

Extract iii-13 DL & DN

*TA045
→ "(hh)" approximately: "mm X X X X" (HHH HHHH)
→ {measures = ()} "(h)" er: three::: and a half inches up probably
is the base of the cactus(h).=

(14) Indicates falling intonation.

Extract iii-14 HL & GW

*TB005
→ I've only {iconic gesture} got {head shake} one pine tree.=
*TA004
→ "Oh."=

(15) Indicates a continuing intonation signalling an on-going turn.

Extract iii-15 DL & GW

*TB021
Aha: ?/(DRAWING = (+++++++*+++/+++))*

*TA023
"(LS)"="(hh)"* /And* then you make a: a
→ <wide detour round the windmill> to the east,
*TB022
"Mhm?"=

*TA024
= and start travelling down south,
*TB023
"(LS)"=Okay" /=aha?***
→ /towards the* sheep,

*TB024
"Right!" And do I go to the /east* of the sheep?

(16) Indicates rising intonation.

Extract iii-16 DL & GW

*TB021
→ Aha: ?/(DRAWING = (+++++++*+++/+++))*

*TA023
"(LS)"="(hh)"* /And* then you make a: a
→ <wide detour round the windmill> to the east,
→ "Mhm?"

*TB024
=and start travelling down south,

*TB023
"(LS)=Okay" /*aha?**

*TA025
/towards the* sheep,

*TB024
"Right!" And do I go to the /east* of the sheep?

(17) Indicates some degree of animation.

Extract iii-17 CM & MB

*TB088
"I have a gate."

*TA067
Ah.=

*TB089
But /that’s: that*’s about {measures} (.)=

*TA067 ctd
/\{point\} "Okay! >(hh)<*"

*TA068
=""(LS)"" Yeah.=

*TB090
=Ooh! /\{invisible iconic gesture: dismissive\} several inches*

*TA069
/\That’s {invisible iconic gesture: in line with} directly ben*eath your wall at the moment.

*TB091
Yeah.

*TA070
>"Yeah."< \{invisible iconic gesture: in line with\} Okay!
The second wall. \{invisible iconic gesture: in line with\}

(18) Ellipses are used to indicate that an utterance 'trails off'.

Extract iii-18 PK & GW

*TA059
=Right? And then \{gesture ends from earlier\} () (hh)(hh) you take (h) a turn and turn back up north again () going slightly backwards but \{hard point\} stopping () and then it’s a- a: () a /hard right* turn again
*TB060
/"Oh alright"*

*TB061
"Okay hang on" (. Right. And then a hard right turn... (.)

(19) [] Brackets are used to surround broad phonetic (IPAA) transcriptions.

Extract iii-19 BA & DN

*TA009
→ Yeah. (. [kait] "(hh)" "quarter of" (. {iconic gest: quarters} one two three four you see er /so*
*TB008
/Yeah* quart/er*

*TA009 ctd
→ between but [kwit] /quarter.*

Abnormal volume and pitch

(20) " Text surrounded by degree signs is quieter than surrounding the talk. We distinguish four degrees (no pun intended) of quietness: 'quiet', *very quiet*, **exceedingly quiet**, and ***virtually inaudible***.

Extract iii-20 DL & GW

*TA050
/It's slight*ly to the east of the flag(h). (. The flag is on the north /ban*k and the /wall is on the south bank of the est*uary.
*TB049
/{nods} Yeah.*
*TB050
/(LS) (. Yeah. On the south bank." "Yeah." "*

*TB050 ctd
→ >(hhh)< "I got" "that.""

(21) CAPITALS Text transcribed with capitals is louder than the baseline of the normal surrounding talk. (As increased volume is quite rare in the transcripts compared to decreased volume, we only distinguish one level of loudness.)

Extract iii-21 CM & MB

*TA003 ctd
Now the the route you want to take from that is kind of due (.)
→ EAST?
(22) ↑ ↑ Text surrounded by upward pointing arrows is produced at a notably higher pitch than the surrounding talk.

Extract iii-22 CM & ND

*TA030
From - if you mark from >the left hand side o’ the wall< and go directly (.) down, /to the* {point} head o’ the snail=*

*TB040
"Mm"*

*TB041
="Okay?" (DRAWS = ()=

*TA031
→ ↑ Do you have a- a {point} flower marked?↑=

*TB042
=’(LS) {point}"to-" that’s (.) at the right hand side below the house?*

*TA032
No! There’s a/nother* flower=

(23) ↓ ↓ Text surrounded by downward pointing arrows is produced at a notably lower pitch than the surrounding talk.

Extract iii-23 GM & MB

*TA155
→ And that’s when you go (.) ↓ left↓ And you’re heading for
→ <a house ↓ "then."↓>

(24) thE A capital E is used in the to represent a high front vowel [i]. The use of [i] (as opposed to the more usual schwa [a]) is associated with some degree of hesitancy when the next word does not begin with a vowel.

Extract iii-24 DL & GW

*TA018
→ <you: travel towards thE cow,>=

*TB017
=Aha?

*TA019
→ <to pass along thE south of the cow,>=

*TB018
={nod} Aha (DRAWS = ()
Other emphasis is transcribed using an italic typeface.

Extract iii-25 DL & GW

*TA068
and travelling south,

*TB071
() Mhm?

*TA069
down to: thE: (.) travelling immediately [~] travelling due south and
then turning (-hhh) er: and travelling in a south-east direction,

*TB072
Aha?

*TA070
towards the base of the tower.

Non-verbal activity

(26) (h)
Audible outbreath (number of <h>s corresponds to length of breath).

Extract iii-26 DL & DN

*TA101
→ =Right. (hh) (ha) {smiles} Right okay! (-hhh) Um: you’re now
→ going to turn fairly sharply north-east(h), really north-north-east,

*TB114
"Yeah."

*TA102
→ (.) "(LS) A:nd head in a slight arc(h), away from, but coming
→ back to: thE: er "(hh)" () know the- {iconic gesture} the bit of the
→ noose that comes down. (hhh) /The knot just above the knot.*

(27) (-h)
Audible inbreath (number of <h>s corresponds to length of breath).
(-H) is a loud inbreath.

Extract iii-27 DL & DN

*TB049
"Aha that’s" "right"

*TA045
→ ="(hh)" approximately: "mm X X X X" (.HHHHHH)
{measures = ()} "(h)" er: th:ree::: and a half inches up probably
is the base of the cactus(h).

*TB050
={nod} "That’s right."
(28) (LS) Audible lipsmack or click (we make no distinction regarding place of articulation). This is often an indication of an attempt to take the floor.

Extract iii-28 DL & GW

*TB021
Aha?: / (DRAWING = (++++++*+++++/+++))*

*TA023
"(LS)"=(chhh)* /And* then you make a: a <wide detour round the windmill> to the east,

*TB022
"Mhm?"=

*TA024
=and start travelling down south,

*TB023
"(LS)=Okay" /"aha"**

(29) (ha)/(ah) Syllable of laughter ((ch) is laughter which involves some degree of friction).

Extract iii-29 MD & ND

*TA136
And that’s it.

*TB131
→ And that’s it? (chhh) We made it (haha/ha) (chhh)*

*TA137
/(chhh) I think* (hhh)=

*TB132
→ =Great. /(ahhahahahahaha)(chhh)*

*TA138
→ /(chhhhh)(chhh)* Ohh(hhh)!

*TB133
→ (ahha) Tell him to ↑stop!↑ (aha)
(30) (cough(s)) Crude representation of a cough.

Extract iii-30 HL & GW

*TB006
=Have you got a {nods} pine tree by the caravans?

*TA005
→ Ah (coughs) {nods} aye

(31) (DRAWS) Drawing noise.

Extract iii-31 HL & GW

*TB023 ctd
→ So I'm going to go: (DRAWS =(.)) up to the bridge,

(32) [~] Short period of slow vibration of the Speaker's vocal cords (causing momentary creaky voice).

Extract iii-32 DL & GW

*TA068
and travelling south,

*TB071
() Mhm?

*TA069
→ down to: thE: (.) travelling immediately [~] travelling due south and then turning (-hhh) er: and travelling in a south-east direction,

*TB072
Aha?

*TA070
towards the base of the tower.

(33) { } Braces contain verbal descriptions of non-verbal contributions from the Speaker.

Extract iii-33 DL & DN

*TB048
→ {nods} "Yeah that's right(h)."=

*TA044
→ ={nods} "Right okay!" {nods = ()} (LS)=Well (-hhh) above the fire(h)
→ (.) and probably {tiny deictic gesture: head point} (.) slightly to the left of it there's a cactus.=

*TB049
"Aha that's* "right**"=
*TA045
=°°(hh)°° approximately: "mm X X X X °°° (HHHHHHH) °°(h)°° er:
three::: and a half inches up probably is the base of the cactus(h).=

*TB050
⇒ (nod) "That's right."=

*TA046
⇒ Right. < Okay! (-hhh) Er <you are> eventually heading over
⇒ the top of the cactus {deictic gesture: head point} heading (.)
westwards so=

*TB051
⇒ 'Okay!'=

Transcription Doubt

(34) X
An X represents a syllable that cannot be determined because of poor
sound quality.

Extract iii-34 HL & GW

*TA038
Er () the goat (.)

*TB042
//Aha

⇒ *TA039
//You're 'X' [gen\ken] er the left of the goat

(35) []
Square brackets are also used to surround orthographic glosses for
any number of doubtful syllables (multiple suggestions are separated
by a forward slash). Since these brackets will always follow an 'X',
however, they should not be confused with phonetic transcriptions.

Extract iii-35 HL & GW

*TA038
Er () the goat (.)

*TB042
//Aha

⇒ *TA039
//You're 'X' [gen\ken] er the left of the goat
The following abbreviations are used in this thesis:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3</td>
<td>Standard British paper size (420 mm x 594 mm)</td>
</tr>
<tr>
<td>A4</td>
<td>Standard British paper size (210 mm x 297 mm)</td>
</tr>
<tr>
<td>aban</td>
<td>abandoned</td>
</tr>
<tr>
<td>Ack</td>
<td>Acknowledge</td>
</tr>
<tr>
<td>Ack co</td>
<td>Acknowledge correct</td>
</tr>
<tr>
<td>Ack=Ready</td>
<td>Acknowledge = Ready</td>
</tr>
<tr>
<td>AD</td>
<td>Aphasic Dialogue</td>
</tr>
<tr>
<td>ADC</td>
<td>Aphasic Dialogue Corpus</td>
</tr>
<tr>
<td>AA</td>
<td>Active Closure by Participant A (IG)</td>
</tr>
<tr>
<td>AI</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>Al</td>
<td>Align</td>
</tr>
<tr>
<td>Al re</td>
<td>Align retrace</td>
</tr>
<tr>
<td>Al ta</td>
<td>Align task</td>
</tr>
<tr>
<td>AP</td>
<td>Adjacency Pair</td>
</tr>
<tr>
<td>AP</td>
<td>Passive Closure by Participant A (IG)</td>
</tr>
<tr>
<td>ASA</td>
<td>Super-Active Closure by Participant A (IG)</td>
</tr>
<tr>
<td>BA</td>
<td>Active Closure by Participant B (IF)</td>
</tr>
<tr>
<td>BA1</td>
<td>Dialogue between BA & GW</td>
</tr>
<tr>
<td>BA2</td>
<td>Dialogue between BA & MB</td>
</tr>
<tr>
<td>BA3</td>
<td>Dialogue between BA & ND</td>
</tr>
<tr>
<td>BA4</td>
<td>Dialogue between BA & DN</td>
</tr>
<tr>
<td>BP</td>
<td>Passive Closure by Participant B (IF)</td>
</tr>
<tr>
<td>BSA</td>
<td>Super-Active Closure by Participant B (IF)</td>
</tr>
<tr>
<td>CA</td>
<td>Conversation Analysis</td>
</tr>
<tr>
<td>CD</td>
<td>Control Dialogue</td>
</tr>
<tr>
<td>CDC</td>
<td>Control Dialogue Corpus</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Ch</td>
<td>Check</td>
</tr>
<tr>
<td>Ch alt</td>
<td>Check alternative</td>
</tr>
<tr>
<td>Ch co</td>
<td>Check Correct</td>
</tr>
<tr>
<td>Ch co alt</td>
<td>Check correct alternative</td>
</tr>
<tr>
<td>Ch hc</td>
<td>Check hearing check</td>
</tr>
<tr>
<td>Ch op</td>
<td>Check optional</td>
</tr>
<tr>
<td>Cla</td>
<td>Clarify</td>
</tr>
<tr>
<td>CM1</td>
<td>Dialogue between CM & GW</td>
</tr>
<tr>
<td>CM2</td>
<td>Dialogue between CM & MB</td>
</tr>
<tr>
<td>CM3</td>
<td>Dialogue between CM & ND</td>
</tr>
<tr>
<td>CM4</td>
<td>Dialogue between CM & DN</td>
</tr>
<tr>
<td>cont</td>
<td>Continued (appended to a non-initial move in a game)</td>
</tr>
<tr>
<td>ctd</td>
<td>Continued (appended to a continued turn number)</td>
</tr>
<tr>
<td>ctd.</td>
<td>Continued (appended to moves continued within a continued turn)</td>
</tr>
<tr>
<td>DL1</td>
<td>Dialogue between DL & GW</td>
</tr>
<tr>
<td>DL2</td>
<td>Dialogue between DL & MB</td>
</tr>
<tr>
<td>DL3</td>
<td>Dialogue between DL & ND</td>
</tr>
<tr>
<td>DL4</td>
<td>Dialogue between DL & DN</td>
</tr>
<tr>
<td>Ea</td>
<td>Explain = Acknowledge</td>
</tr>
<tr>
<td>EC</td>
<td>Eye Contact</td>
</tr>
<tr>
<td>Ee</td>
<td>Explain Elicit</td>
</tr>
<tr>
<td>em</td>
<td>embedded</td>
</tr>
<tr>
<td>ER</td>
<td>Efficiency Rating (Deviation x Time Taken)</td>
</tr>
<tr>
<td>Exp</td>
<td>Explain</td>
</tr>
<tr>
<td>FTA</td>
<td>Face-Threatening Act</td>
</tr>
<tr>
<td>GM1</td>
<td>Dialogue between GM & GW</td>
</tr>
<tr>
<td>GM2</td>
<td>Dialogue between GM & MB</td>
</tr>
<tr>
<td>GM3</td>
<td>Dialogue between GM & ND</td>
</tr>
<tr>
<td>GM4</td>
<td>Dialogue between GM & DN</td>
</tr>
<tr>
<td>H</td>
<td>Hearer</td>
</tr>
<tr>
<td>HL1</td>
<td>Dialogue between HL & GW</td>
</tr>
<tr>
<td>HL2</td>
<td>Dialogue between HL & MB</td>
</tr>
<tr>
<td>HL3</td>
<td>Dialogue between HL & ND</td>
</tr>
<tr>
<td>HL4</td>
<td>Dialogue between HL & DN</td>
</tr>
<tr>
<td>IE</td>
<td>Incorrect Entity</td>
</tr>
<tr>
<td>IF</td>
<td>Information Follower</td>
</tr>
<tr>
<td>IG</td>
<td>Information Giver</td>
</tr>
<tr>
<td>Ins</td>
<td>Instruct</td>
</tr>
<tr>
<td>Int</td>
<td>Interjection</td>
</tr>
<tr>
<td>ISA</td>
<td>Indirect Speech Act</td>
</tr>
<tr>
<td>Ito</td>
<td>Instruct = Time Out</td>
</tr>
<tr>
<td>MD1</td>
<td>Dialogue between MD & GW</td>
</tr>
<tr>
<td>MD2</td>
<td>Dialogue between MD & MB</td>
</tr>
<tr>
<td>MD3</td>
<td>Dialogue between MD & ND</td>
</tr>
<tr>
<td>MD4</td>
<td>Dialogue between MD & DN</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>NEC</td>
<td>No Eye Contact</td>
</tr>
<tr>
<td>NTRI</td>
<td>Next Turn Repair Initiator</td>
</tr>
<tr>
<td>OHP</td>
<td>Overhead Projector</td>
</tr>
<tr>
<td>OI-F</td>
<td>Other-Initiated Failure</td>
</tr>
<tr>
<td>OI-OR</td>
<td>Other-Initiated Other Repair</td>
</tr>
<tr>
<td>OI-SR</td>
<td>Other-Initiated Self Repair</td>
</tr>
<tr>
<td>PD</td>
<td>Participant Design</td>
</tr>
<tr>
<td>PK1</td>
<td>Dialogue between PK & GW</td>
</tr>
<tr>
<td>PK2</td>
<td>Dialogue between PK & MB</td>
</tr>
<tr>
<td>PK3</td>
<td>Dialogue between PK & ND</td>
</tr>
<tr>
<td>PK4</td>
<td>Dialogue between PK & DN</td>
</tr>
<tr>
<td>QMC</td>
<td>Queen Margaret College, Edinburgh</td>
</tr>
<tr>
<td>Qw</td>
<td>Query-w</td>
</tr>
<tr>
<td>Qw hc</td>
<td>Query-w hearing check</td>
</tr>
<tr>
<td>Qwa</td>
<td>Query-w alternative</td>
</tr>
<tr>
<td>Qwai</td>
<td>Query-w alternative = Instruct</td>
</tr>
<tr>
<td>Qwi</td>
<td>Query-w = Instruct</td>
</tr>
<tr>
<td>Qwp</td>
<td>Query-w prod</td>
</tr>
<tr>
<td>Qwpip</td>
<td>Query-w prod = Instruct</td>
</tr>
<tr>
<td>Qyn</td>
<td>Query-yn</td>
</tr>
<tr>
<td>Qyni</td>
<td>Query-yn = Instruct</td>
</tr>
<tr>
<td>RD</td>
<td>Recipient Design</td>
</tr>
<tr>
<td>Re</td>
<td>Ready</td>
</tr>
<tr>
<td>repo</td>
<td>repetition of other person</td>
</tr>
<tr>
<td>reps</td>
<td>repetition of self</td>
</tr>
<tr>
<td>Rn</td>
<td>Reply-n</td>
</tr>
<tr>
<td>Rw</td>
<td>Reply-w</td>
</tr>
<tr>
<td>Rwa</td>
<td>Reply-w alternative</td>
</tr>
<tr>
<td>Ry</td>
<td>Reply-y</td>
</tr>
<tr>
<td>S</td>
<td>Speaker</td>
</tr>
<tr>
<td>SI-F</td>
<td>Self-Initiated Failure</td>
</tr>
<tr>
<td>SI-OR</td>
<td>Self-Initiated Other Repair</td>
</tr>
<tr>
<td>SI-SR</td>
<td>Self-Initiated Self Repair</td>
</tr>
<tr>
<td>TCU</td>
<td>Turn-Constructional Unit</td>
</tr>
<tr>
<td>TRP</td>
<td>Transition Relevance Place</td>
</tr>
<tr>
<td>TS1</td>
<td>Dialogue between TS & GW</td>
</tr>
<tr>
<td>TS2</td>
<td>Dialogue between TS & MB</td>
</tr>
<tr>
<td>TS3</td>
<td>Dialogue between TS & ND</td>
</tr>
<tr>
<td>TS4</td>
<td>Dialogue between TS & DN</td>
</tr>
<tr>
<td>WAB</td>
<td>Western Aphasia Battery (Kertesz, 1982)</td>
</tr>
<tr>
<td>WFD</td>
<td>Word Finding Difficulty</td>
</tr>
</tbody>
</table>
There are no mistakes.
There is only ignorance.

Pythagoras
introduction

The universe is full of magical things waiting for our wits to grow sharper.

Chinese Fortune Cookie

This Chapter is divided into four main sections. In §1.1 we discuss aphasia, in §1.2 we address the issue of why we chose to study aphasic data, in §1.3 we set out our hypotheses, and in §1.4 we explain the organisation of the rest of the thesis.

1.1 aphasia

This thesis was written not for a medical or speech pathology degree but for a degree in linguistics. Yet despite this fact, although it is primarily about aphasia it is not about the linguistic abilities of aphasic individuals per se. Rather, the central topic of this thesis is concerned with how people who do not have aphasia interact with people who do.

This is not the place to provide an intricately detailed account of aphasia (or dysphasia as it is also called). But it is important for readers to be at least broadly acquainted with this condition in order to appreciate the importance of the research. In the following three sections we will therefore briefly discuss definitions, causes and symptoms of aphasia. (For a more detailed account of the nature of aphasia, the reader is directed to Garman, 1990; Lesser, 1989; and Lesser & Milroy, 1993.)

1.1.1 aphasia defined

Garman (1990: 416) defines aphasia as the impairment of central language abilities in the speech modality following brain damage. Although we will not discuss many of the intricacies associated with this definition, two things should be noted.

1 This section is based largely on the section of the same name in Merrison (1992: 4ff).
Firstly, impairment may be “more or less complete” (Garman, *ibid.*) and it is possible, in principle at least, to distinguish between partial loss of language (*dysphasia*) from total loss (*aphasia*). In practice, however, since *total* loss of language ability is “a relatively uncommon and transitory condition” (Garman, 1990: 417), these two alternative terms tend to be used interchangeably. Of the two, though, perhaps the more widely used is *aphasia* as it is this term that has been adopted for the nomenclature of the related research field: *aphasiology*. Because it is *aphasia* that is generally used as a superordinate, it is this term that we will mainly use in the course of this thesis.

Secondly, as Garman points out, the terms *aphasia* and *dysphasia* are “not strictly involved in the impairment of written language functions” (*ibid.*). For the loss of non-speech functions there are available the related terms *alexia* and *dyslexia* (loss of reading functions) and *agraphia* and *dysgraphia* (loss of writing functions). But because the loss of written abilities so often accompanies the loss of speech, the term *aphasia* is, as we have said, generally used as a superordinate term. However, the reader must bear in mind that written functions *can* (to varying degrees) remain intact in aphasic individuals as we see from GM’s spelling out of the word *chicken* in Extract 1-1:

Extract 1-1 GM (aphasic) & MB (non-aphasic)

GM: "(hh)" Then you go for a while and then (.) you might have seen a S- >"A-B-C"< C-H-I-S-K-E-N?

MB: A: - oh a chicken

GM: <Yes>

1.1.2 causes of aphasia

We will not be concerned with all the types of brain damage that can result in aphasia. We will not even discuss all four major types (vascular disease, tumour, trauma and infection – for an introduction, see Garman, 1990: 419f). Instead we will concentrate on the most common cause of aphasia, namely vascular disease (often known as cerebrovascular accident or CVA), as this was the cause of aphasia in three of the four subjects under consideration in this research (the cause of GM’s brain injury is unknown).

CVAs are caused when the brain is deprived of oxygen, either through some obstruction of the blood flow (*embolism/thrombosis*) or through blood vessels in the brain bleeding into surrounding tissue (*haemorrhage*). CVAs (more commonly referred to as *strokes*) account for approximately 85% of cases of aphasia (Crystal, 1987: 270). Furthermore,
they are not as rare as one might think: the incidence of CVA each year in the UK is estimated at 200 per population of 100,000 people (van der Gaag, 1996: 260)\(^2\) and of these, approximately one third die within three weeks.

But that still leaves a large number of victims to overcome the difficulties that language impairment brings.\(^3\) For the survivors of CVA, most of the spontaneous language recovery takes place within the first ten weeks (Enderby, Wood, Wade and Langton-Hewer, 1987, cited by Wilkinson, 1995a: 14). After six months the chances of full recovery are increasingly unlikely and 25% of patients are still severely affected 12 months after the stroke (Crystal, *ibid.*).

1.1.3 symptoms of aphasia

The title of this section is actually misleadingly simplistic because symptoms are often associated with several different clusterings of language impairment which are always prone to change with the process of recovery. As Lesser & Milroy note, “Aphasia can take many forms. Indeed some would argue that there are as many forms of aphasia as there are individuals who suffer from it” (1993: 8). Nevertheless, following medical tradition, if a cluster of symptoms occurs with a frequency greater than chance, then it may be termed a syndrome (Garman, 1990: 426).

Despite the lack of consensus on exactly what syndromes exist, several types display sufficient medical and behavioural homogeneity to be regarded as canonical. Garman cites examples of eight different syndromes, and two of these – Broca’s aphasia and Wernicke’s aphasia – might be considered to be the truly ‘classic’ examples. Although we will describe these two classic syndromes as part of our brief discussion of aphasia, it should be made clear that two of the aphasic individuals who took part in this study (HL and MD) were classified as having anomic aphasia and the other two (GM and BA) as having conduction aphasia. We will describe these two syndromes also. The following sections are based on Garman (1990: 426ff).

\(^2\) In the UK alone this amounts to approximately 117,000 people suffering a stroke each year (based on a 1996 UK population of 58,784,000 (Calhoun, 1997: 737)).

\(^3\) The prevalence of “speech/language handicapped” is estimated at 150 per population of 100,000 people (van der Gaag, 1996: 260).
1.1.3.1 Wernicke’s aphasia

Wernicke’s aphasia (first described in 1874 by the German neurologist, Carl Wernicke) is generally characterised by the individual having severe comprehension difficulties (both auditory and reading) while their verbal output is extremely fluent. This excessive fluency is known as logorrhea. However, the fluency is only superficial, for although speech may be phonologically intact, what might appear to be normal grammatical structure “is sometimes marked by inappropriate stem-affix formations such as is louding for is loud/is talking loudly” (Garman, 1990: 436). In addition, output usually lacks semantic content and is thus often considered ‘empty’. Wernicke’s aphasics are prone to substitution, both at the sound level (known as phonemic paraphasias, e.g. saying [kait] instead of quarter) as well as at the word level (known as verbal paraphasias, e.g. saying zebra instead of giraffes). Often the intended target word can actually be indeterminable because of these paraphasias. In such cases the resulting lexical form is called a neologism and where there is a predominance of neologisms the resulting output is often described as jargon.

1.1.3.2 Broca’s aphasia

Broca’s aphasia (first described in 1861 by the French neurologist, Paul Broca) is recognised by the following cluster of symptoms. Spontaneous speech is generally non-fluent and often exhibits word finding difficulties (also known as word-selection anomia). It might also contain articulatory difficulties such as segmental substitutions and the disruption of normal intonational patterns. Utterances are typically short and are generally made up of nouns, main verbs and adjectives with function (non-content) words tending to be omitted. The overall impression this creates is one of ‘telegrammatic’ output. Yet stereotyped phrases may remain quite normal. For example, prolonged unsuccessful attempts to produce an utterance might well be finished with an extremely fluent stock phrase such as “Oh! I don’t know”. In such cases, normal intonation is generally unaffected. The ability to use dialogue punctuation such as I see, yes and no, is also left intact.

Verbal comprehension is generally better than expressive language, and is possibly “better for short utterances and for highly referential words, and much less good for longer structures and relational terms such as directional prepositions and adverbs” (Garman, 1990: 434). Patients also tend to show difficulty following multi-part utterances such as “give me the pen, the watch and the keys”. Oral sentence repetition and written output (including sentence copying) are also impaired.
1.1.3.3 anomic aphasia (hl & md)

In anomic aphasia comprehension is generally good and oral repetition excellent. Semantic and phonemic paraphasias occasionally occur, however. But in the main, as its label suggests, this type of aphasia is characterised by anomia or word-finding difficulties. Admittedly this is also evident in many other aphasic syndromes, but the difference here is that in anomic aphasia, anomia is the dominant symptom. In other syndromes, though the word-finding problems are present, there will be other, more prevalent and more severe symptoms. In essence, anomic aphasia consists of marked word-finding difficulties and the absence of more severe symptoms.

Thus, although spontaneous speech production is fluent, it often exhibits pauses for word searches as well as circumlocutions. The excessive pausing can be seen in Extract 1-2, which has over 21 seconds of aphasic silence associated with word search:

Extract 1-2 HL & GW

*GW Oh I don’t have a well (ha) Where’s the well?
→ *HL Er (3.1) "(hh)" (3.2) "thE erm" (LS) (5.4) Mm (0.8)
→ "the well" (1.3) "is" (7.4) right under the sheep
*GW Oh is it over on - on the right hand side?

1.1.3.4 conduction aphasia (gm & ba)

In some respects conduction aphasia is like Wernicke’s. In others it is like Broca’s. As in Wernicke’s aphasia, speech output is fluent and paraphasic, but the rate of speech is not as high, often because of hesitations that are the result of word finding difficulties. Like Broca’s aphasia, auditory and reading comprehension are generally very good - even normal (though complex syntactic structures are usually not understood).

Perhaps the defining feature of this type of aphasia, however, is that despite fluent production and intact comprehension, oral repetition is poor (though written repetition (copying out written sentences) can be rather good). As Garman (1990: 439) notes: “The most usual interpretation of this remarkable finding has been in terms of a disconnection between auditory input and oral output, specifically arising from damage to known conducting pathways linking the former to the latter (hence the term ‘conduction aphasia’).”
1.2 why study aphasic interaction?

As will be discussed in Chapter 3, the corpora for this research consist of recordings of interactions between two dialogue partners engaged in a referential task that has been widely utilised as a research tool at the Human Communication Research Centres (HCRC) of Edinburgh and Glasgow. This task is known as the ‘Map Task’ (Brown, Anderson, Shillcock & Yule, 1984; Anderson, Bader, Bard, Boyle, Doherty, Garrod, Isard, Kowtko, McAllister, Miller, Sotillo, Thompson & Weinert, 1991a) and it involves one interlocutor (designated the Information Giver or ‘IG’) describing a route on a schematic map to his dialogue partner (the Information Follower or ‘IF’) who also has a map but one which lacks the route.

Prior to the commencement of this research, there was already an abundance of Map Task data in existence (and even more has emerged since). One might therefore wonder why it was that an entirely new corpus of recordings was collected. In short, it would be reasonable to ask why a group of aphasic subjects was investigated as opposed to a set of subjects similar to those undergraduates used in the original HCRC corpus. To answer this question we must provide a brief history of the current research.

1.2.1 history of the research

Prior to this study two sets of recordings had been made of aphasics doing the Map Task with a non-impaired dialogue partner. The first recordings (Weinert & Dean, 1991) were not analysed in any detail. However, this data inspired the MSc research of Merrison (1992) which in turn has prompted this doctoral research. It therefore seems fitting that at least some space is devoted to the historical development of the current research.

My interest in how non-aphasic individuals interact with people who have aphasia developed from my MSc thesis, which was started after my attention was drawn to the need for research into the long-term possibility of adapting the Map Task into a practical tool for use in Speech and Language Therapy. Hence, from the very outset, there was no intention of using any subjects other than aphasics. Although my research career started with the long-term goal in mind, this thesis is by no means an attempt to actually realise that goal. Indeed, it is not an investigation of the task per se, but rather an investigation of the way in which non-aphasics manage their interactions with aphasic individuals. However, if this in any way serves towards the ultimate aim, then so much the better.

4 This section is based largely on Merrison (1992: 9ff).
1.2.1.1 the pre-pilot data (1991)

In the pre-pilot videos all aphasic Information Givers (IGs) had the same map and each performed the task with a different non-aphasic (female) Information Follower (IF). In this way, the map variable could be held constant but only at the expense of the IF variable. A new IF was required for each map in order to avoid the possibility of the IF being influenced by her first performance. All subjects were warned of potential differences between the maps of the IG and IF (see §3.1 for detailed discussion of the task). In addition, all IFs were briefed by Dean not to ask ‘leading’ questions.

1.2.1.1.1 objections to the pre-pilot videos

There were five main objections to using these recordings for serious analysis (based on Merrison, 1992: 9f):

i. The participants were thought to be sitting close enough to each other for the distance between them to be considered more akin to the close phase of personal distance (one and half to two and a half feet) rather than the close phase of social distance (four to seven feet) (cf. Hall, 1969: 113ff; Sommer, 1969: 26ff). It was thought that such closeness might have potentially inhibited natural interactional behaviour including the use of non-verbal communication.

ii. All but one of the IGs (who had been provided with a stand) were forced to hold their map. Being dysphasic as a consequence of left-hemisphere damage, all the subjects suffered right-side paralysis (to varying degrees). Thus they all held their map in their now dominant left hands, again closing off the possibility of using a non-verbal channel to any great extent.

iii. The brief of “Don’t lead” tended to inhibit some of the IFs to such an extent that their contributions were minimal, and instead they just let the IG get on with the task. This therefore worked negatively against the warning of potential differences, and hence considerably reduced the amount of collaborative communication strategies.

iv. Of the seven IFs, six were unfamiliar to the aphasic patients while the very first pilot was done with the IF being the researcher’s secretary – someone with whom the IG was certainly familiar.

v. Although these videos were not analysed in any great detail, it was clear that the task is much more IF dependent than had originally been thought.5

1.2.1.2 the pilot data (1992)

The aim of the second set of (pilot) recordings was to eliminate the five problems with the pre-pilot videos. The first and second problems were solved by separating the two participants with a table specially designed so that while each participant could see the other, the maps were only visible to their owners (see Figure 3-1 in §3.1). The table not only acted as a screen between participants, but also as an easel on which to rest the maps. It also ensured a reasonable (and fairly constant) distance between IG and IF. The table should also have counteracted any feeling of invasion of personal space for the “existence of physical barriers may make it possible for people to sit much closer than they would otherwise” (Argyle, 1975: 303).

Problems (iii), (iv) and (v) were overcome by using just one Information Follower, SF, (who was unfamiliar to all three IGs) for all re-recordings. She was briefed to converse naturally but to avoid direct yes-no questions if at all possible. Because it was considered vital to keep the IF-variable constant, different maps were given to each pair. As these maps were all comparably difficult, they were simply randomly assigned to each dyad.

While this data yielded some interesting results, Merrison analysed the dialogues as complete units – in other words, the interactive behaviours of the two participants were not in any way separated. Merrison (1992: 54f) did however note that this was clearly an area worthy of further investigation:

There still remains one vital resource immediately available to all the subjects that we have not yet discussed. Unfortunately, to do justice to the ways in which aphasics manage this resource would go way beyond the scope of this thesis. Indeed, I believe it is worthy of a thesis of its own because if it is managed properly the increase of aphasics’ communicative capabilities can be enormous. So what is this resource that is sitting right under our aphasics’ noses? In this particular study she is called Sally!

The person with whom an aphasic is attempting to communicate is arguably the most valuable resource that an aphasic can have. ... Indeed, it must not be forgotten that human communication can be seen as a process involving interactive and collaborative effort. Furthermore successful communication “can be seen as the joint responsibility of both the impaired and the unimpaired partner” (Milroy & Perkins, 1992: 29, emphasis added).

Thus, if the aphasic contributor can effectively draw on the listener’s abilities, then this should not be discounted as not being a communicative strategy – all we need to know is how it works!

It is this final question that is the main focus of this dissertation.
1.3 hypotheses of the thesis

As we will discuss in more detail in Chapter 3, this thesis investigates interactions between eight dyads of previously unacquainted aphasic and non-aphasic individuals (which we have abbreviated as ‘Aphasic Dialogues’ or ADs). As control data we analyse eight dialogues between dyads of previously unacquainted non-aphasic individuals (‘Control Dialogues’ or CD).

Following Wilkinson (1995a, 1995c), the overall aim of this thesis is to show that aphasia is a variable that non-aphasic participants orient to in their interactions with aphasic individuals. We therefore discuss:

(i) how non-aphasic dialogue partners manage their interactions with aphasic individuals, and

(ii) how their behaviour can be seen to be compensating for the apparent linguistic deficits of their aphasic interlocutors.

More specifically, the aim of this thesis was to test the following hypotheses about the differences between AD and CD interactions:

HYPOTHESIS 1

In the Aphasic Dialogues the non-aphasic dialogue partner will do more of the communicative work.\(^6\)

HYPOTHESIS 2 (Doing Being Ordinary\(^7\))

In the Aphasic Dialogues the non-aphasic dialogue partner will try to avoid highlighting any linguistic non-competence on the part of their aphasic partner.

\(^6\) We should point out that this is not an original hypothesis (see, for example, Linebaugh, Kryzer, Oden & Myers, 1982). That said, we are not interested so much in the fact that non-aphasic dialogue partners take on more of the ‘communicative burden’ as much as in how they do so.

\(^7\) Although this term originates in Sacks’ Lecture of Spring 1970 (Sacks, 1995: Volume II: 215-221), it is Wilkinson (1995a: Chapter 7, 1995c) who first applied it to aphasic discourse.
In the Control Dialogues the risk of extended sequences generating misunderstandings is slight and therefore measures need not be taken to avoid them. With a linguistically impaired partner, however, extended sequences pose a real threat to the smooth running of the interaction and, wherever possible, they should probably be avoided.

In order to minimise any highlighting of aphasic non-competence in the Aphasic Dialogues, it was hypothesised that the non-impaired dialogue partner would tend to avoid the generation of unnecessary talk by simplifying the interaction. This hypothesised simplification led to Hypothesis 2 being re-written as two separate hypotheses as we set out below:

HYPOTHESIS 2.1

In the Aphasic Dialogues the non-aphasic dialogue partner will try to avoid highlighting any linguistic non-competence on the part of their aphasic partner by means of Explicit Simplification - simplification which makes the interaction explicit (e.g. by using Acknowledgements which, by means of additional explanation, make explicit exactly what is being acknowledged).

HYPOTHESIS 2.2

In the Aphasic Dialogues the non-aphasic dialogue partner will try to avoid highlighting any linguistic non-competence on the part of their aphasic partner by means of Reduction Simplification - simplification which reduces the possibilities for the next relevant turn (e.g. by using forced-choice rather than open-ended queries).

As we shall discuss in §3.7.2, originally the emphasis of this thesis was to have been on the apparent and somewhat paradoxical proposition that some aphasic individuals demonstrate the ability “to communicate much better than they speak/understand” (Howard & Hatfield, 1987: 81). Though this is no longer the central argument of the current research, because we provide evidence to justify it we state that paradoxical proposition (and a related hypothesis) here as Hypothesis 3 and Hypothesis 3.1:

As we shall see in the course of our discussions, all these hypotheses were in fact confirmed.

1.4 organisation of the rest of the thesis

Had I been a traditionalist, Chapter 2 (entitled A View from the Shoulders of Giants) might have simply been called Literature Review. But Chapter 2 is not just a traditional review of the existing literature. Admittedly it does do the job of placing the current research in relation to preceding academic giants, but, as this thesis was written for a Doctor of Philosophy, it seems only right that somewhere within the text we set out the overall philosophy of the thesis – at least to some degree! Chapter 2 is where we do so.

Chapter 3 provides details of the practical methodology of the research. We discuss various aspects of the Map Task, the participants in the research, and data collection (data transcription has already been covered in Section iii).

Chapter 4 presents a discussion of Game Coding – the main system of analysis that was used throughout the research. We not only discuss the theoretical issues concerning Game Coding, we also explain the more practical (and mundane) issues of the structural layout of this (and other) code.

Chapter 5 introduces the various analyses that are used in Chapters 6, 7 and 8. These analyses fall into three major subtypes. Type-I analyses are concerned with task success (deviation scores; time taken; landmark negotiation), dialogue measures (landmark introductions; mismatches discovered), and turn distribution (turns taken; major versus minimal turns). Type-II analyses are all concerned with conversational structure and are based on Game Coding. Type-III analyses are not so much analyses as miscellaneous comments that are considered sufficiently interesting to warrant some discussion.
Chapter 6 is the first of three results chapters. It presents the results of the analyses (outlined in Chapter 5) for two of the dialogues involving GW as the non-impaired female Information Follower (IF), namely the aphasic dialogue between HL & GW and the control dialogue between PK & GW (PK being HL's age-matched control). The dyad between HL & GW was chosen for analysis simply because it was the first to be recorded.9

Chapter 7 completes the analysis of the dialogues involving GW as non-impaired IF. Here we discuss the results for the aphasic dialogue between BA & GW and compare them with those from the control dialogue between DL & GW.

Chapter 8 presents the results of the analyses of the aphasic and control corpora taken as a whole. The format of Chapter 8 is similar to Chapters 6 and 7 but here we use the group means for all the various measures.

Chapter 9 comprises a discussion of what we have called Type-III ‘analyses’. These are driven by the *C comment lines that we introduce in §4.2.2.

Chapter 10 is our concluding chapter. We re-present our initial hypotheses, summarise the pertinent evidence relating thereto and assess the results of the research. We also discuss implications for any future research.

Appendix I outlines subject details; Appendix II details the schedules for dialogue recordings; Appendices III and IV present the maps from the aphasic and control dialogues respectively; and Appendix V offers some light relief in the form of some cartoons.

9 In the full corpus there are 16 ADs and 16 CDs. See Chapter 3.
2 a view from the shoulders of giants

If I seem to have seen further than other men,
it is because I have stood on the shoulders of giants.

Albert Einstein

As we said in §1.4 this chapter is not just a traditional review of the existing literature. Although it places the current research in relation to preceding academic giants (§2.1), it is also where we state the overall philosophy of the thesis as well as the contributions that we believe this research makes to academic knowledge (§2.2).

2.1 the giants' shoulders: a brief review of research
on discourse

This thesis is concerned with human communication as a process which involves interactive and collaborative effort – a process whose success is the joint responsibility of both dialogue partners. More specifically it is concerned with the analysis of interactions between dysphasic and non-linguistically impaired adults. Although this research is primarily concerned with dialogue, it also deals with aphasia, collaboration, task-oriented dialogue, and the special manifestation of social interaction between cognitive agents that is conversation. It is therefore inevitable that it has its roots in a variety of academic disciplines. We believe that the quality of this research can only be enhanced by this multi-disciplinary approach. There is, however, a corollary to this: there is clearly insufficient space here to do full justice to all the influences that have had a bearing on this thesis – all we can really do is provide a brief overview and we do so in the sub-sections of this chapter (of course, not all influences have contributed equal weight!).¹

¹ For more comprehensive accounts of the various approaches to the analysis of discourse and conversation see Taylor & Cameron (1987) and Schiffrin (1994).
The rest of this chapter is structured as follows. In §2.1.1 we discuss the input of the philosophy of language (speech act theory, Gricean pragmatics); in §2.1.2 linguistics (discourse analysis); in §2.1.3 artificial intelligence (conversational games); in §2.1.4 cognitive science (risk-effort trade-off); in §2.1.5 ethnomethodology (conversation analysis); in §2.1.6 psychology (a Clarkian perspective); in §2.1.7 sociology (face-work); and finally, in §2.1.8 we discuss the input of aphasiology (language & communication).

2.1.1 the philosophy of language

At the risk of sounding repetitive, this thesis is not the place to explain every intricate detail about the philosophy of language: the area is so vast that doing so would fill a small library. It is not even the place to show all that the author already knows about the philosophy of language: even that could fill several chapters. We must be disciplined. We must be selective (both here and in all subsequent sections within our review of the literature). Consequently we discuss only that which is of prime relevance to the exposition of the thesis.

2.1.1.1 speech act theory

The area of philosophy that we will discuss here is Speech Act Theory (Austin, 1962, 1975; Searle, 1969, 1975; Cole & Morgan, 1975) in which we find firm foundations for our research on discourse, notably our method of data coding.

Originally, the term ‘speech act’ was to be considered as “the total situation in which the utterance is issued” (Austin, 1975: 52) but, as we shall see in §2.1.1.1.4, nowadays, it is used synonymously with the function of an utterance (Thomas, 1995: 51). Although it will take a good deal of space before we finally get there, this point is crucial to our discussion, for much of our analysis is based on a system of coding that categorises all utterances within a dialogue according to their communicative function (see §4.1).

2.1.1.1.1 logical positivism

In the 1930s there flourished a pervasive doctrine of Philosophy called Logical Positivism. One of its central tenets was that if a sentence could not be verified (tested for truth or falsity) it was, strictly speaking, meaningless. So for Positivists the primary

2 For further details see Levinson (1983: Chapters 3 to 5).
function of language was to describe some actual or perceived state of affairs in the world. There are, however, two major problems with this view.

Firstly, many sentences cannot be described as true or false, as is the case in the famous Liar (or Epimenides’) Paradox:

(2-1) Everything I say is a lie

Sentence (2-1) cannot be either true or false. The Liar paradox stems from a statement being made about some set of entities by something that is itself a member of the set referred to in the statement: the problem lies in the act of *self-reference.* Furthermore, such paradoxical self-reference is not confined to single sentences, as we can see in (2-2) and (2-3):

(2-2) The following example is false
(2-3) The preceding example is true

The second problem (as we will soon see) is that words don’t merely describe the world. We perform actions by physically changing the environment, in other words, by doing something. We can:

- Congratulate someone by giving them a hug
- Make a bid of £500 at an auction by nodding
- Acknowledge a £12,000 loan by smiling and taking the cheque

But we can also ‘perform’ (do) the above acts by modifying our physical environment by speaking (or writing):

(2-4) I *congratulate* you
(2-5) I *bid* five hundred pounds
(2-6) We the undersigned, hereinafter referred to as “the borrowers”, ... hereby *acknowledge* that we have received a loan of twelve thousand pounds sterling from ...

3 Not all self-reference is necessarily paradoxical, however, e.g. *This example no verb.*
The fact that words actually *do* things underlies the whole theory of Speech Acts. An utterance that simultaneously describes and performs some act is known as a **performative** and a **performative verb** is one which, when used in a sentence, can make the utterance of that sentence a performative.

We have seen that some self-referential sentences cannot be described as true or false. But many sentences which use performative verbs as an essential part of some act are also impossible to be verified. These performatives typically occur in public ceremonies:

(2-7) baptising: *I baptise you in the name of the Father, and of the Son, and of the Holy Spirit.*

(2-8) marrying: *I now pronounce you husband and wife.*

(2-9) burying: *We now commit his body to the ground: earth to earth, ashes to ashes, dust to dust ...*

(2-10) passing sentence: *I sentence you to life imprisonment.*

(2-11) launching ships: *I name this ship ...*

2.1.1.1.2 felicity conditions

There are, however, certain conditions of the situation (in which the utterance is made) that must be fulfilled if the act is to be carried out properly or felicitously. These are known as **felicity conditions** (Austin, 1975: 14f):

(A. 1) There must exist an accepted conventional procedure having a certain conventional effect, that procedure to include the uttering of certain words by certain persons in certain circumstances, and further,

(A. 2) the particular persons and circumstances in a given case must be appropriate for the invocation of the particular procedure invoked.

(B. 1) The procedure must be executed by all participants both correctly and

(B. 2) completely.

(Γ. 1) Where, as often, the procedure is designed for use by persons having certain thoughts or feelings, or for the inauguration of certain consequential conduct on the part of any participant, then a person participating in and so invoking the procedure must have in fact those thoughts or feelings, and the participants must intend to conduct themselves, and further

(Γ. 2) must actually so conduct themselves subsequently.
In other words:

(A. 1) There must exist an accepted conventional procedure having a certain conventional effect. In the UK, a man simply saying to his wife “I divorce you” won’t count as a legal divorce, because simply saying “I divorce you” is not, in the UK, an accepted conventional procedure having the conventional effect of divorcing.

(A. 2) Certain Acts can only be done by certain people in certain places with certain props. You can’t name a ship if: it already has a name; you are not the designated namer; or if there are no bottles of champagne, no slipways and no witnesses.

(B. 1) The procedure must be done by all participants correctly. You have to say the right words. You can’t marry someone by saying “Please pass the mustard”.

(B. 2) The procedure must be done by all participants completely. If I say I bet you £5 you can’t do a simultaneous voiced bilabial alveolar uvular trill, the bet is no good unless you say something to the effect of You’re on!—i.e. there must be satisfactory uptake.

(T. 1) If a Speaker thanks someone for doing something but is not in fact grateful, this counts as an insincere thanking.

(T. 2) If a Speaker promises to do something but has no actual intention of ever doing it, this counts as an insincere promise.

Although we will not describe them here, we should note that Searle (1969: 64ff) restated these criteria in terms of rules pertaining to (i) propositional content, (ii) preparatory conditions, (iii) essential conditions and (iv) sincerity conditions.

2.1.1.1.3 tests for performatives

Performative utterances generally use sentences which have:

- first person subjects
- active simple present tensed verbs
- one of a special set of performative verbs (that collocate with hereby)
We can perform the act of warning someone that a car is approaching by *explicitly* using the performative verb, *warn* in the simple present tense with a first person subject as in:

(2-12) I (hereby) warn you that a car is approaching

But we don’t necessarily need the performative verb to be in the simple present tense with a first person subject to make an utterance do (perform) something. We could equally well warn someone that a car is approaching by uttering (2-13), in which there is a *second* person singular subject and a *non-active* main verb:

(2-13) You are (hereby) warned that a car is approaching

But we don’t even *necessarily* need a performative verb. We can warn someone that a car is approaching by uttering (2-14), in which there is an *implicit warning* and a *non-performative verb*:

(2-14) There (hereby?) is a car approaching

Furthermore, we can even do completely without either a subject or a verb. We can warn someone that a car is approaching by shouting (2-15) in which the warning is *implicit*:

(2-15) Car!

A far more humorous version of this indirect speech act can be seen in Gary Larson’s cartoon of the cows standing upright in a field (see Cartoon V-2 in Appendix V).

These observations prompted the following definitions:

Explicit Performative: A performative utterance that uses a performative verb

Primary Performative: A non-explicit performative

Constative: A non-performative assertion

So it seems that by uttering words not only can we make verifiable assertions about the state of the world (constatives), we can perform various actions (e.g. warnings) and furthermore these actions (performatives) can be done either explicitly or implicitly.

4 See, for example, Rupert Fawcett’s ‘Fred’ Cartoon (V-1 in Appendix V) which we use in our bathroom to (gently) warn guests not to leave the lavatory seat up!
Austin therefore rejected the performative-constative dichotomy in favour of his theory of *Speech Acts* in which just about all utterances can be thought of as actually *doing* something. Utterances can: accost, accuse, apologise, assert, check, congratulate, explain, greet, hail, instruct, name, offer, promise, query, recommend, thank, ...

2.1.1.4 *speech acts*

According to Austin, when we speak, we actually perform several acts:

Phonic Act: the act of making vocal sounds.

erratum

The rest of the text on this page should read as follows:

Locutionary Act: the communicative act of uttering a sentence (which involves the acts of *Referring* to certain objects in the world and *Predicating* (linking the referring expressions with predicates)).

Illocutionary Act: the act (defined by social convention) which is performed as a result of the Speaker making an utterance, e.g. acts of: accosting, accusing, apologising, asserting, checking, congratulating, explaining, greeting, hailing, instructing, naming, offering, promising, querying, recommending, thanking ...

Perlocutionary Act: the (not necessarily intentional) act of causing a certain effect on the Hearer (and possibly others) e.g. persuading, amusing, warning, scaring, pleasing ...

In addition to these acts there must also be **illocutionary uptake**, i.e. the Hearer has to recognise that a particular illocutionary act has been performed!

As we have already noted above, originally the term ‘speech act’ was to be considered as “the total situation in which the utterance is issued” (Austin, 1975: 52). Nowadays, (and henceforth in this thesis) ‘speech act’ is used synonymously with *illocutionary act* or *illocutionary force*, i.e. the *function* of an utterance (Thomas, 1995: 51). Although we have taken a good deal of space to get here, this point is crucial to our discussion, for much of our analysis is based on a system of coding that categorises all utterances within a dialogue according to their communicative function.

We must now make a distinction between **direct speech acts** and **indirect speech acts**.
direct speech acts

<table>
<thead>
<tr>
<th>Sentence Type</th>
<th>Typical Linguistic Act performed by this sentence type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declarative: Subject + Verb</td>
<td>Asserting</td>
</tr>
<tr>
<td>Interrogative: Verb + Subject</td>
<td>Questioning</td>
</tr>
<tr>
<td>Imperative: No overt Subject</td>
<td>Requesting/Ordering</td>
</tr>
</tbody>
</table>

Table 2-1: Sentence Type & Related Prototypical Speech Act

The Direct Illocution of an utterance is the illocution most directly indicated by the literal meaning of what is uttered. In other words, when form and function match, we call the effect a Direct Speech Act:

(2-16) I like to play golf, bridge and viola & piano duets with my wife, Sally.
 (*Declarative* form functioning as an *assertion*)

(2-17) Have you ever read Hofstadter’s *Gödel, Escher Bach: an eternal golden braid*?
 (*Interrogative* form functioning as a *question*)

(2-18) Stop the car!
 (*Imperative* form functioning as an *order*)

indirect speech acts

In everyday conversations, however, the majority of illocutions are, in fact, *indirect*. The Indirect Illocution of an utterance is any further illocution an utterance might have. In other words, when form and function do not match, we call the effect an Indirect Speech Act (ISA):

(2-19) I’ll have the *Death by Chocolate*.
 Sentence Type: *Declarative*
 Act: Requesting (or Ordering)
 (Bring me the Death by Chocolate)

(2-20) Has he got a big beard or what?
 Sentence Type: *Interrogative*
 Act: Assertion
 (He’s got a big beard!)

(2-21) Tell me why you’re upset.
 Sentence Type: *Imperative*
 Act: Question
 (Why are you upset?)
You can tell when a Speech Act is an Indirect Speech Act because it can be responded to in an uncooperative way.\(^5\)

(2-22) Marjorie: I’d be grateful if you’d shut that door.
Joan: Would you?

(2-23) Marjorie: There’s a strong draught in here!
Joan: Yes there is isn’t there!
Marjorie: Well shut the bloody window you stupid woman!

Of course, the problem with ISAs is that they can become so conventionalised that we even respond to utterances that are not ISAs:

(2-24) Marjorie: There’s a strong draught in here.
Joan: [fearing Marjorie’s wrath, leaps to her feet to close the window]
Marjorie: No – it’s okay. It’s good for the dry rot!

indirect speech acts: felicity conditions

By checking on (or by stating) a felicity condition relating to a particular Speech Act, a Speaker can imply that they are performing that act. Because it is achieved through implication, the act is indirect. Consider the following examples:

(2-25) Would you like me to tell Marjorie?
(2-26) It’s me again!
(2-27) Do you want a broken nose?
(2-28) Do you sell postage stamps?

If the Hearer accepts, (2-25) by checking on one of the felicity conditions on promising, viz. whether Hearer actually wants what is being promised, will count as a promise; similarly, (2-26) counts as an apology by stating one of the felicity conditions on apologising, viz. that the Speaker is in some way imposing on the Hearer; (2-27) counts as a warning by checking on one of the felicity conditions on warning, viz. whether in fact a broken nose is not in the Hearer’s best interest; and (2-28) counts as an attempt to buy stamps by checking about one of the felicity conditions on buying, viz. whether the objects are for sale.

\(^5\) See also Cartoon V-3 in Appendix V.
The point of the preceding discussion leads us to this statement: our system of coding categorises all utterances within a dialogue according to their communicative function irrespective of whether that function is conveyed directly or indirectly.

2.1.1.2 gricean pragmatics

Grice (like Austin, a philosopher at Oxford) is best known for his Cooperative Principle (CP) which participants in conversation are expected (ceteris paribus) to observe. The CP states (Grice, 1975: 45):

> Make your conversational contribution such as is required, at the stage at which it occurs, by the accepted purpose or direction of the talk exchange in which you are engaged.

This is then expanded into four maxims of conversation (1975: 45f).

2.1.1.2.1 gricean maxims

maxim of quantity

1. Make your contribution as informative as is required (for the current purposes of the exchange).

2. Do not make your contribution more informative than is required.

maxim of quality

Try to make your contribution one that is true

1. Do not say what you believe to be false.

2. Do not say that for which you lack adequate evidence.

maxim of relation

1. Be relevant.
maxim of manner (be perspicuous)

1. Avoid obscurity of expression.
2. Avoid ambiguity.
3. Be brief (avoid unnecessary prolixity).
4. Be orderly.

Basically, the CP states that interactants should be cooperative by being informative, truthful, relevant and clear. In addition there is the assumption that interlocutors observe the overall CP (if not at the level of what is literally said, then at least at the level of what is implied).

Although we make very little direct use of Gricean pragmatics in this thesis, it has been the source of much inspiration in the study of collaborative discourse. Specifically, Grice’s suggestion that communication is a joint, cooperative activity has had a bearing on later research, especially that of Clark which has had a direct impact on this thesis. Indeed, Clark (1996: 58) notes of the two major traditions of language study6 that “Although we must appeal to results from both traditions, it is the action tradition that will set us off in the right direction”.

2.1.2 linguistics (discourse analysis)

Here we discuss the linguistic discipline known as discourse analysis. We do so because the system of analysis that we use (Game Coding – see §4.1) bears some resemblance to that utilised by “Birmingham School” linguists Sinclair & Coulthard (1975) in their analysis of the structure of classroom exchanges. Consequently many linguists might class our style of analysis as discourse analysis.7

In the preface to their seminal text, Brown & Yule (1983: viii) state that the term discourse analysis “has come to be used with a wide range of meanings which cover a wide range of activities. It is used to describe activities at the intersection of disciplines as diverse as sociolinguistics, psycholinguistics, philosophical linguistics and computational

6 The product tradition associated with the generative grammarians and the action tradition associated with philosophers (Austin, Searle and Grice) and sociologists (Goffman, Sacks, Schegloff and Jefferson).

7 As we hope to make clear, however, the overall approach taken in this thesis goes beyond an analysis of exchange structure.
linguistics" – so perhaps the subsections within this literature review are reasonably well motivated after all! However, we intend to restrict the use of the term discourse analysis to a definition that Brown & Yule themselves suggest, namely the linguistic discipline that is “committed to an investigation of what language is used for” (op. cit.: 1). They summarise thus:

the discourse analyst treats his data as the record (text) of a dynamic process in which language was used as an instrument of communication in a context by a speaker/writer to express meanings and achieve intentions (discourse). Working from this data, the analyst seeks to describe regularities in the linguistic realisations used by people to communicate those meanings and intentions.

Brown & Yule (1983: 26)

As we shall see in §4.1, for us, this will eventually concern the functions and purposes of linguistic behaviour. In essence we will be interested in the illocutionary forces behind utterances.

But real discourse analysts are not only active in the description of linguistic regularities. Like generativist linguists, they believe that discourse is rule-based and thus they also aim to account for the well-formedness of sequences of talk/text. Levinson (1983: 286) summarises the essential procedures employed by discourse analysts as: “(a) the isolation of a set of basic categories or units of discourse, [and] (b) the formulation of a set of concatenation rules stated over those categories, delimiting well-formed sequences of categories (coherent discourses) from ill-formed sequences (incoherent discourses)”. He also notes two tendencies of discourse analysts: (i) their appeal to their own intuitions about the well-formedness (coherency) of sequences, and (ii) their attempt to provide in-depth analyses of restricted domains. For example, Sinclair & Coulthard (1975) investigated the restricted domain of classroom talk.8 Their interest was in “the level of the function of a particular utterance, in a particular social situation and at a particular place in a sequence, as a specific contribution to a developing discourse” (Sinclair & Coulthard, 1975: 13). In their analysis they “insist on a relatively small number of speech acts defined according to their function in the discourse and combining in predictable structures to form higher units” (op. cit.: 11). It must be stressed that their ‘speech acts’ are not defined according to felicity conditions à la Austin and Searle, but rather according to their function.

8 And recently, Horton (1997) has been developing a similar style system of coding for the analysis of aphasia therapy interaction.
Sinclair & Coulthard's analysis (in the functionalist tradition of Halliday, 1961) depended primarily on the rank scale which they define as follows (1975: 20, emphasis in the original):

The basic assumption of a rank scale is that a unit at a given rank, for example word, is made up of one or more units of the rank below, morphemes, and combines with other units at the same rank to make one unit at the rank above, group.

As Taylor & Cameron (1987: 68) note, however:

The descriptive problem is to determine how many ranks are needed to describe the data and where the rank scale stops: which units are themselves without structure (these mark the lower boundary) and which are incapable of combination to form further structures at the same level (these mark the upper boundary).

In Sinclair & Coulthard's model, classroom discourse is a separate level consisting of five ranks: lesson, transaction, exchange, move and act, with the hierarchical structure set out in Figure 2-1 (adapted from Nunan, 1993: 36):

The notion of lessons can be explained at the non-technical level as a stretch of discourse bounded by predetermined start and finish times; transactions are co-terminous with topic boundaries; exchanges, suggest Coulthard & Montgomery (1981: 18), are perhaps "the most successful aspect of the description of classroom interaction", most being analysable as a three part structure of Initiation-Response-Feedback (I-R-F) moves (Feedback moves being optional); finally acts correspond to the functional aspect of talk.
The rule-based nature of this analysis is reflected in the use of notational conventions which are reminiscent of generativist rewrite rules. As an example, we take the following from Stubbs (1983: 140):\[\rightarrow \leftarrow [I \ R (F^n)] \]

Where:

[] indicate exchange boundaries
() indicate optional items
I Initiation
R Response
F Feedback
n indicates recursion (i.e. F^n: any number of Fs)
\[\rightarrow \] Predicts a following utterance
\[\leftarrow \] Is predicted by a preceding item

In addition to the rank hierarchy and the concatenation rules, Sinclair & Coulthard demand the observation of four criteria for their (and indeed any) system of classification:

1. The number of categories must be finite (and relatively small).
2. For each utterance it must be possible to clearly determine what category of move/act it belongs to.
3. The system must be comprehensive.
4. There must be at least one impossible combination of categories.

The above exposition has been made to show how our system of analysis is both similar to and different from Sinclair & Coulthard's.

- Although (as we shall see in Chapter 4) our system meets the first three criteria above, because we are aware that anything can follow anything in conversation,10 we make no attempts at claims about the well-formedness of strings of categories. Consequently we have no impossible strings.

9 See Stubbs (1983: 131) for a full list of notational conventions.
Our analysis has just two levels: **conversational games** and **conversational moves**. Our games are roughly equivalent to Sinclair & Coulthard’s exchanges, and (unfortunately rather confusingly) our moves are roughly equivalent to their acts (we have no level of analysis between the levels of conversational game and conversational move).

Games differ from *exchanges* in that the former are characterised according to the intended goals they set out to achieve.

Since exchanges belong to the same rank, it is theoretically impossible for them to be nested inside each other. Games, on the other hand, are invariably nested within other games, such nesting being “a natural reflection of a recursive planning structure with goals and subgoals” (Kowtko, Isard & Doherty, 1992: 4). In this respect, therefore, our games perhaps more closely resemble Grosz & Sidner’s *Discourse Segment Purposes* (1986: 178).

At present (and this is the most fundamental difference between our approach and that of true discourse analysts), our analysis is purely descriptive. Unlike discourse analysts whose analytical categories are theory-driven, because we follow a data-driven approach we use Game Coding merely as a system of shorthand to label similar sequences of talk. There is no claim of structural predictive power associated with that Game Coding.

2.1.3 artificial intelligence (conversational games)

As we shall see in Chapters 4 to 8, much of the discussion in this thesis is based on data collated using Kowtko *et al.*’s (1992) system of coding task-oriented dialogues (see also Carletta, Isard, Isard, Kowtko, Doherty-Sneddon, and Anderson, 1996). This system is called **Game Coding** and it seems only fitting that we devote some space to its history.11

Game Coding is an analysis based on goal-directed exchanges called **Conversational Games**. It is based on the Artificial Intelligence (AI) models of Houghton (1986; Houghton & Isard, 1987) and Power (1974, 1979). In these models pairs of “robots” (essentially computer programs12) ‘inhabited’ a simple world consisting of rooms, doors, bolts and (in Houghton’s implementation) blocks. Invested with certain beliefs, perceptions and capable of simple actions these robots achieve simple goals (such as sliding bolts, pushing doors, and movement between rooms). Crucially these goals are achieved through collaborative dialogue represented by what Power (1979: 128) called

11 For a more detailed account, see Kowtko (1997).

12 Called *John* and *Mary* by Power and *Fred* and *Doris* by Houghton.
conversational procedures and Houghton & Isard (1987: 257) termed interaction frames. These are both essentially equivalent to our conversational games. Power’s procedures are “based on a view of conversational structure which resembles that of [ethnomethodologists] Schegloff and Sacks (1973)” (Power, 1979: 111). And because Houghton’s model is “an elaboration of that used in Power, 1974” (Houghton & Isard, 1987: 249), then so too are his interaction frames.

The essence of ethnomethodology inherent in conversational games is the notion of the adjacency pair which groups related utterances (such as query-response; greeting-acknowledgement) into coherent larger units (in Sinclair & Coulthard’s model, the next rank above act, namely move). We discuss adjacency further in §2.1.5.2.2.

Although we will not describe the implementation of either of these AI models in any detail, we do note the four game types used by Houghton & Isard:

Interaction Frames

<table>
<thead>
<tr>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. MAKE_KNOWN</td>
<td>Impart information</td>
</tr>
<tr>
<td>2. FIND_OUT</td>
<td>Obtain information</td>
</tr>
<tr>
<td>3. GET_DONE</td>
<td>Get a favour done</td>
</tr>
<tr>
<td>4. GET_ATTENTION</td>
<td>Call someone</td>
</tr>
</tbody>
</table>

The following quote explicates the AI concept of interaction sufficiently for current purposes:

we may suppose that individuals are able to recognize interaction types and have means of initiating them. Psychologically, being involved in an interaction may be seen as the sharing by individuals of an ‘interaction frame’[conversational game] in which each participant takes on a particular role and allot[s] the complementary role to their interlocutor. … Recognition [of the active game] appears to be essentially automatic; once the initial utterance has received superficial decoding, it is impossible not to try to infer the purpose of the utterance and hence what sort of interaction [game] one is engaged in.

Houghton & Isard (1987: 254)
In other words, it is (in Searle’s terminology) an essential condition of Houghton & Isard’s model that simply “initiating an interaction counts as an attempt to achieve the [intentionally apparent] goal” (1987: 256). And furthermore (as we shall see in our explanation of conversational games in Chapter 4), it is not the form but the function of an utterance that drives the analysis.

2.1.4 cognitive science (risk-effort trade-off)

We use this section only to introduce Merrison’s Maxim. For a detailed empirical examination of cooperation, effort and risk in task-oriented dialogues see Davies (1997).

2.1.4.1 merrison’s maxim

Merrison’s Maxim was first drafted in June 1994, subsequently refined in May 1995 and since then has been quietly lurking on the hard drive of my computer. Although it has once had a public airing (Merrison, 1995), this is the first time it has actually appeared in print. It must be made clear that Merrison’s Maxim is still embryonic; in the meantime, however, we use it in its basic form as a concept that (the author believes) is useful in the analysis of naturally occurring talk.

So much for the preamble. Let us present our minor contribution to the vast theories of talk in interaction. Merrison’s Maxim operates as a five-clause cyclical decision loop.

MERRISON’S MAXIM
(of conversation, communication, collaboration, cooperation, cognition, love and life in general!)

Clause 1

Proceed as if everything is okay until you get evidence to the contrary.

[13] In some respects Merrison’s Maxim might be likened to the Principle of Parsimony (Shadbolt, 1984), the Principle of Least Collaborative Effort (Clark & Wilkes-Gibbs, 1986, Clark & Schaefer, 1989), and the Principle of Relevance (Sperber & Wilson, 1986).
Clause 2
With evidence that things are not going smoothly, determine whether the evidence is indicative of a potential threat to:

(i) Social (Face) \(\text{wants} \)
(ii) Transactional \(\text{wants} \)

If there is an indication of a potential threat to the \(\text{wants} \) in Clause 2, proceed to Clause 3. If overall evidence suggests that \textit{for current purposes} no action is required, take no restorative action and re-enter the loop at Clause 1.

Clause 3
If there is an indication of a potential threat to the \(\text{wants} \) in Clause 2, determine whether either set of \(\text{wants} \) is in conflict with the other. If there is conflict proceed to Clause 4. If not, proceed to Clause 5.

Clause 4
Determine which set of \(\text{wants} \) should be met to best serve \textit{current purposes}. Proceed to Clause 5.

Clause 5
Evaluate the cost-effectiveness of restorative action with respect to:

(iii) Benefits
(iv) Cost/Effort
(v) Likely Effectiveness

If Benefits outweigh Cost/Effort, and Likely Effectiveness is sufficiently high, invoke restorative action and then re-enter the loop at Clause 1.

We leave detailed discussion for \$9.1, but we note here that there are two major aspects to the invocation of Merrison’s Maxim. There can be what we call \textit{active application} of the Maxim at Clause 5 where some trouble is detected and restorative action is taken. Alternatively there is \textit{passive} (or \textit{non-}) \textit{application} of the Maxim, in other words, not going beyond Clause 1 because there is no perceived problem with the interaction.
2.1.5 ethnomoethodology (conversation analysis)

This section discusses conversation analysis (henceforth CA). Given the vast amount of collections of CA literature (including Atkinson & Heritage, 1984; Button & Lee, 1987; Drew & Heritage, 1992; Roger & Bull, 1989 and Sacks, 1995) it is not practical (nor actually necessary for current purposes) to cover even the most illuminating of studies that have been done under the CA rubric over the past thirty years. Instead we offer here a general overview of the discipline. In §2.1.5.1 we deal with methodological principles, in §2.1.5.2 we look at some of the conversational mechanisms that CA has uncovered and in §2.1.5.3 we review some of the literature that has attempted to combine CA with the study of aphasic discourse.

2.1.5.1 methodological principles of CA

CA was developed by a group of sociologists who, in their adherence to Garfinkelian principles (Garfinkel, 1967; Heritage, 1984a) are often called ethnomethodologists. They believe that the proper object of the study of language use is the set of techniques or methods that actual participants use in actual talk. Hence ethno-methodology: the study of 'ethnic' (participants' own) methods. As Taylor & Cameron (1987: 99) note, however:

it is an undeniable although rarely acknowledged fact that, shorn of its ethnomethodological underpinning, CA would be almost indistinguishable from such orthodox models of conversation as that of Edmondson, Stubbs or Coulthard. It is Garfinkelian principles which give life to the distinctive methodology characteristic of CA.

So what are these principles? Garfinkel (1967: 31ff) lists various ethnomethodological ‘policies’ which can be summarised as follows:

(I) the categories of analysis should be those that the participants themselves use;
(II) any occasion whatsoever of practical actions can be legitimately examined;
(III) all properties of actions are accomplished as a kind of work or doing;
(IV) any setting should be viewed as self-organising and accountable;
(V) the rationality of occasional actions and occasional expressions is demonstrable.

We will discuss each of these points to varying degrees.
(I) Followers of CA (Sacks, Schegloff, Jefferson and many many others) are firm believers in data-driven, or in Local’s (1996) terminology, data-respecting theories of the organisation of language. They believe that the analyst must not come to the data with predefined categories but rather must wait for the data to yield the real patterns of categories (methods) that the participants themselves orient to in talk.

(II) Because of Principle I, conversation analysts invest a great deal of effort in making very detailed transcriptions of their data (see, for example, Psathas & Anderson, 1990). As a consequence of buying into Principle I, they get Principle II for free: since analysis is data-respecting, CA necessarily takes into account the fact that the interactions being examined “were produced by the parties for one another and were designed, at least in part, by a reference to a set of features of the interlocutors, the setting, and so on, that are relevant for the participants” (Schegloff, 1987: 209). In other words, unless the data show a specific orientation to such variables as age, sex, social class, education, social relationship, handedness (?) and so on, these variables are, in themselves, assumed to be irrelevant to the analyst’s account of the data – for the true analysis is that of the participants and they have already taken such variables into account in doing their own organisation of the current discourse. However, following Wilkinson (1995a, 1995c), the aim of this thesis is to show that aphasia is indeed a variable that participants orient to in their interactions (hence Doing Aphasia).

(III) We have nothing to say here about Principle III for this, too is an intrinsic part of this entire thesis (hence Doing Aphasia).

(IV) The Principle of accountability is concerned with normative and reflexive socially accountable behaviour. This is what essentially distinguishes CA from discourse analysis. Rather than following internalised rules, ethnomethodologists assume that participants in social actions (actors) design their behaviour with an awareness of its ‘accountability’—in the words of Taylor & Cameron (1987: 102):

aware of the rule relevant to the situation in which they find themselves, they [actors] choose to follow (or not to follow) the rule in the light of what they expect the interactional consequences of that choice to be. For they assume that their co-interactants also know the rule and will be judging their behaviour accountable for its conformity or non-conformity to the relevant rule. Ordinarily, the relevant rules will be followed; but when they are not followed, the co-interactants can be expected to look for the reasons why.

Non-conformity can, of course, result in sanctions being applied by the offended party!

Chapter 2: A View from the Shoulders of Giants
Doing Aphasia | 32
The notion of accountability naturally brings us to that of demonstrability. Actors' actions are reflexively accountable. They are also ordered in a sequence of turns. Thus, simply by producing the next turn in a sequence, a participant in conversation publicly demonstrates their own understanding of the previous utterance. In Sacks' words:

There is one generic place where you need not include information as to which utterance you're intending to relate an utterance to ... and that is if you are in Next Position to an utterance. Which is to say that for adjacently placed utterances, where a next intends to relate to a first, no other means than positioning are necessary in order to locate which utterance you're intending to deal with.

This demonstration of understanding reached (a notion which we will see in §2.1.6.3.1 is also used by Clark) can of course be implicitly or explicitly ratified or, if necessary, corrected by the first participant.14

In conversation analytic terminology this demonstrability is known as the sequential architecture of intersubjectivity. Because of this the conversation analyst “does not have to worry about imposing an analysis on the conversational data, for the conversation itself wears its (or the participants’) own inherent (‘emic’) analysis ‘on its sleeve’” (Taylor & Cameron, 1987: 107).

2.1.5.2 conversational mechanisms uncovered by CA

Some of the major issues that have been investigated by CA include: (1) turn-taking; (2) adjacency pairs; (3) preference organisation; (4) repair mechanisms; (5) pre-sequences; (6) conversational openings and (7) conversational closings. As this thesis makes use of just (1)-(4) we devote the next four subsections to very brief explanations. (For a more detailed account see Levinson, 1983: Chapter 6.)

2.1.5.2.1 turn-taking

One of the defining characteristics of conversation is that it involves at least two participants taking turns. One participant, A, talks and when they stop another...

14 And as we shall see in our discussion of mutations (in §6.2.6, §7.2.6 and §8.2.6) an erroneous demonstration can also be ignored for social/interactional reasons.
participant, B, starts, talks and stops. We then get the following basic pattern of distribution of talk in dyadic conversation: A-B-A-B-A-B.

But on closer inspection, exactly how this pattern arises becomes less obvious, especially when we realise that often less than 5% of talk is delivered in overlap yet at the same time, gaps between one person speaking and another starting are generally in the order of only a few tenths of a second. Furthermore, whatever the system for regulating turns at talk, it seems to work equally well irrespective of the number of participants and irrespective of whether the talk engaged in is face-to-face or via some other medium.

So how is this smooth transition achieved? How are turns exchanged with minimal overlap? And how are turns exchanged with minimal gap? Sacks, Schegloff & Jefferson (1974) propose a set of rules which operate on a turn by turn basis. In other words, they develop a system of local management. They view these rules as a sharing device – i.e. as a way of allocating a scarce resource, viz. the ‘floor’.

It is assumed that a Speaker is initially assigned just one unit of talk (Turn-Constructional Unit (TCU)). A Transition Relevance Place (TRP) occurs at the end of a TCU and it is at these TRPs that Speaker change can occur.

The following rules operate at TRPs (where C = Current Speaker and N = Next Speaker):

Rule 1

(a) If C selects N in current turn, then C must stop speaking, and N must speak next, transition occurring at the first TRP after N-selection

(b) If C does not select N, then any (other) party may self-select, with the first to speak gaining rights to the next turn

(c) If C has not selected N, and no other party self-select under option (b), then C may (but need not) continue (i.e. claim rights to a further TCU)

Rule 2 – applies at all subsequent TRPs

When Rule (1c) has been applied by C, then at the next TRP Rules 1 (a)–(c) apply, and recursively at the next TRP, until speaker change is effected

These rules predict that: (i) only one Speaker will generally be speaking at any time; (ii) overlaps may occur where there are competing next Speakers (as allowed by 1b); and (iii) overlaps may occur at misprojected TRPs. In addition, three types of silence might be distinguished:
• Lapses (non-application of Rule 1)

• Gaps (before application of 1b or 1c)

Extract 2-29 PK & GW

→ *TA And you've avoided the swan right? That's good. (1.0)
Now. Start to come dow-

• Attributable Silence after the application of Rule 1a

Extract 2-30 BA & DN

*TB Does the line go on the side nearest >the ‘W’< or the side nearest the “L”?

→ *TA (2.1)

*TB Where is the- which letter is the line nearest to.

This system of turn-taking relies heavily on the use of techniques whereby Current Speaker selects Next Speaker. One method of next-selection is to employ the first part of an adjacency pair. We explain this term below.

2.1.5.2.2 the adjacency pair (AP)

As we have hinted above (in the Sacks quotation cited by Schiffrin, 1988), adjacency pairs are the driving force behind the notion of sequentiality. They are sequences of two utterances which are:

• produced (normally) by different speakers
• adjacent to one another
• ordered as a first part and a second part
• typed: any given first part requires one of a relatively few types of second parts

The adjacency pair operates according to the following rule:
- **Adjacency Pair Rule:**
 Having produced a first part of some pair, C must stop speaking and N must produce at that point some second part to the same pair.

Examples of adjacency pairs are given in Table 2-2:

<table>
<thead>
<tr>
<th>Part 1</th>
<th>Part 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question</td>
<td>Expected Answer/ Unexpected or Non-Answer</td>
</tr>
<tr>
<td>Request</td>
<td>Acceptance/Refusal</td>
</tr>
<tr>
<td>Invitation</td>
<td>Acceptance/Refusal</td>
</tr>
<tr>
<td>Assessment</td>
<td>Agreement/Disagreement</td>
</tr>
<tr>
<td>Blame</td>
<td>Denial/Admission</td>
</tr>
</tbody>
</table>

Table 2-2: Examples of Adjacency Pairs

But APs need not be strictly adjacent: several *insertion sequences* (sub-games) might first have to be initiated and resolved in order to get the top level task done. In (2-31) we see four questions and four corresponding answers:

(2-31)
C: Can I have a sandwich to take away please.
S: What would you like?
C: What would you recommend?
S: Are you a vegetarian?
C: Yes.
S: Well the Pea & Walnut paté is good.
C: Okay I’ll have one of those then!
S: Right, that’ll be £1.20 please.

But as we see in (2-32) only one of the pairs (Q4-A4) has a directly contiguous sequence of question-answer:
Can I have a sandwich to take away please.

What would you like?

What would you recommend?

Are you a vegetarian?

Yes.

Well the Pea & Walnut paté is good.

Okay I’ll have one of those then!

Right, that’ll be £1.20 please.

What is needed is a weakening of the criterion of adjacency to a notion known as conditional relevance: namely that on the production of a first part, some second part is both immediately relevant and expectable. Furthermore, if a second part is not produced it will be seen to be absent, and anything that is not a second part in next position will be seen to be some preliminary on doing the second part.

potential second parts

However, unless there is a delimited set of second parts to any first, the concept of the adjacency pair will cease to describe the tight organisation at work in conversation. But we find that some first parts have a large range of potential seconds. Take questions: as well as having answers as a second part, they can also (legitimately) be followed by protestations of ignorance, re-routes (“Better ask Jim”), refusals to provide an answer, or challenges to the presuppositions or sincerity of the question. So if we have many possible second parts to questioning first parts, we seem to have undermined the usefulness of the AP. Luckily, we can have our chocolate cake and eat it. All we need is the notion of Preference Organisation which we introduce in the next section.

2.1.5.2.3 preference organisation

Preference Organisation is concerned with the fact that not all potential second parts are of equal standing: the alternatives are ranked, with some seconds being preferred over other seconds. We therefore re-present Table 2-2 above as Table 2-3 (based on Levinson, 1983: 336):
Preferred seconds are not preferred in any psychological sense, however: they are not necessarily related to what the interactants want, but rather to what they expect (though dispreferreds do generally tend to be avoided). A better term for preference would be markedness. Dispreferred seconds are marked by various types of structural complexity. When uttered, they typically exhibit:

(a) a non-minimal turn at talk
(b) some significant delay (e.g. pausing, sound stretch, displacement of response over a number of turns)
(c) some preface marking the dispreferred status (e.g. well ..., token agreement as well as disagreement)
(d) some account why the preferred response cannot be performed
(e) some declination appropriate to the first part (characteristically indirect or mitigated)

Some examples of these markers of dispreferred turns are given in Extract 2-33 and Extract 2-34. We highlight each case of preference marking with the usual arrow but also add a *C comment to show the type of marking (a-d).15

Extract 2-33 MD & ND

*TA003
And c- goi- er () going up t- a- () and er er left there’s a snakes (.) snake

*TB003
→ Mm. (LS)=I haven’t got a snake. Um
*C a, b

15 There are no examples of type (e) in my data.
*TA004
No er

*TB004
I've got an elephant

→
(1.2)
*C b

*TB005
'Have you got an elephant?'*

*TA005
→ 'No!' (chch/hhhhh) (hhh)*
*C having marked the dispreferred status in his previous non-turn, MD can now respond without additional delay

*TB006
/(hhaaaaa) Okay* (.) Let's think

*TA006
Er

*TB007
() Have you got a lake t- to the left of the tent

*TA007
→ >Yes.<
*C the speed of this utterance is typically indicative of a preferred response

*TB008
Right () Um ()

*TA008
"Mhm"
*C recognition of turn in progress = perverse passive?16

*TB009
Is the snake above (.) the lake

*TA009
→ (0.7) Er (.) no er yes it's er t- er er tent and the snake are are er () er (.) er north
*C a, b, c, d

*TB010
() Right. The tent a:nd the snake

*TA010
The tent and (·hh) [~] tent is er due (.) er >(·hhh)< - er the tent and then coming up a-bout one inch is a the snake

*TB011
Right. An inch above the tent.

16 Though we have made no analysis of sequences such as this in this thesis, we feel that we should at least in passing mention that this type of non-minimal turn has been called the perverse passive (Jefferson, 1984b: 206). In essence, it is a way of declining to take a fuller turn at talk. See Perkins (1993: 103ff) for a discussion related to aphasic discourse.
Y- yes

Not an inch above the lake

() No

>Right. Okay!<

Extract 2-34 BA & GW

*TA059
and {deixis gest} west er east again (·hh) {point} because a hills.

*TB059
→ (LS) Oh right I don’t have any hills drawn.=
*C a

*TA060
=Ah:! "(haha)* (·hh)=

*TB060
→ =I don’t thi/nk- (·hh) Um* m
*C d

*TA061
/°Mm mmm°*

*TB060
are the hills (.) just near to the axe - are they quite close to the axe=

*TA062
=(·hh) {measures} Mmmm’=(hh) six inches.

*TB061
(·hh) Oh are they down {point} the bottom left corner?

*TA063
→ {point} Well {nods} more yes, /(.) mm.*
*C a, c

*TB062
/{upward nod} Okay. I* think I’ve got those hills
And they’re right down at the bottom left (.) right south

*TA064
→ (.) {point} Yes but er: {measures from bottom of page to hills = ()} six {iconic gest: distance} inches!
*C a, c

*TB063
From the axe, {nods} yes.=

Chapter 2: A View from the Shoulders of Giants
*TA065
→ No!
*C having already marked the dispreferred status in his previous two turns, BA can now respond without additional delay

*TB064
No?

*TA066
Er {visible point} hills {measures}
/{iconic gest: distance} {measures}*

*TB065
/From the {iconic gest: distance} bottom of the page.*=

*TA067
→ ={nods} 'Yes,' /'' mm mm''*
*C the latching of this utterance is also a clear example of a preferred response

*TB066
/(h)=Oh {head shake} {iconic: negation} right those aren't the* same hills then.

We will return to a discussion of preference organisational phenomena in §9.3.1.

2.1.5.2.4 conversational repair

Talk is vulnerable to a potentially immense variety of troubles relating to speaking, hearing and understanding – from forgetting a word to not hearing something because of a noisy environment or inattention. Because of this abundance of potential trouble sources we might expect there to be (within the organization of conversation) some organised method(s) of dealing with and mitigating those troubles. Such an expectation is indeed correct.

Above we noted the importance to CA of the sequential architecture of intersubjectivity whereby in next turn the understanding of the prior turn can be demonstrated. If, however, the prior turn has not been understood sufficiently for current purposes – if something in the talk provides some obstacle to subsequent talk – then work will need to be done to deal with that trouble. This work is known as repair: it is highly organised and has been the focus of much CA research (especially since Schegloff, Jefferson, & Sacks, 1977).

In interactions between a Speaker (S) & Hearer (H) there are two possible sources of carrying out repair: S (self) or H (other). Self-Repair and Other-Repair are, however, neither structurally equivalent events nor equally weighted. Indeed, conversational organisation favours self-repair. Before we continue we must make two major points:
(1) **Repair is not equivalent to correction**

- repair can be initiated without replacement
- repair can be initiated where there is no detectable error

(2) **Repair is not inevitable**

- repair can fail to be initiated where there is detectable error

We will exemplify each of these points below:

repair is not equivalent to correction

- *Repair can be initiated without replacement*

Extract 2-35 HL & GW

*GW Where's the well?

*HL Er (3.1) "(hh)" (3.2) "thE erm" (LS) (5.4) Mm (0.8)

"the well" (1.3) "is" (7.4) right under the sheep

In this example there is no part of HL's utterance that can be thought of as 'being replaced' with some other part. Nevertheless, his word finding difficulties do constitute an obstacle to subsequent talk (which he eventually self-repairs).17

- *Repair can be initiated where there is no detectable error*

Extract 2-36 HL & GW

*GW Right, you go around the house and where is

the pine- and then do you go to the pine tree after the house?

*HL No.

In this example the utterance is cut off mid-flow and reformulated despite there being no detectable error prior to the cut-off (we will see below that this is a case of what is known as recipient design).

17 Interestingly, all but one of these intra-sentence pauses exceed the "standard maximum tolerance" of approximately one second that Jefferson proposes (1989). It would therefore appear that aphasia might indeed be a variable that speakers orient to in their conversations.
repair is not inevitable

• Repair can fail to be initiated where there is detectable error

Extract 2-37 PK & DN

 *PK Well okay bring it round in a circle and you
 stop just about an inch which [=width] above the letter ‘h’ okay?

 →

 *DN >Oh d’you say there’s another house<

 *PK "Hmm?"

