REGULATION OF MULTIDRUG RESISTANT GENE EXPRESSION IN RODENTS

This thesis is my own composition and describes a project carried out by myself; experiments performed by other people are appropriately acknowledged.

Alison L. Russell

PhD.
University of Edinburgh.
The Road goes ever on and on
Down from the door where it began.
Now far ahead the Road has gone,
 And I must follow, if I can,
Pursuing it with eager feet,
 Until it joins some larger way
Where many paths and errands meet.
 And wither then? I cannot say.

J. R. R. Tolkien
ACKNOWLEDGEMENTS.

Numerous people have helped in many ways throughout the course of my project. I would like to mention them here by way of thanks.

Firstly, to Roland, who supervised the work and sent me on a superb ski-ing trip to the Rockies!

Also to all the staff at the Imperial Cancer Research Fund for their support, but especially to Colin for providing samples, helping with the animal work, giving excellent technical advice, proof-reading this text and always being willing to lend a hand when needed. His assistance was invaluable.

To the staff at the animal house at Clare Hall for some of the animal treatments.

To David and Linda, for their expertise in tissue sectioning, staining and immunohistochemistry.

To Veronica for patiently teaching me the fine art of tissue-culture and supervising the early days of the project.

To Brent for performing the corticosterone assay and Sandy for doing some of the photography.

To good friends I have made whilst in Edinburgh, for the pleasure of their company.

And finally to Billy, whose unfailing care and support I will always cherish.
ABSTRACT

P-glycoprotein (P-gp) is a member of a family of energy-dependent transport proteins. The expression of P-gp isoforms in different tissues has been previously examined, but the physiological functions of the genes have not yet been established. Three gene isoforms have been found in rodents. These appear to be functionally distinct and only two of them are related to the multidrug resistance (mdr) phenotype displayed by tumour cells refactory to chemotherapy.

Gene specific probes for each mouse isoform has allowed an analysis of mdr gene expression in normal mouse tissues. The major mdr mRNA species expressed in mouse liver is a 4.5 kb transcript encoding mdr 2. The function and factors regulating expression of this gene are unknown. Mdr 1 and mdr 3 are also expressed in mouse liver, but at lower levels.

The exogenous and endogenous factors controlling the expression of mdr 1, 2 and 3 mRNA in mouse liver were examined. The regulation of mdr genes in the rat liver by xenobiotics, including cytochrome P450 and glutathione S-transferase (GST) inducers, was also studied. The hepatotoxins 2-acetylaminofluorene, aflatoxin B1 and diethylnitrosamine induced rat hepatic mdr gene expression. Diethylnitrosamine also induced hepatic and renal mdr 1 expression in the mouse. The compound, 1,4-bis [2-(3-dichlorpyridyloxy)] benzene (TCPOBOP) caused a suppression of hepatic mdr 2 and mdr 3 levels in mouse whilst inducing cytochrome P450 levels to a high extent. Long-term suppression of mdr 2 levels was also demonstrated. The anti-cancer drugs vincristine and etoposide, as well as the phenolic antioxidant butylated hydroxyanisole, known to elevate GST levels, induced mdr 2 gene expression in the mouse.

Using hypophysectomised animals, it was shown that the pituitary regulates the expression of both mdr 2 and mdr 3 in mouse liver. Animal models, in which specific pituitary hormones were ablated, demonstrated that neither growth hormone nor thyroid hormone depletion reduces the expression of mdr 2. Elevation or depletion of hormones produced by the adrenal gland, using chemical treatment, also did not affect mdr 2 gene expression. The regulation of mdr 2 and 3 gene expression by the pituitary
appears to be complex and may involve more than one hormone.

Using a cell culture model, it was demonstrated that non-metabolised carcinogens do not compete with known substrates for transport across the plasma membrane.

All these findings are important in elucidating the regulation of mdr genes in rodents.
PUBLICATIONS ARISING FROM RESEARCH

Prolonged suppression of multi-drug resistance gene expression in the mouse liver.
Manuscript submitted.

The effect of selenium deficiency on hepatic type-1,5-iodothyronine deiodinase activity and hepatic thyroid hormone levels in the rat.
Manuscript submitted.

Sexual differentiation and regulation of cytochrome P450 CYP2C7.
Biochica Biophysica Acta (in press).

Complimentary DNA sequence, deduced amino acid sequence, predicted gene structure and chemical regulation of mouse Cyp2e1.
Freeman, J. E., Stirling, D., Russell, A. L. and Wolf, C. R.
Biochemical Journal (in press).
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>1</td>
</tr>
<tr>
<td>QUOTATION</td>
<td>2</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>3</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>4-5</td>
</tr>
<tr>
<td>PUBLICATIONS ARISING FROM RESEARCH</td>
<td>6</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>7-14</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>15-18</td>
</tr>
</tbody>
</table>

CHAPTER 1 : INTRODUCTION

1.1 INTRODUCTORY COMMENTS 19-21

1.2 MULTIDRUG RESISTANCE 22-33

1.2.1 THE MULTIDRUG RESISTANCE PHENOTYPE AND P-GLYCOPROTEIN

1.2.2 P-GLYCOPROTEIN AS PART OF A TRANSPORT SUPER-FAMILY

1.2.3 THE P-GLYCOPROTEIN MULTI-GENE FAMILY

1.2.4 EXPRESSION AND REGULATION OF P-GLYCOPROTEIN

1.2.5 SIGNIFICANCE OF P-GLYCOPROTEIN IN CANCER

1.3 ALTERNATIVE MECHANISMS INVOLVED IN MULTIDRUG RESISTANCE 33-34

1.4 GLUTATHIONE S-TRANSFERASE DRUG METABOLISING ENZYMES 35-41

1.4.1 INDUCTION OF GLUTATHIONE S-TRANSFERASE GENE EXPRESSION

1.4.2 REGULATION OF GLUTATHIONE S-TRANSFERASE GENES

1.4.3 INVOLVEMENT OF GLUTATHIONE S-TRANSFERASES IN DRUG RESISTANCE
1.5 CYTOCHROME P450 FAMILY OF DRUG METABOLISING ENZYMES 41-50

1.5.1 INDUCTION OF CYTOCHROME P-450 GENE EXPRESSION
1.5.2 REGULATION OF CONSTITUTIVELY EXPRESSED P450 GENES

1.6 CONCLUDING REMARKS AND AIMS OF THE THESIS 50-52

CHAPTER 2 : MATERIALS AND METHODS 53-54

2.1 MATERIALS

2.1.1 COMMERCIAL MATERIAL SOURCES
2.1.2 NON-COMMERCIAL MATERIALS

2.2 ANIMAL EXPERIMENTS

2.2.1 XENOBIOTIC EXPOSURE OF MICE
2.2.2 SURGICALLY TREATED MICE
2.2.3 MUTANT MICE
2.2.4 CONTROL MICE
2.2.5 XENOBIOTIC EXPOSURE OF RATS
2.2.6 PREPARATION OF MICROSOMAL AND CYTOSOLIC FRACTIONS FROM MOUSE AND RAT TISSUES

2.3 HISTOLOGICAL EXAMINATION OF RAT TISSUES

2.3.1 TISSUE FIXATION
2.3.2 STAINING FOR MORPHOLOGY AND GLYCOGEN DISTRIBUTION
2.3.3 STAINING FOR P450 AND GST α

2.4 CELL CULTURE

2.4.1 CELL LINES
2.4.2 CELL CULTURE TECHNIQUES AND CONDITIONS FOR CULTURE
2.4.3 PREPARATION OF SOLUBLE PROTEIN LYSATES FOR P-GLYCOPROTEIN ESTIMATION
2.5 PROTEIN DETERMINATION OF SAMPLES 63-66

2.5.1 PROTEIN ESTIMATION
2.5.2 SODIUM DODECYL SULPHATE POLYACRYLAMIDE GEL ELECTROPHORESIS (SDS PAGE)
2.5.3 ELECTROPHORESIS OF PROTEINS FOR P-GLYCOPROTEIN IMMUNOBLOTTING

2.6 IMMUNOCHEMICAL DETECTION 67-73

2.6.1 ELISA ASSAY TO DETERMINE P-GLYCOPROTEIN ANTIBODY TITRES
2.6.2 WESTERN BLOTTING ANALYSIS FOR CYTOCHROME P450 AND GLUTATHIONE-S-TRANSFERASE PROTEINS
2.6.3 WESTERN BLOTTING OF P-GLYCOPROTEIN
2.6.4 ENHANCED CHEMILUMINESCENCE (ECL) DETECTION OF PROTEIN

2.7 CDNA CLONES 73-77

2.8 PLASMIDS 77-80

2.8.1 PLASMID CULTURE
2.8.2 STORAGE OF PLASMIDS
2.8.3 MEDIA USED FOR BACTERIAL CULTURE
2.8.4 PREPARATION OF PLASMID DNA

2.9 RNA PREPARATION 80-82

2.9.1 PREPARATION OF TOTAL CELLULAR RNA FROM CULTURED CELLS
2.9.2 PREPARATION OF TOTAL RNA FROM WHOLE TISSUES

2.10 QUANTITATION OF DNA AND RNA 82-84

2.10.1 SPECTROPHOTOMETRIC QUANTITATION
2.10.2 ETHIDIUM BROMIDE FLUORESCENCE QUANTITATION

2.11 NORTHERN BLOTTING 84-88

2.11.1 SEPARATION, TRANSFER AND HYBRIDISATION OF RNA
2.11.2 PREPARATION OF cDNA PROBES FOR USE IN HYBRIDISATION
2.11.3 RADIOLABELLING OF cDNA CLONES

2.12 CYTOTOXICITY TESTING 88-89

2.12.1 MTT ASSAY

2.13 CORTICOSTERONE MEASUREMENT 90-91

2.13.1 SERUM COLLECTION
2.13.2 CORTICOSTERONE ASSAY

CHAPTER 3 : DEVELOPMENT OF PEPTIDE ANTIBODIES TO P-GLYCO PROTEIN

3.1 INTRODUCTION AND AIMS 92-96

3.2 CHOICE OF PEPTIDE SEQUENCES, IMMUNISATION AND RAISING THE ANTIBODIES 96-102

3.3 MEASURING ANTIBODY TITRES USING THE ELISA ASSAY 102

3.4 IMMUNOBLOTTING USING THE C219 MONOClonAL ANTIBODY 102-106

3.5 IMMUNOBLOTTING USING PEPTIDE ANTIBODIES 106-117

3.5.1 IMMUNOBLOTTING USING POLYCLONAL ANTIBODY 21
3.5.2 IMMUNOBLOTTING USING POLYCLONAL ANTIBODY 61

3.6 IMMUNOHISTOCHEMISTRY USING PEPTIDE ANTIBODIES 118-119
3.6.1 RESULTS OF IMMUNOHISTOCHEMISTRY

3.7 SUMMARY OF RESULTS 119-120

CHAPTER 4 : P-GLYCOPROTEIN - AN EFFLUX PUMP FOR CARCINOGENS?

4.1 INTRODUCTION AND AIMS 121-126

4.2 RESISTANCE PROFILES OF MULTIDRUG RESISTANT CELLS USING THE MTT ASSAY 126-131

4.3 REVERSAL OF RESISTANCE USING VERAPAMIL 131-132

4.4 CYTOTOXICITY OF CARCINOGENS ON DRUG RESISTANT CHRC⁵ AND DRUG SENSITIVE AUXB1 CELLS

(a) 2-ACETYLAMINOFUORENE
(b) BENZO(A)PYRENE
(c) AFLATOXIN B₁

4.5 EFFECTS OF CARCINOGENS ON THE RESISTANCE PROFILE OF CHRC⁵ CELLS 138-143

4.6 SUMMARY OF RESULTS AND DISCUSSION 143-146

CHAPTER 5 : EXOGENOUS REGULATION OF MDR GENES IN RAT AND MOUSE

5.1 INTRODUCTION AND AIMS 147-150

5.2 XENOBIOТИC REGULATION OF MDR GENES IN RAT 150-175

5.2.1 TREATMENT OF WISTAR AND FISCHER RATS
5.2.2 HISTOLOGICAL EXAMINATION OF 2-ACETYLAMINO-
5.2.3 ANALYSIS OF RAT MDR EXPRESSION FOLLOWING XENOBIOTIC TREATMENT
5.2.4 ANALYSIS OF RAT CYTOCHROME P450 AND GST EXPRESSION FOLLOWING XENOBIOTIC TREATMENT

5.3 XENOBIOTIC REGULATION OF MDR GENES IN MOUSE 175-202

5.3.1 TREATMENT OF C57BL/6 AND DBA2/N MICE WITH PHENOBARBITAL, DEXAMETHASONE AND 1,4-BIS [2-(3,5-DICHLOROPYRIDYLOXY)] BENZENE (TCPOBOP)
5.3.2 ANALYSIS OF MOUSE MDR EXPRESSION FOLLOWING XENOBIOTIC TREATMENT AND COMPARISON WITH CYTOCHROME P450 AND GST_EXPRESSION
5.3.3 TREATMENT OF C57BL/6 AND DBA2/N WITH A RANGE OF P450 SUBSTRATES
5.3.4 ANALYSIS OF MDR, CYTOCHROME P450 AND GST EXPRESSION FOLLOWING TREATMENT WITH A RANGE OF P450 SUBSTRATES

5.4 ANTI-CANCER DRUGS AND CYP3A SUBSTRATES AS REGULATORS OF MDR GENES IN MOUSE 202-213

5.4.1 TREATMENT OF C57BL/6 MICE WITH ANTI-CANCER DRUGS AND CYP3A SUBSTRATES
5.4.2 ANALYSIS OF MOUSE MDR, CYTOCHROME P450 AND GST EXPRESSION FOLLOWING TREATMENT WITH ANTI-CANCER DRUGS AND CYP3A SUBSTRATES

5.5 EFFECT OF BUTYLATED HYDROXYANISOLE ON MDR EXPRESSION IN MOUSE LIVER 214-215

5.5.1 TREATMENT OF BALB/C MICE WITH BUTYLATED HYDROXYANISOLE
5.5.2 ANALYSIS OF MDR 2 AND GST EXPRESSION IN MOUSE LIVER

12
CHAPTER 6: ENDOGENOUS REGULATION OF MULTIDRUG RESISTANCE GENES IN MOUSE

6.1 INTRODUCTION AND AIMS

6.2 PITUITARY REGULATION

6.2.1 HYPOPHYSECTOMISED MOUSE MODEL - ANIMAL TREATMENT

6.2.2 ANALYSIS OF MDR AND GST \(\pi\) GENE EXPRESSION FOLLOWING HYPOPHYSECTOMY

6.2.3 "LITTLE MOUSE" MODEL - ANIMAL TREATMENT

6.2.4 ANALYSIS OF MDR GENE EXPRESSION IN "LITTLE MICE"

6.2.5 TRANSGENIC HYPOTHYROID MOUSE MODEL - ANIMAL TREATMENT

6.2.6 ANALYSIS OF MDR GENE EXPRESSION IN HYPOTHYROID MICE

6.2.7 REGULATION OF CORTICOSTERONE BY DEXAMETHASONE AND TCPOBOP - ANIMAL TREATMENT

6.2.8 MEASUREMENT OF CORTICOSTERONE LEVELS IN DEXAMETHASONE AND TCPOBOP TREATED MICE

6.2.9 ANALYSIS OF MDR GENE EXPRESSION IN ANIMALS WITH DEPLETED AND ELEVATED CORTICOSTERONE LEVELS

6.3 DEVELOPMENTAL REGULATION

6.3.1 TIME COURSE OF EXPRESSION - ANIMAL TREATMENT

6.3.2 ANALYSIS OF MDR GENE EXPRESSION IN EMBRYONIC AND ADULT MOUSE LIVER

6.4 VARIATION IN RODENT MDR GENE EXPRESSION

6.5 SUMMARY OF RESULTS AND DISCUSSION
CHAPTER 7: OVERALL CONCLUSIONS OF THE THESIS AND DISCUSSION

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>XENOBIOTIC REGULATION</td>
<td>249-259</td>
</tr>
<tr>
<td>7.2</td>
<td>HORMONAL REGULATION</td>
<td>259-260</td>
</tr>
<tr>
<td>7.3</td>
<td>CONCLUDING REMARKS</td>
<td>260-262</td>
</tr>
<tr>
<td></td>
<td>RESISTANCE GENES IN MOUSE</td>
<td></td>
</tr>
</tbody>
</table>

BIBLIOGRAPHY 263-304
APPENDIX 1 305-309
APPENDIX 2 310
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-AAF</td>
<td>2-acetylaminofluorene</td>
</tr>
<tr>
<td>4-AAP</td>
<td>4-acetamidophenol</td>
</tr>
<tr>
<td>ACTH</td>
<td>adrenocorticotropic hormone</td>
</tr>
<tr>
<td>adr(R)</td>
<td>Adriamycin (resistant)</td>
</tr>
<tr>
<td>AFB$_1$</td>
<td>Aflatoxin B$_1$</td>
</tr>
<tr>
<td>Ah</td>
<td>Aromatic hydrocarbon</td>
</tr>
<tr>
<td>AHHase</td>
<td>Arylhydrocarbon hydroxylase</td>
</tr>
<tr>
<td>Ara</td>
<td>Arachlor 1254</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>B(a)p</td>
<td>Benzo(a)pyrene</td>
</tr>
<tr>
<td>BHA</td>
<td>Butylated hydroxyanisole [2-(3)-tert-butyl-4-hydroxyanisole]</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>C</td>
<td>C57BL/6</td>
</tr>
<tr>
<td>CaM</td>
<td>Calmodulin</td>
</tr>
<tr>
<td>CBP</td>
<td>Corticosteroid binding globulin</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary deoxyribonucleic acid</td>
</tr>
<tr>
<td>CDTA</td>
<td>Trans-1,2-diaminocyclohexane-NNN'N'-tetraacetic acid</td>
</tr>
<tr>
<td>CF</td>
<td>Clofibrate</td>
</tr>
<tr>
<td>CHO</td>
<td>Chinese hamster ovary</td>
</tr>
<tr>
<td>CH$_{RC5}$</td>
<td>Colchicine resistant Chinese hamster ovary cell line</td>
</tr>
<tr>
<td>Clo</td>
<td>Clotrimazole</td>
</tr>
<tr>
<td>co</td>
<td>Corn-oil</td>
</tr>
<tr>
<td>con (C)</td>
<td>Control</td>
</tr>
<tr>
<td>CsA</td>
<td>Cyclosporin A</td>
</tr>
<tr>
<td>CTC</td>
<td>Carbon tetrachloride</td>
</tr>
<tr>
<td>CYP</td>
<td>Cytochrome</td>
</tr>
<tr>
<td>dATP</td>
<td>Deoxyadenosine triphosphate</td>
</tr>
<tr>
<td>dCTP</td>
<td>Deoxycytosine triphosphate</td>
</tr>
<tr>
<td>D</td>
<td>DBA2/N</td>
</tr>
<tr>
<td>DEN</td>
<td>Diethylnitrosamine</td>
</tr>
<tr>
<td>depc</td>
<td>Diethylpyrocarbonate</td>
</tr>
<tr>
<td>dex (D)</td>
<td>Dexamethasone</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>dGTP</td>
<td>deoxyguanine triphosphate</td>
</tr>
<tr>
<td>dH₂O</td>
<td>distilled water</td>
</tr>
<tr>
<td>DHPG</td>
<td>9-[1,3-dihydroxy-2-propoxy(methyl)]-guanine</td>
</tr>
<tr>
<td>DMN</td>
<td>dimethylnitrosamine</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethylsulphoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>dox</td>
<td>doxorubicin (adriamycin)</td>
</tr>
<tr>
<td>Dox-5</td>
<td>doxorubicin resistant human ovarian cell line</td>
</tr>
<tr>
<td>dTTP</td>
<td>deoxythymidine triphosphate</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EGF</td>
<td>epidermal growth factor</td>
</tr>
<tr>
<td>ER</td>
<td>endoplasmic reticulum</td>
</tr>
<tr>
<td>Ery</td>
<td>erythromycin</td>
</tr>
<tr>
<td>EtOH</td>
<td>ethanol</td>
</tr>
<tr>
<td>F</td>
<td>female</td>
</tr>
<tr>
<td>FCS</td>
<td>foetal calf serum</td>
</tr>
<tr>
<td>FIAU</td>
<td>1-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)-5-iodouracil</td>
</tr>
<tr>
<td>GSH</td>
<td>glutathione</td>
</tr>
<tr>
<td>GST(s)</td>
<td>glutathione-S-transferase(s)</td>
</tr>
<tr>
<td>GH</td>
<td>growth hormone</td>
</tr>
<tr>
<td>GHRH</td>
<td>growth hormone releasing hormone</td>
</tr>
<tr>
<td>HCC</td>
<td>hepatocellular carcinoma</td>
</tr>
<tr>
<td>H/E</td>
<td>haematoxylin/eosin</td>
</tr>
<tr>
<td>HN</td>
<td>hyperplastic nodule</td>
</tr>
<tr>
<td>HSV1-TK</td>
<td>herpes virus thymidine kinase</td>
</tr>
<tr>
<td>HSV-tk</td>
<td>herpes virus gene</td>
</tr>
<tr>
<td>Hsp</td>
<td>heat shock protein</td>
</tr>
<tr>
<td>hypox</td>
<td>hypohysectomy</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>lit</td>
<td>little</td>
</tr>
<tr>
<td>IgG</td>
<td>immunoglobulin G</td>
</tr>
<tr>
<td>M</td>
<td>male</td>
</tr>
<tr>
<td>3-MC</td>
<td>3-methylcholanthrene</td>
</tr>
<tr>
<td>mdr</td>
<td>multidrug resistance/multidrug resistant</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Compound/Description</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>MOPS</td>
<td>3-[N-morpholino]propanesulphonic acid</td>
</tr>
<tr>
<td>MTT</td>
<td>3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl) tetrazolium bromide</td>
</tr>
<tr>
<td>Mr</td>
<td>molecular weight</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger ribonucleic acid</td>
</tr>
<tr>
<td>NADP</td>
<td>nicotinamide adenine dinucleotide phosphate</td>
</tr>
<tr>
<td>NaPPi</td>
<td>sodium pyrophosphate</td>
</tr>
<tr>
<td>α/β-NF</td>
<td>α/β-napthoflavone</td>
</tr>
<tr>
<td>nit</td>
<td>nitrate</td>
</tr>
<tr>
<td>4-NQO</td>
<td>4-nitroquinolene oxide</td>
</tr>
<tr>
<td>OD</td>
<td>optical density</td>
</tr>
<tr>
<td>PA</td>
<td>polyclonal antibody</td>
</tr>
<tr>
<td>PAH</td>
<td>polycyclic aromatic hydrocarbon</td>
</tr>
<tr>
<td>PAS</td>
<td>periodic acid Schiff</td>
</tr>
<tr>
<td>PB (P)</td>
<td>phenobarbital</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PCN</td>
<td>pregnenolone 16α-carbonitrile</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>Pgp</td>
<td>p-glycoprotein</td>
</tr>
<tr>
<td>PKC</td>
<td>protein kinase C</td>
</tr>
<tr>
<td>PLPD</td>
<td>periodate lysine paraformaldehyde</td>
</tr>
<tr>
<td>Prog</td>
<td>progesterone</td>
</tr>
<tr>
<td>PVP</td>
<td>polyvinylpyrrolidine</td>
</tr>
<tr>
<td>Pyr</td>
<td>pyrazole</td>
</tr>
<tr>
<td>Rif</td>
<td>rifampicin</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulphate</td>
</tr>
<tr>
<td>SDS/PAGE</td>
<td>SDS/polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>sham</td>
<td>sham-operated</td>
</tr>
<tr>
<td>SKOV3</td>
<td>human ovarian carcinoma cell line</td>
</tr>
<tr>
<td>SKVLB</td>
<td>vinblastine resistant SKOV3</td>
</tr>
<tr>
<td>Std</td>
<td>standard</td>
</tr>
<tr>
<td>TAO</td>
<td>triacytyleoleandomycin</td>
</tr>
<tr>
<td>TCDD</td>
<td>2,3,7,8-tetrachlorobenzo-p-dioxin</td>
</tr>
<tr>
<td>TCPOBOP</td>
<td>1,4-bis [2-(3,5-dichloropyridyloxy)] benzene</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>TBST</td>
<td>tris buffered saline plus Tween 20</td>
</tr>
<tr>
<td>TEMED</td>
<td>NNNN'-tetramethyl ethylene diamine</td>
</tr>
<tr>
<td>Topo II</td>
<td>topoisomerase II</td>
</tr>
<tr>
<td>Vnb</td>
<td>vinblastine</td>
</tr>
<tr>
<td>Vinc</td>
<td>vincristine</td>
</tr>
<tr>
<td>VP16</td>
<td>etoposide</td>
</tr>
<tr>
<td>XRE</td>
<td>xenobiotic responsive element</td>
</tr>
<tr>
<td>PMSF</td>
<td>propyl methyl sulphonyl fluoride</td>
</tr>
<tr>
<td>NP 40</td>
<td>Nonidet P 40</td>
</tr>
<tr>
<td>HRP</td>
<td>horseradish peroxidase</td>
</tr>
<tr>
<td>Eth Br</td>
<td>ethidium bromide</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 INTRODUCTORY COMMENTS

Cells protect themselves from toxic insults in a variety of ways. Use of chemicals often results in their becoming ineffective due to cellular resistance mechanisms and understanding such mechanisms has become increasingly significant in medicine. Resistance may be both intrinsic or acquired. Intrinsic resistance may be due to a variety of biochemical reasons as shown in Table 1.1. For example, the mammalian lung copes with oxygen-induced free radicals by producing antioxidants including superoxide dismutase and glutathione peroxidase (Halliwell and Gutteridge, 1985). Drugs and toxins produce biochemical changes including enzyme induction, DNA repair and increased detoxification capacity. Certain bacteria produce dihydrofolate reductase in response to trimethoprim treatment (Young and Amyes, 1986).

Environmental factors can elicit an adaptive response that also confers chemical resistance. Prokaryotes have various stress response mechanisms. Many proteins are regulated by stress and the responses may inter-relate.

Heat-shock to cells causes the expression of three families of heat-shock genes, Hsp 90, Hsp 70 and Hsp 20. Hsp 70 and Hsp 72 bind peroxisome proliferators, for example clofibrate, which may inhibit their activity (Alvares et al, 1990).

A fundamental association between adaptive response to environmental stress and drug resistance seems to exist. The heat-resistant Chinese hamster ovary (CHO) cell line over-expresses Hsp 70 and also shows resistance to adriamycin and the epipodophyllotoxin VM-26 (Wallner and Li, 1986). These are both well known substrates for P-glycoprotein (P-gp), which is involved in the mdr phenotype. It has been shown that P-gp expressing cells contain a heat-shock consensus sequence in their
<table>
<thead>
<tr>
<th>EXAMPLE</th>
<th>ORGANISM</th>
<th>PROTEIN OR OTHER FACTORS</th>
<th>TYPE</th>
<th>DRUG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibiotic producers</td>
<td>Streptomyces griseus</td>
<td>Aminoglycoside phosphotransferase</td>
<td>Novel metabolic inactivation</td>
<td>Streptomycin</td>
</tr>
<tr>
<td>Brain tumours</td>
<td>Man</td>
<td>Sanctuary site</td>
<td>Drug delivery</td>
<td>Anticancer drugs</td>
</tr>
<tr>
<td>Chemoprevention</td>
<td>Mammals</td>
<td>Dietary manipulation</td>
<td>Adaptive change</td>
<td>Carcinogen (aflatoxin B₁)</td>
</tr>
<tr>
<td>Heat shock</td>
<td>Chinese hamster fibroblasts</td>
<td>Transient hyperthermia</td>
<td>Stress response</td>
<td>Adriamycin, ethanol</td>
</tr>
<tr>
<td>Poor debrisoquine metabolizers</td>
<td>Man</td>
<td>Cytochrome P-450</td>
<td>Population polymorphism</td>
<td>Reduced sensitivity to carcinogens</td>
</tr>
</tbody>
</table>

Adapted from Hayes and Wolf, 1990
promoter region (Chin et al., 1990). Carcinogens also induce heat-shock proteins (Carr et al., 1986).

The second type of resistance, that of acquired resistance, describes the emergence of a population of previously drug-sensitive cells. The development of cancer is a step-wise process that involves in part such a selection. Major alterations are observed in the levels of drug metabolising enzymes in hepatocyte nodules selected by exposure to carcinogens. The changes include a decrease in the expression of the cytochrome P450 and sulphotransferases and over-expression of glutathione-S-transferases (GSTs), UDP glucuronyl transferase, epoxide hydrolase, DT-diaphorase, γ-glutamyl transferase and P-gp.

Such a diversity of events suggests the existence of a common control mechanism responsible for coordinating the expression of these enzymes. An initial mutation event, which could involve a stress response regulatory gene, may initiate a cascade of events as described above. An understanding of these enzymes is crucial to the prevention or treatment of cancer.