 *DN >Did you say there was another house<

Here, despite there being a clear error of lexical substitution (which is said, but width was intended), there is no attempt at repair (by either participant). But that is probably because of the absolute clarity of the error (paradigmatically, there is very little option as to what can fill the slot between stop just about an inch and above the letter ‘h’).

Indeed, as Schegloff et al. (1977: 380, emphasis added) note:

 When the hearing/understanding of a turn is adequate to the production of correction by ‘other’, it is adequate to allow production of a sequentially appropriate next turn. Under that circumstance, the turn’s recipient (‘other’) should produce the next turn, not the correction (and, overwhelmingly, that is what is done).

repair initiation versus repair completion

We have seen that the repair of the repairable or trouble source can be initiated either by Self or Other, but the resolution or completion of the repair (the repairing of the trouble source) can also be done by self or other, or indeed, by neither! These possibilities lead to a six-way categorisation of repair types as presented in Table 2-4:
<table>
<thead>
<tr>
<th>Repair Initiated By</th>
<th>Repair Done By</th>
<th>Repair Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self</td>
<td>abandoned</td>
<td>(I) Self-Initiated Failure</td>
</tr>
<tr>
<td>Other</td>
<td>abandoned</td>
<td>(II) Other-Initiated Failure</td>
</tr>
<tr>
<td>Self</td>
<td>Self</td>
<td>(III) Self-Initiated Self-Repair</td>
</tr>
<tr>
<td>Self</td>
<td>Other</td>
<td>(IV) Self-Initiated Other-Repair</td>
</tr>
<tr>
<td>Other</td>
<td>Self</td>
<td>(V) Other-Initiated Self-Repair</td>
</tr>
<tr>
<td>Other</td>
<td>Other</td>
<td>(VI) Other-Initiated Other-Repair</td>
</tr>
</tbody>
</table>

Table 2-4: Six-way categorisation of repair types

Each of these types are exemplified in Extracts 2-38 to 2-43. In each case the first arrow marks the initiation of the repair and the second marks its resolution (or abandonment). The course between these two points is known as the *repair trajectory* (Schegloff et al., 1977: 369).

Extract 2-38 GM & MB: Type I: Self-Initiated Failure (SI-F)

→ *GM* And when you get to (.) his (2.1) shoes (.)
 or whatever you call them,

→ *MB* = (LS) (.) >> "Do you-"<< I was wondering - do you - before you get to the chicken do you have (.) a tree or it’s called a *pine* on here.

GM Yes but that’s miles away.

Extract 2-39 MD & MB: Type II: Other-Initiated Failure (OI-F)

→ *MB* Ar- are we I’m just wondering are we heading towards a lighthouse (.) "at all?? (1.3) /"You don’t have"<

→ *MD* /*What ho*use X X* lightho/use*

→ *MB* /Oh it* doesn’t matter

Extract 2-40 CM & MB: Type III: Self-Initiated Self-Repair (SI-SR)

→ *CM* >"(hh)< You have a ch- you’re - mark in a chicken {point} directly left (.) maybe two centimetres to the left of the gate.
Extract 2-41 GM & GW: Type IV: Self-Initiated Other-Repair (SI-OR)

→ *GM And have you got L- (.) °no wait E. L.° L? No. °E L.° L?
 GW (2.0) L/:.
 GM /L (1.4) A-M-I-N-G(~) O (.) It’s a kind of=

→ *GW =Flamingo=
 *GM =Yeah=
 *GW =Yeah I’ve got a flamingo
 *GM Yeah
 GW //=Mhm
 GM //="Well you’re (.) you’re going past them right?=
 GW =Aha

Extract 2-42 MD & MB: Type V: Other-Initiated Self-Repair (OI-SR)

 MB I’ve got a noose. (1.0) /Um
→ *MD /A what?*
 → *MB A noose – a er you know a thing that you’re
 /hang-* hung - ‘hh /hanged with*
 MD /Oh! /I haven’t* got
 *MB N(h)o hahaha

Extract 2-43 HL & GW: Type VI: Other-Initiated Other-Repair (OI-OR)

 *HL You go right down to the hen
→ *GW The chicken, a/ha*
 *HL /The chicken "(ha/haha)"**
 *GW /Aha (ha*haha) Okay.

discussion of repair

Self-initiated repair and other-initiated repair are structurally dissimilar events. Self-initiated repairs:
• can occur within the current turn, at the TRP of the current turn or in third turn
• are initiated by techniques such as: cut-offs; sound stretches; *ers* and *uhms*; pauses; and non-verbal cues
• typically involve a candidate repair
• are generally successful within the current turn

Other-Initiated Repairs, on the other hand:

• almost invariably occur in next turn after trouble-source (as opposed to subsequently)
• don’t interrupt S – indeed they are regularly held off until after the TRP of the trouble source turn (thereby providing S with a further opportunity to do a self-initiated repair)
• are initiated by trouble source locating techniques (which Levinson, (1983: 339) calls Next Turn Repair Initiators or NTRIs) such as the following, with weaker NTRIs often being interrupted (themselves repaired) in favour of a stronger type of NTRI (Schegloff *et al.*, 1977: 369, fn 15):

WEAK

\[
\begin{align*}
\text{Hearing Checks: Huh? Hmm? What?} \\
\text{Wh-questions: who; where; when} \\
\text{Partial repetition of trouble source plus a question word} \\
\text{Partial repetition of trouble source} \\
\text{(You mean +) candidate repair (one that can be rejected)}
\end{align*}
\]

STRONG

• overwhelmingly yield Self-Repairs
• tend to be modulated or marked by features such as: uncertainty; jokes; laughter (indicating repair is not intended as face-threatening (see §2.1.7.1))
often take multiple turns to get resolved:

Extract 2-44 GM & GW

*GM You’re going past them.\(^{18}\)

*GW Aha

*GM And then when you get to his sh- sh- shoes

→ *GW Shoes?=

*GM = ‘Yeah’ well his (.) what do you call them? (.) Erm (1.8)

*GW (LS) Hills?=

*GM = No

GW No/:

GM / (LS) No th- this kind of (3.4)

*GW “Erm” (3.1) (LS) I don’t think I’ve got what you’re describing

/X X*

GM /(h) Well you’ve got - you’ve got erm (.) I see I can’t say- B-I-R-G

*GW Bridge

*GM No

*GW No

*GM B-

*GW Oh (.) ‘B-’

*GM I-

*GW R:-

*GM ‘R-’ (.) G (.) No I- see I can’t. See that’s what happens to me now=

*GW =(hhehe)=

*GM = I can only go- =

*GW = “Oh /right” *

*GM /This * (.) this G-L-M-I-N-G-O

*GW Yeah the flamingo=

\(^{18}\) This dialogue follows on immediately from Extract 2-41. Here GM is referring to the flamingo.
*GM = Yeah
*GW = Mhm

GM = Well you’ve come down to there /and you’ve got his (1.8) /(.) X*

→ *GW /*Aha*/ * /His feet?*

*GM (.) Yeah
*GW = Aha=

*GM = Right? (.) Well you walk- (1.4) when you get to them=

*GW = Aha=

*GM = you walk (.) across

the dispreferred status of other-initiated repair

Having demonstrated the differences between self-initiated and other-initiated repair, we can now show how conversational organisation favours self-repair. There are four positions where (virtually) all repairs get initiated.19

- **Turn 1:** The turn containing the repairable
- **TRP:** The TRP after the turn containing the repairable
- **Turn 2:** The first turn after the turn containing the repairable
- **Turn 3:** The second turn after the turn containing the repairable

The types of repair that *typically* occur in these positions are as follows:

- **Turn 1:** SI-SR
- **TRP:** SI-SR
- **Turn 2:** OI-SR & OI-OR
- **Turn 3:** SI-SR

19 Though see Schegloff (1992) for further discussion.
Given that others tend not to interrupt the current Speaker in order to initiate repair work, *ceteris paribus*, we find that any potential repair is more likely to be self-initiated and even more likely to be a self-repair. Other-initiation not only displaces the next sequentially implicated turn, it also makes the repair interactional business in its own right, which consequently highlights the breakdown (at least to some degree) of the interaction in progress and with that, the non-competence of the producer of the trouble source.

It should therefore not be particularly surprising that displacement of the sequentially implicated next turn is dispreferred (as evidenced by its marked nature). Indeed it is so dispreferred that grammaticality of the current sentence is often subordinated to the sequential requirement to repair within the turn containing the trouble source.

This avoidance of other-repair leads the Speaker to design their utterance for their recipient, behaviour which is termed – oddly enough – *recipient design*. For Sacks *et al.*, *recipient design* refers “to a multitude of respects in which the talk by a party in a conversation is constructed or designed in ways which display an orientation and sensitivity to the particular other(s) who are the co-participants” (1974: 727). This involves monitoring the *form* and *content* of an utterance and self-repairing when either is not entirely appropriate for the intended message. In Extract 2-45 below, DN self-repairs his utterance (changing from a statement to a query about the location of start) – i.e. he designs his turn at talk for his recipient (see discussion of simplification in §5.2.3.2, §6.2.5.1 and corresponding sections in Chapters 7 and 8).

Extract 2-45 BA & DN

BA and (1.7) [kwoit] {head shake} (2.3) {iconic gest: talking} difficult to speak to/day. Sometimes.

*DN */"Right."* (.) I think I’ve go-* I think I’ve got the start

mark on mine ne-* is that next to the van where the start is*

*BA */{visible point: top of page} {trace}/* Yes. {point}=

We conclude this discussion of the dispreferred nature of other-initiated repair with two quotations (with emphasis added) from Schegloff *et al.* (1977: 377 and 1977: 381 respectively):

20 Levelt (1989: 460f) discusses recipient design under the self-monitor’s questions of: *Is this the message/concept I want to express now?*, and *Is this the way I want to say it?* Interestingly for us, he also includes *Is what I am saying up to social standards?*
In sum: *self-initiated repairs yield self-correction*, and opportunities for self-initiation come first [sequentially]. *Other-initiated repairs also yield self-correction*; the opportunity available to other to initiate repair is used to afford speaker of a trouble source a further opportunity to self-repair, which he takes. This combination compels the conclusion that, although there is a distinction between self-correction and other-correction, *self-correction and other-correction are not alternatives*. Rather, the organization of repair in conversation provides centrally for self-correction, which can be arrived at by the alternative routes of self-initiation and other-initiation – routes which are themselves so organized as to favor self-initiated self-repair.

It appears that other-correction is not so much an alternative to self-correction in conversation in general, but rather a device for dealing with those who are still learning or being taught to operate with a system [of conversational organisation] which requires, for its routine operation, that they be adequate self-monitors and self-correctors as a condition of competence. It is, in that sense, only a *transitional usage*, whose supersession by self-correction is continuously awaited.

interactional reasons for repair

Before finally leaving our discussion of repair, we should note that what might look like repair may in fact be explained by the Hearer’s behaviour:

• parts of an utterance that are produced in overlap are often *recycled* so that the talk eventually emerges in a noise-free environment

• Goodwin (1981: *passim*) has shown that Speakers will also recycle talk in order to gain the gaze of their Hearer.

2.1.5.3 CA in the study of aphasic discourse

Here we point to some of the literature that has attempted to use CA methodology in the study of aphasic discourse. However, because these studies are not directly related to this thesis, and because of space limitations, we can outline them only briefly.
The joining of CA with aphasiology is a relatively recent marriage\(^{21}\) and much of the literature involves the study of repair, be it in interactions between dysphasic individuals and (i) their carers (Lubinski et al., 1980; Conway, 1990; Perkins, 1993; Ferguson, 1994); (ii) their Speech and Language Therapists (Lubinski et al., 1980; Barnsley, 1987; Perkins, 1993; Wilkinson, 1995a, 1995b, 1995c); (iii) strangers (Perkins, 1993; Ferguson, 1994) or even (iv) other dysphasic individuals (Fleming, 1989).

Essentially, studies such as these suggest that dysphasic individuals employ different mechanisms to repair breakdowns in conversation than those found in non-aphasic discourse. In addition, Milroy & Perkins (1992) suggest (as does this thesis) that despite these differences, both aphasics and non-aphasics adhere to the principle of least collaborative effort (Clark & Wilkes-Gibbs, 1986; Clark & Schaefer, 1989): namely that dialogue partners attempt to minimise the total effort invested in a given contribution.\(^{22}\)

Other literature deals with the social aspects of aphasic discourse (Goodwin, 1994; Klippi, 1994; Wilkinson, 1995c). It is this research – especially that of Wilkinson – that bears the closest relation to the current thesis. Consequently we devote the rest of this section to an account of Wilkinson’s contribution to aphasiology.

To repeat a point made above, unless conversational data show a specific orientation to variables such as age, sex, social class and so on, these variables are, in themselves, assumed to be irrelevant to the conversation analyst’s account of the data. However, in his (1995c) paper, Wilkinson addresses the issue of whether the variable of aphasia can indeed be seen to be oriented to as a problem of interaction. The particular data that concerns him involves a recurrent pattern in aphasic-therapist talk:

In the environment of some display of non-competence in talk the patient laughs, thus simultaneously acknowledging the phenomenon and making light of it. In response, however, the therapist appears resistant to fully affiliate with the patient’s laughter or to display an orientation to the incident by other means.

Wilkinson (1995c: 136)

Wilkinson notes that the therapist can produce (i) a serious response and ignore the patient’s laughter, or (ii) laughter which is carefully calibrated to be less than the patient’s. Wilkinson’s explanation for this data is that at such points within the

\(^{21}\) Only as recently as 1997 do we find the first major Speech and Language Therapy Assessments being published which apply CA methodology to aphasia and other cognitive impairments (Perkins, Whitworth and Lesser, 1997a, 1997b).

\(^{22}\) We discuss this principle in §2.1.6.3.2.
interaction “issues of non-competence have come to the conversational surface and have the potential to become the interactional business, generating sequences of their own. The activity of the therapists in these interactions appears to be oriented to trying to avoid this” (1995c: 139).

This patterning of data becomes more notable because it does not obtain in interactions between non-aphasics. Wilkinson is therefore led to conclude that aphasia is indeed a relevant factor for participants engaged in aphasic discourse. He ties this in with a social constraint that Sacks calls doing being ordinary (1995: Volume II: 216):

Whatever we may think about what it is to be an ordinary person in the world, an initial shift is not to think of an ‘ordinary person’ as some person, but as somebody having as their job, as their constant preoccupation, doing ‘being ordinary.’ It’s not that somebody is ordinary, it’s perhaps that that’s what their business is. And it takes work, as any other business does.

But most importantly of all, for Sacks, and then Wilkinson, and now for us, an ordinary person is:

the way somebody constitutes themselves, and, in effect, a job that they do on themselves. They and the people around them may be coordinatively engaged in assuring that each of them are ordinary persons, and that can then be a job that they undertake together, to achieve that each of them, together, are ordinary persons.

(ibid.)

Although non-aphasics orient to displays of non-competence by other non-aphasics (see Jefferson, 1984a, 1987) they can do so because that non-competence is only transitory. In cases of aphasic discourse, on the other hand, displays of non-competence are displays of what Wilkinson calls “a symptom of a ‘deviant identity’” (1995c: 142) and hence, both participants strive to keep the interaction and the participants “as non-problematic and ‘ordinary’ as possible” (1995c: 143).

Wilkinson concludes his paper with a comment to the effect that his analysis “opens up for investigation other ways in which participants can be seen to be orienting to aphasia as an interactional problem which necessitates work on an on-going turn by turn basis” (1995c: 143f). This thesis constitutes such an investigation.

23 An extended version of this paper is to be found in Sacks (1984b).
2.1.6 psychology of language: a clarkian perspective

Clark’s theories and principles of language use pervade this whole thesis. Consequently this section outlines his philosophies so that when we encounter them in later discussions the reader is already acquainted with the terminology.

2.1.6.1 language as joint action

Clark’s overriding philosophy of language is that it is a coordinated and collaborative activity that people do – in his own words, “Language use is really a form of joint action” (1996: 3, original emphasis). This clearly begs some discussion of what Clark and his co-workers (Clark, 1996; Clark & Brennan, 1991; Clark & Marshall, 1981; Clark & Schaefer, 1987, 1989; Clark & Wilkes-Gibbs, 1986) mean by joint action.

Intentional acts are usually seen as one of two types: individual acts that are done by an individual (e.g. shaking a stick, playing a piano or viola solo) or joint acts which are done by an ensemble of people (e.g. shaking hands, playing a viola sonata). But Clark argues that joint actions cannot be reduced simply to a sum of individual actions for there are actually two types of individual action, namely: Autonomous Individual Actions (those done independently of other people) and Participatory Individual Actions (those done as an individual’s part of a joint action).

As Clark says “Autonomous and participatory actions are distinguished by the intentions behind them” (1996: 61). The following characteristics distinguish between individual and joint actions (ibid.):

Individual A is doing individual action k if and only if:

0. the action k includes 1;
1. A intends to be doing k and believes that 0;

Ensemble A-and-B is doing joint action k if and only if:

0. the action k includes 1 and 2;
1. A intends to be doing A’s part of k and believes that 0;
2. B intends to be doing B’s part of k and believes that 0.

24 This section is not intended to be a fully exhaustive exposition of Clark’s prolific works. For more detailed accounts the reader should see Clark (1992), (1996) and the references therein.
So joint actions are acts performed by an ensemble of individuals performing not autonomous actions but rather participatory actions which only remain participatory so long as each participant continues to believe that each participant is indeed participating by doing their part of the joint action. To continue with the musical metaphor, let us assume that my wife and I are playing Beethoven’s Romance in F major (transcribed for viola and piano). After eight bars the viola has eleven bars rest. When Sally continues with her piano part, our act only remains a joint action on the assumption that I will enter appropriately in bar twenty. If in the meantime I have wandered off to boil the kettle for a cup of coffee, although Sally is doing her part of the joint action, and furthermore assumes that I am still going to do my part of the joint action, if I have no intention of getting back in time for my entry (say, for example, I have decided to actually make the coffee), then the duet is no longer a duet, but rather just Sally playing the piano part, and thus the action is no a longer joint one.

2.1.6.2 common ground

But back to language. Clark & Schaefer (1989: 260) note that theories of discourse tend to assume three things:

1. **Common Ground** (or ‘shared/mutual/common/joint knowledge’) participants in discourse presuppose a certain common ground

2. **Accumulation of Common Ground**
 in the process of discourse participants try to add to their common ground

3. **Unilateral Action**
 accumulation takes place by the Speaker saying the right sentence at the right time.

Clark concurs with points (1) and (2) but although many theories of discourse (such as the Code Model described by Sperber & Wilson, 1986: 2ff) assume the truth of (3), it is with this assumption of the automatic and unilateral accumulation of Common Ground that Clark disagrees. Some models make the weaker assumption that the content of an utterance is added to common ground unless there is evidence to the contrary (Grosz & Sidner, 1986: 185; Stalnaker, 1978: 323). Clark, on the other hand, believes that this accumulation is a truly collaborative affair; the participants should take not only joint action but positive joint action to see that the true content of an utterance is added to the common ground. This process of accumulation is referred to as grounding.
Let us make a small digression: while we agree in principle with Clark, we are aware (see, for example, Coupland, Giles & Wiemann, 1991) that human interaction is often the home to much misunderstanding, accidental or otherwise. We are also aware that interactants might actually actively choose not to participate in immediate positive grounding (see our discussion of Merrison’s Maxim in §2.1.4.1 and §9.1).

We thus allow for the possibility of a weaker claim. Instead of stating that the content of an utterance is added to common ground unless there is evidence to the contrary we would suggest that interactants might only assume that that content has been added to common ground (sufficient for current purposes) unless there is evidence to the contrary. Having made this point, we will return to our discussion of Clark.

Let us illustrate Clark’s point with a slightly adapted example about Ann and Bob from Clark & Schaefer (1989: 261f). Trying to assert that Connie is leaving her job, Ann says to Bob:

(2-46) She’s leaving

But saying (2-46) doesn’t automatically add to the content of that assertion to the common ground. What if Bob misheard (2-46) as

(2-47) She’s sleeping

Or what if Bob thinks (2-46) refers to Bonnie. What if he thinks Connie is not leaving her job but leaving her husband (Ronnie) – or even Bonnie leaving Donny? What if ...?

In all these cases Ann’s beliefs and common ground will change in one way and Bob’s in another. As Clark & Schaefer (1989: 261f) note, instead of accumulating common ground, “their beliefs will diverge, setting the stage for yet further divergences” which might have their own potentially dangerous consequences (for example if Bob approaches Ronnie and says “Sorry to hear your wife’s leaving you!”).

What is necessary, say Clark & Schaefer (1989), is for Ann and Bob to take positive action to see that the true content of Ann’s assertion is added to common ground. We have already noted that this process of accumulation is referred to as grounding, and this grounding is achieved through a collective process called contributing to discourse (Clark & Schaefer, 1987, 1989; Clark & Wilkes-Gibbs, 1986; Wilkes-Gibbs, 1986).

\[25\] Indeed the radical sceptic might even dare to raise the issue of whether we do in fact understand our fellow communicators at all (Taylor, 1992: 3).
2.1.6.3 contributing to discourse

Many units of talk (words, phrases, clauses, sentences) are created autonomously by Speakers, but contributing to discourse is a participatory action created collectively by all participants.26 Thus we can now substitute k in the schema for joint actions above with contributing to discourse:

Ensemble A-and-B is doing joint action contributing to discourse if and only if:

0. contributing to discourse includes 1 and 2;
1. A intends to be doing A’s part of contributing to discourse and believes that 0;
2. B intends to be doing B’s part of contributing to discourse and believes that 0.

In addition, contributing to discourse requires the following:

(1) the contributor must specify or present the content of their contribution
 (because we are not telepathic)

(2) the partners will have to register or accept that content
 (unless we are ready to suffer the consequences)

Furthermore, Clark maintains that since agents doing an action require evidence that they have succeeded at that action, interactants will consequently aim to reach the Principle of Joint Closure whereby “the participants in a joint action try to establish the mutual belief that they have succeeded well enough for current purposes” (Clark, 1996: 226). This principle is also sometimes referred to as the Grounding Criterion (Clark & Schaefer, 1989: 262).

This presentation and acceptance (grounding) of some content creates a unit called a contribution which is divided into two phases (for participants A and B) as follows:

- Presentation Phase: A’s initial presentation of content
- Acceptance Phase: A & B’s mutual acceptance of that content

These phases are more formally defined by Clark & Schaefer (1989: 265):

26 We must note that although participants may share the dominant goal (be it making music by playing a duet or transferring information by means of a lecture), there is usually a division of labour among them. When I play viola and piano duets with my wife my responsibilities as the soloist are very different from my wife’s responsibilities as my accompanist. And when I give my lectures on joint meaning it’s me, qua lecturer, who does most of the work. The point is, however, that these activities (duet playing and lecture giving) are no less joint activities because of the division of labour.
Presentation Phase
A presents utterance \(u \) for B to consider. He does so on the assumption that, if B gives evidence \(e \) or stronger, he can believe that B understands what A means by \(u \).

Acceptance Phase
B accepts utterance \(u \) by giving evidence \(e' \) that he understands what A means by \(u \). He does so on the assumption that, once A registers evidence \(e' \) he [A] will also believe [the degree to which] B understands.

2.1.6.3.1 evidence of understanding
According to Clark & Schaefer’s (1987, 1989) model, contributions tend to be finally accepted by the other participant via one of the following methods:

WEAK

1. Continued attention. B shows he is continuing to attend and therefore remains satisfied with A’s presentation.
2. Initiation of the relevant next contribution. B starts in on the next contribution that would be relevant at a level as high as the current one.
3. Acknowledgement. B nods or says “uh huh,” “yeah,” or the like.
4. Demonstration. B demonstrates all or part of what he has understood A to mean, for example with a paraphrase of A’s contribution.
5. Display. B displays verbatim all or part of A’s presentation.

STRONG

Figure 2-2: Levels of Evidence of Understanding

But every action by which one person means something for another person – every signal that one person directs towards another – whether it be verbal or non-verbal, *is presented for the other person to consider*. Thus, every signal will belong to the presentation phase of some contribution (Clark & Schaefer, 1989: 266). In this way, then, the acceptance of an utterance is recursive: B’s evidence in response to A’s presentation is itself a presentation which in its turn needs to be accepted. However, the generation of infinitely long contributions such as:

\[\text{27 'Evidence of understanding' is also known as 'demonstrations of understanding reached'. We must note, however, that our data suggest that the strengths assigned to demonstrations and displays are not entirely unequivocal. See our discussions of mutation moves in §6.2.6, §7.2.6 and §8.2.6.} \]
Example 2-48 Marjorie & Joan

Marjorie: The acceptance phase is actually recursive.
Joan: So it too needs to be accepted?
Marjorie: Yeah
Joan: I see
Marjorie: Right
Joan: Okay
Marjorie: Mhm
Joan: Mhm etc!

is blocked by the Strength of Evidence Principle (Clark & Schaefer, 1989: 268):

Strength of Evidence Principle
The participants expect that, if evidence e_0 is needed for accepting presentation u_0, and e_1 for accepting the presentation of e_0, then e_1 will be weaker than e_0.

So eventually, every acceptance will end in the other participant either producing their next relevant turn or with them giving the current Speaker their continued attention. In Extract 2-49 we provide a tangible example of presentation and acceptance phases.

Extract 2-49 MD & MB

A035 And have you got a: Eski- Eskimo?
B045 No. I’ve got a noose. (1.0) /Um*
A036 /A what?*
B046 A noose – a er you know a {hanging gesture} thing that you’re /hang-* hung - (hh) /hanged with*
A037 /Oh!*
A038 /I haven’t* got
B047 N(h)o hahaha (-hh) It’s - it is it’s () it’s directly south of igloo um about as you say about probably an inch or half an inch (0.9)
B’s utterance of *I’ve got a noose* in B045 is not finally grounded until A says *Oh!* in A037. Thus the two (top level\(^{28}\)) phases related to this exchange are given below:

Presentation Phase

B045 I’ve got a noose. (1.0) /Um*

Acceptance Phase

A036 /A what?*

B046 A noose – a er you know a {hanging gesture} thing that you’re
 /hang-* hung - (-hh) /hanged with*

A037 /Oh!*

Generally speaking, the more complicated A’s presented utterance, or the more demanding the current purpose, the more evidence A will need to be convinced that B has understood. Of course, it is also possible that B does not immediately understand A’s presentation. We take up this possibility in the next section.

2.1.6.3.2 evidence of trouble in understanding

Although this thesis makes no direct use of *Evidence of Trouble in Understanding*, for sake of completeness we nevertheless provide a brief account of Clark & Schaefer’s (1987) proposals. They suggest that non-understanding can occur because B does not notice that A has made an utterance, or because he noticed but did not properly hear it, or maybe he heard it but did not fully understand it. Clark & Schaefer (1987: 22) represent these possibilities as four states (each successive state stronger than the last):

- **State 0**: B didn’t notice that A uttered any *u*
- **State 1**: B noticed that A uttered some *u* (but wasn’t in state 2)
- **State 2**: B correctly heard (recognised) *u* (but wasn’t in state 3)
- **State 3**: B correctly understood what was meant by *u*

\(^{28}\) Of course, A’s query in A036 is a presentation in its own right which also is not finally grounded until A says *Oh!* in A037.
They explain these states with reference to A's hypothetical utterance of *I just saw Julia*. If B has not correctly understood this utterance (B is not entirely in State 3) then he should let A know what state he is in, and for which parts of the utterance. It is then up to A to provide the necessary input to get B to State 3. Clark & Schaefer (1987: 23) provide the following seven techniques (ranked from weakest to strongest) for initiating the acceptance phase of the presentation of *I just saw Julia*:

For the word *Julia*, B might signal his state of understanding in these ways:

1. B asserts he is in state 1: “I didn’t hear the last word.”
2. B presupposes he is in state 1: “You just saw what?”
3. B displays he is in state 2: “You just saw Julia, [but Julia who?]”
4. B asserts he is in state 2: “Yes, [but Julia who?]”
5. B presupposes he is in state 2: “Julia who?”
6. B asserts he is in state 3: “Right.”
7. B presupposes he is in state 3: “And how is she?”

Displaying the appropriate evidence of (trouble in) understanding, is vital if the participants are to efficiently establish the mutual belief that they have succeeded well enough for current purposes (i.e. the *Grounding Criterion*). Furthermore, Clark & Wilkes-Gibbs propose that “speakers and addressees try to minimize collaborative effort” (1986: 26, original emphasis). They call this proposal the **Principle of Least Collaborative Effort** which we state below (taken from Clark & Schaefer, 1989: 269):

Principle of Least Collaborative Effort

participants in a contribution try to minimize the total effort spent on that contribution – in both the presentation and the acceptance phases.

Generally, the more effort spent designing the right presentation, the less effort is required in its acceptance. The problem of course, is how best to distribute that effort in order to minimise it, and that may depend on features of the situation.

Combining the various states of understanding with the principle of least collaborative effort leads Clark & Schaefer (1987: 23) to posit the following rule:
Strongest Initiator Rule

Choose the strongest initiator that is consistent with understanding to a criterion sufficient for current purposes.

This rule for acceptance phase initiators fits well with the observations of Schegloff et al. (1977) discussed in §2.1.5.2.4, namely that (i) the various techniques for initiating other-repair (next turn repair initiators (NTRIs)) are ranked according to their relative power to locate the precise nature of the trouble source and (ii) that there is a preference for stronger NTRIs over weaker ones in that the weaker NTRIs are often self-interrupted and substituted with a stronger one. Schegloff et al. also provide data to show that in cases where multiple initiating sequences are necessary for repair, the NTRIs are used in order of increasing strength.

In A036 in Extract 2-49 above, A initiates the acceptance of (initiates repair on) B’s presentation in B045 (I’ve got a noose) with A what? (partial repetition plus question word) which presupposes that he has noticed, but not correctly heard B’s utterance (i.e. it presupposes that A is in State 1).29 This subsequently leads “to a more precise identification of the referent” as all cooperative repairs “must” (Clark & Marshall, 1981: 48) and hence to the eventual acceptance with A’s Oh! in A037.

2.1.6.4 clark summary

Clark’s theories have had a considerable influence on this thesis, notably, his assumptions that language use is a collaborative affair involving joint action; that the accumulation of common ground is an active process; that interactants expect positive evidence to indicate the degree to which they have been understood; and that such evidence of understanding is organised according to a well defined and limited hierarchy. How we integrate Clark’s philosophy into our overall thesis will become evident as the discussion proceeds.

29 Without the article, A’s utterance would have been a weaker initiator (viz. What?) indicating A’s need for a complete repetition of B’s utterance. In such a scenario not only would A have been unsure of the entity, he also would have been unaware of what B had to say about it.
Although this section has been titled sociology, it has been reserved for a discussion of the work of Goffman. Specifically, we deal here with Goffman’s notion of face (Goffman, 1967b) which can be seen as being at the very heart of this thesis.

Goffman defines face as “the positive social value a person effectively claims for himself by the line others assume he has taken during a particular contact”, where a line is “a pattern of verbal and nonverbal acts by which [a participant] expresses his view of the situation and through this his evaluation of the participants, especially himself” (1967b: 5). Importantly for us, a person is said to be in wrong face “when information is brought forth in some way about his social worth which cannot be integrated, even with effort, into the line that is being sustained for him” (1967b: 8) and the following quote from Goffman (ibid., emphasis added) highlights the area of our particular interest:

When a person senses that he is in face, he typically responds with feelings of confidence and assurance. Firm in the line he is taking, he feels that he can hold his head up and openly present himself to others. He feels some security and some relief – as he also can when the others feel he is in wrong face but successfully hide these feelings from him.

It is this wrong face scenario that we will mainly be discussing in the course of this thesis. Specifically, we will be concerned with the work which non-aphasic interactants do to save the face of (or give face to) their dysphasic interlocutors. This work, known as face-work, “serves to counteract “incidents” – that is events whose effective symbolic implications threaten face” (Goffman, 1967b: 12f). Brown & Levinson (1987: 65) call these incidents which “by their nature run contrary to the face wants of the addressee and/or the speaker” (and hence threaten face) Face-Threatening Acts (FTAs). In Goffman’s words, such face-work prevents a bad moment marring “an otherwise euphoric situation” (1967d: 100) and according to him, it is not merely a matter of social nicety, but rather a sacred and ritualistic undertaking, as evidenced by the following three quotations:

30 This version of the paper (taken from a collection of Essays on Face-to-Face Behavior) is dated 1967, but the date of the original is 1955. Goffman was in fact a contemporary of Garfinkel (Goffman obtained his PhD in 1953, Garfinkel in 1952).

31 “Following Chinese usage, one can say that “to give face” is to arrange for another to take a better line than he might otherwise have been able to take, the other thereby gets face given him, this being one way in which he can gain face.” (Goffman, 1967b: 9). ‘Giving face’ is also known as paying face.
just as there is no occasion of talk in which improper impressions could not intentionally or unintentionally arise, so there is no occasion of talk so trivial as not to require each participant to show serious concern with the way in which he handles himself and the others present

(1967b: 33)

Many gods have been done away with, but the individual himself stubbornly remains as a deity of considerable importance.

(1967c: 95)

One’s face, then, is a sacred thing, and the expressive order required to sustain it is therefore a ritual one.

(1967b: 19)

There are essentially two types of face-work: *avoidant* and *corrective*. As Goffman notes, “The surest way for a person to prevent threats to his face is to avoid contacts in which these threats are likely to occur” (1967b: 15). But avoidance is not always practical, and sometimes it is difficult to overlook face-threatening behaviour. In such situations Goffman suggests that “the participants are likely to give it accredited status as an incident – to ratify it as a threat that deserves direct official attention – and to proceed to try to correct for its effects” (1967b: 19).

It is this corrective type of face-work which will be discussed in this thesis. It has two manifestations: (i) tactful blindness to potentially embarrassing incidents “where the person acts as if an event that contains a threatening expression has not occurred at all” (1967b: 17f) and (ii) active mitigation, whereby the degree of face-threat is compensated for by appropriate strategies.

So to engage in social interaction is to run the risk of losing face and consequently interactants have to jointly cooperate to maintain face of all participants. In short, engaging in social interaction demands *proper involvement* (Goffman, 1967e: 116).

But involvement in interaction is a delicate process which is also open to *misinvolvement* and this can lead to what Goffman calls “alienation from interaction” (1967e). Of the various forms of alienation that Goffman discusses, the one which will concern us most is that of *interaction-consciousness* whereby:

A participant in talk may become consciously concerned to an improper degree with the way in which the interaction, *qua* interaction, is proceeding, instead of becoming spontaneously involved in the official topic of conversation.

(1967e: 119)
Such interaction-consciousness is more likely in dialogues involving a linguistically-impaired interlocutor. It is also potentially more disruptive. Indeed, so important is the smooth running of spoken interaction that Goffman considers uneasiness as a contagious “disease” (1967e: 126). The following quotation summarises this point:

Conversational encounters in which participants feel obliged to maintain spontaneous involvement and yet cannot manage to do so are ones in which they feel uneasy, and ones in which they may generate uneasiness in others.

(1967e: 129)

The notion of face has since been developed by Brown & Levinson who state (1987: 61, emphasis added):

We make the following assumptions: that all competent adult members of a society32 have (and know each other to have)

(i) ‘face’, the public self-image that every member wants to claim for himself, consisting in two related aspects.

(a) negative face: the basic claim to territories, personal preserves, rights to non-distraction – i.e. to freedom of action and freedom from imposition

(b) positive face: the positive consistent self-image or ‘personality’ (crucially including the desire that this self-image be accepted and approved of) claimed by interactants

(ii) certain rational capacities, in particular consistent modes of reasoning from ends to the means that will achieve those ends.

It is Brown & Levinson’s notions of negative and positive face (and associated face-threatening acts) that will be most useful in our own exposition of doing being ordinary (Hypothesis 2 – see §1.3).

Though we will not discuss them in any depth here, it will be useful to provide a partial listing of Brown & Levinson’s (1987: 65ff) various types of FTAs. For current purposes we merely italicise points that are particularly relevant to our data.

32 Here, Brown & Levinson add a footnote: “Juvenile, mad, incapacitated persons partially excepted.” Although we will not develop this line of discussion in the current work (for it requires some additional analysis), it appears that dysphasic individuals are not to be included in this listing. Indeed, it is precisely because they are deemed to be competent adult members of society that effects their non-aphasic interactants ‘doing being ordinary’ on their account. The rest of this thesis is an accumulation and discussion of evidence of this interactionally sensitive work.
Acts that threaten H’s positive face-wants by indicating that S does not care about H’s feelings include:

- acts that suggest that S has a negative evaluation of some aspect of H’s positive face:
 - expressions of disapproval, criticism, ridicule, complaints, reprimands, accusations, insults
 - contradictions, disagreements, challenges

- acts that suggest that S has no regard for H’s positive face:
 - expressions of violent emotions
 - irreverence, mention of taboo subjects
 - bringing bad news about H or good news about S
 - raising dangerously emotional or divisive topics
 - blatant non-cooperation
 - use of inappropriate terms of address

The Speaker can also threaten himself.33 Acts that threaten S’s positive face include:

- apologising
- accepting a compliment
- breakdown of physical control over body
- self-humiliation, self-contradiction, acting stupid
- confessing, admitting guilt or responsibility
- emotion leakage, non-control of laughter or tears

As we have said above, to engage in interaction (either as Speaker or Hearer) is to run the risk of losing face. Interactants therefore have to make sure to pay face whenever an FTA must be performed to meet the current goal. Face can be paid using positive or negative politeness strategies. Below we provide a list of each type which we will refer back to in subsequent discussion.

33 For us, this is especially important when the Speaker is dysphasic.
2.1.7.1 positive politeness strategies

The following strategies (see Brown & Levinson, 1987: 101ff) for mitigating FTAs are oriented to H’s positive face.

Claim Common Ground

(1) Notice/attend to H’s wants
(2) Exaggerate interest/approval/sympathy in/of/with H
(3) Intensify interest for H
(4) Use in-group identity markers (solidarity address forms; dialect; slang; contraction)
(5) Seek agreement (safe topics; repetition)
(6) Avoid disagreement (token agreement; pseudo-agreement; white lies)
(7) Presuppose/assert common ground (gossip; shift deictic centre to H; presuppose H’s knowledge)
(8) Joke

Convey that S & H are Cooperators

(9) Assert knowledge of H’s wants
(10) Offer, promise
(11) Be optimistic (reduce degree of imposition)
(12) Include S & H in the activity
(13) Give (or ask for) reasons
(14) Assume/assert reciprocity

Fulfil H’s Want for some X

(15) Give gifts to H (goods, sympathy, compliments...)

2.1.7.2 negative politeness strategies

The following strategies (see Brown & Levinson, 1987: 129ff) for mitigating FTAs are oriented to H’s negative face.
Be Direct

(1) Be conventionally indirect

Don’t Presume/Assume

(2) Question, hedge

Don’t Coerce H

(3) Be pessimistic
(4) Minimize imposition
(5) Give deference (humble yourself; treat H as superior)

Communicate S’s Want to Not Impinge on H

(6) Apologize
(7) Impersonalize S & H (avoid pronouns I and you)
(8) State the FTA as a general rule
(9) Nominalize

Redress other-wants of H’s

(10) Go on record as incurring a debt

2.1.7.3 the conventional view of politeness

Politeness phenomena are generally considered as a ‘bolt-on’ extra typically found in interactional but not transactional talk. This point of view is summed up in the following quotation from Kasper (1990: 205):

Conversational behaviour that is consistent with the requirements of transactional discourse will thus be characterized by close observance of the Cooperative Principle. Interactional discourse, by contrast, has as its primary goal the establishment and maintenance of social relationships. In interactional discourse, therefore, the Cooperative Principle is regularly overridden by the Politeness Principle [Leech, 1983] in order to ensure that participants’ face-wants are taken care of.

Goffman (1967b: 7f) makes a related point:
There is nevertheless a limitation to this interdependence between the current situation and the wider social world: an encounter with people whom he will not have dealings with again leaves him free to take a high line that the future will discredit, or free to suffer humiliations that would make future dealings with them an embarrassing thing to have to face.

So in other-words, in transactional, task-oriented talk between strangers who will not have subsequent dealings with each other—we would expect that face-wants would not be an issue. Our data would suggest, however, that this is not necessarily the case. The fact that we do indeed find orientation to face-wants in our data therefore makes our findings especially worthy of note. We conclude this section with a final quotation from Goffman (1967b: 12):

To study face-saving is to study the traffic rules of social interaction; one learns about the code the person adheres to in his movement across the paths and designs of others, but not where he is going, or why he wants to get there. One does not even learn why he is ready to follow the code, for a large number of different motives can equally lead him to do so.

It would seem that for our data, at least one of these motives is that aphasia is indeed a variable that participants need to orient to in their interactions.

2.1.8 aphasia (language & communication)34

We have already covered definitions, causes and symptoms of aphasia in §1.1. This section is therefore devoted to a review of some of the literature that: (i) relates to the communicative abilities of dysphasic individuals and (ii) has not been discussed elsewhere in this chapter.

Traditionally, the assessment of aphasic patients has focused on testing their linguistic abilities by using “metalinguistic tasks whose aim is to elicit expected standard responses, not to test creative uses of communication”, Feyereisen (1991: 323). For example, the Boston Diagnostic Aphasia Examination (Goodglass & Kaplan, 1972) focuses on linguistic abilities in order to categorise aphasic patients into the neo-classical aphasia syndromes. Similarly, the Western Aphasia Battery (WAB) (Kertesz, 1982) uses a series of tests for spontaneous speech, auditory comprehension, repetition, and naming for this categorisation procedure.

34 This section is based on the introduction in Merrison, Anderson, & Doherty-Sneddon (1994).
These traditional approaches to the assessment of aphasia are well established, yet it has long been known that some aphasic individuals demonstrate the ability "to communicate much better than they speak/understand" (Howard & Hatfield, 1987: 81). This proposition is incorporated into this research as Hypotheses 3.0 and 3.1 and although it might seem somewhat paradoxical (as Feyereisen (1991: 323) suggests), in recent years researchers have begun to explore how the apparent paradox might be resolved.35

In their study which investigated the efficiency and accuracy with which aphasic and non-aphasic individuals communicated the crucial information necessary for referent identification, Busch, Brookshire, & Nicholas (1988) concluded that aphasics are not significantly different from non-aphasics. But perhaps this result should not be too surprising, after all, one doesn’t need to utter many words to convey information efficiently – as long as the words uttered are relevant ones.

In a study of requesting, Prinz found that “aphasics, despite the etiology or extent of their linguistic impairment, are capable of communicating a broad range of intentions and employing pragmatic strategies [e.g. use of gesture] in making known their needs” (1980: 70). Prior to this, in their study of contextually conveyed meaning, Wilcox, Davis, & Leonard, found that aphasics demonstrated “comprehension abilities with indirect requests that were superior to their receptive performance on a standard comprehension battery” due to utilising extralinguistic context (1978: 376).

Holland (1982), in a study of communication in the home environment, found that the frequency of aphasic individuals’ successful communicative acts was far greater than that of communicative failure (on average 86 successful versus 6 failed acts per hour), the reason for such success lying in the use of communication strategies. Strategies included: non-verbal gesture; circumlocutions; self-cueing with high association words; spelling out loud; using pen and paper to write; imposing self-delay by pausing and signalling listeners to wait; consulting word lists; actively searching for objects; and requesting help from listeners. As is typical of previous research into aphasic communication, all these strategies are centred on the aphasic individual. This thesis aims to balance such research by viewing aphasic discourse from a non-aphasic perspective.

It should be noted that we will not be discussing the important role to be played by alternative communication systems. For discussion, see Velletri-Glass, Gazzaniga & Premack (1973), Gardner, Zurif, Berry & Baker (1976), Weinrich, Steele, Carlson & Kleczewska (1989) and Bertoni, Stoffel, & Weniger (1991).
Another subject of investigation has been the use of non-verbal gesture. Unfortunately the results from such studies have been less than unanimous. For example, with regard to amount of non-verbal behaviour, some results indicate that, to varying degrees, aphasics do not gesture more than non-aphasics while other-results have been cited that claim the opposite. We exemplify from both views in turn.

In face-to-face informal dyadic conversation, Glosser, Wiener, & Kaplan (1986) found no differences in gesture rates between aphasic and non-aphasic controls. Ciccone, Wapner, Foldi, Zurif, & Gardner (1979), on the other-hand, claim that Wernicke’s aphasics use more gesture than non-aphasics and non-aphasics use more gesture than Broca’s.

In contrast, Feyereisen (1983) found that on the whole aphasics used more gesture than non-aphasics but that there were no great differences between Wernicke and Broca aphasics. Smith (1987) agrees that aphasics use more gesture than non-aphasics (though she makes no distinction between aphasia types) as do Larkins & Webster (1981, cited by Le May, David, & Thomas, 1988) who also claim that this is especially true for Broca’s aphasics. Similar findings are quoted by Le May et al. (1988), namely, that aphasic subjects perform considerably more non-verbal gesture than non-aphasic subjects with Broca’s using more gesture than Wernicke’s who in turn use more gesture than non-aphasics.

Disagreement on results is not the only problem associated with the literature on non-verbal gesture in aphasic populations, as Le May et al. (1988) have pointed out. One such difficulty has been the fact that the amount and type of gesture in an interaction is: “dependent on the type of conversation taking place ... Any analysis of speech-related gesture should therefore ensure that the interactions studied are homogenous in terms of the topics discussed and the format of the interaction” (Le May et al., 1988: 139).

By investigating the use of non-verbal gesture within the confines of referential communication tasks, a number of researchers (Busch et al., 1988; Feyereisen, Barter, Goossens, & Clerebaut, 1988; Carlomagno, Losanno, Emanuelli, & Casadio, 1991) have attempted to eliminate this particular source of noise. Although minor differences exist in the precise nature of the tasks used, they all essentially involve an aphasic participant conveying information (often the sequential ordering) about a set of referents to a non-aphasic task partner.

36 For a review of this literature see Feyereisen & Seron (1982).
Feyereisen et al. (1988) found that although not as efficient time-wise as their non-aphasic control subject, their aphasic subjects were generally successful in the task. This demonstration of task, and thus communicative success was in part due to the effective use of non-verbal gesture. Using a similar referential task, Carломagno et al. (1991) showed that after a programme of therapy aimed at promoting aphasics’ communicative effectiveness (PACE, Davis & Wilcox, 1985) focusing on training patients to use residual non-verbal strategies more efficiently, the “time and the number of messages used to communicate 80 items significantly decreased” (Carломagno et al., 1991: 422). In other-words, by concentrating on residual non-linguistic skills, it appears possible to improve communicative effectiveness in some aphasic clients.

This might explain why Larkins & Webster (1981), Feyereisen (1983), Smith (1987) and Le May et al. (1988) found that aphasic subjects perform considerably more non-verbal gesture than non-aphasic subjects and why Feyereisen et al. (1988) found that the more impaired the subject, the greater the preference for communicating via a gestural modality. Perhaps the aphasics involved in these studies were in the habit (trained or otherwise) of concentrating on residual non-linguistic skills, while those subjects of Cicone et al. (1979) and Glosser et al. (1986) were not.

Although referential tasks constrain the interactions in terms of the topics discussed and the format of the interaction, it must be pointed out that studies which attempt to demonstrate intact communicative abilities via referential tasks can find themselves open to the criticism that, to a certain extent at least, the information gap is not a genuine one: although the ordering of referents is not known, the actual set of possible referents available to both participants is the same. The problem here, then, is that without a genuine information gap, communication cannot be thought of as entirely genuine either. In addition to this, there is the contention that resulting dialogues can hardly be considered as examples of extended discourse.

As we have discussed in §1.2.1, Merrison (1992) attempted to combat this contention by collecting extended dialogues of Map Task data which were compared to control dialogues in Merrison et al. (1994). The results showed that Broca-type aphasics employed more gesture in their interactions than the non-aphasic undergraduates in the control data. Furthermore, this data supported the idea that gesture was used as active compensation for an impaired linguistic modality. This research was continued by Anderson, Robertson, Kilborn, Beeke & Dean who found that “on average aphasic instruction givers used more than twice as many gestures as their age-matched peers” (1997: 27f). Furthermore, they demonstrated that this gesture use actually correlated with task success.
In a move towards an analysis of the structure of extended conversational interaction, Ulatowska, Allard, Reyes, Ford, & Chapman (1992) investigated the preserved conversational skills of aphasic subjects engaged in role-playing activities. Results showed that despite linguistic deficits of their aphasic subjects, their conversational structure was found to be comparable to that of non-aphasic controls at several levels, namely: distribution of turns (both those which add new information to the conversation and those which act as conversation management), range of speech acts used, adjacency pair structure and script knowledge.\(^{37}\)

The problem with role-playing activities, however, is the fact that extended discourse which is elicited is only semi-naturalistic, and consequently, as Ulatowska et al. themselves note, it is not certain that these results “would generalize to open-ended, unstructured conversation between normal and aphasic individuals” (1992: 328). Research on unscripted\(^{38}\) dialogue is therefore the area of study for this thesis. We investigate communication between aphasic and non-aphasic individuals in task-oriented dialogue, and attempt to overcome the problems associated with previous studies in that the materials used:

- present a genuine information gap between participants;
- yield extended natural discourses which are comparable across different participants;
- allow for the possibility of using alternative (non-verbal) modalities of communication;
- allow communicative success to be objectively measured separately from the analysis of the language used; and
- restrict interactions in terms of topic and format thereby providing a firmer basis for comparative analyses.

In addition, an extensive corpus of non-aphasic dialogues exists against which the results of the current study can be considered. Though no such comparison has actually been undertaken (for it would have been far beyond the scope of this thesis), the fact that such a possibility exists can only benefit the author’s long-term research programme!

\(^{37}\) This Artificial Intelligence sense of script is described by authors such as Minsky (1975a, 1975b) and Schank & Abelson (1977), cited for example by Johnson-Laird (1983: 371) and Clark (1996: 109). The AI script is a schematic representation of “the normal [expected] sequence of events in some relatively stereotyped activity such as dining at a restaurant” (Johnson-Laird, ibid.) specifying “certain props, roles, entry conditions, results and actions” pertinent to that activity (Clark, ibid.).

\(^{38}\) Script in both the non-technical (dramatic) sense as well as the AI sense.
Originally, my research aimed to address three questions:

Q1 How well can aphasics perform in a communication task?

Q2 To what extent do aphasics use spontaneous non-verbal gesture in task-oriented dialogue, and is this related to linguistic competence?

Q3 Do non-aphasic interlocutors do more communicative work when in dialogue with an aphasic partner (as opposed to with another non-aphasic) and if so, what type of communicative work do they do and to what extent?

Because of space limitations, however, **Q3** became the main concern of this thesis. As we have seen in §1.3, **Q3** has subsequently been translated into various sub-hypotheses (1, 2, 2.1, 2.2, 3 and 3.1).

Much of the existing aphasiology literature has (understandably) concentrated on the abilities and behaviours of individuals with aphasia. Underlying our research questions is an alternative assumption however, namely that interactions between aphasic and non-aphasic individuals cannot be accurately described solely in terms of the input of the aphasic individual. The time has come to look at these interactions from a different point of view – we must consider the role of the dysphasic’s dialogue partner in the joint collaborative communicative process.

2.2 a view from on high

Having reviewed the work on the shoulders of which this thesis rests the following subsections set out the author’s personal viewpoint from that privileged position.

2.2.1 the philosophy of the thesis

As to methodological philosophy, I am a true pragmatist: I take what is useful to me from whatever source. Of course, that means that I also have trouble identifying myself with established disciplines. As Le Page (1968: 192) notes: “The individual creates his systems of verbal behaviour so as to resemble those of the group or groups with which he wishes from time to time to be identified”. It would seem, therefore, that my ‘problem’ is that from time to time I wish to resemble philosophers, discourse analysts, cognitive scientists, ethnomethodologists, psychologists, sociologists and aphasiologists.
Yet despite all these identifications, I always want to be identified as a data-respecting practitioner of the study of language in interaction.

Consider the following quotation from Sacks (1984a: 27):

Now people often ask me why I choose the particular data I choose. Is it some problem that I have in mind that caused me to pick this corpus or this segment? And I am insistent that I just happened to have it, it became fascinating, and I spent some time at it. ... When we start out with a piece of data, the question of what we are going to end up with, what kind of findings it will give, should not be a consideration. We sit down with a piece of data, make a bunch of observations, and see where they will go. ... how interesting what we may come up with will be is something we cannot in the first instance say.

Kelly & Local (1989: 98) have made a very similar point:

simply rooting around in language material is [not] illicit: it is after all our most fundamental research tool and serendipity is at its most effective in this situation.

For Sacks, theorising should be based on close observation since only then can we “find things that we could not, by imagination, assert were there” (1984a: 25). Local concurs: “it is clear that only by conducting tightly organized micro-analyses of talk can we hope to come to a proper understanding of the general architecture and functioning of speech in interaction” (1996: 178). In the twenty hours of tape-recorded telephone conversations that Local (1996) analysed for ‘news receipts’ he found just eight examples of a particular type.39 But the important point is that the rarity of the occurrence does not make the data any less significant – in terms of reliable statistics, maybe, but certainly not in qualitative terms. Here we agree with Schegloff’s point that “one is also a number, the single case is also a quantity, and statistical significance is but one form of significance” (1993: 101, original emphasis).

Before I became aware of the literature in CA, before I even knew that I wanted to be a professional linguist, I had instilled in me what I call the Kelly & Local Principle, namely that when we root around in language material in the hope that serendipity will be kind to us, we must remember that everything is potentially important and we must act accordingly. As Kelly & Local (1989: 26) themselves put it:

39 Freestanding oh-receipts of prior informings.
at the beginning of work on language material we can’t, in any interesting sense, know beforehand what is going to be important. Consequently we must attend to and reflect everything that we can discriminate. We do not claim though that any set (or sets) of observations and resulting impressionistic records are complete or exhaustive of what has been observed.

So as to methodological philosophy, I may be a pragmatist, but deep in my heart – at my very core – I’m with Sacks, Kelly and Local!

Ideally we would have presented discussions for every single dialogue in the corpus. But that could have provoked a legitimate accusation of overkill. So if we want to claim that what we have to say about the dialogues discussed in Chapters 6 and 7 is in some way representative of all our data, and yet we do not want to present all that data, then we must find some compromise. As we are presenting a study from a comparativist direction (aphasic versus non-aphasic discourse), the compromise that we choose is one of quantification. While this is not ideal, we are at least placated by the fact that this use of a quantificational approach is built on the back of single instance analyses, as Schegloff (1993: 102, emphasis added) advises:

... in examining large amounts of data, we are studying *multiples or aggregates of single instances*. Quantitative analysis is, in this sense, not an alternative to single case analysis, but rather is built on its back. We can be led seriously astray if we allow the possibility of quantitative analysis to free us from the need to demonstrate the operation of what we take to be going on in singular fragments of talk ...

All the ‘statistics’ that we present are expressed as simple percentages. In addition, we are careful to heed Schegloff’s (1993: 102) reflections “on the denominator, on the numerator, and on the domain or the universe on which such a fraction or proportion is taken to report” – in other-words, on (i) the *things* that happen, (ii) the *times* that they happen and (iii) the *contexts* in which they happen. We deal with these points below.

40 In Chapter 8 while we present results for the corpus *as an aggregate* by using the group means for the various measures investigated we nevertheless recognise Bates, McDonald, MacWhinney & Appelbaum’s (1991) argument with regard to its potential non-representativeness. As they rightly point out: “When data for individual subjects are collapsed, the resulting group means may represent no one at all. No matter how many statistics we manage to gather, it remains true that no Vassar graduate has 2.5 children and 75% of a dog” (1991: 233). We therefore urge our readers to bear this point in mind in the interpretation of our corpus results.
(I) **Numerator.** Our numerator changes according to what category we are discussing, but most of that discussion revolves around the various game types (see §4.1).

(II) **Denominator.** When we present percentages of occurrence of ‘category x’, we use as a denominator the total occurrences of the most superordinate category of which x is a member. Thus we talk of the proportion of non-aphasic explain games as a percentage of *all the non-aphasic games initiated within a dialogue*. Similarly, we report on the fraction of minimal turns taken as a percentage of *all the turns taken within a dialogue*. In this way, then, our statistics are comparisons of like categories with like categories rather than, say, expressions of explain games per turn or per minute.

(III) **Domain.** We report only on data collected in the context of task-oriented dialogues. Though we make no claims that participants do conduct themselves differently in task-oriented dialogues, we do acknowledge the possibility that they might. Consequently it cannot hurt to constrain the context of the data.

Although some of our quantification is at a basic, course-grained level, we also present analyses at a finer level where we discover qualitative differences between our data.\[^{41}\]

Some readers might be expecting to see tests for statistical significance. They will be disappointed. Our data set (though larger than those in other-recent theses on aphasic discourse) is still relatively small (8 aphasic dialogues and 8 control dialogues comprising 168 minutes of talk). We therefore suspect that 'statistical significance' might be hard to achieve.

But that is not why we have eschewed statistical tests. Rather, our reasoning follows that of Goodwin (1981: 79):

One problem with the way in which statistical methodology is frequently used in the social sciences is that it provides a rationale for not engaging in detailed analysis of particular cases. Exceptions and examples that do not support the point being argued can be disregarded as “noise” if an acceptable level of significance is obtained.

Bates *et al.* (1991) concur and, by using a real-life example, they make the importance of not ignoring extreme data points very clear:

\[^{41}\] See for example our discussion of sub-types of explanations in §8.2.2.3.
Even if the group mean does faithfully represent performance by a majority of patients, summary statistics can still hide information about extreme scores and other minority patterns that are of great theoretical importance. We know, for example, that the average annual temperature in Chicago differs little from the average annual temperature in San Diego, however, the temperature extremes encountered by residents in these two cities are very different indeed. In making decisions about where to spend a full calendar year, information about temperature extremes on rare but terrible days has greater implications for one’s quality of life than information about the mean.

(1991: 233)

In short, exceptions are interesting, important, and shouldn’t be ignored and although in some of our discussions we temporarily set ‘deviant data’ aside, we must stress that we do not do so without consideration of why it might be considered non-standard.

Richard Bach wrote “There is no such thing as a problem without a gift for you in its hands. You seek problems because you need their gifts” (1977: 57). If we dare to consider rogue data, sometimes we actually discover contextual differences that mean the data are not truly deviant. Such cases can point to the analyst’s need to reconsider – be it a reconsideration of the questions being asked of the data, or the methodology used to find the answers – in other words, such cases can be thought of as analytical gifts.

2.2.2 major contributions of the thesis

The research described in this thesis has provided evidence which supports our hypotheses: in dialogues with non-aphasic partners, dysphasic individuals can indeed communicate better than their linguistic abilities would suggest. This is because they can draw on the abilities of their non-impaired interlocutors who do more of the joint collaborative work, and who attempt to avoid highlighting any linguistic non-competence on the part of their dysphasic dialogue partners.

But beyond showing that our initial hypotheses seem to be correct this thesis also contributes the following:

• it introduces Merrison’s Maxim;
• it extends the system of dialogue analysis known as Game Coding;
• it extends Clark’s notion of Grounding; and
• it attempts to breakdown the rigid apartheid of conversation and discourse analytic methods.
Above all else, however, it is hoped that this thesis will represent a shift towards the study of aphasia as a collaborative, active and, above all else, multi-party social system that depends as much on what that system looks like from the non-aphasic perspective as it does from the more traditional viewpoint of the dysphasic individual.

In the remaining chapters we concern ourselves with specific details of observations on our corpus of aphasic interaction. However, in the ensuing excitement (if I manage to do my job properly) we would like the reader to bear in mind that final point. To reiterate it, we borrow the words of Goodwin who, as the son of a dysphasic man (Rob), is very well placed to comment:

When Rob was in the hospital his doctors, [who were] focused entirely on the trauma within his brain, said that any therapy would be merely cosmetic and a waste of time, since the underlying brain injury could not be remedied. Nothing could have been farther from the truth, and medical advice based on such a view of the problem can cause irreparable harm to patients such as Rob and their families. As an injury aphasia does reside within the skull. However as a form of life, a way of being and acting in the world in concert with others, its proper locus is a distributed, multi-party system.

Goodwin (1994: 23f, emphasis added)
For us there is only the trying. The rest is not our business.

T. S. Eliot

The observations that appear in this thesis are based on a subset of recordings of aphasic and non-aphasic subjects engaged in task-oriented dialogue with non-neurologically impaired dialogue partners. The full corpus comprises 32 dialogues which yield almost six hours of recorded and transcribed data. From this, 16 dialogues (two corpora, each of 8 dialogues) totalling almost three hours (168 minutes) have been the subject of analysis. These 16 dialogues have a mean duration of 10.5 minutes. The dialogues in the Aphasic Dialogue Corpus (ADC) have a mean duration of 11.5 minutes, those in the Control Dialogue Corpus (CDC) have a mean duration of 9.3 minutes.

3.1 the task

All recordings are of pairs of participants engaged in a task that was designed to elicit natural, yet restricted dialogue. The task in question (developed by Brown et al., 1984) is known as the Map Task (see also Anderson et al., 1991a).

The Map Task has been widely used to support the study of spontaneous speech and communication: it has been used to investigate the language and communication abilities of children (Anderson, Clark & Mullin, 1991b, 1992, 1994; Doherty-Sneddon & Kent, 1996), non-aphasic adults (Anderson & Boyle, 1994; Boyle, Anderson, & Newlands, 1994; Davies, 1997; Kowtko, 1997; Sotillo, 1997), sleep-deprived soldiers (Bard, Sotillo, Anderson, Thompson, & Taylor, 1996) and dysphasic adults (Merrison, 1992; Merrison et al., 1994; Beeke, Dean, Kilborn, Anderson, Robertson & Miller, 1994; Anderson et al., 1997).
Two dialogue partners each have a schematic map drawn on an A3 sheet of paper. They sit opposite each other at a table specially constructed so that neither can see the map of the other participant, as shown in Figure 3-1:

![Figure 3-1: Participant Orientation in the Map Task](image)

(Left: GW: female non-aphasic IF; Right: HL: male aphasic IG)

The task involves one participant (designated the **Information Giver (IG)**) describing the route on his map to the other participant (designated the **Information Follower (IF)**) whose map is lacking the route. The IG’s ultimate aim is to get the IF to successfully draw the route onto their map without actually showing them his own map.

Although both IG and IF have copies of the basic map, there exist some differences between the two – more specifically the IG’s map has three landmarks which are absent from the IF’s map, which in turn has three landmarks that are not on the map of the IG. Thus, in total, there are six ‘problem’ points (**mismatches**) that are to be discovered *en route*. The reason for the existence of these landmark mismatches is to set up a genuine information gap between the participants. By means of the following instructions, the participants were made aware that there may be discrepancies. This was done in order to foster collaborative, interactive and genuine communicative strategies.

1 For example, in Map IV-1 in Appendix IV the three landmarks that appear only on the IG’s map are (in order from Start to Finish): *church*, *pine*, and *volcano*. The three landmarks that appear only on the IF’s map are: *bus*, *tower*, and *swan*.
Instructions spoken to the Information Giver (in the presence of IF)
You and your partner have both got a map of the same place. Your map has got a route on it. It is the only safe route through all the dangers. Your partner hasn’t got a route on his/her map. Your job is to describe the route to your partner so that (s)he can draw it on his/her map. You must describe it exactly because it is the only safe route. The only thing you’re not allowed to do is show your map to your partner. The maps have been drawn by different explorers, so they may not be quite the same; there might be some differences.

Instructions spoken to the Information Follower (in the presence of IG)
You and your partner have both got a map of the same place. Your partner’s map has got a route on it. It is the only safe route through all the dangers. He’s going to tell you what the route is. Your job is to draw the route on your map. Listen carefully to what your partner says, and ask questions if there’s anything you’re not sure about. You must draw it exactly because it is the only safe route. The only thing you’re not allowed to do is show your map to your partner. The maps have been drawn by different explorers, so they may not be quite the same; there might be some differences.

After checking that they had understood what they had to do, the participants were asked to make it clear when they had finished the task by making some signal to the camera and hence to the researcher (AJM) who was watching the proceedings in a viewing room. They were also told that there was no time constraint.

All testing was carried out in a soundproofed clinic room in the Department of Speech and Language Sciences at Queen Margaret College (QMC), Edinburgh. This was a familiar environment to all the aphasic subjects. Simultaneous recordings were made on video and audio tape using PZM microphones. While the video tapes were used for all the coding, the audio tapes were made and used for the process of initial transcriptions.

3.2 subjects

This study investigates the interactive behaviour of 12 individuals: 4 non-neurologically impaired postgraduate students (2 male, 2 female); 4 male aphasic subjects and 4 male non-neurologically impaired control subjects (matched with the aphasic participants for age, handedness and educational background). Details of the full 32 dialogue corpus will be given up to and including §3.6. In §3.7 the decision to limit analysis to half the corpus will be justified.

2 All the subjects were paid for their participation.
3.2.1 aphasic subjects (IGs)

The four aphasic IGs will be referred to as HL and MD (classified as anomic type aphasics) and GM and BA (classified as conduction type aphasics). A synopsis of their details is given in Appendix I. They were selected for participation because they were all:

- male
- native speakers of English
- neurologically stable
- free of any hearing impairment
- attending a Speech and Language Therapy clinic at QMC, Edinburgh
- able and willing to take part in the research

In addition, the four subjects chosen exhibited a reasonable range of age and linguistic ability.

It is vital that the reader note that these aphasics were by no means ‘new’ to their disability. Indeed the reason that they were all attending Speech and Language Therapy at QMC is that they were neurologically stable. All of them would have received NHS therapy almost immediately post trauma.

MD and BA had taken part in a pilot and pre-pilot study (see Merrison, 1992: §4.1). HL and GM had no experience of the task at all.

3.2.2 non-neurologically impaired subjects (IFs)

The four non-neurologically impaired IFs will be referred to as GW and ND (female) and MB and DN (male). They were all native speakers of English. In an attempt to control for external variables, the IFs were selected on the basis of their current occupation (all were postgraduate students) as well as their first degree (all had an undergraduate degree in Linguistics). Further details are given in Appendix I.

In both sets of recordings the four non-neurologically impaired postgraduate students took the role of Information Follower. In the first set of recordings, each of them performed the task with each of the four aphasic subjects as their Information Giving partner (16 dialogues). In the second set, each of them performed the task with each of the age-matched control subjects as their Information Giving partner (16 dialogues).
None of the IFs was in any way familiar with any of the IGs prior to the recording. Indeed, none of them had any previous practical experience talking with people with aphasia. However, because they had all covered theoretical aspects of aphasia in their respective degree courses they were all vaguely aware of possible linguistic disabilities associated with the condition.

None of this group of subjects had ever taken part in the Map Task.

3.2.3 Non-neurologically impaired controls (IGs)

Although the availability of data from non-aphasic subjects is vital for the study of communication in aphasic populations, it is often not to be found in the literature (as Ulatowska et al. note, 1992: 328). In this study therefore, non-aphasic control subjects were recorded taking the role of Information Giver. The four control subjects were matched with the aphasic IGs for age, sex, handedness and educational background. None of the controls had ever taken part in the Map Task nor were any of them in any way familiar with any of the IFs.

3.3 Recording conditions (EC/NEC)

Eight of the dialogues in each set took place in **Eye Contact (EC)** condition: although the participants could not see one another’s maps, they could see one another (from about the chest up). In the remaining eight dialogues an opaque screen was placed between the subjects so that no part of a subject’s body was visible to the other partner (**No Eye Contact (NEC)** condition).

3.4 Map Assignment

As has been mentioned, the same Information Followers were used for each IG in an attempt to standardise the communicative context (see Merrison, 1992: 9f, 62f). This necessitated using different maps for each pair to further ensure that there was a genuine information gap between the participants. Because the maps used for the four aphasic participants were designed to be comparably difficult, the assignment to each of the IFs was such that each map was used by both a male and a female IF in both EC and NEC conditions. Comparable difficulty takes into account the number of mismatches of landmarks, and the labelling of features with common English nouns.
The four maps that were used are (essentially) a subset of those used in Anderson et al., 1992, 1994. There are four different route shapes and two degrees of landmark density: two maps (#1 and #3)\(^3\) have a total of 14 feature names (landmark dense) and two maps (#2 and #4)\(^4\) have a total of 11 (landmark sparse). Copies of the maps from the Aphasic Dialogue Corpus (ADC) appear in Appendix III. Those from the Control Dialogue Corpus (CDC) appear in Appendix IV.

3.5 recording schedules

For each data set (aphasic and control) any one day’s recording schedule dealt with a total of four dialogues: viz. two IFs (one male, one female) each with two IGs. The running order of sessions was always the same: IG1 was first paired with the female IF in a given condition (either EC or NEC). On completion of the task, the dialogue partners were briefly allowed to view their result. IG1 would then be paired with the male IF in the other condition. This process would then be repeated with IG2.

The time between IFs’ first and second recording sessions was always five days. The time between IGs’ first and second recording sessions was always one week. Six months later a similar recording schedule was set up for the age-matched controls. Full assignment of the maps as well as the recording order of dialogue pairs is given in Appendix II.

3.5.1 variable distribution

The recording schedule was carefully set up in this way in order to distribute certain variables as evenly as possible across the corpus. The aim of this was to avoid any order-effects. These variables are:

- condition of task
- dialogue within session
- sex of IF
- type of aphasia
- previous task experience of IG
- map assignment

We will deal with each in turn.

\(^3\) In the ADC #1 = Caravans, #3 = Mountain. In the CDC #1 = Road, #3 = Lighthouse.

\(^4\) In the ADC #2 = Van, #4 = Tent. In the CDC #2 = Horse, #4 = House.
3.5.1.1 task condition & dialogue order

On the second day's session each subject would start their two tasks in the opposite condition to that in which they started their previous session. Thus, each subject went through their four tasks in one of the two following orders (see Appendix II):

\begin{align*}
\text{Session 1: } & EC, NEC \quad \text{Session 2: } NEC, EC \\
& (\text{IFs: } GWQ, DNO; \text{ Aphasic IGs: } HL, BA; \text{ Control IGs: } PK, DL) \\
\text{Session 1: } & NEC, EC \quad \text{Session 2: } EC, NEC \\
& (\text{IFs: } MBQ, NDQ; \text{ Aphasic IGs: } MD, GM; \text{ Control IGs: } CM, TS)
\end{align*}

3.5.1.2 sex of information follower

Furthermore each (and therefore both types of dysphasic) IG experienced a dialogue in each condition with each sex of IF (female in EC, female in NEC, male in EC, male in NEC).

3.5.1.3 experience of information giver

Dysphasics who had previously taken part in a Map Task are termed ‘experienced’. One experienced dysphasic (BA) and one inexperienced dysphasic (HL) went through the task in the EC, NEC, NEC, EC order. Similarly, one experienced (MD) and one inexperienced dysphasic (GM) went through the task in the other (NEC, EC, EC, NEC).

3.5.1.4 type of aphasia

One anomic type (HL) and one conduction type dysphasic (BA) went through the task in the EC, NEC, NEC, EC order. Similarly, one anomic (MD) and one conduction type dysphasic (GM) went through the task in the other (NEC, EC, EC, NEC).
3.5.1.5 map assignment

Map assignment was ordered so that each map appeared in each order (1-4) for both IGs and IFs (for example Map #1A (Caravans) was the first map done by one IG, the second by another, the third by a third and the fourth by a fourth. A similar ordering obtains across IFs).

Although it was considered highly unlikely that the IFs would remember their tasks from six months previously, caution nevertheless suggested that it might be wise not to repeat the tasks with precisely the same maps as before. But to maintain comparable difficulty across maps some variable had to be kept constant. As the variable that was thought to have the greatest bearing on task difficulty was route shape, this (together with landmark density) was kept the same for the two sets of maps. Therefore in order to make the maps appear substantially different for the control group dialogues, the landmarks on these maps were different (see Appendices III and IV).

3.5.1.6 constant orderings

Two orderings were kept constant, namely the order in which the IGs and IFs went through their four tasks.

Each IF went through their tasks meeting the aphasic IGs in the fixed order: HL, MD, GM and BA. The reason for this was mainly logistic: two of the aphasic subjects (HL and MD) were recorded on days when they were already attending a group therapy session in the QMC clinic. To minimise disruption to both the individuals concerned and the rest of the group, each subject was taken out of therapy for one session of two contiguous dialogue recordings. The remaining dialogues for the other two IGs were organised in a similar fashion. The recording order in which the IFs met the age-matched control IGs was exactly the same as the ordering for the corresponding aphasic subjects, i.e. PK, CM, TS and DL.

Each IG went through their four tasks meeting the IFs in the following fixed order: GW, MB, ND, and DN. The reason for this was also logistic: it was far easier (and less expensive) to coordinate just two IFs to be co-present at just two recording sessions rather than all four at all four.

5 We generally refer to each dyad by the initials of both the IG and the IF (for example: HL & GW, HL & MB, HL & ND, HL & DN, ...). Because of this fixed ordering, however, we are also able to abbreviate the dyads as HL1, HL2, HL3, HL4 ... (where 1=GW, 2=MB, 3=ND and 4=DN).
3.6 design features of the map task

Important design features of the Map Task are as follows:

1. Interaction is not constrained, but it is restricted, in that all dialogues have a precise goal that is known to the investigator. This knowledge is totally independent of the participants’ contributions.

2. Because the participants are not allowed to show each other their maps, the goal can only be successfully achieved through the participants’ contributions. Because the aphasic participant has the role of Information Giver, he has to take a very active role in the communication, as both partners are aware that the task can only be accomplished through his contributions.

3. Because there is a clearly defined solution to the task (a perfect replica of the IG’s route), it is to some degree possible to quantitatively assess success by measuring the deviation of the IF’s route from that of the IG. This is done by overlaying one route on top of the other and counting the area in square centimetres between the two. Low deviation scores thus represent high task success. It is an advantage that this is a non-linguistic measure of task success, derived independently from any considerations about the quality of the dialogue.

4. Because the route and landmarks are set in advance, the entities referred to in the dialogues are also known to the investigator. This helps to make the participant’s intentions clear in cases of ambiguity, which is especially important in the analysis of the restricted output from some aphasic subjects.

5. The existence of a genuine information gap between participants contrasts with some studies of communicative behaviour (as highlighted in §2.1.8) and with most standardised assessments of aphasia where a subject is presented with a stimulus and is asked a question about it, but one to which the therapist already knows the answer. Furthermore, many of these standardised tests require a ‘correct’ response, which is not the case with the Map Task.

In all these respects, then, the Map Task is clearly a promising candidate for eliciting interactive communicative data for comparative analysis.

6 In part, based on Anderson et al. (1991a: 352).
3.7 reduction of the data set

The full corpus of collected and transcribed data constitutes 32 dialogues (16 Eye Contact condition (EC) and 16 No Eye Contact condition (NEC)). For the most part, however, only analyses pertaining to the EC data are presented in this thesis. This section explains why.

There are three main reasons why only the data collected in the Eye Contact condition was analysed in any detail. We will deal with each in turn.

3.7.1 ‘natural’ data

In §3.6 we presented justification for using Map Tasks rather than free conversations to collect talk for analysis. It is hoped that this was sufficient to counter any possible objection to using (semi)-elicited dialogues. However, at the risk of being over-repetitive, it must be stressed that we are not claiming that the analysis of talk that occurs in task-oriented dialogue is in any way fully representative of the talk that occurs in free conversation; what is being claimed though is that it should not dismissed out of hand as not being useful to the investigation of talk in interaction.

That said, not until after all the data had been collected was it decided that potential critics might be partially appeased if the data set were limited to the condition that most resembled ‘natural’ talk, namely that which affords full eye contact.

3.7.2 EC, NEC and thesis metamorphosis

When the data was collected the orientation of this thesis was very different to how it now stands. Originally the emphasis was to have been on the somewhat paradoxical proposition noted by Howard & Hatfield, namely that some aphasic individuals demonstrate the ability “to communicate much better than they speak/understand” (1987: 81). In other words, this was to have been a very much aphasic-oriented thesis investigating how aphasic individuals can compensate for their language impairment. Within such an investigation a large portion of the proposed analysis would have centred on the use of non-verbal behaviour on the part of aphasic individuals in the mitigation of their linguistic deficits. Clearly such a study would have needed a comparison between those dialogue situations that supported (EC) and those that hindered (NEC) the use of a non-verbal modality in communicative interaction.
Five years later, although the investigation is still based on the mitigation of language impairment, the emphasis of this thesis has now shifted towards the role played by the non-impaired dialogue partner in that process, and consequently the need for two dialogue conditions, while not being eradicated, has certainly been reduced.\(^7\)

3.7.3 resource allocation

And finally there were practical reasons associated with the time constraints on coding and subsequent analysis; coding data is an incredibly time-consuming task. More importantly, however, the strict rules regarding thesis length would have afforded no space for adequate discussion of effectively twice the amount of data!

\(^7\) We provide some discussion of the relative success of the aphasic dialogues and the associated importance of a non-verbal modality in our section on task success in §8.1.1.
The better telescopes become, the more stars appear.

Julian Barnes

This chapter falls into three sections: in §4.1 we introduce the game coding system used, in §4.2 we explain the method behind the structural layout of this (and other) code and in §4.3 we offer some explanation as to why we code the data.

4.1 game coding

At the end of their paper, Anderson et al. offer the following advice (1992: 21): "The dialogue data that we have gathered from our young speakers suggests strongly that an appreciation of the way ... 'dialogue games' ... should be played is essential for the development of effective communication skills". Kowtko et al. (1992) have developed a method of analysing such dialogue games that has become a well established tool for analysing the dialogues that constitute the Human Communication Research Centre's (HCRC) Map Task Corpus (Anderson et al., 1991a). This section will first outline Kowtko et al.'s method and then go on to discuss how it was further developed for use on the data gathered for this thesis.

4.1.1 Kowtko et al.'s system of analysis

Kowtko et al.'s (1992) method of analysing task-oriented dialogues (Game Coding) was specifically developed for use on the 128 dialogues of the HCRC Map Task Corpus. It is based on goal-directed exchanges called Conversational Games and essentially involves coding (or tagging) every dialogue utterance in the transcripts for collaborative

1 In all extracts in this section, coding superfluous to current purposes has been omitted.
interaction in terms of initiation-response-feedback patterns (rather than linguistic content).

Game Coding operates at two levels: **game types** and **game moves**. This distinction is required because a complete game consists of the moves “which are necessary to accomplish one conversational sub-goal” (Kowtko et al., 1992: 3). For example, an INSTRUCT game begins when an instruction is given and ends when the follower either accomplishes that instruction or indicates that it is well on the way to being accomplished. This may, however, take several moves.

Moves are defined as “an utterance, a partial utterance, or a group of utterances which convey the same, specific intent” (ibid.). A move may therefore involve several utterances spanning several turns, whilst only counting as one initial move (plus several continued (cont) moves). Furthermore, all moves are defined by their function rather than by their form. It is therefore possible for an instruct move to have an interrogative form, yet still be classified by its instructing function. Similarly, because questioning type moves are also classified by function, there are several distinct functional categories for interrogatives. Example 4-1 illustrates the coding process:

Example 4-1 Marjorie & Joan: ‘windows’

<table>
<thead>
<tr>
<th>Instruct begins</th>
<th>Marjorie: Could you close the windows?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embedded Check begins</td>
<td>Joan: All of them?</td>
</tr>
<tr>
<td>Embedded Check ends</td>
<td>Marjorie: Yes.</td>
</tr>
<tr>
<td>Instruct ends</td>
<td>Joan: Sure! (Joan closes all the windows)</td>
</tr>
</tbody>
</table>

Marjorie wants all the windows to be shut and so instructs Joan to close them by uttering what formally appears to be a question, but is in fact an instruction (*Could you close the windows?*). Joan, who does not fully understand this request, checks that Marjorie means all the windows and thus embeds a CHECK game within Joan’s INSTRUCT game. When Joan gives a positive response (a REPLY-Y move) to Marjorie’s CHECK, this closes the embedded CHECK game. Joan then acknowledges the original INSTRUCT and closes all the windows. By doing this, Joan has carried out the instruction and thus terminates the INSTRUCT game. This INSTRUCT game therefore consists of four moves: INSTRUCT, CHECK, REPLY-Y, and ACKNOWLEDGE.
Let us now look at a piece of real dialogue:

Extract 4-2 DL & DN: ‘noose’

1. DL: Have you got a noose.
2. DN: () "°(LS)°°"=Oh >at the right hand side o' the map.<
3. DL: Yes!=
4. DN: =°Yeah.°

Here, DL and DN are exchanging various words about a noose and a map, but they are doing more than engaging in idle chat; they are involved in an exchange of information. In line 1, DL does not utter his words without a purpose, rather he wants to know whether or not his partner has a noose (on his version of the map). Similarly, in line 2, DN says what he says because before he responds to DL's yes/no query in line 1, he needs to check that the noose that he has (on the right hand side of his map) is the same noose that DL is enquiring about. It is only when DN gets DL to confirm this fact (which DL does in line 3) that DN can (safely) reply ('Yeah') to the initial query in line 1.

In Extract 4-3 below we put the code onto the noose dialogue to show that the overall extract is concerned with a yes/no query from DL the IG (an 'IG query-yn' game) with an embedded checking game from DN the IF (an 'IF check em[bedded]' game).

We describe the layout of the code in more detail in §4.2 but so that the coded extract is not totally opaque we provide some explanation of the code now:

- *T* (pronounced ‘star T’) lines show whose and what number turn it is (A is always the IG (Aphasic/Age-Matched Control), B is always the IF).

- *E* lines mark the initiation of a game: they indicate the number of the game, who initiates it and what function it has (i.e. its game type).

- *M* lines indicate the type of game move associated with the utterance.

- *End* lines show where the games end.

2 In §2.1.5.2.2 we saw that in CA terms this embedding is known as an *insertion sequence* (Levinson, 1983: 304).
In the transcripts, however, we do not spatially indicate the nested structure and thus, Extract 4-4 shows how the ‘noose’ dialogue is actually transcribed:

Extract 4-4 DL & DN: ‘noose’ (as in corpus transcription)

*E 65 IG query-yn em
*TA095 ctd
=Have you got a noose.
*MA Query-yn

*E 66 IF check em
*TB107
() "(LS)"=Oh >at the right hand side o' the map.<
*MB Check

*TA096
Yes!=
*MA Reply-y
*Turn A min
*End 66

*TB108
="Yeah."
*MB Reply-y
*Turn B min
*End 65
In total Kowtko et al. differentiate between 12 types of move and 6 types of game. In effect, the game types are the same as the initiating game moves. These appear below (based on Kowtko et al., 1992: 4f).

4.1.1.1 initiating moves

INSTRUCT
Communicates a direct or indirect request or instruction, to be done immediately or shortly. We have seen an INSTRUCT in the ‘windows’ extract.

CHECK
Checks *self-understanding* of a previous message or instruction by requesting confirmation directly or indirectly; makes sure that a complicated instruction is understood. We have seen CHECKS in both the ‘windows’ and ‘noose’ extracts.

QUERY-YN, QUERY-W
Yes-No question (QUERY-YN) or open-answer Wh-question (QUERY-W); asks for new or unknown detail about some part of the task; does not request clarification about instructions (that would be a CHECK). We have seen a QUERY-YN in the ‘noose’ extract. An example of a QUERY-W is given below:

Extract 4-5 HL & GW: ‘helicopter’

```
→  *E 32 IF query-w em
    *TB027 ctd
    so where is the helicopter?
→  *MB Query-w
    *TA024
    The mouth of the river
    *MA Reply-w
    *TB028
    At the mouth of the river right. "That’s X"
    *MB Acknowledge repo
    *End 32
```

EXPLAIN
Describes status quo or position in task with respect to the goal; freely offered, not elicited; provides new information.
Extract 4-6 HL & GW: ‘river’

→ *E 27 IG explain em
*TA020
 The river r- run underneath the bridge
→ *MA Explain
*TB024
 {Nods} Yeah, I can see that.
*MB Reply-y
*End 27

ALIGN

Kowtko et al. define the ALIGN thus: (i) Checks the other participant’s understanding or accomplishment of a goal; elicits a positive response which closes a large game; (ii) checks alignment of both participants’ plans or position in task with respect to goal; checks attention, agreement or readiness. We use the ALIGN code for (i) only (for (ii) we use ALIGN TASK – see §4.1.2.1 for exemplification).

Extract 4-7 GM & MB: ‘past the door’

→ *E 86 IF check em
*TB126
 So I - (0.5) after the goat (0.6) I go down and then onto the {invisible deixis
gest} right hand side of the {point} windmill (1.2) where it (0.7) um (0.8) (LS)=
*MB Check
*TA108
 =You walk past the door
*MA Clarify
*TB127
 (0.9) Past the door. Ah.
*MB Acknowledge repo
→ *E 87 IG align em
*TA109
 You walk past the door (.) “if” you know what I mean
*MA Clarify cont repo = reps
→ *MA Align
*TB128
 Yeah.
*MB Reply-y
*End 87
*End 86
4.1.1.2 other moves

CLARIFY

Clarifies or rephrases what has previously been said; usually repeats given or known information; elicited by other person.

Extract 4-8 MD & MB: ‘noose 2’

*TB045
*E 34 IF explain em
I’ve got a noose. (1.0) /Um*
*MB Explain

*E 35 IG query-w hc em
*TA036
/A what?*
*MA Query-w hc

*TB046
A noose – a er you know a {hanging gesture}
thing that you’re /hang-* hung - (-hh) /hanged with*
→
*MB Clarify

*TA037
/Oh!*
*MA Acknowledge
*End 35

*E 36 IG explain elicit em
*TA038
/I haven’t* got

*MA Explain elicit

*TB047
N(h)o hahaha
*MB Acknowledge
*End 36
*End 34

REPLY-Y, REPLY-N

Affirmative (REPLY-Y) or negative (REPLY-N), elicited response to QUERY-YN, CHECK, or ALIGN; also indicates agreement, disagreement, or denial. We have seen affirmative REPLY-Ys in the previous extracts. A REPLY-N can be seen in the ‘gate’ extract:

Extract 4-9 HL & GW: ‘gate’

*E 10 IF query-yn em
*TB008
(-hh) Right. Do you have a gate?
*MB Ready
*MB Query-yn
REPLY-W
An elicited reply to QUERY-W or CHECK; can be a response to QUERY-YN that is not easily categorisable as positive or negative (REPLY-Y/N). We have seen an example of a REPLY-W in the ‘helicopter’ extract.

ACKNOWLEDGE
Acknowledgement of having heard and understood\(^3\); not specifically elicited but often expected before the other speaker will continue; announces readiness to hear next move – in essence a request to ‘please continue’; may close a game. We have seen examples of ACKNOWLEDGES in several of the above extracts (‘windows’, ‘helicopter’, ‘past the door’, ‘noose 2’ and ‘gate’).

READY
Indicates intention to begin a new game and focuses attention on oneself, in preparation for the new move; an acknowledgement that the previous game has just been completed, or leaving the previous level or game, consists of a cue word.

Extract 4-10 HL & GW: ‘gate’

\[
\begin{align*}
*E & \ 10 \ IF \ query-yn \ em \\
*TB008 & \\
& \ (\text{hh}) \ \text{Right.} \ \text{Do you have a gate?} \\
\rightarrow & \ *MB \ \text{Ready} \\
& \ *MB \ \text{Query-yn} \\
*TA007 & \\
& \ {\text{small head }shake} \ \text{No!} \\
*MA & \ \text{Reply-n}
\end{align*}
\]

\(^3\) Kowtko et al. (1992) define ACKNOWLEDGE as vocal (they were working from audio data only). We, on the other hand, also allow for non-verbal acknowledgement.
4.1.1.3 other game coding (qualifiers/riders)

In addition to the codes for games and moves there exist eight additional codes that are used to further describe the data. We call these extra codes **qualifiers** or **riders**:

- **aban self** game abandoned by game initiator
- **aban other** game abandoned by other partner
- **em** game embedded
- **interj** interjection
- **fill** speaker is finishing off their partner’s utterance for them
- **meta** current game/move is *about* the task rather than *part* of the task
- **repo** utterance is a repetition of the other person
- **reps** utterance is a self-repetition

Although they were never intended to comprise a fully exhaustive and comprehensive method of analysis these twelve move types (together with the riders) are, on the whole, perfectly adequate for describing the interactions between non-aphasic undergraduate subjects (Kowtko, personal communication).

4.1.2 adoption and extension of kowtko et al.’s analysis

There were three main reasons for using Game Coding as a method of analysing the communicative functions of conversational contributions from the current corpus:

(i) it is based on function not form and therefore copes equally well with both complete and incomplete contributions be they verbal or non-verbal

(ii) a substantial sample of non-aphasic undergraduate Map Task data was already coded and thus potentially available for comparison
it has been demonstrated that this method of coding is robust, with interjudge reliability between expert and novice coders found to be 85.5% for the agreement on the categorisation of conversational games and 87% for agreement on conversational moves.4

However, the categories set out by Kowtko et al. (1992) turned out not to capture some of the finer distinctions to be found in the initiation-response-feedback patterns in the dialogues described here, particularly those involving aphasic individuals. Nineteen additional initiating game moves (and hence game types) and seven related responsive moves have therefore been developed – thus 26 new moves in total.5 To be fair, the ‘new’ categories are really subtypes of the moves in Kowtko et al. and they have thus been named so as to maintain some degree of continuity.

4.1.2.1 initiating moves

Definitions for seventeen of the 19 additional initiating move types are given below.6 Where extracts are long, any non-essential has been omitted.

ALIGN TASK
Checks alignment of both participants' plans or position in task with respect to goal; checks attention, agreement or readiness.

Extract 4-11 GM & MB: ‘sheep’s heads’

TA059

/Right* - rightish. You go round- round it. /So X* [that]the*

TB071

Round to the*

right of the sheep

TA060

You don’t go round the back of it, you /go* round ()

4 The author also took part in this reliability study (cited in Anderson et al., 1997: 17f).

5 Although we make use of all these categories, six of them pertain only to IG behaviour which we do not report on in this thesis. We therefore do not take the space to define them here. For the sake of semi-comprehensibility, however, these six moves are: ALIGN RETRACE = CLARIFY and INSTRUCT OVERVIEW (initiating); CLARIFY ALTERNATIVE, REPLY-W = INSTRUCT, REPLY-W ALT = INSTRUCT and REPLY-W PROD (responsive).

6 The other two pertain only to IG behaviour which we do not report on in this thesis.
ALIGN RETRACE
The ALIGN TASK is used when both participants are checking on their (shared) current position in task. This, too, is the endpoint of an ALIGN RETRACE game. Where ALIGN RETRACE differs is that it also involves the checking of some part of (and in extreme cases, the whole of) the preceding route. For example: So we started at the van and then went down to the church and then to the letterbox.

EXPLAIN = ACKNOWLEDGE (EA)
Basically this is an ACKNOWLEDGE move (typically made by the IF) which closes a game and requests that the other participant continue. The explain aspect is added because this move type (i) is fuller than a simple ACKNOWLEDGE; (ii) describes the position in task; (iii) is not elicited; and (iv) provides new information. For example: Okay, I’m now at the crocodile’s mouth.

EXPLAIN ELICIT (EE)
EXPLAIN moves are partly defined as being freely offered new information. However, not all provision of new information can be regarded as completely unsolicited. Typically, EXPLAIN ELICITS are used when the new information probably would not (and in most cases, could not) have been offered had partner’s previous utterance been different. In other words, such moves are dependent on and hence elicited by the other dialogue partner.
Extract 4-12 HL & GW: ‘well’

*TA043
You go right around to the well.

→ *E 53 IF explain elicit em
*TB047
Oh I {head shake} don’t have a well (ha)
→ *MB Explain elicit
*End 53

INSTRUCT = TIME OUT (ITO)
Communicates the direct request for the on-going game to be temporarily put on hold. Indicates some kind of trouble and the imminence of potentially multiple nested games. For example: *Hang on a minute.*

QUERY-W HEARING CHECK
Wh-question which asks for a repetition of part of the preceding utterance. The questioner supplies no candidate for what was misheard:

Extract 4-13 MD & MB: ‘noose 2’

*TB045
I’ve got a noose. (1.0) /Um*

→ *E 35 IG query-w hc em
*TA036
/A what?*

→ *MA Query-w hc

*TB046
A noose – a er you know a {hanging gesture} thing that you’re /hang-* hung - ’hh /hanged with*

*TA037
/Oh!*

*TA038
/I haven’t* got

*TB047
N(h)o hahaha

CHECK HEARING CHECK
Like the QUERY-W hearing check, the CHECK hearing check asks for a repetition of part of the preceding utterance but in this case the questioner supplies a candidate for what was misheard:
Extract 4-14 BA & DN: ‘letterbox’

*TA025
"(LS)° And er <↑letter box:↑>

→ *E 20 IF check hc em
*TB026
(.) A letter box

→ *MB Check hc repo

*TA026
"Yeah."

*TB027
No I haven’t got /that.*

*TA027
"Oh*"

QUERY-W = INSTRUCT (QWI)
Open-answer wh-question which asks for new detail about the next part of the task – essentially a request for a new INSTRUCT game. For example: So where do we go now?

QUERY-W ALT (QWA)
A forced-choice question which asks for new or unknown detail about some part of the task. This move is a blend of QUERY-YN and QUERY-W since it is open ended in that it cannot be answered by yes or no, yet closed as the response that is set up is one from a set of restricted alternatives. For example: Do I go to the left or the right of the pine tree?

Further discussion of this game type is provided in §6.2.2.5.1

QUERY-W ALT = INSTRUCT (QWAI)
A forced-choice question which asks for new or unknown detail about the next part of the task – essentially a request for a new INSTRUCT game.

Extract 4-15 HL & GW: ‘house’

*TA051
"(LS)=('hhh) You go underneath the chicken,

*TB056
Aha (DRAWS)

*TA052
And go right around to thE () **(LS)** () **(hh)** () house

*TB057
To the house. /Aha?* (1.8)

*TA053
/Aha*
*TB058
Is the house in the middle of the page roughly at the bottom?

*TA054
{eyebrow flash} Yes /aha*

*TB059
/{Nods} Yes that's* where my house is. OK.

→ *E 63 IF query-w alt = instruct
*TB059 ctd
(-hhh) /Do you go* under the house or over the house?

→ *MB Query-w alt = instruct

*TA055
/Er*

*TA056
"(LS)"* Over the house

*TB060
Over the house, rig/ht.*

QUERY-W PROD (QWP)
Highly unspecific query which prompts (prods) partner to produce more talk. This type of utterance can often be found in inter-spouse conversations that retell the day's events:

Example 4-16 AJM & SAM

AJM: So how was your day?

SAM: Well I went to Greendykes clinic and my first one – a review – didn't turn up so I wrote a report ...
continues with retelling events, and at some point stops talking
while still clearly not having finished with the whole day
(long pause)

AJM: And...??

A real example of a QWP is given in Extract 4-17. The IG (PK) has been giving (almost overloading) his IF (GW) with route instructions (the INSTRUCT game has already been going on for 34 turns prior to where we join the extract). GW uses an ITO to gain sufficient time to carry out the physical task of route drawing and when she is ready for him to proceed with the next chunk of information she signals so by acknowledging that she has finished her drawing activity and then prompts him to continue with her QWP.
The content of this QWP indicates the precise point of PK’s preceding contributions up to which she has processed and acted on and thus this is the point in the task from where she expects him to continue and in this case, PK obliges.

Extract 4-17 PK & GW: ‘hard right turn’

*TA059

-Right? And then {gesture ends from earlier} () (hh)(hh) you take (h) a turn and turn back up north again () going slightly backwards but {hard point} stopping () and then it’s a- a: () a /hard right* turn again

*TB060

/"Oh alright"*

*TB061

"Okay hang on" () Right.

→ *E 55 IF query-w prod em

*TB061 ctd

And then a hard right turn... ()

→ *MB Query-w prod

*TA060

"'(LS)'"=Hard right turn /that takes you up* to the top of the page

QUERY-W PROD = INSTRUCT (QWPI)

An unspecific query which prompts (prods) partner to provide new detail about the next part of the task – in essence, a request for a new INSTRUCT game.

Extract 4-18 MD & MB: ‘After the Eskimo’

*TB053

And then that’s /so I go*

*TA047

/And* then bear er er () er south

*TB054

South. () So I go south towards () /thE - well* your Eskimo /or my* noose (ha)

*TA048

/Er*

*TA0

(HH)

→ *E 42 IF query-w prod = instruct

*TB054 ctd

And then

→ *MB Query-w prod = instruct

*TA049

Er and then er s- go "er" er () er () west
QUERY-YN = INSTRUCT (QYI)
The QUERY-YN = INSTRUCT is to the QUERY-YN what the QUERY-W = INSTRUCT is to the QUERY-W. The QYI is a yes/no query which instructs partner to do something.

Extract 4-19 BA & GW: ‘spell’

*TA042
"Mm" (LS) And er () noe () (hhh) "icoo- no" () noe "oh dear - sorry"
→ *E 32 IF query-yn = instruct em
*TB039
Can you spell it?
→ *MB Query-yn = instruct
*TA043
() {iconic gest: C} [s: /s:]*

CHECK ALTERNATIVE
Checks self-understanding of a previous message by offering a choice of alternatives.

Extract 4-20 MD & ND: ‘crocodile and the flamingo’

*TB066
Right, okay. So now I’m between the crocodile and the flamingo

*TA068
(1.5) (LS)=(-hh)
*C puzzlement
→ *E 60 IF check alt em
*TB067
Is that the right side. (.) "Or should it be the other side."

→ *MB Check alt

*TA069
Er the er the crocodile is er (.) the path (.) er is er top of the (.) cr- er crocodile=

CHECK CORRECT
Checks self-understanding of a previous message or instruction which appears to be incorrect by providing a single ‘correct’ candidate.
Extract 4-21 HL & GW: ‘fowl’

*TA049
You go right down to the hen

→ *E 59 IF check correct
*TB054
The chicken, a/ha*
→ *MB Check correction
*MB Acknowledge

*TA050
/Nods} The chicken "(ha/haha)"

*TB055
/Aha (ha*haha) OK.

CHECK CORRECT ALTERNATIVE
Checks self-understanding of a previous message or instruction which appears to be incorrect by providing an alternative choice of ‘correct’ candidates.

Extract 4-22 GM & MB: ‘left or right’

*TA114
You start going {deixis gest} leftish (.). "You" know {deixis gest: right} left?

→ *E 92 IF check correct alt em
*TB134
Left (.)/(.)**or**
→ *MB Check correction alt

*TA115
/Deixis}Left*

*TB135
Or right /"you mean"*
→ *MB Check correction alt cont

*TA116
/Lc-* (.)

CHECK OPTIONAL
Fundamentally a check but one which the other dialogue partner has the opportunity to contradict if necessary. In other words, the optional check is a type of check that can legitimately be ignored by the checkee thereby mutating (see §4.2.2) the check into an acknowledgement and thus avoiding the potential highlighting of their non-competence.

Extract 4-23 BA & GW: ‘a long way down’

*TA033
() And then {point} () {measures} "oh" six inches ↓down↓ {deixis gest}"
4.1.2.2 responsive moves

Definitions for three of the seven new responsive move types are given below.\(^7\)

ACKNOWLEDGE = READY
An utterance that functions simultaneously as an ACKNOWLEDGE and a READY: it is an acknowledgement of having heard and understood and, at the same time, it indicates the intention to begin a new game and therefore, in preparation for the new move, it focuses the attention on the speaker.

Extract 4-24 HL & GW: ‘behind the helicopter’

\(*TB028\) ctd
(,) OK. That’s drawn the helicopter. (,)

\(*TB029\)
(LS) Right? And do I go behind the helicopter or in front of it?

\(*MB\) Acknowledge = Ready

\(*TA025\)
(,) (LS)=(-hh) ThE er () front=

\(*TB030\)
=In front of it, Okay. ()

ACKNOWLEDGE CORRECT
Similar to a CHECK CORRECT, this acknowledges a previous incorrect message or instruction by providing a single ‘correct’ candidate. Unlike the CHECK CORRECT, however, the other interlocutor (perpetrator of the mistake) does not orient to the candidate repair as a correction, but rather simply as an acknowledgement.

\(^7\) The other four pertain only to IG behaviour which we do not report on in this thesis.
Extract 4-25 GM & ND: ‘snake/snail’

*T A082
(.) almost at the () {iconic gest: level} level almost with the s:nake=

*T B087
={nods} Right.

*E 77 IG align em
*T A083
//Right?*

*T B088
/>''(LS)'' With the<* snail. Yeah

→
*MB Acknowledge correct cont

*T A084
Right, so you’re going from the window heading towards
this cat that /I can see but you can’t. Right? (•hhh)*

*T B089
/''(LS)'' (.) ''(LS)''=Yeah {nods}*

REPLY-W ALT
A REPLY-W but one that is made in response to a QUERY-W ALT.

Extract 4-26 HL & GW: ‘house (abridged)’

*E 63 IF query-w alt = instruct
*T B059 ctd
•(hhh) /Do you go* under the house or over the house?
*MB Query-w alt = instruct

*T A055
/Er*

*T A056
''(LS)'' Over the house

→
*MA Reply-w alt repo = instruct repo

*T B060
Over the house, rig/ht.*

4.2 layout of codes in the dialogues

The aim of this section is to familiarise the reader with the conventions associated with
code layout. The two sections that follow deal with Game Coding and Other Coding.
4.2.1 layout of game codes

As we have just discussed in §4.1 there are two basic levels of game (or exchange) analysis: games and moves. In addition to these two levels of code, ends of games are also tagged within the transcripts. Further details about the coding procedure are set out below after which an example dialogue extract is provided to illustrate the code layout.

i. Turns are coded with a *T line (T for Turn): *TA# lines are IG turns (Aphasic or Age-Matched Control). *TB# lines are for IF turns. # is the number of the speaker’s turn.

ii. Each game is coded using a *E line (E for Exchange). *E lines are numbered sequentially throughout the dialogue irrespective of which dialogue partner initiates the game. Hence, if the first game is initiated by the IG the coding starts with *E 1 IG. Irrespective of who initiates the next game the coding line for it would start *E 2. The beginnings of conversational games (exchanges) are coded for up to a maximum of five fields of data:

(1) Game number within the dialogue {1-n}
(2) Initiator of game {IG, IF}
(3) Game type (see above for details)
(4) whether the game is embedded within another game {Ø, em}
(5) whether the game is eventually abandoned by either party
 {Ø, aban self, aban other}

A very full line of game code might therefore be: *E 15 IF check em aban other stating that: the current game is the 15th of the dialogue; it is initiated by the Information Follower; it is a CHECK type game embedded (at some undisclosed level) within some other game(s); and that it is eventually abandoned because the other dialogue partner (IG) for some reason does not respond to the IF’s check.

iii. Move types appear on the line below the appropriate text and are preceded by a *M line (M for move) – either *MA (for Aphasic or Age-Matched Control IG moves) or *MB (for IF moves). Where a line of text involves multiple moves, each move type appears on a separate line.

iv. On completion of a game it is closed off in the transcript using a *End # line (where # is the number of the game completed). *End lines follow the related *M lines. (Prior to being closed, the game is said to be open.)
Assuming that the hypothetical ‘windows’ example (4-1) was taken from the very beginning of a dialogue, it can now be given as it would appear in a real transcript.\(^8\)

Example 4-27 Marjorie & Joan: ‘windows’

\begin{verbatim}
 *E1 IG instruct
 *TA1
 Could you close the windows?
 *MA Instruct
 *E2 IF check em
 *TB1
 All of them?
 *MB Check
 *TA2
 Yes.
 *MA Reply-y
 *End 2
 *TB2
 Sure! \{Joan closes all the windows\}
 *MB Acknowledge
 *End 1
\end{verbatim}

4.2.1.1 placement of *E lines

The exact placement of *E lines of code depends on the status of the on-going talk. If an utterance initiates a new and more deeply embedded game, then the *E line appears before the *TA(B) line as in Extract 4-28:

Extract 4-28 HL & GW: ‘pine tree’

\begin{verbatim}
 *E 3 IG instruct
 *TA002
 Go down to: () the pine tree
 *MA Instruct
 → *E 4 IF explain em
 *TB004
 Right, um I have a pine tree but it’s () quite near the bottom of the page.
 *MB Ready
 *MB Explain
 *End 4
\end{verbatim}

\(^8\) Conventionally game types are written fully in lowercase, while move types have an initial capital letter.
If, on the other hand, the new game is not at a deeper level of embedding than the previous game the *End line(s) relating to previous games appear before the new *E line: the *T line appears first followed by utterance text followed by appropriate *M lines followed by any necessary *End lines. Only then do we get the new *E line as shown in Extract 4-29:

Extract 4-29 HL & GW: ‘slightly to the left’

```
*E 17 IF query-w alt em
   *TB013
   Which side? Left /or right?
*MB Query-w alt
   *TA011
      /Er
*MA Reply-w alt
   *TA011 ctd
   Left
   *MA Reply-w alt cont repo
→*TB014
   Slightly to the left.
   *MB Acknowledge repo = reps
→*End 17
→*E 18 IF explain meta em
   Okay I’ll draw in a pine tree then. (DRAWS) Okay ()
   *MB Explain meta
   *MB Acknowledge
   *End 18
```

4.2.2 layout of other codes

Five codes do not relate to game and move structure. The first two relate to the nature of the current speaker’s turn, the third and fourth concern the turn’s content and the fifth is a code for general comments.

(1) **TA(B) # ctd**

If, for some reason, a speaker’s single turn is not transcribed as one contiguous piece of text, then the continued utterance is transcribed as a ‘new’ turn but the on-going nature is signalled in the *T line by means of ctd after the turn number:
Extract 4-30 HL & GW: ‘explorers’

*E 41 IF explain meta em
*TB034
(.) (haha)=Our different explorers /must have* noticed these things *(ha)*.
*MB Explain meta
*End 41

*TA030

/Ah*

*MA Acknowledge meta

*E 42 IF query-w alt em
*TB034 ctd
(hh) OK. >*(hh)< Do I go to the {deixis gest} left of the goat or to the
{deixis gest} right of the goat.
*MB Ready
*MB Query-w alt multi modal multi modal

*TA031
The ()er left
*MA Reply-w alt repo

(2) **Turn A(B) min**

A line of coding such as this might appear after all other necessary game
coding to indicate that the current turn at talk is a **minimal contribution**. It
must be noted that a minimal turn does not necessarily imply that the
contribution was **inappropriately** minimal. In essence, it is a marker of
minimal responsiveness which is usually associated with short replies or those
that use direct repetition of the previous turn. Any turn that initiates a game,
no matter how minimal, will not be coded in this manner because it will not
be constituting a minimal response (cf. QUERY-W PROD type games that can
consist of just a one word prompt).

Extract 4-31 HL & GW: ‘explorers’

*E 41 IF explain meta em
*TB034
(.) (haha)=Our different explorers /must have* noticed these things *(ha)*.
*MB Explain meta
*End 41

*TA030

/Ah*

*MA Acknowledge meta

→

*Turn A min

*E 42 IF query-w alt em
*TB034 ctd
(hh) OK. >*(hh)< Do I go to the {deixis gest} left of the goat or to the
{deixis gest} right of the goat.
*MB Ready
*MB Query-w alt multi modal multi modal
TA031

The () er left

*MA Reply-w alt repo

→ *Turn A min

(3) **Multi: multi ling; multi modal**

Multi codes (if appropriate) may be found in the *M line after the Move name.⁹ They concern the nature of the packaging of information within the relevant move. In essence, they are tags which indicate that some unit of information has been presented in more than one way.

Moves coded as **multi ling** offer information in two distinct ways but both being verbal. Moves coded as **multi modal** encode information both verbally and non-verbally (where appropriate, nods/head shakes are also specified). (It is possible to have multiple multi codes.)

Extract 4-32 BA & GW: ‘a long way down’

*E 23 IG instruct

*TA033

() And then {point} () {measures} ***oh*** () six inches ↓down↓ {deixis gest}

→ *MA Instruct multi modal

*E 24 IF check optional em

*TB029

Six inches down. Right, a long way down

→ *MB Acknowledge repo multi ling

*MB Check optional

*TA034

{iconic gest: you’ve got it} {nod} Yes

→ *MA Reply-y multi modal multi modal nod

(4) **C mutation**

C mutation code is discussed in depth in §6.2.6. For current purposes it is sufficient to state that it is used to show instances of talk where one participant orients to it as having one function and the other another. In Extract 4-33 B treats her utterance in *TB057 as an acknowledge while A takes *TB057 to be (and mutates it into) a check (therefore making an answer sequentially relevant):

⁹ An analysis of Multi Moves was planned for this thesis. However, because of space limitations it was clear that it would not actually appear. Consequently the data has not been exhaustively multi-coded.
Extract 4-33 HL & GW: ‘house (abridged)’

*TA052
And go right around to thE () "(LS)" () "(hh)" (.) house
*MA Instruct cont

*TB057
To the house. /Aha?* (1.8)
*MB Acknowledge repo

*TA053
/Aha*
*MA Reply-y
→
*C mutation

(5)

*C comment
The very final line of code relating to any given move is used as a general comment line. Comment lines were instrumental in bringing out recurring as well as isolated points of interest. They are discussed in Chapter 9. Comments can highlight points of interest such as:

- Laughter
- Preference organisation (see §2.1.5.2.3)
- Weaker acceptance (see §2.1.6.3.1)
- Explicitness

The extracts below give some flavour of the type of comments that are made:

Extract 4-34 GM & MB: ‘left or right’

*TA114
You start going {deixis gest} leftish (.) "You" know {deixis gest: right} left?

*TB134
Left (.)/(.) "" or ""*

*TA115
/{deixis}Left*

*TB135
Or right/""you mean""*

*TA116
/Le-* (.)

*TB136
/"No"*
→
*C pref org micro pause
Extract 4-35 BA & GW: ‘past the tent’

*TB010 ctd
(DRAWS = () Pa/st the* tent

*TA012
 /*And-* {deixis gest: east} *
→ *C the fact that east only gets done non-verbally is the source of a lot of future mismatching it is also because NVC is in overlap AND when B isn’t looking but drawing!!! Unfortunately, B’s ‘past the tent’ can be interpreted by A as ‘east past the tent’

*TA013
Yes {nods}

*TB011
Mhm

*TA014
() (LS)=(hh)=And sort of () {deixis gest: north} ‘there’ {deixis gest: east} there () {deixis gest: east} not () east {beat gest} exactly but* {deixis gest: north-east} little bit

*TB012
/Mm?*

*TB013
Little bit north-east. =
→ *C checking NVC!
→ *C GW’s little bit = distance; BA’s little bit = sort of north-east
→ *C mismatch: very important compounding effect see TA012

4.3 why bother with data coding?

Having explained how we code the data, it seems only reasonable that we offer some explanation as to why we code the data. This is the section where we do so. Put simply, we code the data in order to use those codes as means of testing the hypotheses which we set out in §1.3. But as that was some time ago, we will take this opportunity to remind the reader of those hypotheses and at the same time we will provide (briefly, and in rather general terms) some indications of the types of data patterns that would support them.\(^{10}\)

As stated in Chapter 1, the overall aim of this thesis is to show that aphasia is a variable that non-aphasic participants orient to in their interactions with aphasic individuals. Specifically, this thesis addresses:

\(^{10}\) The particular analyses that were undertaken are introduced in Chapter 5 and the results of those analyses are provided in Chapters 6 to 9.
(i) how non-aphasic dialogue partners manage their interactions with aphasic individuals, and

(ii) how their behaviour can be seen to be compensating for the apparent linguistic deficits of their aphasic interlocutors.

More specifically, the aim of this thesis was to test several hypotheses about the differences between AD and CD interactions and it is in the following sections that we restate them.

4.3.1 hypothesis 1

HYPOTHESIS 1
In the Aphasic Dialogues the non-aphasic dialogue partner will do more of the communicative work.

Indicators of Hypothesis 1 would include:

• more of the talk being centred on the non-aphasic Information Followers
• more of the conversational games being initiated by the non-aphasic IFs
• more IF-closure (grounding) of games (see §6.2.3)

4.3.2 hypothesis 2

HYPOTHESIS 2 (Doing Being Ordinary)
In the Aphasic Dialogues the non-aphasic dialogue partner will try to avoid highlighting any linguistic non-competence on the part of their aphasic partner.

Indicators of Hypothesis 2 would include:

• the IFs’ less than perfect negotiation of landmarks in the ADC
• the IFs withholding information about IF-specific features (i.e. IF mismatches)
• the IFs’ avoidance of Instruct = Time Out games which necessarily highlight the communicative incompetence (or at least the communicative insensitivity) of your dialogue partner

• more cases of the non-impaired IFs attempting sensitive face-saving behaviour on behalf of their dysphasic partner

4.3.2.1 hypothesis 2.1

HYPOTHESIS 2.1
In the Aphasic Dialogues the non-aphasic dialogue partner will try to avoid highlighting any linguistic non-competence on the part of their aphasic partner by means of Explicit Simplification – simplification which makes the interaction explicit (e.g. by using Acknowledgements which, by means of additional explanation, make explicit exactly what is being acknowledged).

Indicators of Hypothesis 2.1 would include:

• the IFs using more Explicit Simplification (see §5.2.3.2)

• a lack of implicit grounding in the ADC

4.3.2.2 hypothesis 2.2

HYPOTHESIS 2.2
In the Aphasic Dialogues the non-aphasic dialogue partner will try to avoid highlighting any linguistic non-competence on the part of their aphasic partner by means of Reduction Simplification – simplification which reduces the possibilities for the next relevant turn (e.g. by using forced-choice rather than open-ended queries).

Indicators of Hypothesis 2.2 would include:

• the IFs using more Reduction Simplification (see §5.2.3.2)
4.3.3 hypothesis 3

HYPOTHESIS 3
Some aphasic individuals demonstrate the ability to communicate much better than they speak/understand.

Indicators of Hypothesis 3 would include:

• aphasic subjects performing the task within the range of scores for the non-impaired control group (see §5.1.1.1)

4.3.3.1 hypothesis 3.1

HYPOTHESIS 3.1
In the aphasic dialogues the non-verbal modality will play an important role in the mitigation of linguistic deficits.

Indicators of Hypothesis 3.1 would include:

• the worst aphasic interactions (measured by deviation score) being achieved in the No Eye Contact Condition
• NEC deviation scores being greater than mean EC deviation score for the aphasic group than for the controls

As we shall see in the course of our discussions, all these hypotheses were in fact confirmed.
overview of the analyses

Marco Polo describes a bridge, stone by stone.

“But which is the stone that supports the bridge?”, Kublai Khan asks.

“The bridge is not supported by one stone or another” Marco answers,

“but by the line of the arch that they form.”

Kublai Khan remains silent, reflecting. Then he adds;

“Why do you speak of the stones? It is only the arch that matters to me.”

Polo answers: “Without stones there is no arch.”

Italo Calvino

This chapter introduces the reader to the various analyses used in Chapters 6 to 9. These analyses fall into three major subtypes. Type-I analyses are concerned with task success, dialogue measures, and turn distribution. Type-II analyses are all based on data gathered via tagging (or ‘coding’) the dialogues using a method of analysis known as Game Coding (see Chapter 4). Type-III analyses are not so much analyses as miscellaneous comments that are considered sufficiently interesting to warrant some discussion.

In the following sections we will deal briefly with each of these subtypes of analysis. Further detailed explanation will be provided as appropriate when, in Chapter 6, the results for each analysis are considered for the first time.

5.1 type-i analyses

In the next three sections we will cover the analyses concerned with task success, dialogue measures and turn distribution.
5.1.1 task success scores

We investigate task success under four main headings: Deviation Scores, Time Taken, Efficiency Rating and Landmark Negotiation.

5.1.1.1 deviation scores

As has been mentioned in §3.6, one of the reasons for collecting data from task-oriented dialogues was that it affords the possibility of a mathematically based, non-sociological and non-linguistic measure of interactive success derived independently from any considerations about the quality of the dialogue. We must, however, stress that we do not wish to imply that such a quantitative measure is more, or even as, important as qualitative indices - all we claim is that such an independent measure can throw additional light onto the notion of communicative success.

In an ideal situation then (at least as far as interactive information exchange is concerned), there is a clearly defined (and obtainable) solution to the task, viz. a perfect replica of the IG's route. As already mentioned, it is therefore possible to quantitatively assess task success by measuring the deviation of the IF's route from that of the IG. In this way a low deviation score represents high task success and vice versa.

Practically, this measure was obtained by taping an overhead projector acetate onto the IG's map and, with a super-fine permanent OHP pen, marking on it the shared features and the IG's route. This acetate was then laid over the IF's map (carefully matching up the shared landmarks), again secured with tape and the IF's route transferred onto it.

At this stage then, there was an A3 sized piece of acetate (two A4 OHP slides taped together) on which were drawn all shared features and the routes of both the IG and IF. In order to make the measurement process more manageable, all the areas of overlap (no matter how small) were copied onto a single A4 OHP slide.

This A4 slide was then secured onto a piece of A4 graph paper (with each square centimetre being subdivided into 25 4mm\(^2\) squares) and the total area of overlapped route calculated. Rather than discounting small sections of overlap as insignificant (which would have resulted in an inaccurate representation of inflated success) whenever the route lines dissected the 4mm\(^2\) squares the small areas thus produced were tallied until it was estimated that they constituted one full 4mm\(^2\) square. The tally of 4mm\(^2\) squares was finally divided by 25 to give a total map deviation score measured in cm\(^2\).
5.1.1.2 time taken

All dialogues were timed from the audio recordings using a digital stopwatch accurate to 100th of a second. Timings were taken from the very first task-related utterance after the researcher (AJM) had left the room until the task-related talk was complete. Each dialogue was timed on four occasions and the average time was recorded to the nearest tenth of a second.

5.1.1.3 efficiency rating (ER)

Neither the deviation score nor time taken on the task were considered to be truly totally representative of task success – to explain why, we will demonstrate two extremes.

Theoretically, a dialogue pair with sufficient patience could, taking potentially several hours, accomplish a totally perfect replica of the IG’s route. They would have thus scored an optimum zero with respect to deviation score but at the expense of an extremely prolonged involvement with a potentially maximum score with respect to time taken. Alternatively, a pair could ‘finish’ the task in minimum (virtually zero) time by drawing a straight line from the shared start point to a swiftly negotiated finish point.1

In either case, by judging the participants on just one criterion, it would have to be said that they had been maximally successful. Clearly this is a ludicrous suggestion. In order to be really successful at one aspect of the task (deviation score or time) there must always be a trade-off between the desired benefits of accuracy and the associated ‘costs’ of time taken. What is needed is some measure of efficiency that appropriately takes into account both aspects. The question is how these criteria are to be combined.

Although it is obviously an unobtainable state of affairs, to be truly maximally efficient at the task the perfect replica of the IG’s route (zero deviation) would, theoretically, have to be completed in zero time (maximum benefit at minimum cost). It appears that we need some form of combination (summation, quotient or product) of the two measures where (near) maximum benefit at (near) minimum effort yields a maximally efficient score: the question is do we need a summation, quotient or product of the two measures? We can quickly eliminate two of the possibilities.

1 It should be noted that although this would clearly yield a fairly high deviation score, it would not be a maximum score. To obtain this the IF would first have to completely skirt the A3 map.
The argument against summation is simple: one quantity is measured in seconds and the other in cm² – a classic case of attempting to combine apples and oranges which (as we all learned in primary school) simply can’t be done!

The argument against a quotient is based on the fact that since maximum benefit is zero deviation and minimum effort is zero time, irrespective of which quantity was to be divided by the other, there would, theoretically, always be the possibility of trying to divide by zero which (as we all learned in secondary school) simply shouldn’t be done!

As a deviation of zero cm² is a possible state of affairs this clearly rules out Deviation as a divisor but since zero time is not actually possible we could accept Time. There is, however, an objection to doing so: although zero time is not practically possible, it is exceedingly hard to judge exactly how close to zero time is possible – in other words having Time as a divisor would not give us an absolute constant value by which to judge all other scores.

Thus, having eliminated the impossible and the impracticable we are led to a solution that must be a truer way forward: what must be needed is a product of Deviation and Time.

By default we have arrived at the following equation:

$$\text{Efficiency Rating} = \text{Deviation} \times \text{Time Taken}$$

In this way, then, the maximum efficiency rating is zero. Although it might seem somewhat counterintuitive to talk of a maximum score of zero, adopting this as our equation has two basic advantages:

1. It affords an absolute maximum score
2. It is consistent with the maximally desirable zero scores for Deviation and Time

Unfortunately there is one flaw in the simple product equation which suggests that it is far from perfect. If we accept that zero deviation is indeed a possible task result we are forced also to accept that plugging this zero score into the ER equation will yield a maximally efficient rating of zero irrespective of the time taken. In other words, we would be forced to conclude that a zero deviation score is always the optimal goal – even if it means taking several hours at the task! At face value it might appear that this is precisely where we came into this argument. There is, however, a subtle difference between adopting a product of Deviation and Time as an efficiency score and using Deviation by itself.
Because nothing can be done in no time at all, we have seen that the product clearly has an inbuilt bias towards accuracy as the desired goal – but if we recall the instructions that were given to the participants regarding accuracy (to the IG: *You must describe it exactly because it is the only safe route. ...* and to the IF: *You must draw it exactly because it is the only safe route. ...*) then perhaps this is only fair. Furthermore, using the product at least allows the possibility of an efficient use of time as a contributing factor.

It seems that although we cannot entirely justify the acceptance of $ER = D \times T$ (perhaps we need a way of summing apples and oranges after all!), it is the best of imperfect alternatives.

Before concluding this section we must note that all the preceding arguments were based on the assumption that the two commodities of Deviation and Time are of equal worth. Whether or not this is true is a debatable point. Although we have decided that we are to take some form of product of the two variables, it is far from clear that it is merely a simple product that is required.

Nevertheless as some assumptions have to be made, for current purposes we maintain the equi-value commodity theory.

5.1.1.4 landmark negotiation

In addition to measures of deviation and time taken, a method of task success has been developed (Davies, Merrison & Sotillo, in preparation) based on an analysis of the participants' negotiations around the landmarks. An Incorrect Entity Score (IES) is calculated accounting for the accuracy with which the entities are circumvented.

Essentially, the participants are awarded points which are weighted according to (i) the proximity of entity circumvention, (ii) the direction from which the entity is approached (e.g. if the IF draws their route the wrong way round or on the incorrect side of a landmark) and (iii) whether or not the entity is a shared landmark (i.e. common to both maps). The more points accrued, the less accurate (successful) the task.

2 If I had any hard evidence I would probably wish to argue that there exists a fairly constant maximum period of task time beyond which participants tend to forego striving for accuracy in favour of achieving some – any – sort of resolution. I would suggest that this might be because humans are social beings whose face-wants are designed to avoid the overt emphasis of participants' inadequacies. Although both extensive interaction and inaccuracy can be seen as face-threatening acts (Goffman 1967b, Brown & Levinson, 1987), the relative weight of prolonged interaction is greater than that of inaccuracy because of its ostensive nature.
5.1.2 dialogue measures

In their paper on communication skills in children, Anderson et al. use the term ‘dialogue measures’ to refer to the ways in which subjects “exploit the interactional opportunities of the dialogue tasks” (1992: 5). For the purpose of this thesis, dialogue measures are broken down further into the following analyses (each being calculated for the dyad as a whole, as well as individually for the IF and IG):

(a) the proportion of landmarks that are introduced into the dialogue (possible range of 0-100%)

(b) the proportion of landmarks introduced into the dialogue by statement (possible range of 0-100%)

(c) the proportion of landmarks introduced into the dialogue by question (possible range of 0-100%)

(d) the number of problem points (feature mismatches) that are collaboratively discovered (further analysed according to whether the mismatch is an IF-only feature (range: 0-3) or an IG-only feature (range: 0-3))

(e) the number of questions asked\(^3\) expressed as a percentage of the total number of ‘game moves’ (see §4.1.1) in the dialogue.

\(^3\) Questions can be linguistically marked through syntax or intonation. Such linguistic coding is not absolutely necessary, however. Examples of questions which are not linguistically marked can be seen below:

Extract 6-1 GM & MB

\[^*TB160\] (**LS**) Yeah () But so once I’ve got there (.) I just turn {iconic gest: up and over} straight back /down and go south*

\[^*TA138\] /And go go - go \{deixis gest\}

south. * {nod} Go south

\[^*TB161\] So er (.) like that. (.) 'Yeah’?

\[^*TA\] (1.0)

\[^*TB162\] And then er (.)

\[^*TA139\] ‘(chh)’ Then you go for a while and then (.) you might have seen a S- >’A-B-C’< C-H-I-S-K-E-N?

\[^*TB163\] A: - oh a chicken

\[^*TA140\] <Yes>

\[^*TB164\] (.) '(LS)’=Ah.
5.1.3 turn distribution

Since the major thrust of this thesis is concerned with increased involvement on the part of the non-neurologically impaired IF in the aphasic dialogues, it was fairly clear that some measure of the distribution of amount of talk should be investigated. To this end, the distribution of turns within the dialogues are quantified as follows:

5.1.3.1 number of turns

We tally the total number turns (not including continuation turns) for each participant.

5.1.3.2 proportion of major turns

We count the number of major turns and minimal turns for both IF and IG. Minimal turns were defined in §4.2.2 as turns which involve only minimal responsiveness – usually associated with short replies or those that use direct repetition of the previous turn. Major turns are all other non-minimal turns.

5.2 type-ii analyses

All Type-II analyses are in some way based on game coding tags (as described in Chapter 4). In this section we describe how these tags are used in the analyses.

5.2.1 standardisation of data

Whenever game-related data is quantified (games, moves or whatever), there is clearly a higher probability that a greater quantity will be found in the longer dialogues – put simply, the more talk there is, the greater the chance of there being more of certain data points. Therefore in an attempt to account for variable dialogue length, rather than take absolute, or raw measures, the data is standardised.

There were several possible candidates for such a standardisation procedure, namely taking dialogue time, dialogue turns or dialogue moves as the yardstick against which all else is relativised. Unfortunately difficulties can be found with all of these.
Consider the following scenario relating to dialogue time. In a dialogue in which a dysphasic IG has a slow speech rate (e.g. MD) then any given time slot is not going to contain much propositional content. In such a case, standardisation with respect to time will show a disproportionately low percentage of game-related quantities. Conversely, a dialogue with a non-neurologically impaired fast talking IG (e.g. PK) will show a disproportionately high percentage of game-related quantities. Time as a relativiser seems therefore to be inherently favourably biased towards fast talkers. Because of the word retrieval difficulties typically associated with aphasia, standardisation with respect to time would disadvantage the dysphasic group and favour the age-matched controls.

In short, time is not ideal.

Thus standardising by using turns would gain us the desirable benefit of blindness (and therefore unbiasedness) to the rate of speech. However, we can also argue against its adoption as a yardstick.

Although it is an idealised position, for the time being let us assume (following Levinson, 1983: 296) that, on the whole, “conversation is characterised by turn-taking: one participant, A, talks, stops; another, B, starts, talks, stops; and so we obtain an A-B-A-B-A-B distribution of talk across two participants”. In this way the valuable resource that is the control of the ‘floor’ is shared between the two dialogue partners. But if we define a turn at talk as all that which is uttered by one speaker from when they start talking until they stop, then these ‘turns’ will themselves vary enormously in the propositional content that might be conveyed. For example, a dialogue could, theoretically, consist of just one extended turn containing multiple propositions.

In short, turns are not ideal.

The problem of variability of propositional content could be circumvented by standardising with respect to total number of moves (given that any one move tends to represent some functional proposition). However, even this is not ideal because some utterances are multi-functional (one utterance can perform more than one move) and because adopting this as a standard would ignore any talk that is not analysed as functional (for example all interjections).

It appears, then, that we have to choose between the lesser of evils.

As Schiffrin notes (1988: 257) “although analysts may agree that conversation has a structure, they disagree on which unit is considered the ‘minimal’ constituent of such
structures: units as varied as the sentence, the utterance, the tone unit, the message unit, the turn at talk, and the move have been suggested”. Given this lack of consensus then, it hardly seems that this thesis is the place to categorically argue for any one constituent over any other.

For the purpose of our discussions, therefore (and so that we can have and eat as much cake as possible), the evil we choose as a relativising measure will depend on the analysis: in other words, we do not standardise the data by dividing the number of occurrences of some activity type by some fixed quantity (such as dialogue time or dialogue turns or dialogue moves). Instead we present our results in terms of the distribution of the particular game-related data under analysis. Let us show what we mean.

On the whole this thesis is concerned only with the role played by the non-neurologically impaired Information Followers. We will therefore use games initiated by the IF as an example. All abbreviations used are expanded in Section iv. (We will represent this data in §6.2.1.2.)

Figure 5-1 shows that for four of the six types of game (check, explain, query-w and query-yn) GW initiates a greater proportion in the aphasic dialogue with HL (the AD) than she does in the control dialogue with PK (the CD). However, as we will later show that GW initiates 75% of all the games in the AD but only 31% of all the games in the CD this finding might seem unsurprising.

![Figure 5-1: Percentage of GW's IF Games in GW & HL (AD) and GW & PK (CD)](image-url)
Therefore (in order to give a truer picture of the IF game-initiating activity) Figure 5-2 shows not the occurrence of IF games as a percentage of the total number of games initiated in the dyad as a whole but rather the distribution of IF games as a percentage of just the IF games that are initiated. In effect Figure 5-2 takes into account the IF’s greater initiative in the AD and shows only how she proportions the activity that she does produce.

Figure 5-2: Distribution of GW’s IF Games in GW & HL (AD) and GW & PK (CD)

Figure 5-2 indicates that in the AD, GW spends proportionately less of her game-initiating activity on aligns, checks, explains and instructs while more of her activity is biased towards both types of query game.

To see what difference this reanalysis makes let us use explain games as an example. Figure 5-1 indicated that 30% of all the games in the AD were IF explains while in the CD IF explains accounted for less than 15% of all dialogue games. In other words, there were apparently twice as many IF explains in the AD than in the CD. But since GW initiates almost two and a half times as many games in the AD than in the CD (75% versus 31%) we would, ceteris paribus, expect twice as many IF explains in the AD.

Figure 5-2, on the other hand, shows the distribution of the IF games and, in terms of all the games that the IF initiates, we now find that IF explains account for 39% of all the IF games in the AD but 47% of those in the CD. In other words, when we take into account the fact that the IF does more game initiation in the AD than in the CD, the status of IF explanation changes dramatically.
5.2.2 game analysis

Game analysis is covered under the following four separate headings:

• Analysis of Overall Initiation:
 Distribution of games in the dialogue initiated by each of the two partners.

• Analysis of Basic Games:
 Distribution of the six basic game types (align, check, instruct, explain, query-w and query-yn).

• Analysis of Refined Games:
 As for basic games but here all the various subtypes of game are analysed.

• Analysis of Game Closure:
 Closure is analysed along two dimensions: (i) according to who closes the game (IG or IF) and (ii) according to the degree of grounding associated with the closure (passive, active or super-active). This yields six types of closure (detailed discussion is provided in §6.2.3). Analysis details the distribution of these various types.

5.2.3 move analysis

Because of the existence of continued moves, the ratio of moves to games need by no means necessarily be a 1:1 mapping. For sake of argument, let us acknowledge that it is theoretically and indeed practically possible for, say, all non-check games to consist of exactly one corresponding move while all check games take maybe a total of three (i.e. one check move and two check continueds). Given this scenario, an analysis of game initiation would mask the fact that check games are actually interactionally more consuming of communicative effort. For this reason, then, we provide analyses of the distribution of IF initiating moves. As for game analysis we cover both basic as well as refined moves (the analysis of refined moves is in fact an analysis of what we call simplificatory moves and simplificatory riders). We also cover mutations.
5.2.3.1 basic moves

This profile is very similar to that for game initiation. For this analysis, any initiating move that is a subtype of some superordinate move is analysed under the basic superordinate category.

5.2.3.2 refined moves

This profile refines the analysis for superordinate moves by analysing the moves according to their subtype. The presentations of subordinate moves include discussion of what are termed simplificatory moves and simplificatory riders.

Simplificatory moves fall into two subcategories: (i) those that simplify the interaction by making it explicit and (ii) those that simplify the structure of the interaction by reducing the number of appropriate types of relevant next turn.

The moves that fall into the explicit category are:

- Align
- Explain = Acknowledge
- Explain Elicit
- Instruct = Time Out
- Ready
- Acknowledge = Ready

The moves that fall into the reduction category (because they constrain the possibilities for the next conditionally relevant turn) are:

- Check alternative
- Check correct alternative
- Query-w alternative
- Query-w = instruct
- Query-w alternative = instruct
- Query-w prod = instruct
- Query-yn
- Query-yn = instruct
Some of the riders that qualify moves can also be considered to be simplificatory in nature:

- **Repetition** (both repetition of self and other) is simplificatory in that it reinforces a previous message and does not introduce new forms. Such agreement is also a positive politeness strategy (see §2.1.7.1).

- **Self-abandonment** can be thought of in terms of being on-line ‘recipient design’ on the part of the speaker on behalf of their addressee (see §2.1.5.2.4 on repair) – when some game is judged as not being entirely clear or relevant or the best way of moving the interaction forward, it can be abandoned in favour of some ‘better’ potentially more simple move. In Extract 5-1 below the IF abandons an explanation of the whereabouts of his axe in favour of a query which, if answered affirmatively, would effectively make the explanation superfluous.

Since an affirmative response is forthcoming this self-abandonment has effectively simplified the talk in that, at the very least, it has preempted the need for the partners to ground the explanatory contribution:

Extract 5-1 MD & MB

*E 79 IG query-yn em
*TA090
 /Er *(.) er d- d- have you got an axe?
*MA Query-yn

→ *E 80 IF explain elicit aban self em
*TB115
 (1.1) Y:es but my axe (.)
*MB Reply-y
 *MB Explain elicit aban self

→ *End 80

*E 81 IF align task em
*TB115 ctd
 is () i- is your axe sort of ... more well () to the {iconic} left of the {iconic} centre of the page
*MB Align task multi modal multi modal

*TA091
 Y:es
*MA Reply-y
• Other-abandonment is not quite so conclusively simplificatory in that some games are abandoned not because the abandoner wishes to make the interaction more simple by ignoring a particular game, but rather because the abandoner might not have noticed that that particular game had even been initiated. In the latter case, though, it could be argued that the game’s initiator (i.e. the non-abandoner) is opting for a simplified interaction by not pursuing the abandoned game further.

In Extract 5-2 ND’s check in *TB080 is never responded to because MD is preoccupied with pursuing his own query game:

Extract 5-2 MD & ND

*TB080

→ *E 66 IF check aban other em
/So that’s {turn holding gest} () u:m*
*MB Check aban other

*E 67 IG query-yn em
*TA081
/(-HHH) (LS) ()* Do - d’you ha=*
*MA Query-yn

*TB080 ctd
=({deixis gest} Going down to the bottom:
*MB Check aban other ctd. multi modal

→ *End 66

*TA082
Er do you have a lake?
*MA Query-yn cont

*TB081
(-hh) I’ve got a lake to the right of the flamingo
*MB Reply-w
*End 67

• By finishing off your partner’s utterance (coded by adding a fill rider to a move type) you display not only that you have heard and understood your partner sufficiently to project the end of their turn4, but you are also explicit as to precisely what it is that you have heard and understood. In this way, fill moves are simplificatory (and might even be considered as implicit other-repetition) in that they potentially preempt subsequent checking and acknowledging routines.

Fill moves are, however, also potentially anti-simplificatory in that if the fill is incorrect, then collaborative repair work will have to be initiated in order to remedy the error (this dichotomy is discussed further in §6.2.5.2.4). An example of a fill move is given in the following extract:

Extract 5-3 GM & MB

*E 82 IG explain
*TA103
And there’s a win- win/::*till. /"Wind-"*
*MA Explain
*TB122
/(LS) {upward nod}* /Wind*mill.
→ *MB Acknowledge fill multi modal nod
*TA104
Ye/ah*
*MA Reply-y

5.2.3.3 mutation moves

Mutations will be discussed in depth in §6.2.6 but for convenience we repeat here what we said about them in §4.2.2.

Mutations are used to show instances of talk where one participant orients to it as having one function and the other another. In Extract 5-4, B treats her utterance in *TB057 as an acknowledge while A takes *TB057 to be (and mutates it into) a check (therefore making an answer sequentially relevant):

Extract 5-4 HL & GW

*TA052
And go right around to thE () "(LS)" "(hh)" () house
*MA Instruct cont
*TB057
To the house. /Aha?* (1.8)
*MB Acknowledge repo
*TA053
/Aha*
→ *MA Reply-y
*MA Reply-y
*MA Reply-y
5.3 type-iii analyses

Finally, Type-III analyses are not so much analyses as miscellaneous comments that are considered sufficiently interesting to warrant some discussion which, in part, are driven by the "C comment lines that we have discussed in §4.2.2. We devote the whole of Chapter 9 to Type-III analyses.
in dialogue: gw & hl (aphasic); gw & pk (control)

Treat people as if they were what they ought to be
and you help them to become what they are capable of being.

Goethe

This chapter presents the results of the analyses outlined in Chapter 5 for the dialogue between the female information follower GW and the aphasic HL and compares them with her dialogue with PK (HL’s age-matched control). The chapter falls into two main sections, the first covering Type-I analyses and the second Type-II.

For sake of brevity, we will refer to the dialogue with the aphasic IG as the ‘aphasic dialogue’ (or AD) and that with the age-matched control IG as the ‘control dialogue’ (or CD).

In both the aphasic and control corpus the dialogues involving GW were the first to be recorded. It is for this reason only that we present these dialogues first. It is therefore inevitable that in this chapter we will provide most of the details regarding the presentation and explanation of results.

6.1 type-i analyses

In this section we will present the Type-I Analyses for GW and HL (aphasic) and compare them with those for her dialogue with PK (HL’s age-matched control). The analyses that will be presented are those for:

- task success (deviation scores; time taken; efficiency rating; landmark negotiation)
- dialogue measures (landmark introductions; mismatches discovered)
- turn distribution (turns taken; major versus minimal turns)
6.1.1 \textbf{task success scores}

Although we present results for the individual task success scores, we reserve our discussion of them for §8.1.1 where we consider the results for the corpora as a whole.

\subsection*{6.1.1.1 deviation scores}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{deviation_scores.png}
\caption{Figure 6-1: Deviation Scores (cm2) for HL & GW (AD) and PK & GW (CD)}
\end{figure}

Because of the nature of HL’s linguistic deficit, it is perhaps unsurprising that the AD has a worse deviation score (182) than the CD (124).\footnote{This pattern is in fact found for each AD/CD pair.}

\subsection*{6.1.1.2 time taken}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{time_taken.png}
\caption{Figure 6-2: Time Taken (minutes) for HL & GW (AD) and PK & GW (CD)}
\end{figure}

Conversely, however, the duration of the AD (7.7 minutes) is less than the CD (10.7 minutes).
6.1.1.3 efficiency rating (ER)

Combining the results for deviation and time (by taking the simple product of the two) gives us an efficiency rating score (ER), and when we do so, we find that the AD and the CD are similarly efficient in their trade-off of cost (time) against benefit (success): (AD ER = 1398) versus (CD ER = 1330).

6.1.1.4 landmark negotiation

Davies et al. (in preparation) have developed a method of analysing task success based on how accurately the various Map landmark entities are negotiated (see §5.1.1.4). When we consider the Incorrect Entity Scores (IESs) for these two dialogues we find that the AD (IES = 2) actually fares better than the CD (IES = 3.5).
6.1.1.5 dialogue measures

Figures 6-5 to 6-8 below present the following results for the two dialogues:

(a) the proportion of landmarks that are introduced into the dialogue (possible range of 0-100%)

(b) the proportion of landmarks introduced into the dialogue by statement (possible range of 0-100%)

(c) the proportion of landmarks introduced into the dialogue by question (possible range of 0-100%)

(d) the number of problem points (feature mismatches) that are collaboratively discovered (further analysed according to whether the mismatch is an IF-only (range: 0-3) or an IG-only feature (range: 0-3))

(e) the number of questions asked (linguistically marked or otherwise) expressed as a percentage of the total number of game moves.

For points (a)-(d), the results are displayed below in three categories: each of the measures is given as a proportion of (i) the whole dialogue (solid black), (ii) the IG’s input (blue stripes) and (iii) the IF’s input (red dots).

Figure 6-5: CD Dialogue Measures
We will first walk the reader through the results presented in Figures 6-5 and 6-6 and then we will interpret these results in relation to the conclusions drawn by Anderson et al. (1992) about Dialogue Measures.

For both dialogues there are 17 named landmarks (11 that are shared, 3 that are only on the IG’s map and 3 that are only on the IF’s map). Figures 6-5 and 6-6 indicate that:

- In the CD 76% (13/17) of the landmarks are introduced: 41% (7) by the IG and 35% (6) by the IF.
- In the AD 94% (16/17) of the landmarks are mentioned: 70.5% (12) by the IG and 23.5% (4/17) by the IF.

- In the CD 35% (6/17) are introduced by statement: 6% (1) by the IG and 29% (5/17) by the IF.
- In the AD 83% (14/17) are introduced this way: 70.5% (12) by the IG and 11.5% (2/17) by the IF.

- In the CD 41% (7/17) are introduced by question: 35% (6) by the IG and 6% (1/17) by the IF.
- In the AD 11.5% (2/17) are introduced by question, both by IF.

- In both the CD and the AD all IG feature mismatches are introduced but in the CD only one of the three IF feature mismatches are discovered while in the AD two are found.
In their most successful dialogues from children, Anderson et al. (1992)\(^2\) found that

- almost 50% of introductions came from the IF whereas in the unsuccessful ones less than 25% were IF introductions.

This would indicate the CD as potentially being a successful dialogue with 54% (7/13)\(^3\) of all the landmarks introduced being introduced by the IG and 46% (6/13) by the IF, and the AD as an unsuccessful dialogue with 75% (12/16)\(^4\) IG introductions and 25% (4/16) from the IF.

- more question introductions are used

In the CD 54% (7/13) of all introductions are by question and in the AD this proportion is 12.5% (2/16). Again this further suggests that the CD might be more successful than the AD.

- more problem points are discovered

In the CD 67% (4/6) of all problem points are discovered (3/3 IG features, 1/3 IF features). In the AD this proportion is 83% (5/6: 3/3 IG, 2/3 IF). This provides apparent indication of the AD being more successful than the CD (though only by the discovery of one extra landmark). It is interesting to remember that in both dialogues all IG feature mismatches were found and thus, the difference in problem points discovered between the two dialogues is therefore solely due to the extra efforts of the IF (GW) in the AD.

- more questions are asked

In the CD just over 29% of all moves function as questions (135 questions out of 458 moves). In the AD this proportion is just over 22% (42 questions in 188 moves). This data (presented below in Figure 6-7) would indicate that in terms of questions asked, the CD is a more successful dialogue than the AD.

\(^{2}\) Based on a study of the development of interactive communication skills in 170 children aged 7 to 13 (85 dyads).

\(^{3}\) In the CD only 13 of the 17 landmarks were introduced – four were never mentioned.

\(^{4}\) In the CD 16 of the 17 landmarks were introduced.
However, as we will see in §6.2.1.2, the CD between GW and PK exhibits a disproportionate amount of align moves (mainly from PK). If we discount this type of pseudo-question then the disparity between the questions asked in the two dialogues shifts to favour the AD as shown in Figure 6-8 below:

![Figure 6-8: Non-Align Questions in the AD and CD](image)

The fact that the results are dramatically altered by the exclusion of align moves is an important indication that information which comes only from a close look at individual dialogues should not be ignored – though the broad sweep through the data which collapses all data points together has its uses, it clearly should not be thought of as the only useful means of analysis.
6.1.2 turn distribution

As can be seen from Figures 6-9 and 6-10, in both dialogues the IG takes just over 47% of all the turns at talk and GW just under 53%.

Figure 6-9: CD turn distribution

Figure 6-10: AD turn distribution
Where the dialogues differ from one another is in their respective distributions of **major** and **minimal** turns. These proportions are represented in Figures 6-11 to 6-14 below. From Figure 6-11 we see that in the CD virtually all (95%) of PK's turns are major (and from Figure 6-13 below we find that less than 40% of GW's turns in the CD are major). But because the IG's role is as provider of information and the IF's role is as receiver, such distribution is to be expected.

![Figure 6-11: Distribution of PK's (IG) major and minimal turns in the CD](image)

Figure 6-12, however, shows that in the AD the split between HL's major and minimal turns is more even (58% major and 42% minor).

![Figure 6-12: Distribution of HL's (IG) major and minimal turns in the AD](image)
This is an immediate indication that in the AD the responsibility for furthering the talk is shifting from the IG to the IF (we will investigate this further in §6.2 in our analysis of Game Coding). Whether voluntarily or involuntarily, the aphasic IG is giving up the burden of communication to the IF. This can be seen in the corresponding graphs (Figures 6-13 and 6-14) for GW's distribution of major and minor turns in the two dialogues:

![Figure 6-13: Distribution of GW's (IF) major and minimal turns in the CD](image)

![Figure 6-14: Distribution of GW's (IF) major and minimal turns in the AD](image)
In the CD less than 40% of GW’s turns are major whereas in the AD this proportion jumps dramatically to almost 79% – further indication of the shifting of communicative responsibility from the aphasic IG to the non-aphasic IF.

In essence, the combination of IG major and IF minimal turns represent **IG-centred talk** and the combination of IF major and IG minimal turns represent **IF-centred talk**: on the whole, an interlocutor will only make a minimal turn in response to their dialogue partner’s major turn.

Figures 6-15 and 6-16 below show a complete breakdown of all turn types in each dialogue but what we are interested in here is IG-centred talk (the *combination* of the dark blue IG major turns and light blue IF minimal turns\(^5\)) and the IF-centred talk (the *combination* of the pink IG minimal turns and red IF major turns\(^6\)).

5 The *striped* segments if you are reading a black and white photocopy!

6 The *spotted* segments.
Figure 6-16: AD major/minor turn distribution

What we find is that in the CD approximately 77% of turns are IG-centred (33% IF-centred) while in the AD we find the reverse (with 61% of turns being IF-centred and 39% being IG-centred). It would appear, then, that in the Aphasic Dialogue the burden of communication rests squarely with GW and thus it seems that Hypothesis 1 may well be correct. We will now continue our investigation with an analysis of Game Coding.

6.2 type-II analyses

In this section we will present the Type-II Analyses for GW and HL and compare them with those for her dialogue with PK. These Type-II analyses are all based on the game coded data from the two dialogues (see §4.1). We will present analyses for:

- Basic Game Profiles
- Refined Game Profiles
- Game Closure
- Basic Move Profiles
- Refined Move Profiles (including Simplificatory Moves and Riders)
- Mutations

This section is thereby divided into six subsections, the first three dealing with game analyses and the remaining three dealing with move analyses.
6.2.1 basic initiation

First we present findings for the overall distribution of games that are initiated by both parties in each dialogue. Then we refine this analysis and present results for the basic (superordinate) game types that are initiated.

6.2.1.1 overall game initiation

Figure 6-17 shows that there is an almost complete reversal of game initiation in the two dialogues. In the CD the IG is responsible for 69% of game initiation (and the IF 31%), while in the AD the IG initiates only 25% and the IF 75%. This evidence supports Hypothesis 1, namely that in aphasic/non-aphasic interactions the non-aphasic does more of the communicative work.

![Figure 6-17: Games Initiated in the CD and AD](image)

6.2.1.2 basic game profiles

Although this thesis is not primarily interested in the communicative behavioural differences between aphasic and non-aphasic IGs, Figures 6-18 and 6-19 are nevertheless presented for sake of completeness. Each presents the percentage of games that are initiated in the dialogue by each interlocutor. Thus for example, of all the games initiated in the CD as a whole, almost 45% are align games initiated by PK.
Essentially these graphs are but a finer analysis of games initiated by each interactant in each of the two dialogues (Figure 6-17). The comparatively large proportion of IF games in the AD shows heightened IF involvement in this dialogue (as we have just discussed in §6.2.1.1) and the relatively small proportion of IG-initiated games in the AD conversely shows HL’s decreased communicative activity.

What we are interested in, however, is a direct comparison of the differences in IF behaviour in ADs and CDs and it is these differences that are represented in Figures 6-20 and 6-21. Figure 6-20 represents the percentage of games initiated by the IF (GW) in each of the two dialogues.
Thus for example, of all the games that are initiated (by both interlocutors) in the AD with HL, just under 20% of them are query-w games that GW initiates herself, while in the CD with PK these games account for just under 4% of all the games in that dialogue. In other words, there are approximately five times as many IF query-w games in the AD as in the CD.

What Figure 6-20 shows is that for virtually all types, GW initiates a greater proportion of games in the AD than in the CD. But as we have already presented results which show that GW initiates 75% of all games in the AD and only 31% in the CD this finding might seem unsurprising.

Therefore, in order to give a truer picture of the IF game-initiating activity, Figure 6-21 shows not the distribution of IF games as a percentage of the total number of games initiated in the dyad as a whole but rather the distribution of IF games as a percentage of just the IF-initiated games. In other words it displays how GW proportions the activity that she produces. So for example we now see that in the dialogue with HL (the AD) of all the games that the IF initiates, 26.32% are query-w games whereas in the CD this proportion is 12.77%. Thus, the ratio of AD query-ws to CD query-ws is not 5:1 (as we posited from Figure 6-20) but much closer (relatively) to 2:1 – more accurately this ratio is 2.06:1 (26.32%/12.77% = 2.06).
Figure 6-21: Distribution of GW's IF Games in HL & GW (AD) and PK & GW (CD)

Figure 6-21 indicates that in the AD GW spends proportionately less of her game-initiating activity on aligns, checks, explains and instructs while more of her activity is biased towards both types of query game.

It is interesting (and perhaps counter-intuitively given the fact that HL has a linguistic deficit) that the proportion of GW's check games is less in the AD. Given that we might expect GW to have more misunderstandings with HL we would also expect her to be requesting clarification of information more often. But this appears not to be the case. We can posit two possible reasons for this apparently 'rogue' data. The first concerns what will be a dominant hypothesis throughout this thesis, namely, that checks are avoided to maintain the ordinariness of the interaction. The second concerns the quality of IF checks in the two dialogues in terms of length of repair trajectory (Schegloff et al., 1977: 369). We will therefore now make two embedded asides to deal with each in turn and thereafter resume our discussion of Basic Game Profiles.

6.2.1.2.1 doing being ordinary

I would like to suggest as a first explanation for the reduced proportion of IF checks in the AD the possibility that in that dialogue the non-impaired partner adopts a strategy of avoiding highlighting the communicative incompetence of the aphasic interlocutor (see also Wilkinson, 1995c).
Checks inevitably bring issues of linguistic competence to the surface and therefore have the potential of making that incompetence interactional business in its own right (see Jefferson, 1987). And if this happens the new interactional business will thereby generate yet further otherwise unnecessary sequences of at least moves, possibly games and potentially even whole nested game structures. Clark has noted, however, that often the analyst cannot conclusively say which interactant’s linguistic competence is being highlighted – take for example the following extract (from Clark 1996: 221):

Extract 6-2 Roger & Nina

Roger: now, - um you and your husband have a j- car?

→ Nina: - have a car?

Roger: yeah

Nina: no –

Although Nina’s *have a car?* highlights a breakdown in the communicative process by clearly delimiting that which needs to be repaired (the *reparandum*), Clark points out that we cannot say for sure whether that breakdown is due to Roger’s incompetence in signal production or whether it is due to Nina’s incompetence in signal processing. Indeed it could be (especially in the context of a normal/impaired interaction7) that Nina simply does not trust Roger’s preceding contribution.

All we *can* say then, is that in such cases there has been a breakdown in the *joint process of communication*. However, it is only recently that this view has come to the fore amongst psychologists and linguists. It may never actually be entertained by the language user in general. Thus, irrespective of the true source of the reparandum, it is highly unlikely that the speaker will ever perceive it as a *joint* defect; it is more likely that he will perceive it as an autonomous hearer problem or even assume that he is himself solely to blame for the miscommunication (this is, after all, consistent with the folk view of communication that is the Code-Model8).

7 I should note that I do not believe that ‘impaired’ interactants are necessarily incompetent – all that matters is that the so-called ‘normal’ interlocutor *acts as if* their dialogue partner is so impaired. In this way then, ‘impaireds’ might also include (small) children (where the ‘normal’ is a ‘more competent’ adult such as a parent), or even suspects being interviewed by the police. Indeed, the ‘impaired’ could be any interactant that is judged by the ‘normal’ to be in some ways interactively deviant.

8 The essence of the Code Model is summed up well in the following quotation from Dummet: “the speaker simply says what he means ... [and] the hearer simply understands. ... given that he knows the language, there is nothing his understanding the words consists in save his hearing them” (1986: 471). For further discussion see Sperber & Wilson (1986: 3ff).
Given the inherent ambiguity regarding the source of the reparandum in such repair sequences there will indeed be the inevitable possibility that the speaker will assume that he alone is the source. Thus, when there is an issue of speaker-incompetence that the non-speaker does not wish to address it would seem socially most sensible for the non-impaired non-speaker to avoid requests for clarification altogether. And this is indeed what this IF does. By avoiding such games GW is both preempts what might be unnecessary communicative work (which would invariably be work on her part) and at the same time she is managing to maintain the façade of the interaction being ordinary—or in Sacks’ terms, GW is helping HL do “being ordinary” (1984b: 414).

There is, of course, an alternative reason for the relative lack of IF checks in the AD—namely that the information coming from the aphasic IG is more straightforward than that from the unimpaired IG. We take up this argument in the next section.

6.2.1.2.2 repair trajectories

As a second possible explanation for the reduced proportion of IF checks in the AD let us consider things from the other point of view, namely that a reduced proportion of IF checks in the AD is equivalent to an increased proportion of IF checks in the CD. In other words I would like to suggest that our apparently ‘rogue’ data might not be as a result of activity in the AD but rather as a consequence of that in the CD.

The degree of ‘troublesomeness’ that any game causes can be measured by the number of turns it takes after that game’s initiation before it is closed (accepted or grounded in Clark’s terminology). Consider the following extracts, each of which concerns the initiation and resolution (acceptance/grounding) of a check game:

Current Turn abandonment: Extract 6-3 PK & GW

*TA060
(LS)=Hard right turn /that takes you up* to the top of the page

→ *E 56 IF check em aban self
*TB062
/So going {deixis} ba-*
*MB Check aban self multi modal
→ *End B56

*TA060 ctd
back b- ju- roughly a quarter >>of an<< inch short of the top of the page right?
Next Turn Acceptance: Extract 6-4 PK & GW

→ *E 59 IF check em
 *TB066
 So I’m going in a sort of straight line across the top.
 *MB Check

 *TA063
 /* Mhm {nodding} */
 *MA Reply-y multi modal nod
 → *End 59

3rd Turn Acceptance: Extract 6-5 HL & GW

→ *E 13 IF check em
 *TB010
 And you have a pine tree there. Is that right?
 *MB Check

 *TA009
 {small nod} Aha.
 *MA Reply-y multi modal nod
 *Turn A min

 *TB011
 OK.
 *MB Acknowledge
 → *End 13

4th Turn Acceptance: Extract 6-6 HL & GW

→ *E 55 IF check em
 *TB048
 Oh is it over on - /on the {deixis gest} right hand /side?*
 *MB Check

 *TA045
 /Aye /aye* "aha."
 *MA Reply-y
 *Turn A min

 *TB049
 And it’s- you’ve got a well there, /Okay.*
 *MB Check cont
 *MB Acknowledge

 *TA046
 /* Mhm */
 *MA Reply-y cont
 → *End 55
5th Turn Acceptance: Extract 6-7 HL & GW

→ *E 24 IF check em
*TB021
>But it’s {head shake} not that bridge.<
*MB Check multi modal head shake

*TA018
(0.9) Er {nod} yes=
*MA Reply-n multi modal nod
*Turn A min

*E 25 IF check em
*TB022
=It {nods} is that bridge.=
*MB Check multi modal nod

*TA019
=Ah!
*MA Reply-y
*Turn A min

*TB023
"(h)" OK.
*MB Acknowledge
*End 25
→ *End 24

And so we could go on with an increasing number of turns between initiation and acceptance. In check games this distance is known as the repair trajectory (Schegloff et al., 1977: 369) and essentially, the greater the trajectory, the more troublesome the initial reparandum. We can now state our alternative reason for the increased proportion of IF checks in the CD.

As we will discuss in §6.2.2.4.2 when we consider IF instruct = time-out games⁹, in the CD between PK and GW, the non-impaired PK is particularly verbose and GW clearly has trouble with information overload.

This is reflected, *inter alia*, in the length of the repair trajectories of the IF’s check games. As we can see from Tables 6-1 and 6-2, the mean trajectory for IF checks is 2.5 turns in the AD but virtually three times as many in the CD (7.4).

⁹ Games which signal that the IF is having trouble with the on-going interaction.
<table>
<thead>
<tr>
<th>Check Game Number</th>
<th>Trajectory length</th>
</tr>
</thead>
<tbody>
<tr>
<td>(*E Number)</td>
<td>(Number of turns)</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>21</td>
<td>2</td>
</tr>
<tr>
<td>24</td>
<td>4</td>
</tr>
<tr>
<td>25</td>
<td>2</td>
</tr>
<tr>
<td>43</td>
<td>2</td>
</tr>
<tr>
<td>51</td>
<td>2</td>
</tr>
<tr>
<td>55</td>
<td>3</td>
</tr>
<tr>
<td>56</td>
<td>4</td>
</tr>
<tr>
<td>59</td>
<td>2</td>
</tr>
<tr>
<td>67</td>
<td>2</td>
</tr>
</tbody>
</table>

mean = 2.5 turns

Table 6-1: IF Check Games with HL (AD)

<table>
<thead>
<tr>
<th>Check Game Number</th>
<th>Trajectory length</th>
</tr>
</thead>
<tbody>
<tr>
<td>(*E Number)</td>
<td>(Number of turns)</td>
</tr>
<tr>
<td>19</td>
<td>4</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
</tr>
<tr>
<td>33</td>
<td>8</td>
</tr>
<tr>
<td>47</td>
<td>36</td>
</tr>
<tr>
<td>56</td>
<td>0</td>
</tr>
<tr>
<td>59</td>
<td>1</td>
</tr>
<tr>
<td>77</td>
<td>2</td>
</tr>
<tr>
<td>88</td>
<td>12</td>
</tr>
<tr>
<td>132</td>
<td>9</td>
</tr>
</tbody>
</table>

mean = 7.4 turns

Table 6-2: IF Check Games with PK (CD)

Although we have not done so, we could extend the trajectory analysis for all games. If we had, we would have probably found relatively longer trajectories for the CD than the AD. To show this might indeed be the case we can take the quotient of dialogue turns divided by dialogue games for each dyad, thereby giving a rough idea of the number of turns per game. In the AD there are 135 turns and 76 games (1.78 turns per game). In the CD there are 349 turns and 152 games (2.30 turns per game). Thus, the overall game trajectory appears to be longer in the CD. Given the nature of PK’s dialogue, then, we would probably actually expect there to be more IF checking in the CD.
Unfortunately we are not able to state categorically which of these (i.e. (i) *doing being ordinary* or (ii) the increased ‘troublesomeness’ that games cause) is the ‘correct’ reason for the increased proportion of IF checking in the CD (indeed, it may well be a combination of the two). Nevertheless, because we can explain why the data might be the way that it is, even though it may be ‘rogue data’ with respect to the corpora as a whole (discussed in Chapter 8) it no longer poses a problem with respect to the current pair of dialogues.

6.2.1.2 basic game profiles (resumed)

Having made our asides we can now re-focus our attention on the relative shortage of align and explain games in the AD. I would like to suggest that *doing being ordinary* is also the reason behind this. Since align games request explicit confirmation that the Hearer has understood the Speaker’s preceding contribution(s), there is always the risk in an AD of the aphasic interlocutor *not* having understood. In such cases their linguistic competence is brought to the fore and, because the issue of competence may become interactional business in its own right, this might result in face-loss as well as extra sequences of embedded games. Similarly, by the *doing being ordinary* account we would also expect fewer explain games under the auspices of “don’t give additional information that isn’t absolutely vital lest non-competence become interactional business”.

That GW initiates fewer instruct games in the AD is not as interesting as the fact that she initiates any at all in either dialogue – it is, after all, the Information Giver’s responsibility to give instructions! For the moment we have no comment to make on this issue but we will return to this in a refined analysis of these instructs in §6.2.2.4.

Finally, in the AD, proportionately more of GW’s activity is biased towards both types of query game. Although she is leading the dialogue, she is doing so by using interactive strategies that propose joint projects (Clark, 1996). In other words, it would appear that she does not feel that such questioning activity will hinder her interaction with HL (i.e. it will not result in highlighting non-competence on the part of her aphasic IG).

We return to this issue, too, in our refined analysis below.

10 “A joint project is a joint action projected by one of its participants and taken up by the others” Clark (1996: 191, original italics).
6.2.2 refined initiation

Figure 6-22 is a refined version of Figure 6-20 above that shows the proportion of IF games that are initiated in each of the two dialogues. Figure 6-22 is refined in the sense that the proportions of superordinate games have here been reanalysed according to the subordinate game types (so for example where in Figure 6-20 query-w games were represented as a whole, in Figure 6-22 proportions are given for the various subtypes of query-w game (viz. query-w proper, query-w-alt, query-w-alt = instruct, query-w-prod and query-w = instruct games).

![Figure 6-22: Percentage of IF Refined Games Initiated in the AD and CD](image)

Again we find that for virtually all subtypes, GW initiates a greater proportion of games in the AD than in the CD. But again, as we have already presented results which show that GW initiates 75% of all games in the AD and only 31% in the CD this finding is still unsurprising. Figure 6-23 therefore shows the distribution of IF games by subtype as a percentage of just the IF games that are initiated. (Figure 6-23 is thus a refined version of Figure 6-21.)
We now see that in the dialogue with HL (the AD), of all the games that the IF initiates, 10.53% are query-w games proper while in the CD this proportion is 6.38%. The resulting ratio of IF query-w games proper in the AD to those in the CD is thus 1.65:1 (10.53%/6.38%). In our basic analysis the ratio of all the IF query-w games in the AD to those in the CD was just over 2:1.

As a consequence of our refined analysis of IF games we therefore find that the relative importance of the open-ended query-w is actually less marked in the AD compared to the CD than we might have otherwise believed. This fact will become more relevant when we discuss the distribution of IF query-w games in §6.2.2.5.

The results from Figure 6-23 are rounded to two decimal places in Table 6-3 from which we will repeat sections when we deal with each game type in turn.
<table>
<thead>
<tr>
<th>Game Type</th>
<th>Abbrev.</th>
<th>% of IF games in the AD(^{11})</th>
<th>% of IF games in the CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>align</td>
<td>al</td>
<td>1.75 (1)</td>
<td>4.26 (2)</td>
</tr>
<tr>
<td>align task</td>
<td>al ta</td>
<td>0.00 (0)</td>
<td>2.13 (1)</td>
</tr>
<tr>
<td>check</td>
<td>ch</td>
<td>15.79 (9)</td>
<td>21.28 (10)</td>
</tr>
<tr>
<td>check correct</td>
<td>ch co</td>
<td>1.75 (1)</td>
<td>0.00 (0)</td>
</tr>
<tr>
<td>explain</td>
<td>exp</td>
<td>17.54 (10)</td>
<td>17.02 (8)</td>
</tr>
<tr>
<td>explain = acknowledge</td>
<td>ea</td>
<td>12.28 (7)</td>
<td>23.40 (11)</td>
</tr>
<tr>
<td>explain elicit</td>
<td>ee</td>
<td>8.77 (5)</td>
<td>6.38 (3)</td>
</tr>
<tr>
<td>instruct</td>
<td>ins</td>
<td>0.00 (0)</td>
<td>2.13 (1)</td>
</tr>
<tr>
<td>instruct = time out</td>
<td>ito</td>
<td>0.00 (0)</td>
<td>4.26 (2)</td>
</tr>
<tr>
<td>query-w</td>
<td>qw</td>
<td>10.53 (6)</td>
<td>6.38 (3)</td>
</tr>
<tr>
<td>query-w = instruct</td>
<td>qwq</td>
<td>5.26 (3)</td>
<td>0.00 (0)</td>
</tr>
<tr>
<td>query-w alt = instruct</td>
<td>qwa</td>
<td>1.75 (1)</td>
<td>0.00 (0)</td>
</tr>
<tr>
<td>query-w alternative</td>
<td>qwa</td>
<td>8.77 (5)</td>
<td>2.13 (1)</td>
</tr>
<tr>
<td>query-w prod</td>
<td>qwp</td>
<td>0.00 (0)</td>
<td>4.26 (2)</td>
</tr>
<tr>
<td>query-yn</td>
<td>qyn</td>
<td>15.79 (9)</td>
<td>6.38 (3)</td>
</tr>
</tbody>
</table>

Table 6-3: Refined Games

In our basic analysis of IF-initiated games, we suggested that the smaller proportion of checks, explains and aligns in the AD might be accounted for by GW helping HL maintain *doing being ordinary*. The refined analysis presented in Figure 6-23 and Table 6-3 confirms that suggestion for checks and aligns but seemingly does not do so for explains. We will consider this further as we now discuss each refined game type.

6.2.2.1 checks

Table 6-4 indicates that in the AD GW spends proportionately even *less* of her game-initiating activity on checks proper than in the CD.

<table>
<thead>
<tr>
<th>Game Type</th>
<th>% of IF games in the AD</th>
<th>% of IF games in the CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>check</td>
<td>15.79 (9)</td>
<td>21.28 (10)</td>
</tr>
<tr>
<td>check correct</td>
<td>1.75 (1)</td>
<td>0.00 (0)</td>
</tr>
<tr>
<td>Total checks(^{12})</td>
<td>17.54 (10)</td>
<td>21.28 (10)</td>
</tr>
</tbody>
</table>

Table 6-4: Refined Check Games

\(^{11}\) Henceforth in tables, the number of games (or moves as appropriate) will be provided in parentheses after the corresponding percentage.

\(^{12}\) As per basic analysis. See Figure 6-21.
The arguments put forward in §6.2.1.2 therefore still hold. What refined analysis tells us is that this reduction comes about because of the instance of the single check-correction game (given in Extract 6-8).

Extract 6-8 HL & GW

*E 58 IG instruct
*TA049
You go right down to the hen
*MA Instruct
→ *E 59 IF check correct
*TB054
The chicken, a/ha*
*MB Check correction
*MB Acknowledge
*T A050
/{Nods} The chicken "(ha/haha)"*
*MA Reply-w repo multi modal nod
*TB055
*MB Acknowledge
→ *End 59
OK.
*MB Acknowledge
*End 58
*E 60 IG instruct
*TA051
"(LS)=-(hhh) You go underneath the chicken,
*MA Instruct
*TB056
Aha (DRAWS)
*MB Acknowledge

On the face of it, and given our discussion above, one might expect that this very blatant display of orientation to the linguistic non-competence of the dysphasic IG would be the very stuff of counter-evidence to the doing being ordinary claim. So should we be perturbed by this rogue data? Since there is only one instance of a check-correct game, perhaps we should not be too greatly distressed. That said, we still need to offer some attempt at an explanation of its unexpected existence and we do so now.

While data exists which indicates that experienced Speech and Language Therapists will avoid highlighting non-competence in aphasic dialogues (Lubinski et al., 1980; Wilkinson, 1995c), Jefferson (1987) provides data which shows that non-linguistically
impaired interlocutors can quite happily make ‘doing correction’ the focus of interactional business. The same seems to be true for spouses of dysphasic individuals.\footnote{In Lubinski et al.’s (1980) study of conversational repair in aphasia, of the ten corrections initiated in three conversational settings, nine were from the subject’s husband, and only one from her Speech and Language Therapist (and even that was within the therapy setting “when the agenda was to teach the subject something” (1980: 115).}

There is a reasonable contention that therapists’ (non-)orientation to non-competence is due to ‘institutional interactions’ resulting in a more formal relationship between the interlocutors. Though this may indeed be partly the case, Wilkinson’s data also contains dialogues between therapists and the significant others of dysphasic patients. In these dialogues, despite the formal (institutionalised) nature of the talk, the therapists “appear to be less wary about referring to a significant other’s lapse” (1995c: 141).

In the AD involving HL and GW I would like to argue that perhaps GW is cleverly engineering the interaction to get the best of both worlds. Let us briefly summarise the main points that have just been raised:

1. “the business of correcting can be a matter of, not merely putting things to rights, ... but of specifically addressing lapses in competence and/or conduct” (Jefferson, 1987: 88)

2. when highlighting some non-competence becomes interactional business in its own right it will potentially (i) threaten face and (ii) generate yet further (otherwise unnecessary) sequences (in our case, sequences of moves, games and potentially whole nested game structures)

3. normal listeners are happy to correct and highlight the non-competence of normal speakers (presumably because the face-threat is trivial and the amount of effort needed to deal with the new interactional business is negligible) (Jefferson, 1987)

4. experienced therapists avoid highlighting the non-competence of dysphasic patients (it would seem) to maintain a degree of doing being ordinary (Wilkinson, 1995c)

5. experienced therapists are less wary of highlighting the non-competence of non-aphasics (the differences in the ADs are not due to the institutional nature of the discourse) (Wilkinson, 1995c)

6. on the whole, GW avoids check games with HL – she thereby maintains a degree of doing being ordinary by avoiding face-threat and reducing subsequent interactive work
But GW does use a check correction with HL and thereby addresses the issue of his non-competence. The question we must ask then, is Why does she do this? If she is a sensitive enough interlocutor to avoid check games, why does GW blatantly question HL’s linguistic competence in correcting his choice of lexis in the hen/chicken example? We will propose two possible (though not necessarily equally plausible) answers.

On the one hand, by avoiding checks, GW is maintaining the ordinariness of the discourse but on the other it is perhaps at the expense of HL knowing that she is maintaining the ordinariness of the conversation. This could be seen as tantamount to condescension and could thereby defeat the whole purpose that GW’s face-work (Goffman, 1967b) set out to achieve on HL’s behalf. If this is so, what better way of redressing the balance, then, than by blatantly orienting to HL’s non-competence as non-aphasics do to non-aphasics?

Although I think this argument is indeed possible, and that it would be ‘nice’ to be able to believe in the actively face-saving, philanthropic side of human nature, I also believe that the cognitively-demanding nature of the task would probably preclude such subtle deliberate actions.

What I would argue as a more plausible scenario is that GW’s reasoning might have been along the following lines:

i. Most likely, HL has just chosen a synonymous reference for this fowl landmark (labelled on my map as chicken)

ii. I could just assume that the hen and the chicken are the same landmark

iii. But because of the nature of the task, it is actually possible that there is both a task-relevant hen and a task-relevant chicken

iv. It is therefore possible that HL has indeed chosen the correct lexical item and it is just that my assumptions in (i) are incorrect

v. I cannot (because of the nature of the task) afford to proceed on assumptions that are potentially false for that could result either in (a) much greater collaborative effort being needed further down the line when the mistake eventually comes to light, or (b) an undetected mistake resulting in a poor task score. As neither of these possible outcomes is desirable it is more cost-effective to explicitly check on those assumptions now.
Given this reasoning, a check-correct and its inherent face-threat is virtually inevitable. However (and this is the most important point), the threatening status of the check-correct is drastically reduced by virtue of the fact that it is immediately followed by an acknowledgement. In other words, this game could have been analysed as yet a further subtype of game, namely a check-correct optional: because of the latched acknowledgement, the check-correct part of the utterance only becomes a check-correct if the other party allows it to. This example of a check-correct is therefore but an ostensible correction that can be ignored (mutated – see §6.2.6) if HL chooses not to make an issue of it.

In the given context of the task it might not matter what you call the referent of a landmark as long as that referent is appropriately located and negotiated.\(^\text{14}\) So if hen and chicken had been truly synonymous then HL could have ‘let the check-correct go’ by simply presenting his next sequentially relevant turn\(^\text{15}\) (i.e. by proceeding directly to the instruct game that is labelled *E 60). It is only by HL orienting to the corrective nature of GW’s utterance that that utterance in effect becomes a correction. In essence, GW’s check-correct is not so much a predetermined single-valued check but rather a multi-functional acknowledgement that has retrospectively been optionally transformed (mutated) by the actions of her interlocutor. Had HL not treated the check-correct as a check-correct then it is very unlikely that GW would have persisted in that option and her contribution to the discourse would have been analysed as nothing more than a non-minimal acknowledgement.