Cytochrome P450s and glutathione S-transferases (GSTs) are subject to regulation by a variety of endogenous and exogenous factors. The aim of this project was to study the factors controlling the regulation of P-gp, as well as trying to relate its regulation to that of P450s and GSTs in order to establish whether areas of common regulation exist.

In this introductory chapter, literature dealing with the properties of the P-gp, cytochrome P450 and GST gene families in rodents will be discussed. The regulation of cytochrome P450s and GSTs by xenobiotics and endogenous substances will be briefly reviewed. Questions regarding the regulation of P-gp will be raised and the strategy for answering them described.

The following chapters will contain more detailed background information regarding different aspects of the project and discuss the findings of the experimental work conducted. The final chapter will summarise the results and discuss them more fully in addition to suggesting future topics for study.
1.2 MULTIDRUG-RESISTANCE

1.2.1 THE MULTIDRUG RESISTANCE PHENOTYPE AND P-GLYCOPROTEIN

Multidrug-resistance (mdr) describes the simultaneous expression of cellular resistance to a wide range of structurally unrelated drugs. Such a phenotype is frequently seen in clonal mammalian lines selected for resistance to a single cytotoxic agent. The complexity of the mdr phenotype is illustrated in Table 1.2, where it is shown that mdr cells can be cross-resistant to structurally and functionally distinct compounds.

TABLE 1.2
CROSS-RESISTANCE PHENOTYPE OF MDR CELL LINES

<table>
<thead>
<tr>
<th>DRUG</th>
<th>FOLD RESISTANCE*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CHRC\textsubscript{5}</td>
</tr>
<tr>
<td>Colchicine</td>
<td>180</td>
</tr>
<tr>
<td>Colcemid</td>
<td>16</td>
</tr>
<tr>
<td>Vinblastine</td>
<td>30</td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>25</td>
</tr>
<tr>
<td>Gramicidin D</td>
<td>\sim5000</td>
</tr>
<tr>
<td>Methotrexate</td>
<td>NA</td>
</tr>
</tbody>
</table>

Resistance was raised against colchicine, in the case of CHRC\textsubscript{5}, and vinblastine in the case of CEM/VLB100.

* compared to parental wild-type cell line

NA not assayed

Adapted from Gerlach et al, 1986

Mdr cells frequently display collateral sensitivity to certain hydrophobic compounds. Resistance appears to be due to a lower cellular accumulation of the drugs involved.

Many mammalian cell lines selected for resistance to a single cytotoxic agent, for example actinomycin D, adriamycin, colchicine or Taxol, show an altered sensitivity to an unexpectedly wide range of cytotoxic
compounds (Biedler et al., 1983; Gupta, 1983 a, b; Ling et al., 1983; Beck, 1984a; Curt et al., 1984). Usually, the cell lines display the highest degree of resistance to the selecting agent and lower resistance to other compounds.

In general, among the anti-cancer drugs, resistance to the anthracyclines, vinca alkaloids, podophyllotoxins, actinomycin D, maytansine and Taxol are most often observed in mdr cell lines. Cross-resistance to alkylating agents such as melphalan, nitrogen mustard and mitomycin C and to anti-metabolites such as methotrexate occurs less frequently and usually at a lower level.

Cytogenetic studies demonstrate the frequent presence of homogeneously staining regions and double minutes in mdr cell lines (Baskin et al., 1981), which are karyotypic features of gene amplification (Cowell, 1982). Gene amplification of P-gp sequences in a variety of cell lines has been noted (Riordan et al., 1985).

A reduced accumulation of drug has been a consistent feature of many cell lines, relative to their drug sensitive counter-part (Beck, 1984; Riordan and Ling, 1985). This may be effected by reduced influx, increased efflux, altered compartmentalization or by a combination of these mechanisms. A unifying model to account for all the observed reduced accumulation events in these cell lines has not yet been conclusively demonstrated.

Many studies have concentrated on elucidating the biochemical differences between mdr and sensitive cells. The most consistent biochemical change is the increased expression of a plasma membrane glycoprotein, termed p-glycoprotein (P-gp). Only minor differences are observed in the lipid constituents of the membranes of mdr cells (Bosman, 1971; Ling et al., 1977). However, changes in cytoplasmic components have been noted. The most consistent of these is an increase in a small cytoplasmic protein of 19 kD and isoelectric point (pl) of 5.7. This is present in elevated amounts in chinese hamster and mouse cells resistant to vincristine (Meyers and Biedler, 1981; Meyers et al., 1985). This protein is called VP19 and is phosphorylated (Biedler et al., 1983).

The association of P-glycoprotein with mdr was first described in colchicine- resistant chinese hamster ovary (CHO) cells and in actinomycin
D-resistant Syrian hamster cells (Juliano and Ling, 1976). Similar alterations were later described in many other drug resistant cell lines (Peterson and Biedler, 1978; Garman and Center, 1982; Beck et al, 1979).

In isolated plasma membranes of highly resistant CHO cells, P-gp was found to be the major membrane component (Riordan and Ling, 1979). The reported molecular weight (Mr) for P-gp is 170,000 kD, but this can vary from between 140,000-220,000 kD depending on the SDS-PAGE system, the solubilisation and electrophoresis conditions used. An Mr of 170,000 kD was obtained using a modified Fairbanks system for SDS-PAGE (Fairbanks et al, 1971; Debenham et al, 1982; Kartner et al, 1983 a, b). This buffer system gives sharper resolution of glycoproteins than the more conventionally used discontinuous systems such as that of Laemmli (1970).

The improved sensitivity of detection of P-gp by monoclonal antibodies (Kartner et al, 1985) along with Western blotting (Towbin et al, 1979) made possible a comparative study of different mdr cell lines (Kartner et al, 1983a, 1985). It was found that homologous P-gps are expressed in mdr cells of different origins and that the level of P-gp expression was always elevated over drug sensitive parental levels by an amount consistent with the degree of resistance.

Monoclonal antibodies have also been applied to the identification of cDNA clones encoding P-gp. Riordan et al (1985) identified a 600 bp clone from a λgt11 library that was shown to code for three epitopes of P-gp. A 4.7 kb mRNA specific to mdr cells was found using this cDNA insert which was consistent with the molecular size of the P-gp polypeptide. The amount of message expressed also correlated with the level of P-gp expression in cell lines with different degrees of mdr.

Using Southern blotting with P-gp genomic DNA from sensitive and resistant cell lines, it has been shown that there is amplification of the genomic DNA coding for P-gp in some mdr cells (Riordan et al, 1985). Increased P-gp can also occur in the absence of gene amplification (Fuqua et al, 1987).

Cloning P-gp genes was a major advancement in the understanding of the structure and function of P-gp. The sequence of human P-gp (mdr 1 gene) encodes a molecule of 1280 amino acids and is tandemly repeated.
Each half of the molecule consists of a hydrophobic domain containing three pairs of membrane-spanning α-helices and a highly conserved hydrophilic cytoplasmic domain containing an adenosine triphosphate (ATP) binding site (Gros et al, 1986; Chen et al, 1986; Gerlach et al, 1986).

The transmembrane domains are thought to form a pore through which P-gp effluxes drugs and endogenous substances. How energy is transduced for transport is unknown although the binding of ATP analogues to P-gp and the ATPase activity of the purified protein has been confirmed (Cornwell et al, 1987; Hamada and Tsuruo, 1988). It has also been shown that a mutation of one or both nucleotide-binding consensus sequences results in a lack of drug resistance in mdr transfected cells (Rothenburg and Ling, 1989). These sites may functionally interact to effect drug efflux.

The mechanism of drug binding is not yet known, but direct binding of drugs to P-gp may be an important step. Choik et al (1988) reported a mutation in a human mdr cell line that resulted in a change from valine to glycine at position 185. Mutants displayed an increased resistance to colchicine, etoposide (VP16) and a decreased resistance to vinblastine, vincristine and actinomycin D. This finding infers that subtle alteration in these sequences can produce significantly different mdr phenotypes.

Direct binding of drug analogues to P-gp has been studied. Photoaffinity vinblastine analogues can label the protein and the binding is inhibited by other drugs such as vincristine and daunomycin, as well as chemosensitisers such as verapamil (Gottesman, 1988b). The conclusion from these findings is that these compounds may be competing for a common binding site.

It is possible that differential expression of mdr genes could alter the profile of transported drugs. Co-amplification of other genes, as well as the mdr genes, may also modify the profile. Van der Bliek et al (1986) reported the co-amplification and overexpression of at least six classes of genes in one CHO cell line. P-gp is phosphorylated at both serine and threonine residues (Endicott and Ling, 1989) and changes in the extent of such phosphorylation may also modulate activity.
Both bacterial and eukaryotic transport proteins share extensive sequence homology to P-gp, as displayed in Figure 1.1, and is therefore considered a member of a super-family of proteins that transport a wide range of substrates. Members of this family have high sequence homology in the nucleotide binding consensus sequence (Walker et al, 1982).

The transporters fall into two general classes. The first represents proteins which have linked hydrophobic and hydrophilic domains. P-gp appears structurally most like this class and can be viewed as a tandemly duplicated hemolysin B (Hly B)-like protein (Gros et al, 1986; Gerlach et al, 1986). The hydrophobic domains of P-gp and Hyl B-like proteins have low sequence homology but their location and the number of membrane-spanning helices argue for a similar membrane disposition and pore-forming function. The brown and white loci of Drosophila are also part of the Hyl B-like protein class but the order of the two domains is reversed (Dreesen et al, 1988). The brown and white proteins import pteridine pigment precursors into cells whereas the Hyl B class export substrates.

Riordan et al (1989) has recently described the cystic fibrosis gene product, referred to as the cystic fibrosis transmembrane conductance regulator (CFTR). This is also a member of this class of transporters and has a tandemly duplicated structure. The CFTR protein is presumed to be involved in the transport of anions across cell membranes.

The second group of transporters are members of multi-component periplasmic protein binding permeases (PPBP) systems of bacteria. The permease system is composed of a substrate binding protein that presents the substrate to a membrane complex consisting of two integral membrane proteins capable of forming several transmembrane helices and a membrane associated cytoplasmic hydrophilic protein that binds ATP (Ames, 1986). There is evidence that two ATP binding subunits might also be required in the PPBP systems (Prossnitz et al, 1989).
The P-glycoprotein superfamily of transport proteins. The names of proteins and the substrates they transport (in parentheses) are shown under a boxed representation of the domain structure of the proteins. Filled boxes represent the hydrophilic domain or polypeptide containing the ATP-binding consensus sequences, which is highly homologous among all members of the superfamily. Open boxes represent a hydrophobic domain or polypeptide which contains multiple putative membrane-spanning α-helices that share limited sequence homology only between proteins within each group.

Redrawn from Juranka et al, 1989
1.2.3 THE P-GLYCOPEPTIDE MULTI-GENE FAMILY

P-gp is a member of a small, highly conserved multigene family with three genes in rodent and two genes in primates (Ng et al, 1989). The family appears to have arisen from one or more gene duplication events (Van der Bliek et al, 1988a). Each P-gp isoform is highly conserved in protein sequence and genomic structure.

Analysis of the 3' untranslated region of various P-gp genes has allowed identification of equivalent isoforms between species (Ng et al, 1989). Each gene within a species encodes a unique 3' untranslated region but certain differences are conserved across species.

The P-gp isoforms can be grouped into three classes as shown in Table 1.3.

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>CLASS I</th>
<th>CLASS II</th>
<th>CLASS III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamster</td>
<td>pgp 1</td>
<td>pgp 2</td>
<td>pgp 3</td>
</tr>
<tr>
<td>Mouse</td>
<td>mdr 3</td>
<td>mdr 1</td>
<td>mdr 2</td>
</tr>
<tr>
<td>Human</td>
<td>mdr 1</td>
<td>-</td>
<td>mdr 3 (mdr 2)</td>
</tr>
</tbody>
</table>

Redrawn from Juranka et al, 1989

Various studies indicate that transfection of class I and II P-gp can confer the mdr phenotype (Guild et al, 1988; Ueda et al, 1987) whereas type III transfection does not result in drug resistance (Rothenburg and Ling, 1989; Gros et al, 1988). Structural features of this isoform clearly imply that it is a membrane transport protein, similar to class I and II isoforms and it would be interesting to determine the compounds it may transport.

Human class I and mouse class II P-gp genes have been studied to determine their genomic intron/exon organization (Chen et al, 1989;
Raymond and Gros, 1989). Both genes contain 27 exons with identical relative location within the coding region (Ng et al, 1989; Chen et al, 1989; Raymond and Gros, 1989). P-gp may have originated from a duplication event or by the fusion of two closely related but independently evolving genes.

The number of P-gp genes in vertebrates has been estimated (Ng et al, 1989). Primates (human, rhesus monkey), rabbit, chicken and fish contain two genes; rodents (hamster, mouse, rat) and cow contain three genes and pig has five genes. Invertebrates also contain P-gp sequences. Drosophila melanogaster contains two genes, and three genes have been cloned from the nematode Caenorhabditis elegans. McGrath and Varshowsky (1989) reported a P-gp gene in Saccharomyces cervisiae. The P-gp cloned is the product of the STE6 gene; a locus required for the secretion of the α-factor mating pheromone. This represented the first identification of a normal function for a P-gp gene product. STE6 is part of a signal sequence-independent protein translocating system. This is shared by the products of the bacterial Hly B, cya B and the lkt B genes. The mammalian class III P-gp gene may have a similar protein translocating function.

The malarial parasite, Plasmodium Falciparum, is known to have two genes (pfmdr) (Foote et al, 1989; Wilson et al, 1989). The pfmdr is amplified in some chloroquine-resistant plasmodium cells. Resistance is associated with increased drug efflux (Krogstad et al, 1987) and verapamil can reverse such resistance.

1.2.4 EXPRESSION AND REGULATION OF P-GLYCOPROTEIN

Regulation of P-gp may occur at various levels including transcription, translation and post-translation. Most regulation studies have been done in cell lines but the mechanisms may also apply to normal and malignant tissues.

Following early drug selection steps, human cell lines exhibit increased levels of P-gp, mRNA and protein, but without increased gene copy number. Control of transcription is suggested as the reason (Shen et al, 1986). Bradley et al (1988) showed that P-gp may also be over-
expressed in resistant human and rodent cell lines due to gene amplification. Bradley et al (1989) has more recently reported increased P-gp in the absence of gene copy number or mRNA levels, suggesting that such mechanisms as protein stabilisation or increased translation may occur.

Localisation of P-gp in normal human and rodent tissues has been performed using specific DNA probes and antibodies. It has been found that the P-gp genes are differentially expressed in a tissue-specific fashion.

Such studies demonstrate the consistently high expression of P-gp in the adrenal cortex, liver, kidney, intestine, muscle fibres and gravid uterus (Baas and Borst, 1988; Thiebaut et al, 1987; Croop et al, 1989). P-gp is localised to the apical surface of the small and large intestine, renal proximal tubules, bile and pancreatic ducts and the bile canilicular face of hepatocytes. This distribution implies a secretory function for P-gp and a role in clearing the cell of xenobiotics. P-gp is also found in the cells lining the brain capillaries and may be involved in the blood/brain barrier (Cordon-Cardo, 1989). In the adrenal cortex, P-gp may be responsible for the transport of corticosteroids.

Recently Croop et al (1989) examined the distribution of P-gp in mouse tissues by Northern blot analysis using gene specific probes. Class I (mouse mdr 3) was found at highest levels in the intestine and at intermediate levels in heart, brain and kidney. The highest level of class II (mouse mdr I) were present in the gravid uterus and adrenal with medium levels in kidney and heart. Medium levels of class III P-gp (mouse mdr 2) were found in adrenal, liver, spleen, heart and muscle. The expression of class III P-gp is also found in a subset of muscle fibres (Georges et al, 1989).

The class III P-gp is the only gene to date that has been shown to undergo differential splicing. Three different class III transcripts have been identified from a human liver library (Van der Bliek et al, 1988b). It is not known whether the variants are expressed at the protein level and what effect the changes would have on function.

P-gp increases dramatically in the uterus during pregnancy and is localised to the luminal surface of the secretory epithelial cells of the endometrium. It was also demonstrated that female mice treated with
oestradiol and progesterone demonstrated induced P-gp mRNA. This leads to the conclusion that P-gp may be under steroidal control (Arceci et al, 1988).

P-gp expression also seems to be a specific response of cells to toxic or metabolic stress. In carcinogen-induced preneoplastic and neoplastic liver nodules and hepatocytes from regenerating rat liver, increased mRNA levels have been observed (Thorgeirsson et al, 1987; Fairchild et al, 1987b).

The three classes of P-gp genes express different lengths of transcripts. In mouse, class I (mdr 3) produces a 6 and 5 kb transcript, class II (mdr 1) produces a 5 kb transcript and class III (mdr 2) is 4.5 kb in length (Croop et al, 1989).

1.2.5 SIGNIFICANCE OF P-GLYCOPROTEIN IN CANCER

Increased levels of P-gp have been seen in human cancers, for example leukaemias, lymphomas, sarcomas and carcinomas (*). In many cases, an increased level of P-gp is detected in tumours following relapse from chemotherapy compared to the biopsies before treatment. However, in some tumours high levels of P-gp are found even before therapy due to the cells expressing a phenotype which has intrinsically high P-gp levels (Goldstein et al, 1989).

Chan et al (1989) reported an elegant study on soft tissue sarcoma in childhood which indicated that the level of P-gp was a good prognostic marker of relapse-free response. However, the answer does not appear so straight-forward for other types of cancer, and the universal significance of P-gp to clinical response has not yet been convincingly shown.

Reversing the mdr phenotype using chemosensitisers to aid cancer treatment is being investigated. Ford and Hait (1990) recently reviewed the pharmacology of drugs that alter mdr in cancer therapy. These compounds were shown to fall into six broad categories.

Verapamil, a calcium channel blocker has been shown by many investigators to reverse mdr in cell lines (Beck, 1984; Radel et al, 1988) by altering drug accumulation (Tsuruo et al, 1981). Safa et al (1987, 1988) demonstrated that verapamil binds to P-gp and can inhibit the binding of

many chemotherapeutic drugs. However, verapamil is extremely cardiotoxic in the concentration range needed for antagonism of mdr. The use of less toxic enantiomers of verapamil and it’s analogs may provide a means of utilising these compounds effectively at a clinically useful level (Pirker et al, 1990). Other calcium channel blockers have been studied and found to be active.

Calmodulin antagonists, such as phenothiazines, are effective chemosensitizers and can enhance drug accumulation in mdr cells (Ford et al, 1990; Chafouleas et al, 1984).

Inaba’s group (1984) investigated the chemosensitizing effects of anthracycline analogs on mdr cells and found significant enhancement of cytotoxicity. Similarly a number of relatively non-toxic Vinca alkaloid analogs effectively antagonized cross-resistance of mdr cell lines (Inabe and Nagashima, 1986).

Prompted by the high levels of mdr 1 mRNA found in the pregnant murine uterus (Arceci et al, 1988), Yang et al (1989) studied the effects of steroids on mdr. It was found that progesterone and deoxycorticosterone increased vinblastine accumulation and caused an equivalent reversal of vinblastine resistance in murine macrophages as verapamil. The results suggested that progesterone may bind to a hydrophobic pocket present in the P-gp molecule and that certain steroid hormones may be natural substrates for P-gp. Anti-oestrogens, for example tamoxifen, can partially overcome resistance (Ramu et al, 1984).

Cyclosporins are yet another group of chemosensitising agents. Cyclosporin A (CsA) has immunosuppressive activity and can inhibit an early stage of T lymphocyte activation (Handschumacher et al, 1984). CsA has been found to reverse resistance in mdr cells (Twentyman et al, 1987, 1988). However cyclosporins also appear to increase the effect of chemotherapeutics on certain sensitive cell lines (Chambers et al, 1989). The mechanism by which the cyclosporins sensitize mdr cells remains unclear, but it may be through an indirect effect of drug metabolism or potentiation of drug toxicity.

CsA does not consistently alter drug accumulation. Silbermann et al (1989) reported the increased accumulation of daunomycin in a multidrug
resistant cell line but not its sensitive counterpart due to CsA administration. In contrast, Chambers et al (1989) showed that CsA had no effect on doxorubicin accumulation in CHRF5 cells. Nooter et al (1989) reported increased daunomycin accumulation and toxicity in P388/Dau cells.

The final group of sensitisers are the hydrophobic cationic compounds such as quinidine (Tsuruo et al, 1984) and the antibiotic erythromycin (Hofsli and Nissen-Meyer, 1989). Whether these compounds act through a common mechanism is unclear, but their high degree of hydrophobicity may cause non-specific perturbations in the cell membrane leading to increased drug accumulation.

1.3 ALTERNATIVE MECHANISMS INVOLVED IN MUTIDRUG-RESISTANCE

Apart from an increase in P-gp expression, an expanding number of biochemical and molecular changes are observed in cell lines selected for resistance to multiple cytotoxic drugs. These alterations have been described for non-Pgp expressing cells and those that over-express P-gp.

Clinical drug resistance in human tumours probably comprises a combination of cellular mechanisms of resistance. The two best characterised additional resistance mechanisms are firstly, changes in the expression or activity of enzymes involved in the phase II glutathione detoxification pathway and secondly, alterations in topoisomerase II.

Glutathione-S-transferases (GSTs) are enzymes that catalyse the conjugation of electrophilic substances and endogenous xenobiotics to glutathione (GSH), a tripeptide thiol, in order to form soluble stable metabolites which can be more easily excreted (Jackoby, 1978; Chasseaud, 1979).

Many researchers have reported an alteration in GST and GSH-related enzymes in cell lines resistant to alkylating agents (Lewis et al, 1988; Saburi et al, 1989). Cowan et al (1986) also noted an increase in the activity of the drug metabolising enzymes DT-diaphorase and glucuronyl transferase when comparing the biochemical changes in mdr human breast cells to those seen in carcinogen induced resistance to xenobiotics in rats.
is believed that these changes are not simply coincidental to the selection of resistance but have a significant function or regulatory role in the process.

The role of GST in mdr involving non-alkylating agents is still under debate. The role of GST \(\pi \) in mdr and correlation with P-gp is considered in the following chapters. A fuller discussion of the GST multi-gene family will therefore be given in section 1.4.

Topoisomerases are enzymes that catalyse the unwinding of DNA, which is necessary for replication (Liu, 1983). Topoisomerase II (topo II) is thought to be a target for DNA intercalating and non-intercalating drugs such as doxorubicin, mitoxantrone and etoposide (Chen et al, 1984). Several mdr cell lines display reduced Topo II activity in the absence of P-gp or changes in drug accumulation (Pommier et al, 1986; deJong et al, 1990). Ganapathi et al (1989) described a series of cells, selected for increased resistance to doxorubicin, which exhibited increased levels of P-gp and reduced Topo II mediated cleavage of DNA. This suggests that the alteration with this enzyme can be multi-factorial.

Other changes described in cross-resistant cells appear only to occur with over-expression of mdr 1 which suggests that this may be the result of being passively transcribed along with amplification of mdr 1. Meyers et al (1985, 1987) has shown that sorcin, a 22 kD anionic calcium binding protein, is over-produced in vincristine resistant mouse and chinese hamster lung and ovary cells.

Ivy et al (1988) reported an alteration in the expression of cytochrome P4501A1 in MCF 7 adriamycin resistant cells. Burt and Thorgeirsson (1988) reported the co-induction of the mdr 1 gene with cytochrome P450 genes in rat liver by exposure to xenobiotics. They concluded that P-gp was in fact under the control of the Ah locus, as is P450 1A2 (Gonzalez et al, 1984). The regulation of mdr genes by compounds known to operate through the Ah locus will be discussed in the course of this thesis. A fuller description of P450 genes and their regulation will therefore be given in section 1.5.
GSTs are a multi-gene family of enzymes that catalyse the conjugation of GSH to electrophilic reactive intermediates. The reaction constitutes the first step in the mercapturic acid pathway which is involved in the excretion of foreign compounds. The GSH conjugate may be excreted directly into bile or further metabolised to mercapturic acid.

All the GSTs have in common a dimeric structure with subunits of molecular weight between 23,000 and 26,000 kD. Eleven subunits have been characterised for the rat as outlined in Table 1.4.

TABLE 1.4

GSH TRANSFERASE SUBUNITS IN THE RAT

<table>
<thead>
<tr>
<th>NUMERICAL CLASS</th>
<th>"Y" DESIGNATION</th>
<th>MOL. MASS. (D)</th>
<th>REF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>α</td>
<td>Ya</td>
<td>25,000</td>
</tr>
<tr>
<td>2</td>
<td>α</td>
<td>Yc</td>
<td>27,500</td>
</tr>
<tr>
<td>3</td>
<td>μ</td>
<td>Yb₁</td>
<td>27,500</td>
</tr>
<tr>
<td>4</td>
<td>μ</td>
<td>Yb₂</td>
<td>26,500</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>μ</td>
<td>Yb₃</td>
<td>26,000</td>
</tr>
<tr>
<td>7</td>
<td>π</td>
<td>Yf or Yp</td>
<td>24,800</td>
</tr>
<tr>
<td>8</td>
<td>α</td>
<td>Yk</td>
<td>25,500</td>
</tr>
<tr>
<td>9</td>
<td>μ</td>
<td>Yn₂</td>
<td>26,000</td>
</tr>
<tr>
<td>10</td>
<td>α</td>
<td>Y₁</td>
<td>25,500</td>
</tr>
<tr>
<td>11</td>
<td>μ</td>
<td>Yo</td>
<td>26,500</td>
</tr>
</tbody>
</table>

5. Hayes and Mantle (1986)
Complete sequences are known for subunits 1, 2, 3, 4 and 7. They fall into three categories based on sequence homology. These have been named α (1 and 2), μ (3 and 4) and π (7) by Mannervick et al (1985 a, b). The genetic relationship extends the α class to include 8 and 10 and μ to include 6 and 9. Heterodimers exist within the multi-gene family (Ketterer et al, 1986). The most commonly used substrate for most rat subunits is 1-chloro-2,4-dinitrobenzene (CDNB). CDNB undergoes nucleophilic displacement of the chloro substituent by GSH. Other substrates may be used to determine the relative activity of a particular subunit.

A wide range of chemicals, both natural and synthetic, induce GST in the rat. These include barbiturates, polyaromatic hydrocarbons (Igarashi et al, 1987); certain antioxidants such as butylated hydroxyanisole (BHA) and ethoxyquin (Benson, 1979; Rushmore and Pickett, 1990; Sato et al, 1984) and natural products. Aflatoxin B$_1$ (AFB$_1$) is a hepatocarcinogen in the rat.

FIGURE 1.2

GLUTATHIONE CONJUGATION OF AFLATOXIN B$_1$-8,9-OXIDE

![Redrawn from Ketterer et al, 1988](image)

The carcinogenic metabolite, AFB$_1$-8,9-oxide, is a substrate for subunits 1
and 2 (Coles et al, 1985) (Figure 1.2). Induction of subunit 1 by ethoxyquin results in a four- to five-fold induction in the biliary excretion of the AFB\textsubscript{1}-GSH conjugate and a decrease in genotoxicity (Kensler et al, 1986).

GSTs also have Selenium (Se)-independent GSH peroxidase activity for which lipid and nucleic acid hydroperoxides are good substrates. In vivo it has been proposed that GSH peroxidases are part of a system for repairing damage to membrane phospholipids by free radicals (van Kuijk et al, 1987). Ketterer et al (1987) proposed that GSTs may be a part of the repair system for thymidine hydroperoxides resulting from free radical damage to DNA. The rat nucleus appears to contain a chromatin-associated GST isozyme with high activity towards DNA hydroperoxide (Tan et al, 1988).

GSTs have been found in almost every rat tissue examined. Liver and testis have very high CDNB-transferase activity, as reported by Meyer et al (1983). In the rat liver, both \(\alpha\) and \(\mu\) are abundant whereas \(\pi\) class GST is present at very low levels. This isozyme is present in all bile duct cells and in some hepatocytes (Tatematsu et al, 1985); \(\alpha\) and \(\mu\) class isozymes are present in all hepatocytes but are most abundant around the central vein (Redick et al, 1982).

GST gene expression changes during development in the liver. Before birth, levels are low and increase after birth until, at two weeks of age, all adult subunits are expressed. The quantity continues to increase until at maturity the female expresses higher levels of \(\alpha\) class GST whereas the \(\mu\) class is more abundant in male rats (Igarashi et al, 1987).

1.4.1 INDUCTION OF GLUTATHIONE-S-TRANSFERASE GENE EXPRESSION

GSTs are inducible by various compounds. The dietary antioxidant butylated hydroxyanisole (BHA) induces subunit 1 from the \(\alpha\) class GST (Rushmore and Pickett, 1990). Phenobarbitone and 3-methylcholanthrene induce subunit 1 from the \(\alpha\) class and subunits 3 and 4 from the \(\mu\) class in rat liver (Hales and Neims, 1977; Pickett et al, 1982). In rat liver preneoplastic
foci, α, μ and π class GST are abundant (Kitahara et al, 1984). Many develop into nodules which also have increased expression of epoxide hydrolase, NAD(P)H-quinone oxido-reductase and UDP-glucuronyl transferase (Eriksson et al, 1983). Some nodules persist and become neoplastic primary hepatomas (Tatematsu et al, 1983). Progress to malignancy is marked by the expression of the π class (subunit 7) GST making this isozyme a very useful marker for hepatocellular pre-neoplasia and hepatocarcinomas (for reviews see Sato, 1988, 1989).

Four isozymes have been purified from mouse liver, as shown in Table 1.5. These can be classed into the families α, μ and π (Warholm et al, 1986). The π-type enzyme, which can be resolved into three forms, is the dominant form in the male mouse liver (McLellan and Hayes, 1987) but is absent from many extrahepatic tissues (Hayes et al, 1987). The π class isozyme expression is known to be male hormone-dependent (Hatayama et al, 1986).

Benson et al (1978, 1979) reported up to ten-fold induction of GST levels in the mouse by phenobarbitone, BHA and BHT administration. Diethylnitrosamine (Agius and Gidari, 1985) and chronic ethanol administration (David and Nerland, 1983) have been shown to induce GST expression up to two-fold. However none of these studies identified the

Table 1.5
GSH Transferases in the Mouse

<table>
<thead>
<tr>
<th>FAMILY</th>
<th>"Y" DESIGNATION</th>
<th>MOL MASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ</td>
<td>$YbYb$</td>
<td>27,000</td>
</tr>
<tr>
<td>μ</td>
<td>$YbYb$</td>
<td>27,000</td>
</tr>
<tr>
<td>π</td>
<td>$YfYf$</td>
<td>24,500</td>
</tr>
<tr>
<td>α</td>
<td>$YaYa$</td>
<td>26,000</td>
</tr>
</tbody>
</table>

Hayes et al (1987)
Warholm et al (1986)
McLellan and Hayes (1987)
isozymes affected by the inducers.

More recently Pearson et al (1988) showed that BHA induced the class μ and α GST mRNA levels in mouse liver 15- and 50-fold respectively whereas class π mRNAs were much less responsive.

1.4.2 REGULATION OF GLUTATHIONE-S-TRANSFERASE GENES

Rushmore et al (1990) and Paulson et al (1990) identified two regions of the 5' flanking sequence of the GST Ya (alpha class) subunit gene that have elements to control the regulation of gene expression by planar aromatic compounds. One such element, spanning nucleotides -908 to -899, contains the xenobiotic responsive element (XRE) sequence:

5'-T-GCGTG-3'
3'-A-CGCAC-5'

This consensus sequence is also found in the cytochrome P4501A1 gene (Whitlock, 1987; Deninson et al, 1988, 1989).

The second region has no sequence identity to the XRE but responds to the planar aromatic compounds β-naphthoflavone (β-NF) and 3-methylcholanthrene (3-MC). This element, known as the antioxidant responsive element (ARE), can respond to phenolic antioxidants such as t-butylhydroquinone in cells that lack a functional Ah receptor, but requires the presence of the Ah receptor and a functional cytochrome P4501A1 protein before responding to β-NF (Rushmore and Pickett, 1990). It spans nucleotides -722 to -682 of the 5' flanking region of the rat Ya gene.

A particularly interesting example of endogenous regulation is the induction of π class GST by interferons-α/β (Adams et al, 1987). Both testosterone and interferon-α/β can induce the π family in female mice.

Many researchers have evidence indicating that the GSTs are an important part of cellular protection against cytotoxic compounds.

Cowan (1986) reported similarities in the changes in GST expression during preneoplasia and in drug resistant cell lines, indicating that similar
mechanisms may be involved. Alteration in gene expression in preneoplastic lesions may be due to an immortalisation of a transient stress response (Adams et al, 1985; Hayes and Wolf, 1988). GSTs are found to be over-expressed in cells undergoing cytotoxic insult, which is also indicative of a stress response (Carmichael et al, 1986). The mechanism be which these changes occur is not clear.

1.4.3 INVOLVEMENT OF GLUTATHIONE-S-TRANSFERASES IN DRUG RESISTANCE

The \(\pi \) class isozyme is strikingly elevated in three rat models of broad cross-resistance to multiple toxic agents. Firstly, in the Solt Farber model of hepatocellular carcinogenesis, preneoplastic nodules develop resistance to the toxic effects of the carcinogen that induce the transformation and also become cross-resistant to other structurally unrelated carcinogens (Carr, 1987). The nodules have increased amounts of the rat \(\pi \) class GST, GST-P (Kitahara et al, 1984.

Secondly, MCF-7 human breast cancer cell line selected for resistance to doxorubicin (Cowan et al, 1986) show increased expression of \(\pi \) class GST (Batist, 1986). Thirdly, v-H-ras transformed rat liver epithelial cells demonstrate an mdr phenotype along with increased GST-P expression (Burt et al, 1988).

Yf may play a role in the initiation of altered hepatocyte growth and its increase during preneoplasia is of great interest. Phorbol esters, such as 12-0-tetradecanoylphorbol-3-acetate (TPA), are potent tumour promoters. Alterations in gene expression following TPA has been suggested to involve a PKC signal transduction mechanism. The promoter region of the human \(\pi \) gene has a TPA response element (TRE) sequences (Cowell et al, 1988). Burt et al (1988) transfected v-Ha-ras and v-raf into rat liver epithelial cells and showed a marked induction of Yf GST and P-gp. The increase in Yf during preneoplasia and in many tumours could therefore be explained by linking it with the fact that Yf is induced by tumour promoters and genes linked to cell growth and division. The role of Yf in the carcinogenic process still requires further investigation.
To determine whether GST \(\pi \) is directly involved in drug resistance and because of the parallel over-expression of P-gp and GST \(\pi \) in models of pleiotropic resistance, transfection experiments involving the expression of the individual genes or the two genes expressed in the same cell line were conducted (Moscow \textit{et al}, 1989b). The study demonstrated that there was no direct relationship between GST levels and mdr.

Mdr could be conferred by transfection of a full length mdr 1 cDNA but transfection of GST \(\pi \) alone could not impart resistance to doxorubicin. This is in agreement with the observations of Tsuruo who examined paired sensitive and resistant cell lines (Yusa \textit{et al}, 1988). The apparent inability of GST \(\pi \) to enhance cell resistance to anti-neoplastic compounds does not rule out the involvement of this isozyme in drug-resistance. The overexpression of GST \(\pi \) and mdr 1 in several models of resistance indicates that common factors may exist to coordinate the regulation of both these genes and thus coordinate protection from toxic compounds. GST \(\pi \) is found elevated in some tumours compared to normal tissues (Moscow \textit{et al}, 1989) suggesting a possible role as a marker of drug resistance and neoplasia.

\[1.5\] CYTOCHROME P450 FAMILY OF DRUG METABOLISING ENZYMES

The microsomal P450-dependent monooxygenase system has evolved to cope with the plethora of toxic chemicals that organisms have to deal with. The two main components of this system are NADPH-cytochrome P450 oxidoreductase and cytochrome P450. Cooper \textit{et al} (1965) determined the role of P450 in the system as the terminal oxidase of the microsomal electron transport chain. In this process, two electrons are transferred from NADPH via NADPH cytochrome P450 reductase and P450 to mediate the incorporation of one atom from oxygen into a particular substrate and the other oxygen atom is reduced to form water (Black and Coon, 1987). The reductase is associated with the endoplasmic reticulum membrane and contains one flavin mononucleotide (FMN) and one flavin adenine dinucleotide (FAD) molecule per catalytic unit. Electrons pass from
FAD to FMN within reductase and then to P450.

Multiple forms of P450 exist which exhibit overlapping substrate specificities (Guengerich, 1987). P450 mediated reactions include oxidative and reductive dehalogenation, N-hydroxylation, N-oxidation, S-, N- and O-dealkylation and aliphatic and aromatic hydroxylation.

In general, the microsomal P450s, particularly those of the liver, convert hydrophobic substances into more hydrophilic ones that can be excreted from the body via the urine or bile.

Metabolism occurs in two phases. In Phase 1, a lipophilic compound may be oxidised by the addition of a hydroxyl or epoxide group. In Phase 2, the resulting electrophile is a substrate for transferase enzymes that attach either GSH sulphate or glucoronic acid, making it water soluble and hence easily excretable (Nebert and Negishi, 1984). However, with certain compounds, the high energy intermediate can attack DNA, RNA and protein causing mutation, toxicity and carcinogenesis (Conney, 1982).

Some enzymes of steroid biogenesis are P450s found in the adrenal gland, for example steroid 17 α-hydroxylase and steroid 11 β-hydroxylase, the latter being a mitochondrial P450 receiving electrons from adrenodoxin and adrenodoxin reductase.

Many researchers have purified and characterised P450s which has resulted in the confusing nature of P450 nomenclature. The classification system is based on primary amino acid sequence alignment data. A recent update of this classification has been made (Nebert et al, 1991).

The primary hepatic drug metabolising enzymes comprise four gene families (1-4). Many P450 gene families contain multiple genes that have arisen through the process of gene duplication.

Listed below is a brief synopsis of the gene families in rat and mouse referred to later in this thesis.

CYP1

The CYP1A1 and CYP1A2 genes are ubiquitous in mammals and have similar catalytic activities. CYP1A1 metabolises benzo(a)pyrene and other substrates (Goldstein et al, 1982) and can be induced by 3-MC in
many tissues (Kimura et al, 1986) and cigarette smoke in humans (Song et al, 1985).

CYP1A2 metabolises arylamine compounds including 2-acetyl amino fluorene (2-AAF) (Goldstein et al, 1984) and has AFB₁-4-hydroxylase activity (Faletto, 1988).

CYP2A

CYP2A1 and CYP2A2 (Nagata et al, 1987; Matsunaga et al, 1988) are 88% identical in rat but they are regulated differently during development and have distinct substrate specificities. CYP2A1 hydroxylates testosterone and other steroids at the 7α position whereas CYP2A2 has a high testosterone 15α hydroxylase activity (Matsunaga et al, 1988; Wood et al, 1983). Rat CYP2A3 is expressed only in lung and is induced by 3-MC (Kimura et al, 1989).

Cyp2a-4 and Cyp2a-5 genes in the mouse are orthologous to the rat CYP2A3 genes. The two mouse cDNAs are expressed in both liver and kidney (Squires and Negishi, 1988).

CYP2B

Three cDNAs for CYP2B genes in the rat have been isolated; CYP2B1, CYP2B2 and CYP2B3. Unlike CYP2B1 and CYP2B2, CYP2B3 is consistently expressed as a minor form in male and female liver and is not induced by phenobarbital (Labbe et al, 1988).

Southern blotting experiments suggest the possibility of multiple genes in the mouse (Simmons and Kasper, 1983). Two female specific mouse cDNAs, Cyp2b-9 and Cyp2b1-0, containing full amino acid coding regions of P450s were isolated. They display 82% homology with rat CYP2B1. Cyp2b-9 has been shown to have testosterone 16α-hydroxylase activity (Noshiro et al, 1988).
CYP2C

Members of this subfamily are mostly constitutively expressed, but some are under developmental and sex-specific regulation. Several constitutive P450s in the rat CYP2C subfamily have been isolated and characterised. CYP2C6 and CYP2C7 are developmentally regulated in male and female (Gonzalez et al, 1986a). These have 75% amino acid homology to each other. CYP2C11 is a male-specific P450 purified from rats which metabolises testosterone at the 16 α, 2 α and 17 β positions (Ryan et al, 1984).

CYP2D

The debrisoquine 4-hydroxylase P450, named CYP2D1, was purified from rat (Gonzalez et al, 1987). CYP2D2 has 78% amino acid sequence identity with CYP2D1. In total, 5 rat CYP2D genes have been isolated and sequenced.

The mouse may also have up to five genes. Recently a mouse male specific testosterone 16 α-hydroxylase (Cyp2d-9) was sequenced and found to have between 70-82 % amino sequence identity with the rat CYP2D genes (Wong et al, 1987).

CYP2E

Patten et al (1986) reported a form of ethanol inducible P450 in rats, named CYP2E1. Only a single CYP2E gene has been identified in rats. This subfamily can metabolise a range of substrates including ethanol, acetone, acetol, benzene and N-nitrosodimethylamine (Koop et al, 1982; Johansson and Sundberg, 1988; Hong and Yang, 1985). CYP2E1 is believed to be involved in gluconeogenesis during the state of fasting (Casazza et al, 1984). CYP2E1 is also induced in rats with spontaneous and chemically induced diabetes (Past and Cook, 1982). Circulating acetone as well as hormonal factors have been implicated in the induction (Miller and Yang, 1984). A mouse Cyp2e1 gene has also recently been cloned (Freeman et al,
and has been shown to share 92%, 79%, 80% and 79% sequence similarity over the coding region to rat, human, rabbit 1 and rabbit 2 CYP2E1 cDNA sequences respectively. Cyp2e1 protein was found to be induced by acetone treatment in all tissues studied in both male and female mice, but this was accompanied by decreases in Cyp2e1 mRNA levels. This suggests that acetone administration affects the stability of the protein or the efficiency of mRNA translation.

CYP3

Enzymes in the CYP3 family, including CYP3A1 (Waxman, 1984), have activities for erythromycin demethylation, triacyloleandomycin metabolism and testosterone 6 β-hydroxylation (Wrighton et al, 1985; Gonzalez et al, 1986b). Lu and West (1980) identified a cytochrome P450, subsequently named CYP3A2, which could be induced by the synthetic steroid pregnenelone 16α carbonitrile (PCN). CYP3A2 was isolated from an adult male liver library, using CYP3A1 as a probe and was found to be 89% amino acid sequence identical.

Humans have at least four CYP3A genes. CYP3A4 (Beaune et al, 1986) and CYP3A3 (Knodell, 1988) were found to be 98% similar at the amino acid level. Human CYP3A5 was identified in 10 - 20% of human liver samples examined using an anti-rat CYP3A1 antibody. CYP3A5 is the foetal form.

There is evidence to suggest that a CYP3 enzyme can be induced in humans by glucocorticoids (Molowa et al, 1986). Variability in CYP3 expression could have considerable clinical implications since CYP3 metabolises drugs including the calcium channel blocker nifedipine (Gonzalez et al, 1988), progesterone (Waxman et al, 1988a), cyclosporin (Kronbach et al, 1988) and the antibiotic erythromycin (Watkins et al, 1985). These compounds are all well known substrates for P-gp.

CYP4

CYP4A1 is a clofibrate-inducible lauric acid ω-hydroxylase isolated in
rats by Tamburini et al (1984). The enzyme is specific for fatty acid oxidations and oxidises arachadonic acid (Bains et al, 1985). The main effect of the hypolipidaemic peroxisome proliferator clofibrate is to lower triglycerides and cholesterol concentrations in the plasma but also has been found to be a rodent hepatocarcinogen. A peroxisome proliferator binding protein has been found present in rat liver (Lalwani et al, 1983) and the cloning of a novel member of the steroid hormone receptor superfamily activated by peroxisome proliferators has been recently reported (Issemann and Green, 1990). The identification of the mouse peroxisome proliferator activated receptor (PPAR) as a putative transcription factor activated specifically by peroxisome proliferators suggests that the receptor directly mediates the effects of this class of chemical.

Interestingly, the chemicals known to the most potent proliferators are the same as the chemicals which are most potent in receptor mediated activation of genes encoding P450 and other drug metabolising enzymes (Nebert, 1990). It was proposed by Nebert (1990) that these enzymes control the level of small organic oxygenated molecules that act as signals for growth differentiation and tumour promotion and that PPAR mediates one such pathway.

1.5.1 INDUCTION OF CYTOCHROME P450 GENE EXPRESSION

(a) 3-Methylcholanthrene/2,3,7,8-tetrachlorodibenzo-p-dioxin-
(TCDD) inducible

Rats fed 3-MC can metabolise certain amino azo dyes more efficiently (Conney et al, 1956). Aryl hydrocarbon hydroxylase (AHH) activity is induced by 3-MC, which is associated with the transcriptional activation of CYP1A1 (Nebert and Gelboin, 1970).

A polymorphism for 3-MC induction was found in mice and was due to a recessive mutation of a single gene (Thomas et al, 1972). Several other enzymes are under the control of this locus, named the Ah locus. The locus is controlled by a specific receptor. The potent inducer TCDD binds strongly to the receptor in responsive mice whereas non-responsive mice have a
receptor defect and hence possess a low affinity for the ligand and lack inducibility by 3-methylcholanthrene (Poland and Glover, 1975). The receptor probably has an endogenous ligand with a developmental or physiological role. The TCDD receptor can mediate transcriptional activation in hepatoma cells (Israel and Whitlock, 1984). To study the mechanism of transcriptional activation, CYP1A1 promoter-chloramphenicol transferase (CAT) expression plasmids have been constructed from cloned genes. The regulatory elements that control induction of transcription by TCDD are at -950 and -1100 from the ATG start site (Jones et al, 1986; Neuhold et al, 1986). Consensus sequences, named drug regulatory elements (DRE) and xenobiotic regulatory elements (XRE) are found in many copies in this region (Sogawa et al, 1986). The TCDD receptor and the glucocorticoid receptor element (GRE) have various similar physicochemical properties (Cuthill et al, 1987) and therefore the XRE may be evolutionarily related to the GRE. The glucocorticoid, Ah and phenobarbital receptor are all thought to be part of the steroid hormone receptor superfamily (Nebert, 1990).

The role of the TCDD receptor in gene activation is still not clearly understood. However, Deninson et al (1988) reported an observation in which the TCDD receptor plus ligand bound to the upstream control regions of the mouse CYP1A1 gene. It was suggested that the receptor was involved in binding the XRE.

CYP1A2 regulation has not been easily studied due to the lack of detectable expression in established cell lines. However, CYP1A2 is constitutively expressed in the liver and is inducible. It is not expressed significantly in extra-hepatic tissues even under the influence of a potent inducer (Kimura et al, 1986). CYP1A1 is readily inducible in all tissues but constitutive expression is undetectable. Control of this gene is primarily transcriptional, with a small contribution from mRNA stabilisation.

The control of mdr gene expression by the Ah locus will be a subject for discussion in Chapter 5.

(b) Phenobarbital-inducible P450 genes

Phenobarbital (PB) causes proliferation of liver endoplasmic
reticulum (ER) membrane (Remmer and Merker, 1963) and increases in the levels of various cytochrome P450s (Orrenius et al., 1965). CYP2B1 and CYP2B2 are coordinately regulated in liver by PB. CYP2B1 is transcriptionally inactive in untreated rats while CYP2B2 is constitutively expressed. Both mRNAs are induced in the presence of PB.

PB also induces two genes in the rat CYP3 family. CYP3A2, which is male specific and constitutively expressed, and the CYP3A1 gene which is not expressed are induced by PB. CYP3A1 is also induced by steroids.

These data suggest that the genes have common regulatory elements for PB but distinct elements for steroid inducibility and constitutive expression. Cis-acting regulatory elements have yet to be defined for specific PB receptors. Extensive metabolism of the compound by liver enzymes may account for difficulties encountered in such studies. Poland et al. (1980, 1981) reported the potent induction in mice caused by the PB-like ligand 1,4-bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP). This compound is not extensively metabolised and hence will be valuable in the study of such a receptor. The effect of TCPOBOP on mdr gene expression will be discussed in Chapter 5.

(c) Steroid inducible P450 genes

The rat CYP3A1 gene is induced by glucocorticoids such as dexamethasone and pregnenolone 16α-carbonitrile. Regulation is distinct from the control of classical glucocorticoid-regulated genes such as tyrosine aminotransferase (Schuetz and Guzelian, 1984). Induction of CYP3A1 requires approximately ten-fold more steroid than is normally required. Induction results from an activation of CYP3A1 transcription and increase in mRNA (Simmons et al., 1987). The rat CYP3A1 and CYP3A2 are stabilised by the macrolide antibiotic triacetyloleandomycin (TAO) (Watkins et al., 1986).

(d) Hypolipideamic drug-inducible P450 genes

Clofibrate induces CYP4A1, enoyl CoA hydratase and fatty acyl-CoA
oxidase genes by rapid transcriptional activation (Hardwick et al, 1987; Reddy et al, 1986). This leads to an increase in fatty acid β-oxidation.

1.5.2 REGULATION OF CONSTITUTIVELY EXPRESSED P450 GENES

Four ways of constitutively-expressed P450 regulation have been reported. These include activation of genes following birth, at the onset of puberty, “sex imprinting” (activation of expression in males or females) or specific suppression of activity in either males or females at puberty.

CYP2D1 and CYP2D2 are elevated immediately after birth in rats due to transcriptional activation correlating with changes in the methylation states of the genes (Umeno et al, 1988). Levels peak at six days post partum.

Sex specific genes are present in the rat. Rat CYP2C6 and CYP2C7 are transcriptionally activated at the onset of puberty (Gonzalez et al, 1986a). CYP2C11 is expressed only in the adult male liver and is dependent on testosterone exposure both in neonatal and adult life (Waxman et al, 1985).

CYP2C12 is expressed in a sex-specific manner in adult female rats, but present in both sexes during adolescence. Suppression of this enzyme occurs in males due to androgen exposure during the neonatal period (Dannan et al, 1986).

The role of pituitary hormones in the regulation of sex specific expression of P450s has been studied. Jansson et al (1985) reported that adult male and female rats differ in their growth hormone secretion pattern in that males have a pulsatile pattern, whereas females have a more constant secretion. The patterns are set by neonatal androgen expression and adult testosterone levels. CYP2C11 and CYP2C12 regulation both involve growth hormone secretion patterns (Kato et al, 1986).

The sex specific expression of certain male and female genes sometimes results from the suppression of gene expression. Expression of CYP2A is decreased in males at puberty due to the loss of the CYP2A protein associated testosterone 7 α-hydroxylase activity (Matsunaga et al, 1988). Growth hormone seems to play a role in suppressing P450 expression. Data suggests that the decrease in CYP3A2 in adult females is
due to the continuously high levels of growth hormone found in female rats (Kato et al, 1986).

Most P450s characterised to date are expressed in hepatocytes. In the CYP2A family, both CYP2A1 and CYP2A2 are only present in the liver (Matsunaga et al, 1988) but CYP2A3 is expressed only in the lung and is undetectable in the liver (Kimura et al, 1989). Three different regulatory mechanisms seem to exist for the CYP2A genes. First, CYP2A1 is inducible by 3-MC, second CYP2A2 is induced in males at puberty, and finally tissue specific expression of CYP2A1 and CYP2A2 (liver) and CYP2A3 (lung) exists.

P450 genes can also be post-transcriptionally regulated. One of the best examples of such regulation is the rapid induction of 2E1 protein in rats following administration of ethanol, acetone or pyrazole. The levels of mRNA for CYP2E1 do not appear to increase (Song et al, 1986). Song et al (1989) suggested that such an increase was due to protein stabilisation. An increase in the efficiency of mRNA translation could also explain such a finding. Fasting in rats causes an increase in CYP2E1 mRNA and protein in addition to elevation of ketone bodies (Hong et al, 1987). CYP2E1 is thought to be involved in the conversion of acetone to acetol and methylglyoxal which is metabolised to D-lactate and pyruvate (Koop and Casazza, 1985).

1.6 CONCLUDING REMARKS AND AIMS OF THE THESIS

P-glycoprotein is widely accepted as being causative of mdr in many cell lines and probably plays an important part in the failure of chemotherapy. However, the physiological role and natural substrates for P-gp remain largely unknown. How the expression of the mdr genes are regulated in different tissues and in different species still awaits an answer. The mechanism by which it transports drugs across the plama membrane is still also unknown.

Studies indicate that P-gp has a major role in normal cell physiology, probably to transport diverse molecules across the cell membrane. The occurrence of an mdr-like protein in the drug-resistant parasite P. falcipirum
suggests that active efflux by a protein such as P-gp may be a very common defence mechanism against toxic compounds in many diverse species. Other proteins belonging to a transport super family, each with unique substrate specificity, probably await discovery.

Since little is known about the regulation of mdr gene expression, various factors, known to effect the expression of P450 and GST drug metabolising enzymes, were examined. In vivo regulation was studied in mouse and rat liver. The rat genes have only recently been cloned and sequenced (Silverman et al, 1991). However, much is already known about the three mouse genes, which have been cloned, sequenced and studied to some extent (Dhir, 1990; Buschman and Gros, 1991; Cohen et al, 1991; Gros et al, 1988; Devault and Gros, 1990; Gros et al, 1986; Raymond et al, 1990) . The distribution of the genes in various tissues has been published (Croop et al, 1989).

For our purposes, mouse liver was a good model to study for several reasons. The tissue is known to express all three genes to some extent. The expression and regulation of both cytochrome P450 and GST enzymes in mouse liver has been widely studied. Correlations between the expression of these drug metabolising enzyme systems and P-gp was evaluated.

Exogenous and endogenous regulation of the mdr genes was examined. Exogenous regulation studies involved examining the effects of P450 and GST inducing agents, carcinogens and anti-cancer drugs on the expression of the mdr genes in liver.

The relative levels of expression of the P450 gene families, GST γ and P-gp appeared, from previous studies, to be particularly relevant to study in an in vivo model. GST γ is associated with multi-drug resistant cell lines and is a marker for preneoplasia and hepatocarcinoma in rats. CYP1A can be induced by carcinogens and it weakly induced by 2AAF and AFB₁ which have been reported to induce mdr in the rat (Burt and Thorgeirsson, 1988). CYP3A1 is inducible by steroids such as dexamethasone and can metabolise progesterone. The mdr 1gene in the mouse is upregulated by progesterone during pregnancy and it has been shown that progesterone specifically binds to P-gp. Other compounds metabolised by CYP3A1 are also substrates for P-gp, such as nifedipine and cyclosporin. A common
mechanism of regulation by such compounds may be operative.

Endogenous regulation of mdr gene expression involved studying the effects of pituitary hormones on mdr gene expression. Cytochrome P450s have been shown to be under the regulation of growth hormone, which determines the expression of sex specific enzyme forms (Mode et al, 1982, 1983; Skett, 1987; Zaphiropolous et al, 1988). Thyroid hormones are known to have an effect on the expression of hepatic enzyme systems. Hypothyroidism induced by propylthiouracil (PTU) in mice is accompanied by an increase in hepatic GST and can be reversed by intraperitoneal injection of 3,3',5-tri-iodothyronine (T3) (Williams et al, 1986). It is of interest to determine whether mdr genes were also under such types of hormonal control.

To determine whether or not carcinogens act as substrates for the P-gp 'pump', a tissue culture model was employed using a cell line known to express P-gp to a high level.

As a first approach to study the expression of P-gp, it was aimed to raise peptide antibodies against the protein and investigate their applicability in determining the expression of P-gp in cells and tissues.
CHAPTER 2

MATERIALS AND METHODS

2.1 MATERIALS

2.1.1 COMMERCIAL MATERIAL SOURCES

Most chemicals were supplied by BDH Limited, Burnfield Avenue, Thornliebank, Glasgow, G46 7TP and Sigma Chemical Company Limited, Fancy Road, Poole, Dorset, BH17 7NH. A comprehensive list of chemicals including tissue culture materials and suppliers is given in Appendix 1.

2.1.2 NON-COMMERCIAL MATERIALS

(a) Antibodies and protein standards

Antisera against rat GST subunits and protein standards for use in Western Blotting and SDS PAGE were obtained from Dr. J. D. Hayes, Department of Clinical Chemistry, Royal Infirmary of Edinburgh. Use of these antibodies to discriminate between GST subunits has been described (Hayes and Mantle, 1986). Dr. L. I. McLellan of the same Department kindly provided antisera against mouse GST subunits. The specificity of these antibodies has also been tested (McLellan and Hayes, 1989).

Antisera to purified cytochrome P-450 isozymes were supplied by Dr. C. R. Wolf and have been previously detailed (Wolf and Oesch, 1983, Wolf et al., 1984). Monoclonal antibodies against the clofibrate-inducible CYP4 family were produced by Ciba Geigy, R-1066-4 -32, Basel, Switzerland and have been characterised (Savoy et al, 1990).

Peptides corresponding to various regions of the human mdr 1 sequence (Chen et al, 1986) were synthesised and conjugated to thyroglobulin and bovine serum albumin by Dr. J. Rothbard, Lincoln’s Inn
Fields, London. Peptide antibodies were raised against the thyroglobulin conjugates in New Zealand White rabbits at Clare Hall Laboratories, Imperial Cancer Research Fund, Blanche Lane, Potters Bar, Harts. EN6 3LR.

(b) cDNA clones

The Rat Yf cDNA clone was provided by Professor M. Muramatsu, Department of Biochemistry, Tokyo. The rat Yb1 cDNA clone was gifted by Dr. C. B. Pickett, Merck Frost Centre for Therapeutic Research, Quebec. The rat Ya cDNA was obtained from Dr. J. B. Taylor, CRC Molecular Toxicology Group, Middlesex Hospital, London. Dr. P. Gros, Department of Biochemistry, McGill University, Montreal, Quebec, Canada kindly gifted the mouse mdr 1-, 2- and 3-specific clones. The human mdr 5A clone was obtained from Dr. R. Brown, Wolfson Laboratory for Molecular Pathology, Beatson Laboratories, Bearsden, Glasgow, G61 1BD.