Hypothetical Extract 6-9 HL & GW (how it might have been)

*E 58 IG instruct
*TA049
You go right down to the hen
*MA Instruct

*TB054
The chicken, aha
*MB Acknowledge

*E 60 IG instruct
*TA051
*L(S)={(-hhh)} You go underneath the chicken,
*MA Instruct

*TB056
Aha (DRAWS)
*MB Acknowledge

\(^\text{14}\) Indeed, had the feature not been explicitly labelled, it is possible that this Check correction would have never occurred.

\(^\text{15}\) Cf. Extract 4-25.
I wish to argue therefore, that the seemingly perverse existence of GW’s blatant orientation to HL’s linguistic non-competence can be best explained by appealing to the notion that communication is really collaboratively engineered by all participants (Clark, 1996) – it is not GW’s unilateral actions that raise the issue of HL’s non-competence but rather their joint actions, and as such, because HL plays a participatory role in this joint activity, he is partially, indeed we might even suggest heavily self-responsible for the orientation to his non-competence and therefore the threat to his face is greatly diminished.

To sum up, then, the lower proportion of IF checks in the AD are indicative of GW helping HL maintain *doing being ordinary*.

Having spent what may seem a disproportionate amount of discussion on check games, I would now like to consider the refined analysis for aligns, explains and instructs.

6.2.2.2 aligns

<table>
<thead>
<tr>
<th>Game Type</th>
<th>% of IF games in the AD</th>
<th>% of IF games in the CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>align</td>
<td>1.75 (1)</td>
<td>4.26 (2)</td>
</tr>
<tr>
<td>align task</td>
<td>0.00 (0)</td>
<td>2.13 (1)</td>
</tr>
<tr>
<td>Total aligns</td>
<td>1.75 (1)</td>
<td>6.39 (3)</td>
</tr>
</tbody>
</table>

Table 6-5: Refined Align Games

Table 6-5 indicates that in the AD GW spends proportionately less of her game-initiating activity on align and align task games than she does in the CD.

Earlier we saw that as a whole GW spends proportionately less time on all aligns, and we suggested that this was indicative of GW helping HL *do being ordinary*. Since we argued that align games request explicit confirmation that the Hearer has understood the Speaker’s preceding contribution(s), and since there is always the risk in an AD of the aphasic interlocutor *not* having understood, in such cases their linguistic non-competence is once again brought to the fore and this may result in extra sequences of embedded games as well as face loss.
If this is true, we would expect any reduction in align games in the AD to be more pronounced in align games proper (Are you with me? type utterances). However, when we consider the refined analysis we discover that this is not the case. How then do we explain this? Firstly, like the check-correct, the evidence is based on one datum and should therefore perhaps not distress us greatly. That said, as above, we still need to offer some attempt at an explanation of its unexpected existence, and so we provide the extract in which it appears:

Extract 6-10 HL & GW

*TB029
(LS) Right? And do I go behind the helicopter or in front of it?

*TA025
() (LS)=(-hh) ThE er () front=

*TB030
=In front of it. Okay. ()

*TA026
You go d- er down by the side of the sea () past the goats

*TB031
Right. On the way down I’ve got a telescope (.) on my: (LS) er: - >(·h)< just before you get to the goat there’s a telescope above that one.=

*E 37 IG explain elicit em
*TA027
="No"
*MA Explain elicit

→
*E 38 IF align em
*TB032
/O*kay?
*MB Align

→
*End 38
So I’ll go past the telescope /and then*

*TA028
/I’m n:- (.)* no got a teles/cope?*

*MA Explain elicit cont

*TB033
/*(·hhh) Y*eah?*

*MB Acknowledge
*End 37

*TB033 ctd
I have a telescope – {head shake} perhaps you don’t have it.
/It’s ab(h)ove {Nods} the g(h)oat*

*TA029
/((hahaha:ha)*(·ha)
The explanation for this rogue IF align game is, perhaps not surprisingly, very similar to that given for the rogue check-correct. The explanation I would like to put forward is this: *E 38 IF align is not a full-blown align.

Given that HL does not initially respond, and given that GW gives him little time to do so, we see that at this juncture neither party is completely orienting themselves to the alignment function of this utterance. But if this is the case, why has the utterance been coded as an align? I would suggest that HL’s non-orientation has been analysed by GW as evidence (albeit weak evidence - see §2.1.6.3.1) of HL’s understanding and therefore as implicit concurrence with her check on his acceptance. Furthermore, by the end of her Okay? alignment, GW has heard HL’s *TA027 contribution (*No*) to the effect that he has no such landmark on his map. In other words, *E 38 IF align is not a full-blown align but more of an IF align optional that may be glossed thus: ‘if you really want or need to do so, please take this opportunity to (re-)express your non-concurrence’, which HL eventually does in *TA028. As this is how the participants seem to be treating *TB032, then we can still manage to maintain our face-maintenance hypothesis.

It has been suggested that inherent in talk is a preference for contiguity (Sacks, 1987; Pomerantz, 1984). What this means for us is that a response to a query will generally be expected. Thus, given a query about agreement (an align), it is usual that the addressee will display their state of agreement. Therefore given that a response is not only set up but is expected, it is easier to express disagreement when such a response has been explicitly elicited via an align than it is to display that non-concurrence when such a contribution has not been invited. Thus, by giving HL the opportunity to further express his disagreement, GW makes any potential non-concurrence less threatening for him.

6.2.2.3 explain type games

<table>
<thead>
<tr>
<th>Game Type</th>
<th>% of IF games in the AD</th>
<th>% of IF games in the CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>explain</td>
<td>17.54 (10)</td>
<td>17.02 (8)</td>
</tr>
<tr>
<td>explain = acknowledge</td>
<td>12.28 (7)</td>
<td>23.40 (11)</td>
</tr>
<tr>
<td>explain elicit</td>
<td>8.77 (5)</td>
<td>6.38 (3)</td>
</tr>
<tr>
<td>Total explains</td>
<td>38.59 (22)</td>
<td>46.80 (22)</td>
</tr>
</tbody>
</table>

Table 6-6: Refined Games

16 Indeed, GW had probably already reached this conclusion when HL directed her from the helicopter straight past the goats with no mention at all of the telescope.

17 In §8.2.5.1 we will call this type of ‘safe’ alignment a Type-N align. See also our second point about the mitigation of the potential threat of the IF align in Extract 8-7 in Chapter 8.
Table 6-6 indicates that GW spends approximately the same amount of effort on explain games proper in the two dialogues; slightly more of her activity is biased towards the explain elicit games in the AD while her explain = acknowledge games are greatly reduced in the AD. In the three following sections we discuss these findings.

6.2.2.3.1 explain elicits (EEs)

As we said in §4.1.1.1, explain games are partly defined as involving freely offered new information. However, we also noted that not all provision of new information can be regarded as completely unsolicited. Typically therefore, games are coded as explain elicits when the new information would not (and in most cases, could not) have been offered had partner’s previous utterance been different – in other words, when such games are dependent on and hence not entirely unsolicited by the other dialogue partner. Thus we find that EEs tend to occur in two main environments – they occur in turns that follow a dialogue partner’s reference to an entity:

(1) that does not appear at all on the EE initiator’s map

(2) that appears on the EE initiator’s map but at some non-local location that is seemingly irrelevant for the current state of the route-drawing exercise.

The first type is exemplified in Extract 6-11 and the second in Extract 6-12:

Extract 6-11 HL & GW

*T A043
You go right around to the well.

*E 53 IF explain elicit em
*TB047
→ Oh I {head shake} don’t have a well (ha)
*MB Explain elicit multi modal head shake
*End 53

*TB047 ctd
Where’s the well?

Although GW’s Turn 47 is providing new information (viz. the non-existence of a well on her map) there is clearly no sense in describing it as ‘freely offered’ – there is just no way that she would have been able to mention a non-existent referent had HL not suggested that possibility in his previous turn. It is therefore coded as an EE.18

18 We may call this a negative EE because of the denial of the landmark’s existence.
In the next example, GW and HL are still negotiating the very top left hand corner of their maps. GW has only one pine tree which is in the bottom right of her map. She explains that she has this landmark but because it is so far away and would thus appear to be a non-relevant landmark, it is clear that she would not have introduced information about it had HL not previously suggested that the next item on the route was a pine tree. This explanation is therefore also coded as an EE.19

Extract 6-12 HL & GW

*TA002
Go down to () the pine tree
*E4 IF explain elicit em
*TB004
→ Right, um: () I have a pine tree but it’s (.) quite near the bottom of the page.
*MB Ready
*MB Explain elicit
*End 4

*TB004 ctd
Is it- is your pine tree near the bottom of the page or is it near to the caravans?

Games can also be coded as EEs in one other type of sequence namely where one participant queries the existence of some landmark without specifying that landmark (query), and the other participant denies having any landmark in the immediate vicinity (reply-n) but suggests their most local entity as a possible referent (explain elicit). The two examples of this type of sequence are given below:

Extract 6-13 PK & GW

*E82 IG query-yn
*TA086
=Now is there anything below
*MA Query-yn

*E83 IF explain elicit em
*TB091
→ () No I’ve got a lake below and that’s it
*MB Reply-n
*MB Explain elicit

*TA087
Right. {huge turn holding gesture}
*MA Acknowledge multi modal
*End 82

19 We may call this a positive EE because despite the denial of the existence of a local entity, a possible alternative referent (GW’s pine tree at the bottom of her page) has been suggested.
In this extract although GW is providing new information (viz. the existence of a pig a bit further south) again there is no sense in describing it as ‘freely offered’ – GW has very little choice but to provide the information contained in her explanation because PK has essentially requested that information. The explanation is therefore coded as an EE. (And again, because of the suggested alternative, we might think of this as a positive EE.)

Now that we have been reminded of the nature of EEs, we can turn to a discussion of the results obtained.

<table>
<thead>
<tr>
<th>Game Type</th>
<th>% of IF games in the AD</th>
<th>% of IF games in the CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>explain elicit</td>
<td>8.77 (5)</td>
<td>6.38 (3)</td>
</tr>
</tbody>
</table>

Table 6-7: Explain Elicit Games
Table 6-7 indicates that GW spends more effort on explain elicite games in the AD than in the CD. The question we must ask is why is this so? Is our proposed hypothesis of doing being ordinary wrong? No. I will argue that the theory of doing being ordinary (as it currently exists: don't give additional information that isn't absolutely vital lest non-competence become top-level interactional business) is not applicable to this game type.

Although EEs have been classified as an initiating activity (all the game types are based on initiating moves) we have seen that the initiator of the EE is clearly not solely responsible for its production and thus the 'elicit' codification is used to flag the responsive nature of this game type. Put simply, the EE initiator cannot initiate an EE without the participation of their dialogue partner – an EE is never a unilateral action. We therefore should not attempt to incorporate EEs into our doing being ordinary hypothesis because their existence is largely attributable to the dialogue contributions of the other participant.

Basically, what the initiation of an EE generally indicates is that the other dialogue partner has introduced a non-shared landmark into the discourse in a non-interactive way. As we saw in Figure 6-6 in §6.1.1.5, none of the landmark introductions by HL are done by question (indeed, in the dialogue with GW, HL initiates no query games at all). It is therefore evident that all the introductions of unshared IG features are also by statement. Thus, if GW is to respond usefully to these statements (namely by informing HL of the non-existence of these features on her map), then she has very little choice but to initiate elicited explain games. And when there is no choice involved in the adoption of a certain activity the existence of that activity simply cannot be used to explain any proposed communicative strategy. It would therefore be misleading to attribute anything of GW’s behaviour to our claim that she is actively helping HL maintain doing being ordinary.

So if we cannot (yet) use EEs to further our doing being ordinary claim does this mean that our proposed category of EE games was unjustified? Well of course not. For one thing, it is only possible to determine after the event what has and what has not been useful to the analysis and for this reason (when we root around in language material in the hope that serendipity will be kind to us), we must observe what I call the Kelly & Local Principle, namely that in language analysis everything is potentially important and we must act accordingly. As Kelly & Local themselves put it (in their case with respect to phonetics and phonology):
[success in analysis] is limited by the quality of the description on which it is based. Our view is that it is not possible to have too much phonetic detail. Part of our reason for this claim is our belief that at the beginning of work on language material we can’t, in any interesting sense, know beforehand what is going to be important. Consequently we must attend to and reflect everything that we can discriminate.

Kelly & Local (1989: 26)

It would perhaps have seemed rather suspicious if we had only discriminated categories that provided us with positive evidence for our arguments and had we done so, accusations of data rigging may well have been made. On the other hand, given that a certain pattern of data (here the EE) clearly obtains, it would perhaps have been equally dubious to find that its existence was merely arbitrary and played no significant role.

It is here that we have to go beyond just counting occurrences of EEs - like the conversation analyst we need to take a closer look at the sequential environments where we find EEs. If we do so, we find that a differential patterning does indeed emerge. Consider the only example of a negative EE in the CD which is given in Extract 6-15:

Extract 6-15 PK & GW

*TA133

\=/>And you should<* come to the ‘X’ (.) which is (.) the finish of your road

*E 127 IF query-w em
*E 128 IF explain elicit em
*TB146 → So where is the ‘X’ I don’t have that=
*MB Query-w
*MB Explain elicit
*C explicit!

Although we find exactly the same patterning at exactly the same juncture in the task in the AD (as in Extract 6-16):

Extract 6-16 HL & GW

*TA060

"(LS)"=>(hh) So you’re< going right around to (.) the er (.) finish.

*E 69 IF query-w em
*E 70 IF explain elicit em
TB065 → (1.3) Oh where’s the finish? I {head shake} d(h)on’t (h)ave a finish /(ha)
*MB Query-w
*MB Explain elicit multi modal head shake
we get more examples in the AD where the pattern is reversed (Extracts 6-17 and 6-18):

Extract 6-17 HL & GW

*TA023

(\(LS\)= '(h)" [~] Er you go tround to the () beside the river and past the helicopter.

*E 31 IF explain elicit em

*TB027

→ (\(LS\)= '(hh)" Right. I \{head shake\} don‘t have a helicopter

*MB Ready

*MB Explain elicit multi modal head shake

*End 31

*E 32 IF query-w em

*TB027 ctd

so where is the helicopter?

*MB Query-w

Extract 6-18 HL & GW

*TA043

You go right around to the well.

*E 53 IF explain elicit em

*TB047

→ Oh I \{head shake\} don‘t have a well (ha)

*MB Explain elicit multi modal head shake

*End 53

*E 54 IF query-w em

*TB047 ctd

Where‘ s the well?

*MB Query-w

What then is this different patterning? It is this: in the CD we get the sequence query-w followed by EE, while in the AD we get the reverse, namely EE followed by query-w. Though this discovery may seem trivial it is actually indicative of the simplificatory nature of IF behaviour in the aphasic dialogues: in the CD the query comes first yet implicit within that query is the denial – even though the denial is subsequently made explicit, prior to that point the query is actually doing multiple work; in the AD, however, we find the explicit denial of the landmark’s existence before the query about it, and consequently each part of the utterance is concerned with the expression of only one proposition.

What is more, as we shall discuss in §8.2.2.3.1, this pattern (i.e. the AD preference for EE followed by query) also holds for the whole corpus. But for the moment it is sufficient to note that the proposal of an EE category has actually bought us something after all.
6.2.2.3.2 explain = acknowledgements (EAs)

Utterances are coded as explain = acknowledge games when an ACKNOWLEDGE move that closes a game and requests that the other participant continue:

(i) is fuller than a simple ACKNOWLEDGE
(ii) describes the position in task
(iii) is not elicited and
(iv) provides new information

Examples include:

(a) I've done that then.
(b) Right, I'll just draw in a pine tree then.
(c) Okay, I'm now at the crocodile's mouth.

<table>
<thead>
<tr>
<th>Game Type</th>
<th>% of IF games in the AD</th>
<th>% of IF games in the CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>explain = acknowledge</td>
<td>12.28 (7)</td>
<td>23.40 (11)</td>
</tr>
</tbody>
</table>

Table 6-8: Explain = Acknowledge Games

There are almost 50% fewer explain = acknowledge games in the AD. This clearly fits in with our doing being ordinary account: viz. offering additional information tends to be avoided lest it generate unnecessary embedded sequences.

6.2.2.3.3 explain games proper

Table 6-9 below indicates that GW initiates virtually identical proportions of Explains in the two dialogues. This seems not to support our doing being ordinary claim.

<table>
<thead>
<tr>
<th>Game Type</th>
<th>% of IF games in the AD</th>
<th>% of IF games in the CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>explain</td>
<td>17.54 (10)</td>
<td>17.02 (8)</td>
</tr>
</tbody>
</table>

Table 6-9: Explain Games
By the *doing being ordinary* account, we would have expected fewer explain games (under the auspices of "don't give additional information that isn't absolutely vital lest non-competence become top-level interactional business"). We must therefore ask ourselves what has 'gone wrong'. The honest answer is that we do not know.

So is our *doing being ordinary* hypothesis incorrect? We believe not, and when we consider the evidence in the corresponding sections on explain games proper in Chapter 7 (§7.2.2.3.3) and Chapter 8 (§8.2.2.3.3), we will have more than sheer belief to convince the reader.

6.2.2.4 instructs

Since it is the Information Giver's role to give instructions and the Information Follower's role to follow them, we would not actually expect there to be any IF-initiated instructions – it is after all the IG who has the route pre-drawn! In the AD this is what we find: GW (the IF) initiates no instruct games at all (see Table 6-10).

<table>
<thead>
<tr>
<th>Game Type</th>
<th>% of IF games in the AD</th>
<th>% of IF games in the CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>instruct</td>
<td>0.00 (0)</td>
<td>2.13 (1)</td>
</tr>
<tr>
<td>instruct = time out</td>
<td>0.00 (0)</td>
<td>4.26 (2)</td>
</tr>
<tr>
<td>Total instructs</td>
<td>0.00 (0)</td>
<td>6.39 (3)</td>
</tr>
</tbody>
</table>

Table 6-10: Refined Instruct Games

However, in the CD she initiates one instruct proper at the end of the dialogue as well as two time-out instructs (*Hang on a second – I don't understand!* type games). Fortunately this distribution of data is relatively easy to explain. We will deal with each type in turn.

6.2.2.4.1 instruct games proper

As we have said, the only example of an IF-initiated instruction in these two dialogues comes in the CD, which is shown in the following extract:
The instruct proper here is a *meta* instruction – an instruction to do some activity that is not part of the route-drawing task itself, namely an instruction to signal to the researcher that the task is over. This activity was explicitly requested by the researcher at the end of the introduction to the task. Although this request was intended to be directed to both parties so that each had an equal responsibility to initiate the closure of the task, we can tell from the video recording that the researcher was in fact mainly looking at the IF.

That we get an IF-initiated meta instruct at this juncture is therefore nothing to be excited about. In passing, we will note that of all the dialogues in the Eye Contact data where task closure is made explicit (15 out of the 16 dialogues), the IG is responsible for the initiation on only two occasions (in the dialogues between GM & ND and HL & DN).

6.2.2.4.2 instruct = time outs (ITOs)

Time-out instructs signal that the time-out instructor is having trouble with the on-going interaction – so for example, they typically occur when one participant is presenting the other (the time-out instructor) with excessive or unclear information. Examples are given in the following extracts:
Extract 6-20 PK & GW

*E 45 IG align em aban other
*TA046
And then* take a direct turn to the right again and move up towards about a quarter >> of an<< inch from the top of the page (), say that that quarter >> of an<< inch is gonna take you from the direct right turn () to ab- to about () three inches from () "(cough)" your right "your fro-" from the right/ to the le*ft. That would X be the top of the bend of the road. Right?
*MA Instruct cont
*MA Align aban other
*End 45

*TB046
/Right.*
*MB Ready

*E 46 IF instruct = time out em
*TB047
→ *(••) So () so hang on a second
*MB Ready
*MB Instruct = Time Out
*End 46

*E 47 IF check em
*TB047 ctd
we’re going (••) () (hhh) {smiles}=
*MB Check

*E 48 IG align retrace em
*TA047
=From start you came down s- y- y- y- you /moved-.*
*MA Align retrace = clarify

Here we see that GW is suffering from information overload (the instruction has already been going on for seven turns) and so, in order to get PK to re-present the instruction in a clearer fashion she initiates an instruct = time out game (ITO). This signals that she is having problems with the interaction and that she wants him to clarify his instruction (which she makes more explicit with her subsequent check). The interaction continues for a further 25 turns and then, when GW finally understands where she is meant to be heading she produces a second ITO in turn *TB61:

Extract 6-21 PK & GW (= Extract 6-20 25 turns later)

*E 53 IG align em
*TA059
=Right?
*MA Align
*End 53
And then {gesture ends from earlier} () (hh)(hh) you take (h) a turn and turn back up north again () going slightly backwards but {hard point} stopping () and then it’s a- a: () a /hard right* turn again
*MA Instruct cont multi modal
This time, GW uses the ITO not because of information overload but rather as a means of preventing PK from providing further information until she is ready to deal with that information: GW has understood the instruction but needs time to carry out the physical task of route drawing. Hence the ITO – without it (and given her previous experience of PK’s verbosity), she would not have been certain that PK would have given her the time that she needed. When she is ready for him to proceed with the next chunk of information she clearly signals so by acknowledging that she has finished her drawing activity and prompting him to continue.

If we accept (as we surely must) that an ITO will highlight the communicative incompetence (or at least the communicative insensitivity) of your dialogue partner, then, as we can see from Table 6-11, it is (according to our ordinary hypothesis) not surprising that we find fewer ITOs in the AD than in the CD.

<table>
<thead>
<tr>
<th>Game Type</th>
<th>% of IF games in the AD</th>
<th>% of IF games in the CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>instruct = time out</td>
<td>0.00 (0)</td>
<td>4.26 (2)</td>
</tr>
</tbody>
</table>

Table 6-11: Instruct = Time Out Games

Of course, we should point out that there is an alternative, non-ordinary related explanation: given HL’s limited linguistic output there is very little scope for GW to be overloaded with information and therefore the need for an ITO never actually arises. Indeed, the only ITO in the dialogue is initiated by HL when he flags an up-coming self-initiated tenth turn repair (see Extract 6-37 in §6.2.3 below).
So it would appear that we have no data to help us ascertain which of our explanations (ordinary or non-ordinary related) is in fact correct. Nevertheless, we shall see in §8.2.2.4 that despite there being not a single instance of an ITO in the whole AD corpus (but eleven ITOs in the CDC), there is in fact evidence in favour of our doing being ordinary hypothesis in the form of extracts from the ADC which, IF overload notwithstanding, do not produce ITO games. We will, however, reserve actual discussion of these examples for §8.2.2.4.

6.2.2.5 queries

This final section focuses on the various types of query. Although much of what will be presented here also applies to §6.2.5.1 on simplificatory strategies, as this section is chronologically first we will provide most of our discussion now.

<table>
<thead>
<tr>
<th>Game Type</th>
<th>% of IF games in the AD</th>
<th>% of IF games in the CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>query-w</td>
<td>10.53 (6)</td>
<td>6.38 (3)</td>
</tr>
<tr>
<td>query-w = instruct</td>
<td>5.26 (3)</td>
<td>0.00 (0)</td>
</tr>
<tr>
<td>query-w alt = instruct</td>
<td>1.75 (1)</td>
<td>0.00 (0)</td>
</tr>
<tr>
<td>query-w alternative</td>
<td>8.77 (5)</td>
<td>2.13 (1)</td>
</tr>
<tr>
<td>query-w prod</td>
<td>0.00 (0)</td>
<td>4.26 (2)</td>
</tr>
<tr>
<td>query-yn</td>
<td>15.79 (9)</td>
<td>6.38 (3)</td>
</tr>
<tr>
<td>Total queries</td>
<td>42.10 (24)</td>
<td>19.15 (9)</td>
</tr>
</tbody>
</table>

Table 6-12: Refined Query Games

In our basic analysis, we noted that GW initiated just over twice as many queries in the AD (both for query-w and for query-yn). Since yes-no questions have not been analysed any further, this finding still holds for query-yns.

The larger proportion of yes-no questions fits in very well with our claim that in the process of doing being ordinary (not highlighting non-competence) new interactional business which might generate unnecessary sequences will tend to be avoided by the non-aphasic IF. Because a yes-no question is (for our current purposes) a forced-choice rather than an open-ended question20, the possibilities for the content of the next turn are so limited that the risk of generating unnecessary sequences is negligible.

20 Though see Bollinger (1979: 88ff) for at least a dozen reasons why yes-no questions should not be analysed simply as special types of alternative questions.
The basic findings for open-ended questions, however, did not support our ordinary claim – indeed, if there are twice as many query-ws in the AD, then there are going to be twice as many opportunities for extended misunderstandings and with them displays of non-competence.

Our revised analysis shows the relative proportions of query-w games proper to be not 2.06:1 (as we saw in §6.2.1.2) but 1.65:1 (as we saw in §6.2.2). This still does not readily support the basic ordinary hypothesis, but at least it is a more hypothesis-friendly result. We will return to proper query-ws later but first we will discuss the findings for the other subtypes of query.

6.2.2.5.1 query-w alt (QWA)

The QWA is a member of the same family as the QYN for like the yes-no question, it has a forced and limited choice of alternative responses. In its simplest form, a QWA would consist of a question that forces a choice between binary antonyms (for example, left and right):

Extract 6-22 HL & GW

*E 17 IF query-w alt em
*TB013
→ Which side? Left /or right?*
*MB Query-w alt

*TA011
 /Er* {deixis gest} Left
*MA Reply-w alt repo multi modal
*Turn A min

*TB014
Slightly to the left.
*MB Acknowledge repo = reps
*End 17

There is, however, no a priori theoretical reason for the forced-choice to be limited to a set of two possibilities, nor for the responder to reply verbatim with one of the options as we see in the following extract:
Extract 6-23 BA & DN

*TB059
Okay
*MB Acknowledge
*End 41
*E 42 IF query-w alt em
→ *Which way from the bench {4 invisible deixis gests} up down left or right
*MB Query-w alt multi modal
*C overload?

*TA055
{deixis gest} Nearly bottom
*MA Reply-w alt multi modal

Indeed, it is even possible to allude to the remaining options (though notice this example is from a CD):

Extract 6-24 PK & DN

*E 91 IF query-w alt em
*TB101
→ //Is it higher* than that /*or*/
*MB Query-w alt

*TA091
/It- it's* it's () well the- the route is not exactly 'p-

w- what we're trying to do just now is come from the head o' the swan
*MA Reply-w

We should also note that it is possible for an utterance that looks like a query-yn to be coded as a query-w alt. For example, in the following extract although BA is essentially asking a yes-no question (*have you got this tree*?), because the forced alternatives have been made explicit it is coded as a query-w alt:

Extract 6-25 BA & DN

*TA056
() *Start again.* Sorry.
{iconic gest: listening?} {point} This {point} tree, {iconic gest: listening?}

*TB061
Mhm {nods}

*E 46 IG query-w alt em
*E 47 IG explain em
*TA057
→ {measures} () Um () yes or no? I I thought () nothing=
*MA Query-w alt
*MA Explain
*End 47
*TB062
 I haven’t - I’ve only got one tree,
*TA058
 Yes
*TB063
 and my tree is in the {point} bottom corner
*TA059
 {iconic gest: ignore} Doesn’t matter then "nothing"

And similarly, what looks like a query-w alt can be coded as two separate query-yns.

Extract 6-26 HL & GW

*E 46 IF query-yn em
*TB037 ctd
 → To the left of the windmill is it?
*MB Query-yn
*TA034
 //Er:*
*E 47 IF query-yn em
*TB038
 → /"(hh)"* *or to the right this time.*
*MB Query-yn
*TA035
 To right.
*TB039
 To the right. OK. (DRAWS)

In this extract, although GW ends up explicitly stating the two alternatives of what could be considered to be a query-w alt, it is clear from her intonation that she started off with the intention of just asking whether she should go to the left of the windmill – it is only after HL’s hesitation which signals an up-coming dispreferred negative response that GW offers him the alternative choice. Thus, although the alternatives are presented explicitly, this sequence of talk has not been coded as a QWA.

Having made clear what a QWA is we are now in a position to consider the results:
As we can see from Table 6-13, in the AD, GW uses over four times as many QWAs. Why should this be so? I would suggest that there are two main reasons:

(i) using a forced-choice rather than an open-ended question limits the possible responses and thereby reduces the risk of unnecessary extended sequences (this is the same argument that we presented for the larger proportion of yes-no questions);

(ii) making the possible alternatives of a forced-choice question explicit limits the possible responses and the risk of unnecessary extended sequences yet further.

It should not be surprising, therefore, to find that, when faced with a linguistically impaired interlocutor, the non-impaired interactant not only constrains the content of their partner's next turn, but that they do so explicitly in the hope that they will be leaving very little room for misunderstanding.

6.2.2.5.2 query-w = instruct (QWI & QWAI)

<table>
<thead>
<tr>
<th>Game Type</th>
<th>% of IF games in the AD</th>
<th>% of IF games in the CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>query-w = instruct</td>
<td>5.26 (3)</td>
<td>0.00 (0)</td>
</tr>
<tr>
<td>query-w alt = instruct</td>
<td>1.75 (1)</td>
<td>0.00 (0)</td>
</tr>
</tbody>
</table>

Table 6-14: Query-w = Instruct Games

Table 6-14 shows that we also find GW (the non-impaired IF) initiating a greater percentage of games that are formally queries but functionally instructs: these are the query-w = instruct (QWI) and query-w alt = instruct (QWAI) games. The three instances of QWIs in the AD are given below:
Extract 6-27 HL & GW

*TB014 ctd
OK I'll draw in a pine tree then. (DRAWS) OK (1.4)

*E 19 IF query-w = instruct
*TB014 ctd
→ So, where do I go next?
*MB Query-w = instruct

*TA012
You go round the pine tree.
*MA Reply-w = instruct

Extract 6-28 HL & GW

*TB017
(·hh)=Oh alright. So the pine "tree's over there. Okay!." (DRAWS) Okay, so it's like that. Right.

*E 22 IF query-w = instruct
*TB017 ctd
→ And then where do I go?
*MB Query-w = instruct

*TA015
(·hh)={(LS)(COUGH) "(LS)"=(·hh) ThEr under the bridge
*MA Reply-w = instruct

Extract 6-29 HL & GW

*TB036
Okay! (DRAWS)

*E 44 IF query-w = instruct
*TB036 ctd
→ Where to next?
*MB Query-w = instruct

*TA033
Past an windmill
*MA Reply-w = instruct

After a top-level game (instruct) has been closed off with some form of drawing activity followed by an acknowledgement, GW initiates the next section of the task by explicitly asking HL the location of the next relevant landmark.
Although her contributions take the form of open-ended questions, in effect they can be interpreted as instructions for HL to impart the next instruction – in other words, they can be glossed as “give me the next instruction”. They have thus been coded to reflect this function.

Related to this game type is the query-w alt = instruct (QWAI) which is the same as a QWI but with the added restriction of being in the form of a forced-choice alternative question. There is one example in the AD:

Extract 6-30 HL & GW

*TB058
Is the house in the middle of the page roughly at the bottom?

*TA054
{eyebrow flash} Yes /aha*

*TB059
/{Nods} Yes

*TB059 ctd
that’s* where my house is. OK.

*E 63 IF query-w alt = instruct
*TB059 ctd
→ (hhh) /Do you go* under the house or over the house?
*MB Query-w alt = instruct

*TA055
/Er*

*TA056
"(LS)"* Over the house
*MA Reply-w alt repo = instruct repo
*Turn A min

*TB060
Over the house, rig/ht.*

It might be argued that these QW(A)Is are really nothing more than elaborate and explicit acknowledgements which signal that the IF has completed the previous chunk of the task (viz. route-drawing) and is ready to accept the next chunk of information. But this misses the point that these utterances not only request the next chunk of information, they specify the precise nature of that information, namely (in this dialogue at least), the location of the next relevant landmark.
Given the roles of the two participants, the use of an IF-initiated QW(A)I is odd—it is not the IF’s job to initiate instructions. Indeed, this was implied in the instructions that the participants were given prior to starting the task (see §3.1):

To the Information Giver

... Your job is to describe the route to your partner ...

To the Information Follower

... Your job is to draw the route on your map ...

But despite the oddness of these games, GW initiates four of them in the AD yet none in the CD. Why might this be so? The answer I would suggest should by now be unsurprising: the QW(A)I is a means of constraining the content of partner’s next turn, thereby avoiding the potential for extended sequences.

6.2.2.5.3 query-w prod (QWP)

The final subtype of query is the *query-w prod* (QWP) which we have earlier described (in §4.1.2.1) as an unspecific query which asks partner to produce more (next-stage-of-the-task-relevant) talk.

<table>
<thead>
<tr>
<th>Game Type</th>
<th>% of IF games in the AD</th>
<th>% of IF games in the CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>query-w prod</td>
<td>0.00 (0)</td>
<td>4.26 (2)</td>
</tr>
</tbody>
</table>

Table 6-15: Query-w prod Games

As we can see from Table 6-15, with this game type, we find a reversal of the proportion of initiations by GW: she uses none in the AD and two in the CD. We will exemplify these Query-w prods in the extracts below.

In the first extract, PK has been almost overloading GW with route instructions. She uses an ITO to gain sufficient time to carry out the physical task of route drawing and when she is ready for him to proceed with the next chunk of information she signals so by acknowledging that she has finished her drawing activity and then prompts him to continue with her QWP. The content of this QWP indicates the precise point of PK’s proceeding contributions up to which she has processed and acted on and thus this is the point in the task from where she expects him to continue and in this case, PK obliges.
Extract 6-31 PK & GW

*TA059
=Right? And then {gesture ends from earlier} () (hh)(hh) you take (h) a turn and turn back up north again () going slightly backwards but {hard point} stopping () and then it's a a: () a /hard right* turn again
*MA Instruct cont multi modal

*TB060
/Oh alright

*E 54 IF instruct = time out em
*TB061
'Okay hang on'
*MB Instruct = Time Out
*End 54
() Right.
*MB Acknowledge
*End 11

*E 55 IF query-w prod em
*TB061 ctd
→ And then a hard right turn... ()
*MB Query-w prod

*TA060
(LS)=Hard right turn /that takes you up* to the top of the page
*MA Clarify

In the next extract, after considerable negotiation as to whether or not the two maps are mirror images of each other, GW (having clearly stated that the maps would be identical if laid side by side) attempts to move the task forward with her *So. But PK does not take the hint and continues with the topic of establishing whether or not the two maps are mirror images, ignoring (abandoning) GW’s prod for further relevant talk.

Extract 6-32 PK & GW

*TA001
There’s one thing Gillian I- () I don’t understand I don’t know whether your map is reversed () or () what’s {iconic} on your /map is it *-

*TB001
/It’s exactly the* same if you look at it that it should be exactly the same

*TA002
{iconic} Back to back

*TB002
(0.8) Um
*TA003
{iconic} You understand what I mean?

*TB003
Yeah I know what you mean, (hh) If we were to lay them side by /side* they

*TA004
/"Mhm"*/

*TB003 ctd
should be identi/cal. (.) Side by side.*

*TA005
/"Mhm"*/ {iconic} Well okay*

*E 5 IF align em21
*TB003 ctd
//Okay?
*MB Align
*End 5

*TB003 ctd
*E 6 IF query-w prod aban other
So*
*MB Query-w prod aban other
*End 6

*TA006
//I - I'll only ask you* for one question.

*TB004
Mhm?

*TA007
(cough) Is the start at {deixis: left} this side of your map or this {deixis: right} side

The very fact that PK ignores the QWP (perhaps because it is so unspecific) is indicative of the unconstraining nature of this type of utterance. In other words, if one utilises a QWP to prompt further talk, then one also has to be prepared for that subsequent talk not to be what had been expected.

In short, the inexplicitness associated with the QWP makes it a very weak initiator and as such, it will always carry with it the potential danger of additional sequences of talk – which can be tolerated if your interlocutor is ‘normal’ but not if they are impaired!

21 We note that this utterance is an IF align because we will refer back to this extract in §8.2.2.2.
6.2.2.5.4 query-w proper

As promised, we now return to query-ws proper.

<table>
<thead>
<tr>
<th>Game</th>
<th>% of IF games in the AD</th>
<th>% of IF games in the CD</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>query-yn</td>
<td>15.79</td>
<td>6.38</td>
<td></td>
</tr>
<tr>
<td>Combined (basic) query-w</td>
<td>26.32</td>
<td>12.77</td>
<td>2.06:1</td>
</tr>
<tr>
<td>query-w</td>
<td>10.53</td>
<td>6.38</td>
<td>1.65:1</td>
</tr>
<tr>
<td>query-w alt</td>
<td>8.77</td>
<td>2.13</td>
<td></td>
</tr>
<tr>
<td>query-w alt = instruct</td>
<td>1.75</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>query-w = instruct</td>
<td>5.26</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>query-w prod</td>
<td>0.00</td>
<td>4.26</td>
<td></td>
</tr>
</tbody>
</table>

Table 6-16: Refined Query Games

In §6.2.2.5 (see also Table 6-16 above) we showed that our revised analysis indicated that the relative proportions of query-w games proper was not 2.06:1 but rather 1.65:1. While this did not readily support our doing being ordinary hypothesis, we said that it was at least a more hypothesis-friendly result.

But if we look beyond the isolated query-w proper we find that we do indeed get results that are very hypothesis-friendly. What we need to do is consider the distribution of open-ended query-w games compared to the distribution of restrictive query-w games.

For the two dialogues under consideration in this chapter, open-ended query-ws comprise the query-w and the query-w prod while restrictive query-ws comprise the query-w alt, query-w alt = instruct and query-w = instruct. We provide the figures for these combined groups in Table 6-17 below.
Crucially what we find is that in the AD, open-ended query-ws account for just 40% of all query-ws (10.53/26.32) yet in the CD this proportion is over 83% (10.64/12.77).
Looking from the other side of this query-w coin, we see that 60% of all queries in the AD are somehow restrictive in their nature, compared with less than 17% in the CD.

These results do fit in with our doing being ordinary hypothesis since the use of the restrictive types of query-w game (i.e. those that simplify the interaction by reducing the number of appropriate types of relevant next turn) is more prominent in the AD than in the CD. We will reiterate this point in §6.2.5.1 when we discuss simplificatory moves more fully.

6.2.3 game closure

According to Clark & Schaefer’s (1987, 1989) model of how participants contribute to discourse, contributions tend to be finally accepted by the other participant via one of the following methods (which, for convenience, we repeat from §2.1.6.3.1):

<table>
<thead>
<tr>
<th>Game</th>
<th>% of IF games in the AD</th>
<th>% of IF games in the CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>query-w</td>
<td>10.53</td>
<td>6.38</td>
</tr>
<tr>
<td>query-w prod</td>
<td>0.00</td>
<td>4.26</td>
</tr>
<tr>
<td>Open-ended query-ws</td>
<td>10.53</td>
<td>10.64</td>
</tr>
<tr>
<td>query-w alt</td>
<td>8.77</td>
<td>2.13</td>
</tr>
<tr>
<td>query-w alt = instruct</td>
<td>1.75</td>
<td>0.00</td>
</tr>
<tr>
<td>query-w = instruct</td>
<td>5.26</td>
<td>0.00</td>
</tr>
<tr>
<td>Restrictive query-ws</td>
<td>15.78</td>
<td>2.13</td>
</tr>
<tr>
<td>Combined (basic) query-ws</td>
<td>26.32</td>
<td>12.77</td>
</tr>
<tr>
<td>% of Open-ended query-ws</td>
<td>40.00</td>
<td>83.32</td>
</tr>
<tr>
<td>% of Restrictive query-ws</td>
<td>60.00</td>
<td>16.68</td>
</tr>
</tbody>
</table>

Table 6-17: Refined Query Games
1. Continued attention. B shows he is continuing to attend and therefore remains satisfied with A’s presentation.

2. Initiation of the relevant next contribution. B starts in on the next contribution that would be relevant at a level as high as the current one.

3. Acknowledgement. B nods or says “uh huh,” “yeah,” or the like.

4. Demonstration. B demonstrates all or part of what he has understood A to mean, for example with a paraphrase of A’s contribution.

5. Display. B displays verbatim all or part of A’s presentation.

Figure 2-2: Levels of Evidence of Understanding

We have adopted this method of analysis for the acceptance (grounding) of games and, likewise, we suggest that the ultimate responsibility of accepting games lies with the ‘other participant’. In our data, as indeed in any game-coded data, any game that is accepted by the continued attention of the non-speaker (i.e. any game accepted through verbal and non-verbal inactivity) will be coded as speaker-closed (as there is no non-speaker turn on which to hang a code line). Similarly, abandoned games will also, indeed by definition, be self (speaker) closed.

Clark maintains that since agents doing an action require evidence that they have succeeded at that action, interactants will consequently aim to reach the **Principle of Joint Closure** whereby “the participants in a joint action try to establish the mutual belief that they have succeeded well enough for current purposes” (Clark, 1996: 226). What Clark never actually seems to say explicitly is that this process naturally falls into two qualitatively different types of grounding or closure, namely **passive closure** (relating to continued attention and production of next relevant turn) and **active closure** (relating to acknowledgement, demonstration and display).

What we have as our analysis of game closure is in fact a representation of these two types of closure. As we have seen in §4.2.1 a game is considered (and coded) to be closed by the last person to make a (non-technical) contribution within that game. We are now in a position to suggest that the type of closure depends on the initiator of the game: for IG-initiated games, IG closure is passive and IF closure active, and vice versa for IF-initiated games. In this way, then, our analysis takes account of **passive self-closure** and **active other-closure**.
But in Clark & Schaefer’s model, every signal that one person directs towards another (whether it be verbal or non-verbal), is presented for the other person to consider. Thus, every signal will belong to the presentation phase of some contribution. Thus, the acceptance of an utterance is recursive: B’s evidence in response to A’s presentation is itself a presentation which in its turn needs to be accepted. According to Clark & Schaefer, what stops the generation of infinitely long contributions (such as those in Example 6-33) is the Strength of Evidence Principle.

Example 6-33 Marjorie & Joan

Marjorie: The acceptance phase is actually recursive.

Joan: So it too needs to be accepted?

Marjorie: Yeah

Joan: I see

Marjorie: Right

Joan: Okay

Marjorie: Mhm

Joan: Mhm

etc!

The **Strength of Evidence Principle** states that “The participants expect that, if evidence e_0 is needed for accepting presentation w_0, and e_1 for accepting the presentation of e_0, then e_1 will be weaker than e_0” (Clark & Schaefer, 1989: 268). So eventually, every acceptance will end in the other participant either producing their next relevant turn or with them giving the current speaker their continued attention.

The relevance of this for us is as follows: for any given game we will actually distinguish between three types of closure (acceptance/grounding):

- implicit self-closure at position 1 (= turn A1 and occasionally turn An)
- explicit other-closure at position 2 (= turn B1, B2, B3, ...)
- explicit self-closure at position 3 (= turn A2, A3, A4, ...)

This schema allows for games that are accepted **passively** by continued attention from the other participant and the production of the next relevant turn from self. This can occur either because of (i) the self-abandonment of a game (recipient design) or because (ii) the game requires no evidence for current purposes stronger than that of continued attention (typically such closure will occur with the more responsive-like games such as the explain elicit or the explain = acknowledge or (by definition) with those that are abandoned).
In the case of other-abandonment – as the name suggests – games are passively accepted by the other participant producing the next turn (though in such cases, the degree of next turn relevancy might be a debatable point depending from whose point of view one looks). Examples of Passive (or Implicit) Self-Closure are given in Extracts 6-34 to 6-38 below:

Position 1 (turn 1): IMPLICIT SELF-CLOSURE: next relevant turn from self (self-abandonment)

Extract 6-34 HL & GW

*TB011
OK,
*MB Acknowledge
*End 13

→ *E 14 IF explain = acknowledge em aban self
*TB011 ctd
well I’ll - um (.)
*MB Explain = Acknowledge aban self

→ *End 14

*E 15 IF query-yn em
*TB011 ctd
is it directly below the caravans?
*MB Query-yn

Position 1 (turn 1): IMPLICIT SELF-CLOSURE: next (relevant) turn from other (other-abandonment)

Extract 6-35 PK & GW

→ *E 45 IG align em aban other
*TA046
And then* take a direct turn to the right again and move up towards about a quarter >>of an<< inch from the top of the page (.) say that that quarter >>of an<< inch is gonna take you from the direct right turn (.) to ab- to about () three inches from () "(cough)" your right "your fro-" from the to right/ to the le*ft. That would X be the top of the bend of the road. Right?
*MA Instruct cont
*MA Align aban other

→ *End 45

*TB046
/Right.*
*MB Ready

*TB047
"(hh)" So () so hang on a second
Position 1 (turn 1): IMPLICIT SELF-CLOSURE: continued attention from other, next relevant turn from self

Extract 6-36 HL & GW

*TB036 ctd
Where to next?

*TA033
Past an windmill

→ *E 45 IF explain = acknowledge em
*TB037
{Nods} Aha. I’ve got the windmill.
*MB Acknowledge multi modal nod
*MB Explain = Acknowledge

→ *End 45

*E 46 IF query-yn em
*TB037 ctd
To the left of the windmill is it?
*MB Query-yn

Position 1 (turn 3): IMPLICIT SELF-CLOSURE: continued attention from other, next relevant turn from self

Extract 6-37 HL & GW

→ *E 48 IG instruct = time out em
*TA036
Eh?
*MA Instruct = Time Out interjection

*TB040
Aha.
*MB Acknowledge
*Turn B min

*TA037
Just a minute. () {iconic gest}
*MA Instruct = Time Out cont multi modal

→ *End 48

*E 49 IG explain meta em
*TA037 ctd
I’ve er gave you a duff (LAUGH)
*MA Explain meta
Position 1 (turn An): IMPLICIT SELF-CLOSURE: next turn (relating to some other game) from other

Extract 6-38 HL & DN

*TA010
*E 10 IG instruct
→ *E 11 IG explain em
Go to your left and er go round the lake – it’s er about er () two inches from the end o’ paper
*MA Instruct
*MA Explain

*E 12 IF check em
*TB011
() /That’s the lake?*
*MB Check

*TA011
/{deixis: left}* Er the lake on the left
*MA Reply-w

*E 13 IF check em
*TB012
On the left- /so on* the left of the palm tree,
*MB Acknowledge repo
*MB Check

*TA012
/{Nods}=Ah*
*MA Reply-y
*Turn A min

*TA013
Aha
*MA Acknowledge
*Turn A min

*TB013
is the lake
*MB Check cont

*TA014
Aha.
*MA Reply-y cont
*Turn A min
*End 13
*End 12
*End 11

→

*TB014
() Okay ()
*MB Acknowledge
*End 10
*Turn B min
This method of analysis also allows for games which are accepted **actively** by explicit acknowledgement from the other participant:

Position 2 (turn 2): EXPLICIT OTHER-CLOSURE

Extract 6-39 HL & GW

- *E 49 IG explain meta em
- *TA037 ctd
 I I’ve er gave you a duff (LAUGH)
- *MA Explain meta
- *TB041
 (LAUGH)
- *MB Acknowledge meta
- *End 49
- *Turn B min
- *E 50 IG align task em
- *TA038
 Er () the goat (.)
- *MA Align task

And finally, games can be actively closed by the current speaker giving explicit acknowledgement in turn 3 to the turn 2 presentation from the other participant which could have closed the game off in its own right:

Position 3 (turn 3): EXPLICIT SELF-CLOSURE

Extract 6-40 HL & GW

- *E 13 IF check em
- *TB010
 And you have a pine tree there. Is that right?
- *MB Check
- *TA009
 {small nod} Aha.
- *MA Reply-y multi modal nod
- *Turn A min
- *TB011
 OK,
- *MB Acknowledge
- *End 13
- *TB011 ctd
 well I’ll - um (.) is it directly below the caravans?
Since the current speaker could have by-passed the acknowledgement in favour of simply producing the next relevant turn – in other words, a Position 2 (turn 2) active other-closure as in the previous example – but chose not to, I will call this Position 3 type of active self-closure super-active closure.

For the sake of completeness it should be noted that we also recognise four further types of closure: two further types of active closure (hyper-active closure and implicit hyper-active closure) and two further types of super-active closure (hyper-super-active closure and implicit super-active closure). We will discuss each in brief.

While we do not (as yet) treat it in any special way, there is a further type of active closure whereby at Position 2 the other speaker closes the game by acknowledging what would otherwise have been a super-active closing acknowledgement as in Extract 6-41:

Extract 6-41 GM & MB

*E 91 IG align em
*TA114
You start going {deixis gest} leftish (.). "You" know {deixis gest: right} left?
*MA Instruct cont multi modal
*MA Align multi modal

→ *E 92 IF check correct alt em
*TB134
Left (.)/(.). ***or***
*MB Check correction alt

*TA115
/{deixis} Left*
*MA Instruct cont multi modal

*TB135
Or right /""you mean***
*MB Check correction alt cont

*TA116
/Le-* (.)
*MA Clarify alt

*TB136
//"No"*
*MB Acknowledge
*Turn B min
*C pref org micro pause

*TA117
//Well* on this side it’s left. {deixis gest = (.)} {point} Left’s on
{visible point} /this side*
*MA Clarify alt cont multi modal multi modal
We can see that the Reply-y in *TA118 would have been sufficient to close the IF-initiated games *E 93 and *E 92. Had it done so these games would have been actively closed. But instead the IF offers his own Acknowledgement in *TB138 which in turn would have been sufficient to close the IF-initiated games *E 93 and *E 92. Had it done so, these games would have then been super-actively closed. However, it seems that rather than allow the IF to make a super-active closure, the IG offers yet another Reply-y in *TA119 such that it is he who is responsible for and in control of the final grounding of these two games. While we still treat such sequences as active-closure, they may, incidentally, also be thought of as hyper-active.

Analogous to this hyper-active closure is an alternative type of super-active closure that we might call hyper-super-active closure. Essentially, it is a closure of a game that is effected by the game initiator after what would have been a hyper-active closure from their partner. In other words the Speaker (A) initiates the game, their interlocutor (B) attempts active closure, then A, in an attempt to maintain grounding control contributes a turn worthy of super-active closure which B then grounds with what would have been a hyper-active closure but then A, in a further attempt to maintain control offers yet another grounding utterance which finally closes off the game.

An example (again from one of GM’s dialogues) is given below as Extract 6-42. Again, as with hyper-active closure, we have analysed this type only according to its sequential (and hence super-active) characteristics.
We now turn to the second and final alternative type of super-active closure that we might call implicit-super-active closure. Here, after what would have otherwise been an active closure from their partner, the Speaker closes the game at Position 3 not with an acknowledgement, but rather with a passively self-closed align game (as in Extract 6-43 below). In essence, this align could almost have been analysed as an optional alignment because (given the previous explicit Acknowledge from the IF) the Speaker clearly does not expect there to be non-alignment (indeed that is why the align game affords the possibility of passive closure), but the production of an align does at least allow for that unexpected yet nonetheless potential possibility. In other words, the closure is effected on the implicit assumption that no further grounding needs to be done for current purposes (hence the term implicit-super-active closure).

Although this type of closure is very similar to our already existing super-active closure, we believe that it is worthy of a special mention because of this fact that the closure takes place not with an acknowledgement token of responsive feedback but rather with an utterance that licenses what would otherwise be a dispreferred move (such as a Time Out). However, despite its important structural dissimilarity (viz. its initiating rather than responsive function), as before, we analyse this type according to its sequential (and hence super-active) characteristics.
Finally, analogous to the implicit-super-active closure, there is the possibility of implicit-hyper-active closure as seen in Extract 6-44 below. Here we again have a passively closed align game but this time it comes after what would otherwise have been a super-active closure. Again, in this thesis, we analyse this only as active closure.
If nothing else, noting that these various super-active and hyper-active closure types exist is useful evidence to extend Clark’s claims that most grounding is achieved within two or three cycles (Clark & Schaefer, 1989). We will return to this issue of weaker grounding in §9.3.2.

We now have, therefore, a three-way distinction of game closure, viz. passive, active and super-active and this is subcategorised yet further according to which participant initiated the game. Hence we will talk of IG and IF passive closure, IG and IF active closure, and IG and IF super-active closure. We maintain just a 3-way distinction because we are only interested in who actively grounds the contribution, and thus we need only active for all variants of active other-closure and super-active for all variants of active self-closure.

In this way, then, similar to Clark, we too have a hierarchy of the various strengths of closure:
WEAK

Passive
Position 1 (turn 1): implicit self-closure: next relevant turn from self (self-abandonment)
Position 1 (turn 1): implicit self-closure: next (relevant) turn from other (other-abandonment)
Position 1 (turn 1): implicit self-closure: continued attention from other, next relevant turn from self
Position 1 (turn 3): implicit self-closure: continued attention from other, next relevant turn from self
Position 1 (turn n): implicit self-closure: next turn (relating to some other game) from other

Active
Position 2: explicit other-closure

Super-Active
Position 3: explicit self-closure

STRONG

Figure 6-24: Types of Game Closure

This can be summarised as follows:

<table>
<thead>
<tr>
<th>Passive</th>
<th>Active</th>
<th>Super-Active</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position 1 Self-Closure</td>
<td>Position 2 Other-Closure</td>
<td>Position 3 Self-Closure</td>
</tr>
</tbody>
</table>

Table 6-18: Types of Game Closure

Hypothesis

Given the task’s demands for success, the patterning of game closure that we had anticipated was for most games to be simply yet actively closed – namely for most IG games to be IF closed and most IF games to be IG closed (most because of the possibility of games being closed with continued attention or because of self-abandonment).

This pattern might have looked something like that shown in Figures 6-25. (The left hand side of the chart represents the games that were initiated by the IF and the right hand side those initiated by the IG.)
However, although we might have expected contributions to be actively accepted by the other participant in the CDs, if it is true that the non-impaired partner is taking on the bulk of the communicative burden, then in the ADs we might instead have expected that, irrespective of the game initiator, the acceptance of contributions will, in the majority of cases, tend to be done by the non-aphasic IF.

What this predicts is that for the ADs (like the CDs), in IG-initiated games, more active closure will come from the IF rather than super-active closure from the IG. Given the linguistic impairment of the dysphasic IGs, a lack of super-active closure would not perhaps be all that surprising. More importantly, however, the hypothesis also predicts that if there is to be increased active closure from the non-impaired IFs in the ADs in *IF-initiated* games, then that closure will necessarily have to be super-active.

The actual results obtained are presented in Figures 6-26 and 6-27. Each pie chart deals with the proportions of the various types of closure with the left half of each chart representing IF-initiated games and the right half representing IG-initiated games. For this reason, all percentages quoted are actually double those that appear on the charts themselves. Thus, in the CD between GW & PK (see Figure 6-26), of all the IF-initiated games 40.42% (two times 20.21%) are passively closed (by definition, passively closed by the IF).
ASA = IG super-active (i.e. IG-initiated games that are actively self-closed)
BSA = IF super-active (i.e. IF-initiated games that are actively self-closed)

The results indicate that there is indeed more IF-closure (shown by the red segments\(^{22}\)) in the AD than in the CD:

- 84% versus 61% of the IG-initiated games
- 82% versus 68% of the IF-initiated games

\(^{22}\) Or, if this is a black and white photocopy, the dotted segments.
And within the IF-initiated games, the difference between the proportions of super-active closure is greatly pronounced with 47% in the AD versus 28% in the CD. Thus it would seem that we have yet further evidence that the non-impaired partner is taking on more of the communicative burden when conversing with a linguistically impaired partner.

6.2.4 basic moves

This profile is very similar to that for game initiation, except that it concerns initiating moves. For this analysis, any move that is a subtype of some superordinate move is analysed under the superordinate category. Thus for example, all Explain Elicit moves are simply analysed under their superordinate category, namely, Explain moves.

Figure 6-28 represents the distribution of IF-initiating moves as a percentage of the total number of IF-initiating moves in each of the two dyads. (In essence, it is the move-equivalent of Figure 6-21 repeated again below for convenience.)

![Figure 6-28: Distribution of IF Moves in the AD and CD](image-url)
When compared with the IF-initiated game profile (Figure 6-21) we find very little difference in proportions though now the ratios of AD to CD are slightly more pronounced in the Query-yn moves.

This is shown more clearly in Figure 6-29 where the ratio of AD moves to CD moves of a given type are represented in black dots and the ratio of games in green stripes. Hence we see that in the AD just under 2.5 times as many yes-no query games were initiated as in the CD, and this ratio increases to just over 3:1 for the corresponding Query-yn moves.

There is no data available for instructs since in the AD the IF did not initiate any.
In other words, in these two dialogues the only game-type that is more consumptive (to any noticeable degree) of moves (communicative effort) is the query-yn game. That the forced-choice yes-no question is the most consumptive type of move is yet further evidence of the importance of restrictive (simplificatory) talk in the ADs (see §6.2.5.1).

6.2.5 refined move analysis

This profile refines the analysis for superordinate moves by analysing the moves according to their subtype. Although this analysis is similar to our earlier refined analysis of game initiation (§6.2.2), we deal with the subordinate moves separately in order to include a discussion of what we call simplificatory moves and simplificatory riders.

6.2.5.1 simplificatory moves

As outlined in §5.2.3.2, simplificatory moves fall into two subcategories: (i) those that simplify the interaction by making it explicit and (ii) those that simplify the interaction by reducing the number of appropriate types of relevant next turn. Initiating moves that fall into the explicit category include:

- Align
- Explain = Acknowledge
- Explain Elicit
- Instruct = Time Out
- Ready
- Acknowledge = Ready

Initiating moves that fall into the reduction category include\(^{24}\):

- Query-yn
- Query-w alt
- Query-w = instruct
- Query-w alt = instruct

\(^{24}\) The other simplificatory moves outlined in §5.2.3.2 do not occur in these two dialogues.
Hypothesis

Part of our overall thesis is that in the process of helping the dysphasic interactant *do being ordinary*, the non-aphasic will tend to avoid new interactional business which might otherwise generate unnecessary sequences and thereby highlight non-competence. The expectation that follows readily from this would be that there are more likely to be higher proportions of all simplificatory devices in the ADs than in the CDs. And with the exception of just two move types, this is indeed what we find in this pair of dialogues.

These results are presented below in Figure 6-30:

![Figure 6-30: Distribution of IF Moves in the AD and CD as a proportion of all IF moves](image)

The two move types that do not exhibit greater proportions of IF activity in the AD are moves which make explicit the nature of the on-going dialogue, namely Aligns and Instruct = Time Outs. Reduced proportions of these moves seems to run counter to our basic *doing being ordinary* claim (whereby the non-aphasic IF will tend to avoid new interactional business which might otherwise generate unnecessary sequences and thereby highlight non-competence). However, (as we discussed in §6.2.2.2 and §6.2.2.4.2), Aligns and Instruct = Time Outs are not just moves which make the nature of the on-going dialogue explicit, they are moves which *orient specifically to the interactional competence of the Hearer*.
• Aligns request explicit confirmation that the Hearer has understood the Speaker’s preceding contribution(s), thereby potentially bringing linguistic competence to the fore (which may subsequently result in extra sequences of embedded games)

• Instruct = Time Outs signal that the Speaker (instructor) is having problems with the interaction. Although this can be interpreted as highlighting Speaker (instructor) incompetence, it can also be interpreted as implying that the fault and if not communicative incompetence then at least communicative insensitivity, lies with the Hearer (instructee).

It should not be surprising, therefore, that these specific simplificatory (explicit) move types are less prominent in the AD.

But we are perhaps jumping the gun: we must cater for the sceptic who will inevitably be quick to point out that there are bound to be more IF simplified initiating moves in the AD because there is more IF-initiation in the AD. This would indeed be a reasonable attack and our defence to it is to present the results for the IF moves not as proportions of all the IF’s moves, but rather in proportion to just the initiating moves that they make. These results for the two dialogues are presented in Figures 6-31 to 6-33: Figure 6-31 represents the distribution of all IF Explicit Simplificatory initiating moves, Figure 6-32 represents the distribution of all IF Reduction Simplificatory initiating moves and Figure 6-33 represents the distribution of all IF Non-Simplificatory initiating moves.

Figure 6-31: IF Explicit Simplificatory Moves as a proportion of initiating moves only
Figure 6-32: IF Reduction Simplificatory Moves as a proportion of initiating moves only

Figure 6-33: IF Non-Simplificatory Moves as a proportion of initiating moves only

The results from Figures 6-31 to 6-33 are detailed in Table 6-19 below:
Unfortunately, the results obtained are not as neatly patterned as we may have hoped – but then this is real data after all, and serendipity is not always as kind as one would wish! Nevertheless, we do find a reasonably convincing tendency in favour of our basic claims. Let us deal first with evidence that supports our thesis of increased simplificatory action from the IF in the ADs.

Two of the six Explicit Simplification Move types (the two types of Ready move) show greater IF activity in the AD as do all four of the Reduction Simplification Move types. And of the seven Non-Simplification Move types, only two show greater IF activity in the AD. On balance, then, it seems that our hypothesis of AD simplification holds. Let us now consider the data that goes against our claim.

Four of the six Explicit Simplification Move types (Align, Explain = Acknowledge, Explain Elicit and Instruct = Time Out) actually have smaller proportions of IF activity in the AD but of these, the Align and Instruct = Time Out moves have already been explained in terms of not highlighting communicative incompetence. The pattern for Explain = Acknowledge games (EAs) might also be explained this way.
Earlier (in §6.2.2.3.2) we suggested that the almost 50% fewer EA games in the AD fitted with our doing being ordinary account in that offering additional information tends to be avoided lest it generate unnecessary embedded sequences. Whilst acknowledging this possibility we will now put forward an alternative explanation. Although EAs are useful because of their explicit simplificatory nature, it is possible that because of their heightened explicitness they are considered to be potentially patronising and therefore tend to be avoided in socially sensitive situations, viz. interacting with a linguistically impaired dialogue partner. Luckily both explanations fit in with the overall claim that non-aphasics help their dysphasic partner maintain their ordinariness.

Although there are more IF Explain Elicit moves in the AD than in the CD (5 in the AD, 4 in the CD), because GW initiates more game-related activity in the AD, the overall result is a very slight decreased proportion of IF EEs in the AD. This is contrary to our expectations, and we must therefore ask ourselves whether this is a troublesome finding. Our answer is an emphatic ‘No’ – the reasons why have already been discussed in §6.2.2.3.1.

Firstly we pointed out that despite being analysed as initiating activity, their existence is essentially attributable to the dialogue contributions of the other participant (hence the ‘elicit’ codification flagging the responsive nature of the EE). Since EEs are to some extent beyond the control of the EE initiator, we should therefore not be too discouraged by the apparent anomaly suggested by the unexpected pattern that obtains across the two dialogues.

Secondly, and possibly more importantly, we have seen that in the case of Explain Elicits it is not so much a matter of quantity of the EEs that counts but rather their quality – specifically their sequential environment which is indicative of the simplificatory nature of IF behaviour in the aphasic dialogues.

And finally, the difference is, after all, only a very small one.

Thus, though contrary to our expectations, the smaller proportion of IF EEs in the AD is not a troublesome finding.

What we have shown, then, is that of the six Explicit Simplification Move types, five conform to our expectations regarding doing being ordinary (in various guises) and one move type (EE) can be all but ignored. All that is left to do is offer reasons for the unexpected pattern pertaining to Non-Simplificatory moves. The two rogue move types are: Check Correct and Query-w.
We have pretty much dealt with the Check Corrects phenomenon in §6.2.2.1 in our refined game analysis and reworking old ground would be superfluous. Furthermore, if we combine the two Check types together, the results pattern as expected (Figure 6-34 below).

The Check Correct may be a rogue datum but it is certainly not a troublesome one.

![Figure 6-34: IF Non-Simplificatory Moves (combined Checks)](image)

The unexpected distributions of Query-w moves are slightly more difficult to explain away. Essentially, if you discover that you have to ‘lead’ the dialogue with an impaired interlocutor by taking on more of the communicative burden you will also find soon enough that some interactive strategies cannot be avoided if the dialogue (and with it the task) is to be moved forward.

For example, IF-Explains could just about be avoided completely if the IF could assume that if the IG does not mention a given landmark then, although it may be task-relevant, he should be describing the route accurately enough for it to circumvent any such feature. That the IF-Explains are not avoided in either dialogue leads us to conclude that for GW this is not a safe assumption.

For Query-w moves, however, without resorting to a series of stilted, highly unnatural and not to mention face-threatening forced-choice questions, vital facts will not be discovered without them. For example, how else is one to glean the information requested by utterances such as Where’s the helicopter?
Take the IF Query-w in Extract 6-45 as an example:

Extract 6-45 HL & GW

*TA023
(LS)="(·h)" [~] Er you go tround to the () beside the river and past the helicopter.

*TB027
(LS)="(hh)" Right. I {head shake} don’t have a helicopter

*E 32 IF query-w em
*TB027 ctd
→ so where is the helicopter?
*MB Query-w

*TA024
The mouth of the river

*TB028
At the mouth of the river right. "That’s X" () OK. {DRAWS = ()} That’s drawn the helicopte† ter† {DRAWS = ()}

*TA\B
(1.7)

*TB029
(LS) Right? And do I go behind the helicopter or in front of it?

Without employing a Query-w the IF could only ascertain the location of the helicopter through a (potentially exceedingly) long series of forced-choice questions as in the Hypothetical Extract 6-46:

Hypothetical Extract 6-46 HL & GW

*TA023
(LS)="(·h)" [~] Er you go tround to the () beside the river and past the helicopter.

*TB027
(LS)="(hh)" Right. I {head shake} don’t have a helicopter

*E 32 IF query-yn em
*TB027 ctd
→ is the helicopter near the telescope?
*MB Query-yn

*TA024
I’m (.) no got a telescope?

*TB028
Okay

*E 34 IF query-w alt em
*TB028 ctd
→ Is the helicopter above the sheep or below the sheep?
*MB Query-w alt
So as we said in §6.2.1.2, although GW may be leading the dialogue, by using interactive strategies she is at least maintaining the façade that the discourse is nevertheless still a joint project.
That said, we should not be too perturbed at our unexpected results for these moves for we can reasonably argue that this data does not actually affect our hypothesis. All we have claimed is that there is likely to be increased simplification in the ADs and that we have already shown. Reduced proportions of Non-Simplificatory moves would have been a bonus it is true, but to be disappointed at not receiving a bonus is on the verge of gratuitous avariciousness!

6.2.5.2 simplificatory riders

In this section we investigate the riders that qualify moves which can also be considered to be simplificatory in nature. These riders are:

- Repetition
- Abandonment
- Fill moves (finishing off your partner’s utterance)

We will deal with why we believe them to be simplificatory in the next three sections.

6.2.5.2.1 repetition

Repetition is simplificatory in that it reinforces a previous message and does not introduce new forms. We recognise three types of repetition: repetition of the other person (repo); repetition of self (reps); and repetition of other and self (repo = reps).

Examples of each of these types are provided below.

REPEAT OTHER (repo)

Extract 6-47 HL & GW

*T A052
And go right around to the house

*TB057
To the house. /Aha?* (1.8)
→ *MB Acknowledge repo
*Turn B min
REPEAT SELF (reps)

Extract 6-48 PK & GW

*TA001
There’s one thing Gillian I- (.) I don’t understand I don’t know whether your map is reversed (.) or (.) what’s {iconic} on your /map is it *

*TB001
look at it that it should be exactly the same /It’s exactly the* same if you →
MB Reply-w multi ling reps

*TA002
{iconic} Back to back

*TB002
(0.8) Um

*TA003
{iconic} You understand what I mean?

*TB003
Yeah I know what you mean. (-hh) If we were to lay them side by /side* they should be identi/cal. (.) Side by side.*

→
MB Reply-w multi ling reps

*TA004
/"Mhm"*/

*TA005
/"Mhm" {iconic} Well okay*

REPEAT OTHER = REPEAT SELF (repo = reps)

Extract 6-49 HL & GW

*TB015
Is that round left or around right?

*TA013
Er () "um" left?

*TB016
Round left.
→
MB Acknowledge repo = reps
6.2.5.2.2 game abandonment

self-abandonment (aban self)

Self-abandonment can be analysed in terms of being on-line recipient design – when some game is perhaps judged as not being entirely clear or relevant or the best way of moving the interaction forward, it can be abandoned in favour of some ‘better’ and therefore potentially more simple move. The only IF abandoned games in the AD are two self-abandoned games. The first (given in Extract 6-50) is an example where the abandoned query-w effectively simplifies the game structure.

Extract 6-50 HL & GW

*TA060
'(LS)'=>(hh) So you're going right around to(.) the er () finish.

*TB065
(1.3) Oh where's the finish? I{head shake} d(h)on't (h)have a finish /(ha)*

*TA061

(Oh*)

-> *E 71 IF query-w aban self em
*TB066
=>(hh)< Right, you go around the house and where is the pine-
*MB Ready
*MB Acknowledge repo
*MB Query-w aban self
-> *End 71

*E 72 IF query-yn em
*TB066 ctd
and then do you go to the pine tree after the house?
*MB Query-yn

*TA062
{head shake} No.

*TB067
No

Originally (because of the immediately preceding talk) GW assumed that the route was going to the pine tree. She thus initiated a query-w game. Then GW decided that if this was in fact a false assumption then her query would effectively mean the initiation of a wasted and potentially lengthy subroutine of embedded games. This query is therefore abandoned in order to check the original underlying assumption. That it subsequently becomes evident that her initial assumption was indeed false is indicative of the fact that the abandonment has in fact been effective in the simplification of game structure.
GW’s other example of a self-abandonment is also a case where she decides it may be wise to check on potentially false assumptions: when she realises that she has not in fact had adequate evidence for her intended contribution (*E 14) she abandons her explain = acknowledge game in order to glean sufficient evidence that her intended positioning of the pine tree was indeed correct. When she does have the necessary information we find her intended contribution being re-initiated as *E 18. Again, this abandonment effectively bypasses what would have otherwise been if not potentially extended misunderstanding then at least an unidentifiably bad route deviation score later on in the task. This sequence is given in Extract 6-51 below.

Extract 6-51 HL & GW

*TB009 ctd
I have a gate right below the caravans

*TA008
No

*TB010
And you have a pine tree there. Is that right?

*TA009
{small nod} Aha.

*TB011
OK,

→ *E 14 IF explain = acknowledge em aban self
*TB011 ctd
well I'll - um (.)
*MB Explain = Acknowledge aban self
→ *End 14

*TB011 ctd
is it *directly* below the caravans?

*TA010
Er (2.0)

*TB012
Or is /it*

*TA010 ctd
/No* /no*

*TB012 ctd
/it’s sl*ightly ***-*** {deixis gest}=

*TA010 ctd
=Er {deixis gest} s:ide /side.*

*TB013
/Which* side? Left /or right?
In the CA literature there is the concept of Recipient Design or ‘RD’ (see §2.1.5.2.4). In essence, cases of RD involve the speaker reformulating (redesigning) their utterance in order to make it easier for their addressee to respond to it.

I would like to argue that the two examples of GW’s abandonment discussed above are not examples of Recipient Design but rather what I will call Participant Design (PD) in that the utterances are redesigned in order to make the final joint process less troublesome – in Clark’s terms, examples of Participant Design are embodiments of the principle of least collaborative effort (see §2.1.6.3.2). That we find more abandonments (more PD) in the AD then, is therefore not surprising, for it is precisely in these dialogues where false assumptions have the potential to generate great amounts of otherwise avoidable collaborative effort.

other-abandonment (aban other)

Other-abandonment is not quite so conclusively simplificatory in that some games are abandoned not because the abandoner is actively attempting to simplify the dialogue structure but rather because they might not have noticed that that particular game had even been initiated. However, in such cases, it could be argued that the game’s initiator (i.e. the non-abandoner) is in fact opting for a simplified interaction by not pursuing the abandoned game further (in essence a kind of other-imposed self-abandonment). This is especially clear in those cases where the game is abandoned (anything for a simple life) yet, because of its importance, is subsequently re-introduced some way down the line.

In these two dialogues there is only one instance of an IF other-abandoned game (it is from the CD between PK & GW) and although we have seen it as Extract 6-32 in §6.2.5.5.3 above, we repeat the relevant part for convenience below as Extract 6-52.
6.2.5.2.3 fills

By finishing off your partner’s utterance you display not only that you have heard and understood your partner sufficiently to project the end of their turn, but you are also explicit as to what you have heard and understood. In this way then, fill moves are simplificatory (one might even consider them to be implicit other-repetition) in that they potentially preempt subsequent checking and acknowledging routines:

Extract 6-52 PK & GW

*TB003
Yeah I know what you mean, (hh) If we were to lay them side by side* they

/"Mhm"*/

*TB003 ctd
should be identi/cal. (.) Side by side.*

/"Mhm" {iconic} Well okay*

*TB003 ctd
//Okay?

*TB003 ctd
*E 6 IF query-w prod aban other
So*
*MB Query-w prod aban other
*End 6

//I - I’ll only ask you* for one question.

*TB004
Mhm?

*TA007
(cough) Is the start at {deixis: left} this side of your map or this {deixis: right} side

6.2.5.2.3 fills

By finishing off your partner’s utterance you display not only that you have heard and understood your partner sufficiently to project the end of their turn, but you are also explicit as to what you have heard and understood. In this way then, fill moves are simplificatory (one might even consider them to be implicit other-repetition) in that they potentially preempt subsequent checking and acknowledging routines:

Extract 6-53 PK & GW

*TA011 ctd
An- anyway let’s start anyway. Er if you travel () (cough) do you have a
starting mark?

*TB008
I have a start with /a cross.*

*TA012
/a cross.* {nods} (.) (cough)=

*MA Acknowledge fill multi modal nod
*Turn A min
6.2.5.2.4 rider results

Again our initial expectation was that there were more likely to be higher proportions of all simplificatory riders in the ADs than in the CD. And again, with the exception of just two types of rider, this is what we find. These results are presented below in Figure 6-35 and Table 6-20:

![Figure 6-35: IF (GW) Rider Distribution as a proportion of IF moves](image)

<table>
<thead>
<tr>
<th>Rider</th>
<th>% of IF moves in the AD</th>
<th>% of IF moves in the CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>repo</td>
<td>7.44 (9)</td>
<td>4.98 (11)</td>
</tr>
<tr>
<td>reps</td>
<td>4.13 (5)</td>
<td>1.36 (3)</td>
</tr>
<tr>
<td>repo = reps</td>
<td>4.13 (5)</td>
<td>0.00 (0)</td>
</tr>
<tr>
<td>abandon self</td>
<td>1.65 (2)</td>
<td>1.36 (3)</td>
</tr>
<tr>
<td>abandon other</td>
<td>0.00 (0)</td>
<td>0.45 (1)</td>
</tr>
<tr>
<td>fill</td>
<td>0.00 (0)</td>
<td>4.52 (10)</td>
</tr>
</tbody>
</table>

Table 6-20: IF Riders (as a proportion of all IF moves) in the AD and CD

Contrary to our hypothesis, then, for two of these six types of simplificatory rider (*abandon other* and *fill*) there are actually lower proportions in the AD than in the CD. As is our wont, let us attempt to interpret this rogue data.
other-abandonment

We have already noted that other-abandonment is not conclusively simplificatory in that it is not so much the abandonment per se that is simplificatory as the immediate non-pursuit of the abandoned game. We must therefore be careful about interpreting small proportions of other-abandonment as non-simplificatory because if your partner never abandons your contributions then there will, ipso facto, be no opportunity for you to let the matter drop in simplificatory non-pursuit. For this reason we will ourselves abandon the pursuit of other-abandonment qua simplificatory rider.

fills

Our explanation as to why there are more fill moves in the CD is, we believe, quite illuminating. Although fills can preempt checking and acknowledging routines, they are at the same time potentially anti-simplificatory: if the fill is incorrect, then collaborative repair work will have to be initiated in order to remedy the error. Thus, a fill move simplifies the discourse only when the person doing it (the filler) has appropriately gauged the intentions of their partner (the fillee).

It would seem, then, that in the AD, GW weighs the potential cost of an incorrect fill to be greater than the benefits to be gained from correctly gauging her dysphasic partner's intentions. While this finding may not seem to be corroborating our thesis, in fact her non-use of fill moves is indeed simplificatory in that it avoids possible misinterpretation, it avoids the unnecessary sequences that misinterpretation would have generated, and by doing so it helps in the maintenance of ordinariness.

6.2.6 mutation moves

In this section we will discuss a patterning of data which we have seen in Extract 6-47 (§6.2.5.2.1) but not yet discussed. We repeat and extend 6-47 as Extract 6-54:

Extract 6-54 HL & GW

*E 60 IG instruct
*TA051
"(LS)"=(hhh) You go underneath the chicken,
*MA Instruct
Here we find that in turn *TA053 HL is providing an answer to GW’s previous turn. Given that from the recording it seems fairly clear that GW’s intentions in *TB057 involved nothing more than an acknowledgement of HL’s previous instruction, this reply to an acknowledgement seems rather strange. That is, it seems strange until we realise that what is really going on is what I will call a mutation (Sacks might have extended his term post operator to this type of talk (Sacks, 1987: 69, footnote 10)).

We can clearly see that HL has mis-projected GW’s turn constructional unit because his reply is produced in perfect overlap with GW’s prototypical acknowledgement marker Aha. In doing so, we can see that he is taking *TB057 to be a check which therefore makes an answer sequentially relevant.

On the face of it, this slice of interaction is not dissimilar from the check-correct example that we discussed earlier (§6.2.2.1). What makes it different, however, is the IF’s intentions at the time of her utterance. Now speaker’s intentions are notoriously difficult to pin down with any objective certainty, and that is why CA has adopted the principle of intersubjectivity in its methodology to get around this thorny problem. But I would argue that the above extract is evidence that we cannot rely entirely on intersubjectivity as a means for the analyst to eke out speaker-meaning (for the followers of pure pragmatics) or of participant-meaning (if you are a follower of the CA tradition, or if you accept Clark’s view of language as joint action).
On the intersubjectivity view, the very existence of *TA053 makes *TB057 into some sort of check (and if so, probably an optional one), but as the overlapped talk clearly shows, GW is not checking on but simply acknowledging HL’s contribution (see §6.2.5.2.1 above for the discussion of the role of the repo in this acknowledgement).

So how are we to deal with instances of talk such as this where one participant orients to it as having one function and the other another? There are three options:

1. treat the function of the talk (in *TB057) as being what the speaker intended (traditional Code-Model view of communication)

2. treat the function of the talk (in *TB057) as being what the addressee interprets it to be (line taken by proponents of CA)

3. treat the function of the talk (in *TB057) as being what the speaker intended but at the same time note that it is being interpreted by the addressee as something different.

For the sake of getting the best of all worlds (a.k.a. having and eating cake) it is option (3) that we are in favour of adopting and we do so by tagging the utterance (*TA053) that retrospectively alters the collaborative function of the preceding utterance (*TB057) with a line of *C (comment) code: *C mutation, as follows:

Extract 6-55 HL & GW

*TA052
And go right around to thE () "(LS)" () "(hh)" () house
*MA Instruct cont

*TB057
To the house. /Aha?* (1.8)
*MB Acknowledge repo
*Turn B min

*TA053
/Aha*
*MA Reply-y
*Turn A min
→ *C mutation

Mutations are indications of the mutator interpreting the function of their partner’s (mutatee’s) previous talk as something other than the mutatee had intended. Mutations are about misinterpreting your interlocutor and the majority of those misinterpretations involve the mutation of an acknowledgement into a check.25

25 As we will see in Chapter 8 when we consider the whole corpus, 80% of all mutation moves involve the mutation of an acknowledgement into a check.
Hypothesis

It was expected that there would be different proportions of mutations across the corpus. Various possible patternings and related explanations are given below: we deal first with Information Givers and then with the Information Followers.

Because of the nature of aphasia, more IG mutations were expected in the ADs than in the CDs:

(i) Although none of the dysphasic subjects had severe comprehension problems, it was thought that if mutations are about misinterpretation, then, ceteris paribus, they are more likely to occur when the interpreter’s linguistic competence is below average.

(ii) All the dysphasic subjects were stable – they had all been living with their dysphasia for more than two years. Inevitably, aphasic individuals get used to having their contributions questioned rather than believed, and consequently the mutation of acknowledgements into checks could simply be a case of social conditioning. The following (hypothetical) example is not uncommon in the aphasic experience (MD, personal communication):

Hypothetical Extract 6-56

Non-Aphasic: Do you want tea or coffee?
Aphasic: Coffee please.
Non-Aphasic: You want coffee?
Aphasic: Yes thank you.

Such checking just reinforces the aphasic individual’s already existing lack of confidence, which as Jack Hughes (himself dysphasic) notes, is an integral part of dysphasia:

My stroke happened about 5 years ago and though it did not leave me any physical defects on the body, it left me with dysphasia. Speech, thought, memory and concentration are all affected.
Most people think it’s only the speech that’s affected; they do not see the effort it takes to remember the words (sometimes they don’t come) and the thinking that’s needed to construct them in a sensible way. People who know me better see this further handicap, but even the persons who are close me cannot see, before all the handicaps I have mentioned, is one of confidence.

Confidence is the one thing that is omitted when they list the handicaps caused by strokes.

(in Edelman & Greenwood, 1992: 31f, emphasis added)

For these reasons more IG mutations were expected in the ADs than in the CDs and this is indeed what was found, as we see in Table 6-21:

<table>
<thead>
<tr>
<th>% of IG Mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aphasic Dialogue (HL)</td>
</tr>
<tr>
<td>Control Dialogue (PK)</td>
</tr>
</tbody>
</table>

Table 6-21: IG Mutations in the AD and CD

That more AD IG mutations were found does not actually help determine which of the above suggestions explanations for this finding is correct (if indeed either of them is). All that can be said is that the phenomenon of IG mutations might be an aphasia-related one.

Concerning IF mutations (where the intentions of the IG have been misinterpreted), two possible scenarios were envisaged, each with a potentially reasonable explanation.

- **Plausible Pattern A:** more IF mutations in the ADs due (it might be argued) to the potential ambiguity associated with the telegraphic nature of dysphasic talk

- **Plausible Pattern B:** fewer IF mutations in the ADs due to:
(i) the IFs taking extra care to correctly interpret their IG’s intended contribution in order to avoid unnecessary sequences (our doing being ordinary claim). In effect this is Clark’s principle of least collaborative effort in action.26

(ii) the IFs assuming that, given two potentially ambiguous interpretations of IG talk, the most likely interpretation (either responsive or initiating in nature) will depend on their past experience of their interlocutor’s style – in other words a combination of Merrison’s Maxim and Garrod & Anderson’s (1987) model of output-input coordination.27 In the case of aphasic dialogue partners this will most likely be responsive while the in the control dialogues it will be initiating.

In actual fact, neither scenario obtained, for in both dialogues there were no IF mutations at all. Thus, at least for this pair of dialogues, the data is insufficient to assist our claim that the non-impaired IFs are helping the dysphasic IG in their maintenance of doing being ordinary. We must await our examination of further data from the rest of the corpus.

26 Incorrectly responding to a move as though it had been some other move (i.e. producing a mutating contribution) minimally requires two otherwise unnecessary turns at talk: one from the mutator (i.e. their mutating contribution) and one from theatee to ground that mutating contribution. In addition, further contributions may be required in order to get the talk back on track. Mutations are, therefore, potentially consumptive of extra communicative effort.

27 This model of output/input coordination “may be simply stated as one of formulating your output (i.e., utterances) according to the same principles of interpretation (i.e., model and semantic rules) as those needed to interpret the most recent relevant input (i.e., utterance from the interlocutor).” (Garrod & Anderson, 1987: 27). (See also Garrod & Doherty, 1994.)
in dialogue: gw & ba (aphasic); gw & dl (control)

The individual ... must be sympathetically aware of the kinds of things in which the others present can become spontaneously and properly involved, and then attempt to modulate his expression of attitudes, feelings, and opinions according to the company. ... the individual must phrase his own concerns and feelings and interests in such a way as to make these maximally usable by the others as a source of appropriate involvement; and this major obligation of the individual qua interactant is balanced by his right to expect that others present will make some effort to stir up their sympathies and place them at his command. These two tendencies ... form the bridge that people build to one another, allowing them to meet for a moment of talk in a communion of reciprocally sustained involvement. It is this spark, not the more obvious kinds of love, that lights up the world.

Erving Goffman

This chapter presents the results of the analyses obtained from the Aphasic Dialogue (AD) between GW & BA. GW is the non-aphasic Information Follower and BA the aphasic Information Giver. These results are compared with those obtained from the Control Dialogue (CD) with DL (BA’s age-matched control).

7.1 type-i analyses

In this section we present the Type-I Analyses.
7.1.1 task success scores

As in Chapter 6, although we present results for the individual task success scores, we reserve our main discussion of them for §8.1.1 where we consider the results for the corpora as a whole.

7.1.1.1 deviation scores

![Deviation Scores Graph](image)

Figure 7-1: Deviation Scores (cm²) for GW & BA (AD) and GW & DL (CD)

Again, for these two dialogues, the AD has a worse deviation score (212) than the CD (132).

7.1.1.2 time taken

![Time Taken Graph](image)

Figure 7-2: Time Taken (minutes) for BA & GW (AD) and DL & GW (CD)

Conversely, however, the duration of the AD (6.4 minutes) is slightly less than the CD (6.9 minutes).
7.1.1.3 efficiency rating (ER)

![Bar chart showing ER scores for BA & GW (AD) and DL & GW (CD)]

Figure 7-3: Efficiency Rating Scores for BA & GW (AD) and DL & GW (CD)

When we calculate the ER score, we find that because the times taken on each of the two dialogues were similar, the CD exhibits a better efficiency in the trade-off of cost (time) against benefit (success): (AD ER = 1359) versus (CD ER = 913).

7.1.1.4 landmark negotiation

![Bar chart showing IES scores for BA & GW (AD) and DL & GW (CD)]

Figure 7-4: Incorrect Entity Scores for BA & GW (AD) and DL & GW (CD)

When we consider the Incorrect Entity Scores (IESs) for these two dialogues we find that the AD (IES = 12) again fares worse than the CD (IES = 1.5).