Further details about these clones, and the P-450 clones used, are outlined in Section 2.7.

(c) Chemicals

TCPOBOP (1,4-bis [2-(3,5 dichloropyridyloxy)] benzene) was a gift from Dr. A. Poland, McArdle Laboratory for Cancer Research, Maddison, Wisconsin, U.S.A.

Later aliquots were synthesised and kindly provided for use by Miss G. Smith, Imperial Cancer Research Fund, Molecular Pharmacology Group, University of Edinburgh.

(d) RNA

Hepatic RNA isolated from phenobarbital, dexamethasone and TCPOBOP-treated mice as well as hypophysectomised and sham-operated animals was generously donated by Dr. C. J. Henderson, Imperial Cancer Research Fund, Molecular Pharmacology Group, Edinburgh.
2.2 ANIMAL EXPERIMENTS

2.2.1 XENOBIOTIC EXPOSURE OF MICE

Mouse experiments were conducted at the Imperial Cancer Research Clare Hall Laboratories, Blanche Lane, South Mimms, Potters Bar, Harts. EN6 3LR.

Male C57BL/6 and DBA/2N mice were fed ad libutum on a standard laboratory chow diet and acclimatised in a 12 hour light/dark cycle for at least 4 days before treatments. The actual treatments administered are outlined in Chapter 5. Either corn-oil or phosphate-buffered saline was used as the treatment vehicle. On the final day of the experiment, the mice were sacrificed by cervical dislocation. The organs were removed and snap-frozen in card-ice or liquid nitrogen and stored at -70°C until required for preparation of RNA or protein extraction. For measurement of corticosterone levels, mice were sacrificed following treatment and cardiac puncture was performed as described in Section 2.13.1. The assay was kindly conducted by Dr. B. Williams, Western General Hospital, Edinburgh.

2.2.2 SURGICALLY TREATED MICE

Intra-auricular hypophysectomised male and female C57BL/6 mice plus sham-operated control animals, were obtained from Charles Rivers Laboratories, Willmington, Massachusetts. U.S.A.

2.2.3 MUTANT MICE

The mouse strain ‘little’ (lit/lit), deficient in pituitary growth hormone releasing factor and wild type control animals were obtained from Charles Rivers Laboratories.

Thyroid-deficient transgenic mice were obtained from Dr. R. Al-Shawi, Department of Genetics, University of Edinburgh.

2.2.4 CONTROL MICE
Male C57BL/6 (+/+) mice at 1, 2, 4, 6 and 10 weeks old, as well as 15 day embryo, were obtained from Clare Hall Laboratories, Imperial Cancer Research Fund, Blanche Lane, Potters Bar, Harts, U.K.

The livers were removed, snap frozen following cervical dislocation and stored at -70°C until required.

2.2.5 XENOBIOTIC INDUCTION OF RATS

Wistar and Fischer male rats (~150 gm) were obtained from Banton and Kingman, UK. Animals were fed ad libitum and acclimatised, as described for the mice, before treatments were administered.

2.2.6. PREPARATION OF MICROSOMAL AND CYTOSOLIC FRACTIONS FROM MOUSE AND RAT TISSUES

Microsomal fractions from mouse liver, kidney and lung as well as rat liver were prepared as described by Meehan et al (1988a). Tissue was thawed at 37°C, scissor-minced and homogenised in 3 volumes of KCl-phosphate buffer (10 mM potassium phosphate, pH 7.4, 1.15% (w/v) potassium chloride, 0.1 mM EDTA). A Silverson Laboratory Mixer Emulsifier was used to homogenise the tissue, whilst the samples were maintained at 4°C. The homogenate was then centrifuged in a Du Pont Sorvall RC-5B Refrigerated Centrifuge (SS 34 rotor) at 11,000 g for 20 minutes to remove nuclei and cell debris. The supernatant was retained and centrifuged at 45,000 rpm at 4°C for 80 minutes in a Du Pont Sorvall Ultracentrifuge OTD 65B (TFT 45.6 rotor). The supernatant (cytosolic fraction) was removed and aliquoted in volumes of 1 ml before being frozen at -40°C until required. The microsomal pellet was resuspended in KCl-phosphate buffer using a Teflon-glass hand-homogeniser and re-centrifuged for 60 minutes at 4°C at 45,000 rpm. Finally, the pellet was resuspended in ice-cold sucrose buffer (0.25 M sucrose, 10 mM potassium phosphate pH 7.4, 1% (w/v) KCl, 0.1 mM EDTA), aliquoted and stored at -40°C until required.
2.3 HISTOLOGICAL EXAMINATION OF RAT TISSUES

Both tissue fixation and staining was dindly performed by Miss Linda May and Dr D. Harrison, Department of Pathology, University of Edinburgh.

2.3.1 TISSUE FIXATION

Following treatment of Wistar rats with 2-acetylaminofluorene (2-AAF), aflatoxin B₁ (AFB₁) and diethylnitrosamine (DEN), as outlined in Chapter 5, the liver and kidney were removed from the animal following sacrifice and fixed for histological examination.

The fixative procedure used is designed to preserve both antigenicity and ultrastructure (McLean and Nakane, 1974). The fixation used is a periodate-lysine paraformaldehyde (PLPD) fixative (0.01M periodate, 0.075M lysine HCl, 2% (w/v) paraformaldehyde and phosphate buffer, pH 7.4) which primarily stabilises carbohydrate moieties. The carbohydrates are oxidised by periodate and cross-linked by lysine.

The tissues were sectioned into small pieces and fixed in the PLPD solution for 3h before being further processed in the routine manner.

2.3.2 STAINING FOR MORPHOLOGY AND GLYCOGEN DISTRIBUTION

Haematoxylin and eosin (H/E) stain was used to demonstrate the structure of the liver and kidney tissue following treatment of Wistar rats with 2-AAF, AFB₁ and DEN.

The haematoxylin component stains the cell nuclei blue-black, whilst eosin stains cell cytoplasm and most connective tissue fibres red.

The sections were dewaxed in xylene and hydrated through graded alcohols to water. The fixation pigments were removed and the section stained in an alum haematoxylin for 30'. After washing the sections, they were stained in 1% eosin Y for 10' and washed in water for 5'. The sections were then dehydrated through alcohols, cleared in xylene and mounted in DePex (BDH).

For glycogen staining, the periodic acid-Schiff (PAS) reaction was
employed. The PAS reaction is a useful indicator of the presence of tissue carbohydrates. The sections were dewaxed and placed in distilled water, before being treated with periodic acid (0.5% (w/v), 5'). After washing in distilled water they were immersed in Schiff's solution (0.5% (w/v) basic fuchsin, 1% (w/v) potassium metabisulphite, 1% (v/v) hydrochloric acid) for 15' and washed in water for 5'. Nuclei were stained with haematoxylin. The sections were finally washed in water, rinsed in alcohol, cleared in xylene and mounted.

2.3.3 STAINING FOR P450 AND GST α

The tissue sections were deparaffinised and washed in water. They were washed twice in TBS (0.01 M Tris, pH 7.6) for 5' and incubated in pre-immune rabbit serum (1:5 dilution in TBS) for 10'. After draining off excess serum, the sections were incubated in the cytochrome P450 or GST polyclonal antibody (each at a 1:50 dilution in TBS) overnight at 4°C. After washing in TBS, the sections were again blocked in pre-immune serum and then incubated in biotinylated swine anti-rabbit (DAKO) (diluted 1:500 in TBS, for 30'). The sections were washed in TBS and incubated for 30' in the avidin biotin complex (ABC). The avidin is conjugated to horseradish peroxidase (HRP) and extra sites on the avidin bind the second antibody. After TBS washing, a diaminobenzidine substrate solution (0.05% (w/v) diaminobenzidine, 0.068% (w/v) imidazole, 2% (v/v) hydrogen peroxide) was applied to the tissue sections (10'). The sections were washed, counterstained in Mayer's haematoxylin and blued-up in alkali. The sections were then dehydrated, cleared and mounted in DePex (BDH).

2.4 CELL CULTURE

2.4.1 CELL LINES

Four human and four chinese hamster cell lines were cultured during the course of the project. Two of the human and two of the hamster cell lines,
were drug resistant to varying extents and displayed the mdr phenotype. The human line MES-SA was established from a uterine sarcoma (Harker et al, 1983). The development and characterisation of the Dx-5 subline of MES-SA, selected by continuous in vitro exposure to the anthracycline antibiotic doxorubicin, has been reported (Harker and Sikic, 1985). The cross-resistance pattern of Dx-5 for various anti-tumour agents is shown in Table 2.1. Both MES-SA and Dx-5 were kindly provided by Dr. B. I. Sikic, Oncology Division, Department of Medicine, Stanford University Medical Centre.

Dr. V. Ling, The Ontario Cancer Institute, Toronto, Canada kindly provided both the human cell line SKOV 3 and the drug-resistant counterpart SKVLB (1.0), and the chinese hamster ovarian cell line Aux B1 and the drug-resistant derivative CHRC5. SKOV 3 is a human ovarian carcinoma cell line (Fogh and Trempe, 1975) obtained originally from the American Type Culture Collection. An SKVLB series of drug-resistant cell lines were obtained by selection of SKOV 3 cells for growth in increasing concentrations of vinblastine (Bradley et al, 1989). The levels of drug resistance in SKVLB (1.0) cells are shown in Table 2.1.

The selection of mdr CHO cells from the parent line, Aux B1, has been previously described (Ling and Thompson, 1974). The most sensitive cell line, CHRC5 is 300 times relatively more resistant to colchicine and 42 times more resistant to vinblastine than the wild-type Aux B1 cell line, as shown in Table 2.1. The adriamycin CHO cell line, CHO-AdrR, derived from wild-type CHO cells was received from Dr. I. D. Hickson, I.C.R.F., University of Oxford, The Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford. OX3 9DU.

2.4.2. CELL CULTURE TECHNIQUES AND CONDITIONS FOR CULTURE

The cell culture methods used were as described by Freshney (1987). All culture was conducted in a Class 2 Biological Safety Cabinet, MDH Ltd., Walworth Road, Andover, Hampshire. The cabinet was U.V. sterilised when not in use and cleaned at regular intervals.
| TABLE 2.1 | CROSS-RESISTANCE PATTERNS OF THE MDR CELL LINES STUDIED |
| Dox-5, SKVLB and CHRC5 were made resistant to doxorubicin, vinblastine and colchicine respectively. |

<table>
<thead>
<tr>
<th>CELL LINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRUG</td>
</tr>
<tr>
<td>Doxorubicin</td>
</tr>
<tr>
<td>Vincristine</td>
</tr>
<tr>
<td>Colchicine</td>
</tr>
<tr>
<td>Mitomycin C</td>
</tr>
<tr>
<td>Vinblastine</td>
</tr>
<tr>
<td>Colcemid</td>
</tr>
</tbody>
</table>

These values represent the fold resistance of the selected cell lines compared to parental resistance levels.
- not assayed

Harker and Sikic, 1985; Bradley et al, 1989; Ling and Thompson, 1974

(a) Freezing cells for storage and retrieving stocks

On reaching confluency, cells were harvested using 0.1% trypsin, 0.01% EDTA until the monolayer detached. The trypsin was then quickly diluted out by adding growth medium (specific for each particular cell line) and the cells spun down for 5 minutes at 2500 rpm in a MSE Microcentaur centrifuge. The cell pellet was then resuspended at a density of 5-10 million cells/ml in 90% new-born calf serum, 10% DMSO. Aliquots were frozen at -70°C overnight before transfer to liquid nitrogen for long-term storage. DMSO permeates cells rapidly and maintains long-term viability of cell lines.

To retrieve cells from storage, an aliquot was thawed at 37°C and carefully resuspended in the appropriate growth medium (10 mls) pre-warmed to 37°C. The cells were then spun at 2500 rpm for 5 minutes and again resuspended in growth medium before being seeded into a 25 cm2 tissue-culture flat-bottomed flask. The cells were allowed to adhere overnight and
refed the next morning to eliminate any dead cells or other debris from the flask.

(b) Feeding cells

Cells were fed with their own specific media as required. Most cell lines required re-feeding every 2 days to maintain optimal pH and essential growth requirements. MES-SA and Dx-5 were grown in RPMI 1640 medium (Moore et al, 1967) plus 10% FCS. MES-SA had a generation time of 22 hr whilst that of the Dx-5 cells was 30 hr. Dx-5 cells were routinely maintained in 5×10^{-7} M adriamycin (adr) at which concentration the cells were selected originally.

SKOV 3 and SKVLB (1.0) were routinely maintained in α-MEM (Stanners et al, 1971). SKVLB (1.0) was also continuously exposed to 1μg/ml vinblastine whilst in culture. CHO and CHO-AdrR cells were maintained in RPMI 1640 plus 1 μg/ml adriamycin for the drug-resistant variant. Aux B1 and CHRC5 cell cultures were grown in α-MEM with 10% FCS. These lines are auxotrophic, requiring glycine, adenosine, thymidine and proline for growth. CHRC5 did not require colchicine, the drug to which the cell line is resistant, to passage it in culture in order to maintain resistance.

Glutamine (0.2 mM), penicillin (15 U/ml) and streptomycin (5 μg/ml) were routinely added to the media of all cell lines.

(c) Sub-culture of cells

Just before reaching confluency, cells were sub-cultured by washing them twice in PBS and harvesting them in 0.1% trypsin, 0.01% EDTA until the cells detached. Fresh medium was then added to inhibit the trypsin and the cell suspension spun at 2500 rpm for 5 minutes. The cell pellet was disaggregated in fresh medium.

To ensure accurate seeding, when required, the cells were counted using a Neubauer haemocytometer and seeded into fresh flasks. Their viability could be assessed by nigrosin dye exclusion (Kaltenbach et al,
Most parental cell lines were sub-cultured every 3-4 days at a dilution of 1:10. The cell lines maintained in drug normally grew more slowly and were passaged once a week at a dilution not exceeding 1:10. Drug was routinely added 24 hr after the cells were sub-cultured in order to allow them to re-adhere to the flask surface.

(d) Sterility

Culturing of cells was carried out in a sterile cabinet and aseptic techniques were employed at all times. Solutions were either sterilised in a Laboratory Thermal Equipment 225 EH autoclave or filter-sterilised (0.2 μm pore size) before use. Testing the sterility of media and other solutions was routinely done by inoculation of the test solution into sterile L-broth (2% Bactotryptone, 1% Bactoyeast, 2% NaCl) and incubating for 4-7 days at 37°C. A turbid L-broth test was an indication of some form of contamination and the solution could be discarded before use. Regular mycoplasma tests were done by Mr. W. Christie, MRC Clinical and Population Cytogenetics Unit, Western General Hospital, Crewe Road, Edinburgh. The mycoplasma test involved staining with Hoescht 33258 fluorescent dye and growth on selective broth (Taylor-Robson, 1978). Mycoplasma contamination can cause such changes as chromosomal aberrations (Fogh and Fogh, 1965).

2.4.3. PREPARATION OF SOLUBLE PROTEIN LYSATES FOR P-GLYCOPROTEIN ESTIMATION

Cells were grown in 25 cm² flasks, seeded at a density of 1 x 10⁶ cells per flask. The cells were grown overnight and re-fed with 5 ml of fresh media until confluent. For the preparation of protein lysates, cells were washed twice in ice-cold PBS to eliminate all traces of media. Cold lysis buffer (0.1 M Tris, pH 8.0, 0.5 % NP 40, 10% glycerol, 0.5 ml and 2 mM PMSF added from a 200 mM stock in ethanol just before use of the buffer) was added to each flask and the cells rocked for 10 minutes at 4°C to
detach the cells from the sub-stratum and solubilise the protein. The cells were then harvested and disaggregated in the buffer using a fine-tipped pastette. The lysate was then spun for 2 minutes at 13,000 rpm in a bench-top microfuge at 4°C. The supernatant, containing the plasma membrane fraction was retained, aliquoted and frozen at -40°C until required.

2.5 PROTEIN DETERMINATION OF SAMPLES

2.5.1 PROTEIN ESTIMATION

The method of Lowry et al (1951) was used to estimate the protein content of both tissue and cell culture samples. A range of known bovine serum albumin concentrations were used as the standards from which the protein concentration of the unknown was calculated.

All samples were diluted, usually 1:40, in 0.1 M NaOH to within a range of 0-200 μg/ml. The plot of protein concentration against OD$_{600\text{nm}}$ of the final complex was approximately linear over this range. A range of standards were assayed each time samples were to be measured. A Shimadzu UV 160 spectrophotometer was used to measure the optical densities. Each standard was assayed in duplicate, whilst each sample was determined in triplicate.

2.5.2 SODIUM DODECYL SULPHATE POLYACRYLAMIDE GEL ELECTROPHORESIS (SDS PAGE)

Following the determination of protein concentration, all samples were assessed using SDS-PAGE according to the method of Laemmli (1970). This was performed to check the accuracy of the protein concentration estimates and to ensure the integrity of the samples.

Using SDS-PAGE it is possible to estimate the relative intensities of the proteins in the molecular weight range for P450s and GSTs, in the mouse and rat microsomal and cytosolic samples respectively, by staining the polyacrylamide gel in Coomassie Brilliant Blue R dye. P-glycoprotein is difficult to detect using this method, but can be stained for by using the

Samples for assessing P450 and GST proteins were prepared for electrophoresis by diluting them to a protein concentration of 2 mg/ml with water, adding an equal volume of sample preparation solution (0.05 M Tris-HCl, pH 6.8, 2% (w/v) SDS, 5% (v/v) 2-mercaptoethanol, 10% (v/v) glycerol, 0.05% (w/v) bromophenol blue dye) and heating to 100°C for 5 minutes. Samples could be loaded immediately or stored frozen at -40°C until required.

Protein from tissue fractions (10µg) and cultured cell preparations (30µg) was routinely separated by SDS-PAGE to assess loadings. For immunoblotting, rat and mouse microsomes (15µg) and cytosols from liver and other tissues were loaded for analysis. Rainbow molecular weight protein markers (Amersham International plc., Bucks., U.K.) were used for molecular weight calibration purposes. The marker proteins (5µl) were diluted 1:1 in sample preparation solution and heated to 100°C for 5 minutes, prior to separation by SDS-PAGE. The marker proteins were myosin (200,000 kD), phosphorylase b (92,500 kD), bovine serum albumin (69,000 kD), ovalbumin (46,000 kD), carbonic anhydrase (30,000 kD), trypsin inhibitor (21,500 kD) and lysozyme (14,300 kD). SDS PAGE gels (0.15 cm thick) were cast using a BioRad Protean 2 Vertical Electrophoresis kit.

For detection of P450 proteins, the separating gel consisted of 9% (w/v) polyacrylamide (8.7% acrylamide, 0.3% N, N'-methylene-bis-acrylamide) in 0.375 M Tris-HCl, 0.15% SDS. For separating GST proteins, the gel was 12% (w/v) polyacrylamide. Ammonium persulphate (APS), freshly prepared, and N, N, N', N'-tetra-methyl ethylenediamine (TEMED), both 0.05%, were added to initiate polymerisation. A stacking gel (4.5% (w/v) acrylamide, 0.125M Tris-HCl pH 6.8, 0.125% SDS, 0.05% APS, 0.05% TEMED) was poured on top of the polymerised separating gel, and the sample wells formed using a teflon comb of appropriate size. The gels were run in Electrode buffer (0.05M Tris-HCl, pH 8.3, 0.05 M glycine, 0.1% SDS). Proteins were run through the stacking gel at 50mA per gel, and thereafter at 30 mA per gel constant current until the dye front was 1 cm from the bottom.
of the gel (~4 hr). The apparatus was water-cooled. When separation was complete, gels were fixed in 45.5 % methanol, 9% acetic acid for 1 hr, stained in Coomassie Brilliant Blue R (0.25% (w/v) Coomassie Blue R in the same solution) for 1 hr and destained in 10% methanol, 7% acetic acid, until the background staining had disappeared and the protein bands were clearly visible.

2.5.3 ELECTROPHORESESIS OF PROTEINS FOR P-GLYCOPROTEIN IMMUNOBLOTTING

Estimation of protein loading and integrity was done in the same manner as for P450 and GST protein except that the separating gel consisted of 7 % (w/v) polyacrylamide. Two methods were assessed for separation of proteins to be immunoblotted.

The first method involved the use of the Laemmli system previously described. The separating gel was 7% polyacrylamide and no stacking was used.

Cells were harvested using trypsin/versene and hand-homogenised using a teflon-glass homogeniser. The whole cell homogenate was then spun at 4000g, 10 minutes to pellet the unbroken cells and nuclei. The supernatant was retained and re-centrifuged (100,000g, 1 h, 4°C). The resultant pellet was resuspended and retained.

The fractions examined were as follows:
(a) whole cell homogenate
(b) 4000g pellet
(c) 100,000g pellet.

All fractions were suspended in KCl-phosphate buffer previously described in Section 2.2.6. Aux B1 and CHRC5 cell samples were prepared under a variety of conditions, to assess the best method of maintaining immunogenicity. All samples were diluted 1:1 in sample preparation solution, as described in Section 2.5.2, and used directly, or after heating for 5 minutes at 100°C. Samples were also prepared with or without 2-mercaptoethanol.
Section 2.6.3 (a) describes the results obtained on these cell preparations following immunoblotting.

The second method for SDS PAGE was more successful in resolving the P-glycoprotein band and used a modification (Debenham et al, 1982) of the procedure of Fairbanks et al (1971). The modifications were the inclusion of 2% (w/v) SDS in the solubilising buffer and the addition of urea to both the sample and the polyacrylamide gel (4.5 M and 9.0 M respectively).

The cell lysate protein samples, prepared as described previously in Section 2.4.3, were diluted 1:1 in a buffer consisting of 9.0 M urea, 2% (w/v) SDS, 10% (w/v) sucrose, 50 mM dithiothreitol (DTT), 1mM EDTA, 10 mM Tris-HCl pH 8.0. This buffer was prepared, aliquoted and kept frozen at -40°C until required. Bromophenol blue was used as a tracking dye.

The sample volume was kept as small as possible to optimise the resolution of the protein bands since the gel system of Fairbanks et al (1971) does not employ a stacking gel.

Gels were prepared in electrophoresis buffer (1% (w/v) SDS, 2 mM di-sodium EDTA, 20 mM sodium acetate, 40 mM Tris-HCl, adjusted to pH 7.4 with glacial acetic acid (Fairbanks et al, 1971). The gels contained 5.6% (w/v) acrylamide and 0.21% bis-acylamide polymerised by the addition of 0.025% (v/v) TEMED and 0.15% (w/v) APS and were routinely cast in a mini Protean 2 BioRad kit with a 10-well comb. The sample wells were rinsed with electrophoresis buffer immediately prior to loading to remove diffused urea and the solubilised samples (50-100μg of protein) loaded by underlaying.

2.6 IMMUNOCHEMICAL DETECTION

2.6.1 ELISA ASSAY TO DETERMINE P-GLYCOPROTEIN ANTIBODY TITRES

Rabbits were immunised with various peptide antigens, as described in Section 3.2, and bled at specific time points throughout the immunisation schedule. Serum was collected by allowing the blood to clot overnight at
4°C and centrifuging (1500 rpm, 15 minutes) it to spin out the remaining red blood cells. The serum was then aliquoted and stored at -40°C until the titre was measured. Pre-immune serum from each rabbit was collected, aliquoted and frozen at -40°C.

The protocol used to measure the serum titre was described by Campbell (1984) and involves a chequerboard ELISA for soluble antigens. The antigen of interest was initially diluted to 50µg/ml, and serially diluted to a final concentration of 1: 64. The lowest dilution of the antigen solution (100µl) was added to each well of row A of a 96-well plate. Row B contained the next dilution and so on until row G. PBS (100µl) was added to row H. The plate was incubated overnight at 4°C to allow the soluble protein antigen to be passively adsorbed onto the plate surface. Since most solid supports adsorb proteins non-specifically by hydrophobic interactions, they will also adsorb the antibody if the plate is not fully saturated with antigen. Therefore once the antigen was bound, the plate was then incubated for 1 h at room temperature with 10 mg/ml BSA in PBS (100µl). The plate was then washed three times with PBS containing 0.05% (v/v) Tween 20, to reduce the background and discourage the formation of further hydrophobic interactions between the support and first and second antibodies. Dilutions of the rabbit serum were made, starting with a 1:100 dilution (in PBS containing 0.5 mg/ml BSA) up to 1:10,000 dilution. To all wells in column 1, 100 µl of 1:100 dilution of anti-serum was added; to each in column 2, 100 µl of 1:200 was added and so on. In column 12, a 1:100 dilution of control serum was added and the plate incubated at room temperature for 2 h. Washing was performed as before. Alkaline phosphatase anti-rabbit IgG conjugate, diluted 1:500 in 0.5 mg/ml BSA, 0.05% Tween 20 (100µl) was then added to all wells and the plate incubated for 2 h at room temperature. The wells were then washed three times in PBS containing 0.05 % Tween 20 and knocked dry.

A solution of 1mg/ml p-nitrophenyl phosphate freshly dissolved in 9.7% (v/v) diethanolamine buffer, pH 9.8 (100µl) was then added. The reaction was stopped by the addition of 3N NaOH (50µl). Absorption was read at 405 nm, in a BioRad Model 2550 EIA spectrophotometer adapted for
96-well microtite plates. The ELISA plates were a strong colour in the top left-hand corner fading to a weaker colour in the bottom left-hand corner. Row H and column 12 had little colour and provided the background. The titre of the serum was estimated by finding the highest dilution at which it gave more colour that the pre-immune serum and the wells without antigen.

2.6.2 WESTERN BLOTTING ANALYSIS FOR CYTOCHROME P450 AND GLUTATHIONE S-TRANFERASE PROTEINS

Western blot analysis was performed by a modification of the method of Towbin et al (1979). For analysis of both the microsomal and cytosolic fractions from rat and mouse liver, kidney and lung the same basic procedure was adopted. Where polyclonal antibodies were employed, dual labelling with horseradish peroxidase (HRP)-conjugated donkey anti-serum against rabbit IgG was used. Where the first antibody was monoclonal, the second antibody was HRP-conjugated rabbit anti-seum against mouse IgG.

SDS-PAGE was performed as described in Section 2.5.2.

For liver, kidney and lung microsomes, 15 µg, 30 µg and 50 µg of protein were loaded respectively. For liver cytosols, 20 µg (for Ya₃ subunits) and 5 µg (for Yf and Yb subunits) of protein was required. For kidney and lung cytosols, 30 µg and 50 µg were loaded respectively.

Following electrophoresis, the gel was marked to identify it and placed on top of a 0.45 µm nitrocellulose filter, cut to a slightly larger size than the gel. This was sandwiched between 2 sheets of Whatman 3 mm paper and “Scotch-brite” pads to keep the gel in place. The sandwich was placed in a BioRad transblotting cassette and this was transblotted overnight at 250 mA, with the nitrocellulose sheet nearest the anode, in a BioRad transblotting tank. The transblotting buffer (20mM disodium ortho-phosphate, 20% methanol) was gently agitated throughout this procedure. After transfer, the nitrocellulose was trimmed to the exact size of the gel and washed for two 10 minute periods in 50 mM Tris-HCl, pH 7.9, 0.15 M NaCl, 0.05 % Tween 20 (TBST buffer) then blocked in 3% low fat powdered milk (Marvel - Cadbury’s) in TBST for 1 h. To check protein transfer from the gel, it was fixed and stained in Coomassie Brilliant Blue R and destained as described
in Section 2.5.2. Transfer was complete if no protein bands were visible.

After blocking the nitrocellulose, the filter was washed twice in TBST and incubated for 60 minutes with the anti-serum against the P450 or GST protein of interest (1:500 or 1:1000 dilution of antirabbit or antimouse antibody respectively). The nitrocellulose was then washed 4 times (10 minutes each wash) and incubated with HRP- conjugated anti-rabbit IgG or anti-mouse IgG (both 1:1000 dilution in TBST). A further four 10 minute washes in TBST followed before the immuno-reactive proteins were visualised. This was done by exposing the filter to the HRP substrate (120 mg of 4-chloro-1-naphthol in 40 ml methanol, 200 ml of TBS (50 mM Tris-HCl pH 7.9. 0.5M NaCl) and 80 µl of 30% H₂O₂). The filter was shaken gently in this mixture until the immuno-reactive proteins were visible and then washed for 10 minutes in distilled water to stop the reaction. It was then labelled with 0.19 MBq ¹²⁵I-conjugated protein A (Amersham International plc., Amersham, Bucks, U.K.) in 50 mls of TBST for 45 minutes and repeatedly washed with TBST to remove unbound radioactivity, until the wash solution recorded background levels. Filters were air-dried, covered in Saran wrap and exposed to Kodak X-Omat AR-5 X-ray film at -70°C in a lead cassette with intensifying screens. The film was developed at an appropriate time interval using a Gevamatic 60 (Agfa-Gevaert) automatic developer.

2.6.3 WESTERN BLOTTING OF P-GLYCOPEPTIDE

Various methods were assessed for immunoblotting P-glycoprotein using cultured cells. Aux B1 sensitive and CH²R²C⁵ mdr chinese-hamster ovary cells were used to develop the best method. Initially, a system using standard 7% Laemmli SDS-PAGE followed by wet-blotting transfer to nitrocellulose was used. Later a more successful system, using SDS-PAGE urea gels followed by semi-dry blotting, was employed.

(a) Laemmli SDS-PAGE/wet blotting method

Polyacrylamide gels (7%) were prepared as described in Section
2.5.3. The wet transfer of the proteins from the gel to the nitrocellulose and subsequent blocking was as described in Section 2.6.2. After blocking the filter was incubated in C219 P-glycocheck monoclonal antibody (1:100 in TBST) overnight at 4°C. The monoclonal recognises the IgG2a class of immunoglobulin. The filter was then given two 10 minute washes in TBST before being incubated in either 0.19 MBq 125I conjugated anti-mouse IgG or 125I conjugated protein A for 45 minutes. The filter was then repeatedly washed in TBST to remove unbound radioactivity. Filters were air-dried, covered in Saran wrap and exposed to Kodak X-Omat AR-5 film at -70°C. The film was developed between 4-14 days using an automatic developer. The results of this immunoblotting method for Aux B1 and CHRC5 cell line samples, prepared in various ways, described in Section 2.5.3, is shown in Figure 2.1.

Using the Laemmli SDS PAGE system, the detection of the P-gp was best when using a 100,000g fraction of the solubilised, non-heated mdr cells. Exposure of the blot to antimouse IgG-125 gave a more specific reaction than Protein A-125. Protein A is characterised by it's ability to interact to some degree with the IgG of almost all mammals but gives only a weak reaction with IgG1. However, the isotype of C219 is IgG2a (Kartner et al, 1985) and thus a reaction between the Protein A and C219 was expected. The time required for autoradiograph exposure to detect P-gp using this Laemmli system was considerable. Even using antimouse IgG-125 as the second antibody still required a considerable length of time for exposure of the autoradiograph. It was decided later therefore to adopt the urea gel system and ECL detection to improve the integrity of the signal and the speed of detection. The procedure for this technique is outlined below.

Greenberger et al (1988) reported a comparative study using a polyclonal antibody against P-gp electrophoresed using the Laemmli and modified Fairbanks gel system. He found that the electrophoretic mobility and the amount of P-gp detected were remarkably dependent on the conditions of analysis. He observed that boiling P-gp containing samples before Laemmli gel electrophoresis decreased it's mobility by ~15kD and
reduced the apparent amount of the protein. Figure 2.1 shows similar results obtained in this study using such a system.

(b) Modified Fairbanks urea gel SDS-PAGE/semi-dry blotting method

Western blot analysis was performed using a semi-dry electrophoresis blotter which allowed for fast, efficient electro-transfer of P-gp from polyacrylamide gels onto nitrocellulose. The Milli-blot SDE (Millipore) transfer system provided an even, uniform pressure across the entire surface of the gel, ensuring consistent transfer from the entire gel. It was found that this was a superior method for transfer of high molecular weight proteins such as P-gp, than the BioRad buffer tank transfer system.

SDS-PAGE was performed using the modified urea gel system of Fairbanks et al (1971), as described in Section 2.5.3, loading 50-100 μg of solubilised protein per track.

Following electrophoresis, the gel was marked for orientation and briefly soaked in cathode buffer (25 mM Tris-HCl, 20% methanol, 0.1% SDS, 40 mM 6 amino-n-hexanoic acid, pH 9.4). Six pieces of Whatman 3 mm paper were cut to the same size as the gel along with one piece of nitrocellulose. Two pieces of 3 mm paper were soaked in anode buffer no.1 (0.3 M Tris-HCl, 20 % methanol, 0.1% SDS, pH 10.4), 1 piece in anode buffer no. 2 (25 mM Tris-HCl, 20% methanol, 0.1% SDS, pH 10.4) and 3 pieces in cathode buffer. The nitrocellulose was placed briefly in distilled water to wet it. The anode and cathode of the transfer apparatus consisted of 2 graphite plates which were first washed in distilled water. The 2 anode buffer no. 1 papers were carefully placed on the anodic plate, excluding air
Cell fractions were prepared, as described in Section 2.5.3, were Western blotted using the C219 monoclonal antibody.

A AuxB1
C CHRC5

The diagram shows Western blots of cell lines AuxB1 and CHRC5 under various conditions of reducing and non-reducing plus and minus heat treatments. The blots are stained with the C219 monoclonal antibody and show protein bands at different centrifugal fractions (whole cell sonicate, 4000g, 100,000g).
bubbles, upon which the no. 2 anode buffer filter paper was placed. The nitrocellulose, gel and cathode buffer soaked papers were then assembled in order, with the cathodic plate placed on top. Transfer was routinely carried out for 90 minutes at 1 mA/cm².

The assembly was taken apart carefully and the nitrocellulose filter washed, blocked and incubated in C219 monoclonal antibody, as described in Section 2.6.3 (a). The filter was washed in TBST for two 10 minute periods before being incubated in HRP conjugated-rabbit anti-serum raised against mouse IgG (diluted 1:5000 in TBST) for 20 minutes at room temperature. The filter was then washed 4 times in TBST for a total time of 20 minutes. The immunoreactive proteins were visualised using the ECL detection system (Amersham International plc., Amersham, Bucks., U.K.)

2.6.4 ECL DETECTION OF PROTEINS

The Enhanced Chemiluminescence (ECL) Immuno-blotting detection system is a light-emitting method for detection of immobilised specific antigens conjugated indirectly with HRP-labelled antibodies.

The principle of the detection is shown in Figure 2.2. The chemiluminescent reaction of cyclic diacyl hydrazines such as luminol has been extensively studied (Roswell et al, 1978). HRP is used to catalyse the oxidation of luminol in the presence of H₂O₂. Following oxidation, luminol decays to a ground state via the emission of light. This system is more sensitive than radioactive detection systems and was used for the detection of P-glycoprotein in cell line samples. Following washing in TBST, nitrocellulose filters were covered in a 1:1 mixture of the solutions provided in the kit to a final volume of 0.125 ml/cm² of membrane and incubated for 1 minute, drained, wrapped in Saran wrap and exposed to Kodak X-Omat AR-5 film for between 10 seconds to 30 minutes depending on the level of the protein present.

2.7 cDNA CLONES

Hepatic GST, P450 and mdr mRNA levels in mouse and rat were
investigated by Northern blot analysis. Two cytosolic gene families were examined. The alpha class GST mRNA was measured using pGSTr155, which contained a partial cDNA insert coding for the N-terminal 129 amino acids of the rat Ya subunit. A clone containing the complete amino acid sequence for the human acidic GST cloned into pUC 19 was used to probe for homologous sequences in the mouse.

FIGURE 2.2 ECL PROTEIN DETECTION

(a) Reaction

(b) Oxidation of luminol in presence of H$_2$O$_2$

Mouse and rat liver were also probed with various P450 clones. A full-length human clone of 1.75 kb was used to probe the cytochrome P450 sub-family CYP2A6. This clone encodes a protein with coumarin 7-hydroxylase (COH) activity (Miles et al., 1990). Yamano et al. (1989) also described a full length human CYP2A cDNA which differed from the pMP 81 sequence by only 3 nucleotides in the coding region. The human CYP2A6 cDNA deduced protein displayed 85% and 82% homologies with rat CYP2A3 (Kimura et al., 1989) and mouse Cyp 2a-4 (Squires and Negishi, 1988) proteins. A full-length clone encoding the rat CYP2B1 (Friedberg et al., 1986) was provided by Dr. M. Adesnik, Department of Cell Biology, New York University School of Medicine, New York, U.S.A. A partial length (1.4 kb) mouse orthologue of the rat CYP2C clone (Meehan et al., 1988) was...
also used. Dr. K. Stevenson, Imperial Cancer Research Fund, Molecular Pharmacology Group, Edinburgh kindly provided a 727 bp fragment of human CYP3A4 cloned into an EcoR1 site of pUC 9. The isolation and characterisation of the full-length cDNA clone has been previously described (Stevenson et al, 1988). Dr. G. Gibson, Department of Biochemistry, University of Surrey, Guildford, Surrey kindly provided the full-length rat CYP 4A1 clone (Earnshaw et al, 1988).

FIGURE 2.3 cDNA PROBE 5A FOR HUMAN mdr 1 GENE

The cDNA 5A (EcoRI–EcoRI, 1383 bp) was subcloned into EcoRI site of pGEM4 (Promega Biotec).

- T7 promoter;
- SP6 promoter;

A, Acc I; B, BamHI; E, EcoRI; H, HindIII; P, Pvu II;
S, Stu I; X, Xmn I.

75
<table>
<thead>
<tr>
<th>PLASMID</th>
<th>VECTOR</th>
<th>cDNA CLONED</th>
<th>INSERT</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>pGSTr155</td>
<td>pAT153</td>
<td>153 amino acids of rat Ya</td>
<td>452 bp</td>
<td>Taylor et al, 1984</td>
</tr>
<tr>
<td>pGP5</td>
<td>pUC8</td>
<td>complete rat Yf</td>
<td>734 bp</td>
<td>Sugoaka et al, 1985</td>
</tr>
<tr>
<td>pMP81</td>
<td>pUC19</td>
<td>human CYP2A3</td>
<td>1.75 kb</td>
<td>Miles et al, 1989</td>
</tr>
<tr>
<td>pMP23</td>
<td>pUC19</td>
<td>rat CYP2B1</td>
<td>1.7 kb</td>
<td>Friedberg et al, 1986</td>
</tr>
<tr>
<td>pMP63</td>
<td>pUC9</td>
<td>mouse Cyp2c</td>
<td>1.4 kb</td>
<td>Meehan et al, 1988</td>
</tr>
<tr>
<td>pMP26</td>
<td>pUC9</td>
<td>partial human CYP3A4</td>
<td>727 bp</td>
<td>Stevenson et al, 1988</td>
</tr>
<tr>
<td>pMP112</td>
<td>pUC9</td>
<td>full length rat CYP4A1</td>
<td>2.1 kb</td>
<td>Earnshaw et al, 1988</td>
</tr>
<tr>
<td>pMP90</td>
<td>pUC19</td>
<td>mouse actin</td>
<td>1.2 kb</td>
<td>Leader et al, 1985</td>
</tr>
<tr>
<td>pMDR5A</td>
<td>pGEM-4</td>
<td>partial human mdr 1</td>
<td>1.38 kb</td>
<td>Ueda et al, 1987</td>
</tr>
<tr>
<td>BBpG4</td>
<td>pGEM-4</td>
<td>mouse mdr 1</td>
<td>180 bp</td>
<td>Raymond et al, 1990</td>
</tr>
<tr>
<td>H1pG3</td>
<td>pGEM-3</td>
<td>mouse mdr 2</td>
<td>408 bp</td>
<td>as above</td>
</tr>
<tr>
<td>H3pG3</td>
<td>pGEM-3</td>
<td>mouse mdr 3</td>
<td>140 bp</td>
<td>as above</td>
</tr>
</tbody>
</table>
A mouse actin cDNA probe was given by Dr. J. McNab, Institute of Virology, Glasgow. Dr. R. Brown provided the mdr 5A clone for the 1383 bp EcoR1 insert of the human mdr 1 gene (Figure 2.3) cloned into pGEM. All 3 mouse gene specific mdr clones were gifted by Dr. P. Gros, Department of Biochemistry, McGill University, Quebec, Canada, H3G 1Y6. The plasmids all have a pGEM backbone and their isolation is described by Raymond (1990). The specificity of these probes was examined before use, as shown in Section 5.3 and Figure 5.12.

The information regarding these clones is summarised in Table 2.2.

2.8 PLASMIDS

2.8.1 PLASMID CULTURE

Bacterial cells were transformed using the calcium chloride method of Mandel and Higa (1970). Transformed Escherichia Coli K12 strain HB101 were selected and maintained on L-agar plates with appropriate antibiotic selection. Tetracycline (10 µg/ml) or ampicillin (100 µg/ml) was used depending on the plasmid construct.

2.8.2 STORAGE OF PLASMIDS

Transformed bacteria were grown in L-broth overnight with appropriate antibiotic selection. Glycerol was added to a final concentration of 40% (v/v) and 1 ml aliquots were frozen at -70°C. Plasmid DNA from transformed cells was also prepared as described in Section 2.8.4 and stored at -70°C.

2.8.3 MEDIA USED FOR BACTERIAL CULTURE

L-broth and L-agar were used for the culture of HB101 in liquid and solid phase respectively. L-agar plates with streaked out colonies were stored at 4°C for up to 4 weeks and then sub-cultured by selecting a single
colony and incubating it in L-broth plus antibiotic at 37°C overnight followed by re-streaking onto L-agar.

L-broth

Difco bactotryptone 10g/l
Difco yeast extract 5g/l
NaCl 5g/l

Difco agar

As for L-broth but including 15g/l Difco agar.

2.8.4 PREPARATION OF PLASMID DNA

Initially the procedure used for large-scale preparation of plasmid DNA was a modification of the method of Birnboim and Doly (1979). Latterly, Qiagen kits were employed.

(a) Plasmid DNA preparation (Birmboin and Doly, 1979)

A single colony from an L-agar plate was inoculated into 10 ml of L-broth plus appropriate antibiotic and incubated for 6-8 hr at 37°C with shaking. This culture was seeded into a 1 litre conical flask containing 500 ml of pre-warmed L-broth plus appropriate antibiotic and shaken at 37°C overnight. The cell suspension was spun at 8,000g at 4°C for 10 minutes in a Sorvall RC 5B, SS34 rotor. The bacterial pellet was then resuspended in 20 ml of solution A (2 mg/ml lysozyme, 50 mM glucose, 25 mM Tris-HCl pH 8.0, 10 mM di-sodium EDTA) and kept on ice for 30 minutes to lyse the bacterial cell wall. Solution B (1% SDS, 0.2 M NaOH, 40 ml) was then added and the mixture left on ice for 5 minutes to further disrupt the bacterial
cell membrane. To precipitate the proteins, Solution C (3M sodium acetate, pH 4.8, 20 ml) was added and the mixture left on ice for a further 1 h. The heavy white precipitate which had formed was pelleted by centrifugation at 10,000 g, 4°C, 15 minutes. The supernatant, which contained the plasmid, was retained and ice-cold isopropanol (0.7 volumes) added. The DNA was precipitated by chilling the solution for 30 minutes at -20°C, followed by a 10 minute spin (10,000 g, 4°C). The pellet was resuspended in Solution D (100 mM sodium acetate, 50 mM Tris-HCl, pH 8.0, 10 ml). Cold ethanol (2 volumes) was added and the solution kept at -20°C for 1 h until re-centrifuged for 10 minutes at 10,000 g, 4°C. The pellet from this spin was resuspended in TE (10 mM Tris-HCl, pH 8.0, 0.1 mM EDTA, 6.7 ml) to which caesium chloride (74g) and ethidium bromide (10 mg/ml, 1.4 ml) was added. After the suspension was centrifuged (200,000g, 16 hr,20°C) the nucleic acid bands were visualised using a short-wave transilluminator. Using a hypodermic needle inserted into the side of the ultracentrifuge tube, the band of closed, circular plasmid DNA was collected as described by Maniatis (1982). Ethidium bromide was then extracted using water-saturated butanol and the solution dialysed against three changes of 1000 volumes of TE at 4°C for 16 hr with stirring. The DNA was precipitated at -70°C for 30 minutes by adding cold ethanol (2 volumes) and 3M sodium acetate, pH 4.8 (0.1 volume) and spinning at 10,000g, 4°C for 10 minutes. The plasmid was finally resuspended in an appropriate volume of TE buffer and stored at -20°C.

(b) Plasmid DNA Preparation (Qiagen Column Method)

The initial steps of the protocol were essentially the same as for part (a). Following addition of 0.2M NaOH and 1%(w/v) SDS, 2.55M potassium acetate, pH 4.8 was added to precipitate proteins. The mixture was then centrifuged at 4°C for 30 minutes, 20,000g. The supernatant was carefully but promptly removed to obtain a particle-free clear lysate. A Qiagen column
was equilibrated with 10 ml of buffer QBT (750 mM NaCl, 50 mM MOPS, 15% (v/v) ethanol, pH 7.0, 0.15% (v/v) Triton X-100) and allowed to empty by gravity flow. The supernatant, containing plasmid DNA was then applied to the column and allowed to enter the resin by gravity flow. The column was then washed with 3 x 10 ml buffer QC (1.0 M NaCl, 50 mM MOPS, 15% (v/v) ethanol, pH 7.0). At pH 7.0, the solubility of DNA is reduced and it will stick to the column. The DNA was then eluted with 15 ml of buffer QF (1.25 M NaCl, 50 mM MOPS, 15% (v/v) ethanol, pH 8.2). Normally plasmid DNA is highly soluble at slightly alkaline pH. The DNA was then precipitated with isopropanol (0.7 volumes) and centrifuged at 4°C for 30 minutes, 10,000g. The DNA pellet was finally washed in 70% ethanol, dried briefly by dessication and redissolved in a suitable volume of buffer and kept frozen at -20°C.

2.9 RNA PREPARATION

To prevent degradation of RNA by contaminating nucleases, all items used in the extraction procedure were thoroughly soaked in 0.1% DEPC-treated water for 2h, rinsed and autoclaved. DEPC is a strong but not absolute inhibitor of RNAases. Rinsing and autoclaving removes traces of DEPC that might otherwise modify purine residues in RNA by carboxymethylation. All tissues were snap-frozen in liquid nitrogen immediately following sacrifice and dissection. Extractions were carried out on ice and gloves were worn at all times.

2.9.1 PREPARATION OF TOTAL CELLULAR RNA FROM CULTURED CELLS

Total cellular RNA was prepared from 75 cm² flasks of confluent cells in culture using the method described by Birnboim (1988) which utilises differential precipitation to separate high molecular weight RNA from other types of nucleic acid.

To detach the cells from the sub-stratum, the culture medium was poured off and the cells washed in PBS followed by the addition of RES
buffer (2 ml of 0.5M LiCl, 1M urea, 0.25% SDS, 0.02M sodium citrate, 2.5 mM CDTA, pH 6.8) with gentle shaking. The mixture was then poured into an ice-cold universal tube and the culture flask washed with a further 1 ml of RES buffer. This was pooled with the first wash and the cell suspension was sonicated for 5-10 seconds at low power to disrupt the cells before adding proteinase K (150μl of 1mg/ml) and incubating the mixture for 30 minutes at 50°C. Proteinase K is a non-specific serine protease that is prepared free from nuclease activity. The sample was then cooled to room temperature and sodium acetate, pH 5.2 (200μl) and ice-cold ethanol (7ml) were added. The mixture was cooled at -20°C for 20 minutes and centrifuged at 10,000 rpm for 10 minutes. The pellet from this spin was dissolved in RES buffer (1ml) and extracted with chloroform/isoamyl alcohol (24:1, 100μl) vortexed for 2-3 minutes and centrifuged at 13,000g for 5 minutes.

The aqueous phase was precipitated in 2M acetic acid, pH 5.2 (7.5μl) and 5M LiCl/ethanol, 3:2 (1ml). RNA was precipitated overnight at 4°C and centrifuged at 13,000g for 2 minutes. The pellet was dissolved in 1mM sodium citrate, 1mM CDTA, 0.1% SDS, pH 6.8 (100μl) and frozen at -70°C until required. The quality and quantity of the RNA was assessed as outlined in Section 2.10.

2.9.2 PREPARATION OF TOTAL RNA FROM WHOLE TISSUES

Total RNA was extracted using approximately 1g of tissue from pooled samples of snap-frozen tissue using the method of Cox (1968). Proteins dissolve readily in solutions of potent denaturing agents such as guanidium hydrochloride. Cellular structures disintegrate and nucleoproteins dissociate from nucleic acids as protein secondary structure is lost.

Tissue was removed from storage at -70°C and kept on dry-ice until 8M guanidine HCl (20ml) was added. The tissue was then quickly scissor-minced and homogenised using a Silverson Laboratory Mixer Emulsifier, for 1 min. The homogenate was spun at 4°C for 5 minutes at 9000 g (Sorvall
RC 5B centrifuge, SS-34 rotor) after which the fatty layer was removed. Cold absolute alcohol (0.5 volumes) was then added to the supernatant which was left at -20°C for 45 minutes. The solution was spun at 9000g, 4°C, 10 minutes to pellet the nucleic acids. The pellet was then resuspended in a small volume of 6M guanidine HCl using a teflon-glass hand-homogeniser. The volume was made up to 20 ml and ice-cold absolute alcohol (10 ml) added. The solution was mixed immediately and stored at -20°C for 45'. The nucleic acids were recovered by centrifugation at 9000 g, 4°C, 10 minutes and the ethanol precipitation step in 6 M guanidine HCl repeated once more. Following this, the recovered pellet was dissolved in DEPC-treated water (1 ml) and precipitated in 7.5 M ammonium acetate (0.5 volume) and cold absolute alcohol (2.5 volumes) at -20°C for at least 2 h. Under these conditions, cellular DNA remains soluble whilst the RNA is precipitated. The solution was centrifuged at 9000 g, 10 minutes, 4°C and the pellet redissolved in DEPC-treated water (1 ml). The nucleic acids were reprecipitated 2-3 times with 2M sodium acetate, pH 4.8 (0.1 volume), and cold absolute alcohol (2.5 volumes) at -70°C for 1 h. The final pellet was spun out at 9000 g, 10 minutes, 4°C and resuspended in DEPC-water. After assessing the concentration of the RNA samples, as outlined in Section 2.10.1, they were aliquoted and frozen at -70°C until required.

2.10 QUANTITATION OF DNA AND RNA

2.10.1 SPECTROPHOTOMETRIC QUANTITATION

DNA or RNA concentrations were estimated by UV absorption spectrophotometry. DNA or RNA samples were diluted 200 or 250 fold respectively, mixed and transferred to a spectrophotometric quartz cuvette. The spectrophotometer was blanked against DEPC-water and the absorbance of the sample was read at 260 nm. The concentration of DNA or RNA, in 1 μg/ml of sample, was calculated as 10 times the O.D. reading.

To assess the purity of the samples, the absorbance at 280 nm was
also measured and the ratio of absorbance at 260 nm to 280 nm calculated. For DNA and RNA the ratio should be 1.8 and 2.0 respectively. If the ratio was below 1.6 the sample was re-extracted with phenol/chloroform and ethanol precipitated to eliminate contaminating protein.

2.10.2 ETHIDIUM BROMIDE FLUORESCENCE QUANTITATION

(a) DNA estimation

DNA concentrations were estimated by electrophoresing samples in 0.8% (w/v) agarose in TBE (130 mM Tris-HCl, 45 mM boric acid, 2.5 mM EDTA). Mini-gels (50mm x 75mm x 5mm) were cast, transferred to a BRL horizontal electrophoresis kit H6 (BRL, Uxbridge, U.K.) and run in TBE with ethidium bromide (0.5 µg/ml) at 20 V for 2-3 hr. A series of DNA standards were also run to estimate the size of linear DNA. A 1 kb ladder (BRL, Paisley, U.K.) with a range of fragment sizes from 75 - 12,216 bp was used. A DNA sample of known concentration was run to check the concentration of unknown samples, as calculated from spectrophotometric analysis.

DNA fragments were visualised using a short wavelength trasilluminator (Model TM-40, Ultraviolet Products Incorp.). The amount of UV induced-fluorescence emitted by ethidium bromide molecules, intercalated with DNA, is proportional to the total mass of DNA.

(b) RNA estimation

RNA loadings were assessed by electrophoretic size fractionation under denaturing conditions using a method developed by Lehrach et al (1977). Horizontal 1% (w/v) agarose gels were prepared by melting 1gm of agarose, cooling it to 60°C and adding 5 x GRB (0.1 M MOPS, pH 7.0, 40 mM sodium acetate, 5 mM EDTA, pH 8.0, 20 mls)) and 37% (12.3 M) formaldehyde to give final concentrations of 1x and 2.2 M respectively.

The RNA samples were prepared by mixing the following solutions in a sterile microfuge tube:
and heating for 15 minutes at 55°C. Loading dye (0.4% bromophenol blue, 0.4% xylene cyanol, 50% glycerol, 1mM EDTA, pH 8.0, 2 μl) was immediately added to the samples. Electrophoresis was carried out at 40 V for 2-3 hr. After electrophoresis, the gel was stained in ethidium bromide (0.5 μg/ml) for 30 minutes, to visualise the abundant 28 S (6333 nucleotides) and 18 S (2366 nucleotides) ribosomal RNA species. This allowed for an approximate estimation of loading equality between the samples and assessed the integrity of the RNA.

2.11 NORTHERN BLOTTING

The attachment of denatured RNA to nitrocellulose is presumed to be non-covalent but essentially irreversible. It is possible to hybridise RNA immobilised on nitrocellulose to several radioactive probes without significant loss of bound nucleic acid. Unfortunately, nitrocellulose is not durable enough to withstand more than 2 rounds of hybridisation and washing. This difficulty can be solved by transferring the RNA to positively charged nylon membranes. Hybond is a nylon membrane which is inherently hydrophobic and thus requires no pre-wetting. It is possible to easily and quickly cross-link nucleic acids to the nylon using UV light. Combined with the physical strength of the membrane it is ideal for multiple rounds of hybridisation. Reed and Mann (1985) have reviewed the practical information regarding membranes.

2.11.1 SEPARATION, TRANSFER AND HYBRIDISATION OF RNA

RNA was size-fractionated under conditions described in Section 2.10.2 (b). 15 μg samples of RNA along with 3 μl of an RNA ladder (0.24 -
9.5 kb derived from bacteriophage T7, yeast 2µ circle and bacteriophage lambda DNA. BRL, Paisley, U.K.), were run routinely using a BRL horizontal electrophoresis unit (BRL, Uxbridge, U.K.) at 20 V for ~16 hr until the dye front was ~5 cm from the edge of the gel. The gel was then washed for 10 minutes in 10 x SSC (1 x SSC is 0.15 M NaCl, 0.015 M Na citrate) and transferred to Amersham Hybond N membrane by capillary transfer in 2 x SSC. Following a 16-18 hr transfer, the RNA was fixed to the nylon membrane by exposing the filter to ultra-violet irradiation (254 nm) for 30 seconds using a Stratalinker 2400. This method enhances the hybridisation signal obtained with charged nylon membranes compared to conventional oven-baking (Khandjian, 1987). The aim of the procedure is to form cross-links between a small fraction of the bases in the RNA and the positively charged amino acids on the surface of the membrane (Church and Gilbert, 1984). To check the efficiency of transfer the gel was stained for 45 minutes in a solution of ethidium bromide and examined under ultra-violet illumination. The part of the membrane containing the RNA ladder was stained with methylene blue (0.04% methylene blue. 0.5M sodium acetate) for 5-10 minutes at room temperature. The details of this method are described by Herrin and Schmidt (1988). After washing in distilled water, the RNA standards were clearly visible as a series of blue bands which were used to estimate the size of the RNA transcript hybridising to the probe used.

The filter was placed in hybridisation mix (5 x SSC, 4 x Denhardt’s solution, 10% (w/v) dextran sulphate, 0.1% (w/v) SDS, 0.1% (w/v) sodium pyrophosphate) for at least 4 hr at 65°C in a glass tube in a preheated oven. To maximise the rate of annealing of the probe to target DNA, hybridisation was carried out at high ionic strength (5 x SSC). The rate of hybridisation is accelerated 10 fold in the presence of 10% (w/v) dextran sulphate according to Wahl et al (1979). Denhardt’s reagent (0.02% (w/v) polyvinylpyrrolidone, bovine serum albumin and Ficoll 400) is used to block non-specific attachment of the probe to the filter surface.

Probes, prepared and radiolabelled as described in the following sections, were added directly to the hybridisation solution following denaturation and allowed to hybridise to the RNA for 16-18 hr at 65°C. The filter was washed 3 times in 2 x SSC, 0.1% (w/v) SDS, 0.1% (w/v) sodium
pyrophosphate (NaPPi). Higher stringency washes of 0.2 x SSC, 0.1% (w/v) SDS, 0.1% (w/v) NaPPi were carried out for certain probes, to eliminate cross-reactivity to similar gene sequences. The filter was wrapped in Saran wrap and exposed to Kodak X-Omat AR-5 film at -70°C in a cassette with intensifying screens.

In order to reprobe the RNA, the filters were washed in stripping solution (5mM Tris HCl, pH 8.0, 2mM EDTA, 0.1 x Denhardt's) for 1 h at 65°C, according to the manufacturer's instructions.

Autoradiographs were sometimes quantitated by scanning with a Joyce Loebel chromoscan. Non-saturated blots were scanned in order to ensure linearity across the samples.