7.1.1.5 dialogue measures

Figures 7-5 to 7-8 present the dialogue measures for the two dyads.
For both dialogues there are 17 named landmarks (11 that are shared, 3 that are only on the IG’s map and 3 that are only on the IF’s map). Figures 7-5 and 7-6 indicate that:

- In the CD 88.2% (15/17) of the landmarks are introduced: 64.7% (11) by the IG and 23.5% (4/17) by the IF.
- In the AD 64.7% (11/17) of the landmarks are mentioned: 41.2% (7) by the IG and 23.5% (4) by the IF.

- In the CD 70.6% (12/17) are introduced by statement: 64.7% (11) by the IG and 5.9% (1) by the IF.
- In the AD 47.1% (8/17) are introduced by statement: 41.2% (7) by the IG and 5.9% (1) by the IF.

- In both the CD and the AD 17.7% (3/17) are introduced by question: all by the IF in both cases.

- In the CD all the IG feature mismatches are introduced but only two of the three IF feature mismatches are discovered.
- In the AD only one of the six mismatches is mentioned – namely, one of the IG-only features (which is introduced by the IG).

As noted in §6.1.1.5, in their most successful dialogues from children, Anderson et al. (1992) found that:

- almost 50% of introductions came from the IF whereas in the unsuccessful ones less than 25% were IF introductions.

In the CD, 73% (11/15) of all the landmarks introduced are introduced by the IG and 27% (4/15) by the IF, while in the AD 64% (7/11) are IG introductions and 36% (4/11) IF introductions. This would indicate (at least in respect of this measure), that the AD is actually more successful than the CD.

- more question introductions are used

In both the CD and the AD 17.7% (3/17) of all introductions are by question. Because all question introductions are IF-initiated, these results appear to indicate that the two dialogues are in fact equally unsuccessful.
• more problem points are discovered

In the CD 83% (5/6) of all problem points are discovered (3/3 IG features, 2/3 IF features). In the AD this proportion is 17% (1/6: an IG-only feature). So here, we have apparent indication of the CD being more successful than the AD. On the other hand, we could integrate this finding into our doing being ordinary account. We could argue that what we have is a case of “if-it-ain’t-broke-don’t-fix-it”. Since all the mismatch features on all the maps are route-relevant (i.e. the route goes either around or in close proximity to them), if the IF does not mention their IF-only features we have to assume that they have not done so for a reason. One reason could be that previous errors resulted in the landmark being no longer route-relevant. In such cases the non-mention of the IF-only landmark would be fully understandable. However, in the dialogue between BA and GW there are no such cases. We thus need to explain those cases where the IF has a clearly route-relevant feature yet chooses not to introduce it into the dialogue. Our explanation is again doing being ordinary for by that account we would actually expect fewer IF-only features to be introduced under the rubric of “don’t give additional information that isn’t absolutely vital lest non-competence become interactional business”.

• more questions are asked

In the AD just over 16% of all moves are functioning as questions. In the CD this proportion is just under 16%. This data (presented below in Figure 7-7) would indicate that in terms of questions asked, both dialogues are roughly equally unsuccessful.
However if as before, we discount the type of pseudo-question that is the Align move, then the disparity between the questions asked in the two dialogues shifts to favour the AD as shown in Figure 7-8 below:

![Figure 7-8: Non-Align Questions in the AD and CD](image)

7.1.2 turn distribution

Figures 7-9 and 7-10 represent the distribution of turns in the CD and AD respectively. They show that both dialogues are very similar in their turn distribution with the Information Giver taking approximately 49% of all the turns at talk and GW, the Information Follower, around 51%.

![Figure 7-9: CD turn distribution](image)
Where the two dialogues differ from one another is in their respective distributions of **major** and **minimal** turns. (These proportions are represented in Figures 7-11 to 7-14 below.) In the CD virtually all (90%) of DL’s turns are major (Figure 7-11) while only 32% of GW’s turns are major (see Figure 7-13). As before, this is likely to be because the IG’s role is as provider of information and the IF’s role is as receiver.
In the AD, however, while the split between BA’s major and minimal turns still favours the major turn type, (as we found for HL) the split is more even (64% major and 36% minor – Figure 7-12).

![Figure 7-12: Distribution of BA’s (IG) major and minimal turns in the AD](image)

Thus here, too, we have an indication that in the AD the responsibility for furthering the talk is shifting from the IG to the IF (we investigate this further in §7.2 in our analysis of Game Coding) and so yet again, as in Chapter 6, whether voluntarily or involuntarily, it seems that the aphasic IG is giving up the burden of communication to the non-impaired IF. This can also be seen in the corresponding graphs for GW’s distribution of major and minor turns in the two dialogues:

![Figure 7-13: Distribution of GW’s (IF) major and minimal turns in the CD](image)
In the CD, 32% of GW’s turns are major (Figure 7-13) whereas in the AD this proportion jumps dramatically (almost doubling) to 60% (Figure 7-14) – further strong indication of the shifting of communicative responsibility towards the non-impaired IF.

In essence, the combination of IG major and IF minimal turns represent IG-centred talk and the combination of IF major and IG minimal turns represent IF-centred talk: on the whole, an interlocutor will only make a minimal turn in response to their dialogue partner’s major turn.

Figures 7-15 and 7-16 below show a complete breakdown of all turn types in each dialogue but what we are really interested in here is the IG-centred talk (the combination of the dark blue IG major turns and light blue IF minimal turns\(^1\)) and the IF-centred talk (the combination of the pink IG minimal turns and red IF major turns\(^2\)).

\(^1\) The *striped* segments if you are reading a black and white photocopy!

\(^2\) The *spotted* segments.
What we find is that in the CD approximately 79% of turns are IG-centred and 21% IF-centred, while in the AD we get a more balanced distribution with almost 52% of turns being IG-centred and 48% IF-centred.

The results for the CD with DL are very similar to those for the CD with PK (DL 79% IG-centred talk, PK 77% IG-centred), whereas the results for the two ADs differ more (BA 53% IG-centred talk, HL 38% IG-centred). This might indicate that dialogues with control IGs are more of an homogenous group than those with aphasic IGs.
Although this finding is not unexpected, having some evidence to that effect would allow us to grade the ADs according to their similarity to the distribution of IG-centred talk in the CDs.

In GW’s pair of dialogues with HL (aphasic) and PK (control) we found an almost complete reversal in IG-centred talk across the AD and CD which, we argued, indicated that in the AD the burden of communication rested squarely with GW.

In the current pair of dialogues, however (DL & GW and BA & GW), we find that although the CD is very much IG-dominated, the distributions of role-centred talk in the AD are actually very similar to each other (52% IG-centred, 48% IF-centred). It would seem, then, that here, communication is more of a collaborative achievement. Nevertheless, the AD is still far more IF-oriented than the CD (48% versus 21% respectively) thereby indicating that in this aphasic dialogue the non-impaired dialogue partner does still take on more of the communicative burden than in the corresponding control dialogue. We now take this up in our analysis of Game Coding.

7.2 type-ii analyses

In this section we will present the Type-II Analyses for GW’s dialogue with BA (aphasic) and compare them with those for her dialogue with DL (BA’s age-matched control). These Type-II analyses are all based on Game Coding (see §4.1) and as per Chapter 6 the analyses that will be presented are those for:

- Basic Game Profiles
- Refined Game Profiles
- Game Closure
- Basic Move Profiles
- Refined Move Profiles (including Simplificatory Moves and Riders)
- Mutations

This section therefore divides into six subsections, the first three dealing with game analyses and the remaining three dealing with move analyses.

3 I hesitate to say according to their degree of 'normalness'.

4 Such a calibration may be useful to Speech and Language Therapists as an indicator of overall interactiveness.
7.2.1 basic initiation

This section is divided into two subsections. First we present findings for the overall distribution of games initiated by both parties in each dialogue. Then we refine this analysis and present results for the basic (superordinate) game types that are initiated.

7.2.1.1 overall game initiation

Figure 7-17 shows the proportions of games initiated by each partner – and these proportions are actually not dissimilar.

![Bar chart showing game initiation proportions](assets/bar_chart.png)

In the CD the IF is responsible for 54% of game initiation (and the IG 46%) and in the AD she initiates 61% (and the IG 39%). This pattern is unique in that in all the other control dialogues the non-impaired IG initiates more games than their dialogue partner. In this respect, then, it might seem that DL has been treated as the IG who is most 'dysphasic-like'. However, what we really have in this analysis of game initiation is a representation of activity and passivity – basically, the more games that a participant initiates the more active their participation in the dialogue and the fewer games the more passive. The dialogue partner who initiates the majority of all games can therefore be thought of as the most pro-active of the two.

So in effect, then, in both the CD and the AD we have evidence that there is a shift of activity on the part of the non-impaired IF. However, it is important to point out that the fact that GW is slightly more pro-active than her IG in the CD does not detract from Hypothesis 1 (namely that in aphasic/non-aphasic interactions the non-aphasic does more of the communicative work), for her pro-activity in the AD is yet more pronounced than in the CD (61% versus 54% initiation).
7.2.1.2 basic game profiles

Figures 7-18 and 7-19 present the percentage of games that are initiated in the dialogue by each interlocutor. Thus for example, in the CD, of all the games that are initiated the largest proportion (almost 24%) are instruct games initiated by DL, whereas in the AD, the largest proportion of games are IF checks (26%).

Figure 7-18: Basic Game Initiation in DL & GW (CD)

Figure 7-19: Basic Game Initiation in BA & GW (AD)
We now turn to a comparison of the differences in IF behaviour in the AD and CD. These differences are represented in Figure 7-20 which shows the percentage of games initiated by the IF in each of the two dialogues.

As before, because increased IF activity in the AD would have skewed a comparison of the two dialogues, in order to give a truer picture of the IF game-initiating activity, Figure 7-20 shows the distribution of IF games as a percentage of just those games that are initiated by the IF. So for example we now see that in the AD, of all the games that GW initiates, 5.4% are query-w games whereas in the CD this proportion is 18.75%.

![Figure 7-20: Distribution of GW's IF Games in BA & GW (AD) and DL & GW (CD)](image)

We find that in the AD GW spends proportionately less of her game-initiating activity on all games except checks. In Chapter 6, on the other hand, we saw that the proportion of GW’s check games was actually less in the AD and (following Wilkinson, 1995c) we suggested that this was perhaps due to the non-impaired dialogue partner adopting a strategy of avoiding highlighting the communicative incompetence of her aphasic interlocutor – in other words, we explained it in terms of our doing being ordinary hypothesis.

So, given the findings for this dialogue must we now throw away our hypothesis? Fortunately not, for we also explained the relative shortage of align and explain games in the AD with HL in terms of doing being ordinary. In the current two dialogues this pattern still holds and with it, therefore, our existing explanation. However, we need to address why we do get the pattern obtained for check games.
BA is, according to his WAB score (69.6), more dysphasic than HL (75.4). To compensate, BA makes great use of gesture and deixis but consequently virtually all of his contributions involve only direction and distances (as can be seen throughout Extract 7-1 below). Given this reduced linguistic output, it would seem reasonable for a non-impaired IF to do whatever was necessary to ground the information and the only way to do such grounding is via checking activity. This can also be seen in Extract 7-1 (arrows indicate IF checks):

Extract 7-1 BA & GW

*TA008
And then {measures} () maybe two inches {deixis gest: north} north

*TB007
Two inches north. Okay?

*TA009
"(LS)" {point} And then () oh maybe () two inches (-hh) as well er {deixis gest: west} that way. (-hhh)

*TB008
→ Two inches west.

*TA010
"Yeah."

*TB009
Okay. Aha

*TA011
And then {point} {measures} oh three inches {deixis gest: north} north /again,*

*TB010
/Aha*

*TB010 ctd
(DRAWS = () Pa/st the* tent

*TA012
/"And-" {deixis gest: east} *

*TA013
Yes {nods}

*TB011
Mhm

*TA014
() (LS)=-(-hh)=And sort of (.) {deixis gest: north} "there" {deixis gest: east} there () {deixis gest: east} not (.) east {beat gest} exactly but* {deixis gest: north-east} little bit

*TB012
/Mm?*
Little bit north-east. =

= 'Yes'.

Okay

{visible point} And right at () top

Aha - right at the top - aha

() "Oh" {visible trace} 'four inches /five* inches /maybe'*

/Mm* /Yes*

And then () three inches {deixis gest: east} north "again" - er {head shake} no er

East

{deixis gest: east} "East"

In GW's dialogue with HL (Chapter 6), proportionately more of GW's activity was biased towards both types of query game in the AD and we suggested that although she was leading the dialogue, she was doing so by using interactive strategies that propose joint projects (Clark, 1996). In other words, she was at least ostensibly maintaining the façade of the ordinariness of the discourse.

In her dialogue with BA, however, we find proportionately fewer query games in the AD than in the CD. Why? We would suggest that given BA's obvious linguistic deficit, GW avoids unnecessarily highlighting non-competence (i.e. maintains doing being ordinary) by avoiding making queries which she fears BA might not be able to respond to (we return to this almost immediately in the following section).

7.2.2 refined initiation

Figures 7-21 and 7-22 show the distribution of IF games by subtype as a percentage of just the IF games that are initiated. (They are the refined versions of Figure 7-20.)
Figure 7-21: Distribution of IF Refined Query Games Initiated in the AD and CD

Figure 7-22: Distribution of IF Refined Non-Query Games Initiated in the AD and CD
<table>
<thead>
<tr>
<th>Game</th>
<th>Abbrev.</th>
<th>% of IF games in the AD</th>
<th>% of IF games in the CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>align</td>
<td>al</td>
<td>0.00 (0)</td>
<td>0.00 (0)</td>
</tr>
<tr>
<td>align retrace</td>
<td>al re</td>
<td>0.00 (0)</td>
<td>3.13 (1)</td>
</tr>
<tr>
<td>align task</td>
<td>al ta</td>
<td>0.00 (0)</td>
<td>3.13 (1)</td>
</tr>
<tr>
<td>check</td>
<td>ch</td>
<td>32.43 (12)</td>
<td>6.25 (2)</td>
</tr>
<tr>
<td>check correct</td>
<td>ch co</td>
<td>2.70 (1)</td>
<td>3.13 (1)</td>
</tr>
<tr>
<td>check optional</td>
<td>ch op</td>
<td>8.12 (3)</td>
<td>0.00 (0)</td>
</tr>
<tr>
<td>explain</td>
<td>exp</td>
<td>5.41 (2)</td>
<td>12.50 (4)</td>
</tr>
<tr>
<td>explain = acknowledge</td>
<td>ea</td>
<td>21.62 (8)</td>
<td>9.38 (3)</td>
</tr>
<tr>
<td>explain elicit</td>
<td>ee</td>
<td>2.70 (1)</td>
<td>12.50 (4)</td>
</tr>
<tr>
<td>instruct</td>
<td>ins</td>
<td>0.00 (0)</td>
<td>0.00 (0)</td>
</tr>
<tr>
<td>instruct = time out</td>
<td>ito</td>
<td>0.00 (0)</td>
<td>3.13 (1)</td>
</tr>
<tr>
<td>query-w</td>
<td>qw</td>
<td>0.00 (0)</td>
<td>9.38 (3)</td>
</tr>
<tr>
<td>query-w = instruct</td>
<td>qwi</td>
<td>2.70 (1)</td>
<td>6.25 (2)</td>
</tr>
<tr>
<td>query-w alternative</td>
<td>qwa</td>
<td>2.70 (1)</td>
<td>3.13 (1)</td>
</tr>
<tr>
<td>query-w prod</td>
<td>qwp</td>
<td>0.00 (0)</td>
<td>0.00 (0)</td>
</tr>
<tr>
<td>query-yn</td>
<td>qyn</td>
<td>18.92 (7)</td>
<td>28.13 (9)</td>
</tr>
<tr>
<td>query-yn = instruct</td>
<td>qyni</td>
<td>2.70 (1)</td>
<td>0.00 (0)</td>
</tr>
</tbody>
</table>

Table 7-1: Refined Games

Under our analysis of basic game initiation, we found that in the AD the non-impaired IF initiated fewer games in all game types except checks. We will consider this type first.

7.2.2.1 checks

In Chapter 6 we posited that, under a doing being ordinary account of interaction, checking activity should be avoided lest communicative incompetence be highlighted. Yet in these two dialogues, GW spends a great deal more of her game-initiating activity on checks proper in the AD than in the CD.

This seems to go against the arguments put forward in §6.2.1.2. But we also noted earlier that given BA’s limited output, in order to ground her partner’s contributions GW has very little option but to resort to checking activity – an apparently clear case of not being able to have and eat cake. However, this is but an apparent finding for the results obtained (presented in Table 7-2) can still be seen to fit in with our ordinary proposal.
Although there is a considerable proportion of IF checks in the AD, 3 of those 16 checks are classified as optional checks – checks which are fundamentally acknowledgement tokens but ones which the other dialogue partner (here the IG) has the opportunity to contradict if necessary. In other words, the optional check is a type of check that can legitimately be ignored by the checkee thereby avoiding any highlighting of their non-competence.

In this way, then, optional check cannot be considered as face-threatening to the checkee. A typical example of an optional check is given in Extract 7-2 below:

Extract 7-2 BA & GW

*E 23 IF instruct
*TA033
() And then {point} () {measures} "oh" six inches ↓down↓ {deixis gest}
*MA Instruct multi modal

*E 24 IF check optional em
*TB029
Six inches down. **Right, a long way down**
*MB Acknowledge repo multi ling
→
*MB Check optional

*TA034
{iconic gest: you’ve got it} {nod} Yes
*MA Reply-y multi modal multi modal nod
*Turn A min

*TB030
(LS)=Okay
*MB Acknowledge
*Turn B min
*End 24
*End 23
In addition, we can see in Extract 7-3 below that the example of a check correction in the AD is actually elicited by the IG, who, with his head shake (and simultaneous eye contact) essentially requests that his dialogue partner help in his word search. Thus, because this check correct is elicited by the checkee (unlike the example from the CD which is given in Extract 7-4), the otherwise aggressive and threatening nature of the check correct is mitigated to such an extent that we no longer consider it to be face-threatening.

Extract 7-3 BA & GW

*E 10 IG instruct
*TA018
And then () three inches {deixis gest: east} north "again" - er {head shake} no er
*MA Instruct multi modal
*C NVC-ling mismatch

*E 11 IF check correction em
*TB017
East
→ *MB Check correction

*TA019
{deixis gest: east} "East"
*MA Reply-y repo
*Turn A min
*End 11

In essence, then, of all the 16 (basic) IF checks in the AD, we have seen that there are four which are non-face-threatening (three optional checks and the elicited check correction). On the other hand, all the checks in the CD have the potential to highlight non-competence: two checks proper and (as we can see in Extract 7-4 below) one check correct that is not only evidently not elicited by the checkee, it is one that is initially explicitly and firmly denied. Clearly we can find no hint of mitigation in this token of the check correct type.

Extract 7-4 DL & GW

*E 1 IG instruct
*TA002 ctd
()hhh) (LS)=(hhh) Starting at the tower(hh),
*MA Instruct

*E 2 IF check correction em
*TB002
() The lighthouse is it?
→ *MB Check correction
So, re-working Table 7-2 above into an account of face-threatening checks we have Table 7-3:

<table>
<thead>
<tr>
<th>Game Type</th>
<th>% of IF games in the AD</th>
<th>% of IF games in the CD</th>
<th>Ratio of AD:CD checks</th>
</tr>
</thead>
<tbody>
<tr>
<td>all checks (basic analysis)</td>
<td>43.25</td>
<td>9.38</td>
<td>4.6 : 1</td>
</tr>
<tr>
<td>face-threatening checks</td>
<td>32.43</td>
<td>9.38</td>
<td>3.5 : 1</td>
</tr>
<tr>
<td>non-face-threatening checks</td>
<td>10.82</td>
<td>0.00</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 7-3: Refined Check Games

To sum up, then, although there is clearly more checking activity in the AD (which we posited was due to BA’s limited linguistic output), the reduced proportion of face-threatening IF checks is actually indicative of GW helping BA maintain *doing being ordinary.*
7.2.2.2 aligns

Since, we have argued, align games request explicit confirmation that the Hearer has understood the Speaker's preceding contribution(s), and since there is always the risk in an AD of the aphasic interlocutor not having understood, in such cases their linguistic non-competence is brought to the fore and this may result in extra sequences of embedded games. It is therefore in keeping with our overall ordinary hypothesis that there is no IF-alignment activity whatsoever in the AD (as we see from Table 7-4).

<table>
<thead>
<tr>
<th>Game</th>
<th>% of IF games in the AD</th>
<th>% of IF games in the CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>align</td>
<td>0.00 (0)</td>
<td>0.00 (0)</td>
</tr>
<tr>
<td>align retrace</td>
<td>0.00 (0)</td>
<td>3.13 (1)</td>
</tr>
<tr>
<td>align task</td>
<td>0.00 (0)</td>
<td>3.13 (1)</td>
</tr>
</tbody>
</table>

Table 7-4: Refined Align Games

7.2.2.3 explain type games

Although at the basic level we found that there is less IF explanation in the AD, it is only in the refined analysis that we discover the vast qualitative difference between the subtypes of explains. Table 7-5 shows how GW's explaining activity is proportioned across explain games proper, explain elicits and explain = acknowledge games, and in the next three sections we discuss these findings.

<table>
<thead>
<tr>
<th>Game</th>
<th>% of IF games in the AD</th>
<th>% of IF games in the CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>explain</td>
<td>5.41 (2)</td>
<td>12.50 (4)</td>
</tr>
<tr>
<td>explain = acknowledge</td>
<td>21.62 (8)</td>
<td>9.38 (3)</td>
</tr>
<tr>
<td>explain elicit</td>
<td>2.70 (1)</td>
<td>12.50 (4)</td>
</tr>
<tr>
<td>Total explains (basic analysis)</td>
<td>29.73 (11)</td>
<td>34.38 (11)</td>
</tr>
</tbody>
</table>

Table 7-5: Refined Explain Games
7.2.2.3.1 explain elicits (EEs)

<table>
<thead>
<tr>
<th>Game</th>
<th>% of IF games in the AD</th>
<th>% of IF games in the CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>explain elicit</td>
<td>2.70 (1)</td>
<td>12.50 (4)</td>
</tr>
</tbody>
</table>

Table 7-6: Explain Elicit Games

Although GW spends less effort on explain elicit games in the AD than in the CD (as we see in Table 7-6) we have argued earlier that the theory of *doing being ordinary* is not applicable to this game type (see §6.2.2.3.1). If, however, we take a closer look at the sequential environments where we find EEs (as we did before), we find that a differential patterning does indeed emerge. Although this pattern preempts our discussion on queries we will nevertheless deal with this issue here as it is pertinent to EEs.

Consider the only example of an EE in the AD which is given in Extract 7-5 below:

Extract 7-5 BA & GW

*E 43 IG explain em
*TA059
 and {deixis gest} west er east again (·hh) {point} because a hills.
*MA Instruct cont multi modal
*MA Explain

*TB059
 (LS) Oh right
*MB Acknowledge
*End 43

*E 44 IF explain elicit em
*TB059 ctd
 → I don’t have any hills drawn.=
*MB Explain elicit

*TA060
 =Ah:! "(haha)" (·hh)=
*MA Acknowledge
*Turn A min

 =I don’t thi/nk- (·hh) Um*m
*MB Explain elicit cont
*C hedge
Here the IF’s denial of the landmark is immediately followed by a query. In the CD, three of the four IF EEs are similarly followed by IF queries (one closed query-yn (Extract 7-6) and two open-ended query-ws (Extracts 7-7 and 7-8)). The fourth IF EE is followed only by a response token from the IF (Extract 7-9).

Extract 7-6 DL & GW

*E 29 IF explain elicit em
*TB039
→ (LS) ‘Oh right! I don’t have a wall next to the estuary.
*MB Explain elicit
*End 29

*E 30 IF explain em
*TB039 ctd
I have a TELEscope.
*MB Explain
*End 30

*E 31 IF query-yn em
*TB039 ctd
→ Do you have that?
*MB Query-yn

*TA042
() "No! I don’t have a telescope."
*MA Reply-n
*Turn A min

*TB040
"(LS) (hhh)* Right."
*MB Acknowledge
*End 31
Extract 7-7 DL & GW

*TA008
"(-hh)" you travel east
*MA Instruct cont

*TB009
Ye/s:?
*MB Acknowledge
*Turn B min

*TA009
"(LS)" towards the flag,
*MA Instruct cont

*E 9 IF explain elicit em
*TB010
→ (.) "(hh)" Oh I don’t have a flag I don’t think! No! I can’t see a flag.
*MB Explain elicit
*End 9

*E 10 IF query-w em
*TB010 ctd
→ Where’s the flag.*
*MB Query-w

Extract 7-8 DL & GW

*TA051 ctd
"you": continue: to travel in a: "(-hhh)" semi-circular: direction, and h-head south (.) to: pass (.) to the west of the chicken,<
*MA Reply-w = instruct ctd.

*E 43 IF explain elicit em
*TB052
→ (.) "(LS)"=Oh I don’t have a chicken either. {smile} "(-hhh)"
*MB Explain elicit

*TA052
(.) "(Mm."
*MA Acknowledge
*Turn A min
*End 43

*E 44 IF query-w em
*TB053
→ //Where’s the /chick(hh)en.*
*MB Query-w
*C Explicitness!!
In Chapter 6 we suggested that the difference in the distribution of IF EEs between ADs and CDs was that in the CD we get the sequence: query-EE but in the AD we get the reverse, namely EE-query.

In both of the current dialogues, however, we appear to have exactly the same sequence: namely, EE-query. So where now is the difference between the dialogues? It is in the type of query that follows the EE: in the CD we find two open-ended query-ws and only one query-yn while in the AD the only query is a forced-choice question. Thus the AD seems to favour the forced-choice query which limits the possible responses and thus reduces the risk of unnecessary extended sequences.

7.2.2.3.2 explain = acknowledgements (EAs)

<table>
<thead>
<tr>
<th>Game</th>
<th>% of IF games in the AD</th>
<th>% of IF games in the CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>explain = acknowledge</td>
<td>21.62 (8)</td>
<td>9.38 (3)</td>
</tr>
<tr>
<td>Total explains (basic analysis)</td>
<td>29.73 (11)</td>
<td>34.38 (11)</td>
</tr>
</tbody>
</table>

Table 7-7: Explain = Acknowledge Games
As we see from Table 7-7, almost 73% of the IF explain games in the AD are in fact explain = acknowledge games (21.62/29.73). In the CD this percentage is just over 27% (9.38/34.38).

In Chapter 6 we had the opposite result with 50% fewer EEs in the AD and there we claimed that such a result fitted with our doing being ordinary account, viz. offering additional information tends to be avoided lest it generate unnecessary embedded sequences. So do the current results mean that we must abandon our ordinary hypothesis? By now it should be of little surprise to hear that the answer is ‘No’ – for once again we have an explanation (no pun intended) for this (apparently) rogue data.

Although the answer that we are about to propose is essentially the reverse side of the explanation that we will put forward in the next section, again, for the sake of chronology, we present our discussion here.

Of the three types of explain games (EAs, EEs and explains proper), explain = acknowledge games are the most responsive in nature. In other words, they are the least initiating, the least pro-active, the least game-like. Although they are coded as games (because there is the potential for their explanatory aspect to be responded to), the function of this particular category of game is simply to make explicit the scope of the acknowledgement. In short, offering this type of additional information is unlikely to generate unnecessary embedded sequences and as such, there is no doing being ordinary reason for its avoidance.

Although we might accept that there is no reason to expect the avoidance of EAs there is still the need to discuss why there is such a marked difference in EA proportions across the two dialogues.

We have already hinted at the reason for this: the function of an EA is to make explicit the scope of the acknowledgement, and with that explicitness comes the clear message for the recipient (the explainee) to continue with the next stage of the task. In essence, then, it appears that GW takes the simplificatory nature of the EA to outweigh any negative points this particular game type has in this particular dialogue. We will return to this issue of explicitness in our discussion of simplificatory moves in §7.2.5.1.
7.2.2.3.3 explain games proper

<table>
<thead>
<tr>
<th>Game</th>
<th>% of IF games in the AD</th>
<th>% of IF games in the CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>explain proper</td>
<td>5.41 (2)</td>
<td>12.50 (4)</td>
</tr>
<tr>
<td>Total explains (basic analysis)</td>
<td>29.73 (11)</td>
<td>34.38 (11)</td>
</tr>
</tbody>
</table>

Table 7-8: Refined Explain Games

Of all her explaining type games in the AD less than one fifth \((5.41/29.73 = 18.2\%\) are explain games proper. In the CD this proportion is over one third \((12.5/34.38 = 36.4\%\). Again, we have a result which seems to support our doing being ordinary claim.

7.2.2.4 instructs

<table>
<thead>
<tr>
<th>Game</th>
<th>% of IF games in the AD</th>
<th>% of IF games in the CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>instruct</td>
<td>0.00 (0)</td>
<td>0.00 (0)</td>
</tr>
<tr>
<td>instruct = time out</td>
<td>0.00 (0)</td>
<td>3.13 (1)</td>
</tr>
</tbody>
</table>

Table 7-9: Refined Instruct Games

Again, as it is the Information Giver's role to give instructions and the Information Follower's role to follow them, we would not actually expect there to be any IF-initiated instructions. And again in the AD this is what we find: GW initiates no instructs at all.

Yet in the CD she initiates one time-out instruct (a Hang on a second – I don't understand! type game). This distribution of data is relatively easy to explain, however.

Time-out instructs are moves which signal that the time-out instructor is having trouble with the on-going interaction – so for example, they typically occur when one participant is presenting the other (the time-out instructor) with excessive or unclear information. The example from this dialogue is given in Extract 7-10. Because it is necessarily long, we have omitted any coding that is superfluous to our current discussion.
Extract 7-10 DL & GW

*T A051 ctd

/you: continue: to: travel in a: >'(hhh)'< semi-circular: direction: and h- head south (.) to: pass (.) >to the west of the chicken,<

*T B052

(.) "'(LS)"=Oh I don't have a chicken either. {smile} >'(hhh)'<

*T A052

(.) //"Mm.***

*T B053

//Where's* the /chick(hh)en.*

*T A053

/(LS) (.) >Suppose you* don't have egg either!<

(CO/UGH)(-HHH) Um:*

*T B054

/(hahahahaha) (hhh)*

*T A054

thE chicken is to thE south of the estuary, >'(hhh)'<

*T B055

=Mhm=

*T A055

=about as far below- (LOUD COUGH)(-H)(-H)(HHH)(LOUD COUGH)=$(LS)=as far below the estuary as thE fence is (.) er to the north if the estuary.

*T B056

(LS)=(hH)=Oh right. And is i:t /(.) sort of in the same...*

*T A056

/(LS)=And virtually* virtually: {iconic gesture: under each other} (.) north /and south* of each other.=

*T B057

/>{nods} Straight below it.<*

*T B058

==>(hhh)<==Have you got a gate?

*T A057

{nod} Yes!=

*T B059

=So is it quite near to the gate.=

*T A058

=The chicken is: standing er: {head point west} facing west. Um () just **a** a a (.) "a a d- a d- ** a reasonable distance to the: to the west of the gate.

*T B060

"Right. Okay!"

*T B060 ctd

() "A very badly drawn chicken." O:kay!"
Here we see that it has taken GW and DL 16 turns to negotiate the location of the chicken. Having invested this huge effort, GW initiates a time-out instruct (in order to preempt information overload) so that she can legitimately initiate a recap (align retrace) in order to establish what she is to do with the chicken. Notice that her explain = acknowledge move (viz.: "A very badly drawn chicken." "O:Kay!") clearly hands back the floor to DL, so without the explicitness of the time-out instruct, any attempted new game initiation on her part would be potentially unsuccessful.

Having accepted that an ITO will highlight the communicative incompetence (or at least the communicative insensitivity) of your dialogue partner, then it is – according to our ordinary hypothesis – not surprising that we find fewer ITOs in the AD than in the CD.

However, we should point out that given BA's limited linguistic output, again there is very little scope for GW to be overloaded with information and therefore the need for an ITO never actually arises.

7.2.2.5 queries

This final section on refined game analysis focuses on the various types of query, the results for which appear in Table 7-10:

Chapter 7: In Dialogue: GW & BA and GW & DL
Game

<table>
<thead>
<tr>
<th>Game</th>
<th>% of IF games in the AD</th>
<th>% of IF games in the CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>query-w</td>
<td>0.00 (0)</td>
<td>9.38 (3)</td>
</tr>
<tr>
<td>query-w = instruct</td>
<td>2.70 (1)</td>
<td>6.25 (2)</td>
</tr>
<tr>
<td>query-w alternative</td>
<td>2.70 (1)</td>
<td>3.13 (1)</td>
</tr>
<tr>
<td>query-w prod</td>
<td>0.00 (0)</td>
<td>0.00 (0)</td>
</tr>
<tr>
<td>query-yn</td>
<td>18.92 (7)</td>
<td>28.13 (9)</td>
</tr>
<tr>
<td>query-yn = instruct</td>
<td>2.70 (1)</td>
<td>0.00 (0)</td>
</tr>
<tr>
<td>Total queries</td>
<td>27.02 (10)</td>
<td>46.89 (15)</td>
</tr>
</tbody>
</table>

Table 7-10: Refined Query Games

We will now consider each of these subtypes.

7.2.2.5.1 query-yn = instruct (QYNI)

Our refined analysis for query-yns now includes the presence of one IF query-yn = instruct (QYNI) game in the AD. This appears in the following extract:

Extract 7-11 BA & GW

*E 31 IG explain meta ling
*TA042
"Mm" (LS) An er () anoe () (hhh) "icoo- no" () anoe "oh dear - sorry"
*MA Explain
*MA Explain meta ling = interjection
*End 31

*E 32 IF query-yn = instruct em
*TB039
→ Can you spell it?
*MB Query-yn = instruct

*TA043
() {iconic gest: C} [s: /s:]*
*MA Reply-w = instruct multi modal

This game is a prototypical indirect speech act (see §2.1.1.1.4), which, although masquerading in the form of a yes-no question, is actually functioning as an instruction. Nevertheless, since we are all well aware that ISAs can be misinterpreted and responded to as if they were true questions, when dealing with queries, we must treat the QYNI as a simple QYN. Consequently, this refined analysis does not actually contribute anything to our analysis of queries (though it does contribute to our analysis of query = instructs – see §7.2.2.5.3) and so we restate our basic analysis: in the CD, QYS account for 60% of all queries; in the AD the proportion is 80% (see Table 7-10).
Thus we still have a clear indication that the restricted, forced-choice yes-no question is favoured in the AD. This AD preference for forced-choice questions can also be seen in our refined analysis of open-ended queries as we will now discuss.

7.2.2.5.2 query-w alt (QWA)

In our basic analysis in §7.2.1.2 we noted that in GW’s dialogue with BA (the AD), of all the games that she initiates, 5.4% are query-w games, whereas in the CD this proportion is 18.75% and we claimed this as evidence supporting our ordinary hypothesis: we suggested that given BA’s obvious linguistic deficit, GW avoids unnecessarily highlighting non-competence by avoiding queries which BA might not be able to respond to. While this basic analysis is in itself hypothesis-friendly, there are also indications from the refined analysis (presented in Table 7-11) that confirm this suggestion.

<table>
<thead>
<tr>
<th>Game</th>
<th>% of IF games in the AD</th>
<th>% of IF games in the CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>query-w</td>
<td>0.00 (0)</td>
<td>9.38 (3)</td>
</tr>
<tr>
<td>query-w = instruct</td>
<td>2.70 (1)</td>
<td>6.25 (2)</td>
</tr>
<tr>
<td>query-w alternative</td>
<td>2.70 (1)</td>
<td>3.13 (1)</td>
</tr>
<tr>
<td>Total query-ws</td>
<td>5.40 (2)</td>
<td>18.76 (6)</td>
</tr>
</tbody>
</table>

Table 7-11: Refined Query-w Games

In addition to the AD preference for the forced-choice yes-no question, we also have evidence that this preference extends to the open-ended queries in that half of the QWs in the AD are actually the forced-choice QWA type, while in the CD this proportion is but one sixth. The larger proportion of forced-choice alternative questions in the AD fits in very well with our claim of doing being ordinary, because with a forced-choice rather than an open-ended question, the possibilities for the content of the next turn are so limited that the risk of generating unnecessary sequences is negligible.

At the risk of repeating a point made in §6.2.2.5.1, when faced with a linguistically impaired interlocutor, the non-impaired interactant not only constrains the content of their partner’s next turn, but they do so explicitly in the hope that the will be leaving very little room for misunderstanding.
7.2.2.5.3 query = instruct (QWI & QYNI)

<table>
<thead>
<tr>
<th>Game</th>
<th>% of IF games in the AD</th>
<th>% of IF games in the CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>query-w = instruct</td>
<td>2.70 (1)</td>
<td>6.25 (2)</td>
</tr>
<tr>
<td>query-yn = instruct</td>
<td>2.70 (1)</td>
<td>0.00 (0)</td>
</tr>
<tr>
<td>Total queries</td>
<td>27.02 (10)</td>
<td>46.89 (15)</td>
</tr>
</tbody>
</table>

Table 7-12: Refined Query Games

As we see from Table 7-12, we also find that in the AD GW initiates a greater percentage of games that are formally queries but functionally instructs – 20% in the AD (5.4/27.02) but only just over 13% in the CD (6.25/46.89): these are the query-w = instruct (QWI) and query-yn = instruct (QYNI) games.

As we have said before, the use of query = instructs is odd: given the roles of the two participants, it is not the IF’s job to initiate instructions. Yet despite the oddness of these games GW initiates two of them, both in the AD. Again I suggest that she does so because the query = instruct is a means of constraining the content of partner’s next turn, and, by doing this, the potential for extended sequences can be avoided. In Control Dialogues, the risk of extended sequences generating misunderstandings is slight and therefore measures need not be taken to avoid them. With a linguistically impaired partner however extended sequences pose a real threat to the smooth running of the task and, it seems, they are avoided wherever possible.

As a final detailed point about the nature of GW’s preference for restrictive queries in the AD, it is interesting (and supportive of our hypothesis) to note that not only is the only example of an IF open-ended query in the AD a restrictive query-w = instruct, it is also located at the very beginning of the dialogue before BA has had the chance to initiate anything apart from a floor-taking in-breath. This can be seen in Extract 7-12:

Extract 7-12 BA & GW

*TA001
(LS) (.hh) (.)
*E 1 IF explain
*TB001
Right, (1.0) I’ve got a start marked under the mountain. {smiles}
*MB Ready
*MB Explain

*TA002
Yes {nods}
*MA Acknowledge multi modal nod
Okay.

*MB Acknowledge

*E 2 IF query-w = instruct
*TB002 ctd

→ /So where* do I go "from the start."
*MB Query-w = instruct

Because this query occurs at the beginning of the task, GW has had very little opportunity to gauge BA's linguistic competence, and therefore she does not yet realise how potentially risky open-ended questions might be.

GW also initiates two query = instructs in the CD. These extracts are given below.

Extract 7-13 DL & GW

*TB010

(.) ""(hh)"" "Oh I don't have a flag I don't think! No! I can't see a flag. Where's the flag."

*TA010

The flag is um "(hh)"=(LS)="(hh)" about two thirds of the way along the estuary.

*TB011

() > (hhh) "Right!(h)." And it's just- {head shake} at the edge of it is it?=

*TA011

=And it's just at the edge of the estuary,

*TB012

"Okay?" (DRAWS = (.))=

*TA012

"All right?"*

*TB012 ctd

"Just draw in a flag!" (DRAWS = ())

"Okay!"

*E 14 IF query-w = instruct aban self
*TB012 ctd

→ //So where* do I go:
*MB Query-w = instruct aban self
*End 14

*E 15 IG instruct
*TA013

//"And"* "travel*"
*MA Instruct

*TA014

"(hh)" Then you travel due north <up to the fence,>=
After eventually locating the endpoint for the current instruction (the flag), GW uses the QWI to get the talk back on track. As it happens, this is produced simultaneously with DL’s own return to the next stage of the task (hence the abandoned coding).

Extract 7-14 DL & GW

*TB047
'(hh)' Okay so it’s probably quite "close to my telescope then."
(DRAWS = ()) "Okay! Say a: wall there"

*TA049
"Right??"*

*TB048
(DRAWS = ()) Right./Okay!*

*TA050
'It's slight*ly to the east of the flag(h). (.) The flag is on the north /ban*k and the /wall is on the south bank of the est*uary.

*TB049
/{nods} Yeah.*

*TB050
"(LS) (.) Yeah. On the south bank.* **Yeah.***

*TB050a
>(hh)< "I got*** that.* "Aha?"*

*E 42 IF query-w = instruct
*TA050a ctd
→
>(hh)< So what do I do with the wall?
*MB Query-w = instruct

*TA051
Er when you reach the wall,=

*TB051
="M/hm"*

*TA051 ctd
"you*: continue: to: travel in a: >"(hh)"< semi-circular: direction, and h-head south (.) to: pass (.) >to the west of the chicken,<

After a great deal of active grounding of the location of the wall, DL still does not continue with the next instruction (despite opportunities to do so after *TB048, *TB050 and the "Aha?" in *TB050a). Consequently GW eventually takes the initiative with her QWI.5

5 This holding off of the QWI is similar to the holding off of other-initiated repair until after the TRP of the trouble source turn so as to provide S with a further opportunity to do a self-initiated repair (see §2.1.5.2.4).
The slightly odd fact that we find these IF-initiated QWI games in the CD will be discussed in §7.2.3.

7.2.2.5.4 query-w prod (QWP)

The final subtype of query is the query-w prod (QWP), which we have earlier described as an unspecific query which asks partner to produce more (next-stage-of-the-task-relevant) talk. However we find no instances of this game type in either dialogue.

In §6.2.2.5.3 we saw that the inexplicitness associated with the QWP makes it a very weak initiator and as such, it will always carry with it the potential danger of additional (and unexpected) sequences of talk. We also noted that this can be tolerated if your interlocutor is a ‘normal’ but not if they are linguistically impaired. It is therefore in keeping with our hypothesis that this type of game does not appear in the AD (that it also does not occur in the CD will also be discussed in §7.2.3).

7.2.2.5.5 query-w proper

Having discussed the various subtypes of query-w we now consider the query-w proper.

<table>
<thead>
<tr>
<th>Game</th>
<th>% of IF games in the AD</th>
<th>% of IF games in the CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>query-w</td>
<td>0.00 (0)</td>
<td>9.38 (3)</td>
</tr>
<tr>
<td>query-w = instruct</td>
<td>2.70 (1)</td>
<td>6.25 (2)</td>
</tr>
<tr>
<td>query-w alternative</td>
<td>2.70 (1)</td>
<td>3.13 (1)</td>
</tr>
<tr>
<td>Combined (basic) query-ws</td>
<td>5.40 (2)</td>
<td>18.76 (6)</td>
</tr>
</tbody>
</table>

Table 7-13: Refined Query-w Games

From Table 7-13 above we see that our basic analysis showed a marked IF dispreference for the query-w in the AD compared to the CD with a ratio of almost 1:3.5 (5.4:18.76). This clearly supports our doing being ordinary hypothesis.

And if we look beyond the isolated query-w proper to consider the distribution of open-ended query-w games compared to the distribution of restrictive query-w games we find that we get results which further support our hypothesis.

6 The extra 0.01% has been gained (from 18.75%) because of rounding to 2 decimal places.
For the two dialogues under consideration in this chapter, the only type of open-ended query-w is the query-w proper, while restrictive query-ws embrace query-w alt and query-w = instruct games. We provide the figures for these combined groups in Table 7-14:

<table>
<thead>
<tr>
<th>Game</th>
<th>% of IF games in the AD</th>
<th>% of IF games in the CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>query-w (QW)</td>
<td>0.00</td>
<td>9.38</td>
</tr>
<tr>
<td>Open-ended query-ws</td>
<td>0.00</td>
<td>9.38</td>
</tr>
<tr>
<td>query-w alt (QWA)</td>
<td>2.70</td>
<td>3.13</td>
</tr>
<tr>
<td>query-w = instruct (QWI)</td>
<td>2.70</td>
<td>6.25</td>
</tr>
<tr>
<td>Restrictive query-ws</td>
<td>5.40</td>
<td>9.38</td>
</tr>
<tr>
<td>Combined (basic) query-ws</td>
<td>5.40</td>
<td>18.76</td>
</tr>
<tr>
<td>% of Open-ended query-ws</td>
<td>0.00</td>
<td>50.00</td>
</tr>
<tr>
<td>% of Restrictive query-ws</td>
<td>100.00</td>
<td>50.00</td>
</tr>
</tbody>
</table>

Table 7-14: Refined Query Games

What we find is that in the AD, there are no open-ended query-ws, yet in the CD they account for 50% of all query-ws. Looking from the other side of this query-w coin we see that all the queries in the AD are somehow restrictive in their nature, while in the CD only half are restrictive.

These results fit in very well with our doing being ordinary hypothesis.

7.2.3 game closure

In §6.2.3 we developed a three-way distinction of game closure, viz. passive, active and super-active closure. In turn, each type is subcategorised yet further according to which participant (IG or IF) initiated the game. Similar to Clark, we also proposed a hierarchy of the various strengths of closure (see §6.2.3).
Hypothesis

In the ADs, irrespective of the game initiator, we might expect that the acceptance of contributions will, in the majority of cases, tend to be done by the non-aphasic IF (because we have seen that it is the non-aphasic who seems to do more of the communicative work). As before, not only does this predict that for the ADs, in IG-initiated games, more active closure will come from the IF rather than super-active closure from the IG, it also predicts that, if there is to be increased active closure from the non-impaired IFs in the ADs in *IF-initiated* games, then that closure will necessarily have to be super-active.

The results obtained are presented in Figures 7-23 and 7-24. Each pie chart deals with the proportions of the various types of closure with the left half of each chart representing IF-initiated games and the right half representing IG-initiated games. For this reason, all percentages quoted are actually double those that appear on the charts themselves. Thus, in the CD between GW and DL, of all the IF-initiated games 40.62% (two times 20.31%) are passively closed (by definition, passively closed by the IF).

![Figure 7-23: CD Game Closure](image)

ASA = IG super-active; BSA = IF super-active (i.e. games that are actively self-closed)
The results obtained for these particular dialogues indicate that there is actually more IF-closure (shown by the dotted segments) in the CD than in the AD:

- 89% versus 71% of the IG-initiated games
- 87.5% versus 62% of the IF-initiated games

And within the IF-initiated games, the difference between the proportions of super-active closure also favours the Control Dialogue with 47% of IF-initiated games in the CD being super-actively (IF) closed versus 38% in the AD.

Thus it would seem that we have evidence against our claim that the non-impaired partner is taking on more of the communicative burden when conversing with a linguistically impaired partner. Indeed, to confirm this point we need only remind ourselves of the analysis of game initiation repeated for convenience as Figure 7-25:
However, in addition to the fact that GW initiates the greater proportion of games in both the AD and the CD, we also found that she initiates two query = instructs in the CD and no query-w prods in either dialogue. All of this evidence leads us to the conclusion that GW treats DL in a similar way to the way that she treats BA, her dysphasic partner. In essence, what we might conclude is that she treats DL as a passive participant.

7.2.4 basic moves

Figure 7-26 represents the distribution of IF-initiating moves as a percentage of the total number of IF-initiating moves in each of the two dyads. (It is the move-equivalent of Figure 7-20.)

![Figure 7-26: Distribution of IF Moves in the AD and CD](image)

When compared with the IF-initiated game profile (Figure 7-20, repeated for convenience below as 7-27), we find very little difference in proportions except now the ratios of AD to CD are slightly more pronounced in the Check moves.
This is shown more clearly in Figure 7-28 where the ratio of AD moves to CD moves of a given type are represented in black dots and the ratio of games in green stripes. Hence we see that in the AD there were just over 4.6 times as many check games initiated as in the CD, and this ratio increases to just over 5:1 for the corresponding Check moves.

7 There is no data available for aligns or instructs since in the AD the IF did not initiate any.
In other words, in these two dialogues the only game-type that is more consumptive (to any noticeable degree) of communicative effort is the Check move in the AD. That it is the Check that is the most consumptive type of move is yet further evidence for Hypothesis 1, namely that the increased communicative burden is borne by the non-aphasic IFs in the Aphasic Dialogues.

7.2.5 refined move analysis

This profile refines the analysis for superordinate moves by analysing the moves according to their subtype. We deal with the subordinate moves separately in order to include a discussion of what we call simplificatory moves and simplificatory riders.

7.2.5.1 simplificatory moves

Figures 7-29 and 7-30 represent the distribution of all IF initiating moves in the two dialogues. Figure 7-29 concerns non-simplificatory initiating moves while Figure 7-30 concerns moves that simplify the dialogue either by making the interaction explicit (Explicit Simplification) or by restricting the possibilities for the next relevant turn (Reduction Simplification). The results from Figures 7-29 and 7-30 are also detailed in Tables 7-15 and 7-16 respectively.

![Bar chart](Image)

Figure 7-29: Non-Simplificatory IF Moves in the AD and CD
Table 7-15: Distribution of IF Non-Simplificatory Moves

<table>
<thead>
<tr>
<th>Move</th>
<th>No. in the AD</th>
<th>% in the AD</th>
<th>No. in the AD</th>
<th>% in the CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Align retrace</td>
<td>0</td>
<td>0.00</td>
<td>2</td>
<td>6.06</td>
</tr>
<tr>
<td>Align task</td>
<td>0</td>
<td>0.00</td>
<td>1</td>
<td>3.03</td>
</tr>
<tr>
<td>Check</td>
<td>15</td>
<td>34.88</td>
<td>2</td>
<td>6.06</td>
</tr>
<tr>
<td>Check correct</td>
<td>1</td>
<td>2.33</td>
<td>1</td>
<td>3.03</td>
</tr>
<tr>
<td>Check Optional</td>
<td>3</td>
<td>6.98</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Explain</td>
<td>2</td>
<td>4.65</td>
<td>4</td>
<td>12.12</td>
</tr>
<tr>
<td>Query-w</td>
<td>0</td>
<td>0.00</td>
<td>4</td>
<td>12.12</td>
</tr>
</tbody>
</table>

First, let us point out that of the seven types of non-simplificatory move, there is more activity in the CD for all of these moves except the Checks (including optional checks), a category that we have already discussed in §7.2.1.2. In essence then, we see that non-simplificatory moves are less dominant in the AD.

Figure 7-30: Simplificatory IF Moves in the AD and CD
<table>
<thead>
<tr>
<th>Move</th>
<th>No. in the AD</th>
<th>% in the AD</th>
<th>No. in the AD</th>
<th>% in the CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explain = Acknowledge</td>
<td>8</td>
<td>18.60</td>
<td>3</td>
<td>9.09</td>
</tr>
<tr>
<td>Explain Elicit</td>
<td>2</td>
<td>4.65</td>
<td>4</td>
<td>12.12</td>
</tr>
<tr>
<td>Instruct = Time Out</td>
<td>0</td>
<td>0.00</td>
<td>1</td>
<td>3.03</td>
</tr>
<tr>
<td>Ready</td>
<td>2</td>
<td>4.65</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Query-w alternative</td>
<td>1</td>
<td>2.33</td>
<td>1</td>
<td>3.03</td>
</tr>
<tr>
<td>Query-w = instruct</td>
<td>1</td>
<td>2.33</td>
<td>1</td>
<td>3.03</td>
</tr>
<tr>
<td>Query-yn</td>
<td>7</td>
<td>16.28</td>
<td>9</td>
<td>27.27</td>
</tr>
<tr>
<td>Query-yn = instruct</td>
<td>1</td>
<td>2.33</td>
<td>0</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Table 7-16: Distribution of IF Simplificatory Moves

Now we can turn to the simplificatory moves. Because of our ordinary hypothesis, we would expect there to be higher proportions of all simplificatory devices in the ADs than in the CD but what we find is that of the eight simplificatory categories found in this pair of dialogues, three (Explain Elicit, Instruct = Time Out, and Query-yn) exhibit greater activity in the CD. Two (Query-w alt and Query-w = instruct) show no great difference between the two dialogues (though they seem to be slightly more prominent in the CD), and only three categories (Explain = Acknowledge, Query-yn = instruct and Ready) show more activity in the AD. So is this data really as damaging to our thesis as it might appear? I will argue that it is not. First let us deal with Instruct = Time Outs (ITOs).

As we have seen, ITOs are moves which signal that the time-out instructor is having trouble with the on-going interaction. The rather long example from the CD between GW & DL is given in Extract 7-10 in §7.2.2.4 above. To remind the reader of the ITO we use the more compact example found in the CD between GW & PK (Extract 6-20 in §6.2.2.4.2) which we repeat for convenience as Extract 7-15:

Extract 7-15 PK & GW

*E 45 IG align em aban other
*TA046
And then* take a direct turn to the right again and move up towards about a quarter >>of an<< inch from the top of the page (.) say that that quarter >>of an<< inch is gonna take you from the direct right turn (.) to ab- to about () three inches from () "(cough)" your right "your fro-" from the right/ to the le*ft. That would X be the top of the bend of the road. Right?
*MA Instruct cont
*MA Align aban other
*End 45
*TB046
/Right.*
*MB Ready

*E 46 IF instruct = time out em
*TB047
→ '(hh)' So () so hang on a second
*MB Ready
*MB Instruct = Time Out
*End 46

*E 47 IF check em
*TB047 ctd
we're going (hh) () (hhh) {smiles}=
*MB Check

Instruct = Time Outs, then, are not just moves which make the nature of the on-going dialogue explicit, they are moves which orient specifically to the interactional competence of the Hearer. Thus, the fact that this type of simplificatory explicit move is less prominent in the AD is not only not unexpected, it actually strengthens our argument.

Let us now turn to Explain Elicits (EEs). A reminder of the nature of the EE move is given in Extract 7-16 below:

Extract 7-16 DL & GW

*TA051 ctd
/you*: continue: to: travel in a: >(hh)< semi-circular: direction, and h- head south () to: pass () >to the west of the chicken,<

*E 43 IF explain elicit em
*TB052
→ (.) "'(LS)'=Oh I don't have a chicken either. {smile} '>'(hh)<
*MB Explain elicit

In §6.2.2.3.1 we suggested that despite being analysed as initiating activity, their existence is essentially attributable to the dialogue contributions of the other participant and we should therefore not be too discouraged by the apparent anomaly suggested by the unexpected pattern that obtains across the two dialogues.

What we have shown, then, is that of the three rogue Simplificatory Move types, two (ITOs and EEs) can be argued to conform to our expectations regarding doing being ordinary and it is only the unexpected distributions for the Query-yn move that are slightly more perturbing. The only way that I can explain these results (and likewise for the slight aberrations for Query-w alt and Query-w = instruct) is to once again suggest that in some respects GW is treating DL very much like she treats her dysphasic partners.
7.2.5.2 simplificatory riders

In this section we investigate the riders that qualify moves which can also be considered to be simplificatory in nature. These riders are:

- Repetition
- Self-abandonment
- Fill

Hypothesis

Again our expectation was that there was more likely to be higher proportions of all simplificatory riders in the ADs than in the CDs. And without exception this is what we find. These results are presented below in Figure 7-31:

![Figure 7-31: IF Rider Distribution as a proportion of IF moves](image)

Before leaving this section, we need to provide a response to the possible critique that we have treated fills differently for this pair of dialogues than we did in Chapter 6. In §6.2.5.2.4 we posited that a fill move only simplifies the discourse when the person doing it can be fairly confident that they have appropriately gauged the intentions of their partner.
All seven of GW’s fills sequentially follow clear iconic non-verbal contributions from BA and I would argue therefore that GW has, in this dialogue, weighed the potential cost of an incorrect fill to be far less than the benefits to be gained from correctly gauging her dysphasic partner’s intentions and thus uses the fill move to simplify the talk. (In fact only one of these seven instances involves GW misinterpreting BA’s message.)

7.2.6 mutation moves

As we saw in §6.2.6, mutation moves are an attempt to deal with instances of talk where one participant orients to it having one function and the other another. We treat the function of the (multi-interpretable) talk as being what the speaker intended but at the same time note that it is being interpreted by the addressee as something different and we do so by means of a line of code: *C mutation:

Extract 7-17 BA & GW

*TA046
=Well (){deixis gest} "(LS)" north/ you see?*
*MA Instruct cont multi modal

*TB045
/You go {nods} above* the canoe.
A/ha?*
*MB Acknowledge multi modal nod

*TA047
/{nods} Ye*s, {deixis gest} /yes.*
*MA Reply-y multi modal nod multi modal
*Turn A min
→*C mutation

*TB046
/**(LS)***=(::hh)* Okay?

Mutations are indications of the mutator interpreting the function of their partner’s (mutatee’s) previous talk as something other than the mutatee had intended. They are about misinterpreting your interlocutor and the majority of those misinterpretations involve the mutation of an acknowledgement into a check.

Hypotheses

It was expected that there would be different proportions of mutations across the corpus, and the various possible patternings and related explanations have been given in §6.2.6.
Because of the nature of aphasia, more IG mutations were expected in the ADs than in the CDs and this is indeed what was found:

<table>
<thead>
<tr>
<th>% of IG Mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aphasic Dialogue</td>
</tr>
<tr>
<td>Control Dialogue</td>
</tr>
</tbody>
</table>

Table 7-17: IG Mutations

Before we move on to IF mutations, let us consider the one example of an IG mutation in the CD between DL and GW in Extract 7-18:

Extract 7-18 DL & GW

*TB041 ctd
(hhh) Right you’ve got the castle. (.)

*TB041 ctd
How *far* away: is the wall from the castle.

*TA044
/Yes/

*TA045
() U:m (.) *(LS)*/=(hhh)=The wall is () er at thE (.) (HHHH) east end of the estuary,

*TB042
(LS)="Right::t°°aha?°°"*
*MB Acknowledge

*TA045 ctd
/on the south* bank(h).

*TB043
(.) 'Right. Okay. So there’s just a wall just there" "isn’t there."°°=
*MB Acknowledge

*TA046
→="Just a wall." /"yes""*
*MA Reply-y repo
*Turn A min
*C mutation ack-ch tag

*TB044
/"a bit"*/(hh) So it< so it’s* just to the left of the castle isn’t it just"
Although it is clear from the ‘live’ data (audio and video recordings) that the IF’s contribution in *TB043 is truly an acknowledgement (indeed, it is simply further acknowledging what has already been acknowledged in her previous turn), it does finish with a tag question isn’t there. However this tag is uttered with falling intonation, it is uttered so quietly that it is virtually inaudible and, because GW has already provided a demonstration of understanding reached it cannot really require a response.\(^8\)

Nevertheless the reader might believe that we should give DL the benefit of the doubt and say that this particular sequence may not be a perfect candidate for an IG mutation. If, therefore, we strike this example and revise our count of IG mutations we get the results in Table 7-18:

\[
\begin{array}{|c|c|}
\hline
\text{Aphasic Dialogue (BA)} & 4.49 (4) \\
\text{Control Dialogue (DL)} & 0.00 (0) \\
\hline
\end{array}
\]

Table 7-18: Revised IG Mutations

And thus our hypothesis that there would be more IG mutations in the ADs than in the CDs seems to be strengthened: the phenomenon of IG mutations does appear to be an aphasia-related one.

Concerning IF mutations (where the intentions of the IG have been misinterpreted), once again neither of the envisaged patterns of results obtained, for in both dialogues there were no IF mutations at all. Thus the actual results are again insufficient to claim that the non-impaired IFs are helping the dysphasic IG in their maintenance of doing being ordinary. We must still await the results from all the other dialogues (see §8.2.6).

\(^8\) If we really had to convince the sceptic we might also note that GW’s home county is Glamorgan and the indiscriminate use of tag questions in Welsh English is well known (see, for example, Crystal, 1995: 335). So there’s lovely isn’t it!
The most we shall ever learn is why existence is as it is;
why it requires such laws and such constituents to continue.
We shall never learn ultimately why it is.

John Fowles

As per Chapters 6 and 7 this chapter presents results for the various analyses. However it differs from the previous two in that the results are not for particular dialogues, but rather for the two corpora as a whole. Consequently we present results for the corpus as an aggregate by using the group means for the various measures investigated.¹

8.1 type-i analyses

In this section we present the analyses for task success (deviation scores, time taken, efficiency ratings, landmark negotiations and discourse measures) and turn distribution.

8.1.1 task success scores

8.1.1.1 deviation scores

In the Map Task situation there is a clearly defined (and obtainable) solution to the task, viz. a perfect replica of the IG’s route. It is therefore possible to quantitatively assess task success by measuring the deviation of the IF’s route from that of the IG. In this way a low deviation score represents high task success and vice versa (see §3.6).

¹ While we present results in this format we nevertheless recognise Bates et al.’s (1991) argument with regard to its potential non-representativeness. However, if it is felt that the group means are not truly representative of the data, we duly consider particular cases in greater detail.
Although this thesis concentrates primarily on the data obtained from dialogues in the Eye Contact (EC) condition, in order to provide a discussion of Hypothesis 3.1 (which states that the non-verbal modality will play an important role in the mitigation of linguistic deficits in the aphasic dialogues), the rest of this section also reports and discusses results from the No Eye Contact (NEC) data. Table 8-1 therefore contains the results for the deviation scores for all 32 dialogues:

- The left hand column shows results for the aphasic group and the right hand column those of the age-matched controls.
- The best score obtained by each IG is indicated by italics and their worst score is in bold type.
- Map refers to the number of the actual map used: Maps 1 and 3 have 14 landmarks on them (landmark-dense) while Maps 2 and 4 have 11 features (landmark-sparse).²
- Condition refers to the task condition: EC = Eye Contact Condition; NEC = No Eye Contact Condition

<table>
<thead>
<tr>
<th>IG</th>
<th>IF</th>
<th>Map</th>
<th>Condition</th>
<th>Score</th>
<th>IG</th>
<th>IF</th>
<th>Map</th>
<th>Condition</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>HL</td>
<td>GW</td>
<td>1</td>
<td>EC</td>
<td>182.44</td>
<td>PK</td>
<td>GW</td>
<td>1</td>
<td>EC</td>
<td>124.00</td>
</tr>
<tr>
<td>HL</td>
<td>MB</td>
<td>2</td>
<td>NEC</td>
<td>163.60</td>
<td>PK</td>
<td>MB</td>
<td>2</td>
<td>NEC</td>
<td>106.48</td>
</tr>
<tr>
<td>HL</td>
<td>ND</td>
<td>3</td>
<td>NEC</td>
<td>242.20</td>
<td>PK</td>
<td>ND</td>
<td>3</td>
<td>NEC</td>
<td>171.76</td>
</tr>
<tr>
<td>HL</td>
<td>DN</td>
<td>4</td>
<td>EC</td>
<td>177.48</td>
<td>PK</td>
<td>DN</td>
<td>4</td>
<td>EC</td>
<td>56.08</td>
</tr>
<tr>
<td>MD</td>
<td>GW</td>
<td>2</td>
<td>NEC</td>
<td>138.76</td>
<td>CM</td>
<td>GW</td>
<td>2</td>
<td>NEC</td>
<td>104.28</td>
</tr>
<tr>
<td>MD</td>
<td>MB</td>
<td>3</td>
<td>EC</td>
<td>140.56</td>
<td>CM</td>
<td>MB</td>
<td>3</td>
<td>EC</td>
<td>112.76</td>
</tr>
<tr>
<td>MD</td>
<td>ND</td>
<td>4</td>
<td>EC</td>
<td>141.96</td>
<td>CM</td>
<td>ND</td>
<td>4</td>
<td>EC</td>
<td>83.24</td>
</tr>
<tr>
<td>MD</td>
<td>DN</td>
<td>1</td>
<td>NEC</td>
<td>175.52</td>
<td>CM</td>
<td>DN</td>
<td>1</td>
<td>NEC</td>
<td>84.96</td>
</tr>
<tr>
<td>GM</td>
<td>GW</td>
<td>4</td>
<td>NEC</td>
<td>166.72</td>
<td>TS</td>
<td>GW</td>
<td>4</td>
<td>NEC</td>
<td>115.44</td>
</tr>
<tr>
<td>GM</td>
<td>MB</td>
<td>1</td>
<td>EC</td>
<td>147.64</td>
<td>TS</td>
<td>MB</td>
<td>1</td>
<td>EC</td>
<td>110.12</td>
</tr>
<tr>
<td>GM</td>
<td>ND</td>
<td>2</td>
<td>EC</td>
<td>79.64</td>
<td>TS</td>
<td>ND</td>
<td>2</td>
<td>EC</td>
<td>69.88</td>
</tr>
<tr>
<td>GM</td>
<td>DN</td>
<td>3</td>
<td>NEC</td>
<td>99.36</td>
<td>TS</td>
<td>DN</td>
<td>3</td>
<td>NEC</td>
<td>84.12</td>
</tr>
<tr>
<td>BA</td>
<td>GW</td>
<td>3</td>
<td>EC</td>
<td>212.24</td>
<td>DL</td>
<td>GW</td>
<td>3</td>
<td>EC</td>
<td>132.96</td>
</tr>
<tr>
<td>BA</td>
<td>MB</td>
<td>4</td>
<td>NEC</td>
<td>150.24</td>
<td>DL</td>
<td>MB</td>
<td>4</td>
<td>NEC</td>
<td>80.80</td>
</tr>
<tr>
<td>BA</td>
<td>ND</td>
<td>1</td>
<td>NEC</td>
<td>299.80</td>
<td>DL</td>
<td>ND</td>
<td>1</td>
<td>NEC</td>
<td>92.32</td>
</tr>
<tr>
<td>BA</td>
<td>DN</td>
<td>2</td>
<td>EC</td>
<td>125.60</td>
<td>DL</td>
<td>DN</td>
<td>2</td>
<td>EC</td>
<td>59.08</td>
</tr>
</tbody>
</table>

Table 8-1: Deviation Scores for all 32 dialogues

² See Appendices III and IV.
8.1.1.1.1 map effect

When we consider individual scores, a fairly clear map effect seems to obtain. For both groups, individuals’ best scores are achieved on either Map 2 or Map 4 (i.e. a landmark-sparse map). Conversely, we see that for the aphasic group, the worst scores are achieved on Maps 3, 1, 4, and 1 while for the control group worst scores are achieved on Maps 3, 3, 4, and 3. In other words, all best scores are achieved in association with landmark sparcity and 75% of all worst scores are associated with landmark density.

This might seem a counterintuitive result in that one might actually expect that the more landmarks there are available to act as reference points for the emergent dialogue, the more likely the chances of a finer task score. On the other hand, it might be the case that the more landmarks there are to negotiate, the more opportunities there are for miscommunication and consequently a greater chance of inaccuracies in route-drawing. Establishing which of these possibilities is ‘correct’ would require a further programme of research!

8.1.1.1.2 condition effect

Results for Task Condition are:

- Aphasic individuals’ best scores: 2 Eye Contact, 2 No Eye Contact
- Aphasic individuals’ worst scores: 4 No Eye Contact
- Control individuals’ best scores: 4 Eye Contact
- Control individuals’ worst scores: 2 Eye Contact, 2 No Eye Contact

These findings are in keeping with the general argument of Hypothesis 3.1, namely that aphasic subjects perform worst in the very task condition that denies them full access to what we maintain can be a vital medium.

It should be noted that the two aphasic subjects who performed their best in the NE condition were those for whom gesture seemed to be less important relative to the spoken medium (MD and GM). It should further be noted that although we might expect linguistically healthy control subjects to perform equally well in either condition, there still seems to be a clear preference for success to accompany face-to-face interaction.
We will now turn our attention away from individuals’ scores and instead concentrate on mean scores for each group. Tables 8-2 to 8-4 below provide the means and ranges of deviation scores for each group (aphasic and control) for the combined corpus of all 32 dialogues, as well as for each separate condition (Eye Contact and No Eye Contact).

all dialogues

<table>
<thead>
<tr>
<th></th>
<th>Mean Score</th>
<th>Upper Score</th>
<th>Dialogue</th>
<th>Lower Score</th>
<th>Dialogue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aphasics (A)</td>
<td>165.24</td>
<td>299.80</td>
<td>BA & ND (NEC)</td>
<td>79.64</td>
<td>GM & ND (EC)</td>
</tr>
<tr>
<td>Controls (C)</td>
<td>99.37</td>
<td>171.76</td>
<td>PK & ND (NEC)</td>
<td>56.08</td>
<td>PK & DN (EC)</td>
</tr>
<tr>
<td>Ratio (A:C)</td>
<td>1.66</td>
<td>1.75</td>
<td></td>
<td>1.42</td>
<td></td>
</tr>
</tbody>
</table>

Table 8-2: Ranges & Means of Deviation Scores in all 32 dialogues

eye contact condition

<table>
<thead>
<tr>
<th></th>
<th>Mean Score</th>
<th>Upper Score</th>
<th>Dialogue</th>
<th>Lower Score</th>
<th>Dialogue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aphasics (A)</td>
<td>150.95</td>
<td>212.24</td>
<td>BA & GW</td>
<td>79.64</td>
<td>GM & ND</td>
</tr>
<tr>
<td>Controls (C)</td>
<td>93.51</td>
<td>132.96</td>
<td>DL & GW</td>
<td>56.08</td>
<td>PK & DN</td>
</tr>
<tr>
<td>Ratio (A:C)</td>
<td>1.61</td>
<td>1.60</td>
<td></td>
<td>1.42</td>
<td></td>
</tr>
</tbody>
</table>

Table 8-3: Ranges & Means of Deviation Scores in the 16 Eye Contact dialogues

no eye contact condition

<table>
<thead>
<tr>
<th></th>
<th>Mean Score</th>
<th>Upper Score</th>
<th>Dialogue</th>
<th>Lower Score</th>
<th>Dialogue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aphasics (A)</td>
<td>179.53</td>
<td>299.80</td>
<td>BA & ND</td>
<td>99.36</td>
<td>GM & DN</td>
</tr>
<tr>
<td>Controls (C)</td>
<td>105.02</td>
<td>171.76</td>
<td>PK & ND</td>
<td>80.80</td>
<td>DL & MB</td>
</tr>
<tr>
<td>Ratio (A:C)</td>
<td>1.71</td>
<td>1.75</td>
<td></td>
<td>1.23</td>
<td></td>
</tr>
</tbody>
</table>

Table 8-4: Ranges & Means of Deviation Scores in the 16 No Eye Contact dialogues

On the whole, the scores for the aphasic group tend to be in the order of one and a half times higher than those for the age-matched controls. That the control group perform better is not a particularly remarkable result. What is interesting is that 62.5% (10/16) of the aphasic scores fall within the range of scores for the non-impaired control group.
It would therefore seem that we have some evidence for Hypothesis 3, namely that some aphasic individuals demonstrate the ability to communicate much better than they speak/understand. We also have evidence for Hypothesis 3.1 (which proposes that in the Aphasic Dialogues the non-verbal modality will play an important role in the mitigation of linguistic deficits), for when we compare the ratios of aphasic and non-aphasic mean scores in the two conditions we find that results improve in the aphasics' favour in the Eye Contact Condition (in the No Eye Contact Condition the mean aphasic score is 1.71 times the mean control score while in the Eye Contact Condition this ratio is 1.61).

map effect

The result obtained for individuals (good scores with landmark sparcity) carries over into the mean situation where we find that the rank ordering for deviation scores is as follows:

Aphasics: Map #1A > Map #3A > Map #4A > Map #2A

![Figure 8-1: Mean Aphasic Deviation Scores for Maps 1-4](image)

Controls: Map #3C > Map #1C > Map #2C > Map #4C

![Figure 8-2: Mean Control Deviation Scores for Maps 1-4](image)

In essence then, we find better (lower) deviation scores for maps that are populated with fewer landmarks.
condition effect

We find that for both groups, the average NEC score is greater than the average EC score. Furthermore this effect is slightly greater for the aphasic group than for the controls as we can see from Figures 8-3 and 8-4:

Aphasics: NEC = 1.19 × EC score

Figure 8-3: Mean Aphasic Scores for each Condition

Controls: NEC = 1.12 × EC score

Figure 8-4: Mean Control Scores for each Condition
This, too, is in keeping with Hypothesis 3.1 (which proposes that in the Aphasic Dialogues the non-verbal modality will play an important role in the mitigation of linguistic deficits).

Having considered the contrast between the Eye Contact and No Eye Contact conditions, the data presented in the remainder of this chapter will be concerned only with the EC condition.

8.1.1.2 time taken

![Figure 8-5: Mean Dialogue Times](image)

For the corpora as a whole, the mean dialogue duration for the ADC (11.5 minutes) is longer than that of the CDC (9.5 minutes).

8.1.1.3 efficiency rating (ER)

![Figure 8-6: Mean ER Scores](image)
When we combine the results for deviation and time to give us an efficiency rating score (ER), we find that the CDC exhibits a better efficiency in the trade-off of cost (time) against benefit (success): (ADC ER = 1738) versus (CDC ER = 885).

What this tells us is that interaction with dysphasic individuals is potentially a very inefficient process, highly consumptive of collaborative work. We must make it very clear, however, that we do not mean to say that such interactions are a waste of time and effort. They are not. Indeed, it has long been recognised that human communication involves much more than efficient transactional information exchange (see, for example, Malinowski, 1923)!

8.1.1.4 Landmark negotiation

When we consider the mean Incorrect Entity Scores (IESs) for the corpora (see §5.1.1.4), we find that the ADC (with a mean IES of 5.2) again fares worse than the CDC (mean IES = 1.8).

Though this might seem to indicate that the interactions involving dysphasic individuals are somehow inferior to those between non-aphasics, we should point out that we could also interpret these IE scores as being indicative of the truth of Hypothesis 2. This proposes that in the ADs the non-aphasic dialogue partner will try to avoid highlighting any linguistic non-competence on the part of their aphasic partner by avoiding unnecessary sequences of talk. The IF's less than perfect negotiation of landmarks would fit with such a proposal. (A similar argument could also be made for the worse deviation scores in the ADC.)
8.1.1.5 dialogue measures

Figures 8-8 and 8-9 present the mean dialogue measures for the two corpora.

![Figure 8-8: Mean CDC Dialogue Measures](image)

![Figure 8-9: Mean ADC Dialogue Measures](image)
The following results were obtained for the two corpora:

- In the CDC 91.4% of the landmarks are introduced: 60.3% by the IG and 31.1% by the IF.
- In the ADC 87.9% of the landmarks are mentioned: 64.8% by the IG and 23.1% by the IF.
- In the CDC 50.6% of the landmarks are introduced by statement: 28.4% by the IG and 22.2% by the IF.
- In the ADC 54.9% of the landmarks are introduced by statement: 41.7% by the IG and 13.2% by the IF.
- In the CDC 40.9% of the landmarks are introduced by question: 32% by the IG and 8.9% by the IF.
- In the ADC 33% of the landmarks are introduced by question: 23.1% by the IG and 9.9% by the IF.
- In both the CDC and the ADC 92% of all IG feature mismatches are introduced
- In the CDC 79% of the IF feature mismatches are discovered but in the ADC this proportion is only 50%

As noted in §6.1.1.5, in their most successful dialogues from children, Anderson et al. (1992) found that

- almost 50% of introductions came from the IF whereas in the unsuccessful ones less than 25% were IF introductions.

This would indicate that the ADs are unsuccessful dialogues: in the ADC 74% of the landmarks introduced are introduced by the IG and 26% by the IF. By this measure the dialogues in the CDC are slightly more successful with 65% of introductions coming from the IG and 35% from the IF.

- more question introductions are used

In the CDC 45% of all introductions are by question. In the ADC this proportion is 37%. These results appear to indicate that the dialogues in the CDC are more successful than those in the ADC.
more problem points are discovered

In total in the CDC, 85% of all problem points are discovered. In the ADC this proportion is 71%. So again, we have an apparent indication of the CDs being more successful than the ADs. Considering the problem points for each partner on the other hand, we have seen that in both corpora the same percentage of IG feature mismatches are introduced (92%). However, in the CDC 79% of IF feature mismatches are discovered while in the ADC this proportion is only 50%. We can integrate this finding into our doing being ordinary (Hypothesis 2) account. That is, we would actually expect fewer IF-only features to be introduced under the rubric of “don’t give additional information that isn’t absolutely vital lest non-competence become interactional business”.

more questions are asked

In the ADC just over 22.1% of all moves are functioning as questions. In the CDC this proportion is just under 21.5%. This data (presented below in Figure 8-10) would indicate that in terms of questions asked, both dialogues are roughly equal in their success.

![Figure 8-10: Questions Asked](image)

However if as before, we discount the type of pseudo-question that is the Align move, then the disparity between the questions asked in the two dialogues shifts to favour the AD as shown in Figure 8-11 below:
8.1.2 turn distribution

Figures 8-12 and 8-13 show the mean distribution of turns across the two corpora.
In both sets of dialogues the distribution of turns is fairly similar with the IG taking around 47% of all the turns at talk and the IF around 53%. Where the dialogues differ from one another is in their respective distributions of major and minimal turns. Minimal turns are responses that are usually associated with short replies or those that use direct repetition of the previous turn, while major turns are defined as non-minimal turns (see §4.2.2).
In the CDC, the vast majority (almost 90%) of the IG’s turns are major while only just over 34% of the IF’s turns are major (see Figure 8-16 below). As before, this is because the IG’s role is information provider and the IF’s role is information receiver.

![Figure 8-15: ADC Mean IG Turns](image)

In the ADC, however, while there is still a clear bias towards major turns, the split between the IG’s major and minimal turns is much less dramatic (67% major and 33% minor). Thus we have an indication that, in the AD, the responsibility for furthering the talk is shifting from the IG to the IF (i.e. support for Hypothesis 1). We investigate this further in §8.2 in our analysis of Game Coding.

Whether voluntarily or involuntarily, the aphasic IG is giving up the burden of communication to the IF. This can be seen in the corresponding graphs for IF’s distribution of major and minor turns:
In the CDs and the ADs we find an almost complete reversal when we compare the distribution of IF turns: in the CDC just over 34% of the IF's turns are major whereas in the ADC this proportion is nearly double at just below 61% – further indication of the shifting of communicative responsibility.

An interlocutor will generally only make a minimal turn in response to a major turn from their dialogue partner. In essence, therefore, the combination of IG major and IF minimal turns represent **IG-centred talk** and the combination of IF major and IG minimal turns represent **IF-centred talk**.
Figures 8-18 and 8-19 below show a complete breakdown of all turn types in each dialogue, but what we are really interested in here is IG-centred talk (the combination of the dark blue IG major turns and light blue IF minimal turns3) and the IF-centred talk (the combination of the pink IG minimal turns and red IF major turns4).

Figure 8-18: Turn Distribution in the CDC

- IG major: 35.62%
- IG minor: 40.89%
- IF major: 18.51%
- IF minor: 4.98%

Figure 8-19: Turn Distribution in the ADC

- IG major: 20.20%
- IG minor: 32.49%
- IF major: 31.56%
- IF minor: 15.75%

3 The striped segments if you are reading a black and white photocopy!

4 The spotted segments.
What we find is that in the CDC (Figure 8-18), approximately 76.5% of turns are IG-centred and 23.5% IF-centred, while in the ADC (Figure 8-19) we get a more balanced distribution with just under 53% of turns being IG-centred and just over 47% IF-centred.

In the dialogues as a whole, then, we find that although the CDs are very much IG-dominated, the distributions of role-centred talk in the ADs are actually very similar to each other. Thus it would seem that communication is indeed more of a collaborative achievement in the ADs. Nevertheless, the ADs are still twice as IF-oriented than the CD (47% versus 23.5% respectively), thereby indicating that in the aphasic dialogues the non-impaired dialogue partner does take on more of the communicative burden than in the control dialogues.

We take up this issue in the next section where we analyse Game Coding.

8.2 type-ii analyses

In this section we will present the Type-II analyses for all the aphasic dialogues and compare them with those for the age-matched controls. These Type-II analyses are all based on Game Coding (see §4.1) and, as per Chapters 6 and 7, the analyses that will be presented are those for:

- Basic Game Profiles
- Refined Game Profiles
- Game Closure
- Basic Move Profiles
- Refined Move Profiles (including Simplificatory Moves and Riders)
- Mutations

This section is thereby divided into six subsections, the first three dealing with game analyses and the remaining three dealing with move analyses.
8.2.1 basic initiation

In this section we deal with basic game profiles – in other words, we consider all games according to their superordinate category type only. Thus, for example, explains, explain elicits and explain = acknowledges are all analysed under the basic heading of explains.

8.2.1.1 overall game initiation

![Bar chart showing mean percentage of games initiated by the IG and IF](chart.png)

Figure 8-20: Mean percentage of games initiated by the IG and IF

Figure 8-20 shows the mean percentage of games initiated by the IG and IF. In the CD corpus the IF is responsible for 36% of game initiation and the IG 64%, while in the AD corpus there is a complete reversal with just over 60% IF-initiation and just under 40% IG-initiation. It is therefore quite clear that, with respect to game initiation, in the Aphasic Dialogues the burden of communicative effort rests more with the non-impaired IF.5

8.2.1.2 basic game profiles

Figures 8-21 and 8-22 present the mean percentage of games that are initiated by each interlocutor in the two corpora. Thus for example, in the CDC, of all the games that are initiated the largest proportion (over 22%) are align games initiated by the IG, whereas in the ADC, the largest proportion of games are IF checks (almost 23%).

5 Such a reversal is also reported by Anderson et al. (1997) who found 38% IF initiation in their CDC and 68% IF initiation in their ADC.
These graphs are essentially a finer analysis of games initiated by each interactant in each of the two dialogues.

Figure 8-21: Basic Mean Game Initiation in the CDC

Figure 8-22: Basic Mean Game Initiation in the ADC
Figure 8-23 below is a combination of Figures 8-21 and 8-22. It provides a more direct comparison of the Aphasic versus Control Information Givers.

Although the communicative behavioural differences between aphasic and non-aphasic IGs are not our primary concern, it is, nevertheless, interesting to note where those differences lie—namely, in align, check and query-yn games. It would seem that although the aphasic IGs are happy to give information (in the form of explanations and instructions), they are more reticent when it comes to requesting information, especially additional information that could potentially highlight their own non-competence (viz. aligns and checks which are both concerned with ascertaining whether the interaction has been correctly understood). This is also to be seen in Figure 8-24 which shows the distribution of IG games as a proportion of all the IG games produced (i.e. relativised).
We now turn to a comparison of the differences in IF behaviour in the AD and CD corpora. These differences are represented in Figure 8-25 which shows the mean percentage of games initiated by the non-impaired IF for each of the two corpora.

As before, because increased IF activity in the ADs would skew a comparison of the two corpora, in order to give a truer picture of the IF game-initiating activity Figure 8-25 shows the distribution of IF games as a percentage of just those games that are initiated by the IF (i.e. relativised). In other words, it displays how they proportion the activity that they produce. Let us use check games as an example: in the ADC, we see from Figure 8-25 that of all the games that the non-impaired IFs initiate, almost 39% are check games (in the CDC, this proportion is just over 28%).
Figure 8-25: Mean Basic IF Games Initiated in the ADC and CDC

According to our analysis of basic game categories, then, we find that there is virtually no difference between the distributions of aligns and queries in the two corpora. Where the ADC and CDC differ is in the distribution of non-impaired IF checks (more in the ADC), explains and instructs (more in the CDC). Although we will deal with checks and explains below, we postpone our discussion of instruct games for §8.2.2.4.

In Chapter 6, we saw that the proportion of GW's (IF) check games was actually less in the AD than in the CD and, following Wilkinson (1995c), we suggested that this was perhaps due to the non-impaired dialogue partner adopting a strategy of avoiding highlighting the communicative incompetence of their aphasic interlocutor – in other words, we explained it in terms of our doing being ordinary hypothesis. And we also noted the alternative reason for relatively more IF checks in the CD, namely that the non-aphasic IG (PK) was prone to overly complicated games (with long trajectories) which therefore required greater checking activity.

In Chapter 7, however, we found (as we now do for the corpora as a whole) that there was increased IF checking in the AD and this made us briefly question the validity our doing being ordinary hypothesis. We countered this, however, by suggesting that, given reduced linguistic output from an impaired partner, it would seem reasonable for a non-impaired IF to do whatever was necessary to ground the information they receive and the only way to do such grounding is via checking activity and the results obtained for the corpora as a whole seem to support this view.
In Chapters 6 and 7 we explained the relative shortage of IF explain games in the ADs in terms of doing being ordinary. This pattern still holds across the corpora and therefore, so too does our existing explanation.

Despite there being very little difference in IF queries across the two corpora we need to discuss here the status of the query with respect to doing being ordinary. With regard to queries, we seem to have used ‘ordinariness’ to account for two opposite patterns of data. In Chapter 6 we argued that increased IF querying in the AD reflected the non-impaired IF doing being ordinary. Yet in Chapter 7 we argued for decreased IF querying in the AD reflecting the non-impaired IF doing being ordinary. We will now make a brief digression in order to remind ourselves of the two lines of argument.

In Chapter 6 we proposed that the relative increase in both types of IF query (query-yn and query-w) was a result of the non-impaired IF feeling that such questioning activity would not hinder her interaction with her partner, in other words, it would not result in the highlighting of non-competence on the part of her aphasic IG. We therefore maintained that in this particular dialogue, although the IF was leading the dialogue, she was doing so by using interactive strategies that propose joint projects (Clark, 1996). In other words, she was maintaining the ordinariness of the discourse.

In Chapter 7, however, we suggested that because of the aphasic IG’s obvious linguistic deficit, his IF avoided unnecessarily highlighting non-competence (i.e. maintained doing being ordinary) by avoiding asking queries which she feared her IG might not be able to respond to.6

But we have now used doing being ordinary to explain both reduced and increased proportions of IF queries in aphasic dialogues. So which is ‘correct’? Well, although we may be appearing to be having and eating our ordinary cake, we nevertheless feel that we are in fact justified in our arguments. In essence, because we have looked at individual dialogues as well as the corpora as a whole, we have discovered that doing being ordinary is not a uni-directional phenomenon – it is not simply a case of negative behaviour (i.e. the avoidance of highlighting non-competence), but also a matter of positive behaviour (i.e. actively doing potentially threatening (but ordinary) behaviour when the possibility of threat is negligible). It would seem that we again have a distinction to make between active behaviour (positive ordinariness) and passive behaviour (negative ordinariness). The formula appears to be this: be actively ordinary if you can (or dare), and be passive elsewhere.