2.11.2 PREPARATION OF cDNA PROBES FOR USE IN HYBRIDISATION

To isolate the cDNA clones referred to in Section 2.7, the plasmids were cut with the appropriate restriction enzyme. Usually this involved only a single enzyme digest at 37°C which was left for 6 hr, in a buffer as supplied by the manufacturer of the restriction enzyme.

Loading dye (50% glycerol, 1 x TAE, 1% bromophenol blue, 1% xylene cyanol, 2μl) was added to the digests and samples were electrophoresed in TAE buffer (40 mM Tris acetate, 1 mM EDTA) in a mini-gel containing 0.8% (w/v) low melting point agarose and 0.5 μg/ml EthBr. Aliquots of both cut and uncut plasmid DNA were run to assess the digestion procedure and a 1 kb DNA ladder was also run to estimate the insert size. Segments of the gel containing the inserts were excised and sterile water added at 1.5 ml per 1 gm of gel. This solution was then heated to 100°C for 7 minutes and frozen at -20°C until required.

2.11.3 RADIOLABELLING OF cDNA CLONES

Small amounts of DNA (50-200 ng) were labelled to high specificity using the method of Feinberg and Vogelstein (1983). This method is used to
generate probes from denatured double-stranded DNA. The purified DNA, mixed with a molar excess of primers, is denatured and synthesis carried out using the Klenow fragment of polymerase I. This enzyme lacks 5'-3' exonuclease activity so that the product is synthesised exclusively by primer extension. The reaction is carried out at pH 6.6, thus reducing the 3'-5' exonuclease activity of the enzyme (Lehman and Richardson, 1964). These conditions favour random initiation of synthesis.

DNA was denatured by heating at 100°C for 3 minutes and kept at 37°C until the radio-labelling reaction was initiated. The following constituents were mixed and the radiolabelling reaction was allowed to proceed for 3h or 16h according to convenience.

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSA (Fraction 5, Sigma) 10 mg/ml</td>
<td>2 µl</td>
</tr>
<tr>
<td>Oligonucleotide-labelling buffer (OLB)</td>
<td>5 µl</td>
</tr>
<tr>
<td>water</td>
<td>18 µl</td>
</tr>
<tr>
<td>DNA</td>
<td>20 µl</td>
</tr>
<tr>
<td>Klenow fragment of EColi DNA pol 1</td>
<td>2 µl</td>
</tr>
<tr>
<td>[α-32P]dCTP] sp. act. >3000 Ci/mmole; 10 µCi/ml</td>
<td>3 µl</td>
</tr>
</tbody>
</table>

OLB consists of a mixture of solutions A, B and C mixed in a ratio of 2:5:1 and was routinely stored at -20°C.

Solution A

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>2M Tris-HCl, pH 8.0</td>
<td>625 µl</td>
</tr>
<tr>
<td>water</td>
<td>82 µl</td>
</tr>
<tr>
<td>2-mercaptoethanol</td>
<td>18 µl</td>
</tr>
<tr>
<td>MgCl₂ (1M)</td>
<td>125 µl</td>
</tr>
<tr>
<td>10 mM dATP, dGTP, dTTP</td>
<td>50 µl (of each)</td>
</tr>
</tbody>
</table>
Solution B

2M Hepes titrated to pH 6.6 with NaOH and stored at 4°C.

Solution C

Hexadeoxyribonucleotides suspended in 3 mM Tris-HCl 0.2 mM EDTA, pH 7.0 at a concentration of 90 O.D. units/ml and stored at -20°C.

Following incorporation, the DNA was denatured for 5 minutes at 100°C and added to the hybridisation solution as quickly as possible. To estimate the percentage of radioactivity incorporated into the DNA, a 1μl aliquot was removed from the reaction mixture and spotted onto DE 18 Whatman filter paper. A chromatograph was run in 0.3 M ammonium formate, pH 8.0 for 15 minutes and exposed to Kodak X-Omat AR-5 film for 10 minutes. Radioactivity incorporated into the DNA appeared as a spot at the origin whereas unincorporated nucleotides eluted up the paper with the solvent front. Incorporation was routinely between 70-90%.

2.12 CYTOTOXICITY TESTING

2.12.1 MTT ASSAY

The MTT assay relies on the cleavage of the ring structure of the tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) to a blue crystalline formazan product by the mitochondrial enzyme succinate dehydrogenase of viable cells. The assay can be used for both chemosensitivity and radiosensitivity testing (Carmichael et al, 1987 a,b) and was chosen because it is rapid, simple and can also be used to measure the toxicity of hydrophobic compounds. The assay appears to give results comparable to the clonogenic assay which is widely used to assess the chemosensitivity of tumour cells in vitro although it cannot distinguish between cytostasis and cytotoxicity.

The assay was performed according to the method of Carmichael et
al (1987a). Cells (2500) were seeded in a volume of 180μl in medium and continuously exposed to the compound of interest in Costar 96-well micro-titration plates. The outer wells were filled with water to prevent evaporation from other wells and also since growth of cells in these wells differed from the rest of the plate. The plate was blanked against 6 wells (1 column) which had medium in them. To allow the cells to adhere, plates were incubated overnight at 37°C, 5% CO2 in a humid atmosphere. The following day, the compound of interest was dissolved in serum-free medium from a stock prepared in DMSO, sterile water or ethanol. Serial dilutions were made from the compound dissolved in medium. The diluted compound (20μl) was then added to the wells. Each dilution was assayed in triplicate.

Plates were left 4 days at 37°C followed by the addition of MTT (50μl of 2 mg/ml in distilled water). Following a further 4 hr incubation, the medium was aspirated off and DMSO (50μl) added to the formazan crystals which had formed at the bottom of the wells. The plate was then read at 504 nm in a Biorad Model 2550 EIA plate reader. The absorbance of each well, containing cells in the presence of the compound of interest, was calculated as a percentage of the absorbance of the wells containing cells in the absence of the compound of interest (% control absorbance). The blank column (media only) reading was automatically subtracted from the rest of the plate. Each assay was carried out in triplicate and the results combined. Hydrophobic compounds were dissolved in DMSO for use in this assay. The toxicity of DMSO was tested on the CHR5C5 and Aux B1 cell lines and it was found to be non-toxic at 0.5% (v/v) and this concentration was never exceeded in the assay. When compounds dissolved in DMSO were tested, the seeding medium was aspirated from the cells before the test compound (dissolved in DMSO and diluted further in medium) was added. The rest of the assay was as described before. A control with cells exposed to 0.5%(v/v) DMSO but not test compound was also measured, to ensure non-toxicity.
2.13 CORTICOSTERONE MEASUREMENT

2.13.1 SERUM COLLECTION

In order to assay corticosterone levels in mice treated with dexamethsone and TCPOBOP, C57BL/6 male adult mice (2 per group) were treated with dexamethsone (100 mg/kg, 3 dy) or TCPOBOP (3 mg/kg, 1 dy). Controls (10 mice) were treated with corn-oil (0.2 ml, 3 dy). Mice were sacrificed by cervical dislocation following treatment. Cardiac puncture was performed on each animal and the blood collected into tubes (Brunswick, England). The blood was spun (12,000 g, 2', 4°C) and the supernatant (serum) removed and stored at -20°C until assayed for corticosterone. Serum was pooled for dexamethasone and TCPOBOP treated mice as well as controls.

2.13.2 CORTICOSTERONE ASSAY

A simple and highly specific radioimmunoassay for corticosterone was developed (Al-Dujaili et al, 1981) and used in this study. The assay utilises a specific antibody raised against corticosterone-3-(o-carboxymethyl)-oxime-BSA and γ-labelled corticosterone of high specific activity. The production and assessment of antisera used in the assay has been previously described (Al-Dujaili et al, 1981). Dilutions of corticosterone standards in steroid-free medium ranging from 0-1152 nmol/l were used to construct the standard curve. Corticosterone free medium was prepared by the charcoal stripping method which involves adding 10% charcoal to the plasma to be stripped and agitation for at least 5h. The solution was then spun (30', 12K) and the plasma removed and filtered.

Triplicate standard or sample aliquots (25μl, 1:10 dilution) were assayed; ~5000 cpn of [125I] corticosterone (100μl) and corticosterone antibody (100μl, 1:5000 dilution), each dissolved in assay buffer (0.05 M phosphate/citrate buffer, pH 3.0) were added. The assay buffer at pH 3.0 was found to be the optimum pH which produces maximum inhibition of
corticosteroid-binding globulin (CBG) with minimum effect on the antibody-
antigen binding. Therefore at pH 3.0, most of the steroid is in the unbound
form and the assay can measure approximately total steroid concentration.

The tubes were mixed and incubated at 4°C for 4h. The antibody-
bound and free fractions were separated by adding dextran-coated charcoal
suspension (0.5 ml of 0.1M phosphate buffer, pH 7.4, 0.05% (w/v) gelatin,
0.6% (w/v) activated charcoal, 0.06% dextran T70) and spinning the tubes at
4°C, 30', 2000g. The supernatant was then aspirated and the antibody-free
fraction (spun down in the charcoal pellet) counted in an automatic gamma
counter.

Total unbound counts were estimated by adding only the label
solution to the incubation without antibody.

To calculate bound counts:

\[
\text{Total counts} - \text{unbound counts} = \text{Bound counts}
\]
(without antibody) (standard or sample
with antibody)

\[
\% \text{ Binding} = \left(\frac{\text{bound counts}}{\text{total counts without antibody}} \right) \%
\]

From the percentage binding values, a standard curve can be plotted
against known amounts of corticosterone. From the standard curve, an
estimation of corticosterone (nmol/l) for the unknowns can be determined.
CHAPTER 3

DEVELOPMENT OF PEPTIDE ANTIBODIES TO P-GLYCOPROTEIN

3.1 INTRODUCTION AND AIMS

The precise role of P-gp in acquired drug resistance is uncertain, however evidence suggests that it may directly bind drugs and act as an efflux pump (Safa et al, 1986). An alternative mechanism is that drugs bind a carrier protein and the drug-protein complex is actively transported from the cell. In either case, P-gp should be in high concentrations in the plasma membrane if it is involved in the transport of drugs out of the cell.

The first monoclonal antibody with a high affinity to P-gp which was useful for detecting this transmembrane protein was developed by Ling's group (Kartner et al, 1985). Several others have also described the development of monoclonal antibodies that appear useful in the detection of P-gp (Scheper et al, 1988; Hamada and Tsuruo, 1986; Danks et al, 1985). The monoclonal antibody MRK16, reactive with an epitope present in P-gp which is expressed on the external face of the plasma membrane of human mdr cells was isolated (Hamada and Tsuruo, 1986). This antibody reacts only with human P-gp and has been used to localise the protein in normal human tissues by means of peroxidase immunohistochemistry (Thiebaut et al, 1987) and in cultured mdr cells by use of electron microscopic immunocytochemistry (Pastan et al, 1988; Willingham et al, 1987). Using MRK16 to probe normal human tissues, the protein was found concentrated in a small number of specific sites. Most tissues contained very little P-gp. In liver, P-gp is found exclusively on the biliary canalicular front of hepatocytes and on the apical surface of epithelial cells in small biliary ductules. In kidney, P-gp was found concentrated on the apical surface of epithelial cells of the proximal tubules. Colon and jejunum both showed high levels of expression on the apical surfaces of superficial columnal epithelial cells. It was also diffusely distributed on the surface of cells in the adrenal cortex and medulla (Fojo et al, 1987; Thiebaut et al, 1987).
The localisation of P-gp in human tissues on the apical surface of certain cell types facing an excretory compartment suggests that the protein may have a role in the excretion of drugs and physiological metabolites produced by cells. Liver, kidney and bowel are the sites from which cytotoxic natural products in the diet or introduced are removed from the body. The mdr 1 gene transporter may be protecting animals from a variety of cytotoxic compounds. In the mouse, mdr 1 is expressed at high levels in the secretory epithelial cells of the gravid uterus (Arceci et al, 1988). In the adrenal gland or pregnant uterus, the mdr 1 gene product may be involved in the transport of endogenous metabolites.

In mdr vinblastine-selected KB-V1 and colchicine-selected KB-C4 cells, MRK16 was used to detect P-gp in high concentrations in the plasma membranes compared to the drug sensitive parental KB-3-1 cells (Willingham et al, 1987).

Monoclonal antibody C219 (Kartner et al, 1985) has been shown to react with P-gp in many mammalian species and detects an epitope located on the cytoplasmic face of the plasma membrane, near the C-terminal end, close to one of the putative ATP binding sites. The presence of these sites in the primary sequence of the mdr 1 gene and the requirement for ATP in the efflux activity of P-gp in intact cells (Willingham et al, 1986) and in isolated transporting vesicles (Horio et al, 1988) suggested that P-gp could be an ATPase. Myosin possess strong ATPase activity and contains ATP binding sites (Strehler et al, 1986). C219 shows strong localisation patterns in human skeletal and cardiac muscle using immunohistochemical labelling and immunoblotting of the tissue (Wishart et al, 1990).

In rat liver extracts, a band of slightly faster mobility (~165 kD) compared to cultured human mdr cells (170 kD) was seen (Thiebaut et al, 1989). C219 localisation showed a bile canalicular pattern in rat liver as seen with MRK16 in human liver.

Sensitive immunocytochemical techniques have been developed to detect P-gp in cell lines with varying degrees of resistance using the C219 monoclonal antibody.

Immunocytochemical detection, with either alkaline phosphatase or peroxidase-antiperoxidase with silver gold intensification, gave a good
correlation with results obtained using immunoblot analysis (Friedlander et al, 1989). Such a technique detects P-gp in small numbers of cells that immunoblot analysis could miss, making it more suitable for clinical application. Epitope mapping of monoclonal antibodies to P-gp was performed by Georges et al (1990). He demonstrated that C219 recognises a highly conserved amino acid sequence found in all P-gp isoforms characterised to date. Other monoclonals such as C494 are gene specific and bind to a sequence present only in the class 1 isoform of hamster (pgp 1) and human (mdr 1). The monoclonal antibody C32 recognises a sequence conserved in hamster class 1 (pgp 1) and class 2 (pgp 2) isoforms but not in class 3 (pgp 3). These monoclonals were used to reveal differential expression and specific localisation of the three P-gp isoforms in hamster tissues by immunohistochemical staining and competition with epitope-specific peptides (Georges et al, 1990). Each P-gp isoform was found in a small, distinct group of differentiated cell types, and supports the notion that each P-gp isoform may have a different physiological role in normal cells. This approach may be particularly useful for the class 3 isoform (hamster pgp 3, human mdr 3 and mouse mdr 2) because it has not been possible to select in vitro for cells expressing high levels of this isoform. The expression of the class 1 isoform in brain capillary endothelium may reflect the involvement of P-gp in the function of the blood-brain barrier (Cordon-Cardo et al, 1989). This P-gp is also detected in the endothelium of small blood vessels in the testis, ovary, oviduct, uterus and vagina. This pattern of endothelial cell expression may indicate a physiological role for P-gp in regulating the entry of certain molecules into the central nervous system and other anatomic compartments, such as the testes. Bradley et al (1990) gave an alternative suggestion when pointing out that endothelial cells, hepatocytes and intestinal lining epithelial cells are all thought to secrete hormones and metabolites. Thus the P-gp class 1 isoform may function in specific secretory pathways that operate in these differentiated cells but not in similar cells in other sites. The pattern of expression of class 2 and 3 P-gp isoforms in specialised cells of the adrenal cortex, uterus and muscle suggests a normal function of these isoforms in the transport of normal metabolites. P-gp has been suggested to be involved in steroid transport in
the adrenal gland (Thiebaut et al, 1987). In hamster, as well as mouse, the
class 2 isoform has been detected on the luminal surface of the lining
epithelium of the gravid uterus (Bradley et al, 1990; Arceci et al, 1988). It is
speculated that the expression of the class 2 isoform in uterine epithelium
during pregnancy is also associated with specific aspects of steroid
metabolism. The class 3 isoform (hamster pgp 3, human mdr 3 and mouse
mdr 2) was the predominant form found in cardiac muscle fibres and a
subset of striated muscle fibres (Bradley et al, 1990). Structural features of
this isoform imply that it is a membrane transport protein.

Sugawara et al (1988) used MRK 16 to detect P-gp in human tissues
and found strong staining in adult adrenal kidney and placental tissue. No P-
gp was found in the immature adrenal and hence the expression may be
developmentally regulated. Sugawara et al (1989) also reported that MRK
16 reacted with cortical adenomas of human adrenals secreting
testosterone, aldosterone and corticosteroid, suggesting that these
adenomas possess P-gp. MRK 16 did not react however with
pheochromocytoma, non-functioning corticol adenoma (adrenal derived
hormones in the serum were unchanged). Therefore it was speculated that
P-pg transports hormones or hormone metabolites through plasma
membranes of adrenal corticol cells.

Expression of P-gp has been examined in numerous clinical studies
to determine whether or not it can be used as a useful marker for screening
the mdr phenotype in tumours. In a study of childhood sarcoma, Chan et al
(1989) elegantly demonstrated that the overexpression of P-gp influences
the outcome of therapy. The probability of relapse-free survival was
significantly different in patients with P-gp-positive versus negative tumours.
Schlaifer et al (1990) warned that P-gp expression by macrophages may be
responsible for overestimation of mdr content of tumour cells with Northern
blot or immunoblot techniques of fresh tissue homogenates. Since mdr 1
eexpression in clinically refractory tumours untreated with chemotherapeutic
drugs is difficult to detect using conventional assays, Noonan et al (1990)
devised a sensitive, specific and quantitative protocol for measuring mdr 1
mRNA in clinical samples based on the polymerase chain reaction (PCR).
Such a system requires much less tissue and ensures reliable detection of
mdr 1 gene expression in samples from cells with a low level of drug resistance.

AIMS

At the outset of the project only C219 and MRK 16 were widely available as antibodies useful for the study of P-glycoprotein.

The initial aims of the project were to raise a useful polyclonal antibody (PA) or antibodies against the sequence of human mdr 1 in order to study the expression of the protein in cell lines and whole tissue and examine the physiological role of mdr.

3.2 CHOICE OF PEPTIDE SEQUENCES, IMMUNISATION AND RAISING THE ANTIBODIES

In this study, performed previous to the Marquadt *et al* (1990) study using synthetic peptides to examine vincristine resistant HL/60 cells, five different peptide sequences were chosen. The sequence of the peptides and the regions to which these sequences correspond are given in Table 3.1. Peptides were synthesised, according to the deduced sequence of human P-gp (Chen *et al*, 1986), using the Marglin and Merrifield solid state method (Marglin and Merrifield, 1970) by Jonathan Rothbard, Imperial Cancer Research Fund, 44 Lincoln's Inn Field, London WC 2A 3PX.

The sequence of the human mdr 1 gene product is shown in Figure 3.1. Figure 3.2 shows the location of the peptide sequences in the postulated model of human mdr 1. Peptide 1-9 is the sequence of nine amino acids at the N-terminus of the mdr 1 gene product, which is predicted, from hydropathy plots, to be cytoplasmic. Peptide 73-87 is upstream from three potential N-glycosylation sites, predicted to be in an extracytoplasmic domain. Potential transmembrane domains were determined for P-gp using the algorithm of Eisenberg *et al* (1984) and reported by Chen *et al* (1986)
FIGURE 3.1
PRIMARY STRUCTURE OF THE MDR 1 GENE PRODUCT AND ALIGNMENT OF THE N-TERMINAL AND C-TERMINAL HALVES

The standard single-letter amino acid code is used. Colons indicate identical residues. Potential N-glycosylation sites (Asn-X-Ser/Thr) are underlined, the sites localized in the predicted extracytoplasmic region (see Figure 7) are underlined twice. Potential transmembrane segments (1-6 and 1a-6a), predicted by the algorithm of Eisenberg et al. (1984), are enclosed in thin boxes. Potential nucleotide-binding sites (N6-1 and N8-2) are enclosed in thick boxes.

Adapted from Chen et al (1986).
FIGURE 3.2 MODEL OF HUMAN MDR 1 AND PEPTIDE LOCATIONS

TABLE 3.1
PEPTIDES SYNTHESISED FROM HUMAN MDR 1 AMINO ACID SEQUENCE

<table>
<thead>
<tr>
<th>ANTIBODY NO.</th>
<th>PEPTIDE SEQUENCE</th>
<th>P-GP AMINO ACIDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18/19</td>
<td>MDLEGDRNG</td>
<td>1-9</td>
</tr>
<tr>
<td>59/60</td>
<td>GEMTDIFANAGNLED</td>
<td>73-87</td>
</tr>
<tr>
<td>61/62</td>
<td>RALVRNPKIL</td>
<td>543-552</td>
</tr>
<tr>
<td>16/17</td>
<td>RIDDPETKRQN</td>
<td>741-751</td>
</tr>
<tr>
<td>20/21</td>
<td>VQAGTKRQ</td>
<td>1273-1280</td>
</tr>
</tbody>
</table>

One such domain includes residues 52-72. From such predictions, the peptide sequence of 73-87 should be extracytoplasmic and precede an N-glycosylation cluster. Peptide 543-552 spans ten amino acid residues in the predicted potential nucleotide-binding site, NB-2, as shown in Figure 3.2. Peptide 741-751 spans a region in the first extracytoplasmic loop in the second half of the protein. Peptide 1273-1280 represents the C-terminal end of the protein which is predicted to be located on the cytoplasmic side. Kartner et al (1985) have used antibodies against the C-terminal region of hamster P-gp to show that the C-terminus is located inside the cell.

The peptides chosen were aligned with mouse and hamster sequences to determine the extent of the homology between these and the human sequence. This is shown in Table 3.2. The sequence of human mdr 1 was reported by Chen et al (1986). Mouse mdr 1 and mdr 3 sequences were aligned by Devault and Gros (1990). The hamster gene family has been partially sequenced. Endicott et al (1987) reported the partial sequences of pgp 1 and pgp 2. Ng et al (1989) reported the partial sequence of pgp 3.
<table>
<thead>
<tr>
<th>PEPTIDE 1-9 (18/19)</th>
<th>% HOMOLOGY TO HUM MDR 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUM mdr 1</td>
<td>MDLEGDRNG</td>
</tr>
<tr>
<td>MS mdr 1</td>
<td>MEFEENLKG</td>
</tr>
<tr>
<td>MS mdr 2</td>
<td>MDLEAARNG</td>
</tr>
<tr>
<td>MS mdr 3</td>
<td>MELEEDLKG</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PEPTIDE 73-87 (59/60)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUM mdr 1</td>
</tr>
<tr>
<td>MS mdr 1</td>
</tr>
<tr>
<td>MS mdr 2</td>
</tr>
<tr>
<td>MS mdr 3</td>
</tr>
</tbody>
</table>

PEPTIDE 543-552(61/62)		
HUM mdr 1	RALVRNPKIL	
MS mdr 1	RALVRNPKIL	100
MS mdr 2	RALVRNPKIL	100
MS mdr 3	RALVRNPKIL	100
HAM pgp1	RALVRQPHIL	80
HAM pgp2	RALVRQPHIL	80

100
PEPTIDE 741-751 (16/17)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HUM mdr 1</td>
<td>RIDDPETKRQN</td>
<td></td>
</tr>
<tr>
<td>MS mdr 1</td>
<td>RDDDHETKRQN</td>
<td>82</td>
</tr>
<tr>
<td>MS mdr 2</td>
<td>PGDD- AVKQQK</td>
<td>36</td>
</tr>
<tr>
<td>MS mdr 3</td>
<td>NGGPPETQRQN</td>
<td>55</td>
</tr>
<tr>
<td>HAM pgp 1</td>
<td>RNTDDETKRHD</td>
<td>55</td>
</tr>
<tr>
<td>HAM pgp 2</td>
<td>RDDDPKTQKN</td>
<td>73</td>
</tr>
</tbody>
</table>

PEPTIDE 1273-1280 (20/21)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HUM mdr 1</td>
<td>VSVQAGTKRQ</td>
<td></td>
</tr>
<tr>
<td>MS mdr 1</td>
<td>V- QAGAKRS</td>
<td>70</td>
</tr>
<tr>
<td>MS mdr 2</td>
<td>VINI QAGAKRS</td>
<td>50</td>
</tr>
<tr>
<td>MS mdr 3</td>
<td>VSVQAGTQNL</td>
<td>80</td>
</tr>
<tr>
<td>HAM pgp 1</td>
<td>VSVQAGAKR</td>
<td>80</td>
</tr>
<tr>
<td>HAM pgp 2</td>
<td>V- QAGAKRL</td>
<td>60</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HUM</td>
<td>Human</td>
</tr>
<tr>
<td>MS</td>
<td>Mouse</td>
</tr>
<tr>
<td>HAM</td>
<td>Hamster</td>
</tr>
</tbody>
</table>

Synthetic peptides containing cysteine at the amino terminus were conjugated to thyroglobulin and also to bovine serum albumin (BSA) by Jonathon Rothbard, Imperial Cancer Research Fund, Lincolns Inn Fields. The thyroglobulin conjugates were used to immunise New Zealand White...
rabbits (two rabbits per conjugate). The conjugated material (200µg) was emulsified with Freund's complete adjuvant and thereafter injected subcutaneously (sc) into the rabbits. Prior to this initial injection, pre-immune serum was obtained from each rabbit, stored at -20°C. This pre-immune serum was subsequently used as the negative control in ELISA assays to measure the antibody titres of the immunised animals. After three weeks, a second injection of conjugated material (100 µg) in incomplete adjuvant was made. At weeks six and eight, further boosts were given and the animals bled nine days after the last boost. Blood was removed from the animals one week following each boost to estimate the titre of the antibody. Antisera were tested for reactivity against synthetic peptides by using an ELISA assay procedure, as described in Section 2.6.1. The sera from all bleeds were collected and stored at -20°C until assayed.

3.3 MEASURING ANTIBODY TITRES USING THE ELISA ASSAY

To estimate the titre of the antibodies and to assess the increase in titre following each boost, ELISA assays were performed. BSA-conjugated peptides were used in the assay and were adsorbed onto the microtitre plates overnight. Wells in the plate were also coated with the pre-immununue serum as a negative control. By screening with the BSA- conjugate it was intended that the assay would measure the antibodies raised against the peptide sequences only. Table 3.3 shows the results obtained following each boost and the final titre of the antibody for each peptide and each rabbit immunised. The final antibody titres ranged from 1:6,400 to 1:102,400. Such titres were considered sufficient for using these antibodies to immunoblot for P-gp in mdr cell lines.

3.4 IMMUNOBLOTTING USING THE C219 MONOCLONAL ANTIBODY

In order to assess whether the peptide antibodies raised against P-gp were valuable for use in immunoblotting, techniques for immunoblotting P-gp
in mdr cell lines and tissues were developed using the commercially available monoclonal antibody C219. The immunoblotting procedures for P-gp are described in Section 2.6.3

<table>
<thead>
<tr>
<th>PEPTIDE</th>
<th>RABBIT</th>
<th>1ST</th>
<th>2ND</th>
<th>3RD</th>
<th>4TH (FINAL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-9</td>
<td>18</td>
<td>1:3,200</td>
<td>1:6,400</td>
<td>1:25,600</td>
<td>1:25,600</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>1:3,200</td>
<td>1:12,800</td>
<td>1:12,800</td>
<td>1:12,800</td>
</tr>
<tr>
<td>73-87</td>
<td>59</td>
<td>1:3,200</td>
<td>1:6,400</td>
<td>1:6,400</td>
<td>1:6,400</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>1:6,400</td>
<td>1:6,400</td>
<td>1:12,800</td>
<td>1:25,600</td>
</tr>
<tr>
<td>543-552</td>
<td>61</td>
<td>1:12,800</td>
<td>1:12,800</td>
<td>1:25,600</td>
<td>1:51,200</td>
</tr>
<tr>
<td></td>
<td>62</td>
<td>1:12,800</td>
<td>1:51,200</td>
<td>1:51,200</td>
<td>1:51,200</td>
</tr>
<tr>
<td>741-751</td>
<td>16</td>
<td>1:12,800</td>
<td>1:25,600</td>
<td>1:25,600</td>
<td>1:102,400</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1:3,22</td>
<td>1:12,800</td>
<td>1:12,800</td>
<td>1:12,800</td>
</tr>
<tr>
<td>1273-1280</td>
<td>20</td>
<td>ND</td>
<td>1:51,200</td>
<td>1:51,200</td>
<td>1:102,400</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>ND</td>
<td>1:51,200</td>
<td>1:51,200</td>
<td>1:102,400</td>
</tr>
</tbody>
</table>

ND not determined

Several cell lines were immunoblotted for P-gp using the Laemmli system without heating. Two of these cell lines were of human and two were of hamster origin. Wild type (sensitive) and derived (resistant) lines were matched. In the case of Messa, Dx-5, CHO-K1 and CHO-AdrR, a whole cell sonicate was electrophoresed and for the other cell lines a 100,000g fraction was examined. All mdr cell lines, except CHR C5, were grown continuously in the presence of the drug to which they were originally selected. The
immunoblot of the various cell lines probed with C219 is shown in Figure 3.3. To compare the levels of P-gp detected in the sensitive cell line Aux B1 and its drug resistant counterpart CHRC5, the exposure time of the immunoblot was 30 days following Protein A-I125 labelling. SKVLB (human), CHRC5 (hamster) and CHO-AdR (hamster) cell lines demonstrated immunoreactivity with C219. Both fractions from the CHRC5 cell line cross-reacted strongly with C219 to give a band of 155 kD. This same protein was detected in both fractions of AuxB1 but at a greatly reduced level. This cell line pair has been widely used in the literature as a control for P-gp expression. Riordan and Ling (1979) reported the purification of P-gp from the colchicine resistant Chinese hamster ovary cell line, CHRC5. The drug sensitive SKOV3 human cell line also displayed negligible levels of P-gp in the 100,000g fraction. SKVLB resistant cells show a greatly increased level of a 150 kD protein in the 100,000g fraction. CHO-K1 cells displayed a low level of the 155 kD P-gp and the CHO-AdrR cells showed a smeared lower band of ~150 - 155 kD. Both the 150 kD and the 155 kD proteins represent P-gp in different glycosylation states. In the case of SKVLB, P-gp has lost ~5 kD of carbohydrate residues. Greenberger \textit{et al} (1988) reported the effect of heating P-gp samples; in CHRC5 cells, P-gp shifted from 155 kD to a broad smeared band of ~170 kD. He proposed that since both the Fairbank's system (SDS + urea) and the Laemmli system (SDS + boiling) should completely denature P-gp, in the absence of heat or urea the protein is probably incompletely unfolded and therefore migrates aberrantly.