6 Indeed, Anderson et al. (1997) found that IF query-ws correlate with poor task success.
Having digressed, we can now return to the results for the combined corpora. Here we find no great difference in IF queries between the ADC and the CDC. Must we therefore conclude that *doing being ordinary* is not in play? Maybe. More plausible, however, is the possibility that the positive and negative ordinariness cancel one another out. If we consider the data for all the individual dialogue pairs, we discover that this is indeed what is happening.

From Table 8-5 below we see that there are four dialogues in the ADC that have the percentage of IF query-w games below the mean of 11.83% and four dialogues with percentages above the mean.

<table>
<thead>
<tr>
<th></th>
<th>HL1</th>
<th>HL4</th>
<th>MD2</th>
<th>MD3</th>
<th>GM2</th>
<th>GM3</th>
<th>BA1</th>
<th>BA4</th>
<th>ADC</th>
</tr>
</thead>
<tbody>
<tr>
<td>% IF query-w games</td>
<td>26.32</td>
<td>5.00</td>
<td>12.61</td>
<td>7.41</td>
<td>12.50</td>
<td>10.00</td>
<td>5.41</td>
<td>15.38</td>
<td>11.83</td>
</tr>
<tr>
<td>Deviation from ADC mean</td>
<td>14.49</td>
<td>-6.83</td>
<td>0.78</td>
<td>-4.42</td>
<td>0.67</td>
<td>-1.83</td>
<td>-6.42</td>
<td>3.55</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Table 8-5: Distribution of IF Query-w Games in the ADC

Similarly, from Table 8-6 we see that there are four dialogues in the CDC that have the percentage of IF query-w games below the mean of 11.63% and four dialogues with percentages above the mean.

<table>
<thead>
<tr>
<th></th>
<th>PK1</th>
<th>PK4</th>
<th>CM 2</th>
<th>CM3</th>
<th>TS2</th>
<th>TS3</th>
<th>DL1</th>
<th>DL4</th>
<th>CDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>% IF query-w games</td>
<td>12.77</td>
<td>11.54</td>
<td>7.14</td>
<td>5.88</td>
<td>11.54</td>
<td>13.33</td>
<td>18.75</td>
<td>12.12</td>
<td>11.63</td>
</tr>
<tr>
<td>Deviation from CDC mean</td>
<td>1.14</td>
<td>-0.09</td>
<td>-4.49</td>
<td>-5.75</td>
<td>-0.09</td>
<td>1.7</td>
<td>7.12</td>
<td>0.49</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Table 8-6: Distribution of IF Query-w Games in the CDC

7 Our argument is based only on query-w games because it is only open-ended queries that are potentially disruptive in aphasic dialogues. The fact that there is actually very slightly more IF query-w activity in the ADC appears to contradict our *ordinary* hypothesis and consequently this state of affairs needs to be addressed. The fact that there is also a slightly greater percentage of IF query-yn games in the ADC is in keeping with our hypothesis. We therefore do not discuss this innocuous game type any further until §8.2.2.
So there are just as many dialogues in the corpora that exhibit positive ordinariness as those that display negative ordinariness. This can be seen even if we consider the differences between the mean percentage of IF query-w games of each individual aphasic dialogue and its corresponding control dialogue (Table 8-7):

<table>
<thead>
<tr>
<th></th>
<th>HL1</th>
<th>HL4</th>
<th>MD2</th>
<th>MD3</th>
<th>GM2</th>
<th>GM3</th>
<th>BA1</th>
<th>BA4</th>
<th>ADC</th>
</tr>
</thead>
<tbody>
<tr>
<td>% IF query-w</td>
<td>26.32</td>
<td>5.00</td>
<td>12.61</td>
<td>7.41</td>
<td>12.50</td>
<td>10.00</td>
<td>5.41</td>
<td>15.38</td>
<td>11.83</td>
</tr>
<tr>
<td>games</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PK1</td>
<td>12.77</td>
<td>11.54</td>
<td>7.14</td>
<td>5.88</td>
<td>11.54</td>
<td>13.33</td>
<td>18.75</td>
<td>12.12</td>
<td>11.63</td>
</tr>
<tr>
<td>PK4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DL1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DL4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Difference</td>
<td>13.55</td>
<td>-6.54</td>
<td>5.47</td>
<td>1.53</td>
<td>0.96</td>
<td>-3.33</td>
<td>-13.34</td>
<td>3.26</td>
<td>0.20</td>
</tr>
<tr>
<td>between AD(C) &</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD(C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 8-7: Percentage Differences between IF Query-w Games in the ADC and CDC

In Table 8-8 we put these differences in rank order with the dialogues between BA & GW (AD) and DL & GW (CD) exhibiting the greatest negative distance between the means (-13.34) and the dialogues between HL & GW (AD) and PK & GW (CD) exhibiting the greatest positive distance between the means (13.55).

<table>
<thead>
<tr>
<th></th>
<th>BA1</th>
<th>HL4</th>
<th>GM3</th>
<th>GM2</th>
<th>MD3</th>
<th>BA4</th>
<th>MD2</th>
<th>HL1</th>
<th>ADC</th>
</tr>
</thead>
<tbody>
<tr>
<td>% IF query-w</td>
<td>5.41</td>
<td>5.00</td>
<td>10.00</td>
<td>12.50</td>
<td>7.41</td>
<td>15.38</td>
<td>12.61</td>
<td>26.32</td>
<td>11.83</td>
</tr>
<tr>
<td>games</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DL1</td>
<td>18.75</td>
<td>11.54</td>
<td>13.33</td>
<td>11.54</td>
<td>5.88</td>
<td>12.12</td>
<td>7.14</td>
<td>12.77</td>
<td>11.63</td>
</tr>
<tr>
<td>PK4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DL4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PK1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Difference</td>
<td>-13.34</td>
<td>-6.54</td>
<td>-3.33</td>
<td>0.96</td>
<td>1.53</td>
<td>3.26</td>
<td>5.47</td>
<td>13.55</td>
<td>0.20</td>
</tr>
<tr>
<td>between AD(C) &</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD(C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 8-8: Percentage Differences between IF Query-w Games in the ADC and CDC

8 It is mere chance that these were the four dialogues presented in detail in Chapters 6 and 7.
The crucial data points from Table 8-8 (namely the individual differences between the means) are represented in Figure 8-26 as points on a number line. From this we can see that the individual dialogues are indeed quite well balanced around the fulcrum (triangle) that is the corpus difference of 0.20%.

![Figure 8-26: Differences between AD & CD Percentages of IF query-w games](image)

In some respects, the fact that the results for positive and negative ordinariness cancel one another out might seem to lead to a dissatisfying non-result. However, the fact that they do cancel each other out is evidence for the existence of these two types of ordinariness.9

8.2.2 refined initiation

Figures 8-27 to 8-29 and Table 8-9 show the distribution of IF games by subtype as a percentage of the IF games that are initiated.

9 Nevertheless, when we consider the refined query-w games in §8.2.2.5, we will find that it is in fact the negative ordinariness which predominates in the ADC.
Chapter 8: Corpus Results

Figure 8-27: Refined IF Align & Check Games

Figure 8-28: Refined IF Explain & Instruct Games
Table 8-9a: Refined Games

<table>
<thead>
<tr>
<th>Game</th>
<th>No. of IF games in the ADC</th>
<th>% of IF games in the ADC</th>
<th>No. of IF games in the CDC</th>
<th>% of IF games in the CDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>check</td>
<td>164</td>
<td>35.00</td>
<td>71</td>
<td>25.17</td>
</tr>
<tr>
<td>check correct</td>
<td>4</td>
<td>0.95</td>
<td>2</td>
<td>0.81</td>
</tr>
<tr>
<td>check correct alternative</td>
<td>1</td>
<td>0.16</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>check optional</td>
<td>10</td>
<td>2.45</td>
<td>3</td>
<td>1.66</td>
</tr>
<tr>
<td>check hearing check</td>
<td>1</td>
<td>0.24</td>
<td>1</td>
<td>0.45</td>
</tr>
<tr>
<td>check alternative</td>
<td>1</td>
<td>0.15</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>align</td>
<td>7</td>
<td>2.14</td>
<td>2</td>
<td>0.53</td>
</tr>
<tr>
<td>align retrace</td>
<td>7</td>
<td>1.39</td>
<td>4</td>
<td>1.77</td>
</tr>
<tr>
<td>align task</td>
<td>20</td>
<td>3.22</td>
<td>10</td>
<td>4.26</td>
</tr>
<tr>
<td>explain elicit</td>
<td>29</td>
<td>6.82</td>
<td>27</td>
<td>11.12</td>
</tr>
<tr>
<td>explain = acknowledge</td>
<td>34</td>
<td>9.87</td>
<td>22</td>
<td>7.30</td>
</tr>
<tr>
<td>explain</td>
<td>73</td>
<td>12.67</td>
<td>50</td>
<td>18.93</td>
</tr>
<tr>
<td>instruct</td>
<td>2</td>
<td>0.48</td>
<td>1</td>
<td>0.27</td>
</tr>
<tr>
<td>instruct = time out</td>
<td>0</td>
<td>0.00</td>
<td>11</td>
<td>4.64</td>
</tr>
</tbody>
</table>

Figure 8-29: Refined IF Query Games

Chapter 8: Corpus Results

Doing Aphasia | 305
We will consider each refined game type in turn beginning with refined checks.

8.2.2.1 checks

<table>
<thead>
<tr>
<th>Game</th>
<th>No. of IF games in the ADC</th>
<th>% of IF games in the ADC</th>
<th>No. of IF games in the CDC</th>
<th>% of IF games in the CDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>check</td>
<td>164</td>
<td>35.00</td>
<td>71</td>
<td>25.17</td>
</tr>
<tr>
<td>check alternative</td>
<td>1</td>
<td>0.15</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>check correct</td>
<td>4</td>
<td>0.95</td>
<td>2</td>
<td>0.81</td>
</tr>
<tr>
<td>check correct alternative</td>
<td>1</td>
<td>0.16</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>check hearing check</td>
<td>1</td>
<td>0.24</td>
<td>1</td>
<td>0.45</td>
</tr>
<tr>
<td>check optional</td>
<td>10</td>
<td>2.45</td>
<td>3</td>
<td>1.66</td>
</tr>
<tr>
<td>Total checks</td>
<td>181</td>
<td>38.95</td>
<td>77</td>
<td>28.09</td>
</tr>
</tbody>
</table>

Table 8-10: Refined Check Games

In Chapter 6 we posited that, under a *doing being ordinary* account of interaction, checking activity should be avoided lest communicative incompetence be highlighted. Yet in the corpora as a whole, the IFs spend more of their game-initiating activity on checks proper in the ADC than in the CDC. This seems to go against the arguments put forward in §6.2.1.2. But we also noted earlier (in §7.2.1.2) that, given the limited output from the aphasic IGS, in order to ground their partner’s contributions the non-impaired IF has very little option but to resort to checking activity.
Despite this, however, some of the results obtained can still be seen to fit in with our *being ordinary* proposal in that they show a tendency towards the mitigation of non-competence and therefore a reduction in face-threatening behaviour.

Although the proportion of IF checks in the ADC is large, 2.45% are classified as optional checks (1.66% in the CDC) – in other words, they are fundamentally acknowledgement tokens but ones which the other dialogue partner (the IG) has the opportunity to contradict if necessary. These are therefore non-threatening checks (see discussion in §7.2.2.1).

Within refined checks there are four instances of a check correction. We have discussed two of these before. The one in BA & GW is actually elicited by the IG and as such the face-threat is minimal (see Extract 7-3 in §7.2.2.1). Likewise, the one in HL & GW raised the issue of HL’s non-competence not by GW’s unilateral actions but rather by the joint actions of both participants (see Extract 6-8 in §6.2.2.1). Because HL played a participatory role in this joint activity, we argued that he was himself responsible for the orientation to his non-competence and therefore the threat to his face was greatly diminished. The remaining examples of check corrections can be seen in Extracts 8-1 and 8-2 below:

Extract 8-1 GM & MB

*TA048
You go: (.)* you go (.) {trace: south} north then (.)>you go< {deixis gest: south} north *again*
*MA Instruct cont multi modal
*C NVC mismatch

*TB060
/So*
*Turn B Ø

*E 48 IF check correct em
*TB061
→"(LS)" North? Or (.) do you mean "s-" {deixis} down
*MB Check correct multi modal

*TA049
{deixis gest: south} "It’s north="
*MA Clarify multi modal
*C NVC mismatch

*TB062
→=oh south
*MB Acknowledge

*TA050
"South" -/south. {iconic} Sorry X X*
*MA Clarify repo
*MA Interjection multi modal
In *TB062 we see the non-impaired IF very skilfully playing down their correction game by simply acknowledging the IG’s non-verbal contribution. Had the IG not then admitted to his mistake, the game (and the issue of non-competence) could have been closed. So although we have an IF-initiated check correction, we see that the IF attempts to mitigate the face-threat to his IG.

This face-threat is yet further diminished in *TA051 where we see that the IG himself makes light of his own non-competence. We can tell that the participants are in fact treating this as mitigation and not as a troubles-telling (Jefferson, 1984a) because of the ensuing laughter in *TB064. Furthermore, the proposed alternative (in the form of ‘North? Or (.) do you mean ”s-” {deixis} down’) further mitigates the face-threat to the IG (as we will discuss in the next example).

Extract 8-2 BA & DN

*E 34 IG instruct
*TA045
() And then three inches {deixis gest} west again.
*MA Instruct

*E 35 IF check em
*TB048
(1.6) Back towards the snail?
*MB Check

*TA046
(1.2) >No!<=
*MA Reply-n
*Turn A min
*End 35

*E 36 IF check correction em
*TB049
→ =East then. Or…?”
*MB Check correction
*C correction comes with opt out clause and is quieter
In the above example (which we will see again in §9.1.1.3 when we discuss Type-III analyses), the *C comment line indicates the presence of mitigation in the form of reduced volume in *TB049 (as indicated by the presence of the degree symbols °°). But not only is the correction quieter, it is also mitigated by the presence of ‘Or...?’ which serves to give the IG the legitimate option of not accepting the correction. It is just as well that the IF offered this opt-out clause, for the IG quite rightly rejects the correction (the reason for the miscommunication being that the IF had been circumnavigating the snail from the wrong direction).

In the two examples of correction in the CDC, on the other hand, there is no mitigating behaviour within the IF correction itself, only subsequent IF laughter at the IG’s mistake. Both examples are shown below (as we have already seen the first extract as Extract 7-4 in §7.2.2.1 we repeat it here without superfluous coding).

Extract 8-3 DL & GW

*TA002 ctd
(•hhh) (LS)=(-hhh) Starting at the tower(hh),
*E 2 IF check correction em
*TB002
→ (.) The lighthouse is it?
*MB Check correction

*TA003
(1.9) °No, the tower. (.) Bottom right hand corner.°

*TB003
(1.1) °Oh I’ve got a start up by thÉ lighthouse.°=

*TA004
=°Oh sorr- ahh >sorry sorry sorry sorry. Yes. Sorry. I was- looking at {point} finish. Yes. Right sorry.<=

*TB004
=(hha:haha) /(.) °(hhh)°*

*TA005
/Light- light*house. °I beg its° °°pardon.”° >°I’m so busy.”
In addition to the above discussion, we also find two examples of IF check alternative games in the ADC (one check alternative and one check correct alternative). Like the corresponding query-w alternatives, these games reduce the possibility of potentially unnecessary problems by providing the IG with an alternative set of responses from which to choose. (In essence, this is a case of IF simplification of dialogue structure. We will return to this issue in §8.2.5.1.)

It would seem, then, that although there is a higher proportion of IF checks in the ADC (as we might expect due to reduced aphasic output), we nevertheless find more mitigating non-face-threatening behaviour in the ADC (3.71/38.95 = 10.5%) than in the CDC (1.66/28.09 = 5.9%).
Table 8-11: Face-Threatening versus Non-Face-Threatening IF Checks in the ADC

<table>
<thead>
<tr>
<th>Game</th>
<th>No of IF games in the ADC</th>
<th>% of IF games in the ADC</th>
</tr>
</thead>
<tbody>
<tr>
<td>check alternative</td>
<td>1</td>
<td>0.15</td>
</tr>
<tr>
<td>check correct</td>
<td>4</td>
<td>0.95</td>
</tr>
<tr>
<td>check correct alternative</td>
<td>1</td>
<td>0.16</td>
</tr>
<tr>
<td>check optional</td>
<td>10</td>
<td>2.45</td>
</tr>
<tr>
<td>non-face-threatening checks</td>
<td>16</td>
<td>3.71</td>
</tr>
<tr>
<td>check</td>
<td>164</td>
<td>35.00</td>
</tr>
<tr>
<td>check hearing check</td>
<td>1</td>
<td>0.24</td>
</tr>
<tr>
<td>face-threatening checks</td>
<td>165</td>
<td>35.24</td>
</tr>
<tr>
<td>Total</td>
<td>181</td>
<td>38.95</td>
</tr>
</tbody>
</table>

Table 8-12: Face-Threatening versus Non-Face-Threatening IF Checks in the CDC

<table>
<thead>
<tr>
<th>Game</th>
<th>No. of IF games in the CDC</th>
<th>% of IF games in the CDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>check alternative</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>check correct alternative</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>check optional</td>
<td>3</td>
<td>1.66</td>
</tr>
<tr>
<td>non-face-threatening checks</td>
<td>3</td>
<td>1.66</td>
</tr>
<tr>
<td>check</td>
<td>71</td>
<td>25.17</td>
</tr>
<tr>
<td>check correct</td>
<td>2</td>
<td>0.81</td>
</tr>
<tr>
<td>check hearing check</td>
<td>1</td>
<td>0.45</td>
</tr>
<tr>
<td>face-threatening checks</td>
<td>74</td>
<td>26.43</td>
</tr>
<tr>
<td>Total</td>
<td>77</td>
<td>28.09</td>
</tr>
</tbody>
</table>

Chapter 8: Corpus Results
8.2.2.2 aligns

<table>
<thead>
<tr>
<th>Game</th>
<th>No. of IF games in the ADC</th>
<th>% of IF games in the ADC</th>
<th>No. of IF games in the CDC</th>
<th>% of IF games in the CDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>align</td>
<td>7</td>
<td>2.14</td>
<td>2</td>
<td>0.53</td>
</tr>
<tr>
<td>align retrace</td>
<td>7</td>
<td>1.39</td>
<td>4</td>
<td>1.77</td>
</tr>
<tr>
<td>align task</td>
<td>20</td>
<td>3.22</td>
<td>10</td>
<td>4.26</td>
</tr>
<tr>
<td>Total</td>
<td>34</td>
<td>6.75</td>
<td>16</td>
<td>6.56</td>
</tr>
</tbody>
</table>

Table 8-13: Refined Align Games

The results for IF align retrace and IF align task games are not disturbing: there is a smaller proportion of these games in the ADC than in the CDC. For the moment we have no further comment to make about this data (though we will return to them in §8.2.5.1 when we discuss simplificatory moves). What we will be concerned with here, however, are align games proper.

We have argued that since true align games request explicit confirmation that the Hearer has understood the Speaker’s preceding contribution(s), and since there is always the risk in an AD of the aphasic interlocutor not having understood, in such cases their linguistic non-competence is brought to the fore and this may result in extra sequences of embedded games. It is therefore disturbing (with respect to doing being ordinary) that there is more IF alignment in the ADC than in the CDC. That is, until we look qualitatively at some of those IF aligns in the ADC.

<table>
<thead>
<tr>
<th></th>
<th>HL1</th>
<th>HL4</th>
<th>MD2</th>
<th>MD3</th>
<th>GM2</th>
<th>GM3</th>
<th>BA1</th>
<th>BA4</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>% IF aligns per dyad</td>
<td>1.75</td>
<td>5.00</td>
<td>0.00</td>
<td>3.70</td>
<td>0.00</td>
<td>6.67</td>
<td>0.00</td>
<td>0.00</td>
<td>2.14</td>
</tr>
<tr>
<td>No. IF aligns per dyad</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Table 8-14: IF Align Games in the ADC

From Table 8-14 we can see that at 2.14%, the mean percentage of IF align games in the ADC is heavily influenced by the proportion of aligns from just two dialogues, namely HL4 (HL & DN) and GM3 (GM & ND). In other words, it appears that just three IF align games are majorly responsible for the unexpectedly high overall mean percentage of IF aligns in the ADC. If we look qualitatively at these three aligns, however, we will see that the risk of the potential threat of unnecessary extended turns at talk is negligible. The three games are shown in Extracts 8-5 to 8-7.
The first two extracts cover the IF aligns in the dialogue with GM as the aphasic IG. In both instances the IF align requests confirmation from the IG that the previous IF explain has been understood, but we can see that in each case that requested confirmation has already been given in the immediately preceding IG turn(s).

Extract 8-5 GM & ND

*E 15 IG align task meta em
*TA017
Yeah. It's: heading from that end to th'other /end.* That's right. Do you call that right?
*MA Reply-y
*MA Clarify
*MA Align task meta

*TB019
/Aha*

*MB Acknowledge
*Turn B min

*E 16 IG explain elicit meta em
*TB020
(1.6) \{deixis gest\} That's - right is that way (0.5) So / th- fOR* YOU \{iconic gest\} it's that \{deixis gest\} way
*MB Explain elicit meta multi modal

*TA018
/Yeah.*

*MA Acknowledge meta
*Turn A min

*TA019
Right. /Yeah.*
*MA Acknowledge meta
*Turn A min

*E 17 IF align em
*TB021
/Yeah?*

*MB Align

*E 18 IG align em
*TA020
Yeah?
*MA Align
*End 18
*End 17
*End 16
*End 15
Right.
*MA Ready
Because the outcome of the aligns is already known to the IF, in these two extracts there is in effect no potential threat of unnecessary extended turns at talk. We must note, however, that despite the safe nature of these IF aligns, they could still be seen as face-threatening in the Goffman sense: if an interactant has already provided a suitable response to the prior turn, to have that response checked by their dialogue partner with an align game is potentially undermining (cf. Hughes’ comments in §6.2.6).

In the third extract (between HL & DN, which we join towards the end of an IF align retrace game), we find that not only is the potential threat of the IF align mitigated, it is in fact quintuply mitigated. Before we explain how this is so, let us first look at the data:

Extract 8-7 HL & DN

*TB040
Er then down and across to the flamingo

*TA040
Mhm

*TB041
Er then to the second lake

*TA041
(1.0) Mm

*TB042
that’s in the middle (LS) down through the hills (.) to the giraffe /”(LS)”/
We will now explain how the face-threat is quintuply mitigated.

Firstly, before the IG’s (4.5) second attributable silence there is a minuscule head nod that acts as an acknowledgement. Had the IF seen this, the IF align would not have been exposed to the threat of extended talk for the same reason as we have just put forward for the GM dialogue.

Secondly, as the IF does not notice the IG’s non-verbal acknowledgement, according to the theory of preference organisation (see §2.1.5.2.3), the IG’s (4.5) second attributable silence would indicate that the IG had a potential problem. (We know – given the unseen acknowledgement – that the silence is attributable because the IF align retrace is presented in instalments (Clark & Schaefer, 1989: 283ff), after each of which the IG has previously been showing appropriate evidence of understanding (see §2.1.6.3.1).) Had
the IG’s silence truly been a display of trouble, then the IF align would have allowed a legitimate entry for the IG to indicate that problem.\(^{10}\)

Thirdly, the IF align is uttered so quietly that it is almost inaudible. In this way the IF allows the IG the non-threatening possibility of not responding to the align. In such a scenario the IF would then be able to pursue some alternative ‘Plan B’ line.

Fourthly, we see that after waiting for but a micro pause the IF does indeed produce the alternative ‘Plan B’ in the form of a direct yes-no question *Is that it?*, which does not explicitly raise the issue of the dysphasic’s linguistic competence.

Fifthly, we must allow ourselves to consider context: the talk in which this IF align occurs is part of an extended align retrace game which the IG had prompted 24 turns earlier as we can see in Extract 8-8:

Extract 8-8 HL & DN – 24 turns earlier...

*TB030
(1.3) *(LS)* I’m at the giraffe *then.*

*TA030
(1.3) Go round the (2.7) /dʒæːtʃts/ and go towards the boats

*TB031
Okay

*TA031
Finished (2.5) River

*TB032
Okay. So that’s the boat and that’s the end is it

*TA032
Aha

*TB033
O†kay† {Wave to camera}

*E 31 IG query-yn meta
*TA033
→ (1.3) You ch- check it **No?** (0.9) **No.**
*MA Query-yn meta

*TB034
(1.7) >You wan-< So I talk- talk through it /to check it.*=

\(^{10}\) As it happens, the (4.5) second silence is doing no such work – from the video (and from the non-verbal acknowledgement that we qua analyst can see) it is clear that HL has simply finished the task and is now waiting for the researcher to appear.
Okay. Right. Sorry (0.5) Er (0.7) Okay starting at the tent.

°°°Mhm°

(0.7) Okay starting at the tent.

°°°Mhm°

So when DN contributes the ‘offending’ align in Extract 8-7 (*TB046), he does in fact know that that is indeed the end of the task: there is thus no real fear of an unnecessary sequence of talk.

So although IF align games account for 2.14% of all IF games in the ADC, we have seen that several of those games are not actually face-threatening and thus we need not be so dismayed at what, prior to closer analysis, seemed unexpected results.

We are, of course, aware that some readers might be sceptical about our general approach of explaining away patterns of data that do not fit with our expectations. And such criticism would be fair. What is really required is in-depth analysis of each and every individual case – not only a consideration of data which confounds hypotheses, but also a closer examination of that which we take as affirmation.

Within a PhD thesis, however, because we must cover so much ground in so little (!) space, such an approach is an unaffordable luxury. Nevertheless, we would like to make it clear that not only can we explain away the ‘disproportionately influential’ align games by showing that they are not as disruptive as they might have been, we can also assure the reader that the remaining four IF aligns in the ADC are similarly reasonable.11

11 As was the case in Extracts 8-5 and 8-6, the IF already knows the answer to two of her aligns in MD3. The third align in MD3 and the one that occurs in HL1 are very similar to each other in that they both provide a legitimate (yet optional) opportunity for the IG to express dissent. (For discussion, see Extract 6-10 in §6.2.2.2.)
One of the two IF aligns in the CDC is also not contentious for the same reasons discussed in relation to Extracts 8-5 and 8-6. The other, however, is far from inoffensive, as we can see in Extract 8-9:

Extract 8-9 PK & GW

*TA022
Now. (0.8) (cough) "'(hh)" You were turning (0.9) if you go down about two inches /and start* swinging round okay?

*TB020
/Just-*

*TB021
/aha*

*TB022
To the right or the left.

*TA023
Er well (0.5) "(LS)" (0.4) (cough) you’d be going to your - your right.

*TB023
"T" mean it's it should be the same on {iconic} your map (0.6) it's exactly the same.

→ *C antagonism! I bet you wouldn’t get this with aphasics

*E 25 IF align em
*TB023 ctd
→ Start's in the top left hand corner, (0.6) /okay?*

*MA Align
→ *C PK folds his arms defiantly and sits back in his chair

*TA024
/"Aha"*

*MA Reply-y
*End 25

It seems that not only does GW believe that she has (on more than one occasion) made herself perfectly clear, but also that she expects that some affirmative acknowledgement should be forthcoming in PK’s next turn. Since it is not forthcoming (cf. the (0.6) second pause), it is seen to be absent (see our discussion of adjacency in §2.1.5.5.2) and consequently she initiates her align. Prior to doing so, however, she makes no attempt to play down its face-threat (cf. the first *C comment) and hence we see the resulting social sanctions which PK imposes (cf. the second *C comment).

12 Namely the //Okay? in *TB003 ctd immediately before the arrowed Query-w prod in Extract 6-32 in §6.2.2.5.3.

13 This is the dialogue which started with the protracted discussion about whether or not the maps were mirror images (again, see Extract 6-32 in §6.2.2.5.3).
So what we have shown is that not only are the ‘disproportionately influential’ ADC aligns innocuous, but also that the other ADC aligns are too. And, in marked contrast, we have demonstrated that one of the two CDC IF aligns is really rather hostile. In short, we have shown that it is not so disturbing (with respect to *doing being ordinary*) that there is more IF alignment in the ADC than in the CDC.

8.2.2.3 explain type games

<table>
<thead>
<tr>
<th>Game</th>
<th>No. of IF games in the ADC</th>
<th>% of IF games in the ADC</th>
<th>No. of IF games in the CDC</th>
<th>% of IF games in the CDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>explain = acknowledge</td>
<td>34</td>
<td>9.87</td>
<td>22</td>
<td>7.30</td>
</tr>
<tr>
<td>explain elicit</td>
<td>29</td>
<td>6.82</td>
<td>27</td>
<td>11.12</td>
</tr>
<tr>
<td>explain</td>
<td>73</td>
<td>12.67</td>
<td>50</td>
<td>18.93</td>
</tr>
<tr>
<td>Total explains (basic analysis)</td>
<td>136</td>
<td>29.36</td>
<td>99</td>
<td>37.35</td>
</tr>
</tbody>
</table>

Table 8-15: Refined Explain Games

From the totals we can see that there is proportionately less IF explanation in the AD at the basic level, however it is only in the refined analysis that we discover the vast qualitative difference between the subtypes of explains. Table 8-15 shows how IF explaining activity is proportioned across explain games proper, explain elicits and explain = acknowledge games and in the next three sections we discuss these findings.

8.2.2.3.1 explain elicits (EEs)

<table>
<thead>
<tr>
<th>Game</th>
<th>No. of IF games in the ADC</th>
<th>% of IF games in the ADC</th>
<th>No. of IF games in the CDC</th>
<th>% of IF games in the CDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>explain elicit</td>
<td>29</td>
<td>6.82</td>
<td>27</td>
<td>11.12</td>
</tr>
</tbody>
</table>

Table 8-16: Explain Elicit Games

Although there is an almost equal number of IF EEs in the two corpora, there are proportionately fewer EEs in the ADC. While this may seem to add weight to our *doing being ordinary* hypothesis, we argued earlier that the theory of *doing being ordinary* is not applicable to this game type (see §6.2.2.3.1).
If we want to get anything from EE analysis, we must look at their sequential distribution. This should really be reserved for our section on simplificatory moves. Nevertheless we have broached the subject and so we discuss the sequential distribution of EEs now.14

In all of the 16 dialogues we have abstracted two types of sequential environment for explain elicit games: either the IF-initiated EE is associated with some specific and explicit IF query in the immediate (or close) proximity relating to the positioning of the landmark or it is not. Examples of cases where there is no associated location-related query are given in Extracts 8-10 to 8-13. We call this environment ee-Ø to show the lack of query; as this is the least explicit of all environments it is also, therefore, the ‘riskiest’.

Extract 8-10 GM & MB (ee-Ø)

*TA034
There’s a wee () /tree XX*
*E 39 IF explain elicit
*TB044
→ /Ah. No I don’t -* I don’t /have one*
*MB Acknowledge
*MB Explain elicit
*TA035
/Aye.* Well it’s a /wee tr.*
*MA Acknowledge
*End 39

Extract 8-11 GM & MB (ee-Ø)

*TA026 ctd
(.) Have you got a: (.) br- br- bri- (.) B-R-(~)
*TB034
(LS) Oh (.) bridge=
*TA027
={nods} Ye:s.=
*E 32 IF explain elicit em
*TB035
→ =Yes ’cept /for- my* bridge is {visible point} right at the top=
*MB Reply-y
*MB Explain elicit multi modal
*TA027 ctd
/*Ye:s.*

14 In §8.2.5.1 we will simply refer the reader back to this discussion.
Extract 8-12 GM & MB (ee-0)

*TA122
"Right?" {trace} And you just keep going like that

*TB142
Mm

*TA123
'til you get to: a place called (.) he- ***we*** (.) ****we**** () well - well.

*E 96 IF explain elicit em
*TB143
→ Oh I {head shake} don't have that
*MB Explain elicit multi modal head shake
*End 96

*TA124
Well

*TB144
(·hh) So /the well -*

*TA125
/>Well< the well* the /well* (.) is (.) when you get to the well

*TB145
/Mm*
Extract 8-13 GM & MB (ee-Ø)

*TA139
"(·hh)" Then you go for a while and then (.) you might have seen a S- >"A-B-C"< C-H-I-S-K-E-N?

*TB163
A: - oh a chicken

*TA140
<Yes>

*TB164
(.) "(LS)"=Ah.

*TA141
Well

*E 108 IF explain elicit em
*TB165
→ That’s: - that’s - well- for me that’s right in: (.) the bottom right hand /corner,*
*MB Explain elicit

*TA142
"Yes." {nods}
*End 108
Well you’re* heading to there.

*TB166
"Yeah."

For the cases where IF explain elicit games are to be found associated with a specific and explicit IF query related to the landmark’s location we have established that there are just four such sequential environments in the data:

- an open ended query-w precedes the explain elicit (qw-ee)
- an open ended query-w follows the explain elicit (ee-qw)
- a forced-choice query-w alternative follows the explain elicit (ee-qwa)
- a forced-choice query-yn follows the explain elicit (ee-qyn)

We provide an example of each of these environments in Extracts 8-14 to 8-17 below.
Chapter 8: Corpus Results

Extract 8-14 HL & GW (qw-ee)

*E 68 IG instruct
*TA060
'(LS)=\(\cdot hh\) So you’re\(<\) going right around to \(\cdot\) the er \(\cdot\) finish.
*MA Instruct

*E 69 IF query-w em
*E 70 IF explain elicit em
*TB065
→ (1.3) Oh where’s the finish?
→ I \{head shake\} d(h)on’t (h)have a finish /(ha)*
*MB Query-w
*MB Explain elicit multi modal head shake

Extract 8-15 HL & GW (ee-qw)

*E 30 IG instruct
*TA023
(LS)=\(\cdot hh\) Er you go tround to the () beside the river and past the helicopter.
*MA Instruct

*E 31 IF explain elicit em
*TB027
→ (LS)=\(\cdot hh\) Right. I \{head shake\} don’t have a helicopter
*MB Ready
*MB Explain elicit multi modal head shake
*End 31

*E 32 IF query-w em
*TB027 ctd
→ so where is the helicopter?
*MB Query-w

Extract 8-16 HL & GW (ee-qwa)

*E 3 IG instruct
*TA002
Go down to: () the pine tree
*MA Instruct

*E 4 IF explain elicit em
*TB004
→ Right, um: () I have a pine tree but it’s () quite near the bottom of the page.
*MB Ready
*MB Explain elicit
*End 4

*E 5 IF query-w alt em
*TB004 ctd
→ Is it- is your pine tree near the bottom of the page or is it near to the caravans?
*MB Query-w alt

*E 6 IG explain em
*TA003
(\(\cdot hh\) ThE - Near there two
*MA Explain
*End 6
Having established these five EE environments we can now present tables 8-17 and 8-18 which show the sequential environment for the IF EEs for each aphasic and non-aphasic IG respectively.

The top row of each table indicates the eight individual dialogues from each of the two corpora (ADC and CDC). The leftmost column enumerates each EE within the dialogues: thus, in the dialogue between HL & GW there are just five EEs (hence the empty cell for EE #6); the first EE within the dialogue occurs in an ee-qwa environment, the second EE is in an ee-qyn, both the third and fourth are in an ee-qw, and the fifth and final EE is in a qw-ee.

15 This extract follows on directly from the end of Extract 8-16.
In Table 8-19 we distil the information from Tables 8-17 and 8-18 to present the findings for each corpus as a whole. The figures in bold type will be particularly relevant to the following discussion.
<table>
<thead>
<tr>
<th>EE Environment</th>
<th>No. of IF games in the ADC</th>
<th>% of all EEs in the ADC</th>
<th>No. of IF games in the CDC</th>
<th>% of all EEs in the CDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ee-open query (ee-qw)</td>
<td>3</td>
<td>10.7</td>
<td>3</td>
<td>11.1</td>
</tr>
<tr>
<td>ee-closed query (ee-qwa, ee-qyn)</td>
<td>5</td>
<td>17.9</td>
<td>1</td>
<td>3.7</td>
</tr>
<tr>
<td>Total Number of ee-query</td>
<td>8</td>
<td>28.6</td>
<td>4</td>
<td>14.8</td>
</tr>
<tr>
<td>open query-ee (qw-ee)</td>
<td>2</td>
<td>7.1</td>
<td>1</td>
<td>3.7</td>
</tr>
<tr>
<td>closed query-ee</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total Number of query-ee</td>
<td>2</td>
<td>7.1</td>
<td>1</td>
<td>3.7</td>
</tr>
<tr>
<td>Total Number of ee/query</td>
<td>10</td>
<td>35.7</td>
<td>5</td>
<td>18.5</td>
</tr>
<tr>
<td>Total Number of ee-Ø</td>
<td>18</td>
<td>64.3</td>
<td>22</td>
<td>81.5</td>
</tr>
<tr>
<td>Total EEs</td>
<td>28</td>
<td>100.0</td>
<td>27</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Table 8-19: Combined Sequential Environments of IF EEs in the two Corpora

So what do we get from this micro-analysis? Let us remind ourselves of our previous interpretations. In Chapter 6 we suggested that the difference in the distribution of IF EEs between ADs and CDs might be that in CDs we get the sequence query-EE, but in the AD we get the reverse, namely EE-query. It therefore seems, in part at least, that the results from Chapter 6 hold for the corpus as a whole in that the more explicit, and hence more simplificatory, EE-query sequence occurs twice as often in the ADC as in the CDC (28.6% versus 14.8%).

Then in Chapter 7 we suggested that the difference in the distribution of IF EEs between ADs and CDs might be in the type of query that follows the EE: the AD seemed to favour the forced-choice query which restricts the possible responses and thus reduces the risk of unnecessary extended sequences. This preference also holds for the corpus as a whole: in the ADC we have 8 instances of an EE followed by a query and 62.5% (5/8) of those queries are closed questions. In the CDC we have 4 instances of an EE followed by a query but only 25% (1/4) of those queries are closed questions. It is, of course, true that we also have cases where the query precedes the EE. Nevertheless, even if we also include these sequences, then in the ADC 50% (5/10) of the queries are still closed while in the CDC that proportion drops to 20% (1/5). We therefore still have evidence of the preference for closed questions in the ADC.

As a final point in support of our claim that the ADC favours explicit environments (or, conversely, that the CDC is associated with implicit ones) we note that there is a higher proportion of implicit ee-Ø environments in the CDC (81.5%) than in the ADC (64.3%).
To summarise then, we find that compared to the CDC, in the ADC we find more EEs associated with explicit queries and, moreover, we find that more of those EEs are associated with restrictive queries which reduce the risk of unnecessary extended sequences. In other words, we very much find doing being ordinary at work in the aphasic data.

Before we leave this section we would like to point out that even though we get hypothesis-friendly results for the corpora as a whole (i.e. the ADC is associated with explicit EE environments), over 83% (15/18) of all the implicit ee-Ø environments in the ADC are to be found in the aphasic dialogues of MD and GM – the two aphasic IGs who are the most confident and the most linguistically able of all the 'impaired' subjects.16 Conversely, 60% (3/5) of all the explicit environments in the CDC are to be found in the control dialogue between DL & GW, and, as we saw in Chapter 7, in this dialogue GW treats DL in a similar way to the way that she treats her dysphasic partner – in essence, GW treats DL as a passive participant.17

8.2.2.3.2 explain = acknowledgements (EAs)

<table>
<thead>
<tr>
<th>Game</th>
<th>No. of IF games in the ADC</th>
<th>% of IF games in the ADC</th>
<th>No. of IF games in the CDC</th>
<th>% of IF games in the CDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>explain = acknowledge</td>
<td>34</td>
<td>9.87</td>
<td>22</td>
<td>7.30</td>
</tr>
<tr>
<td>Total explains</td>
<td>136</td>
<td>29.36</td>
<td></td>
<td>37.35</td>
</tr>
</tbody>
</table>

Table 8-20: Explain = Acknowledge Games

As we see from Table 8-20, in absolute terms there is a greater proportion of IF explain = acknowledge games in the ADC (9.87%) than in the CDC (7.30%). Because of the greater proportion of overall Explanation in the CDC this difference is exaggerated when we consider the relative distribution of EAs with respect to all explaining activity: just over one third of the IF explain games in the ADC are Explain = acknowledge games (9.87/29.36); in the CDC this percentage is just under one fifth (7.30/37.35).

16 For evidence that MD is linguistically able cf. his Aphasia Quotient of 92.2% (i.e. almost non-aphasic). For evidence of GM’s ability note (i) the fact that he initiates 67.74% of all games in his dialogue with ND and (ii) the discussion in §8.2.3 on game closure.

17 We will not actually redo the sums, but it should be clear that if these three dialogues were excluded from analysis then the weight of evidence for the ADC being associated with explicitness and the CDC with implicitness would be overwhelming.
Although finding more EAs in the ADC than in the CDC seems to contravene *doing being ordinary*, the same arguments apply as were put forward in §7.2.2.3.2. In short, offering this type of additional information is unlikely to generate unnecessary embedded sequences and as such, there is no *doing being ordinary* reason for its avoidance.

As we have said before, the function of an EA is to make explicit the scope of the acknowledgement. In essence, then, it appears that the simplificatory nature of the EA seems to outweigh any negative points this particular game type might have. We will return to this issue of explicitness in our discussion of simplificatory moves in §8.2.5.1.

8.2.2.3.3 explain games proper

<table>
<thead>
<tr>
<th>Game</th>
<th>No. of IF games in the ADC</th>
<th>% of IF games in the ADC</th>
<th>No. of IF games in the CDC</th>
<th>% of IF games in the CDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>explains proper</td>
<td>73</td>
<td>12.67</td>
<td>50</td>
<td>18.93</td>
</tr>
<tr>
<td>Total explains</td>
<td>29.36</td>
<td>37.35</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 8-21: Refined Explain Games

In absolute terms there is a greater proportion of IF explain games in the CDC (18.93%) than in the ADC (12.67%). This fits very well with *doing being ordinary*. However, because of the different proportions of overall explanation in the corpora we must consider the relative distribution of EAs with respect to all explaining activity. When we do so we find that the trend still holds: of all the explaining type games in the ADC just over 43.2% (12.67/29.36) are explain games proper; in the CDC this proportion is 50.7% (18.93/37.35).
8.2.2.4 instructs

<table>
<thead>
<tr>
<th>Game</th>
<th>No. of IF games in the ADC</th>
<th>% of IF games in the ADC</th>
<th>No. of IF games in the ADC</th>
<th>% of IF games in the CDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>instruct</td>
<td>2</td>
<td>0.48</td>
<td>1</td>
<td>0.27</td>
</tr>
<tr>
<td>instruct = time out</td>
<td>0</td>
<td>0.00</td>
<td>11</td>
<td>4.64</td>
</tr>
</tbody>
</table>

Table 8-22: Refined Instruct Games

As it is the IG’s role to give instructions and the IF’s role to follow them we would not actually expect there to be many IF-initiated instructions in either corpus. And this is what we find. What is interesting, however, is the occurrence of instruct = time outs (ITOs are signals that the time-out instructor is having trouble with the on-going interaction).

In the CDC 4.64% of all IF games are ITOs. In the ADC there are none. As an ITO necessarily highlights the communicative incompetence (or at least the communicative insensitivity) of your dialogue partner, then it is – according to our doing being ordinary hypothesis – not surprising that we find fewer ITOs in the ADC than in the CDC.

However, we should also point out that, as we did in Chapter 6, that there is an alternative, non-ordinary related explanation: given the somewhat limited linguistic output from the aphasic group of IGs there is little scope for the non-impaired IFs to be overloaded with information and therefore the need for ITO may never actually arise.

Since there is actually not a single instance of an ITO in the whole ADC (yet there are eleven ITOs in the CDC), it would appear that we have no data to help us ascertain which of our explanations (ordinary or non-ordinary related) is in fact correct. In order to provide evidence in favour of our doing being ordinary hypothesis we would need examples of IF overload in the AD data which fail to produce ITO games. Fortunately for this thesis, such data does in fact exist. From all the various possible excerpts we will eventually provide just one (Extract 8-19 below).

The game coding conventions devised by Kowtko et al. (1992) distinguish between top level games and those that are embedded within some other game(s) by means of the em code appended to the game type in the *E line. However, Kowtko et al. (1992) do not make any finer distinctions within their embedded codes.
Part of the analysis for this thesis was to focus on this very aspect of dialogue structure and so the transcripts were to have been coded for the depth of embedding of conversational games. Due to the limitations of thesis length, this analysis has not yet been carried out. Nevertheless we will take some time to explain depth of embedding coding for we will use it in Extract 8-19.

Depth of embedding code is essentially just like the section numbers within a document such as a thesis. The coding for embedded games immediately precedes the *E line (as a section number precedes the section text) and it consists of a separate line of code starting with two asterisks and some sequence of digits separated by full stops. A line of embedding (and associated game) coding might therefore look like this:

\[**8.2.2.4\]

*E 35 IF query-w em
*TB
So what do all these numbers mean?
*M Query-w

Any game that is not embedded within any other game, in other words any top level game (like the beginning of a new chapter) has its *E line preceded by a line of code consisting solely of **n where n is the number of the nth top level game since the beginning of the dialogue (so for example the very first (and therefore by definition, top level) game of a dialogue is preceded by **1).

If this nth top level game is still open when the next game is initiated, this new game is preceded by **n.1 to represent that that it is the first game embedded one level into game n. Similarly if this (**n.1) game is still open when the next game is initiated the new game is coded as n.1.1 to show that it, in turn, is the first game to be embedded one level into game n.1. Let us now assume that this (but only this) third game is closed before the next game is initiated. This new game now carries **n.1.2 as its embedding code to show that it is the second game to be initiated just one level within game **n.1.

In this way, then, the depth of embedding is signalled by the number of full stops in the line of code: top level games with no full stops are said to be at level-Ø, those coded n.m one level in are said to be level-1 games, and so on. Extract 8-18, taken from the beginning of the dialogue between HL & GW, shows embedding code in operation.
**1
*E 1 IG explain
*TA001
Start the start.]() Cara*vans.
*MA Explain

*TB002
/"Mm. Mhm."*
*MB Acknowledge

**1.1
*TB003
*E 2 IF explain = acknowledge em
Yeah I’ve got that
*MB Explain = Acknowledge
*End 2
{nods}
*MB Acknowledge
*End 1

**2
*E 3 IG instruct
*TA002
Go down to: () the pine tree
*MA Instruct

**2.1
*E 4 IF explain em
*TB004
Right, um () I have a pine tree but it’s () quite near the bottom of the page.
*MB Ready
*MB Explain
*End 4

**2.2
*TB004 ctd
*E 5 IF query-w alt em
Is your pine tree near the bottom of the page or is it near to the caravans?
*MB Query-w alt

**2.2.1
*E 6 IG explain em
*TA003
(:hh) ThE - Near there two
*MA Explain
*End 6

**2.2.2
*E 7 IF explain elicit em
*TB005
I’ve only got one pine tree.
*MB Explain elicit

*TA004
"Oh."
*MA Acknowledge
*End 7
What embedding codes do not overtly signal is the actual number of games embedded to a certain level within any particular game. One cannot, for example say for definite that game **3.3.6 is the sixth game embedded within game **3.3 for there may have been any number of more deeply embedded games within any of the preceding games embedded within **3.3 (say **3.3.5.1.1.1, for example). The only statement that can be made is that it is the sixth consecutive game to be precisely one level down within **3.3. The way the coding system operates, any additional information has to be gleaned ‘by hand’.

We can now return to the real matter at hand, namely Extract 8-19, which shows IF overload in the AD data but overload which nevertheless does not produce an ITO game. Although it is concerned with just one instruct game (leading to the finish point at the anchor), it spans 70 turns at talk and generates 25 embedded games.

Because of this excessive length (inevitable in cases of data overload), we have stripped the dialogue of all but the most essential pieces of code. The depth of embedding code is retained in order to show how complicated the structure of the dialogue gets. As this instruct game is the 46th top level game in this dialogue, the depth of embedding code starts at **46.

As this extract is so very long (which is partly the point of the extract), we highlight three points of interest with arrows in the usual way. Each being evidence of MB’s confusion. The first two arrows indicate that the embedding goes down to the four-level – i.e. a game within a game within a game within a game! The second arrow indicates a subtle comment from the IF, namely ‘I wa- was rather getting confused’ – indeed, so confused that his syntax goes to pot!

Yet further evidence of MB’s confusion (highlighted in bold type) comes from his uttering ‘Oh’ nine times and ‘Ah’ once within the excerpt – forms which conventionally implicate that the utterer has only recently become aware of (and presumably therefore had previously been uncertain about) some proposition (see Heritage, 1984b; Local, 1996). And if that wasn’t convincing enough, we also find the IF hedging (see Grundy, 1995: 41f) four of his utterances with ‘I think’ and one with ‘I wonder’ (again, signs of uncertainty and possible confusion) and the IG twice making apologies with ‘sorry’ for the apparent confusion.

But despite all this confusion, the IF does not initiate an instruct = time-out game. And that is the very essence of this extract.
46
*E 131 IG instruct
*TA 150
And then just* directly: south
*TB 185
/(LS) >And then<*

46.1
*TB 185
Directly (.) {eyebrow flash} south? (.) Not south-east?
*TA 151
No south
*TB 187
Oh south
*End 132

*TA 152
And then er () south er () er east

46.2
*TB 188
>(huh)< Oh - so after going south a bit we go south-east.
//Mm' (LS)'*/

46.3
*TA 153
//And* there’s a anchor
*TB 189
Mm
*End 134

*TA 154
er it’s er about () half an inch up it s- stops /it finish*
*TB 190
"Half an inch"* Oh I see.
*C liar

46.4
*TB 190 ctd
Is is the anchor- *
*End 135

46.5
*TB 190 ctd
Do you have a flag anywhere on your (1.5) page - "on your map"*
*TA 155
/F- f- a flag. /Er* as yes
*TB 191
"Mm"*
Yeah.

46.6

*TB192 ctd

It's sort of um (LS) it's in two inches from the- from the bottom (.) and (.) slightly left of centre (.)/so>>sort of<</ down there?

*TA156

/Er*

*TA157

() Er yeah

46.6.1

*TA157 ctd

but er /the* er flag is er () half an inch up

*TB193

/(LS) Yeah?*

46.6.1.1

*TB194

() Yeah - from the bottom of the page (1.5) "do you mean or?"

46.6.1.2

*TA158

Er no /it's* er () flag i- er () the flag

*TB195

/'Oh.*'

*End 139

*TB196

Mm?

*End 140

*TA159

And er er half an inch up is [~] the () er map readings

*TB197

Oh I see, {upward nod} yeah.

*End 138

46.6.2

46.6.2.1

*TB197 ctd

(LS) So - () So the - i- Where is the anchor relative to the flag? Is it

*TA160

(hhhhh/h)(h)(ha*ha)/(hhh)(hhh)*

46.6.2.1.1

*TB197 ctd

/sort of*/ /Is (hh)(ha)=I* think /my anchor's*

*TA

/(•HHH)*
in a different place* but

/ (LS)*

Aah / yeah*

/ I think* um

(LS) Is it - is the anchor -

/ (LS) my anchor is about four or five inches () to the {deixis} right and slightly below the flag (1.0) it’s - as I say it’s right in the bottom (.) right hand corner (1.0) (LS) right next to the sea

(0.7) N- / no*

/ No*

/ {head shake) No. It’s another flag.
*C G is answering the wrong thing: F is talking about the anchor not the flag!
*C which is not really surprising though because of distance of subj.

Ah

/ (LS)

Sorry

/ (LS)

Oh you’ve got a flag down there

Er there about er () er () er

Mm

/ (LS)

/ (LS)
Okay. So I was rather getting confused
So confused that his syntax goes to pot!

an- So you've got a flag down there so maybe your anchor is where my flag is I wonder (haha) (hhh)

um (LS) So is the anchor sort of almost (.) due south of the axe?

(2.3) Er sorry er /the* axe axe

(•hh) er due south

South but {iconic} s:lightly to the right (.) um=

Y:::es

{nod} Oh I see!

(.) I think that was where I /*came**

() went up a bit
er to the hills er {iconic/deixis} over the hills

Mm

(.) er for () three quarters of an inch

Yeah.

And er then

Yeah

er go {deixis} due south

From there (.) to the anchor

Well er a little bit (.)

Yeah

fur- er not () er anchor

Yeah

And a-bout half an inch

Mm

er () before the anchor

{upward nod} Mm

it stops

MA Reply-w ctd.

(LS) Oh I see! () Okay.

*End 155

*End 154

So I think
8.2.2.5 queries

This final section on refined game analysis focuses on the various types of query.

<table>
<thead>
<tr>
<th>Game</th>
<th>No. of IF games in the ADC</th>
<th>% of IF games in the ADC</th>
<th>No. of IF games in the CDC</th>
<th>% of IF games in the CDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>query-w (QW)</td>
<td>21</td>
<td>4.73</td>
<td>17</td>
<td>6.15</td>
</tr>
<tr>
<td>query-w alt (QWA)</td>
<td>13</td>
<td>2.94</td>
<td>5</td>
<td>1.79</td>
</tr>
<tr>
<td>query-w alt = instruct (QWAI)</td>
<td>1</td>
<td>0.22</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>query-w hearing check (QWHC)</td>
<td>0</td>
<td>0.00</td>
<td>1</td>
<td>0.24</td>
</tr>
<tr>
<td>query-w = instruct (QWI)</td>
<td>7</td>
<td>1.50</td>
<td>3</td>
<td>1.26</td>
</tr>
<tr>
<td>query-w prod (QWP)</td>
<td>16</td>
<td>2.19</td>
<td>6</td>
<td>2.18</td>
</tr>
<tr>
<td>query-w prod = instruct (QWPI)</td>
<td>2</td>
<td>0.26</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Total query-ws</td>
<td>60</td>
<td>11.84</td>
<td>32</td>
<td>11.62</td>
</tr>
<tr>
<td>query-yn (QYN)</td>
<td>62</td>
<td>12.28</td>
<td>29</td>
<td>11.46</td>
</tr>
<tr>
<td>query-yn = instruct (QYNI)</td>
<td>1</td>
<td>0.34</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Total query-yns</td>
<td>63</td>
<td>12.62</td>
<td>29</td>
<td>11.46</td>
</tr>
<tr>
<td>Total queries</td>
<td>123</td>
<td>24.46</td>
<td>61</td>
<td>23.08</td>
</tr>
</tbody>
</table>

Table 8-23: Refined Query Games

We will deal with each refined subtype of query in turn.
8.2.2.5.1 query-yn = instruct (QYNI)

Our refined analysis for query-yns now includes the presence of one IF query-yn = instruct (QYNI) game in the AD. We have seen this as Extract 7-11 in §7.2.2.5.1 but repeat it here for convenience as Extract 8-20:

Extract 8-20 BA & GW

*E 31 IG explain meta ling
*TA042
"Mm" () *(LS)' And er () anoe () (hhh) "icoo- no" () anoe "oh dear - sorry"
*MA Explain
*MA Explain meta ling = interjection
*End 31

*E 32 IF query-yn = instruct em
*TB039
→ Can you spell it?
*MB Query-yn = instruct

*TA043
() {iconic gest: C} [s: /s:]*
*MA Reply-w = instruct multi modal

Although this game is an indirect speech act (formally a yes-no question, but functioning as an instruction) we must treat the QYNI as a simple QYN and so we restate our basic analysis: in the ADC, QYNs account for 51.6% (12.62/24.46) of all queries; in the CDC the proportion is 49.7% (11.46/23.08). These figures are close to each other, but we do still have some indication that the ADC favours the restricted, forced-choice yes-no question more than the CDC does.

This ADC preference for forced-choice questions can also be seen in our refined analysis of open-ended queries as we will now discuss.

8.2.2.5.2 query-w alt (QWA)

In our basic analysis we found no great difference in the proportions of IF QWs in the two corpora (see §8.2.1.2). But when we look at a refined analysis of queries the differences become slightly clearer.
Below is the image of one page of a document, as well as some raw textual content that was previously extracted for it. Just return the plain text representation of this document as if you were reading it naturally.

Game	No. of IF games in the ADC	% of IF games in the ADC	No. of IF games in the CDC	% of IF games in the CDC
query-w (QW) | 21 | 4.73 | 17 | 6.15
query-w alt (QWA) | 13 | 2.94 | 5 | 1.79
query-w alt = instruct (QWA) | 1 | 0.22 | 0 | 0.00
query-w hearing check (QWHC) | 0 | 0.00 | 1 | 0.24
query-w = instruct (QWI) | 7 | 1.50 | 3 | 1.26
query-w prod (QWP) | 16 | 2.19 | 6 | 2.18
query-w prod = instruct (QWPI) | 2 | 0.26 | 0 | 0.00
Non-Forced-Choice Queries | 46 | 8.68 | 27 | 9.83
Forced-choice Qws | 14 | 3.16 | 5 | 1.79
Total query-ws | 60 | 11.84 | 32 | 11.62
Total queries | 123 | 24.46 | 61 | 23.08

Table 8-24: Refined Query Games

Of all the IF QWs in the ADC, 26.7% are forced-choice alternative queries (3.16/11.84). In the CDC this proportion is 15.4% (1.79/11.62).

If we now combine our refined analyses for QWs (Table 8-24) and QYNs (Table 8-23) into an account of forced-choice versus non-forced-choice questions then we get the following results:

<table>
<thead>
<tr>
<th>Game</th>
<th>No. of IF games in the ADC</th>
<th>% of IF games in the ADC</th>
<th>No. of IF games in the CDC</th>
<th>% of IF games in the CDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-forced-choice queries</td>
<td>46</td>
<td>8.68</td>
<td>27</td>
<td>9.83</td>
</tr>
<tr>
<td>forced-choice queries</td>
<td>77</td>
<td>15.78</td>
<td>34</td>
<td>13.25</td>
</tr>
<tr>
<td>Total queries</td>
<td>123</td>
<td>24.46</td>
<td>61</td>
<td>23.08</td>
</tr>
</tbody>
</table>

Table 8-25: Open versus Closed Query Games

In the ADC, forced-choice queries (query-yns and forced-choice query-ws) account for 64.5% of all queries (15.78/24.46) and in the CDC the proportion is 57.4% (13.25/23.08). This ADC preference for forced-choice (closed) questions fits in well with our claim that in the process of doing being ordinary (not highlighting non-competence), new interactional business which might generate unnecessary sequences...
will tend to be avoided by the non-aphasic IF: with a forced-choice question, the possibilities for the content of the next turn are so limited that the risk of generating unnecessary sequences is negligible. To reiterate a point made in §6.2.2.5.1, when faced with a linguistically impaired interlocutor, the non-impaired interactant not only constrains the content of their partner’s next turn, but they do so explicitly in the hope that the will be leaving very little room for misunderstanding.

8.2.2.5.3 query = instruct

<table>
<thead>
<tr>
<th>Game</th>
<th>No. of IF games in the ADC</th>
<th>% of IF games in the ADC</th>
<th>No. of IF games in the CDC</th>
<th>% of IF games in the CDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>query-w alternative = instruct</td>
<td>1</td>
<td>0.22</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>query-w = instruct</td>
<td>7</td>
<td>1.50</td>
<td>3</td>
<td>1.26</td>
</tr>
<tr>
<td>query-w prod = instruct</td>
<td>2</td>
<td>0.26</td>
<td>3</td>
<td>1.26</td>
</tr>
<tr>
<td>query-yn = instruct</td>
<td>1</td>
<td>0.34</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Total query = instructs</td>
<td>11</td>
<td>2.32</td>
<td>3</td>
<td>1.26</td>
</tr>
<tr>
<td>Total queries</td>
<td>123</td>
<td>24.46</td>
<td>61</td>
<td>23.08</td>
</tr>
</tbody>
</table>

Table 8-26: Query = Instruct Games

We also find that in the ADC the non-impaired IF initiates a greater percentage of games that are formally queries but functionally instructs: 9.5% in the ADC (2.32/24.46), but only 5.5% in the CDC (1.26/23.08).

These games are the query-yn = instruct game (QYNI) that we have just seen above, as well as query-w = instruct (QWI) games (such as in Extract 6-27 from §6.2.2.5.2 which we repeat here for convenience as Extract 8-21).

Extract 8-21 HL & GW

*TB014 ctd
OK I'll draw in a pine tree then. (DRAWS) OK (1.4)

*E 19 IF query-w = instruct
*TB014 ctd
→ So, where do I go next?
*MB Query-w = instruct

*TA012
You go round the pine tree.
*MA Reply-w = instruct
As we have said before, the use of query = instructs is odd: given the roles of the two participants, it is not the IF’s job to initiate instructions. Yet despite the oddness of these games, the IFs initiate 11 of them in the ADC as a whole. Again I suggest that this is so because the query = instruct is a means of constraining the content of partner’s next turn, and, by doing this, the potential for extended sequences can be avoided.

Yet we should account for the three QWIs that are to be found in the CDC: if the risk of extended sequences generating misunderstandings is slight with unimpaired partners, why do we find such restricting IF behaviour? Two of these QWIs have already been discussed in §7.2.2.5.3: they come from the dialogue between DL & GW and our argument pointed towards the possibility that GW was treating DL very much like she treats her dysphasic partner. That just leaves the QWI in the CD between TS & MB. We present this QWI in Extract 8-22 below and then discuss why its presence is mitigated.18

Extract 8-22 TS & MB

*TA29 (-hh) An::d () you start coming in um in um you start (.) bearing (.) right on your way down.

*TB41 Mm?=

TA30 =You see a pig? You have /a pig on your map?

TB42 /(LS) (-hhh) That’s it yes: "I’ve got °°"

*TA31 >You have a pig on your map.<=

*TB43 =>"Yeah."<=

TA32 =You pass down below the pig, keep/ing the pig on your right hand side

*TB44 /*Mm°*

*TB45 Yeah?=

*TA32 ctd =as you’re going down.=

TB46 =//"Mm.°

TA33 =//By the time you get to (-hh) below the pig,

*TB47 Mm?

*TA34 you’re passing by (.) almost straight. (.) with the pig on your right,=

*TB48 =Mm

18 NB: Because the prior context of the QWI will be important to our discussion, this extract is rather long. For that reason we have excluded all but the relevant coding. To further conserve space we indicate points of interest in bold type.
you’re walking along.

=//Mm*

=//and then* you: um (-hh) <start to bear left.>

(LS)

& C sign of overload?

and you /start* to go in a southerly direction again passing a pine.

//--Yeah.--*

(LS)=

& C sign of overload?

=You pass the pine tree. /Do you have a* pine tr/ee?*

/Ah {hand to chin}*/ A do*n't have 'a

↓ pine tree no.↓ =

'Righ#t! /Okay.' Well you* pass a pine tree which you keep on your left

'So.*

Mm. (LS) {hand to head} 'X'=

& C sign of overload?

& C this ‘X’ is an attempt to gain the floor

=Beyond the pine tree is a lake.

//(-hhh)*

& C trying to gain floor

"But* erm the=

"Right."

The lake and the pine tree are both on your left hand si/de* as

"(LS)*

you’re pro/ceeding* south.

"(LS)* O:kay.*

So after the X- I’ve gone under (.) where pig is,

& MB Query-w = instruct

& MB Explain = Acknowledge

& C this qwi is really a request for a recap rather than something new

"(LS)* Yeah! /You proceed*

//And then: "(LS)* so I’d sort of

& MB Query-w = instruct cont

You proceed further along /and then* you start () to bear: ""(LS)"" left and

Yeah*
So how is this IF QWI more ‘acceptable’ in this particular CD? We believe there are six main reasons:

1. The IF is trying to follow a complicated and extended instruction from the IG that started 28 turns previously (in *TA29).

2. On six occasions (at *TB50, *TB52, *TB54, *TB55, *TB56 and *TB58) the IF attempts to make his problems known before embarking on the restrictive QWI in *TB59 and *TB60.

3. As this extract indicates, this particular IG (TS) has a dominant, strong-willed personality (I know him personally) – with skilled (yet prolonged) use of instalment intonation he maintains his own agenda with little regard to his dialogue partner. It is therefore hardly surprising that the IF feels somewhat daunted and unsure of his ability to break into the IG’s floor.

4. As we have indicated in the *C code at *TB59 this IF QWI is really a request for a recap rather than for some new information.

19 Witness his far from helpful response in *TA37.
5. The QWI is couched in very vague terms which is (retrospectively) perhaps more akin to a query-w prod (cf. the immediately following section). The two IF QWIs in the control dialogue with DL on the other hand are highly explicit in their request for instruction as we can see from the following extracts.

Extract 8-23 DL & GW

*E 42 IF query-w = instruct
*TA050 ctd
>(*hhh)< So what do I do with the wall?
*Mb Query-w

Extract 8-24 DL & GW

*E 14 IF query-w = instruct aban self
*TB012 ctd
//So where* do I go:
*Mb Query-w = instruct aban self
*End 14

6. Finally at *TB66, in order to ‘get this right’, the IF produces a fully explicit ITO (a game which we have seen occurs only in the CDC).

Given these arguments, we believe that Extract 8-21 clearly has a very CD feel about it and as such we are not too disturbed at the presence of the IF QWI.

8.2.2.5.4 query-w prod (QWP)

The final subtype of query is the query-w prod (QWP) which we have earlier described as an unspecific query which asks partner to produce more (next-stage-of-the-task-relevant) talk.

<table>
<thead>
<tr>
<th>Game</th>
<th>No. of IF games in the ADC</th>
<th>% of IF games in the ADC</th>
<th>No. of IF games in the CDC</th>
<th>% of IF games in the CDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>query-w prod (QWP)</td>
<td>16</td>
<td>2.19</td>
<td>6</td>
<td>2.18</td>
</tr>
<tr>
<td>query-w prod = instruct (QWP)</td>
<td>2</td>
<td>0.26</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Total query-w prods</td>
<td>18</td>
<td>2.45</td>
<td>6</td>
<td>2.18</td>
</tr>
<tr>
<td>Total queries</td>
<td>123</td>
<td>24.46</td>
<td>62</td>
<td>23.08</td>
</tr>
</tbody>
</table>

Table 8-27: Query-w prod Games
In our discussion of previous dialogues we found no instances of this game type in either of the aphasic dialogues. For the corpora as a whole, however, we find very slightly more prodding in the ADC (10% of all queries [2.45/24.46]) than in the CDC (9.4% [2.18/23.08]). So should we be troubled? By now our negative response will come as no surprise. Why? We repeat a point made in §6.2.2.5.3: a QWP makes for a very weak initiator which will always carry with it the potential danger of additional, unexpected sequences of talk – which can be tolerated if your interlocutor is a ‘normal’ but not if they are impaired. It is therefore in keeping with doing being ordinary that all 18 of the ADC prods just happen to occur in interactions with the two aphasic IGs who are the most confident and the most linguistically able of all the ‘impaired’ subjects (MD [10 prods] and GM [8 prods]).

8.2.2.5.5 query-w proper

Having discussed the various subtypes of query-w, we will consider the query-w proper.

<table>
<thead>
<tr>
<th>Game</th>
<th>No. of IF games in the ADC</th>
<th>% of IF games in the ADC</th>
<th>No. of IF games in the CDC</th>
<th>% of IF games in the CDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>query-w (QW)</td>
<td>21</td>
<td>4.73</td>
<td>17</td>
<td>6.15</td>
</tr>
<tr>
<td>query-w alt (QWA)</td>
<td>13</td>
<td>2.94</td>
<td>5</td>
<td>1.79</td>
</tr>
<tr>
<td>query-w alt = instruct (QWAI)</td>
<td>1</td>
<td>0.22</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>query-w hearing check (QWHC)</td>
<td>0</td>
<td>0.00</td>
<td>1</td>
<td>0.24</td>
</tr>
<tr>
<td>query-w = instruct (QWI)</td>
<td>7</td>
<td>1.50</td>
<td>3</td>
<td>1.26</td>
</tr>
<tr>
<td>query-w prod (QWP)</td>
<td>16</td>
<td>2.19</td>
<td>6</td>
<td>2.18</td>
</tr>
<tr>
<td>query-w prod = instruct (QWPI)</td>
<td>2</td>
<td>0.26</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Total (basic) query-ws</td>
<td>60</td>
<td>11.84</td>
<td>32</td>
<td>11.62</td>
</tr>
</tbody>
</table>

Table 8-28: Refined Query-w Games

From Table 8-28 we see that our basic analysis actually showed a slightly greater proportion of IF query-ws in the ADC compared to the CDC. This did not support our doing being ordinary hypothesis. However, if we look beyond the isolated query-w proper and consider the distribution of open-ended versus restrictive query-w games we find that we get results that are hypothesis-friendly.
For the two corpora the only type of truly open-ended query-w is the *query-w proper* (including *prod* and *hearing check* query-ws) since restrictive query-ws embrace *query-w = instruct* games as well as the *forced-choice query-w alt* that was discussed in §8.2.2.5.2. We provide the figures for these combined groups in Table 8-29.

<table>
<thead>
<tr>
<th>Game</th>
<th>% of IF games in the ADC</th>
<th>% of IF games in the CDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>query-w (QW)</td>
<td>4.73</td>
<td>6.15</td>
</tr>
<tr>
<td>query-w hearing check (QWHC)</td>
<td>0.00</td>
<td>0.24</td>
</tr>
<tr>
<td>query-w prod (QWP)</td>
<td>2.19</td>
<td>2.18</td>
</tr>
<tr>
<td>Open-ended query-ws</td>
<td>6.92</td>
<td>8.57</td>
</tr>
<tr>
<td>query-w alt (QWA)</td>
<td>2.94</td>
<td>1.79</td>
</tr>
<tr>
<td>query-w alt = instruct (QWAI)</td>
<td>0.22</td>
<td>0.00</td>
</tr>
<tr>
<td>query-w = instruct (QWI)</td>
<td>1.50</td>
<td>1.26</td>
</tr>
<tr>
<td>query-w prod = instruct (QWPI)</td>
<td>0.26</td>
<td>0.00</td>
</tr>
<tr>
<td>Restrictive query-ws</td>
<td>4.92</td>
<td>3.05</td>
</tr>
<tr>
<td>Combined (basic) query-ws</td>
<td>11.84</td>
<td>11.62</td>
</tr>
<tr>
<td>% of Open-ended query-ws</td>
<td>58.45</td>
<td>73.75</td>
</tr>
<tr>
<td>% of Restrictive query-ws</td>
<td>41.55</td>
<td>26.25</td>
</tr>
</tbody>
</table>

Table 8-29: Refined Query Games

What we find, then, is that although open-ended query-ws account for approximately 58% (6.92/11.84) of all query-ws in the ADC, in the CDC this proportion is closer to 74% (8.57/11.62). Looking from the other side of this query-w coin, we see that 42% of all queries in the ADC are somehow restrictive in their nature while in the CD only 26% of all queries are restrictive. These results fit in well with our *doing being ordinary* hypothesis since the use of restrictive types of query-w game (i.e. those that simplify the interaction by reducing the number of appropriate types of relevant next turn) is more prominent in the ADC than in the CDC. We will reiterate this point in §8.2.5.1 when we discuss simplificatory moves more fully.
For any given game we distinguish between three types of closure:

- implicit self-closure at position 1 (= turn A1 and occasionally turn An)
- explicit other-closure at position 2 (= turn B1, B2, B3, ...)
- explicit self-closure at position 3 (= turn A2, A3, A4, ...)

We therefore have a three-way distinction of game closure: passive, active and super-active (respectively). This is subcategorised yet further according to which participant initiated the game. Hence we talk of IG and IF passive closure, IG and IF active closure, and IG and IF super-active closure. (For further discussion see §6.2.3.)

Hypothesis

In the ADs, irrespective of the game initiator, we have stated that we would expect that the acceptance of contributions would, in the majority of cases, tend to be done by the non-aphasic IF (because we have seen that it is the non-aphasic who seems to do more of the communicative work). This predicts that, for ADC IG-initiated games, more active closure will come from the IF rather than super-active closure from the IG. It also predicts that if there is to be increased active closure from the non-impaired IFs in the ADC in IF-initiated games then that closure will necessarily have to be super-active.

The results obtained are presented in Figure 8-30 for the CDC and 8-31 for the ADC. As before, each pie chart deals with the proportions of the various types of closure with the left half of each chart representing IF-initiated games and the right half representing IG-initiated games. For this reason, all percentages quoted are actually double those that appear on the charts themselves. Thus, as we see from Figure 8-30 in the CDC, of all the IF-initiated games 30.28% (two times 15.14%) are passively closed (by definition, passively closed by the IF).
The results obtained for the corpora confirm the hypothesis: there is more IF-closure in the ADC than in the CDC:

- 71% of IG-initiated games in the ADC versus 60.8% in the CDC (Difference = 10.2%)

- 68.0% of ADC IF-initiated games versus 64.8% in the CDC (Difference = 3.2%)
But not only is there more IF closure in the ADC than the CDC, it is the active and super-active type of IF closure that our hypothesis predicts:

- 71% of ADC IG games are actively closed versus 60.8% in the CDC
 (Difference = 10.2%)
- 42.9% of ADC IF games are super-actively closed versus 34.6% in the CDC
 (Difference = 8.3%)

Thus it would seem that we have yet further evidence that the non-impaired partners are taking on more of the communicative burden (in this case the burden of establishing mutual acceptance) when conversing with a linguistically impaired partner.

The sceptic may be wondering about the effect of DL’s passivity that we saw in §7.2.3. We will address that issue presently. First, we must point out that DL’s passivity is not the only unusual behaviour worthy of note: not only do we have a CD which looks more like an AD (DL & GW), we also have an AD that looks like more like a CD (GM & ND), as we can see from Figure 8-32 (i.e. more AA than BSA closure):

If we ignore the deviant closure data from these two dialogues (AD: GM & ND and CD: DL & GW), we get the following closure graphs:

Chapter 8: Corpus Results

Figure 8-32: Game Closure in GM & ND
Figure 8-33: CDC Game Closure without DL & GW

Figure 8-34: ADC DC Game Closure without GM & ND
The results still favour our hypothesis – there is even more IF-closure in the ADC than in the CDC (especially so for IG-initiated games):

- 73.8% versus 56.8% of the IG-initiated games (Difference = 17%)
- 70.6% versus 61.6% of the IF-initiated games (Difference = 9%)

But not only is there more IF closure in the ADC, the active and super-active type of IF closure that our hypothesis predicts for the ADC is now even more exaggerated:

- 73.8% of ADC IG-initiated games are actively (IF) closed versus 56.8% in the CDC (Difference = 17%)
- 44.3% of ADC IF-initiated games are super-actively (IF) closed versus 32.8% in the CDC (Difference = 11.5%)

Before we leave the subject of game closure we must make it clear that we did investigate the effect of abandoned games on closure. Briefly, our thinking was this: passive closure due to an abandoned game is qualitatively very different from a game that is passively closed yet complete in its discourse contribution. Taking it to the extreme one could argue that abandoned games are not passively closed because they are not actually ‘closed’ at all – they are abandoned, left high and dry eventually to disappear into the surrounding air. Consequently, abandoned games that are not closed can have no place in an account of game closure.

For a concrete consequence, consider the possibility that in the ADs all passive closures were due to abandonment yet in the CDs all passive closure was truly but non-actively closed. Such a scenario would erroneously provide us with evidence in favour of our hypothesis. Heaven forfend. Thus, lest we be criticised for fudging results, we reanalysed all game closures excluding all abandoned games.

The outcome? Excluding abandoned games from analysis made no difference: the results still favour our hypothesis – there is more IF-closure in the ADC than in the CDC.
(especially so for IG-initiated games) and the active and super-active type of IF closure that our hypothesis predicts for the ADC is still exaggerated.20

20 These findings hold whether we consider all 16 dialogues (Tables 8-30 and 8-31) or all except GM3 and DL1 (Tables 8-32 and 8-33).

<table>
<thead>
<tr>
<th>Pre-Exclusion of Abandoned Games (All 16 Dialogues)</th>
<th>ADC</th>
<th>CDC</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>% IF closure of IG-initiated games</td>
<td>71.0</td>
<td>60.8</td>
<td>10.2</td>
</tr>
<tr>
<td>% IF closure of IF-initiated games</td>
<td>68.0</td>
<td>64.8</td>
<td>3.2</td>
</tr>
<tr>
<td>% IF active closure of IG-initiated games</td>
<td>71.0</td>
<td>60.8</td>
<td>10.2</td>
</tr>
<tr>
<td>% IF super-active closure of IF-initiated games</td>
<td>42.9</td>
<td>34.6</td>
<td>8.3</td>
</tr>
</tbody>
</table>

Table 8-30: Pre-Exclusion of Abandoned Games from all 16 dialogues

<table>
<thead>
<tr>
<th>Post-Exclusion of Abandoned Games (All 16 Dialogues)</th>
<th>ADC</th>
<th>CDC</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>% IF closure of IG-initiated games</td>
<td>72.3</td>
<td>62.4</td>
<td>9.9</td>
</tr>
<tr>
<td>% IF closure of IF-initiated games</td>
<td>65.3</td>
<td>62.1</td>
<td>3.2</td>
</tr>
<tr>
<td>% IF active closure of IG-initiated games</td>
<td>72.3</td>
<td>62.4</td>
<td>9.9</td>
</tr>
<tr>
<td>% IF super-active closure of IF-initiated games</td>
<td>46.2</td>
<td>38.3</td>
<td>7.9</td>
</tr>
</tbody>
</table>

Table 8-31: Post-Exclusion of Abandoned Games from all 16 dialogues

<table>
<thead>
<tr>
<th>Pre-Exclusion of Abandoned Games (Not including GM3 and DL1)</th>
<th>ADC</th>
<th>CDC</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>% IF closure of IG-initiated games</td>
<td>73.8</td>
<td>56.8</td>
<td>17.0</td>
</tr>
<tr>
<td>% IF closure of IF-initiated games</td>
<td>70.6</td>
<td>61.6</td>
<td>9.0</td>
</tr>
<tr>
<td>% IF active closure of IG-initiated games</td>
<td>73.8</td>
<td>56.8</td>
<td>17.0</td>
</tr>
<tr>
<td>% IF super-active closure of IF-initiated games</td>
<td>44.3</td>
<td>32.8</td>
<td>11.5</td>
</tr>
</tbody>
</table>

Table 8-32: Pre-Exclusion of Abandoned Games from all dialogues except GM3 and DL1

<table>
<thead>
<tr>
<th>Post-Exclusion of Abandoned Games (Not including GM3 and DL1)</th>
<th>ADC</th>
<th>CDC</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>% IF closure of IG-initiated games</td>
<td>75.4</td>
<td>58.6</td>
<td>16.8</td>
</tr>
<tr>
<td>% IF closure of IF-initiated games</td>
<td>67.9</td>
<td>58.7</td>
<td>9.2</td>
</tr>
<tr>
<td>% IF active closure of IG-initiated games</td>
<td>75.4</td>
<td>58.6</td>
<td>16.8</td>
</tr>
<tr>
<td>% IF super-active closure of IF-initiated games</td>
<td>47.7</td>
<td>36.4</td>
<td>11.3</td>
</tr>
</tbody>
</table>

Table 8-33: Post-Exclusion of Abandoned Games from all dialogues except GM3 and DL1
8.2.4 basic moves

Figure 8-35 represents the distribution of IF-initiating moves as a mean percentage of the total number of IF-initiating moves in each of the two corpora.

![Figure 8-35: Mean Basic IF Initiating Moves in the ADC and CDC](image)

On its own Figure 8-35 is not very illuminating. But when it is compared with the IF-initiated game profile (Figure 8-25, repeated for convenience below as 8-36) we find a slight increase in the ratios of ADC to CDC Align and Check moves whereas there is a slight decrease for all other move types.
This is shown more clearly in Figure 8-37 where the ratio of ADC moves to CDC moves of a given type are represented in black dots and the ratio of ADC games to CDC games in green stripes. So for example, we see that in the ADC there were almost 1.03 times as many align games initiated as in the CDC, but this ratio increases to just under 1.4:1 for the corresponding Align moves.
In other words, in the ADC, IF-initiated align and check games consume more initiating communicative effort (corresponding initiating moves) on the part of the non-impaired IF than in the CDC. What this means is that it takes more initiating Align21 and Check moves to complete the corresponding IF games in the ADC than the CDC. All other IF-initiated games (explains, instructs and queries), on the other hand, consume slightly less IF communicative effort in the ADC than they do in the CDC.

The apparent effort invested into IF align games is particularly perturbing since (as discussed in §8.2.2.2) these games are potentially face-threatening to the linguistically impaired IG. However, we will soon see (indeed in the very next section) that yet again our apparently deviant data are in fact quite acceptable and explainable.

8.2.5 refined move analysis

This profile refines the analysis for superordinate initiating moves by analysing the moves according to their subtype. Although this analysis is similar to our earlier refined analysis of game initiation (§8.2.2), we deal with the subordinate moves separately in order to include a discussion of simplificatory moves and simplificatory riders.

21 NB: This is a basic move analysis: ‘Align’ embraces Align, Align task and Align retrace. As it happens, the extra consumption of communicative effort is entirely due to Align task and Align retrace moves. (It will become apparent why this distinction is important in §8.2.5.1.1.)
8.2.5.1 simplificatory moves

By now it should be clear that our general thesis is that in the process of helping their dysphasic interactant do being ordinary, non-aphasics will tend to avoid new interactional business which might otherwise generate unnecessary sequences and thereby highlight non-competence.

From this we would expect there to be higher proportions of simplificatory devices in the ADC than in the CDC. These results are presented below in Figures 8-38 to 8-46 which represent the distribution of all IF initiating moves in the two corpora. Figure 8-38 concerns moves that simplify the dialogue by making the interaction explicit (Explicit Simplification). Figure 8-43 concerns moves that restrict the possibilities for the next relevant turn (Reduction Simplification). Figures 8-45 and 8-46 concern non-simplificatory initiating moves. We will interpret each graph before discussing the next.

8.2.5.1.1 explicit simplification

![Figure 8-38: Explicit IF Moves in the ADC and CDC](image-url)

Figure 8-38: Explicit IF Moves in the ADC and CDC

22 Unless otherwise stated, percentages of moves are expressed as a proportion of all IF initiating moves.
<table>
<thead>
<tr>
<th>Move</th>
<th>No. in the ADC</th>
<th>% in the ADC</th>
<th>No. in the CDC</th>
<th>% in the CDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Align</td>
<td>7</td>
<td>1.69</td>
<td>2</td>
<td>0.46</td>
</tr>
<tr>
<td>Explain = Acknowledge</td>
<td>35</td>
<td>7.85</td>
<td>28</td>
<td>7.50</td>
</tr>
<tr>
<td>Explain Elicit</td>
<td>32</td>
<td>5.70</td>
<td>33</td>
<td>10.95</td>
</tr>
<tr>
<td>Instruct = Time Out</td>
<td>0</td>
<td>0.00</td>
<td>11</td>
<td>3.79</td>
</tr>
<tr>
<td>Acknowledge = Ready</td>
<td>1</td>
<td>0.18</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Ready</td>
<td>38</td>
<td>6.13</td>
<td>25</td>
<td>7.48</td>
</tr>
</tbody>
</table>

Table 8-34: IF Explicit Moves in the ADC and CDC

Despite what our discussions in Chapters 6 and 7 might have led us to expect, there are no clear-cut corpus results for explicit simplificatory moves. For three of the move types (Align, Explain = Acknowledge and Acknowledge = Ready), there is more IF activity in the ADC. For the other three (Explain Elicit, Instruct = Time Out and Ready), there is more activity in the CDC.

So again we must ask whether this data is damaging to our thesis. And again I will argue that it is not – starting with the easiest to explain.

aligns

In Chapter 6 we noted that Aligns request explicit confirmation that the Hearer has understood the Speaker’s preceding contribution(s), thereby potentially bringing linguistic competence to the fore (which may subsequently result in extra sequences of embedded games). Consequently, we might actually expect that these specific explicit move types would be less prominent in the ADC.

That said, the argument put forward for IF align games in §8.2.2.2 also holds for IF Align moves23: although there is four times as much IF alignment in the ADC than in the CDC, we have argued that, contrary to the CDC case, all of the moves in the ADC are not actually disruptive.

Though we have made hints in previous footnotes, what we have not yet explicitly stated in the main text is the observation that our closer inspection of the data has uncovered the existence of two qualitatively distinct types of alignment that we may call Type-P

23 Because every single IF align game in each of the corpora takes only one IF Align move.
Aligns and Type-N Aligns. Both request explicit confirmation that the Hearer has understood/agrees with the Speaker’s preceding contribution(s). However, the distinction between types lies in the Speaker’s expectations as to what the Hearer’s response will be:

- In Type-P Aligns the Speaker only really expects a positive response
- In Type-N Aligns the Speaker expects a positive response but is very aware of the possibility of a negative response

Type-P(positive) Aligns potentially bring linguistic (non-)competence to the fore and, since they are face-threatening, they are therefore probably best avoided in linguistically sensitive interactions.

In contrast, although the Speaker expects a positive response to a Type-N(egative) Align, the Align’s existence provides for the possibility of a sequentially implicated next turn disagreement. Consequently this type of Align is (at least to some degree) face-saving.24

So the benefits of the explicitness of IF Aligns can be harnessed without any of the threatening disadvantages if the Align is

(a) a Type-P Align where the elicited confirmation has already been made explicit in preceding talk (we may call this a P1-Align); or

(b) a Type-N Align

but not if it is a Type-P Align where the elicited confirmation has not already been made explicit in preceding talk (what we may call a P2-Align).

After closer analysis (see §8.2.2.2) we have found that all the explicit IF Aligns in the ADC are either Type-P1 or Type-N and are thus ‘safe’. Consequently the distribution of explicit IF alignment across the two corpora is indeed what we would predict.