Dox-5 failed to show P-gp protein expression using this system. However, the cell line was shown to be resistant to Adriamycin, as shown in Chapter 4. The lack of a detectable protein using this immunoblotting technique is therefore probably due to the low level of P-gp expression in the mdr Dx-5 cell line.
FIGURE 3.3
EXPRESSION OF P-GP IN CELL LINES IMMUNOBLOTTED WITH C219

Cell fractions were prepared, as described in Section 3.4, and Western blotted using the C219 monoclonal antibody.

To assess the usefulness of the blotting technique on whole tissues, microsomes from mouse, human and Wistar rat liver were prepared and immunoblotted using the modified Fairbank's urea gel system.

Using the urea gel system, C219 was also shown to cross-react with normal mouse and rat liver. The MW of the P-gp detected in these tissues was smaller than the one detected in the CHRF6 cell line. The results are...
shown in Figure 3.4. Silverman et al (1991) reported the sequencing of the first rat mdr gene. A full length rat cDNA clone was identified and the predicted protein was 1276 amino acids with a calculated Mr of 141 kD. The sequence was found to have high homology to mouse mdr 1. Mouse liver also contained a protein at ~60 kD that cross-reacted strongly with the C219 monoclonal antibody. This protein must contain the epitope VQAALD recognised by the C219 monoclonal antibody. Human liver showed very weak expression of P-gp although Fojo et al (1987) indicated that normal human liver contained substantial expression of P-gp. The low P-gp level may be due to sample degradation or variations in the expression of P-gp in different human liver samples.

Rat liver treated with dexamethasone, aracloc, 2-acetylaminoflourene and untreated control were electrophoresed along with CHRC5 and AuxB1 to determine whether these treatments induced P-gp expression. Figure 3.5 shows the results and illustrates the effects of a range of xenobiotic treatments on rat P-gp expression. The treated rat liver showed increased levels of P-gp compared to control.

Having established the usefulness of the C219 monoclonal antibody in immunoblotting both cell lines and whole tissues, the reactivity of the polyclonal antibodies raised against peptide sequences of human mdr 1 was assessed.

3.5 IMMUNOBLOTTING USING PEPTIDE ANTIBODIES

All the antibodies were assessed by immunoblotting. Both the Laemmli and urea gel system were employed. Antibodies were diluted from 1:50 to 1:1000 and C219 was used as the positive control antibody against the CHRC5 mdr cell line. From such immunoblotting studies, polyclonal antibody (PA) 21 and PA61 were considered to be useful. Polyclonal antibodies 21 and 61 had titres of 1:100,000 and 1:51,200 respectively. PA61 had 100% and 80% homology with mouse and hamster sequences respectively over the peptide region to which it was raised. PA21 had 70%, 50% and 80% homology with the mouse mdr 1, mdr 2 and mdr 3 primary amino acid sequences over the region to which it was raised. It also had
FIGURE 3.4
EXPRESSION OF P-GP IN MOUSE, RAT AND HUMAN LIVER

Male C57Bl/6 mice, Wistar rat and human liver were prepared, as described in Section 2.5.3, and Western blotted (100 μg of each) using the C219 monoclonal antibody.

This represents one representative blot from one of several repeated experiments.
FIGURE 3.5
EXPRESSION OF P-GP IN DEXAMETHASONE, ARACLOR AND 2-ACETYLAMINOFLUORENE-TREATED RATS

Wistar rats were treated with dexamethasone (100 mg/kg, 3 dy), Arachlor (500 mg/kg, 1 dy) and 2-acetylaminofluorene (50 mg/kg, 4 dy). Control animals were treated with phosphate buffered saline.
Livers were removed following treatment, snap frozen and solubilised protein prepared from them, as described in Section 2.5.3 (Fairbank's method). 100 μg of each liver sample was electrophoresed along with the CHRC5 cell line and Western blotted using the C219 monoclonal antibody.

Dex dexamethasone
Ara arachlor
AAF 2-acetylaminofluorene
Con control

This represents the results of one experiment. Tissue was pooled from 4 rats in each treatment group.
80% and 60% homology to hamster pgp 1 and pgp 2 respectively over this region.

3.5.1 IMMUNOBLOTTING USING POLYCLONAL ANTIBODY 21

PA21 was raised against a ten amino acid peptide sequence which is highly conserved between human, mouse and hamster. The sequence is found at the C-terminal of all P-gp proteins thus far described. This region in the protein is cytoplasmic according to hydropathy plots (Chen et al, 1986) since it is near a long, relatively hydrophobic region.

Immunoblots were run using this antibody against cell lines and bovine adrenal microsomes. Figure 3.6 shows two immunoblots from an SDS PAGE gel that was run with two sets of identical samples and then cut in half. The samples were microsomal cell preparations from Messa, Dox-5, CHO-K1 and CHO-Adr\(^R\) and adrenal microsomes from whole tissue, medulla and cortex.

The immunoblots were blotted with the C219 monoclonal antibody and PA21. The serum from the final bleed-out was used for immunoblotting to ensure a high titre. The antibody was used at a dilution of 1:100. A separate gel was run on the identical samples and blotted with the pre-immune serum from rabbit 21. C219 recognised P-gp in the hamster cell line CHO-Adr\(^R\) more strongly than the low level of expression in CHO-K1. It also detected P-gp expression in all three adrenal microsome fractions. No obvious difference was apparent between the expression of P-gp in the cortex or medulla. The size of the P-gp detected using this electrophoresis and blotting system was 150 kD. A lower smeared band of 130-140 kD was also detected in the adrenal microsomes and CHOAd\(^R\) cell line. No P-gp was detected in the cytosolic fractions of the adrenal cortex or medulla as
FIGURE 3.6
IMMUNOBLOTTING CELL LINES AND ADRENAL MICROSONES USING POLYCLONAL ANTISERUM 21 AND C219

Cell lines and adrenal fractions were prepared, as described in Section 2.5.3, and Western blotted (100 μg of each) using the polyclonal antibody 21, monoclonal antibody C219 and the pre-immune serum 21.

The polyclonal antibody 21, C219 and pre-immune serum autorads were exposed for 16 hours, 11 days and 9 days respectively. The pre-immune serum blot was given a longer exposure than polyclonal antibody 21 to ensure that no cross-reactivity to P-gp had occurred.
expected. PA21 also recognised a protein of 150 kD in the adrenal microsomes but no such protein was detected as being present in the cytosolic fractions. CHO-AdrR cells showed a slightly higher level of expression of the protein than CHO-K1. Although both sets of samples had been treated identically, PA21 did not detect the lower smeared protein of between 130-140 kD. The antibody did however detect a protein of 110 kD represented at equivalent levels in both Messa and Dox-5 cell lines.

The autoradiograph of the immunoblot with the C219 monoclonal antibody required an exposure time of eleven days whereas the polyclonal antibody autoradiograph required only a 16 h exposure to achieve a reasonable level of detection. The consistent failure of antibodies raised against P-gp to detect P-gp expression in the mdr Dox-5 cell line suggests that very low levels of expression were present in the cell line.

The difference in the sensitivity of PA21 and C219 may be explained in two ways. Firstly, the difference may be due to one antibody being monoclonal and the other being polyclonal. Monoclonal antibodies recognise only one epitope in contrast to polyclonals which normally recognise several different epitopes represented in the protein sequence. Monoclonal antibody C219 recognises a six amino acid sequence which occurs both in the N-terminal and C-terminal half of the protein as shown in Figure 3.2. PA21 recognises a ten amino acid sequence which only occurs at the C-terminal end of the protein. From these facts it would be difficult to explain the difference in sensitivity of C219 and PA21 in terms of the number of epitopes recognised. A second explanation involves the antigenicity of the epitope and the ease with which it is recognised by the antibody. Since the C-terminal region is not masked by sugar residues, which may be true for external epitopes, the epitope site is exposed and easily recognised by an antibody raised against it.

The protein of 110 kD recognised by PA21 in the human cell line is unlikely to be involved in mdr since it is expressed to equivalent levels in both cell lines. The epitope recognised by PA21 must be present in these human cell lines.

Figure 3.6 also shows the same samples blotted with pre-immune serum from rabbit 21. The immunoblot with this serum was exposed for nine
days. A faint band of 165 kD was detected in all the samples except the Messa sensitive cell line. Such a protein size or pattern of expression is not represented in the PA21 immunoblot. Therefore the protein recognised by PA21 is not recognised by the antibodies normally present in the rabbit before immunisation.

Using the Laemmli system, PA21 was found to cross-react well with bovine adrenal microsomes but failed to detect P-gp expression in normal rat liver or kidney even when 100µg of protein was immunoblotted as seen in Figure 3.7.

FIGURE 3.7
DETECTION OF P-GP IN BOVINE ADRENAL, RAT LIVER AND KIDNEY USING POLYCLONAL ANTIBODY 21

Bovine adrenal, rat liver and kidney solubilised protein was prepared, as described in Section 2.5.3, and Western blotted (100 µg, 50 µg and 20 µg of each) using the polyclonal antibody 21.
The detection of a protein in tissue fractions compared to cell fractions is always more difficult since the number of different cell types represented in the tissue microsomal fraction is much greater. Immunohistochemical methods are therefore usually employed to circumvent this problem.

A high level of P-gp was detected in bovine adrenal microsomes on loading between 100-20 μg of protein. The strong detection of P-gp in this tissue indicates very high levels of expression compared to other tissues. Such a finding is in agreement with Croop et al (1989) who reported very high levels of expression of the mdr 1 gene in mouse adrenal. The level of expression was 20 to 40 fold the level in the non mdr cell line NIH 3T3. Georges et al (1990) reported that pgp 2 is predominantly expressed in the hamster adrenal gland. This expression may be involved in the transport of corticosteroids. The elevated levels of expression detected by PA21 in the bovine adrenal is therefore not surprising. The specificity of the polyclonal antibody for the protein recognised in bovine adrenal microsomes was tested for.

Figure 3.8 shows the results of an experiment in which 50 μg and 20μg of bovine microsomal protein were run side by side and immunoblotted using PA21 at 1:500 dilution. The lower half of the figure shows an immunoblot with the same samples using PA21 at 1:500 dilution preincubated with an excess of BSA-conjugated peptide, to which peptide the antibody was raised. The incubation was at 37°C for 1 h with gentle agitation. The antibody solution was then spun down and the serum used as the 'competed-out antibody'. Peptide competition from the conjugate resulted in an antibody that recognised the protein in bovine adrenal microsomes at much reduced levels. This demonstrates the specificity of the peptide sequence in the antibody for the protein detected by PA21 in adrenal microsomes. Even at dilutions of 1:1000 and a protein loading of 20μg, PA21 still strongly detected P-gp.

3.5.2 IMMUNOBLOTTING USING POLYCLONAL ANTIBODY

PA61 was raised against amino acid residues 543-552 which are situated near the ATP-binding site in the N-terminal half of the protein. This
FIGURE 3.8
SPECIFICITY OF P-GP DETECTION IN BOVINE ADRENAL TISSUE BY POLYCLONAL ANTIBODY 21

Adrenal fractions (100 μg and 50 μg of protein) were Western blotted using polyclonal antibody 21 and the 'competed out' polyclonal antibody 21, as described in Section 3.5.1. 1 mg of conjugate was used to compete out a 1:500 dilution of the polyclonal antibody.
region is highly conserved and located in the cytoplasm. The highest level of homology is observed in the nucleotide binding regions (Chen et al, 1986) with each region corresponding to two parts of the nucleotide-binding fold (Walker et al, 1982). These folds have been detected previously in bacterial transport proteins (Higgins et al, 1982).

PA61 recognised a protein in the CHRC5 cell line which was present at much lower levels in the Aux B1 drug sensitive parental line. This protein was exactly equivalent in size to P-gp, as shown in Figure 3.9. This figure shows the results of immunoblotting these cell lines with PA61 at a dilution of 1:2000 and 1:10,000. C219 recognises P-gp in the CHRC5 cell line at a dilution of 1:1000. The additional proteins recognised by PA61 are non-specific and are detected at equivalent levels in both the resistant and sensitive cells.

To assess whether or not PA61 recognises P-gp in other mdr cell lines, membrane preparations from CHO-AdrR, CHO-K1,SKVLB and SKOV were also prepared and immunoblotted. To determine the detectability of P-gp in mouse and rat liver, membrane fractions from these rodent tissues were extracted and immunoblotted alongside the cell lines. Figure 3.10 shows the immunoblot results obtained after probing the above samples with PA 61 and C219. P-gp (155kD) is detected most strongly in the CHRC5 cell line. The level of expression in AuxB1 is very low in comparison. SKVLB also had a raised level of P-gp (155kD) compared to it's sensitive parent SKOV. The cell lines CHO-AdrR and CHO-K1 showed very little difference in the expression of P-gp. Both mouse and rat liver expressed P-gp of a lower molecular weight of 150 kD. The C219 antibody detected P-gp in CHRC5 and SKVLB at the same molecular weight as PA61. A lower molecular weight form of P-gp was also detected in rat and mouse liver. A protein of 60 kD was also strongly detected in mouse liver by C219. Since the protein cross-reacts strongly with C219 but not PA 61, the protein must contain the epitope recognised by the monoclonal but not the one recognised by the polyclonal.
Figure 3.9
Detection of P-GP in MDR and Sensitive Cells by C219 and Polyclonal Antibody 61

Cell lines were prepared, as described in Section 2.5.3, and Western blotted (100 μg each) using polyclonal antibody 61 and the monoclonal antibody C219.

<table>
<thead>
<tr>
<th>Track no.</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>molecular weight markers</td>
</tr>
<tr>
<td>2</td>
<td>CHRC5</td>
</tr>
<tr>
<td>3</td>
<td>AuxB1</td>
</tr>
<tr>
<td>4</td>
<td>CHRC5</td>
</tr>
<tr>
<td>5</td>
<td>AuxB1</td>
</tr>
<tr>
<td>6</td>
<td>CHRC5</td>
</tr>
</tbody>
</table>

Tracks 2/3 and 4/5 were blotted against polyclonal antibody 61 at a dilution of 1:2000 and 1:10,000 respectively.

Track 6 was blotted against monoclonal antibody C219 at a concentration of 0.1 mg/ml.

These results are representative of several experiments in which repeated cell line preparations were made and different antibody dilutions were used.
FIGURE 3.10
DETECTION OF P-GP IN CELL LINES AND RODENT TISSUES USING C219 AND POLYCLONAL ANTIBODY 61

Cell lines, rat and mouse liver solubilised protein was prepared, as described in Section 2.5.3, and Western blotted (100 µg each) using the polyclonal antibody 61 and the monoclonal antibody C219.

STD standard
mouse con mouse control (untreated)
rat con rat control (untreated)
3.6 IMMUNOHISTOCHEMISTRY USING THE PEPTIDE ANTIBODIES

For testing the usefulness of the peptide antibodies the cell line CHRC5 and its sensitive parental cell line AuxB1 were used. P-gp in the CHRC5 cell line was shown to be recognised by PA61 following immunoblotting. All the peptide antibodies were tested including those that did not detect P-gp in the immunoblotting procedure. With immunohistochemistry the epitope recognised by the antibody is in a conformation which is normally adopts whereas the epitope is linearised to a great extent following immunoblotting. Epitope presentation can alter the extent to which the antibody recognises the antigen.

Cells were prepared from both cultured cell lines and spun onto glass slides to achieve an equal proportion of cells on each slide (50,000). The cells were fixed in acetone for four minutes and stored at -20\textdegree C until required. The cells were quickly thawed in acetone for one minute when immunohistochemistry was performed on them. The cells were washed twice in TBS for five minutes and incubated in normal rabbit serum (1:5) for ten minutes. The cells were then incubated in a 1:50 dilution of each polyclonal peptide antibody for 30 minutes at room temperature. Following this step the cells were washed in TBS and treated as outlined in Section 2.3.3 with biotinylated swine anti-rabbit second antibody. The rest of the procedure is also shown in this section.

3.6.1 RESULTS OF PEPTIDE IMMUNOHISTOCHEMISTRY

Table 3.4 shows the results of the immunohistochemistry on the CHRC5 and AuxB1 cells. None of the peptide antibodies stained CHRC5 more strongly than AuxB1. Both nuclear and cytoplasmic staining was evident. PA21 and PA61 did not specifically recognise P-gp in the plasma membrane of the CHRC5 cells but cross-reacted with other proteins present.
TABLE 3.4
PEPTIDE ANTIBODY IMMUNOHISTOCHEMISTRY RESULTS ON C\text{H}R\text{C}5 AND AUXB1 CELLS

<table>
<thead>
<tr>
<th>ANTIBODY</th>
<th>AUX</th>
<th>C\text{H}R\text{C}5</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>+</td>
<td>+</td>
<td>staining is cytoplasmic</td>
</tr>
<tr>
<td>17</td>
<td>++</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>+++</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>++</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>+/-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>++</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>++</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>++</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>++</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

+ moderate staining
++ strong

Using the same method to detect P-gp in the cells with the C219 monoclonal antibody resulted in both C\text{H}R\text{C}5 and AuxB1 being stained. The difference in intensity between the two cell lines was not apparent. The staining was however more plasma membrane specific.

3.7 SUMMARY OF RESULTS

Using hamster and human mdr cell lines and C219 as the positive control antibody, the peptide antibodies PA21 and PA61 were shown to cross-react with P-gp using the Laemmli and urea gel system for immunoblotting. The remaining peptide antibodies did not cross-react with P-gp following immunoblotting. Both PA21 and C219 detected P-gp in bovine adrenal microsomes at ~145 kD. PA61 and C219 detected P-gp in rat
and mouse liver.

The ability of PA61 to recognise P-gp in the Chinese hamster mdr cell lines and both mouse and rat liver indicates that the peptide sequence against which the antibody was raised is highly conserved and the epitope is available for recognition by the antibody following immunoblotting. PA21 did not detect P-gp in either rat or mouse liver and this indicates that the homology between the peptide sequence in human, rat and mouse is not sufficient for antibody recognition or that mdr 1 is not expressed at sufficient levels for detection. However, the detection of P-gp in the Chinese hamster ovary cell line CHO-AdrR infers that this may not fully explain the lack of detection since the hamster sequences have a similar level of homology to human mdr 1 as the mouse sequences. The difference in expression of P-gp between CHRC5 and AuxB1 is considerable. However, using immunohistochemistry no difference could be detected between these cell lines. Unlike C219 however, the polyclonal antibodies also cross-reacted with other proteins in the cell lines and whole tissue to varying extents. Such cross-reactivity would have to be eliminated by increasing the dilution of the antibody or pre-adsorbing it with pre-immune serum.

The specificity of C219 was considered to be much greater than either of the polyclonal antibodies raised. Polyclonal 61 has 100% homology with the mouse mdr 1, 2 and 3 gene sequences and therefore would not distinguish between them. Antibodies to detect specific mdr 1, 2 or 3 gene products will enable examination of their location and function. Since the antibodies raised were not specific enough to differentiate individual mdr 1, mdr 1, 2 and 3 gene products, it was decided to use Northern blotting to examine the levels of expression of each isoform in various models. Chapter 5 describes the use of such gene specific probes.
CHAPTER 4

P-GLYCOPROTEIN - AN EFFLUX PUMP FOR CARCINOGENS?

4.1 INTRODUCTION

The physiological function of P-gp in normal tissues is unknown although it's role as an efflux pump has been widely studied. Early work demonstrated that mdr cells were associated with a decrease in intracellular cytotoxic drug accumulation when compared to sensitive cells (Riehm and Biedler, 1971; Ling and Thompson, 1974). Such decreased accumulation has been generally ascribed to enhanced outward, rather than diminished inward, transport (Inaba et al, 1979). A number of investigators have found an energy-dependent mechanism responsible for the outward transport of all drugs to which cells display resistance. Depletion of ATP by removal of glucose or addition of metabolic inhibitors results in a reversal of the accumulation defect, whereas replacing glucose restores mdr (Dano, 1973). A number of radiolabelled drugs and photoactivatable drug analogs bind in a specific, saturable and energy-dependent manner to mdr plasma membranes but not to sensitive cell membranes (Cornwell et al, 1986a). Purified P-gp has been shown to posses ATPase activity (Hamada and Tsuruo, 1988). The deduced amino acid sequence of P-gp reveals that it bears striking homology to the ATP-binding domains of periplasmic transport proteins of bacteria such as the hyl B α-hemolysin export pump (Higgins et al, 1982) as well as the yeast Saccharomyces cerevisiae STE6 gene product which exports hydophobic lipopeptide pheromones (McGrath and Varshowsky, 1989). Unlike well-defined carrier molecules such as the Ca\(^{2+}\) Mg\(^{2+}\) ATPase or Na\(^+\)K\(^+\) exchange pump, P-gp is less selective with regard to substrate.

Most experimentally induced mdr cell lines have been selected for at least 100-fold drug-resistance, although it has been argued that clinically
relevant drug resistance is in the order of two to ten fold (Yang, 1989). To understand the clinical importance of mdr, the normal levels of P-gp in a variety of human tissues have been studied.

Immunoblots have demonstrated the presence of P-gp in liver (Hitchins et al, 1987) and it has been localised to the apical biliary surface of hepatocytes (Thiebaut et al, 1987). The polarised expression of P-gp suggests a secretory role for the membrane glycoprotein. Endothelial cells of human capillary blood vessels also express P-gp, but cells from larger blood vessels and other tissue capillaries do not. This suggests that P-gp may exclude toxic compounds from the central nervous system and other sites (Cordon-Cardo et al, 1989; Thiebaut et al, 1989). P-gp almost certainly has a normal physiological function in human tissues related to secretion and protection of tissues from various naturally occurring toxins or commonly encountered xenobiotics.

The first report of pharmacological reversal of mdr came from Tsuruo et al (1981). He showed that verapamil, a calcium channel blocker, and the calmodulin (CaM) antagonist, trifluoperazine, potentiated the antiproliferative effect of vincristine in vivo and in vitro. Investigators have determined the magnitude of the effect of chemosensitisers by comparing IC₅₀ (the concentration of a compound which causes 50% reduction in viable cells) values for a cytotoxic drug in the absence and presence of a relatively non-toxic fixed concentration of reversing agent. A large amount of interest has been focused on devising clinical protocols incorporating chemosensitisers to circumvent resistance in humans (Skovsgaard et al, 1984; Ozols et al, 1987; Miller et al, 1988; Dalton et al, 1989; Gottesman and Pastan, 1989). The chemosensitisers can be grouped into various broad categories.

Calcium channel blockers, such as verapamil, have been studied for their effects on reversing mdr. Tsuruo et al (1981) showed that 2.2 - 6.6 µM verapamil reversed the ~30 fold resistance to vincristine and seven fold resistance to vinblastine displayed by P388/VCR, a mdr murine leukemia cell line. Verapamil did not alter vincristine binding to tubulin, the cytotoxic target of vinca alkaloids (Owellen et al, 1974) but altered drug accumulation (Tsuruo et al, 1981). In certain studies, verapamil was found to be more
effective in reversing resistance to the selecting agents than the cross-
DNA alkaline elution to determine the number of DNA strand breaks in
sensitive and resistant cell lines alter exposure to doxorubicin. He found a
decrease in the number of lesions in mdr cells which was elevated in the
presence of verapamil. Since anthracycline cytotoxicity is through
topoisomerase II-mediated DNA strand breaks (Ross et al, 1978) verapamil
is believed to inhibit P-gp transport of doxorubicin, leading to increased
intracellular doxorubicin concentrations and increased cellular toxicity. From
studies using photoactivated verapamil analogues, it has been shown that
verapamil inhibits the binding of many chemotherapeutic drugs and other
chemosensitisers to P-gp (Safa et al, 1987). Although verapamil is an
effective P-gp antagonist, it has toxic cardiovascular effects in humans at
concentrations needed for such antagonism (Candell et al, 1979). Other less
toxic compounds have therefore been examined. Structurally dissimilar
calcium channel blockers, such as nicardipine, have been shown to be
potent antagonists of mdr (Tsuruo et al, 1983).

Another group of anti-mdr agents are drugs which inhibit calmodulin-
mediated processes. Tsuruo et al (1982) studied several drugs known to
alter calcium homeostasis. Trifluoperazine, for example, was found to cause
a 5-10 fold increase in vincristine and doxorubicin sensitivity in 20-40 fold
resistant P388/VCR and P388/Adr cells respectively. Several studies have
shown that CaM antagonists such as trifluoperazine modulate cell sensitivity
to bleomycin through increased DNA damage and inhibition of repair
(Chafouleas et al, 1984; Lazo et al, 1985). Skovsgaard (1980) tested the
hypothesis that the drug transport pump would be competitively inhibited by
an excess of a non-toxic analog of a chemotherapeutic drug. He examined
the anthracycline analog N-acetyl-daunorubicin which lacks the ability to
intercalate with DNA, is less cytotoxic than daunorubicin and can achieve
higher cytoplasmic concentrations (Zunino et al, 1972). The compound was
found to inhibit active daunomycin transport from mdr but not sensitive cells.

Steroids and hormonal analogues have also been examined for their
effects on mdr reversal. Yang et al (1989) found that progesterone and
deoxycorticosterone caused an increase in vinblastine accumulation and
some reversal of vinblastine resistance in mdr murine macrophages. Progesterone was the most potent steroid for inhibiting labelling of endometrial P-gp, suggesting that it may be a natural substrate for P-gp. The anti-oestrogens, for example tamoxifen, can partially overcome resistance in P388/Dox cells independent of their effect on oestrogen receptors (Foster et al, 1988).

Many compounds which circumvent mdr fall into a large group of compounds which share a broad structural similarity. They are amphipathic and lipophilic and have a heterocyclic ring separated from a cationic, amino group. These include quinidine (Tsuruo et al, 1984), the antibiotic erythromycin (Hofsli and Nissen-Meyer, 1989) and the anti-malarial quinacrine (Inaba and Maruyama, 1988).

Cyclosporins, as well as being immunosuppressants, have sensitising activity in mdr cells (Twentyman, 1988). However, cyclosporin A (CsA) has been shown to potentiate drug action in vitro and in vivo in both tumour and normal cells (Twentyman, 1988).

Cationic, amphipathic drugs, including most chemosensitisers, interact with polar lipids such as phosphatidylserine in the plasma membrane (Lullmann and Wehling, 1979). It has been suggested that membrane differences may alter drug accumulation in mdr cell lines. Chemosensitisers may perturb the mdr cell membrane fluidity and change cellular accumulation. Investigators have found increased membrane fluidity in mdr cells (Bhushan et al, 1989; Ramu et al, 1983). Evidence indicates that altered calcium physiology is not involved in mdr. Lee et al (1988) demonstrated that both drug sensitive and mdr cells lack voltage-gated calcium channels, unlike excitable tissues. Treatment of mdr cells to reduce or increase calcium levels had no influence on doxorubicin accumulation or cytotoxicity in mdr cells (Huet and Robert, 1988). The role of CaM in mdr is unknown. CaM regulates a variety of critical cellular functions including activation of plasma membrane calcium ATPase to stimulate protein kinases and phosphatases (Schulman and Greengard, 1978). Whether CaM-mediated phosphorylation may activate or regulate P-gp function in mdr is not known. Some evidence exists for the regulatory role of the calcium-dependent protein kinase C (PKC) in mdr. PKC has been found to enhance
cellular secretion in many tissues (Katakami et al, 1984). Weiss et al (1982) found that anthracyclines inhibit PKC and Fine et al (1988) showed that PKC activity was increased in MCF-7 mdr cells. Treatment of sensitive human KB cells with a phorbol ester activator of PKC caused a two-fold protection against the cytotoxicity of VP16, vincristine and mitoxantrone which could not be reversed with verapamil (Ferguson and Cheng, 1987). However, results of additional studies have been conflicting. Hait and DeRosa (1990) were unable to show significant changes in doxorubicin accumulation in HL-60 cells with low, normal or overexpressed activity of PKC. Specific inhibitors of PKC and cell lines resistant to these inhibitors will allow the hypothesis to be more rigourously tested.