24 Admittedly such disagreement will always constitute a dispreferred next turn (see §2.1.5.2.3). But since Hearers’ preferred seconds are related to what the Speakers expect, then if the Speaker has explicitly set up the possibility for next turn disagreement then that disagreement will at least be more authorised than totally unsolicited dissent. In other words, this type of explicit alignment reduces the weightiness of the face-threatening act associated with any next turn disagreement.
instruct = time outs (ITO)

The same is true for ITOs. As we saw in Chapter 6, these are not just moves which make the nature of the on-going dialogue explicit, they are moves which necessarily and specifically orient to the interactional competence of the Hearer. Thus, although this type of move is explicit, the fact that it is less prominent in the ADC is not only not unexpected, it actually supports our overall thesis.

explain elicits (EE)

In §6.2.2.3.1 we suggested that despite being analysed as initiating activity, the existence of EEs is essentially attributable to the dialogue contributions of the other participant and we should therefore not be too discouraged by the apparent anomaly suggested by the unexpected pattern of occurrences that obtains across the two corpora. But, more importantly, we must remember our discussion on the sequential environments of EEs: in §8.2.2.3.1 we noted that those environments were more explicit in the ADC than in the CDC. In short, it is not the quantity of moves but rather the quality of their associated explicit (and reductionist) environments that makes the EE simplificatory.

explain = acknowledge (EA)

The inconclusive results for EAs are slightly more disturbing. In Chapter 6 we argued that fewer EA moves in the AD fitted with our doing being ordinary account while in Chapter 7 we argued for more EAs. Clearly both accounts cannot be correct. Let us remind ourselves of the arguments we proposed for each outcome.

We suggested that more EAs in the AD fitted with our doing being ordinary account because their explicit nature allowed for dialogue simplification and with that the reduction of the threat of extended sequences. Yet we also said that fewer EAs in the AD fitted with our doing being ordinary account in that offering additional information tends to be avoided lest it generate unnecessary sequences. And we also posited an alternative explanation, namely that although EAs are useful because of their explicit simplificatory nature, it is possible that because of their heightened explicitness they are considered to be potentially patronising and therefore tend to be avoided in socially sensitive situations, viz. interacting with a linguistically impaired dialogue partner.
But when we consider all the dialogues because the corpora means for IF EAs are so close to each other (ADC mean = 7.85%, CDC mean = 7.50%) we find that neither position is conclusively supported. So perhaps then there is no clear answer. Or is there? Had we looked only at decontextualised percentages, the non-result would have been much harder to explain. Fortunately we are in the habit of being sensitive to context and here the context that we need to be sensitive to is the range of data observations. In particular, we need to beware of extreme outliers or ‘wild observations’.

Now we are aware that discarding data should really be considered an anathema especially if we believe that good work never leads to bad data. However, the traditional method of using the median to deal with data that is contaminated by wild observations is best reserved for samples with a large number of data points (Mosteller & Hoaglin, 1979: 620). For each corpus we have only eight data points and 8 hardly counts as a large n. Consequently, we will set these deviant outliers aside from analysis, and hopefully we will be able to justify doing so!

<table>
<thead>
<tr>
<th></th>
<th>CM3</th>
<th>PK4</th>
<th>TS2</th>
<th>TS3</th>
<th>CM2</th>
<th>DL4</th>
<th>DL1</th>
<th>PK1</th>
</tr>
</thead>
<tbody>
<tr>
<td>EA%</td>
<td>0.00</td>
<td>3.33</td>
<td>5.13</td>
<td>5.26</td>
<td>7.14</td>
<td>7.84</td>
<td>9.09</td>
<td>22.22</td>
</tr>
<tr>
<td>SDs from mean (7.50%)</td>
<td>-1.14</td>
<td>-0.63</td>
<td>-0.36</td>
<td>-0.34</td>
<td>-0.05</td>
<td>0.05</td>
<td>0.24</td>
<td>2.23</td>
</tr>
<tr>
<td>SDs difference</td>
<td>0.51</td>
<td>0.27</td>
<td>0.02</td>
<td>0.29</td>
<td>0.10</td>
<td>0.19</td>
<td>1.99</td>
<td></td>
</tr>
</tbody>
</table>

Table 8-35: IF EAs in the CDC in rank order

From Table 8-35 we see that within the CDC the wildest datum (the furthest (and largest) outlier) is to be found in PK’s dialogue with GW (PK1) – here, EAs account for 22.22% of all IF initiating moves. This is 2.23 standard deviations away from the mean of 7.50%. The next nearest outlier is 9.09% of all IF initiating moves being EAs. This is the dialogue between DL & GW (DL1) which is only 0.24 sds away from the mean. In other words, the wildest (PK1) datum is 1.99 sds away from the next nearest outlier.

Conversely, from Table 8-36 we see that in the ADC the ‘distance’ between the furthest outlier (BA1 at 1.82 sds from the mean of 7.85%) and the next furthest (HL4 at 0.86 sds from the mean) is less than one standard deviation.
In other words, the most deviant CDC datum is wilder than the most deviant ADC datum. Why might this be? Well we have already seen that the dialogue between PK & GW is fraught with miscommunication\(^{25}\) and over-detailed IG input\(^{26}\). It is also noteworthy that PK is the oldest control subject (at 70;3). Although EAs may be face-threatening because of their potentially patronising nature, this sort of behaviour is known to be associated with inter-generational talk (Coupland, Coupland & Giles, 1991: 31).\(^{27}\) If we exclude this dialogue from analysis we find that there is a clearer shift in favour of the ADC as we see in Figure 8-39:

![Figure 8-39: IF EA Moves in the ADC and CDC (excluding dialogue PK1) (2)](image)

However, if we are going to suggest that age might be a related factor then we should really exclude *both* of the dialogues from PK as well as both of those from HL. If we do so the results still show a reverse shift in favour of the ADC (though not as dramatically as when just PK1 was excluded). This is shown in Figure 8-40:

<table>
<thead>
<tr>
<th></th>
<th>GM2</th>
<th>MD2</th>
<th>BA4</th>
<th>MD3</th>
<th>GM3</th>
<th>HL1</th>
<th>HL4</th>
<th>BA1</th>
</tr>
</thead>
<tbody>
<tr>
<td>EA%</td>
<td>1.94</td>
<td>2.63</td>
<td>3.08</td>
<td>4.42</td>
<td>9.38</td>
<td>9.86</td>
<td>12.90</td>
<td>18.60</td>
</tr>
<tr>
<td>SDs from mean (7.85%)</td>
<td>-1.00</td>
<td>-0.88</td>
<td>-0.81</td>
<td>-0.58</td>
<td>0.26</td>
<td>0.34</td>
<td>0.86</td>
<td>1.82</td>
</tr>
<tr>
<td>SDs difference</td>
<td>0.12</td>
<td>0.07</td>
<td>0.23</td>
<td>0.84</td>
<td>0.08</td>
<td>0.52</td>
<td>0.96</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Table 8-36: IF EAs in the ADC in rank order

\(^{25}\) See Extract 6-32 in §6.2.2.5.3 pertaining to map reversal.

\(^{26}\) See Extracts 6-20 and 6-21 in §6.2.4.4.2 pertaining to IF ITOs because of information overload.

\(^{27}\) When in dialogue with PK, GW was 22 years and 5 months old.
So of the six Explicit Simplificatory Move types, three (Align, ITO, and EE) can be argued to conform to our doing being ordinary expectations. Furthermore, we have also suggested that although the EA may be an explicit simplificatory move it might have just as much to do with the age of the recipient as their linguistic abilities. Alternatively, the inherent patronising face-threat associated with the EA might be proving too costly to employ it as a simplificatory device with the aphasic IGs. Either way, the results for EAs are not too worrying.

ready

Having dealt with four of the six explicit move types, it is only the unexpected distribution of Ready moves that is particularly perturbing.\(^2^8\)

Apart from including the one case of an Acknowledge = Ready move with all the other Ready moves (which we have done in all subsequent analyses), the only other way that we might try to account for these results is again to appeal to extreme outliers in the data.

\(^2^8\) Especially since Anderson *et al.* (1997) found that IF Ready moves were helpful with respect to task success.
In the CDC, the dialogue in which there is a disproportionately high percentage of IF Ready moves is DL4 (the dialogue between DL & DN). If we exclude these data points (and include the Acknowledge = Ready with all the other Ready moves), the results begin to favour the explicit Ready in the ADC. We can see this in Figure 8-41.

As we see from Table 8-38, there are no really wild outliers in the ADC data (the standard deviations difference between next nearest data points is at most 0.59 sds).
Despite this regularity in the ADC data, to be fair, if we are going to exclude DL4 then we should also exclude the data from the aphasic dialogue that corresponds to DL4, namely BA4 (the dialogue between BA & DN). If we do so we find that, although we still get a result that favours the use of the explicit Ready in the ADC, this preference is only marginal, as we can see in Figure 8-42.

![Figure 8-42: IF Ready Moves in the ADC and CDC (excluding outlier DL4 and its corresponding aphasic dialogue BA4)](image)

With percentages of 5.88% (ADC) versus 5.75% (CDC), these results do not greatly point to the Ready move being used more in the ADC than the CDC. Nevertheless, a small difference in favour of our hypothesis (more explicit simplification in the ADC) is better than the result that we had originally which indicated the opposite (see Figure 8-38).

8.2.5.1.2 reduction simplification

Under Reduction Simplification we now consider moves that reduce the possibilities for the next relevant turn (e.g. forced-choice queries and queries that require an instruction in their partner's next turn). As we can see from Figure 8-43 and Table 8-39, there is proportionately more Reduction Simplification in the ADC across all relevant categories.
If we combine all these moves into just three categories (Alternatives, Instructs and Query-yns) we get an even clearer pattern of results as we see in Figure 8-44 and Table 8-40.

29 Multiply coded categories have been counted under all appropriate superordinate categories: for example, Query-w alt = Instructs have been counted both under Alternatives and Instructs.
Figure 8-44: Combined Reduction IF Moves in the ADC and CDC

<table>
<thead>
<tr>
<th>Reduction Type</th>
<th>No. in the ADC</th>
<th>% in the ADC</th>
<th>No. in the CDC</th>
<th>% in the CDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternatives</td>
<td>18</td>
<td>3.15</td>
<td>6</td>
<td>1.79</td>
</tr>
<tr>
<td>Instructs</td>
<td>11</td>
<td>1.87</td>
<td>3</td>
<td>1.02</td>
</tr>
<tr>
<td>Query-yns</td>
<td>69</td>
<td>10.75</td>
<td>32</td>
<td>10.15</td>
</tr>
</tbody>
</table>

Table 8-40: Combined Reduction IF Moves in the ADC and CDC

8.2.5.1.3 non-simplificatory moves

Finally we present the results for non-simplificatory moves. Figure 8-45 shows the distribution of all Check moves in the two corpora. Without exception there is more checking in the ADC than in the CDC.
We obtained similar results in Chapter 7. There we said that the greater checking activity in the AD seems to go against *doing being ordinary*. But we also noted that given the aphasic’s limited output, in order to ground her partner’s contributions GW had very little option but to resort to checking activity – an apparently clear case of having to chose between dispreferred alternatives. Extract 7-1 which we used to show both the limited output of the aphasic IG and the necessity of IF checks is repeated below for convenience as Extract 8-25.
*TA008
And then {measures} () maybe two inches {deixis gest: north} north

*TB007
Two inches north. Okay?

*TA009
'(LS)° {point} And then () oh maybe (.:) two inches (·:hh) as well er
{deixis gest: west} that way. (·:hhh)

*TB008
→ Two inches west.

*TA010
'Yeah.'

*TB009
Okay. Aha

*TA011
And then {point} {measures} oh three inches {deixis gest: north} north /again,*

*TB010
/Aha*

*TB010 ctd
(DRAWS = () Pa/st the* tent

*TA012
'/And-' {deixis gest: east} *

*TA013
Yes {nods}

*TB011
Mhm

*TA014
() (LS)==(·:hh)=And sort of (.:) {deixis gest: north} °there°
{deixis gest: east} there () {deixis gest: east} not () east
{beat gest} exactly but* {deixis gest: north-east} little bit

*TB012
/Mm?*

*TB013
→ Little bit north-east.=

*TA015
"Yes".

*TB014
Okay

*TA016
{visible point} And right at () top

*TB015
Aha - right at the top - aha
It would appear that the use of IF Checks to ground IG contributions seems to carry over into the corpus as a whole. In the benefit-cost war between **grounding** and **doing being ordinary** it is grounding that wins out – but maybe that is because we are dealing with task-oriented dialogue; we would predict that things may well be different in free conversation. In short, the 'unexpected' results for Check moves are not a threat to our overall thesis.

Figure 8-46 and Table 8-42 show the distribution of all other non-simplificatory IF initiating moves in the two corpora.

\(^{30}\) Anderson *et al.* (1997) also report significantly more IF Checks in their ADC compared to their CDC.
Of the seven categories, four (Align task, Explain, Query-w and Query-w hearing check) show greater activity in the CDC (as we would predict).31

Of course, that is the view of the optimist. The pessimist would be quick to note that there are three categories which show greater activity in the ADC. These categories are Align Retraces, Instructs and Query-w prods. Let us deal with this rogue data in order of the ease with which we can dismiss them (which happens to be reverse order).

query-w prods

Although the increased proportion of IF Query-w prods in the ADC is far from excessive (less than 0.21\%), we nevertheless have an explanation to hand (indeed it is the same argument for Query-w prods that we proposed in §6.2.2.5.3). In the ADC all these moves just happen to occur in interactions with the two aphasic IGs who are the most confident and the most linguistically able of all the ‘impaired’ subjects (GM and MD).

instructs

In all the data there are but three direct IF Instructs: two in the ADC and one in the CDC. Those from the ADC are given (stripped of superfluous coding) in Extract 8-26:

31 Anderson et al.’s (1997) ADC results correlate IF Explain and Query-w moves with poor task success.
Extract 8-26: BA & DN

*E 55 IF instruct em

→ >>can you just<< talk me {invisible point} through all the last bit
{invisible trace} again /just*
*MB Instruct

*TA069
/Yes* yes

*TB073 ctd
just so I can make sure I know where /I* I am. (.)
*MB Instruct ctd.
*End 55

*TA070
"(LS)"*

*TB073 ctd
*E 56 IF instruct em

→ Er () can you talk me from the snail onwards "again?"
*MB Instruct

*TA071
"Yes alright" {measures = ()}
*MA Reply-y
*End 56
Two inches er {deixis gest} west and {iconic gest: distance} half way between
() two inches,

*TB074
"Mhm"

These instructs look very much like the Query-yn = instruct in Extract 7-11 that we
discussed in §7.2.2.5.1 (repeated, with additional context, as Extract 8-27):

Extract 8-27: BA & GW

*TA042
"Mm" () "(LS)" And er () anoe () (hhh) "icoo- no" () anoe "oh dear - sorry"

*E 32 IF query-yn = instruct em
*TB039
→ Can you spell it?
*MB Query-yn = instruct

*TA043
() {iconic gest: C} [s: /s:]*

*TB040
/You’re going {deixis gest} to g*o r:-

*TA043 ctd
{iconic gest: C}
In essence, we said that the QYNI in Extract 8-27 is a prototypical indirect speech act (ISA) — although it is formally a yes-no question, it is actually functioning as an instruction. But, we argued, since ISAs can be misinterpreted and responded to as if they were true questions, we treat the utterance as a query that is also an instruct rather than an instruct that is also a query (i.e. we code it as a Query-yn = instruct).

So why, then, did we not code the Instructs in Extract 8-26 as QYNIs? Was it human error in the coding or was some principled distinction being made between the two types of sequence? Our answer is unfortunately lengthy: the time-pressed reader might wish to trust our explanation and skip straight to 'the bottom line'.

Our reasoning follows Morgan (1978), who claims that the type of implicatures associated with the highlighted utterances in Extract 8-26 (can you just talk me through all the last bit again and can you talk me from the snail onwards again?) are in fact so highly conventionalised that language users do not need to go through the lengthy implicature calculation proposed by Grice32:

32 Based on Grice (1975: 50).
(1) S has said *can you talk me from the snail onwards again?*

(2) There is no reason to think that S is not observing the maxims and/or the cooperative principle.

(3) By maintaining the maxims/cooperative principle and saying *can you talk me from the snail onwards again?* S must actually mean *talk me from the snail onwards again*.

(4) S must know that it is mutual knowledge that ‘S means *talk me from the snail onwards again*’ must be supposed if S is taken to be cooperating according to the CP.

(5) S has done nothing to stop H thinking that ‘S means *talk me from the snail onwards again*’

(6) Therefore S intends H to think that ‘S means *talk me from the snail onwards again*’ and so has implicated that ‘S means *talk me from the snail onwards again*’

Instead of going through steps (1) to (6) says Morgan, when we encounter these highly conventionalised utterances, we skip straight from the literal meaning in (1) to the intended implicature in (6).

Morgan calls this type of convention **short-circuited conversational implicature.** And, more specifically, these short-circuited conversational implicatures are conventions not of language but rather of language usage.

Thus speakers know not only that *Can you...* has a certain literal meaning (a convention of language); they know also that using *Can you...* is a standard way of indirectly making a request (a convention of usage). Both are involved in a full understanding by the hearer of what is intended in the use of the expression.

(Morgan, 1978: 274)

Furthermore, an essentially synonymous alternative does not necessarily carry the implicature with it (in Gricean terms, short-circuited conversational implicatures are **detachable**). In the following pairs of examples the (a) sentences all allow short-circuiting but the synonymous (b) sentences do not.

(8-28a) If you’ve seen one thesis on aphasic discourse you’ve seen them all.

(8-28b) You’ve seen them all if you’ve seen one thesis on aphasic discourse.
(8-29a) You can say that again!
(8-29b) You can repeat that again!

(8-30a) How many times have I told you that he’s a professor now?
(8-30b) Tell me how many times I have told you that he’s a professor now.

(8-31a) Well it takes one to know one!
(8-31b) Well it requires one to recognise one!

THE BOTTOM LINE

Our argument for the differential coding, then, is this: we assume that *Can you talk me from the snail onwards again?* is a short-circuited conversational implicature (meaning *talk me from the snail onwards again*), while in this particular context we assume that *Can you spell it?* is not (i.e. it is potentially a literal request about the aphasic’s ability to spell). We must make it clear that we are not saying that it is not possible for *Can you spell it?* to be short-circuited in other situations (indeed it almost certainly is), only that (because of their (spoken and written) language impairments) aphasic interactants might well see the query within the ISA *Can you spell it?* as a real query about their linguistic abilities and are thus more likely to respond to its literal content.

Contrary to the analyst’s expectations, however, we find that in actual fact the aphasic responds to the *form* of the short-circuited implicatures in Extract 8-26 by initially treating them as though they were literal questions by giving explicit ‘yes’ responses, while in Extract 8-27 he responds to the *function* of the QYN1 by proceeding directly with the spelling of *canoe* in *TA043* ([s: s:] being BA’s verbal representation of the letter name ‘C’). We will return to this issue in §8.2.6 which deals with mutations.

In the only IF instruct in the CDC (Extract 8-32) on the other hand, we find that PK responds only to the function of the short-circuited implicature associated with *shall we give Andrew a little wave then.*

Extract 8-32 PK & GW (CD)

*TA164
and that’s you {hard point} up to the finish okay?

*TB184
(LS)=Okay.
So now that we have justified our differential coding between Instructs and QYNIs we must address the issue that there is more IF instruction in the ADC than the CDC.

Again the larger proportion of IF Instructs in the ADC is far from excessive (only 0.15% more in the ADC than in the CDC), but again we have an explanation available. Although we have taken much space in justifying our differential coding, these instructs do look very much like QYNIs. Indeed they look so similar to Query-yn = instructs that maybe we should have labelled the code not simply Instruct but rather as a multi-functional Instruct = query-yn. Well at least we have shown that the coding system was not devised to favour any expected results!

If we had labelled these Instructs as multi-functional Instruct = query-yns (IQYs) then they would have come under the analysis of simplificatory moves and consequently the pattern of results would have been favourable to our thesis and all would have been sweetness and light. Schade (as they say in Germany)!

align retraces

The reason that we find that the mean percentage of IF Align retraces in the ADC is 4.64% but only 2.37% in the CDC is entirely attributable to one IF align game (in the aphasic dialogue between HL & DN) which comprises a total of nine IF Align retrace moves. We have seen the beginning of this game in §8.2.2.2 (Extract 8-8) but for convenience we provide the whole game (stripped of superfluous code) as Extract 8-33:
Okay. So that's the boat and that's the end is it

Aha

O'kay {Wave to camera}

(1.3) You ch- check it ***No?*** (0.9) "No."

(1.7) You wan-< So I talk- talk through it /to check it.*=

/Aye*

=Okay. Right. Sorry (0.5) Er (0.7) Okay starting at the tent.

Mhm

(.,) and then (0.8) it goes up (0.4) to the snake,

Then we're going left to the palm tree*

Then we're going down to the crocodile

Er then down and across to the flamingo
Had this game not been initiated there would have been no IF Align Retrace moves in this dialogue at all. And if we reanalyse IF moves assuming that this dialogue contains no IF Align Retrace moves, then the proportions change from 4.64% (ADC) versus 2.37% (CDC) to 1.01% (ADC) versus 2.37% (CDC).
In other words, the ADC to CDC ratio changes from almost twice as many IF Align retraces in the ADC to under half as many. But we must note (before the critics do so) that although it is great finding and excluding data that accounts for much of the ‘unwanted’ results we need to justify that exclusion on independent grounds. We need to provide additional evidence to allow us to assume that the offending data may not ever have occurred. And of course, we can indeed do so for (as we can see from *TA033) the offending IF Align retrace was actually solicited by the aphasic IG. As such it seems very unfair to use this sequence as evidence against our thesis of doing being ordinary.

So we have now dealt with all three rogue data categories and hopefully we have provided convincing argumentation to show that such data does not actually affect our hypothesis. All we ever wanted to claim was that there is likely to be increased simplification in the ADs and that we have already done. Indeed in Chapter 6 we noted that reduced proportions of Non-Simplificatory moves would have been a bonus and that to be disappointed at not receiving a bonus would have been verging on avariciousness. Well now that we have dismissed these deviant cases let us allow ourselves to briefly indulge not only in the deadly sin of greed but of pride too!

8.2.5.2 simplificatory riders

Here we investigate the riders (which qualify moves) that are also considered to be simplificatory in nature. These riders are:

- Repetition:
 \[
 \text{repeat other (repo); repeat self (reps); repeat other = repeat self (repo = reps)}
 \]

- Self-abandonment of games

- Fill moves (finishing off your partner’s utterance)

Examples of riders can be found in §6.2.5.2.

Hypothesis

Again our initial expectation was that there was more likely to be higher proportions of all simplificatory riders in the ADC than in the CDC. And without exception this is what we find. These results are presented below in Figure 8-47 below:
8.2.6 mutation moves

As we saw in §6.2.6, mutation moves are an attempt to deal with instances of talk where one participant orients to it having one function and the other another. We treat the function of the (multi-interpretable) talk as being what the speaker intended but at the same time note that it is being interpreted by the addressee as something different and we do so by means of a line of code, namely, *C mutation.

In *TB045 of Extract 8-34 we see that the IF is acknowledging the IG’s previous instruction. But the IG provides a response to the IF’s talk. Since an acknowledge does not make an acknowledgement in next turn sequentially relevant, we have assumed that the IG is taking the previous talk as something other than an acknowledge, namely a check. Hence we note that the IF’s talk has been multiply interpreted (as an acknowledge by the IF and as not-an-acknowledge (in this case a check) by the IG).

Extract 8-34 BA & GW

*TA046
=Well () {deixis gest} **(LS)** north/ you see?*
*MA Instruct cont multi modal

*TB045
/You go {nods} above* the canoe. A/ha?*

*MB Acknowledge multi modal nod

Figure 8-47: IF Rider Distribution as a proportion of all IF moves
So mutations are indicative of the mutator interpreting the function of their partner’s (mutatee’s) previous talk as something other than the mutatee had intended, in other words they are about misinterpretation and 80% (24/30) of them involve the mutation of an acknowledgement into a check.

It was expected that there would be different proportions of mutations across the corpus, and the various possible patternings and related explanations have been given in §6.2.6.

Because of the nature of aphasia, more IG mutations were expected in the ADC than in the CDC and this is indeed what was found as we see from Table 8-43:

<table>
<thead>
<tr>
<th></th>
<th>% of IG Mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aphasic Dialogue Corpus</td>
<td>1.35 (13)</td>
</tr>
<tr>
<td>Control Dialogue Corpus</td>
<td>0.42 (4)</td>
</tr>
</tbody>
</table>

Table 8-43: IG Mutations

So the phenomenon of IG mutations seems to be an aphasia-related one. And if we were to discard the IG mutation from the CD between DL & GW33 (discussed in §7.2.6) our results look even more conclusive, as we see in Table 8-44:
Concerning IF mutations (where the intentions of the IG have been misinterpreted), we noted two possible patterns of results (repeated here for convenience):

- **Plausible Pattern A:** *more* IF mutations in the ADs due (it might be argued) to the potential ambiguity associated with the telegraphic nature of dysphasic talk

- **Plausible Pattern B:** *fewer* IF mutations in the ADs: in order to minimise unnecessary sequences, the IFs take extra care to correctly interpret their IG's intended contribution (our *doing being ordinary* claim). In effect this is Clark's principle of least collaborative effort in action. Furthermore, in order to correctly interpret their IG’s intended contribution the IFs assume that, given two potentially ambiguous interpretations of IG talk, the most likely interpretation (either responsive or initiating in nature) will depend on their past experience of their interlocutor’s style – in other words a combination of Merrison’s Maxim and Garrod and Anderson’s (1987) model of output-input coordination. In the case of an aphasic dialogue partner this will most likely be *responsive*, while for the controls it will be *initiating*.

What we find is a greater proportion of IF mutations (over four times as much) in the CDC than in the ADC as we see in Table 8-45:

<table>
<thead>
<tr>
<th></th>
<th>% of IF Mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aphasic Dialogue Corpus</td>
<td>1.35 (13)</td>
</tr>
<tr>
<td>Control Dialogue Corpus</td>
<td>0.26 (3)</td>
</tr>
</tbody>
</table>

Table 8-44: Revised IG Mutations (excluding IG Mutation from DL & GW)

<table>
<thead>
<tr>
<th></th>
<th>% of IF Mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aphasic Dialogue Corpus</td>
<td>0.15 (3)</td>
</tr>
<tr>
<td>Control Dialogue Corpus</td>
<td>0.64 (10)</td>
</tr>
</tbody>
</table>

Table 8-45: IF Mutations

Thus the actual results fit with our claim that the non-impaired IFs are helping the dysphasic IGs in their maintenance of *doing being ordinary* by avoiding unnecessary sequences of talk. But if we were so confident of our hypothesis regarding fewer IF mutation sequences in the ADC, why are we not troubled by the instances of this type of sequence in the data? By now our response should be predictable: we need to look not at decontextualised numbers but rather at the examples in situ. So this is what we will do now. The first is given in Extract 8-35:
Extract 8-35 GM & MB

*E 63 IG explain em
*TA077
And there's a - a thing (...) H*-E-L-I-G-O-P-"L-E-R*
*MA Explain

*E 64 IF query-yn aban self
*TB091
/(LS) Is it*

*MB Query-yn aban self
*End 64

*E 65 IF check em
*TB092
Er (.)/(. that sounds like* -
*MB Check

*TA078
"immediately below"
*MA Explain cont

*TB093
I haven't. - it sounds like a heli/copter*
*MB Reply-n
*MB Check cont

→ *C mutation: IF takes IG's preceding mumble as a query-yn

*TA079
/Yes*
*MA Reply-y
*End 65

*TB094
I haven't. (.)*
*MB Reply-n cont

*TA080
/Yeah*
*MA Reply-y cont

It is clear from the tape recording that MB's I haven't in *TB093 is intonationally complete (by which we merely mean that it is not a cut-off utterance). This fact, combined with its elliptical nature indicates that it is acting as a response to the IG’s previous mumbled, indistinct turn. But since the IG’s previous turn was not a query which could have made a response such as I haven’t sequentially relevant, we have a case of an IF mutation. So why are we not troubled? We suggest three reasons:
(1) In our previous discussions we have noted that GM is very capable despite his dysphasia – indeed, in some respects he is not treated like other dysphasic subjects (see footnote 16 of this chapter). It should, therefore, not be so very disconcerting to find what we would think is a CD phenomenon occurring in one of his dialogues because unnecessary sequences are not such a great threat with this particular aphasic individual.

(2) According to Merrison’s Maxim and the input-output model of communication, the IFs will assume that the most likely interpretation of ambiguous IG talk will fit with their past experience of the responsive/initiating nature of their interlocutor’s style, which, in GM’s case will most likely be initiating. It is therefore in keeping with these models that GM’s mumble is taken as something that could predictably and relevantly follow an IG feature explanation, namely a query as to whether the IF also has that feature.

(3) But if MB had displaced what he thought was a sequentially relevant next turn (viz. his Reply-n) by instead first opting to seek clarification of the mumble, then this would have generated an unnecessary side sequence of talk, minimally two and quite possibly three embedded moves: mumble-check-clarification of mumble-(acceptance of clarification)-response to mumble. Seeking clarification would also have raised the issue of non-competence by highlighting the fact that the aphasic’s utterance was unintelligible. Thus by producing the mutation (by following the principle of least collaborative effort) MB is, in effect, avoiding unnecessary sequences – he is doing being ordinary.34

The next extract (Extract 8-36) also involves MB as IF, but this time the aphasic IG is MD. Here the IF mutation transforms an IG acknowledge into a hearing check.

34 If we are to play the ‘But what if...’ game properly then it is true that if the mumble had been truly important to the dialogue, then, since MB did not seek clarification this, too, would have led to an unnecessary sequence of two or three moves: mumble-reply-clarification of mumble-(acceptance of clarification)-response to mumble. So it would seem that MB is caught in a no-win situation: whatever he does has the potential to generate exactly the same number of unnecessary moves. Unless of course the mumble was not actually vital to the exchange. This is actually a fair assumption since it makes no sense to disguise important information by mumbling it. Thus, on the assumption that the mumble was non-important it was also therefore essentially ignorable. However, as we have discussed in §5.2.3, we do expect the majority of all ADC closure to be done by the non-impaired IF and in this extract this is what we find: MB is actively accepting (grounding/closing) the mumble. And, as a final point, irrespective of what the mumble actually was, MB has at least provided a clear demonstration of what he has understood GM’s utterance to be.
Again we suggest three reasons as to why we are not troubled by this example (the first two being essentially the same as those just discussed for Extract 8-35):

(1) MD is also very capable despite his dysphasia (his WAB score of 92.2, for example, is almost at the 93.8 cut-off point at which one can be considered non-aphasic). To find a CD phenomenon occurring in one of his dialogues is therefore not too alarming.

(2) If IFs assume that the most likely interpretation of ambiguous IG talk fits with their past experience of their interlocutor’s style (input-output model), then MB is very likely to interpret his IG’s preceding acknowledge as a hearing check because MB has encountered similar sequences earlier in the dialogue as we can see in Extracts 8-37 and 8-38 below:

Extract 8-37 MD & MB

*TB045
I’ve got a noose. (1.0) /Um*

→
TA036 /A what?

*TB046
A noose – a er you know a {hanging gesture} thing that you’re /hang-* hung - ’hh /hanged with*

TA037 /Oh!
*MA Acknowledge
Extract 8-38 MD & MB

*TB095 ctd
(.) "to: a helicopter do you have there?"

*TA077
→ A helicopter!?=
*MA Check repo

*TB096
= "Heli- I've /got a"*

*TA078
/(·hhh) ("haha")

*TB097
Yeah /(haha) *

*TA078 ctd
/(haha) * (·hh) {head shake} N(hh)o.=

*TB098
=Oh

(3) MB produces his mutating turn (i) in overlap with MD and (ii) almost inaudibly. In this way MB (though we doubt that this was actually a conscious act) manages to get the best of both worlds: if MD’s prior turn was a check then he has provided his sequentially relevant next turn; on the other hand if MD’s prior turn was not a check then the mutating contribution is, effectively, ignorable.

If we now discount these last two examples from our analysis, we find that ADC IF mutations become just one sixteenth of those in the CDC:

<table>
<thead>
<tr>
<th></th>
<th>% of IF Mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aphasic Dialogue Corpus</td>
<td>0.04 (1)</td>
</tr>
<tr>
<td>Control Dialogue Corpus</td>
<td>0.64(10)</td>
</tr>
</tbody>
</table>

Table 8-46: Expurgated IF mutations

The final example of an ADC IF mutation (given in Extract 8-39) also involves MD as IG but this time the non-impaired IF is ND. Here we see that the IF mutation transforms an IG align task into an instruct. (MD is checking whether the lake in question is about half an inch away from where ND now is in the task.) This is the only example of an IF mutation that we cannot explain away (at least not immediately!).
This is a prime example of why mutations are potentially disruptive to the dialogue. Because ND incorrectly interprets MD’s intended meaning behind *TA083 as an instruction, we see an unnecessary sequence of four unsuccessful turns that eventually lead to the IG align task (initiated in *TA083) being abandoned in *TA085. On abandoning his align task, MD simply assumes (for the sake of least collaborative effort) that ND is indeed where he thinks she should be (namely half an inch below the lake) and continues with the task from there. Unfortunately this is a false
assumption and it subsequently takes a further 22 turns (so 26 turns in total) before the
two participants’ task positions are actually synchronised (aligned) at the lake (and even
then their positions do not coincide perfectly: MD is half an inch below the lake while
ND is on the very edge of the lake (see Map III-4 in Appendix III)). Twenty-six turns of
unnecessarily intensive communicative effort all because of the IF misinterpreting just
one IG turn. The mutation is indeed a dangerous beast.

But why is this not just a simple case of misunderstanding? Why is it specifically a matter
of mutation? Well it is true that mutation is about misinterpretation which is necessarily
about misunderstanding, but mutation is a special type of misunderstanding in that it
transforms the function of the previous utterance.

Up until now, however, all the examples of mutations that we have seen have not actually
been very disruptive: one has involved the mutation of an explain into a query-yn and all
the rest have involved an acknowledge being transformed into a check. What all these
cases of mutating utterances have in common is that they are responsive contributions –
they transform the preceding utterance into one which makes a next turn response
sequentially and conditionally relevant – and (as we discussed in §2.1.6.3.1) according
to Clark & Schaefer’s (1987, 1989) model of how participants contribute to discourse,
because of the weakness of their responsive nature they are not open to further
grounding from the other participant.

Let us remind ourselves of the various methods Clark & Schaefer propose for
interlocutors to provide evidence of their understanding of their partner’s contribution.

STRONG

5. Display. B displays verbatim all or part of A’s presentation.

4. Demonstration. B demonstrates all or part of what he has understood
 A to mean, for example with a paraphrase of A’s contribution.

3. Acknowledgement. B nods or says “uh huh,” “yeah,” or the like.

2. Initiation of the relevant next contribution. B starts in on the next
 contribution that would be relevant at a level as high as the current one.

1. Continued attention. B shows he is continuing to attend and therefore
 remains satisfied with A’s presentation.

WEAK

Figure 8-48: Levels of Evidence of Understanding
We will use Extract 8-36 (repeated below as Extract 8-40 for convenience) to show how this model fits in with our concept of mutation.

Extract 8-40 MD & MB

*TB190 ctd
Do you have a flag anywhere on your (1.5) page - "on your map"*

*TA155
/F- f- a fla*g. /Er* as yes

*TB191
"Mm"*

→ *C mutation

*TB192
Yeah.

In *TA155 the IG provides a display of what he has understood his IF to mean (5 in the above schema) by providing a partial repetition of what the IF has just said, uttered with falling intonation.\(^{35}\) It is this assertive intonation pattern that crucially distinguishes a display from a demonstration (4 in the above schema), which requires some interrogative component (Clark & Schaefer, 1987: 26). As it happens, the IF takes his IG’s utterance not to be a display but rather a demonstration which therefore makes a response sequentially relevant.\(^ {36}\) Thus we have the mutation in the form of a response (3 in the above schema) followed by continued attention from the mutator (1 in the above schema, the weakest form of evidence). Once an interlocutor provides continued attention the grounding process has bottomed out – no further action is appropriate and that is why all the examples of mutations that we have seen have not actually been very disruptive.

We can now return to our problem example of Extract 8-39 (partially repeated below as Extract 8-41):

35 In reality MD’s display is merely a repetition of the feature name in order for him to keep it in memory while he scans his map for that feature. Although Clark & Schaefer note this as a possibility (1987: 27), they do not elaborate on its potential consequences for subsequent dialogue. Had they done so the literature may have already been exposed to the term ‘mutation’.

36. Clark & Schaefer state that “With the strongest response ... [participants] can move directly into the next contribution, but with the weaker ones, they have to make repairs before going on” (1987: 27, emphasis added).
Here the mutation from the IF in *TB082 is *not a response* (in game coding terms) to the previous IG utterance (*TA083), and thus the grounding process cannot immediately bottom out. Rather, with her turn *TB082, ND initiates a side sequence which demonstrates that she has interpreted her IG’s *About () half an inch?* as an instruction (despite the rising intonation from the IG).

What we have in this case, then, is our *Plausible Pattern A*: i.e. an IF mutation in an AD due to the ambiguity associated with the telegraphic nature of dysphasic talk: after all, the telegraphic *About () half an inch?* could theoretically be *‘Go about half an inch that way’* just as easily as the intended *‘Is it about half an inch away?’*.

So to recap, what we have in this problem case is a transformation process which mutates a query (in this case an alignment query) into an instruction, and this incorrect interpretation combined with Merrison’s Maxim then makes it very difficult to get back on the right track (as evidenced by the 26 extra turns required before alignment is achieved). More importantly, however, the mutation is not a weak form of response to the previous utterance and the grounding process cannot therefore immediately bottom out – it is this fact that is responsible for the inevitable generation of the unnecessary sequences.
So we have seen that it is **non-responsive mutations** which are potentially highly threatening to the smooth procedure of discourse. Clearly they should be avoided in an aphasic dialogue if at all possible. It is very tempting to attribute the occurrence of these mutations to the ambiguity associated with the telegraphic nature of dysphasic talk, but in this example we have seen that paralinguistic cues (namely the rising intonation on *About () half an inch?*) do have the potential to disambiguate multiply-interpretable telegraphic output – but if the addressee does not make the effort to utilise these cues then miscommunication will be inevitable. We therefore feel that (at least in this particular example) we must apportion the ‘blame’ of misunderstanding on the non-impaired partner. For those who think this slightly unjust (especially given the fact that we have been espousing a Clarkian theory of communication as a joint action), we must point out that MD is responsibly and repeatedly carrying out his part of that joint action as we see in *TA084 and *TA085 where, with his use of No and but, he makes every effort to get the interaction back on track by showing that ND’s interpretation of his *About () half an inch?* was incorrect. But each time ND does not pick up on his input and subsequently (probably in exasperation) MD, too, gives up and abandons his part of the joint process.

To paraphrase Clark (1996: 61), Ensemble A-and-B is doing joint action *contributing to discourse* if and only if:

0. *contributing to discourse* includes 1 and 2;
1. A intends to be doing A’s part of *contributing to discourse* and believes that 0;
2. B intends to be doing B’s part of *contributing to discourse* and believes that 0.

If MD had made one more attempt at getting across his intended meaning, ND might have finally understood. Obviously we cannot say for sure. So is MD therefore responsible for the breakdown in communication? Well, like Clark says, it takes two to tango, but if ND won’t get up and dance then you can hardly blame MD because he did not persist with his third attempt at the alignment. Indeed, his abandoning of his agenda could actually be seen as an example of an aphasic doing being ordinary on behalf of their non-impaired partner: had he pursued his third attempt at an alignment, ND’s interactive competence would have been put right under the spotlight!

But irrespective of who is to blame, there is clearly no joint action, there is no joint action because of the misinterpretation, and that came about via the IF mutation.

No-joint-action is bad for communication. IF mutations (especially non-responsive ones) are potentially bad for communication. It is therefore in keeping with our overall thesis that we find a greatly reduced proportion of IF mutations in the ADC.
Gradually I am beginning to understand how much there is.
I cannot say it any other way.

Elias Canetti

This chapter is the most CA-like, driven as it is by qualitative rooting around in the data. We firmly believe that such an approach can only add to our understanding of talk in interaction. In particular, the resulting discussions illuminate three theories of language usage (Merrison’s Maxim; CA’s Preference Organisation; and Clark’s Grounding) and we might go as far as to suggest that the qualitative approach is justified for these expositions alone. More specifically, however (at least as far as our overall thesis is concerned), the analyses presented here also provide us with evidence for: Hypothesis 1 (non-aphasics do more of the communicative work); Hypothesis 2 (non-aphasics will avoid highlighting their aphasic partner’s linguistic non-competence); and Hypothesis 2.1 (aphasic dialogues will be associated with explicitness).

Type-III analyses are driven by *C comment lines (see §4.2.2): whenever there was anything in the transcript of a dialogue that was considered to be of interest the utterance in question was appended with a line of comment code beginning ‘*C’. In total there are 717 such *C lines (thirty of these (the *C mutations) have already been discussed in Chapters 6 to 8). In order to facilitate a reasonably coherent presentation, we have therefore abstracted a level and classified *C lines as relating to *C types – viz. categories such as sensitivity, missed communication, non-verbal activity, explicitness, preference organisation and so on. From this meta-coded data we have chosen the three most common types of *C comment from each of the corpora (ADC and CDC) and we have organised our discussion of these into three sections: §9.1 introduces Merrison’s Maxim and then discusses two comment types that were prevalent in just the ADC (sensitivity and mismatch); §9.2 deals with two comment types that were prevalent in just the CDC (explicitness and zero acknowledgement); and §9.3 covers two comment types that were prevalent in both corpora (preference organisation and weaker grounding).
We must make it very clear that *C comment lines were used to flag extraordinary instances of talk within the data; just because some of the comment types are apparently corpus-specific this does not mean that we wish to imply that any such behaviour is not to be found in the other corpus - all we wish to imply is that if such behaviour does exist then it was not singled out as being especially extraordinary to warrant a *C comment. What we have, therefore, are comments which indicate ways in which our aphasic data is unusually different from the control data; comments which indicate ways in which our control data is unusually different from the aphasic data; and comments which indicate the ways in which all our data is in fact similar in its conformation to pre-existing conversation analytic and Clarkian theories of language.

In each of the following sections we discuss the comments with reference to the extracts of talk to which they are attached. Because providing just the relevant extracts for all these six types of comment would have run to 120 pages of text we have had to be selective in choosing which extracts to discuss and we have normally chosen those extracts which are the most interesting of their type or, alternatively, those which provide the best mileage per word count.

9.1 ADC-specific type-iii analyses

This section discusses two comment types that were prevalent in just the ADC, namely those concerned with sensitivity (§9.1.1) and mismatch (§9.1.2). In many respects both these types could have been considered as members of a higher, superordinate type, viz. Merrison's Maxim. However, before we can explain why we chose to treat these two types as subordinate types of one maxim we should remind the reader of the maxim itself. We therefore repeat it below as per §2.1.4.1.

MERRISON'S MAXIM

(of conversation, communication, collaboration, cooperation, cognition, love and life in general!)

Clause 1
Proceed as if everything is okay until you get evidence to the contrary.

Clause 2
With evidence that things are not going smoothly, determine whether the evidence is indicative of a potential threat to:

(i) Social (Face) wants
(ii) Transactional wants
If there is an indication of a potential threat to the wants in Clause 2, proceed to Clause 3. If overall evidence suggests that for current purposes no action is required, take no restorative action and re-enter the loop at Clause 1.

Clause 3

If there is an indication of a potential threat to the wants in Clause 2, determine whether either set of wants is in conflict with the other. If there is conflict proceed to Clause 4. If not, proceed to Clause 5.

Clause 4

Determine which set of wants should be met to best serve current purposes. Proceed to Clause 5.

Clause 5

Evaluate the cost-effectiveness of restorative action with respect to:

(iii) Benefits
(iv) Cost/Effort
(v) Likely Effectiveness

If Benefits outweigh Cost/Effort, and Likely Effectiveness is sufficiently high, invoke restorative action and then re-enter the loop at Clause 1.

We can now say why we chose not to collapse sensitivity and mismatch into one category, namely because once again we wish to make a distinction between active and passive behaviour. ‘Sensitivity’ involves the active application of Merrison’s Maxim at Clause 5 while ‘mismatch’ involves the passive (or non-) application of Merrison’s Maxim, in other words, not going beyond Clause 1.

In the following sections we deal with ‘sensitivity’ and ‘mismatch’ in turn.

9.1.1 sensitivity

Comments relating to what we have called ‘sensitivity’ actually cover a range of sensitive interactional behaviour; what the extracts of talk have in common, however, is that they involve (i) the recognition of a potential threat to transactional or social wants and (ii) some form of restorative action (as per Clause 5). In other words ‘sensitivity’ comments are markers used to tag behaviours that mitigate threats - either threats to the success of the transaction or threats to face.
Where restorative action is required, and where it is undertaken by the non-impaired partner, this essentially provides us with additional evidence for Hypothesis 1, namely that the non-aphasic dialogue partner will do more of the communicative work.

What we must make very clear, however, is that restorative ‘action’ can actually involve action avoidance – i.e. inactivity – and with this non-action we have evidence for Hypothesis 2, namely that in order to minimise highlighting aphasic non-competence the non-impaired dialogue partner will tend to avoid the generation of unnecessary talk.

Having made this point, we will presently (starting in §9.1.1.2) provide extracts of talk that were coded as ‘sensitive’ – a comment that, as we noted above, is restricted solely to talk from the ADC. In order to conserve space, any code that is not fully pertinent to this discussion has been omitted from the examples of talk.1

Because talk can be sensitive to either transactional-threats or face-threats, and because the restoration to those threats can be made either through action or inaction, we accordingly discuss ‘sensitivity’ comments that cover active transactional restoration (§9.1.1.1), inactive transactional restoration (§9.1.1.2), active restoration of face (§9.1.1.3), and restoration of face by inaction (§9.1.1.4).

1 Although other *C codes have been left in so that the reader might get a flavour of some of the less common Type-III comments, we will not actually discuss them. We do not apologise, however, for what appear to be rather inelegant comments in abbreviated note form, e.g.:

*C verbal/NVC mismatch: absolutely no problem in interp!!: primacy of NVC??

This comment (from Extract 9-2) is still very much ‘in the raw’ just as it was typed at the moment of the realisation of its potential interest. Yes it is crude, but the important thing is that we know that it means that the lexical item used was inconsistent with some accompanying gesture. In this case the speaker says west but points east, and yet the hearer had no problem in interpreting the utterance as meaning ‘go east’ which is therefore indicative of the primacy of non-verbal contributions – gestures do not lie!

So we see that these comments are very much spontaneous beasts which have emerged simply through our rooting around in the data (which, as Kelly & Local (1989: 98) have stated, is not illicit: “it is after all our most fundamental research tool and serendipity is at its most effective in this situation.”). Nor have they been ‘cleaned up’ for their public presentation. Had we attempted some refinement then in the translation process we would have lost the associated feeling of excitement and enthusiasm and discovery – and we must never forget that academic study should not be just about dry, rigorous methodology and ‘good science’: if we are to devote our working lives to academic study then we should at least be allowed to be excited and enthusiastic and we should be allowed to jump up and down wearing bright green jumpers!
9.1.1.1 active transactional restoration

If it is discovered that the transaction is not running smoothly, then any active restoration of that transaction will take the form of what is known in the Conversation Analysis literature as conversational repair (see §2.1.5.2.4).

Although this thesis is obviously not a ‘pure’ CA treatise, the use of slightly different terminology from that of the ethnomethodologists does not mean that we are not dealing with the same phenomena. For example, the phenomena that Conversation Analysts study under the rubric of ‘repair’ are covered by us (qua Game Coding analysts) mainly by the various types of check games (though other games can be involved in repair).

In §8.2.1.2 we saw that in the ADC, check games are the most prevalent of all IF games (of all the games that the non-impaired IFs initiate, almost 39% are check games). Thus, in the ADC there is evidently a great deal of repair activity, which might also be called ‘reparation’ or even transactional restoration.

Yet none of this active transactional restoration is coded with *C comments because, as we have said above, these comments were used to flag extraordinary instances of talk within the data. Clearly a behaviour (active transactional restoration) that is associated with the most prevalent game type (checks) can in no way be considered ‘sufficiently extraordinary to warrant special mention’.

9.1.1.2 inactive transactional restoration

Clause 5 of Merrison’s Maxim states: If Benefits outweigh Cost/Effort, and Likely Effectiveness is sufficiently high, invoke restorative action and then re-enter the loop at Clause 1. But the critic will note that we have been highly unspecific as to exactly what counts as ‘restorative action’. That is indeed true but, in our defence, we must admit that this underspecification was intentional: although we are using Merrison’s Maxim in the sphere of talk in interaction, it was developed (as its subtitle perhaps somewhat facetiously suggests) as a maxim of conversation, communication, collaboration, cooperation, cognition, love and life in general! It was therefore couched in the least restrictive terms in order that it have the greatest scope for generalisation.

In essence, restorative action can be anything that the initiator of that action believes will act as a remedy to the troubled situation: if British Telecom threaten to disconnect your telephone because of unpaid call charges, one form of restorative action might be to pay the overdue bills (alternatively it may be to resign yourself to having to use a public
payphone); if your partner aggressively accuses you of eating the very last chocolate biscuit, one form of restorative action might be to buy them a large box of chocolates as an apology (alternatively it may be to find yourself a new partner); if your PhD supervisor balks at a two hundred word long paragraph consisting of a single sentence, then one form of restorative action might be to restructure your text (alternatively it may be to resign yourself to displeasing the examiners); and if the exchange of information in transactional discourse is hampered by some concept that your dialogue partner does not share with you, then one form of restorative action might be to invest the effort in explaining that concept to them (alternatively it may be to abandon the possibility of talking to that person about that concept).

It all depends on estimates of Benefits, Costs, and Likely Effectiveness and, depending on those estimates, in certain circumstances it may well be deemed more cost-effective to do nothing. This non-action is what is at the very core of Hypothesis 2 (the non-impaired dialogue partner will tend to avoid the generation of unnecessary talk) and we find examples of such inaction flagged with *C comments.

In the following extract we find two comments pertaining to ‘sensitivity’. The first is in line *TB014 where, on learning that BA does not have a church in the corner of his map, DN decides that the potential transactional benefits associated with explaining the location of the church to BA (namely getting an exact route drawn) are far outweighed by the risks (transactional and social) involved with the generation of unnecessary talk. DN therefore abandons all talk of the church.

The second *C code of interest is associated with line *TB017. It indicates that in response to BA’s instruction of So (.) {deixis gest} down first {measures} oh () maybe four inches?, not only does DN not pursue a description of the church’s location, he avoids any unnecessary transactional talk by not seeking clarification as to the exact distance that he was meant to go down. We can see this from DN’s resulting route drawing (see Map III-8 in Appendix III).

Before the reader points out that this extract is from the beginning of the task (and that DN therefore cannot be blamed for not appreciating the importance of landmark navigation) we must remember two points: (i) DN’s interaction with BA was actually his fourth aphasic Map Task dialogue (see Table II-1 in Appendix II); and (ii) although BA is communicatively very able, he actually presents as the most linguistically impaired of the four dysphasic subjects. Consequently, we are led to the conclusion that DN’s inaction is indeed a case of what we have elsewhere called intelligent communication:
As cognitive agents, it is possible for us to be aware of our strengths and weaknesses. As intelligent cognitive agents, we must actively use this awareness of our limitations. Believing that we could fly if only we flapped our arms fast enough would not be sufficient to prevent a fatality if we were to jump from an aeroplane. If we are aware of our limitations, however, we will know that to jump from a plane with any hope of living afterwards requires the employment of a parachute: if you are going to jump and want to live, use a parachute – if you want to live and there is no parachute, don't jump. Simple.

For me, human intelligence seems to boil down to our adaptability – for our behaviour to be considered intelligent, we must utilise any or all available resources effectively and appropriately, and the achievement of intelligent communication is no different to any other type of intelligent behaviour.

Merrison (1992: 50)

Extract 9-1 BA & DN: IF inaction

*TA011
{measures} So (.) {deixis gest} down first {measures} oh () maybe four inches?

*TB012
Okay. =

*TA012
"(LS)"* {deixis gest} Er down.

*E 10 IF query-yn em
*E 11 IF query-yn em

*TB013
Is that towards the church? >Have you got a /church "in your corner."<*

*MB Query-yn
*MB Query-yn

*TA013
/{head shake} No:*=

*TB014
= {head shake} No okay we- don't worry.
*C NVC repo
→ *C sensitive abandonment
*End 11
*End 10

*TA014
{deixis gest: down = (.)}=
*C NVC only

*TB015
=But towards the bottom of the page. =

*TA015
={nods} Yeah /"yeah."*

*TB016
/O*kay >so we're just going/< /straight south.*
*TA016

/\{measures\}*/ "Yeah."

*TB017

'Yeah'

→ *CB takes 3 inches and goes above church but never checks further

*TA017

(LS) "(-hhh)" And \{measures\} then (1.2) two inches \{deixis gest: self cue: east = (4.3)\} \{deixis gest: self cue: east = (.)\} \{deixis gest: north, south: self cue\} (.) "n-" \{deixis gest: self cue: east = (3.0) /(0.9)\}*/ \{deixis gest: east\} there.

*TB

/*"(LS)=(-h)"**

*TB018

Towards the middle of the map

*TA018

{nods} "Yeah."

*TB019

Tow- to the right

*MB Check cont

*TA019

"Yeah."

*TB020

=to the east. O/kay.*

*C classic redundancy!

*TA020

"Sort of?" And then:, \{measures\} () ""(LS)"" () maybe

"(hh)"" three inches,

*TB021

"Mhm"

*TA021

{deixis gest} er north.

*TB022

North. Yeah? ""(LS)"" So back up >>sort of<< towards the van

*TA022

{deixis gest: north moving} \{nods\} Yes.

*TB023

"Yeah."

Sensitive inaction is not confined to the non-impaired IF, however, and we find evidence of this in the following extract (which continues from where the previous extract left off) where in line *TA027 BA, the dysphasic Information Giver, shows that he, too, is an intelligent user of available resources:
Extract 9-2 BA & DN: IG inaction

*TA023
And {measures} oh maybe six inches,

*TB024
"Mhm"

*TA024
{deixis gest: east} west.
*C verbal/NVC mismatch: absolutely no problem in interp!!: primacy of NVC??

*TB025
"Okay."

*TA025
"(LS)" And er <↑letter box:↑>
*C the q-yn after the instruct is inappropriate but doesn’t cause problems
(luckily)

*TB026
(.) A letter box

*TA026
"Yeah."

*TB027
No I haven’t got /that.*

*TA027
"/Oh" {iconic gest: forget it} doesn’t matter /"then."**

→ *C this is really very sensitive

9.1.1.3 active restoration of face

We now turn to examples of comments relating to the restoration of social wants, or face (see §2.1.7). Like active transactional restoration, comments pertaining to the active restoration of face involve talk in which the issue of non-competence is actually addressed, but here, unlike the transactional case, the issue of non-competence is mitigated by active face-saving devices (see §2.1.7.1 and §2.1.7.2)

The first extract that we will present has already been used in §8.2.2.1 when we discussed check correction games (what the conversation analyst would call other-initiated other-repair – the most dispreferred of all repair types (see §2.1.5.2.4)). What we want to say about this extract here is actually no different from what we said earlier. Nevertheless, for convenience, we repeat the essence of that discussion here.

In Extract 9-3, the *C comment line attached to *TB049 states that correction comes with opt out clause and is quieter. In other words, it indicates the presence of two types of face-saving devices: mitigation in the form of reduced volume (as indicated by the
presence of the degree symbols ‘”’), as well as the presence of ‘Or...?’ which serves to give the IG the legitimate face-saving option of not accepting the correction.

Extract 9-3 BA & DN

*TA042

Now (.) three inches not {deixis gest} s-s-south or {deixis gest} west but
{deixis gest} ‘half way’ /"between”*

*TB045

/Okay* right.

*TA043

’(haha)’ (hhh)

*TB046

South-west yeah.=
*C mismatch: believe what you want to with minimal effect on Univ of Disc

*TA044

=Yeah.

*TB047

{nods}
*C NVC only from follower!!

*TA045

() And then three inches {deixis gest} west again.

*TB048

(1.6) Back towards the snail?
*C preference org!

*TA046

(1.2) >No!<=
*MA Reply-n
*C preference org!

*TB049

=‘East then. Or...?’
*C correction is false: ie, giver is right: here begins M’s Maxim
→*C correction comes with opt out clause and is quieter

*TA047

(2.6) "No:’ er (.) {iconic gest} there there and there,

*TB050

"Mhm"

*TA048

(.) {iconic gest} there (.) and there and there all way
{deixis gest: left all the way = (2.2)}"two three** {deixis gest: left all the way}
As we noted in §8.2.2.1 it is just as well that the IF offered this opt-out clause, for the IG quite rightly rejects the correction (the reason for the miscommunication being that the IF had been circumnavigating the snail from the wrong direction).

The next extract also shows active face-saving mitigation on the part of the non-impaired dialogue partner – in this case, however, it is quite subtle. At the point where we join the interaction, the pair are just negotiating the hills which, on MD’s map, are right next to the sea (see Map III-3 in Appendix III). Unfortunately, because of MD’s incorrect distance terminology viz. half an inch in lines *TA101 and *TA103 and three quarter of a inch in *TA104, his non-impaired partner ends up drawing the route quite some distance from the sea.2

Although we have only classified one *C line (attached to line *TB142) under ‘sensitivity’, now that we return to this extract prompted by our Type-III analysis, we find that it is actually full of sensitive behaviour from the non-impaired partner.

Our discussion of the following extract does not actually begin until *TB139 where we have demarcated the text with a special arrow: ‘=>’. The time-pressed reader may choose to skip directly to this point in the extract since we have provided the preceding context solely in order to show how the scene was set for the eventual trouble. In contrast to the previous example we will provide the extract first and discuss it thereafter.

Extract 9-4 MD & MB

*TB127
/So -* so you’ve got hills just an inch or two below the axe

*TA100
Yes

*TB128
Okay.

*TA101
Er er and () er go due er [~ ~] er er east

*TB129
(LS)=East. >So /I go<*

*TA101 ctd
/And* er so t’s about (1.4) half a: (.) inch

2 MB’s estimations of these distances are quite accurate – he draws the route half an inch east, half an inch north and then three quarters of an inch east again, but MD was in fact out by a factor of three – these distances should have been more in the region of one and a half inches east, one and a half inches north, and two and a quarter inches east.
And then go to the er north

(1.4) Er for half an inch

(2.1) And go to the er east for (0.9) (LS) about half - three quarter of a /of a* inch (-HH)

/So*

Right so - (0.9) so come down from the axe to these hills and then we have a little sort of

Er s/ort *of**

/almost like* a {iconic} square=

=Yeah {draws route shape} = 0.9) er

corner. Yeah

Yeah

So sv [=sort of] so I go for the hills and then (.)/east* and then it was north (0.8)

/And*

Er

for a bit and then east for a bit

And then you carry on

/to er south
For: about (1.8) three quarters of an inch

Yeah

Er the the sea directly (1.2) er about half an inch

(2.5) Sea. (2.0) Um so we’re right - at the moment you’re right next to the coastline.* "XX"
*C pref org

Well the little bit

Oh

er {iconic} further (-hh) in but not much

Oh I think we’ve gone wrong somewhere ’cos I’m /(.) at the moment* I’m sort

/(chchch)*

/of about* three inches /from* from the sea (ha).

/(hhhh)* /(hhh)*

(-hh) Um (1.0) (LS) (2.4) yeah (1.2) (-hh) I was just wondering actually (1.1) so - ’cos we went - (1.2) ’if I’ {iconic} back-track back to the canoe (1.3) Um

Canoe /er*

/(hh)* ’Cos I I /think that’s* mi- might be where we went wrong=

/("Yeah.")*

=C indirectly saying G is wrong yet giving him the chance to self-correct!
*C pref for self-correction!!!

Yeah

Like sort of /<four* five inches>
Each of MB’s turns could have been labelled with its own ‘sensitivity’ code.

- In line *TB139 we have noted that MB is displaying some trouble with our comment about preference organisation (see §9.3.1) but we could also have flagged the subtlety of the self-initiated self-repair which switches from an inclusive *Um so we’re* to an exclusive *at the moment you’re*. In effect this is an attempt to get MD *qua* the person responsible for the cause of the trouble to initiate self-repair of that trouble. MB giving MD the opportunity for self-repair is really very face-sensitive.

- In lines *TB140 and *TB141 we could have flagged the use of the discourse marker ‘oh’ which, together with the explicit (and now inclusive) *we’ve gone wrong somewhere* (sensitively hedged with *I think*) also signals trouble and with the admission that he is *about three inches from the sea*, MB again sensitively offers MD the opportunity for self-repair.

- In line *TB141 ctd we find MB providing three opportunities for MD to repair the problem:

*TB141 ctd
(-hh) *Um (1.0) (LS) (2.4) ye:ah. (1.2) (-hh) I was just wondering actually (1.1) so - 'cos we went - (1.2) *if I* {iconic} back-track back to the canoe (1.3) *Um

The first opportunity for MD to carry out self-repair comes in the (1.0) second pause after (-hh) *Um*. The second comes in the (2.4) second pause after the lipsmack (LS), and the third opportunity in the (1.2) second pause after the content-free *ye:ah.*

This *ye:ah.* is a token that is not so very dissimilar to what in the CA literature on conversational closings would be called a *passing turn* (see Levinson, 1983: 317). By being content-free, it is a signal that the speaker has nothing more to add and therefore it can be seen as an attempt to pass the conversational floor back to the other partner.
• And finally in line *TB142 ctd we find the *C comment of sensitivity that instigated the discussion of this extract: with from the canoe to the axe was l-several inches and the Like sort of <four five inches> that follows it in *TB143 we find MB offering yet further opportunities for MD to initiate self-repair.

So every one of MB’s turns from *TB139 onwards contains evidence of trouble and almost all of them afford MD the opportunity for self-repair. Yet in none of them does MD take up that offer. Indeed this sensitivity from MB continues over many more turns, only for MD to eventually reaffirm his instructions of half an inch east, half an inch north and then three quarters of an inch east again. At this point MB re-routes his search for the true distances and starts to phrase his concerns in terms of another (for him parochially relevant) landmark, viz. the lighthouse (which, just to make matters even worse, is an IF-specific landmark that is not on MD’s map). As we can tell from the final route shape, the problem in them there hills is never actually successfully resolved – but not for lack of trying on MB’s part.

These attempts at sensitive, face-saving behaviour on behalf of his dysphasic partner show a great deal of effort from the non-impaired IF – evidence for Hypothesis 1 to be sure. And what is more, all of this discussion has been driven by just one single originally innocuous looking comment. I think that this one example alone is sufficient to prove the analytical worth of the humble *C line and the importance of close observation à la Sacks, Kelly and Local (see §2.2.1)!

9.1.1.4 restoration of face by inaction

In the previous section we saw a lot of active face-work from the non-impaired dialogue partner. This fitted in very well with the expectations set out in Hypothesis 1, namely that in the aphasic dialogues the non-aphasic dialogue partner will do more of the communicative work. In this section we will see examples of how inaction from the non-impaired dialogue partner can be utilised to mitigate a potential face-threat to the dysphasic individual; this inaction being of the special type that has been discussed by Sacks (1975: 75):

In circumstances in which alternative answers to a question are known, and the alternative answers have alternative consequences for that conversation or for other events, then one way in which people are known to attempt to control those alternative consequences is to select answers by reference to their intended selection of a consequence.
What we will address in this section are cases where, in an aphasic dialogue, the non-impaired partner is asked a question, the truthful answer to which would violate Hypothesis 2 (which states that the non-aphasic dialogue partner will try to avoid highlighting any linguistic non-competence on the part of their aphasic partner).

We will therefore be concerned here with circumstances where the non-impaired interactant will choose to respond to their partner’s query in such a way that might save their dysphasic partner’s face; in other words, cases where the non-impaired partner’s sensitive ‘inaction’ will be to lie.4

The first extract is taken from the dialogue between GM & MB, and MB’s little white lie is to be found in *TB128 as a safer alternative response to GM’s preceding alignment query if you know what I mean.

Extract 9-5 GM & MB

*TA103
And there’s a win- win/::*till. /"Wind-"*

*TB122
/(LS) {upward nod}* /Wind*mill.

*TA104
Ye/ah*

*TB123
/Ye*ah

*TA105
Well you go round {trace} (.) the back of that

4 Sacks offers the following example of children’s sensitive (intelligent) behaviour:

If children are asked some question, one of whose alternative answers may occasion a rebuke and another not, then apparently they learn, and apparently it is learned that they have learned, to produce answers that are directed to avoiding the rebuke, which answer production can involve them in lying.

Sacks (1975: 75)

If we substitute *non-impaired interlocutors* for *children* and *threat to their partner’s face* for *rebuke*, then we would have a quotation which (with slight syntactic modification) I would have been very proud to have written myself:

If *non-impaired interlocutors* are asked some question, one of whose alternative answers may occasion a *threat to their partner’s face* and another not, then apparently they learn, and apparently it is learned that they have learned, to produce answers that are directed to avoiding the *threat to their partner’s face*, [and this sort of] answer production can involve them in lying.
Yeah () /'that's* (.)/"to your"**

/"X***(.) /So you go* pa- {head turn = deixis gest} you go past it {deixis gest}

"(LS)" To the, {...}{deixis} le/ft*

*MB Query-yn fill aban other multi modal

/An* and you're going () {deixis gest} right you're going round - round it {trace = (.)} round it

Round. So I - (0.5) after the goat (0.6) I go down and then onto the {invisible deixis gest} right hand side of the {point} windmill (1.2) where it (0.7) um (0.8) (LS)=

You walk past the door

(0.9) Past the door. Ah.

You walk past the door (). **if** you know what I mean

*MA Clarify cont repo = reps

*MA Align

You keep going

From the goat I carry {deixis gest} on down so that I end up on the left hand side /Where- where the 'W' is*

*MB Check cont multi modal mutiling

Yeah. Yeah. Yeah.5 where the door is "aha"=

The lie serves to simplify discourse structure (as well as saving face) in that if MB had not responded to GM's alignment query directly but rather had embarked immediately on the subsequent check sequences, then GM's align game would have remained open and the checks would have consequently been one structural level deeper (and thus more complex) than they actually are.
The following evidence enables us to infer that MB’s response in *TB128 is indeed (sensitive though it may be) a lie:

1. Immediately prior to GM’s query, MB displays non-understanding through the micro-pause as well as through his utterance of Ah.

2. Not only does MB display his non-understanding, GM orients to this display in his next turn (*TA109) by not only emphatically re-clarifying his contribution, but also by providing what has been referred to as a hedge on the Gricean maxim of manner (Grice, 1975: 46). This hedge (which GM uses to indicate that he is not being as clear as MB might have hoped) takes the form of the very utterance that prompts the lie, namely if you know what I mean.

3. Immediately after his response to GM’s hedge, MB initiates two check games to ensure that he has indeed truly understood what GM meant. If he had truly understood what GM had meant, then we would have not expected these checks to be initiated.

Before we turn to our final example of this section, we would like to point out that not only is MB’s little white lie sensitive, it is actually doubly sensitive because GM’s hedge is itself orienting to his own non-competence (i.e. it indicates that he knows that he is not being optimally clear). GM has not made light of the trouble that is his (minor) non-
Consequently, if MB had baldly stated that he didn’t know what GM meant, this would have been tantamount to showing a lack of empathy, or in terms that we have been using throughout this section, a lack of sensitivity.

And so at last we come to our final example of inactive sensitivity which is given in Extract 9-7. It comes from the same dialogue between MD & MB whence came our example of active face-restoration that involved the “trouble in them there hills”.

Extract 9-7 MD & MB

*TA150
And then ju/st* directly: south

*TB185
/(LS) >And then<*

*TB186
Directly () {eyebrow flash} south? () Not south-east?

*TA151
No south

*TB187
Oh south

*TA152
And then er () south er () er east

6 Unlike the way he did in the extract from the beginning of this dialogue which we discussed in §8.2.2.1 and repeat (reformatted to save space) for convenience here:

Extract 9-6 GM & MB

TA048 You go: () you go ()

TB060 /So

*TA048 cid {trace: south} north then () >you go< {deixis gest: south} north "again"

*TB061 "(LS)" North? Or () do you mean "s" {deixis} down

*TA049 {deixis gest: south} "It's north"=

*TB062 =oh south

TA050 "South" - /south. {iconic} Sorry X X

TB063 /South. Yeah Th(h)at's (haha) (hhhh)=

→ *TA051 =It affects me /you know*=

TB064 /(hhha)

In this exchange we see that with his laughter tokens in *TB063 and *TB064, MB also orients to GM’s self-orientation to his own non-competence viz. It affects me you know.
In *TB190 MB’s Oh I see is a sensitive lie – as a cumulative effect of the “trouble in them there hills” (see the discussion in §9.1.1.4), MB doesn’t actually ‘see’ at all, yet he knows that to admit his confusion would only serve to threaten his partner’s face.

Consequently we find a face-sensitive lie which we know is a lie because of the ensuing talk about the location of the anchor and the finish point – that and the fact that it takes sixty-four further turns and much elaborate negotiation for MB to finally get the finish point ‘right’, and even then, only ‘roughly’ (see Map III-3 in Appendix III). The end of this elaborate negotiation can be seen in Extract 9-8.

Extract 9-8 MD & MB

*TB219 ctd
(hh) (/.) So so the the the* finish point it- itself is probably what

*TA174
(/-HH) (haha)*

*TB219 ctd
about (.) four inches from the bottom of the page
Something like /that*/

/Y:e*ah

/Yeah (1.5) And it’s um (1.5) (LS) and there’s a sort of a ba- where you look at the sea there’s a bay (1.4) um (1.3) (LS) you’ve got like the canoe an’ an’ it comes in (.) just below the canoe i- is written “SEA” isn’t it’

(0.9) /Er*

/And* an’ then there’s - there’s a sort of bay um (LS) and /the fin*ish point is s- is sort of level with- (1.2) with the- (0.8) **(LS)**

/Yeah*

/Yeah*

/Yeah*

/Yeah*

/Yeah*

/Do you have that?** And then the finish point is sort of due (.) west of (1.2) of the um (LS) that straight line (.) straight coastline (.) /‘which runs* north south’ (1.4) ‘I think now’
In his 1975 paper Sacks examined the validity of the statement *Everyone Has to Lie*. He concluded with the following words:

> the statement is true if the organization of conversation is such that any next conversation can formally produce the problem of having to deal with some such sequentially implicative question as *How are you?* where the question is asked by one with whom the respondent ... is placed in a situation that he sees involves either getting into a sequence in this conversation that he should not get into or lying so as to avoid that sequence. The organization of conversation being such, the statement is true.

> Sacks (1975: 78)

We are pleased to find that our data apparently confirms this organisation of conversation and thus we are able to reaffirm the truth of the statement.
9.1.1.5 conflict between transactional and face-wants

In GM & MB’s *if you know what I mean* extract (9-5) and MD & MB’s *Oh I see* extract (9-7), we have seen that the sensitive lies from the non-impaired partner are followed by active restoration of transactional breakdown (with the *Oh I see* example demonstrating this point particularly well). What we have in these cases is evidence for Clause 3 of Merrison’s Maxim: namely that there is conflict between transactional wants on the one hand and social (face) wants on the other, with both really needing to be addressed.

Conflict forces the non-impaired partner to invoke Clause 4 of Merrison’s Maxim: *Determine which set of wants should be met to best serve current purposes*, and our theory allows for three possible outcomes of such a determination:

Outcome 1: Transactional wants get addressed
Outcome 2: Face-wants get addressed
Outcome 3: Both transactional and face-wants get addressed

We have seen evidence of *Outcome 1* in virtually all the cases of checking (repair) activity that we have discussed; we have seen evidence of *Outcome 2* in the *It affects me you know* example; and evidence of *Outcome 3* is to be found in the *if you know what I mean* and *Oh I see* extracts.

But there is yet another possible outcome for dealing with trouble that we have not yet discussed, for it is entirely possible that *neither* set of wants actually gets addressed (*Outcome 4*). As yet we have not seen any evidence for this possibility and one might be forgiven for thinking that this is because we have no evidence. Not so. The reason that we have not yet seen evidence of *Outcome 4* is because, if we are to be true to our theory, it should really be called *Outcome Zero* and this is the subject of the following section.

9.1.2 mismatch

‘Mismatch’ involves the passive (non-)application of Merrison’s Maxim. This passivity involves not going beyond Clause 1. There are two possible cases that fall under the rubric of ‘mismatches’. The first case is where the dialogue partners assume (rightly or wrongly) that they share a common ground (see Clark, 1996: Chapter 4) because there is no evidence to suggest otherwise (and hence no restorative action is taken). In such a case we should probably be talking of *assumed matches* rather than *mismatches*.
But for the verification of Merrison’s Maxim, the second, and more interesting case is where there is evidence but the participants manage to construe it in such a way that it fits with their own current system of beliefs. In other words, where participants incorporate any evidence in such a way that it fits with their assumptions about the world and, as Sperber & Wilson (1986: 15) note, “It is these assumptions, of course, rather than the actual state of the world, that affect the interpretation of an utterance”.

The possibility of mismatch has already been recognised by Stalnaker (1979). As we can see from the following quotation, however, unlike us data-respecting linguists, he thinks (qua philosopher) that it is unreasonable to assume that participants should misconstrue evidence in a defective manner which results in the divergence of their common ground:

the CONTEXT SET is the set of possible worlds recognized by the speaker to be the “live options” relevant to the conversation. A proposition is presupposed if and only if it is true in all these possible worlds.

Each participant in a conversation has his own context set, but it is part of the concept of presupposition that a speaker assumes that the members of his audience presuppose everything that he presupposes. We may define a NONDEFECTIVE CONTEXT as one in which the presuppositions of the various participants in the conversation are all the same. A DEFECTIVE CONTEXT will have a kind of instability, and will tend to adjust to the equilibrium position of a nondefective context. Because hearers will interpret the purposes and content of what is said in terms of their own presuppositions, any unnoticed discrepancies between the presuppositions of speaker and addressees is likely to lead to a failure of communication. Since communication is the point of the enterprise, everyone will have a motive to try to keep the presuppositions the same. And because in the course of a conversation many clues are dropped about what is presupposed, participants will normally be able to tell that divergences exist if they do. So it is not unreasonable, I think, to assume that in the normal case contexts are nondefective, or at least close enough to being nondefective.

(1979: 321f, italics added)

But in all fairness, Stalnaker only stated that defective contexts tend to adjust to the nondefective equilibrium position and that his assumptions were based on the normal case. So perhaps it’s just that the data which we present in this section is simply ‘abnormal’. We leave it to the reader to decide!
Before we can proceed with our discussion of mismatches, we must first provide a brief explanation of Sperber & Wilson’s Principle of Relevance which states that an act of communicative behaviour “comes with a tacit guarantee of relevance” (1986: 49), where relevance is defined as a balance with respect to two extent conditions.

In these extent conditions, ‘assumption’ refers to a piece of new information, and ‘contextual effect’ to “an erasure of some assumptions from the context, a modification of the strength of some assumptions in the context, or the derivation of contextual implications” (1986: 117).

Extent condition 1:

an assumption is relevant in a context to the extent that its contextual effects in this context are large.

Extent condition 2:

an assumption is relevant in a context to the extent that the effort required to process it in this context are small.

(1986: 125)

We now have a way of explaining those occasions where there may indeed be evidence to suggest restorative action (as per Clause 1 of Merrison’s Maxim), yet where despite this the interactants take no such action because they have managed to interpret all the evidence in such a way for it to fit with their existing assumptions.

In terms of the extent conditions, as soon as we realise that any evidence which fits with current assumptions has little contextual effect, then, even though it may take hardly any effort to process that ‘new’ evidence, it will not be considered to be especially relevant and if the new evidence is not interpreted as pointing to anything being amiss then it will certainly not be considered sufficiently relevant to warrant restorative action.

So we have explained why we get the non-application of Merrison’s Maxim (i.e. mismatches). What we have not done is show how. And so we will now provide a couple of the better examples of mismatches in the ADC: one where the mismatch is eventually detected and the equilibrium of a non-defective context is restored and one where the mismatch is never actually resolved and the context remains defective.

7 Each extract makes more sense if read in conjunction with the corresponding map in Appendix III.
Our first extract is taken from the dialogue between GM & MB (Map III-5 in Appendix III). It involves the location of a well that is an IG-specific landmark – i.e. the well does not exist on the IF’s map.

The source of the mismatch in this example is in *TA131: in GM’s set of assumptions half way between is halfway between the sheep and the chicken in a vertical plane; in MB’s discourse model, however, half way between is halfway between the left hand side of the map and the right hand side. Although MB is wise enough to check this interpretation in *TB153 and *TB154, GM’s response in *TA133 is compatible with both partners’ assumptions and hence we get the mismatch. The most important point to be made, however, is that because MB was so bent on fitting evidence to his existing discourse model, he failed to take notice of GM’s contribution in *TA132: an’ it’s right at the other side – so much for the principle of least effort!

Extract 9-9 GM & MB (eventually (!) resolved)

*TA125
/>Well< the well* the /well* (.) is (.) when you get to the well

*TB145

/Mm*

*TB146
Mm=

*TA125 ctd
=that you don’t know=

*TB147
="(LS)* No

*TA126
Your s-

*TB148
Is it er {point} is it sort of level with the (.) /goat* or

*TA127
""X""

*TA128
It’s just {deixis gest} down a wee bit down a wee bit=

*TB149
=Down but (.) /to the right*

*TA129
/It’s - it’s* half between=

*TB150
=Yeah
*TA130
half between the S and the () the other

*TB151
(LS) (hh) Oh I see. So /it’s*

*TA131
/So- so it’s* half - /it’s* half between the other two=

*TB152
/it*

*TA131 ctd
={(Tap Tap Tap /Tap Tap}*

*TB153
/Oh* I see. So it’s pretty much in the centre of -*

*TA132
/An’ - an’ it’s right at* the other
side

*TB154
(.) So it’s almost in the centre of the page=

*TA133
=Yeah yeah.=

*C perfect miscommunication because both interpretations are true

*TB155
=Right in /the middle -*

*TA134
/(And you go* round {iconic/deixis} (.) you go () It’s: - you
{looks up} - you’re - you’re going {iconic gest: relational} past it an’ it’s (.)
like that - {deixis gest} it’s sitting there. {smile} (hhh)

*TB156
Yeah {smile}

*TA135
"(ha)" (hhh) An’ /that - *(LS)** and then you (.) {deixis gest} south after that.

*TB157
/So I-*

*TB158
So I /go {iconic gest: up and over} *

*TA136
/{deixis gest} South (.) You go* {deixis gest} south then=

*TB159
=So I go {iconic gest: up and over} () over - So I go up and then
{iconic gest: up and over} round and down () {iconic gest: up and over}
over the top of this () mill (/ of this er {iconic gest: thing}*
*C it’s been so long he’s forgotten it’s a well!

*TA137
/"No it’s it’s - no it’s* north" - it’s north from where

I’m walking
(LS) Yeah

But so once I've got there (.) I just turn {iconic gest: up and over} straight back /down and go south*

/And go go - go {deixis gest} south.* {nod} Go south

So round (.) like that. (.) "Yeah"?

And then er (.)

'(<hh>)' Then you go for a while and then (.) you might have seen a S- >"A-B-C"< C-H-I-S-K-E-N?

A: - oh a chicken

<Yes>

(.) '(LS)'=Ah.

Well

That's: - that's - well- for me that's right in: (.) the bottom right hand /corner,*

{nods} Well you're* heading to there.

'Yeah.*

And when you get to (.) his (.) shoes (.) "or whatever you call them,"=

=(LS) (.) »Do you-"<< I was wondering - do you - before you get to the chicken do you have (.) a tree or it's called a pine on here.

Yes but that's {head shake} miles away. "You would {looks away} just see it from {deixis gest} miles away."

"(LS)"" Ah!:=

"You don't go near it."
*TB169
() Ah right.

*TB169 ctd
() It's not [-] ri- {oscillating point} directly in between the chicken and the ()
"(LS)" thE um (.)

*TA146
No.

*TB170
"(LS)" 'Cos I th/in/k I mi*ght have gone wrong af/ter-*

*TA147
"/No" {head shake}*

*TA148
/Beca*use (.)

*TB171
//Yeah*

*TA148 ctd
//the- the-* the be- the - "the" B- () B-E-L-L,

*TB172
Mm

*TA149
is () is right next to the {audible point =()} where this one
{deixis gest: edge of the paper} disappears=

*TB173
→ =Oh () the right hand side of the page.=

*TA150
=Yes

*TB174
(hh) Ah.: Okay. I think - 'cos I went to the centre of the page - =

*TA151
//=Ah. So you go right*

*TB175
//=I'II just - ah right. So I'll* just go over h(hhh)ere (ha) /(h(hhh))*

*TA152

/Yeah*

Fortunately, the introduction in *TA139 of what in MB's discourse model is a task-
irrelevant chicken acts as a mismatch regulator and prompts restorative action on the
location of the mismatched landmark, and, as we see in *TB175, all's well that ends well!
The example that we will present of a mismatch that never gets resolved (it has no equivalent of the task-irrelevant chicken) also involves MB as IF but this time MD is his dysphasic IG.\(^8\) The mismatch in this extract revolves around the problems associated with the two consecutive task-relevant yet unshared features that come after the shared igloo, namely an Eskimo that is on the IG’s map but not on the IF’s and a noose that is on the IF’s map but not on the IG’s (see Map III-3 in Appendix III). The main problems centre on MB’s erroneous assumption that these two landmarks are in fact isomorphic (as well as the lexical ambiguity of the word straight).

This is an exceptionally long extract. We make no apology, however, because the significance of these mismatch excerpts cannot be understood without resorting to the overall context. We have indicated the *C lines that prompted our detailed rooting around in this data with the usual arrows.

Having done our rooting, however, we find that the mismatch in this example is very much caused through a cumulative effect of several non-local pieces of evidence (despite what the previous example may have led us to believe, the cause of mismatch is often not the result of just one or two localised utterances). Consequently we highlight in bold type individual pieces of evidence that we, qua analyst, can see are producing divergent discourse models, but which for the interactants engaged in the talk, because of the power of the principle of least effort (and the principle of relevance), were incorporated into existing (and presumed mutually shared) assumptions. The result of all this is that Merrison’s Maxim never gets beyond Clause 1 (proceed as if everything is okay until you get evidence to the contrary).

So all the text that appears below in bold type is actually doubly interpretable – the analyst can see how it does in fact fit with the existing discourse model of each individual partner. The aim of the discussion that follows the extract is to make explicit the double interpretations of the bold type. We join the talk at the point where MB is skirting around the unproblematic igloo. The mismatch centres around MB’s false assumption that his noose is isomorphic with MD’s Eskimo. MB does give MD adequate opportunity to deny this, however. But since MD never clearly refutes MB’s assumption, the mismatch is compounded.

\(^8\) We must make it clear that although the extracts in this section involve the two male non-impaired Information Followers there are cases of mismatch in the dialogues with female followers – it is just that the men provide for more interesting discussion.
Extract 9-10 MD & MB

*TA032 ctd
A- and go: - skirt around but {iconic} the: top of the =

*TB040
= "(hh)" So go over the top of the igloo. Right, yeah, Okay. So I’ve got that

*TA033
A:n/d* (0.8) thend er (0.9) [~] (0.6) (-hh) er (0.5) "(hh)"

*TB041
/Um*

*TA033 ctd
(.) ’bout (2.0) a: (1.5) inch? /(.) S*lightly less than an in/ch*

*TB042
"Mhm"* /"Mm"*

*TA033 ctd
(-hh) Er bear down

*TB043
Yeah

*TA034
to the south

→ *C for this direction to be correct A must assume that B has already gone east

*TB044
Yeah *(hh)* /er is **XX**

*TA035
/And* have you got a: Eski- Eskimo?

*TB045
No. I’ve got a noose. (1.0) /Um*

*TA036
/A what?*

*TB046
A noose – a er you know a {hanging gesture} thing that you’re /hang-* hung - (-hh) /hanged with*

*TA037
/Oh!*

*TA038
/l haven’t* got

*TB047
N(h)ohahahaha (-hh) It’s - it is it’s () it’s directly south of igloo um as you say about probably an inch or half an inch (0.9)

*TA039
//Er: *

*TB047 ctd
//Or thereab- * an inch perhaps to the south
"ThE ~[~ ~]"*

"of" - of the igl*oo

"[~ ~]"*(0.6) Er yeah

*C this is pref org but isn’t noticed because of MD’s WFD pausing

"The thing is it’s it’s quite a big {iconic} picture but
it it’s /roughly an {deixis}inch or so (ahha)*

/(chhhhhhh)° (-hhh)* Yeah=

"Yeah?

(LS)=Left - /so*

"Er* ze [= it’s er] {deixis: east} thataway

*C right deictic gesture not picked up on or B assumes A has reversed the origo

{nod} Yeah. (-hh) So I’ve gone round ()

A:nd=

=>so- < er just retrack – I’ve gone over the {iconic} top of the igloo

Yes

And then that’s /so I go *

/And * then bear er er () er south

South. () So I go south towards () /thE - well* your Eskimo /or my* noose

/(ha)
And then er and then er s- go "er" er () er () west

Yeah=

Slightly north-west

{eyebrow flash} North-west?

Well /it's* er slightly /but*

/"Oh"*

/>Oh {iconic} slightly<* but not /much *

/but not * /much*

/Yeah* So this

is - I'm now going in between

well the noose and the igloo or your- the Eskimo and the igloo, is that right?

Er () yeah and er /(.)* it's er er er igloo

/s-*

Yeah

Yeah and bear er () er {deixis} () er () bear ()

"would it be" /"south"*

/South*

Would it be south

*C although passive closure from B, A has already answered the qn.
("hh) So () am am I - should I now be on the {deixis} left - to the {deixis} left side of of the er Eskimo?

*TA053
E/r: *

*TB062 ctd (c)
kind of -* I've gone {iconic} over the top of the Eskimo, /is that right *

*TA054
/directly () er virtually directly opposite (-HH)=

Yeah * is er

*TB063
Mm=

*TA054 ctd
to the er Esi- Esk- er (LS) igloo

*TA057
A:nd have you got a: dog?
*C this goal gets done without an instruct or a qwi but only on inferencing

*TB067
"(hh)" Yes it's it's um (LS)=(hh) the dog is sort of south and {deixis} slightly to the right of (.)/um of the er*

*TA058
/(HH)=(LS) No er* the dog is directly er south

*TB068
Of the - of your E- Eskimo, /(.) is that right? *

*TA059
/{small nod}Yes *

C lie!9

9 It is entirely possible that MD has misprocessed *Eskimo* for the semantically related *igloo* which the dog is indeed due south of.
So I go straight - so I'm going past the noose or (deixis) past the Eskimo (.) straight down to the dog.

Er yes=

=Is that right? Yeah. (.) /*that's okay**

/And* /er *

/Yeah *

And when the (-hh) carry on /and* there's a dog

/*Mhm**

(MS) 'Yeah'

And then er () er () and then go to the () er east

In the following tables we show how the utterances in bold type can be multiply interpreted such that both partners can fit the utterance to their existing (and presumed mutually shared) discourse assumptions with the effect that there is no apparent evidence of trouble, and consequently the interactants continue to proceed as if everything is okay. For each example of text we provide the corresponding turn number as per Extract 9-10, a (sometimes contracted) reminder of the utterance itself and finally, in the two rightmost columns, we state what we think must be the way that the utterance is being interpreted by each of the dialogue partners. The way that we have chosen to present this discussion owes much to Clark's analysis of tracks of talk (1996: 241ff).

10 See also Garfinkel (1967: 25ff) and his subsequent discussion.
<table>
<thead>
<tr>
<th>Turn(s)</th>
<th>Utterance</th>
<th>Gloss for utterance meaning according to A’s interpretation</th>
<th>Gloss for utterance meaning according to B’s interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>*TA033/ *TA034</td>
<td>And then about an inch ... bear down to the south</td>
<td>once past the igloo continue for about an inch and then bear south</td>
<td>once past the igloo go south for about an inch</td>
</tr>
<tr>
<td>*TB047</td>
<td>as you say</td>
<td>(probably none)</td>
<td>the noose and the Eskimo are isomorphic</td>
</tr>
<tr>
<td>*TA041</td>
<td>() Er yeah</td>
<td>A is acknowledging that B has a noose south of igloo</td>
<td>A is agreeing with the isomorphism theory</td>
</tr>
<tr>
<td>*TB048 ctd</td>
<td>So do I go straight to that or?</td>
<td>should B head straight for his noose</td>
<td>I am maintaining the assumed isomorphism</td>
</tr>
<tr>
<td>*TA043</td>
<td>there’s a igloo ... bear left</td>
<td>after the igloo keep going right</td>
<td>after the igloo bear left</td>
</tr>
<tr>
<td>*TA044</td>
<td>{deixis: east} thataway</td>
<td>I don’t mean left I mean right (which is that way for me)</td>
<td>A said left and means left because he is pointing to my left (i.e. A is pointing as if from my point of view)</td>
</tr>
<tr>
<td>*TB052/ *TB053</td>
<td>I’ve gone over the top of the igloo And then I go</td>
<td>B has gone over the top of the igloo and the appropriate distance to the right (as I told him to) and now B wants to know where to go next</td>
<td>I’ve just gone over the top of the igloo and no further then where do I go?</td>
</tr>
<tr>
<td>*TA047</td>
<td>bear south</td>
<td>bear south towards the Eskimo</td>
<td>bear south towards the noose</td>
</tr>
<tr>
<td>*TB054</td>
<td>So I go south towards your Eskimo or my noose</td>
<td>B is checking that he should go south towards the Eskimo</td>
<td>I am checking that I should go south towards my noose (which is isomorphic with your Eskimo)</td>
</tr>
<tr>
<td>*TA048</td>
<td>-mo [= Eskimo]</td>
<td>Yes I agree that you should go towards the Eskimo</td>
<td>A agrees that I should go towards my noose (which is isomorphic with his Eskimo)</td>
</tr>
</tbody>
</table>

Table 9-1a: Double Interpretations of Mismatch Evidence

11 MD has a tendency to confuse binary antonyms.
<table>
<thead>
<tr>
<th>Turn(s)</th>
<th>Utterance</th>
<th>Gloss for utterance meaning according to A's interpretation</th>
<th>Gloss for utterance meaning according to B's interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>*TB059/</td>
<td>I'm now going in between the noose and the igloo or your Eskimo and the igloo</td>
<td>B is now going between the Eskimo and igloo</td>
<td>I'm now going between the igloo and my noose (which is isomorphic with your Eskimo)</td>
</tr>
<tr>
<td>*TB059 ctd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*TA051</td>
<td>Er (.) yeah</td>
<td>Yes I suppose that I agree that you are sort of going between the Eskimo and the igloo (as I have signalled by my micro-pause which indicates a dispreferred response)</td>
<td>A agrees that I am going between the Eskimo and the noose</td>
</tr>
<tr>
<td>*TB062 ctd (b)</td>
<td>should I now be to the left of the er Eskimo</td>
<td>B is checking whether he should now be to the left of the Eskimo</td>
<td>should I now be to the left of the landmark that you call Eskimo and I call noose which we have now established as isomorphic because you haven't initiated any objection to that assumption</td>
</tr>
<tr>
<td>*TA053</td>
<td>Er:</td>
<td>Because of my hesitation (which thus indicates a dispreferred response) you should assume that your assumptions are not totally accurate</td>
<td>A is dysphasic and has a word finding difficulty of which this hesitation is an outward sign</td>
</tr>
<tr>
<td>*TB062 ctd (c)</td>
<td>I've gone over the top of the Eskimo is that right</td>
<td>B is checking that he has gone over the top of the Eskimo</td>
<td>Is it correct that I have gone over the top of the landmark that you call Eskimo and I call noose (established as being isomorphic because you haven't initiated any objection to that assumption)</td>
</tr>
<tr>
<td>*TA054/</td>
<td>Yeah ... virtually directly opposite to the igloo</td>
<td>Yes I agree that you should have gone over the top of my Eskimo but you should now be virtually opposite the entrance to the igloo</td>
<td>A is agreeing that I should have gone over the top of the noose</td>
</tr>
<tr>
<td>*TA054 ctd</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 9-1b: Double Interpretations of Mismatch Evidence
<table>
<thead>
<tr>
<th>Turn(s)</th>
<th>Utterance</th>
<th>Gloss for utterance meaning according to A's interpretation</th>
<th>Gloss for utterance meaning according to B's interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>*TB064</td>
<td>we’ve almost come back to the track that we came on before</td>
<td>B means that we have doubled back in a loop</td>
<td>I mean that we have doubled back in a loop and are now very close indeed to the earlier track</td>
</tr>
<tr>
<td>*TA055</td>
<td>Yes</td>
<td>I agree with what I think you mean</td>
<td>A agrees with what I think I mean</td>
</tr>
<tr>
<td>*TB067</td>
<td>the dog is sort of south and slightly to the right of (.) um of thE er</td>
<td>B is checking whether the dog is sort of south and slightly to the right of the bend in the route which is directly below the igloo</td>
<td>the dog is sort of south and slightly to the right of where we are now (namely slightly north-west of the problematic isomorphic landmark)</td>
</tr>
<tr>
<td>*TA058</td>
<td>No the dog is directly south</td>
<td>the dog is directly south of the igloo</td>
<td>the dog is directly south of the problematic isomorphic landmark (which is therefore slightly to the right of where we are now)</td>
</tr>
<tr>
<td>*TB068</td>
<td>Of thE - of your Eskimo is that right?</td>
<td>B is checking that the dog is south of my Eskimo</td>
<td>Is the dog to the south of the problematic isomorphic landmark that you call Eskimo</td>
</tr>
<tr>
<td>*TA059</td>
<td>Yes</td>
<td>the dog is indeed south of my Eskimo (not directly below but I’m not going to be pedantic)12</td>
<td>the dog is indeed south of the problematic isomorphic landmark</td>
</tr>
<tr>
<td>*TB069</td>
<td>so I’m going past the noose or past the Eskimo straight down to the dog</td>
<td>B is going past his noose (and past my Eskimo) in a straight line due south to the dog</td>
<td>so I’m going from where I am now past the problematic isomorphic landmark in a straight line down to the dog</td>
</tr>
<tr>
<td>*TA060</td>
<td>Er yes</td>
<td>Yes you are going straight down to the dog and, though it’s some way off you are going past the Eskimo</td>
<td>A agrees that I am going straight to the dog past the problematic isomorphic landmark</td>
</tr>
</tbody>
</table>

Table 9-1c: Double Interpretations of Mismatch Evidence

12 If, however, MD has processed *Eskimo* as *igloo*, then this gloss should be simply “Yes – the dog is *directly* south of the *igloo*.”
Earlier we advertised this extract as an example of an unresolved mismatch because it has no equivalent of the task-irrelevant chicken that saved the day in our previous example. Well we were not entirely truthful: there is in fact a task-irrelevant chicken (what we dubbed a mismatch regulator) but in this case of mismatch it is not irrelevant, it is not a chicken and it fails to regulate: in this particular case what we have is a potential or virtual mismatch regulator in the shape of a task-relevant dog. At the risk of repetition let us remind ourselves of the appropriate section:

Extract 9-11 MD & MB

*TA057
And have you got a dog?

*TB067
’(hh)’ Yes it’s it’s um (LS)=(hh) the dog is sort of south and {deixis} slightly to the right of (.) /um of thE er*

*TA058
/(HH)=(LS) No er* the dog is directly er south

*TB068
Of thE - of your E- Eskimo, /(.) is that right? *

*TA059
/{small nod}Yes *

*TB069
So I go straight - so I’m going past the noose or {deixis} past the Eskimo (.)

→ **straight down to the dog.**

→ *TA060
Er yes=

At *TA058* there is still hope for the transactional aspect of the task. Despite being in a dispreferred position, MD’s swift and firm negation of MB’s assumption together with the use of ‘directly’ make it very clear that MB hasn’t got it quite right – slightly to the right is not where the dog is. Yet repair is still possible, that is until we get to *TB069* where (after MD’s agreement in *TA059*) we find that MB does not bother to seek further clarification of the dog’s location.

So why does he not bother? Because the dog is a shared feature – it is on both maps. MB can therefore see the dog and thus, despite MD initially providing evidence to the contrary, MB sticks with the principle of least effort and simply assumes that he is right in his knowledge that the dog is indeed slightly to the right of where he is. Consequently clarification can only generate unnecessary sequences and because a total of forty-one dialogue turns were needed just to negotiate the (assumed isomorphic) Eskimo-noose,
MB is surely very aware that unnecessary sequences are an evil to be avoided (as predicted by our Hypothesis 2). Essentially, MB is ignorant (intentionally or otherwise) of the evidence for restorative action that MD has just presented.

In *TB069 come the nails for this mismatch’s coffin – the discourse marker *so, the lexical ambiguity of straight, and (we can only speculate) perhaps MD’s loathing to produce yet another dispreferred denial. Let us briefly discuss each.

To quote Schiffrin (1987: 202) “*so can be used to preface information whose understanding is supplemented by information which has just become shared background”. For us (or rather for MD & MB) MB’s use of *so in “*so I’m going past the noose or past the Eskimo straight down to the dog” indicates that the understanding of this utterance is dependent on background information, namely:

(i) that the noose and Eskimo are isomorphic;

(ii) that because of this isomorphism, MB is where he is (almost right back – in the sense of very close indeed – to the track where they were before);

(iii) straight therefore means in a straight (but slightly south-westerly) line,

and, most crucially,

(iv) that MD knows and agrees with these assumptions.

The final coffin nail is MD’s *Yes in *TA060. Unfortunately for the transaction, although we (in our privileged capacity as analysts) know that (iv) does not obtain, MD’s positive response means that not only does MB (because of his non-privileged status) not know that (iv) does not obtain, he actually believes the opposite, namely that it *does obtain. And with this divergent belief the mismatch is finally secured.

And that concludes our discussion of mismatches – those cases where the beliefs of each participant have diverged from those of their partner, i.e. where their beliefs no longer match – except, of course, for at least one crucial belief: namely that their beliefs are in fact the same!
9.2 CDC-specific type-iii analyses

This section deals with two comment types that were prevalent in just the CDC. Each in its own way is concerned with what Clark calls grounding (see §2.1.6.2). In §9.2.1 we look at explicitness and in §9.2.2 consider zero acknowledgement.

9.2.1 explicitness

Throughout this thesis we have endeavoured to provide evidence for our two basic hypotheses (see §1.3), and where we have talked of explicitness before it was in relation to Hypothesis 2.1: in the Aphasic Dialogues the non-aphasic dialogue partner will try to avoid highlighting any linguistic non-competence on the part of their aphasic partner by means of simplification which makes the interaction explicit. It might therefore seem somewhat disturbing that we are discussing explicitness in a section that deals with comments that are unique to the Control Dialogues.

There are just five *C comments in the CDs that relate to explicitness: two are from the dialogue between PK & GW; two from the dialogue between DL & GW and one from the dialogue between DL & DN. Although there are five separate comments, they are all actually very similar. For this reason we provide just one extract from each dialogue:

Extract 9-12 PK & GW

*TA132
and you move up (.) okay?=

*TB145
=//Aha*

*TA133
=//>And you should<* come to the ‘X’ (.) which is (.) the finish of your road

*TB146
So where is the ‘X’ I don’t have that=
→
*C explicit!

*TA134
The- eh? Does it say ‘finish’?

*TB147
{head shake} No I don’t have the finish

*TA135
Aha.
*TA051
Er when you reach the wall,=

*TB051
="M/hm"*

*TA051 ctd
"/you": continue: to: travel in a: >"(hhh)"< semi-circular: direction, and h-head south (.): to: pass (.): to: the west of the chicken,=<

*TB052
(.) ""(LS)"" =Oh I don’t have a chicken either. (smile) >"(hhh)"<

*TA052
(.) //"Mm."**

*TB053
//Where’s* the /chick(hh)en.*
→
*C Explicitness!!

*TA053
/(LS) (.): >Suppose you* don’t have egg either!<(CO/UGH)(·HHH) Um:*

*TB054
/(hahahahaha) (·hhh)*

*TA054
the chicken is to the south of the estuary, >"(hhh)"<=

*TB055
=Mhm=

Extract 9-14 DL & DN

*TA056
{nod} Yes. (.): So you’re going to descend to a point which is: just a smidgen above the(.): axe (.): "to use the scientific term!" {smile}
*C laugh

*TB062
(DRAWS = (.)) ""(ha)"
*C NVC only

*TA057
(·hh) (hhhh) >"(h)"< Right? You’re descending in a fairly: straight line to: () oh you don’t know where the axe is: er () did I tell you that the a- how- far the axe is from the cactus.

*TB063
Er "no." "How far is it?"
→
*C strange explicitness for non-aphasics
These examples have all been commented on because we did not expect such explicitness within the CDC. Because most of these comments relate to the sequential environments of Explain Elicits (EEs), our discussion of them is more or less the same as it was in §6.2.2.3.1 and §8.2.2.3.1. Nevertheless for convenience we restate that in the CDC (compared to the ADC) we find fewer EEs associated with explicit queries. Indeed, what we expected to find in the CDs (and on the whole did find) were sequences of talk where the query was left completely implicit as exemplified in Extract 9-15 from the dialogue between CM & ND, which (before these Type-II analyses were ever even mooted) we appended with a *C comment to point to the implicitness:

Extract 9-15 CM & ND

*TA018
/'>"(hh)<* Now: {point} have you got a wall marked on your map beneath the swan?

*TB024
'I've got a well.=<(chhhaha/ha"ha)(~)(~)"('HHH)>(ha:)"(\hh)"*
→
*C unexplicit
*C lie: parochiality: she has got a wall!! but it's not directly beneath the swan

*TA019
/Ah you got a well instead! Now is that <directly
beneath the /pond>*

*TB025
/It is.*=It- no it's- it's beneath the swan>* actually
*C yes er no
*C pref org

So if we did not expect the type of explicitness associated with the CDC extracts above, how is it that we are brave enough to devote a whole section to what seems to be counter-evidence to Hypothesis 2.1? Well, our discussion is driven more by honesty than bravery: as we said at the beginning of this chapter, we simply (and without bias) chose the three most common types of *C comment from each of the two corpora. In essence we had no choice but to own up to explicitness within the CDC. But then we have never actually claimed that it would not occur at all in the CDC.

Fortunately, having done the honest thing, we do have a way of mitigating the threat to our thesis. Of the five explicit comments in the CDC, two are to be found in control dialogue between DL & GW and, as we saw in Chapter 7, GW treats him in a similar way to the way that she treats her dysphasic partner – in essence, she treats DL as a passive participant. These two examples are therefore not particularly worrisome.
Two of the remaining three comments on explicitness come from the dialogue between PK & GW and in our discussion of the explicit simplificatory Explain = Acknowledge moves (§8.2.5.1.1) we pointed out that this dialogue is fraught with miscommunication and over-detailed IG input. We also noted that PK is the oldest control subject (at 70;3) and that this sort of behaviour is known to be associated with inter-generational talk. For similar reasons, then, these two examples were not particularly worrisome either. This leaves only the example from the dialogue between DL & DN (the relevant turns repeated in Extract 9-16):

Extract 9-16 DL & DN

*TA057
oh you don’t know where the axe is: er () did I tell you that the a- how- far the axe is from the cactus.

*TB063
Er "no." 'How far is it?'

→ *C strange explicitness for non-aphasics

On considering this exchange more carefully, we actually no longer think that DN’s query in *TB063 (How far is it?) is particularly strange. In fact, a reduced exchange without the query (as in Example 9-17) would probably have appeared rather rude:

Example 9-17: DL & DN

*TA057
did I tell you that the a- how- far the axe is from the cactus.

*TB063
Er 'no.'

*With the query, DN is doing what is known as *positive politeness* which, as Brown & Levinson explain (1987: 101):*

is redress directed to the addressee’s [DL’s] positive face, his perennial desire that his wants (or the actions/acquisitions/values resulting from them) should be thought of as desirable. Redress consists in partially satisfying that desire by communicating that one’s own wants [DN’s] (or some of them) are in some respects similar to the addressee’s wants.
As we noted in §2.1.7, *face* is not a phenomenon that is restricted purely to socially sensitive and potentially awkward situations. Face and the related notion of *politeness* are to some degree intrinsic to all social interactions and, being a type of social interaction, we would therefore expect it to play its role in linguistic communication – even the communication that goes on in task-oriented dialogue!

What we have shown, then, is how our comments on explicitness in the CDC are not only explainable, but in some respects expectable and it would seem that a policy of honesty is indeed to be recommended!

9.2.2 zero acknowledgement

We now turn to a brief discussion of six comments relating to what we have called *zero acknowledgement*. This is equivalent to Clark's *continued attention* (whereby B shows that he is continuing to attend and therefore that he remains satisfied with A’s presentation). *Zero acknowledgement* (as we shall see in the extracts below) amounts to *implicit* grounding and thus, in Clarkian terminology, it is the weakest form of *evidence of understanding* (see §6.2.3).

Hypothesis 2.1 espouses *explicitness* within the ADC. Consequently it predicts that if implicit grounding is to occur anywhere at all, then it should be within the control data. And indeed, this type of *C* comment is only to be found in the CDC. The extracts below show examples of this implicit zero grounding in action.

There are six cases of zero acknowledgement comments within the CDC.\footnote{One in the dialogue between PK & DN, one in that between CM & ND and two in each of the dialogues between TS & ND and DL & DN. Although we have no space available for detailed analysis here, we would nevertheless like to highlight the possibility that this implicit behaviour may be indicative of less than optimal adherence to the Cooperative Principle (Grice, 1975). In addition, the fact that all these cases of implicit behaviour are perpetrated by just two non-impaired IFs (DN and ND) might also suggest that such behaviour may be used as a quantitative measure in the determination of successful interactanthood. But that, as they used to say on *Tales of the Riverbank*, is another story!} There are two possible outcomes after the implicitness associated with zero acknowledgement: it either is or is not tolerated (as is the case for four of the six comments). We therefore provide one extract for each of these eventualities.

In Extract 9-18 we provide two consecutive examples of intolerance of implicit acknowledgement.\footnote{We will see a further example of intolerance in Extract 9-28 in §9.3.2.}
Extract 9-18 DL & DN

*TA069
To: the south of the lake> which is {head shake: roughly} sort of shield-shaped,

*TB076
=Mhm." {nods}

*TA070
um () there is a snake which is {measures=} about a pinkie's width() er s-
from the lake.

*TB077
"Yeah."

*TA071
(screws up eyes: about) about quarter of an inch from the lake.

*TB078
=Mhm."

*TA072
=(LS)=The base of the lake.°=

*TB079
=(DRAWS = (.)
*MB Acknowledge
*C NVC only
→ *C DL doesn't treat DN’s physical act of drawing as an acknowledgement

*TA072 ctd
That point.

*TB080
(DRAWS = (.)
*MB Acknowledge
→ *C Again DL doesn't treat DN's physical act of drawing as an acknowledgement

*TA073
There’s a /snake there, which er extends () to: a point () pretty well ().
*MA Explain cont

*TB080 ctd
/"Okay"*

*TA073 ctd
directly below the ‘L’ of ‘lake’.

*TB081
(DRAWS = (.) "Yeah. Okay!"

*TA074
"Alright? That’s its - {deictic gesture: head point} (.).
the end of its tail the- the west most point."
DL has been describing the location of the snake and in *TB079 DN acknowledges this description by drawing on his map. DL, however, does not accept this physical action as adequate grounding and in *TA072 ctd presses on with his linguistic description ('That point.') in the hope of obtaining a linguistic acknowledgement. But again, in *TB080 we find DN engaged solely in physical activity and again DL will not accept this weak form of evidence and so in *TA073 he continues his description until, finally in *TB080 ctd and *TB081, DN produces verbal evidence of his accomplishment of the goal and with it (because of the property of downward evidence (see Clark, 1996)), evidence of his understanding.

The reader will perhaps be sceptical because in each case DL’s intolerance is based only on a micro-second of non-response. We therefore note two points. Firstly that there is a very similar example in the CD between CM & ND where the drawing lasts (2.1) seconds. Secondly, the fact that DL is intolerant of but a micro-pause is additional evidence for the phenomenon known as preference organisation (which we cover in §9.3.1).

In the next extract we have two comments relating to silent acknowledgement from ND, both of which are tolerated as such by her partner, TS:

Extract 9-19 TS & ND

*TA017
//And then* you proceed um (LS)=a: shortish way (.) along the route and you have an axe on your left hand side.

*TB025
No I don’t.=/ (chhh)(hahahaha)(ha)(hhh)*

*TA018
/‘No.’ Well that* axe um (.) should always be on your left hand side. (h) And when you reach it (.) which is about three quarters {beat} of the way across the map on that side >(hh)< you start to turn northerly again.

*TB026
(.) Mm. Right /hang on a second I’m* s:tick:=

*TA019
/Turn right(h).*

*C redundancy

*TB026 ctd
=U:m °°°°(LS) °°°° (.) going- [~ ~] I’ve just turned from the- the top o’ the- cactus going slightly (.) south er west,=

*TA020
=‘Yes’

*TB027
Where’s the axe in relation to the ‘cactus’=
The first case (in *TB029) is clearly an acknowledgement in the form of continued attention because the grounding has been made linguistically explicit in the preceding two turns which involved a filled check (see §6.2.5.2.3) and the verification of that fill. Unfortunately, however, TS also takes ND’s second silence (in *TB030) to be an acknowledgement, yet we can see from the ensuing dialogue (Hang on hang on) that it was actually a preference organisational silence that was indicative of trouble.
If nothing else, then, this final example should at least act as a salutary warning of the potential risks involved with the interpretation of silence – and maybe these risks are why implicit grounding in the form of zero acknowledgement is only to be found in the CDC, and furthermore, where it is found, why it is generally not tolerated.

9.3 type-iii analyses common to both the ADC & CDC

In the previous sections we have seen comments that point to ways in which the aphasic data and the control data differ. That is, we have seen that each of our two corpora have individual characteristics.

But at a more basic level all our data involves two strangers engaging in a task-driven activity which they manage exclusively through their social interaction; all our data involves two strangers talking to each other. In this respect, then, all our data is essentially the same and, if any of what we know about language is true, we would suppose that there would be fundamental similarities between the talk from each of the two corpora.

At many levels this supposition is extremely trivial: any first-year undergraduate linguist can tell you that spoken language consists of phonetic noise governed by rules of phonology, syntax and semantics. We are not surprised to find such similarities across our data and therefore we will not discuss them. Instead, this section covers two comment types each of which (in its own way) relates to the sequential organisation of talk which, as we saw in §2.1.5.1, is a priority high on the list of the conversation analyst.

Fortunately therefore (for we must reiterate that we simply chose for discussion the three most common types of *C comment from each of the two corpora), the first *C type that we will discuss concerns the CA phenomenon of preference organisation. The second involves an area of interest close to followers of Clarkian philosophy, namely the principle of grounding. More specifically it relates to weaker grounding. Despite not generally being considered a matter of interest in CA, this, nevertheless, also bears on the sequential organisation of talk.
9.3.1 preference organisation

We have already exemplified the major theoretical aspects of preference organisation using extracts of our data in §2.1.5.2.3. It should thus be fairly clear that we find this organising principle of language preserved in the aphasic data. The aim of this section, then, is to use some of the more interesting examples from our data to highlight two points that have not yet been discussed: (i) the power of preference in the organisation of talk and (ii) the power of Merrison's Maxim.

9.3.1.1 the power of preference organisation

Preference is so powerful in the organisation of talk (even task-oriented talk) that interactants sometimes find it hard not to appeal to it in the interpretation process. In other words, phenomena that look like preference organisation phenomena yet are actually attributable to something else entirely might nevertheless be interpreted as if they were preference organisational:

(1) In task-oriented dialogue, pausing and hesitation are not necessarily invested with the same degree of social accountability that they display in free conversation – in other words, what might appear to be preference organisation phenomena may actually be explainable with reference to the nature of the task.

(2) In dysphasic talk, pausing and hesitation is often a display of linguistic difficulty (e.g. with lexical retrieval or sentence processing) – in other words, what might appear to be preference organisation phenomena may actually be explainable with reference to the nature of aphasia.

We will deal with these problems in sections §9.3.1.1.1 and §9.3.1.1.2 respectively.

9.3.1.1.1 preference & task-oriented dialogue

In task-oriented dialogue, pausing and hesitation are potentially task-related. For example, if the IG asks the IF whether a certain landmark exists on their map, if that landmark is not to be found locally, the IF may hesitate while they search their map for it. Admittedly this hesitation might still be a marker of an upcoming negative and thus unexpected response, but the hesitation is not driven by the social sanctions that are often associated with sequences involving preference organisation.
For this reason, then, what *looks like* preference organisation might not actually *be* preference organisation. In task-oriented dialogue, pausing and hesitation are not necessarily invested with the same degree of *social accountability* that they display in free conversation, i.e. the pause might be signalling “I *can’t* respond in the way you expect me to” rather than “I *don’t want to* respond in the way you expect me to”.

The following extract is taken from the very beginning of the dialogue between GM & MB. Both partners have *START* marked on their map. However, when GM asks MB whether he knows where the start is, MB begins his response in *TB001 with both a sound stretch and a filler which GM takes as a very clear display of a dispreferred turn.

Extract 9-20 GM & MB

*TB001
Okay.

*TA001
You know where (.) the starting (.) is

*TB002
Y: er

*TA002
You know where the /sta- (.) ting* is
*C pref org !

*TB003
/Is - Yeah* It’s right at the top

*TA003
Yes=

*TB003 ctd
=sort of left /hand*

*TA003 ctd
/be-fore* thE car (.) cara - van=

*TB004
=Caravans. /Yes*

*TA004
/Yes* yeah *(LS)*=

Because we (*qua analyst*) know that MB does indeed know where the start is, we know that MB’s apparent dispreferred markings in *TB001 cannot be because he is about to give an unexpected answer (indeed, the sound stretch *Y: looks and sounds very much like it is the beginning of some sort of a Yes token). We can only conclude therefore that MB’s hesitations were somehow task-related.
With recourse to the video data we can clearly see that prior to *TB002, MB has been gazing at GM and MB’s hesitant response is actually synchronous with him turning his gaze from GM towards his own map. But because we can also see that GM is looking not at MB but at his own map, GM takes MB’s hesitancy to be not task-related but rather preference-related and consequently embarks on re-presenting his query.

The moral of this extract then is this: in task-oriented dialogue we must be aware (as participants and as analysts) that what might appear to be preference phenomena may actually be explainable with reference to the nature of the task.

9.3.1.1.2 preference & aphasia

In this section we provide yet another warning: dysphasic individuals often pause and hesitate during linguistic processing and we must (i) be aware (as participants and as analysts) that this may happen and (ii) be cautious not to erroneously interpret such hesitancy as preference organisation. An example where such pausing was interpreted as preference organisation is given in Extract 9-21. Here we see that HL’s hesitation in *TA016 is so strongly interpreted by his non-impaired partner that when he finally gives a positive response to her query, GW cannot believe that HL actually means what he says and therefore embarks on not one, but two consecutive and thus more deeply embedded check games before she is finally convinced that the positive response was indeed correct, and that HL’s initial hesitation was not preference organisational after all. In this extract we have attempted to show the increasing depth of embedding by indenting the dialogue as each new (deeper) game is initiated.

Extract 9-21 HL & GW

*TB017 ctd
And then where do I go?

*TA015
\[\text{('hh')}=(\text{LS})(\text{COUGH})^{*}(\text{LS})^{*}=(\cdot\text{hh})\] ThE er under the bridge

*TB018
Is the /bridge-?

*TA015 ctd
/Cross* er a river

*TB019
Is the bridge on the top right hand corner of your page?

*TA016
→ Er (2.4) \[\text{''(hhhhhh) (LS)''}\]
C so strongly interpreted as pref org that GW can’t believe HL’s reply!
The very top corner (.) do you have a bridge there?

Mhm {nods}

But it’s {head shake} not that bridge.<

(0.9) Er {nod} yes=

=It {nods} is that bridge.=

=Ah!

'(h)' OK.

So I’m going to go: (DRAWS =(.)) up to the bridge,

The river run underneath the bridge

Yeah, I can see that. {Nods} Mhm.

The take-home story from this extract then is this: in aphasic dialogue we must be aware (as participants and as analysts) that what might appear to be preference phenomena may actually be explainable with reference to the nature of aphasia.

9.3.1.2 the power of merrison’s maxim

In the examples from the previous sections where participants find it hard not to appeal to preference organisation in the process of interpretation, we have seen the power of preference in the organisation of and the orientation to talk (even task-oriented talk). Despite this power, however, we also find cases (in both corpora) where what actually is preference organisational behaviour is nevertheless not oriented to as such. The reason that we suggest this might happen is that Clause 1 of Merrison’s Maxim is potentially even stronger than preference and again we suggest that this may be due to one of two reasons: (i) the nature of the task and (ii) the nature of aphasia. We deal with each in turn in the following subsections.
9.3.1.2.1 merrison’s maxim (clause 1) & task-oriented dialogue

Cooperative participants engaged in talk don’t like to make trouble. With respect to aphasic dialogues in particular, this is our Hypothesis 2. But (as we have discussed in §9.1.1.4) it seems that there is data to suggest that not only do cooperative participants actively eschew trouble, but that they are also actually potentially blinkered to trouble when it does occur – a kind of “it’ll all come out in the wash” approach.\footnote{We are very aware that there is not the scope here to do justice to this kind of linguistic/communicative indifference – indeed, it is worthy of a PhD of its own. The reader is therefore directed to Davies (1997).}

In both corpora we find examples where this ignorance of trouble is closely associated with preference organisational phenomena. However, before we provide an example we must make it clear that we recognise that where trouble is ignored, it is in fact virtually impossible to tell whether or not the ignorance is actually intentional.

In our discussion of Merrison’s Maxim in §9.1.1.2, we noted that restorative action depends on estimates of Benefits, Costs and Likely Effectiveness and, depending on those estimates, in certain circumstances it may well be deemed more cost-effective to ignore the trouble and do nothing. This would amount to active (Clause 5) ignorance. Passive ignorance would therefore only properly describe those cases where the trouble is not so much ignored after the fact, but rather not even noticed in the first place (Clause 1 ignorance). Of the two, Clause 1 ignorance is perhaps the most interesting in that it is indicative of the fact that people do not like to change their cognitive models, but instead much prefer to assimilate incoming data (evidence) to fit with their current assumptions about the world.

Although we have admitted that it can be very difficult to tell whether we have a case of Clause 1 or Clause 5 ignorance, in Extract 9-22 below we are confident that we do in fact have an example of the Clause 1 type and, furthermore, that its generation is due to the nature of the task. We present the data first and discuss it thereafter.

Extract 9-22 BA & GW

*TA058
=And "(hh) (LS)" (.) {deixis gest} north again "oh"
{deixis gest: north + distance} two inches /or three* inches

*TB058
"Aha"

*TA059
and {deixis gest} west er east again (hh) {point} because a hills.
Oh right I don’t have any hills drawn.=

=Ah! “(haha)” (-hh)=

I don’t think- (-hh) Um*m
*C hedge

/*Mm mmm”*/
*C weaker

are the hills (.) just near to the axe - are they quite close to the axe=

=(·hhh) {measures} Mmmm’=(hh) six inches.

(hh) Oh are they down {point} the bottom left corner?

Well {nods} more yes, /(.) mm.*
*C pref org not picked up on
*C weaker

/ {upward nod} Okay. I* think I’ve got those hills
‘And’ they’re right down at the bottom left (.) right south

(.) {point} Yes but er: {measures from bottom of page to hills = ()}
six {iconic gest: distance} inches!
*C pref org

From the axe, {nods} yes.=
*MB Reply-y fill

=No!

No?

Er {visible point} hills {measures} /{iconic gest: distance} {measures}*

/From the {iconic gest: distance} bottom of

the page.*=

=Yes, /”mm mm”**

/(h)=Oh {head shake} {iconic: negation} right those aren’t the*
same hills then.
In *TA063 BA begins his response to GW's previous yes-no query with the discourse marker *well* which, as Schiffrin (1987: 114) notes, is a signal of upcoming non-compliance. But although BA acknowledges (with his *yes mm*) that GW is correct in assuming there are hills in the bottom left hand corner of the map, with his *well more* he negates the inference that those hills are actually the ones he is referring to.

GW's map has only one set of hills, however, and this aspect of the task actually makes it harder for her to realise that she has made a false assumption. Consequently GW does not pick up on the dispreferred marker and therefore she does not process the denial within BA's contribution: it seems that she is loathe to change her cognitive model and instead assimilates BA's utterance so that it fits with her existing assumptions – namely, she (selectively) processes the *yes mm* without the *well more*.

We are confident that this is Clause I type ignorance because despite BA's continuing denial, GW still maintains her assumption that the trees are those in the bottom left corner. We know that she must feel safe in this assumption because her contribution in *TB063 is in the form of a fill* (i.e. she is finishing off BA's utterance for him) and in §7.2.5.2 we argued that a simplificatory fill move is only safe when the person doing it (GW) can be fairly confident that they have appropriately gauged the intentions of their partner (BA).

The take-home story: despite the power of preference organisation, it is possible for it to be subordinate to the power of Clause 1 of Merrison's Maxim.

9.3.1.2.2 merrison's maxim (clause 1) & aphasia

It is also possible for hesitation to be *too readily* associated with language processing difficulties in aphasic dialogues: what is indeed some preference phenomenon may actually be obscured and not interpreted as such because of the false assumption that that hesitation is merely a signal of word search and therefore (because there is "no evidence to the contrary") that everything is okay (apart from the word finding difficulty which is assumed will right itself without intervention). The best example of Clause 1 overriding preference comes from the Eskimo/noose extract (9-10) which we discussed at length in §9.1.2. We repeat here just the pertinent section:
Extract 9-23 MD & MB

*TB046
A noose - a er you know a {hanging gesture}
thing that you're /hang-* hung - (hh) /hanged with*

*TA037
/Oh!*

*TA038
/I haven't* got

*TB047
N(h)o hahaha (hh) It's - it is it's () it's directly south of igloo um about as you
say about probably an inch or half an inch (0.9)

*TA039
//Er: *

*TB047 ctd
//Or thereab- * an inch perhaps to the south

*TA040
//ThE- "[~ ~]"*

*TB047 ctd
//"of" - of the igloo

*TA041
"'[~ ~]'" (0.6) Er yeah
→ *C this is pref org but isn't noticed because of MD's pervasive WFD pausing

*TB048
The thing is it's it's quite a big {iconic} picture but
it it's /roughly an {deixis}inch or so (ahha)*

*TA042
"'(chhhhhh)' (hhh)"* Yeah=

*TB048 ctd
to the - to the south ... So (.) do I go straight to "that " or?""

From the subsequent dialogue it seems that MB interprets MD's pause in *TA041 as one
relating not to preference but to linguistic difficulties, and therefore, as we suggested
above, MB assumes that MD is actually agreeing with the (dangerously false) Eskimo =
noose isomorphism theory (see §9.1.2 to fully appreciate the compounding disastrous
effect of MB's misinterpretation of MD's silence).

The previous extract indicated that hesitation in the form of pausing may actually be too
readily associated with linguistic difficulties in aphasic dialogues. In Extract 9-24 we see
that this even appears to be true for hesitation in the form of sound stretches:
Extract 9-24 MD & MB

*TB203 ctd
um (LS) So is the anchor sort of almost (.) due south of the axe?

*TA165
(2.3) Er sorry er /the* axe axe

*TB204
"Your"*

*TB205
//Yeah.*

*TA166
//(hh)* er due south

*TB206
South but {iconic} s:lightly to the right (.) um=

*TA167
Y:::es
→ *C pref org: more than just slightly!

*TB207
{nod} Oh I see!

Because the anchor is in fact a very long way from the axe (here we have yet another of MB’s erroneous isomorphic landmark assumptions), MD’s elongated positive reply in *TA167 is actually a marker of a dispreferred turn. Because of the power of Clause 1, however, MB assumes that this elongation is merely another aspect of MD’s laboured dysphasic talk and thus he orients only to the positive aspect of the reply.

So the take-home story remains the same: despite its power, when combined with assumptions about aphasic talk it is possible for preference organisation to be subordinate to the power of Clause 1 of Merrison’s Maxim.

9.3.2 weaker grounding

In this, the final section of this chapter, we consider *C comments relating to the grounding of contributions – specifically to successively weaker grounding. As we discussed in §6.2.3, according to Clark & Schaefer (1987, 1989), participants in talk try to accept or ground their discourse contributions – they try to establish the mutual belief that they “have understood what the contributor meant, to a criterion sufficient for current purposes” (Clark & Schaefer, 1989: 262), and they do so by providing some appropriate evidence of understanding as set out below:
Continued attention. B shows he is continuing to attend and therefore remains satisfied with A’s presentation.

Initiation of the relevant next contribution. B starts in on the next contribution that would be relevant at a level as high as the current one.

Acknowledgement. B nods or says “uh huh,” “yeah,” or the like.

Demonstration. B demonstrates all or part of what he has understood A to mean, for example with a paraphrase of A’s contribution.

Display. B displays verbatim all or part of A’s presentation.

Figure 9-1: Levels of Evidence of Understanding

But (to repeat what we said in §6.2.3) in Clark & Schaefer’s model, every action by which one person means something for another person, every signal that one person directs towards another is presented for the other person to consider. Thus, every signal will belong to the presentation phase of some contribution and hence B’s evidence in response to A’s presentation is itself a presentation which in its turn needs to be accepted, and so the acceptance of a contribution is recursive. What stops the generation of infinitely long contributions is the *Strength of Evidence Principle* which states that “The participants expect that, if evidence \(e_0 \) is needed for accepting presentation \(a_0 \), and \(e_1 \) for accepting the presentation of \(e_0 \), then \(e_1 \) will be weaker than \(e_0 \)” (Clark & Schaefer, 1989: 268). Every acceptance will thereby eventually end in the other participant either producing their next relevant turn or with them giving the current speaker their continued attention.

According to Clark & Schaefer (*ibid.*) “recursion should rarely go beyond two or three cycles, and it rarely does”. They provide an example from the London-Lund corpus (given below as Extract 9-25) in which the acceptance phase has three cycles:

Extract 9-25

A. F. six two

B. F six two

A. yes

B. thanks very much

16 Though they do not explicitly say so, it is useful to think of the notion of weaker evidence being essentially equivalent to ‘less linguistic coding’.
Clark & Schaefer (ibid.) explain these three cycles thus: “A presents a book identification number F six two. [In cycle 1] B accepts the number by displaying it verbatim. [In cycle 2] A in turn accepts the display by the weaker evidence of yes. Finally, [in cycle 3] B accepts the yes by proceeding to the next contribution”.

To our knowledge, Clark has not explicitly stated how this three cycle maximum is arrived at – an oversight which demands rectification. Although the various methods of providing evidence of understanding are ordered according to their strength of evidence (from 1 to 5), some of the options within that rank are (to a given speaker in a given turn) mutually exclusive: B’s acceptance of A’s presentation can take the weak form of either continued attention from B or initiation of the next relevant contribution by B; similarly at the strong end of the scale, B’s acceptance of A’s presentation can take the form of either B’s verbatim display of his understanding or B’s demonstration of his understanding through, for example, a paraphrase.

In essence, then, there are not five but rather just three major degrees of strength of acceptance, viz. weak, medium and strong. We have attempted to show these three types of acceptance options in Figure 9-2:

| Weak | 1. Continued attention. B shows he is continuing to attend and therefore remains satisfied with A’s presentation.
| | or 2. Initiation of the relevant next contribution. B starts in on the next contribution that would be relevant at a level as high as the current one. |
| Medium | 3. Acknowledgement. B nods or says “uh huh,” “yeah,” or the like. |
| Strong | 4. Demonstration. B demonstrates all or part of what he has understood A to mean, for example with a paraphrase of A’s contribution.
| | or 5. Display. B displays verbatim all or part of A’s presentation. |

Figure 9-2: Strengths and Mutual Exclusivity of Types of Acceptance

17 Which, as we saw in our discussion of mutations, may actually be wrongly construed as a check!
From this three-way strength distinction we see how Clark might arrive at the three cycle maximum for the grounding process. Following A's presentation, B has a choice of three strengths of acceptance. If one of the strong options is chosen in cycle 1, this allows A to accept the acceptance in cycle 2 with the next weakest option (medium strength), which in turn requires one of the weak forms of acceptance from B in cycle 3. Result: three cycle acceptance. If, on the other hand, B chooses a medium strength acknowledgement (in cycle 1) to accept A's presentation, the only further option open to A is a weak (cycle 2) acceptance of B's acceptance. Result: two cycle acceptance. Finally, if (in cycle 1) B immediately chooses a weak form of acceptance then we have just a one cycle acceptance, because once we find weak acceptance, the cycle bottoms out and no further acceptance is possible. Hence Clark's three cycle maximum acceptance:

Three Cycle Maximum Acceptance

Strong Acceptance → Medium Acceptance → Weak Acceptance

Clark & Schaefer (ibid.) did not claim that more than three cycles of recursion were impossible, however - they merely stated that recursion *rarely* goes beyond three cycles. But although they acknowledged the possibility of extended recursion, they provide no examples. Consequently we cannot tell whether their rare cases concern grounding which goes beyond three turns *because of side sequences*, as in Extract 9-26, which takes six turns before the location of the bridge is accepted:

Extract 9-26 HL & GW

*TB020
>"(hh)"< The very very top corner (.) do you have a bridge there?

*TA017
Mhm {nods}

*TB021
>But it's {head shake} not that bridge.<

*TA018
(0.9) Er {nod} yes=

*TB022
=It {nods} is that bridge.=

*TA019
=Ah!

*TB023
"(h)" OK.
If Clark & Schaefer's rare cases of recursion are those generated by side sequences then they are not as interesting as the cases of extensive acceptance that are the subject of this section, for we wish to discuss extended acceptance where there is no such embedding.

We have actually already seen several examples of such extended recursion in §6.2.3, where we discussed game closure. For convenience, therefore, we repeat one of the more interesting extracts below:

Extract 9-27 GM & ND

*TA004
*E 3 IG align task
And it's at the (.) van?
*MA Align task

*TB004
{nods} It's at the van.

*MB Reply-y repo

*TA005
At the van. Right.=
*MA Acknowledge repo = reps

*TB005
="*Right."
*MB Acknowledge repo

*TA006
"Right.*
*MA Acknowledge repo = reps cont
*End 3 A-Hyper-Super-Active
*E 4 IG instruct
(.) So starting from the van, (.) *(LS)* we go (.) south.
*MA Instruct

In the above extract we find evidence for up to five cycle (non-embedded) acceptance.\(^{19}\) In §6.2.3 we called this type of extended grounding **hyper-super-active closure** which we explained thus: Speaker A initiates the game, their interlocutor (B) attempts active closure, then A, in an attempt to maintain grounding control contributes a turn worthy of super-active closure, which B then grounds with what would have been a hyperactive

\(^{18}\) Although this cycle contains tokens of both strong acceptance (*It's at the van.*) and medium acceptance (*nods*), we classify according to the strongest type. See also *TA005.

\(^{19}\) According to Clark & Schaefer (1989: 262), participants in talk try to establish the mutual belief that they "have understood what the contributor meant, to a criterion sufficient for current purposes". In dialogues between aphasic and non-aphasic interactants it would just seem that the criterion 'sufficient for current purposes' is particularly high.
closure but then A, in a further attempt to maintain control offers yet another grounding utterance which (together with B’s continued attention) finally closes off the game.

As we said in §6.2.3, the existence of such elaborate non-embedding closure types may be useful in extending Clark’s claims that grounding is normally achieved within two or three cycles (Clark & Schaefer, 1989: 268).

But hang on a second – if we look a bit more closely at Extract 9-27 we see that we have apparently immediately contradicted our argument about the three cycle maximum, for here we find that the course of acceptance is actually: Strong → Strong → Medium → Medium → Weak. So what’s the story? If these sequences of non-embedded extended grounding can be generated through multiple consecutive same strength acceptances, why then do we still not find infinitely long contributions such as:

A: The acceptance phase is actually recursive.
B: So it too needs to be accepted?
A: Yeah
B: I see
A: Right
B: Okay
A: Mhm
B: Mhm

...etc!

The answer becomes more obvious if we rewrite the course of acceptance in Extract 9-27 as **Strong → Strong → Medium → Medium → Weak** (where bold type relates to Speaker B’s turns and italics to Speaker A’s).

Extract 9-27 suggests that although Clark’s Strength of Evidence Principle is clearly an organising principle of talk, it is not necessarily a system of strictly local management (i.e. from current turn to next turn). In other words, within an extended sequence of grounding, a participant’s (next) acceptance only has to be weaker than their own preceding acceptance within that sequence. Consequently we will talk of weaker grounding as being either strictly-local (from current turn to next turn) or laxly-local (from current turn to third turn).

20 “The participants expect that, if evidence e_0 is needed for accepting presentation u_0, and e_1 for accepting the presentation of e_0, then e_1 will be weaker than e_0” (Clark & Schaefer 1989: 268).
Furthermore, we also have data which shows that such extended grounding can be achieved through consecutive (inter-turn) reduction of linguistic coding within same strength acceptance. In Extract 9-28 (below) this is realised as progressively reduced volume within consecutive medium strength acknowledgements.

What is also interesting (and to our knowledge not previously noted in the literature) is the fact that this inter-turn weakening of acknowledgements can also be found where A presents a contribution in instalments and B provides progressively quieter responses to each one. One of our best examples of (laxly-local)-inter-turn-weaker-grounding is given in Extract 9-28. In *TA184 PK presents the first instalment of an instruction which DN acknowledges in *TB207. Instalment two comes in *TA185 which DN acknowledges with Yeah in *TB208. DN’s subsequent acknowledgement to instalment three in *TB209 is a yet weaker ‘Yeah’ and in *TB210 we find the weakest of all possible acknowledgements to instalment four, viz. DN’s silence.

In §9.2.2 we saw that there are risks involved with the interpretation of silence and suggested that these risks might be why implicit grounding in the form of zero acknowledgement is only found in the CDC and, where it is found, why it is generally not tolerated. This is the case in Extract 9-28 – PK does not accept DN’s silent acceptance and so in *TA188 prompts him for some verbal acknowledgement. And when DN provides his verbal response (Yeah) in *TB211, thereafter we see a final verbal acknowledgement that is even quieter still (“Yeah”). To admit that we find this exciting would be something of an understatement!

Extract 9-28 PK & DN

*TA184
() (cough) Right (h) I want you to come (.) round wi’ your circle to the right,

*TB207
Mhm

*TA185
right above the dog’s head then

*TB208
→ Yeah

*TA186
Okay? () And- and circle s- g- gently down,

*TB209
→ “(LS)” “Yeah”=
*C weaker and weaker
*TA187
=until you’re approximately "(hh)" say th- three quarters o’ an inch below the ‘m’ the second ‘m’ of the hammock

*TB210
→ (1.9)
*Turn B Ø
*C () zero acknowledge very interesting
*C () PK won’t accept this zero acknowledgement

*TA188
Okay?

*TB211
→ Yeah (DRAWS = ()) "Yeah"
*C weaker and weaker

This *intra-turn* weakening of acceptance that we see in *TB211* is also found in the aphasic data, both from aphasic as well as non-aphasic interactants. The following two extracts are taken from the dialogue between GM (aphasic) & MB (non-aphasic). In Extract 9-29 we see *intra-turn* weaker acceptance from the non-aphasic interactant and in Extract 9-30 the same sort of behaviour from the aphasic interactant:

Extract 9-29 GM & MB

*TB110
//So I* (.) you almost get {iconic gest} up to the helicopter and then /{deixis gest} go south*
*MB Check multi modal multi modal

*TA095
/Then then* {deixis gest} then go south /again*
*MA Reply-y repo multi modal

*TB111
→
*MB Acknowledge
*C weaker

Extract 9-30 GM & MB

*TA100
(LS) So you’re /going* {invisible deixis gest} past it

*TB118
/"(LS)=(-hh)"*

*TB119
Oh I see. (.) So I want: to go (.) back (.) where its tail is sort of round that/t side*
The next extract is laden with examples of weaker acceptance. In it we find laxly-local-inter-turn-weaker-acceptance (*TA077 < *TA076, and *TB079 < *TB078 < *TB077), strictly-local-inter-turn-weaker-acceptance (*TA077 < *TB078 < *TA076 < *TB077) and even intra-turn-weaker-acceptance (with three levels of increased weakness within *TB079):

Extract 9-31 BA & GW

*TA075 ctd
/And {point} finish {leans back in chair}

*TB077
Is that by the anchor.

*TA076
(.) {nod} >Yes.<

*TB078
"(LS)=Yes."=

*TA077
= Mm"=
*C weaker

*TB079
= Okay."

(.)."I've got that."() "Right so it's sort of like (DRAWS = () that.""

>""I think"

(••) {nods}
Okay we're finished.
*C weaker!!!!!!
*C hedge
It would have been very appropriate to finish this chapter with this example, ending as it does with “Okay we’re finished”, and indeed, as far as our PhD data is concerned this is the last example of weaker acceptance. Nevertheless, we instead choose to finish by presenting what we think is an extremely beautiful extract from Merrison’s (1992) data. Extract 9-32 comes from the very end of a dialogue between BA and SF (a non-aphasic female interactant) and in lines 7 to 12 we see an example of strictly-local-inter-turn-weaker-acceptance which spans six cycles!

Extract 9-32 BA & SF (MSc data)

1. SF: So I just stop next to the mountains next to the lake?
2. BA: °Mm!°
3. SF: °Mm.° °°That’s it°°
4. BA: And er rocks and swamp
5. SF: Mm
6. BA: °Noth-° no really nothing about it
7. SF: No we don’t go there
8. BA: NO
9. SF: No
10. BA: °No°
11. SF: °°No°
12. BA: And er tree dead really nothing as well
13. SF: Mm

Chapter 9: Type-III Analyses

Doing Aphasia | 458
Scepticism is the chastity of the intellect.

George Santayana

10.1 summary of the thesis

Many pages ago we set out the overall aim of this thesis, namely that we intended to show how non-aphasic dialogue partners manage their interactions with aphasic individuals and how their behaviour can be seen to be compensating for the apparent linguistic deficits of their aphasic interlocutor. The hypotheses that we specifically wanted to test about differences between Aphasic Dialogues (ADs) and Control Dialogues (CDs) were:

HYPOTHESIS 1
In the ADs the non-aphasic dialogue partner will do more of the communicative work.

HYPOTHESIS 2
In the ADs the non-aphasic dialogue partner will try to avoid highlighting any linguistic non-competence on the part of their aphasic partner.

Highlighting aphasic non-competence carries with it the risk of unnecessary extended sequences which potentially pose a threat to face and to the smooth running of the interaction. In order to minimise any highlighting of aphasic non-competence it was hypothesised that the non-impaired dialogue partner would tend to avoid the generation of unnecessary talk by simplifying the interaction. This led to Hypothesis 2 being rewritten as two separate hypotheses:
HYPOTHESIS 2.1
In the ADs the non-aphasic dialogue partner will try to avoid highlighting any linguistic non-competence on the part of their aphasic partner by means of Explicit Simplification – simplification which makes the interaction explicit.

HYPOTHESIS 2.2
In the ADs the non-aphasic dialogue partner will try to avoid highlighting any linguistic non-competence on the part of their aphasic partner by means of Reduction Simplification – simplification which reduces the possibilities for the next relevant turn.

HYPOTHESIS 3
Some aphasic individuals demonstrate the ability to communicate much better than they speak/understand.

HYPOTHESIS 3.1
In the ADs the non-verbal modality will play an important role in the mitigation of linguistic deficits.

In order to test these hypotheses this thesis has analysed task-oriented dialogue by utilising the following:

(i) the system of analysis known as Game Coding (Kowtko et al. 1992);
(ii) non-linguistic measures relating to task success (deviation scores, time taken, landmark negotiation scores);
(iii) dialogue measures devised by Anderson et al. (1992);
(iv) principles drawn from CA (turn-taking, sequentiality); and
(v) Clark’s theories of collaborative communication (grounding)

The interactions between eight dyads of aphasic and non-aphasic individuals (ADs) have been analysed as well as eight control dyads of non-aphasic individuals (CDs) – a total of 16 dialogues which constitute almost three hours of talk.
In the following sections we will summarise the findings that are relevant to each of our hypotheses and thereby provide what we hope are clear answers to them. Having done so we will assess the contribution of this thesis to academic knowledge. Before we finally conclude what seems to have been a lifetime’s work, we briefly consider possible avenues of future research which might provide us with a better and deeper understanding of aphasic/non-aphasic talk.

10.1.1 evidence for hypothesis I

Hypothesis 1 states that in the ADs the non-aphasic dialogue partners will do more of the communicative work than in the CDs, and we have provided evidence to this effect. Relative to the CDs, in the ADs:

- §8.1.2: more of the talk is centred on the non-aphasic Information Followers (47% of turns in the ADs are accounted for by non-aphasic IF major turns and aphasic IG minimal turns, while in the CDs this figure is 23.5%)

- §8.2.1.1: non-aphasic IFs initiate more of the conversational games (64% of all games in the ADs, but only 39% in the CDs)

- §8.2.3: there is more IF-closure (grounding) of games (71% of ADC IG-initiated games versus 61% in the CDC, and 68% of IF-initiated games in the ADC versus 65% in the CDC)

- §8.2.3: not only is there more IF closure in the ADC, it is the active and super-active type of IF closure that our hypothesis predicts (71% of ADC IG games are actively closed versus 61% in the CDC and 43% of ADC IF games are super-actively closed versus 35% in the CDC)

- §9.1: there seem to be more cases of the non-impaired IFs attempting sensitive, active, face-saving behaviour on behalf of their dysphasic partner, and this often shows a great deal effort from the non-impaired interlocutor.

It would seem, then, that we do indeed have evidence that the non-impaired partners are taking on more of the communicative burden when conversing with a linguistically impaired partner. In other words, Hypothesis 1 seems to be correct.
10.1.2 evidence for hypothesis 2 (doing being ordinary)

Hypothesis 2 (which states that in the ADs the non-aphasic dialogue partner will try to avoid highlighting any linguistic non-competence on the part of their aphasic partner) was re-written as two separate hypotheses which we deal with in the following sections.

10.1.2.1 evidence for hypothesis 2.1

Hypothesis 2.1 states that in the ADs the non-aphasic dialogue partners will try to avoid highlighting any linguistic non-competence on the part of their aphasic partner by means of Explicit Simplification - simplification which makes the interaction explicit.

The evidence accumulated in support of Hypothesis 2.1 is summarised below. Compared to their behaviour in the CDC, in the ADC the non-impaired partners used:

- §8.2.2.3.1: more Explain Elicit moves (EEs) associated with explicit queries. Furthermore, over 83% of all the implicit EE environments in the ADC are in the aphasic dialogues of MD and GM - the two aphasic IGs who are the most confident and the most linguistically able of all the 'impaired' subjects. Conversely, 60% of all the explicit environments in the CDC are in the CD between DL & GW in which GW treats DL in a similar way to the way that she treats her dysphasic partner.

- §8.2.5.1.1: more ‘safe’ Aligns¹; more explicit Explain = Acknowledge moves, and more explicit Ready moves.²

- §9.2.2: Hypothesis 2.1 espouses explicitness within the ADC. Consequently it predicts that if implicit grounding is to occur anywhere at all, then it should be within the control data. and, indeed, this type of *C comment is only to be found in the CDC.

And so we seem to have evidence that the non-impaired partners do indeed try to avoid highlighting linguistic non-competence on the part of their aphasic partner by means of Explicit Simplification. In other words, Hypothesis 2.1 seems to be correct.

¹ Type-P1 and Type-N.
² If we discount the extreme outlier results from the control dialogue between DL & DN (and the corresponding aphasic dialogue between BA & DN).
10.1.2.2 evidence for hypothesis 2.2

Hypothesis 2.2 states that in the ADs the non-aphasic dialogue partners will try to avoid highlighting any linguistic non-competence on the part of their aphasic partner by means of Reduction Simplification – simplification which reduces the possibilities for the next relevant turn.

§8.2.5.1.2: Compared to their behaviour in the CDC, in the ADC the non-impaired partners used more Reduction Simplification across all categories. Additional evidence in support of Hypothesis 2.2 is set out below:

• §8.2.2.3.1: compared to the CDC, in the ADC we find more Explain Elicit moves from the non-impaired partner associated with restrictive queries (i.e. queries reducing the possibilities for the sequentially implicated next turn) (50% in the ADC but only 20% in the CDC)

• §8.2.2.1: even where extended sequences (in the form of IF check games) are apparently necessary, we find more mitigating non-face-threatening behaviour in the ADC than we do in the CDC (11% non-face-threatening checks in the ADC versus 6% in the CDC)

And so we seem to have evidence that the non-impaired partners do indeed try to avoid highlighting linguistic non-competence on the part of their aphasic partner by means of Reduction Simplification. In other words, Hypothesis 2.2 also seems to be correct.

10.1.2.3 non-simplificatory mitigation of non-competence

In the previous two sections we have restated evidence for Hypotheses 2.1 and 2.2, both of which proposed that the non-aphasic dialogue partner would try (via explicit and reduction simplification) to reduce the risk of generating unnecessary sequences of talk and so avoid highlighting any linguistic non-competence on the part of their aphasic partner. However, our original Hypothesis 2 simply stated that in the ADs the non-aphasic dialogue partner will try to avoid highlighting any linguistic non-competence on the part of their aphasic partner. This wording has no mention of ‘simplification’. We will therefore now summarise our evidence for this pure version of Hypothesis 2 – doing being ordinary:
• §8.1.1.4: When we consider the mean Incorrect Entity Scores (IESs) for the corpora (measures indicative of how precisely the IF negotiates the various map landmarks), we find that the ADC (with a mean IES of 5.2) fares worse than the CDC (mean IES of 1.8). These IEs scores represent the IF's less than perfect negotiation of landmarks in the ADC and could be seen as being indicative of the truth of Hypothesis 2. This finding is associated with that for the introduction of feature mismatches (next bullet point).

• §8.1.1.5: In the CDC, 79% of IF feature mismatches are discovered, while in the ADC this proportion is only 50%. In other words, in the aphasic data the non-aphasic IFs appear to be withholding this information. This can be integrated into our doing being ordinary account, arguing that what we have in the ADC is a case of an “if-it-ain’t-broke-don’t-fix-it” approach from the non-impaired IFs. Since all the mismatch features on all the maps are route-relevant if the IF does not mention their IF-only features we have to assume that they have not done so for a reason. But by our doing being ordinary account we would actually expect fewer IF-only features to be introduced under the rubric of “don’t give additional information that isn’t absolutely vital lest non-competence become interactional business”.

• §8.2.2.4: In the CDC 4.64% of all IF games are Instruct = Time Out games (ITOs), while in the ADC there are none. Because an ITO necessarily highlights the communicative incompetence (or at least the communicative insensitivity) of your dialogue partner, then according to our doing being ordinary hypothesis it is not surprising that we find fewer ITOs in the ADC than in the CDC. We also found examples of IF overload in the AD data which failed to produce IF ITO games, thereby providing further evidence for Hypothesis 2.

• §9.1.2 to §9.1.4: Here we have provided data relating to IF sensitivity. Included were examples of inactive transactional restoration, active restoration of face and restoration of face by inaction.

10.1.3 evidence for hypothesis 3

Though far from being a central issue of this thesis, this section summarises the evidence for Hypothesis 3 (which states that some aphasic individuals demonstrate the ability to communicate much better than they speak/understand) and Hypothesis 3.1 (which states that aphasic subjects perform worst in the very task condition that denies them full access to what we maintain can be a vital medium vis à vis non-verbal contributions).
• §8.1.1.1.3: With respect to deviation scores the control group perform better than the aphasic group. But this is not a particularly remarkable result. What is interesting is that 63% of the aphasic scores fall within the range of scores for the non-impaired control group. And thus it would seem that we do indeed have evidence for Hypothesis 3.

• §8.1.1.1.2: For each dysphasic IG, their worst interaction (measured by deviation score) was achieved in the No Eye Contact Condition. This is in keeping with the general argument of Hypothesis 3.1.

• §8.1.1.1.3: When we compare the ratios of aphasic to non-aphasic mean deviation scores in the two conditions we find that results improve in the aphasics' favour in the Eye Contact Condition (in the No Eye Contact Condition the mean aphasic deviation score = 1.71 \times \text{mean control score} while in the Eye Contact Condition this ratio is only 1.61). This is additional evidence for Hypothesis 3.1.

• §8.1.1.1.3: While for both groups, the mean NEC deviation score is greater than mean EC deviation score, this effect is slightly greater for the aphasic group than for the controls: Aphasic NEC mean deviation score = 1.19 \times \text{EC mean}; Control NEC mean score = 1.12 \times \text{EC mean}). This, too, supports Hypothesis 3.1.

10.2 contribution of the research

The research described in this thesis provides evidence to support our three hypotheses: in dialogues with non-aphasic partners, dysphasic individuals can indeed communicate better than their linguistic abilities would suggest. This is because they can draw on the abilities of their non-impaired interlocutors who do more of the collaborative work, and who attempt to avoid highlighting any linguistic non-competence on the part of their dysphasic dialogue partners.

But merely showing that initial hypotheses seem to be correct is not sufficient to constitute a PhD. So what else has this thesis contributed? We offer four suggestions which we subsequently discuss in turn. This thesis has:

• introduced Merrison's Maxim
• extended the system of dialogue analysis known as Game Coding;
• extended Clark's notion of Grounding;
• attempted to break down the rigid apartheid of conversation and discourse analytic methods.
10.2.1 merrison’s maxim

Merrison’s Maxim\(^3\) has generated over twelve and a half thousand words of discussion in this thesis alone. To me, this would suggest that it has its uses!

In particular Merrison’s Maxim has benefited our discussions of face-sensitive and transactional-sensitive behaviour (§9.1.1) and of mismatch (§9.1.2). We have also shown (in §9.3.1.2) that in certain cases, Clause 1 of the maxim (*Proceed as if everything is okay until you get evidence to the contrary*) is potentially even more powerful than preference organisation. And (through our presentations of real scenarios equivalent to our Ann, Bob, Connie and Ronnie example in §2.1.6.2\(^4\)) it has also highlighted the dangers of not explicitly establishing common ground.

10.2.2 extension of the system of game coding

As we have discussed at length in §4.1.2, the system of Game Coding devised by Kowtko *et al.* (1992) was not considered fine enough to capture some of the distinctions that differentiate impaired from non-impaired interaction. For example, it was necessary to introduce various new types of moves associated with restricted choice (e.g. *Query-w alternative* and *Check alternative*).

However, we must stress that the refinements we have made are far from specific to aphasic data. This extended system of code may therefore benefit any future dialogue research – be it on Map Task data in particular or even discourse in general.

\(^3\) Merrison’s Maxim (of conversation, communication, collaboration, cooperation, cognition, love and life in general!) states: *Proceed as if everything is okay until you get evidence to the contrary.* With such evidence determine whether it is indicative of a potential threat to (i) Face *wants* or (ii) Transactional *wants*. If there is a conflict between wants, determine which should be met to best serve *current purposes*. Evaluate the cost-effectiveness of restorative action with respect to Benefits, Cost/Effort, and Likely Effectiveness. If Benefits outweigh Cost/Effort, and Likely Effectiveness is sufficiently high, invoke restorative action and then continue to proceed as if everything is okay until you get evidence to the contrary.

\(^4\) Where Ann says ‘she’s leaving’ meaning Connie’s leaving her job but which Bob interprets as Connie’s leaving her husband, Ronnie.
10.2.3 extension of clark's notion of grounding

We have also extended Clark's notion of Grounding. Our research has shown that it is useful to differentiate between passive, active and the various types of super-active closure of contributions (at least in dyads where linguistic competence is an issue).

With recourse to their Strength of Evidence Principle, we have also shown how Clark & Schaefer (1989: 268) arrived at their generalisation of a three cycle maximum for the grounding process. Although they state that this process of recursion rarely goes beyond two or three cycles, we have provided data which shows that by means of successively weaker inter-turn evidence the grounding process can be extended to six cycles at least.

We have also provided data to suggest that although the Strength of Evidence Principle is clearly an organising principle of talk, it is not necessarily a system of strictly local management. Within an extended sequence of grounding, a participant's acceptance only has to be weaker than their preceding acceptance within that sequence; weaker grounding can be what we call laxly-local (from current turn to third turn) as well as strictly-local (from current turn to next turn).

And we have shown that this inter-turn weaker grounding can also be found where A presents a contribution in instalments and B provides progressively quieter responses to each one. To our knowledge this pattern has not been previously noted in the literature.

10.2.4 fusion of conversation and discourse analysis

This thesis has been written for a degree in linguistics and thus it has been concerned with language. More specifically, it has been concerned with language in use in the form of talk. Even more specifically it has been concerned with talk taken from task-oriented interactions between various dyads of strangers. So how are we to categorise the research that we have done?

Despite the facts that our analyses have been data-driven and that within our discussions we have acknowledged the importance of the context of the sequence, because these analyses concern task-oriented dialogue and not free conversation many people might think that we are not entitled to call what we have done Conversation Analysis.
On the other hand, although we have counted categories in order to focus our attentions on interesting aspects of the data, because we have not come to the data armed with predetermined theoretical expectations (because we make no claims about the well-formedness of strings of categories) many people might think that we are not entitled to call what we have done Discourse Analysis.

It would seem that our research falls both within and outwith the two major traditions. Yes, I am a category counter, but I am a category counter who values the importance of localised context and sequentiality. If you really have to be a staunch purist then I will agree with you: Conversation Analysis is not concerned with anything that isn’t free conversation which would have occurred even if the researcher hadn’t had the tape recorder switched on. However, in the course of this thesis I hope that I have convinced even the most conservative of Conversation Analysts that non-conversational settings might in fact have something to tell us about social interaction.

If this thesis is not remembered for its insights into aphasic/non-aphasic interaction, if it is not remembered for its introduction of Merrison’s Maxim or its development of Game Coding or its extension of Grounding, then let it at least be remembered for its attempts to break down the rigid apartheid of conversation and discourse analytic methods.

We should resist the inherent security of wearing the badge of only one academic discipline. Rather we should find the good in any methodology and if we find it useful we should adopt it as our own (and if not, then not). In the words of the Swahili Proverb:

Kidole kimoja hakivunji chawa [one finger won’t crack a louse]!

If this means taking the good from historically conflicting paradigms then so be it: we should have the courage to initiate a new order of things. However, if we do so we should be aware that our new hybrid badge might not be accepted by adherents to the existing methodologies. In the words of Machiavelli (circa 1513 Tr. Ricci 1952):

It must be considered that there is nothing more difficult to carry out, nor more doubtful of success, nor more dangerous to handle than to initiate a new order of things. For the reformer has enemies in all those who profit by the old order, and only lukewarm defenders in all those who would profit by the new order, this lukewarmness arising partly from fear of their adversaries, who have laws in their favour; and partly from the incredulity of mankind, who do not truly believe in anything new until they have had actual experience of it.

Chapter 10: Summary & Conclusion
And so I say again: Yes, I am a category counter, but I am a category counter who values the importance of localised context and sequentiality. And although my convictions may seem more foolhardy than courageous, I make no apologies for my approach.

10.3 future research

And so we come to what is traditionally one of the final sections of a thesis such as this – a section where we must show that our contribution has at least some implications for the future of academic knowledge. Fortunately, we believe that there are several aspects of this research which might inspire further investigation.

• Most obviously we should pursue Hypothesis 3 (some aphasic individuals demonstrate the ability to communicate much better than they speak/understand) with respect to the related Hypothesis 3.1 (in the ADs the non-verbal modality will play an important role in the mitigation of linguistic deficits). Luckily we already have the data transcribed for such an undertaking.

• An in-depth investigation of all the dyads is required in order to catalogue individual strategies for dealing with aphasic interaction. Doing so would yield beneficial insight into whether any particular strategies can be seen to be linked with successful communication. This information on measures of ‘successful interactanthood’ could then potentially be used in the training of carers of dysphasic individuals as well as students of Speech & Language Therapy.

• This thesis has only been able to hint at the role of face in aphasic talk: the complexities surrounding the power differentials that exist between linguistically impaired and linguistically ‘normal’ interactants is clearly an area that could generate much discussion. To such an end we might suggest initial investigations into paralinguistic phenomena such as interruption, laughter as an acknowledgement of non-competence, and the use of discourse markers as face-saving devices.

• Discourse structure is also an area worthy of investigation and we would advocate further research into the nature of the embedding of games (including the various types of super-active closure) within aphasic dialogue. Such an investigation should perhaps be included in any research on power differentials.
So it seems that we have plenty to be going on with, and after all, this is not the place for a detailed grant proposal. We therefore simply note that while our research has answered what we hope have been interesting questions, there are still many possible avenues open for anyone keen enough to explore them. And the beauty of all this potential research is that it is not necessarily confined to aphasic talk: indeed we might suggest that possibly all dialogues in which there is an apparent 'incompetent' interacting with a self-elected expert would also benefit from any of the research agendas outlined above.

10.4 conclusion

At the risk of repeating what we said in Chapter 1, we must not forget that human communication is a process involving interactive and collaborative effort. Nor should we forget that successful communication is "the joint responsibility of both the impaired and the unimpaired partner" (Milroy & Perkins, 1992: 29, emphasis added).

If the aphasic contributor can effectively draw on their partner’s abilities, then this should not be discounted as being a communicative strategy – all we need to know is how it works. This final line of inquiry has been the focus of this thesis and I hope that I have managed to provide a coherent answer to that question (at least in some respects).

When engaged in talk with dysphasic dialogue partners, non-impaired speakers do more of the collaborative work; they attempt to avoid highlighting any non-competence on the part of their interlocutor by (inter alia) employing strategies of explicitness and reductionist simplification; and in so doing they enable their interactants to demonstrate their ability to communicate much better than their linguistic impairments might otherwise suggest.

In short, when engaged in talk with dysphasic dialogue partners, non-impaired speakers invest a great deal of effort into doing aphasia.
epilogue

We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started
And know the place for the first time.

T.S. Eliot
More powerful than all poetry, more pervasive than all science, more profound than all philosophy, are the letters of the Alphabet, twenty six pillars of strength upon which our culture rests.

Olaf Lagercrantz

References

Davies, B. L., Merrison, A. J. and Sotillo, C. F. (in preparation) The Incorrect Entity Score as a Measure of Success in Map Task Dialogues.

References

Appendix I

subject details
<table>
<thead>
<tr>
<th></th>
<th>HL</th>
<th>MD</th>
<th>GM</th>
<th>BA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>Male</td>
<td>Male</td>
<td>Male</td>
<td>Male</td>
</tr>
<tr>
<td>WAB Score</td>
<td>75.4</td>
<td>92.2</td>
<td>66.8</td>
<td>69.6</td>
</tr>
<tr>
<td>Date Tested</td>
<td>June 93</td>
<td>March 93</td>
<td>June 93</td>
<td>May 93</td>
</tr>
<tr>
<td>WAB Class</td>
<td>Anomic</td>
<td>Anomic</td>
<td>Conduction</td>
<td>Conduction</td>
</tr>
<tr>
<td>BDAE Severity</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Date Tested</td>
<td>Dec 93</td>
<td>Nov 93</td>
<td>Dec 93</td>
<td>Nov 93</td>
</tr>
<tr>
<td>BDAE Class</td>
<td>Anomic</td>
<td>Anomic</td>
<td>Anomic</td>
<td>Resolved Broca's</td>
</tr>
<tr>
<td>Cause</td>
<td>C.V.A.</td>
<td>C.V.A.</td>
<td>Unknown</td>
<td>C.V.A.</td>
</tr>
<tr>
<td>Concomitant Disabilities</td>
<td>R. Hemiplegia</td>
<td>R. Hemianopia</td>
<td>R. Hemianopia</td>
<td>R. Hemiplegia</td>
</tr>
<tr>
<td>Months post onset</td>
<td>31</td>
<td>83</td>
<td>26</td>
<td>104</td>
</tr>
<tr>
<td>Date of Birth</td>
<td>20.4.23</td>
<td>15.3.63</td>
<td>7.1.55</td>
<td>24.8.42</td>
</tr>
<tr>
<td>Previous Occupation</td>
<td>Printer</td>
<td>Doctor</td>
<td>Gardener</td>
<td>Actuary</td>
</tr>
<tr>
<td>Education</td>
<td>School (until 14)</td>
<td>Degree</td>
<td>Degree</td>
<td>Degree</td>
</tr>
<tr>
<td>Handedness</td>
<td>Right</td>
<td>Right</td>
<td>Right</td>
<td>Right</td>
</tr>
<tr>
<td>Hearing Impairment</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Home County/Region</td>
<td>Lothian</td>
<td>Lothian</td>
<td>Lothian</td>
<td>Lincolnshire</td>
</tr>
<tr>
<td>Living with</td>
<td>Wife</td>
<td>Parents</td>
<td>Alone</td>
<td>Wife</td>
</tr>
</tbody>
</table>

Table I-1: Aphasic Subjects (IGs)
<table>
<thead>
<tr>
<th></th>
<th>PK</th>
<th>CM</th>
<th>TS</th>
<th>DL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>Male</td>
<td>Male</td>
<td>Male</td>
<td>Male</td>
</tr>
<tr>
<td>Date of birth</td>
<td>5.3.24</td>
<td>10.8.65</td>
<td>26.10.56</td>
<td>10.1.44</td>
</tr>
<tr>
<td>Current Occupation</td>
<td>Retired Builder</td>
<td>Researcher</td>
<td>M.D. of crystal firm</td>
<td>Solicitor</td>
</tr>
<tr>
<td>Education</td>
<td>School (until 14)</td>
<td>Degree</td>
<td>Degree</td>
<td>Degree</td>
</tr>
<tr>
<td>Handedness</td>
<td>Right</td>
<td>Right</td>
<td>Right</td>
<td>Right</td>
</tr>
<tr>
<td>Hearing Impairment</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Home County/Region</td>
<td>Lothian</td>
<td>Hertfordshire</td>
<td>Lothian</td>
<td>Lothian</td>
</tr>
<tr>
<td>Living with</td>
<td>Wife</td>
<td>Flatmates</td>
<td>Partner</td>
<td>Wife</td>
</tr>
</tbody>
</table>

Table 1-2: Non-neurologically Impaired Age-Matched Control Subjects (IGs)

<table>
<thead>
<tr>
<th></th>
<th>GW</th>
<th>MB</th>
<th>ND</th>
<th>DN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of birth</td>
<td>7.12.71</td>
<td>16.7.68</td>
<td>31.3.69</td>
<td>30.4.70</td>
</tr>
<tr>
<td>Sex</td>
<td>Female</td>
<td>Male</td>
<td>Female</td>
<td>Male</td>
</tr>
<tr>
<td>Education</td>
<td>Undergraduate Degree in linguistics</td>
<td>Undergraduate Degree in linguistics</td>
<td>Undergraduate Degree in linguistics</td>
<td>Undergraduate Degree in linguistics</td>
</tr>
<tr>
<td>Current Occupation</td>
<td>Speech & Language Therapy Student</td>
<td>PhD Student Linguistics</td>
<td>Speech & Language Therapy Student</td>
<td>PhD Student Linguistics</td>
</tr>
<tr>
<td>Handedness</td>
<td>Left</td>
<td>Left</td>
<td>Right</td>
<td>Left</td>
</tr>
<tr>
<td>Hearing Impairment</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Home County/Region</td>
<td>Glamorgan/ Lothian</td>
<td>Humberside</td>
<td>Humberside</td>
<td>Merseyside</td>
</tr>
</tbody>
</table>

Table 1-3: Non-neurologically Impaired Information Followers (IFs)
Appendix II

recording details
<table>
<thead>
<tr>
<th></th>
<th>HL Anomic</th>
<th></th>
<th>MD Anomic</th>
<th></th>
<th>GM Conduction</th>
<th></th>
<th>BA Conduction</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Thu 18A</td>
<td>EC</td>
<td>Thu 18C</td>
<td>NEC</td>
<td>Tue 23A</td>
<td>NEC</td>
<td>Tue 23C</td>
<td>EC</td>
<td></td>
</tr>
<tr>
<td>GW</td>
<td>Map #1A</td>
<td>GW</td>
<td>Map #2A</td>
<td>GW</td>
<td>Map #4A</td>
<td>GW</td>
<td>Map #3A</td>
<td></td>
</tr>
<tr>
<td>Thu 18B</td>
<td>NEC</td>
<td>Thu 18D</td>
<td>EC</td>
<td>Tue 23B</td>
<td>EC</td>
<td>Tue 23D</td>
<td>NEC</td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>Map #2A</td>
<td>MB</td>
<td>Map #3A</td>
<td>MB</td>
<td>Map #1A</td>
<td>MB</td>
<td>Map #4A</td>
<td></td>
</tr>
<tr>
<td>Thu 25A</td>
<td>NEC</td>
<td>Thu 25C</td>
<td>EC</td>
<td>Tue 30A</td>
<td>EC</td>
<td>Tue 30C</td>
<td>NEC</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>Map #3A</td>
<td>ND</td>
<td>Map #4A</td>
<td>ND</td>
<td>Map #2A</td>
<td>ND</td>
<td>Map #1A</td>
<td></td>
</tr>
<tr>
<td>Thu 25B</td>
<td>EC</td>
<td>Thu 25D</td>
<td>NEC</td>
<td>Tue 30B</td>
<td>NEC</td>
<td>Tue 30D</td>
<td>EC</td>
<td></td>
</tr>
<tr>
<td>DN</td>
<td>Map #4A</td>
<td>DN</td>
<td>Map #1A</td>
<td>DN</td>
<td>Map #3A</td>
<td>DN</td>
<td>Map #2A</td>
<td></td>
</tr>
</tbody>
</table>

Table II-1: Map Assignment/Recording Schedule for the Aphasic Dialogue Corpus

Thu 18 (Nov 1993) = Recording Day 1
Tue 23 (Nov 1993) = Recording Day 2
Thu 25 (Nov 1993) = Recording Day 3
Tue 30 (Nov 1993) = Recording Day 4

A = 1st Pair of the day
B = 2nd Pair of the day
C = 3rd Pair of the day
D = 4th Pair of the day

EC = Eye Contact
NEC = No Eye Contact

Map #1A = Caravans
Map #2A = Van
Map #3A = Mountain
Map #4A = Tent

Appendix II: Recording Details for ADC
<table>
<thead>
<tr>
<th>PK (HL’s control)</th>
<th>CM (MD’s control)</th>
<th>TS (GM’s control)</th>
<th>DL (BA’s control)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wed 25A EC</td>
<td>Wed 25C NEC</td>
<td>Mon 30A NEC</td>
<td>Mon 30C EC</td>
</tr>
<tr>
<td>GW Map #1C GW</td>
<td>GW Map #2C GW</td>
<td>GW Map #4C GW</td>
<td>GW Map #3C GW</td>
</tr>
<tr>
<td>Wed 25B NEC</td>
<td>Wed 25D EC</td>
<td>Mon 30B EC</td>
<td>Mon 30D NEC</td>
</tr>
<tr>
<td>MB Map #2C MB</td>
<td>MB Map #3C MB</td>
<td>MB Map #1C MB</td>
<td>MB Map #4C MB</td>
</tr>
<tr>
<td>Wed 1A NEC</td>
<td>Wed 1C EC</td>
<td>Mon 6A EC</td>
<td>Mon 6C NEC</td>
</tr>
<tr>
<td>ND Map #3C ND</td>
<td>ND Map #4C ND</td>
<td>ND Map #2C ND</td>
<td>ND Map #1C ND</td>
</tr>
<tr>
<td>Wed 1B EC</td>
<td>Wed 1D NEC</td>
<td>Mon 6B NEC</td>
<td>Mon 6D EC</td>
</tr>
<tr>
<td>DN Map #4C DN</td>
<td>DN Map #1C DN</td>
<td>DN Map #3C DN</td>
<td>DN Map #2C DN</td>
</tr>
</tbody>
</table>

Table II-2: Map Assignment/Recording Schedule for the Control Dialogue Corpus

Wed 25 (May 1994) = Recording Day 1
Mon 30 (May 1994) = Recording Day 2
Wed 1 (June 1994) = Recording Day 3
Mon 6 (June 1994) = Recording Day 4

A = 1st Pair of the day
B = 2nd Pair of the day
C = 3rd Pair of the day
D = 4th Pair of the day

EC = Eye Contact
NEC = No Eye Contact

Map #1C = Road
Map #2C = Horse
Map #3C = Lighthouse
Map #4C = House
Appendix III
/maps from the aphasic dialogue corpus

dialogues between

<table>
<thead>
<tr>
<th>Pair</th>
<th>Map</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HL & GW</td>
<td>Map III-1</td>
<td>(#1A Caravans)</td>
</tr>
<tr>
<td>HL & DN</td>
<td>Map III-2</td>
<td>(#4A Tent)</td>
</tr>
<tr>
<td>MD & MB</td>
<td>Map III-3</td>
<td>(#3A Mountain)</td>
</tr>
<tr>
<td>MD & ND</td>
<td>Map III-4</td>
<td>(#4A Tent)</td>
</tr>
<tr>
<td>GM & MB</td>
<td>Map III-5</td>
<td>(#1A Caravans)</td>
</tr>
<tr>
<td>GM & ND</td>
<td>Map III-6</td>
<td>(#2A Van)</td>
</tr>
<tr>
<td>BA & GW</td>
<td>Map III-7</td>
<td>(#3A Mountain)</td>
</tr>
<tr>
<td>BA & DN</td>
<td>Map III-8</td>
<td>(#2A Van)</td>
</tr>
</tbody>
</table>
Map III-1 (#1A Caravans): Maps from Aphasic Dialogue between HL & GW
Map III-2 (#4A Tent): Maps from Aphasic Dialogue between HL & DN
Map III-3 (#3A Mountain): Maps from Aphasic Dialogue between MD & MB
Map III-4 (#4A Tent): Maps from Aphasic Dialogue between MD & ND
Map III-5 (#1A Caravans): Maps from Aphasic Dialogue between GM & MB
Map III-6 (#2A Van): Maps from Aphasic Dialogue between GM & ND
Map III-7 (#3A Mountain): Maps from Aphasic Dialogue between BA & GW
Map III-8 (#2A Van): Maps from Aphasic Dialogue between BA & DN
Appendix IV

maps from the
control dialogue corpus

dialogues between:

PK & GW Map IV-1 (#1C Road)
PK & DN Map IV-2 (#4C House)
CM & MB Map IV-3 (#3C Lighthouse)
CM & ND Map IV-4 (#4C House)
TS & MB Map IV-5 (#1C Road)
TS & ND Map IV-6 (#2C Horse)
DL & GW Map IV-7 (#3C Lighthouse)
DL & DN Map IV-8 (#2C Horse)
Map IV-1 (#1C Road): Maps from Control Dialogue between PK & GW

Appendix IV: Maps from the CDC

Doing Aphasia | 497
Map IV-2 (#4C House): Maps from Control Dialogue between PK & DN
Map IV-3 (#3C Lighthouse): Maps from Control Dialogue between CM & MB
Map IV-4 (#4C House): Maps from Control Dialogue between CM & ND
Map IV-5 (#1C Road): Maps from Control Dialogue between TS & MB
Map IV-6 (#2C Horse): Maps from Control Dialogue between TS & ND
Map IV-7 (#3C Lighthouse): Maps from Control Dialogue between DL & GW
Map IV-8 (#2C Horse): Maps from Control Dialogue between DL & DN
Appendix V

Cartoons
FRED HAD BEEN WARNED ABOUT LEAVING THE LAVATORY SEAT UP

Cartoon V-1: Fred © Rupert Fawcett

© 1992. Permission to reproduce this cartoon has kindly been given by Rupert Fawcett.
Cartoon V-2: *Cows* by Gary Larson

2 The Far Side by Gary Larson © 1984 Far Works, Inc. used with permission. All rights reserved.
Cartoon V-3: Taxi © Steve Best

© 1992. Permission to reproduce this cartoon has kindly been given by Paperlink Ltd.
postscript

Forgive no error you recognize, it will repeat itself, increase, and afterwards our pupils will not forgive in us what we forgave.

Yevgeny Yevtushenko