Phorbol esters have been reported to increase P-gp phosphorylation (Hamada et al, 1987) which indicates that PKC may modulate the function of P-gp. However, insufficient data is available at present to draw any firm conclusions regarding the regulatory or modulatory role of PKC in P-gp associated mdr. The strongest body of evidence available is that body which suggests that chemosensitisers directly affect the function of P-gp. Cornwell et al (1986b) reported the irreversible binding of the photoactive analogs of vinblastine ([3H] NABV and [125I] NASV) to mdr membranes. P-gp was specifically photoaffinity labelled in mdr cell lines. Verapamil has been found to inhibit [125I] NASV labelling of P-gp from KB-V1 cells (Cornwell et al, 1987). Chemosensitisers may compete for a common drug-binding site, for overlapping sites or for sites that cause allosteric changes which prevent the binding of other drugs. They may also inhibit P-gp by interacting with sites such as the ATPase or phosphorylation domains or act by altering the membrane environment to cause functional changes in P-gp.

Aims

The aim of this chapter was to determine whether P-gp functions as an efflux pump for xenobiotic substances and in particular carcinogens. It was proposed that P-gp may function as such in normal tissues. To test this hypothesis, the mdr cell line CH^R5 and it’s drug sensitive counterpart
AuxB1 were used, which provided a model for P-gp expression and non-expression, respectively. The MTT assay system was employed to determine the extent to which carcinogens can reverse the mdr phenotype in CHRCC5 cells when used at non-toxic levels. Inhibition of drug binding to the CHRCC5 cells was measured to determine whether carcinogens act as substrates for the P-gp transport pump or whether these compounds must first be metabolised by the P450 drug metabolising system.

4.2 RESISTANCE PROFILES OF MULTIDRUG RESISTANT CELLS USING THE MTT ASSAY

Carmichael \textit{et al} (1987a) reported the use of the MTT assay in screening cell lines for drug sensitivity. Good correlation was observed using the CHO-AuxB1 cell line and the pleiotropic drug-resistant mutant CHRCC5 with similar degrees of relative resistance observed with both the MTT and clonogenic assays.

The MTT assay is dependent on the cellular reduction of 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl) tetrazolium bromide (MTT) by the mitochondrial dehydrogenase of viable cells to a blue formazan product which can be determined spectrophotometrically (Mosmann, 1985). The procedure for the assay is described in Section 2.12.1.

(a) DETERMINING THE RELATIONSHIP BETWEEN CELL NUMBER AND MTT FORMAZAN CRYSTAL FORMATION (I.E. ABSORBANCE)

In order to determine the relationship between cell number and absorbance, increasing numbers of both CHRCC5 and AuxB1 cells, ranging from 100 to 200,000 cells per well, were plated. MTT was added after four days and the plates incubated for a further four hours. A time period of four days was chosen since this incubation time allowed sufficient time for cell death to occur, but was short enough to obviate the need to re-feed the cells. The growth curves for both the AuxB1 and CHRCC5 cell lines are shown in
FIGURE 4.1
GROWTH CURVE OF AUXB1 AND CHRC5 CELLS
Each individual point represents the mean of 3 experiments (6 wells were read in each experiment).

(a) AuxB1 cells

(b) CHRC5 cells

Plates were set up with 100-200,000 AuxB or CHRC5 cells per well (6 wells per cell density) in a volume of 200 μl. The cells were grown for a total time of 5 days followed by the addition of MTT (50 μl of 2 mg/ml) and incubated for 4 hours until the crystals formed, the colour developed and plates read.
Figure 4.1. The relationship between cell number and absorbance was found to be linear between 100 to 5000 cells per well for CHRC5. However, at a seeding density of 5000 cells per well, the AuxB1 cells had reached confluency before the end of the assay period and the absorbance had almost reached a plateau. The absorbance values for CHRC5 are lower than AuxB1 for each time point, which is a reflection of the difference in doubling time for each cell line; reported to be 13-15h for AuxB1 and 22h for CHRC5 (Carmichael \textit{et al}, 1987). In order to ensure that both cell lines were growing exponentially after 5 days in culture, all subsequent experiments employed a seeding density of 2500 cells per well for both CHRC5 and AuxB1.

(b) ASSESSMENT OF DRUG RESISTANCE IN THE CHRC5 CELL LINE COMPARED TO THE DRUG SENSITIVE AUXB1 CELL LINE

Chemosensitivity was assessed by continuous exposure of the cell lines to colchicine and doxorubicin. CHRC5 was made resistant to colchicine and has been shown to exhibit a cross-resistance pattern to several other drugs including adriamycin (Ling \textit{et al}, 1983).

Equal numbers of AuxB1 and CHRC5 cells (2500 cells per well) were plated into each well in 180\textmu l of culture medium to which 20\textmu l of 10 x concentrated drug or serum free medium was added 24h later. Following incubation for 4 days, MTT solution (50\textmu l of 2mg/ml) was added to each well and incubation continued for a further four hours. Following this incubation, DMSO (50\textmu l) was added to each well to dissolve the formazan crystals which had formed. Absorbance values were read at 540nm. The results obtained with the two cell lines following colchicine and doxorubicin exposure are shown in Figures 4.2 and 4.3 and summarised in Table 4.1. These results show that CHRC5 is more resistant to colchicine and doxorubicin than the wild type AuxB1 sensitive cell line as expected. Colchicine is a drug which causes cytostatic effects on the cell lines which accounts for the lack of cell kill at high concentrations in both cell lines.
FIGURE 4.2
TOXICITY OF COLCHICINE TOWARDS CHRC5 AND AUXB1 CELLS

(a) Toxicity towards AuxB1 cells

(b) Toxicity towards CHRC5 cells

Plates were set up with 2500 CHRC5 or AuxB1 cells per well in a volume of 180 μl. The cells were allowed to adhere overnight and then 20 μl of 10 x stock colchicine in serum-free medium was added to give final concentrations in the range 0-100 μM. The plates were then incubated for 4 more days followed by the addition of MTT (50 μl of 2 mg/ml) and colour developed as described previously. Each individual point represents the mean of 3 experiments (6 wells were read in each experiment).
FIGURE 4.3
TOXICITY OF DOXORUBICIN TOWARDS CHRC5 AND AUXB1 CELLS

(a) Toxicity towards AuxB1 cells
Each individual point represents the mean of 3 experiments (6 wells were read in each experiment).

(b) Toxicity towards CHRC5 cells

Plates were set up with 2500 AuxB1 or CHRC5 cells per well in a volume of 180 μl. The cells were allowed to adhere overnight and then 20 μl of 10 x stock of doxorubicin in serum-free medium was added to give final concentrations in the range 0-50 μM. The plates were then incubated for 4 days followed by the addition of MTT (50 μl of 2 mg/ml) and colour developed as described previously.
doxorubicin, rapid changes in cell viability were observed even at high concentrations of the compound.

These results established that the cell lines demonstrated differential sensitivity to chemotherapeutic compounds and are suitable for use in the MTT assay.

TABLE 4.1
TOXICITY OF DOXORUBICIN AND COLCHICINE TOWARDS CHRC5 AND AUXB1 CELLS

<table>
<thead>
<tr>
<th>DRUG</th>
<th>CHRC5</th>
<th>AUXB1</th>
<th>FOLD RESISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doxorubicin</td>
<td>2 μM</td>
<td>0.015 μM</td>
<td>133</td>
</tr>
<tr>
<td>Colchicine</td>
<td>15 μM</td>
<td>0.8 μM</td>
<td>21</td>
</tr>
</tbody>
</table>

4.3 REVERSAL OF RESISTANCE WITH VERAPAMIL

As discussed in the introduction to this chapter, verapamil can reverse the mdr phenotype in various cell lines. Eliason *et al* (1990) used the MTT assay to quantitate the modification by verapamil on P-gp in the mdr cell line KB5-5 and the parental line KB-3-1. Since L-(−)-verapamil was shown to be approximately four times more active the d-(+)-verapamil in modifying mdr (Eliason *et al*, 1990), L-(−)-verapamil was used in this study.

In order to assess the cytotoxicity of verapamil itself, several concentrations of the compound, ranging from 60 to 0.6 μM, were tested on both resistant and sensitive cell lines. Both cell lines gave the same results. No difference in sensitivity to verapamil was observed throughout the range of verapamil concentrations used. The experiment was repeated, but incorporating 10^{-7}M colchicine. CHRC5 cells were normally resistant to such a concentration of colchicine (Figure 4.2). The result is depicted in
FIGURE 4.4
REVERSAL OF RESISTANCE TO COLCHICINE IN CHRC5 CELLS
BY VERAPAMIL

Each individual point represents the mean of 3 experiments (6 wells were read in each experiment).

Plates were set up with 2500 CHRC5 cells per well in a volume of 160 µl. The cells were allowed to adhere overnight and then 20 µl of 10 x stock colchicine in serum-free medium was added to give a final, non-toxic concentration of 0.1 µM. Verapamil (20 µl of 10 x) was also added to give final concentrations in the range 0-60 µM. The plates were then incubated for a further 4 days followed by the addition of MTT (50 µl of 2 mg/ml) and colour developed as described previously.

Figure 4.4. It was shown using this experiment that the calcium channel blocker verapamil can reverse the mdr phenotype in CHRC5 cells, which are normally resistant to colchicine. Since reversal was demonstrated using verapamil, a similar experiment was used with carcinogens to assess their ability to reverse the mdr phenotype and act as substrates for P-gp.
4.4 CYTOTOXICITY OF CARCINOGENS ON DRUG RESISTANT CHRC5 AND DRUG SENSITIVE AUXB1 CELLS

In order to ensure that the four carcinogens used in this study were not cytotoxic over the range of concentrations chosen for assessing their potential to compete for P-gp, the MTT assay was used to test their cytotoxicity. In each case, the control used was the solvent treatment alone i.e. serum free medium (20 μl) or DMSO (20 μl). Since DMSO was used as the solvent for some of the compounds, it was assessed for cytotoxicity towards CHRC5 and AuxB1 cells in order to ensure that it did not interfere with the assay in any way. The toxicity of DMSO towards CHRC5 and AuxB1 cells is shown in Figure 4.5. 0.25% DMSO was considered to be nontoxic to either cell line being used and this value was considered to be highest concentration of DMSO to which the cells could be exposed without altering the results of the assay. Compounds dissolved in DMSO were therefore diluted in serum-free medium to achieve such dilutions of DMSO before being added to the assay. The results are shown in Figures 4.6-4.8 and summarised in Table 4.2.

(a) 2-acetvlaminofluorene: 2-AAF was slightly less cytotoxic to the CHRC5 cell line than the parental, drug sensitive AuxB1 cell line (Figure 4.6) with 50% reduction in the control O.D. at ~140 μM for CHRC5 and ~125 μM for AuxB1 cells (Figure 4.6).

(b) Benzo(a)pyrene: B(a)p was cytotoxic to both cell lines and caused 50% reduction in O.D. at a concentration of ~100 μM for CHRC5 and 140 μM for AuxB1 (Figure 4.7).

(c) Aflatoxin B₁: AFB₁ was slightly cytotoxic to CHRC5 cells and AuxB1 cells. The IC₅₀ value for the CHRC5 cell line was ~60 μM and 50 μM for the AuxB1 cell line (Figure 4.8).
FIGURE 4.5
TOXICITY OF DIMETHYLSULPHOXIDE TOWARDS CHRC5 AND AUXB1 CELLS

Plates were set up with 2500 AuxB1 and CHRC5 cells in a final volume of 180 µl. The cells were allowed to adhere overnight and then 20 µl of 10 x stock of DMSO in serum-free medium was added to give the final concentrations in the range 0-10%. The plates were then incubated for a further 4 days followed by the addition of MTT (50 µl of 2 mg/ml) and colour developed.

Each individual point represents the mean of 3 experiments (6 wells were read in each experiment).
FIGURE 4.6
TOXICITY OF 2-ACETYLAMINOFLUORENE TOWARDS CHRC5 AND AUXB1 CELLS

(a) Toxicity towards AuxB1 cells

(b) Toxicity towards CHRC5 cells

Plates were set up with 2500 AuxB1 or CHRC5 cells per well in a volume of 180 \(\mu \)l. The cells were allowed to adhere overnight and then 20 \(\mu \)l of 10 x stock 2-AAF in DMSO was added to give final concentrations in the range 0-1.1 mM. The plates were then incubated for 4 days followed by the addition of MTT (50 \(\mu \)l of 2 mg/ml) and colour developed as described previously.

Each individual point represents the mean of 3 experiments (6 wells were read in each experiment).
FIGURE 4.7
TOXICITY OF BENZO(A)PYRENE TOWARDS CHRC5 AND AUXB1 CELLS

(a) Toxicity towards AuxB1 cells

(b) Toxicity towards CHRC5 cells

Plates were set up with 2500 AuxB1 or CHRC5 cells per well in a volume of 180 µl. The cells were allowed to adhere overnight and then 20 µl of 10 x stock of B(a)p dissolved in DMSO added to give final concentrations in the range 0-40 mM. The plates were incubated for a further 4 days and then MTT (50 µl of 2 mg/ml) was added and the colour developed.

Each individual point represents the mean of 3 experiments (6 wells were read in each experiment).
FIGURE 4.8
TOXICITY OF AFLATOXIN B₁ TOWARDS CHRC5 AND AUXB1 CELLS

(a) Toxicity towards AuxB1 cells

(b) Toxicity towards CHRC5 cells

Plates were set up with 2500 AuxB1 or CHRC5 cells per well in a volume of 180 μl. The cells were allowed to adhere overnight and then 20 μl of 10 x stock AFB₁ in DMSO added to give final concentrations in the range 0-25 mM. The plates were incubated for a further 4 days and MTT (50 μl of 2 mg/ml) added and the colour developed as described previously.

Each individual point represents the mean of 3 experiments (6 wells were read in each experiment).
TABLE 4.2
TOXICITY OF CARCINOGENS TOWARD CH^R_C5 AND AUXB1 CELLS

<table>
<thead>
<tr>
<th>CARCINOGEN</th>
<th>CH^R_C5</th>
<th>AUXB1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Acetylaminofluorene</td>
<td>140 µM</td>
<td>125 µM</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>99 µM</td>
<td>141 µM</td>
</tr>
<tr>
<td>Aflatoxin B_1</td>
<td>63 µM</td>
<td>50 µM</td>
</tr>
</tbody>
</table>

4.5 EFFECT OF CARCINOGENS ON THE RESISTANCE PROFILE OF CH^R_C5 CELLS

(a) EFFECT OF 2-ACETYLAMINOFLUORENE ON COLCHICINE TOXICITY TOWARDS CH^R_C5 AND AUXB1 CELLS

CH^R_C5 and AuxB1 cells were plated at 2500 cells per well in 160µl of medium and allowed to adhere overnight. 2-AAF (20µl) was then added to 48 wells of the 96-well assay plate to a final non-toxic concentration of 17.5 µM. Serum-free medium was added to the remaining wells. Colchicine (20 µl) was then added to all 96 wells of the plate in a concentration range from 0-0.1 mM. The final volume was therefore 200 µl. Triplicate plates were assayed for each cell line.

Figure 4.9 shows the results of the study. Co-incubation of the CH^R_C5 and AuxB1 cells with 2-AAF did not alter the cytotoxicity of colchicine toward the cells. As expected, colchicine was less toxic to the drug resistant cell line than the drug sensitive one. However, the presence of a non-toxic dose of the carcinogen 2-AAF did not alter the result. This indicates that 2-AAF does not compete for the plasma membrane protein, P-pg, of the drug resistant
CHRC5 cell line, at the concentration at which the carcinogen was tested.

(b) EFFECT OF BENZO(A)PYRENE ON COLCHICINE TOXICITY TOWARD CHRC5 AND AUXB1 CELLS

An experiment, such as described in Section 4.5.(a), was performed using benzo(a)pyrene (B(a)p), at a non-toxic dose in the presence of a range of cytotoxic colchicine concentrations. As before, both CHRC5 and AuxB1 cells were assessed to re-affirm the difference in cytotoxicity to colchicine between the two cell lines and the functionality of the P-gp pump.

Figure 4.10 shows the results of the experiment. As with 2-AAF, B(a)p did not alter the cytotoxicity of colchicine towards the cells. As expected, CHrC5 displayed greater resistance to colchicine than AuxB1 cells. B(a)p does not appear to compete for the binding of colchicine to the P-gp pump at the non-toxic concentrations at which it was used.

(c) EFFECT OF AFLATOXIN B1 ON COLCHICINE CYTOTOXICITY TOWARD CHRC5 AND AUXB1 CELLS

An experiment, such as described in Section 4.5.(a), was conducted using AFB1 at a non-toxic dose in the presence of colchicine at a variety of cytotoxic concentrations. Both CHRC5 and AuxB1 cells were assessed under these conditions.

Figure 4.11 shows the results of the experiment. AFB1 failed to alter the cytotoxicity caused by colchicine toward the CHRC5 cell line and hence does not appear to compete for the binding of P-gp. Table 4.3 summarises the results of Section 4.5.
FIGURE 4.9 EFFECT OF TREATMENT WITH A NON-TOXIC DOSE OF 2-ACETYLAMINOFLUORENE ON THE CYTOTOXICITY OF COLCHICINE TOWARDS CHRC5 AND AUX B1 CELLS

(a) Toxicity towards AuxB1 cells

(b) Toxicity towards CHRC5 cells

Plates were set up with 2500 AuxB1 or CHRC5 cells per well in a volume of 160 μl. Cells adhered overnight and 20μl of 10 x stock colchicine added to give final concentrations in the range 0 - 0.1 mM. 2-AAF (20 μl) was added to half the wells to give a final non-toxic concentration of 17.5 μM. Serum free medium was added to the remaining wells. Plates were incubated for 4 days, MTT added and the colour developed and read.

Each individual point represents the mean of 3 experiments (6 wells were read in each experiment).
FIGURE 4.10 EFFECT OF TREATMENT WITH A NON-TOXIC DOSE OF B(a)P ON THE CYTOTOXICITY OF COLCHICINE TOWARDS CHRC5 AND AUXB1 CELLS

(a) Toxicity towards AuxB1 cells

Each individual point represents the mean of 3 experiments (6 wells were read in each experiment).

(b) Toxicity towards CHRC5 cells

Plates were set up with 2500 AuxB1 or CHRC5 cells per well in a volume of 160 μl. Cells adhered overnight and then 20 μl of 10 x stock colchicine was added to give final concentrations in the range 0-0.1 mM. B(a)P (20 μl) in DMSO was added to half the wells of the plate give a final, non-toxic concentration of ~4 μM. Serum free medium (20μl) was added to the remaining wells. Plates were incubated MTT added and colour read.
FIGURE 4.11 EFFECT OF TREATMENT WITH A NON-TOXIC DOSE OF AFLATOXIN B₁ ON THE CYTOTOXICITY OF COLCHICINE TOWARDS CHRC5 AND AUXB1 CELLS

(a) Toxicity towards AuxB1 cells
Each individual point represents the mean of 3 experiments (6 wells were read in each experiment).

(b) Toxicity towards CHRC5 cells

Plates were set up with 2500 AuxB1 or CHRC5 cells per well in a volume of 160 µl. The cells were allowed to adhere overnight and then 20 µl of 10 x stock of colchicine was added to give final concentrations in the range from 0-0.1 µM. AFB1 (20 µl) was also added to half the wells to a final, non-toxic concentration of 10 µM. Serum free media was added to the remaining wells. Plates were incubated for a further 4 days, MTT added and the colour read.
TABLE 4.3
TOXICITY OF COLCHICINE TOWARDS CHRC5 AND AUXB1 CELLS IN THE PRESENCE OR ABSENCE OF CARCINOGENS

<table>
<thead>
<tr>
<th>CARCINOGEN</th>
<th>CHRC5(+</th>
<th>CHRC5(-)</th>
<th>AUXB1(+)</th>
<th>AUXB1(-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-AAF</td>
<td>30</td>
<td>30</td>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>B(a)P</td>
<td>50</td>
<td>20</td>
<td>0.85</td>
<td>0.9</td>
</tr>
<tr>
<td>AFB1</td>
<td>35</td>
<td>35</td>
<td>3.5</td>
<td>3.5</td>
</tr>
</tbody>
</table>

(+): plus carcinogen
(-): minus carcinogen

4.6 SUMMARY OF RESULTS AND DISCUSSION

In this section of the project, the MTT assay was characterised and used to assess the toxicity of chemotherapeutic agents and carcinogens on the CHRC5 and AuxB1 cell line. The mdr-reversing agent verapamil was also used in the assay to determine the reversibility of the mdr phenotype in CHRC5 cells. The assay was relatively quick and simple to perform compared to other clonogenic and dye exclusion techniques. Several compounds were assayed and their relative toxicity evaluated as IC50 values. However, the assay does not distinguish between cytostatic and cytotoxic effects.

Experiments conducted in the absence of drug were designed to determine whether the cell number chosen for the assay meant that the cells were still in logarithmic growth at the end point of the assay. The O.D. obtained at the end of the assay also had to be high enough to give reproducible measurements of cytotoxicity.

The carcinogens tested caused little toxicity to either of the cell lines. It was aimed to establish whether carcinogens can act as substrates for P-gp
in CHRC5 cells and as such compete for the binding site on the protein and increase the cytotoxicity of the drug to which the cell line was made resistant. From the experiments conducted, it was found that this was not the case. The cytotoxic chemotherapeutic agents colchicine and doxorubicin did show differential toxicity toward AuxB1 and CHRC5 cells, with the drug sensitive line AuxB1 being much more sensitive to the effects of the drugs. Verapamil reversed the mdr phenotype of the CHRC5 cell line to some extent and thus demonstrated that known chemosensitising agents can be shown to cause such an effect using the MTT assay. Ford et al (1990) also reported a very small (4-fold) change in the resistance (400 fold) of MCF-7 AdrR cells to colchicine using verapamil. A 13-fold reversal of doxorubicin resistance (200-fold) and 33-fold reversal of vinblastine resistance (100-fold) in the same cell line was demonstrated. Fojo et al (1985) demonstrated that 20 μM verapamil completely reversed the 20- to 70-fold cross-resistance to doxorubicin, vinblastine and vincristine in colchicine selected KB human carcinoma cells but caused only a 60-fold reduction in the 220-fold resistance to colchicine.

The most likely reason for the lack of cytotoxicity of the carcinogens used in this study is the requirement for metabolic activation of drugs and carcinogens, by specific P450s, to cause toxicity. Such activation often results in the formation of highly reactive intermediates such as epoxides (Jollow and Smith, 1977). Various compounds undergo P450-dependent metabolic activation including the aromatic amine 2-AAF (McManus et al, 1984) and acetaminophen (Potter et al, 1973). The structures of the compounds used in this study are shown in Figure 4.1.2.

In the present study, the ovarian cell line employed is not known to express P450 enzymes and would not be capable therefore of metabolising the carcinogens examined to more toxic compounds.

Several reasons can be postulated for the lack of competition for P-gp between colchicine and the test carcinogens, apart from the explanations that P-gp may not function as an efflux pump for carcinogens and other xenobiotics or that the concentration of carcinogen employed in each case was insufficient to demonstrate a difference in toxicity levels.
FIGURE 4.12
STRUCTURE OF THREE COMPOUNDS WHICH UNDERGO P450-MEDIATED METABOLIC ACTIVATION

(a) 2-acetylaminofluorene
(b) benzo(a)pyrene
(c) aflatoxin B₁

(a) \[\text{N-2-Fluorenylacetamide} \]
\[(2\text{-Acetylaminofluorene}) \]

(b) Benzol[a]pyrene

(c) Aflatoxin B₁
Firstly, the carcinogens may have to be metabolically activated before acting as substrates for P-gp. To examine such a possibility would involve employing a drug resistant cell line known to express P450 enzymes capable of metabolising the carcinogen of interest. Such a cell line would probably be a hepatoma since liver tissue is known to express P450s at high levels in vivo. Alternatively an mdr cell line transfected in order to express P450 enzymes could be employed to metabolise the carcinogen of interest. The metabolites of the carcinogens could also be used directly in the assay to overcome the problem.

Secondly, colchicine may be a greatly preferred substrate for P-gp and would not allow the binding of other weaker substrates. By using several other chemotherapeutic drugs such as colcemid or vincristine this hypothesis could be tested.

Thirdly, the assay may lack the sensitivity required to detect small changes in the binding of colchicine to the P-gp transport pump. To improve the sensitivity of detection, azidopine photoaffinity labelling of P-gp could be utilised. The arylaside, 1,4 dihydropyridine, azidopine, is a calcium channel antagonist which photolabels calcium channels (Glossmann et al, 1987). \[^3H\] azidopine can specifically photolabel P-gp. It has been demonstrated that binding is influenced by other calcium antagonists and drugs used to select resistant cells, for example vinblastine, colchicine and taxol (Yang et al, 1988). Such a system may demonstrate that carcinogens compete for P-gp labelling.

Since the study conducted does not conclusively prove the role of P-gp in xenobiotic efflux, further analysis will need to be undertaken to answer this question. Such a study would merit further consideration since the physiological role for P-gp in normal tissues remains unknown. By using the natural substrates for the P-gp pump, its activity in tumour cells could be manipulated to increase the response of refractory tumours to chemotherapy.
CHAPTER 5

EXOGENOUS REGULATION OF MDR GENES IN RAT AND MOUSE

5.1 INTRODUCTION

The hypothesis that exposure to chemical carcinogens led to the development of a cell population resistant to the cytotoxic effects of those carcinogens was first proposed by Haddow (1938) more than 50 years ago. Haddow showed that although polycyclic aromatic hydrocarbon (PAH) carcinogens were toxic and inhibited growth in vivo, the tumours induced by exposure to them were resistant to these effects (Haddow and Robinson, 1937). The inhibition of normal cell growth and stimulation of tumour cell growth has been reviewed (Vasilier and Guelstein, 1963; Melzer, 1980). Novicki et al (1985) noted that one acute effect of many hepatocarcinogens is inhibition of hepatocyte proliferation. Chronic administration results in altered hepatocytes which continue to grow despite the presence of the carcinogen.

Carcinogen-induced resistance to toxicity has been most extensively studied in rodent liver. The classical Solt-Farber model of chemical carcinogenesis in rat liver (Solt and Farber, 1976) involves treatment of rats with an initiating agent, for example diethylnitrosamine (DEN), followed by administration of 2-acetylaminofluorene (2-AAF) and partial hepatectomy. Hyperplastic nodules (preneoplastic lesions) may be isolated six to eight weeks after initiation with DEN, whereas neoplastic nodules (neoplastic lesions) representing primary hepatocellular carcinomas may be isolated six to eight months after initiation. Cells derived from the nodules appear cross-resistant to a wide variety of toxins (Carr, 1987).

Hepatocellular carcinoma (HCC) is a very common cancer and has a high rate of frequency in South East Asia and sub-Saharan Africa (Hutt, 1981). The resistance of HCC to ionizing radiation and chemotherapeutic agents has been studied (Falkson, 1975) and appears to have some
common similarities with the resistance of carcinogen altered rat hepatocytes to cytotoxicity, as discussed below.

Carr and Laishes (1981) showed that hepatocytes from rats treated with the hepatocarcinogen 2-AAF in vivo were resistant in vitro to the cytocidal effects of many compounds, including chemotherapeutic agents such as adriamycin, compared to normal hepatocytes.

Batist et al (1986) isolated a doxorubicin resistant human breast cancer cell line (DoxR MCF7) that had developed the phenotype of mdr, and also displayed an increase in an anionic GST isozyme with high peroxidase activity. The induction of a similar anionic GST is also noted in rat hyperplastic liver nodules (Kitahara et al, 1984). Rat hyperplastic nodules (HNs) also contain lower levels of cytochrome P450 dependent enzymes, including aryl hydrocarbon hydroxylase (AHHase), aminopyrene N-demethylase and NADPH cytochrome c reductase relative to normal hepatocytes (Astrom, 1983; Cameron et al, 1976). DoxR MCF7 cells also displayed a marked decrease in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCCD)-induced AHHase activity and CYP1 gene transcription. Since AHHase is involved in the intracellular metabolism of the carcinogen benzo(a)pyrene, this change alters the sensitivity of the DoxR cells to the cytotoxic effects of this carcinogen (Cowan et al, 1986).

Thorgerirsson et al (1987) measured the expression of the mdr gene in normal rat liver cells, preneoplastic and neoplastic nodules and regenerating liver, since all these altered tissues had been shown to be resistant to a broad range of carcinogens. Levels of mdr mRNA were increased in both preneoplastic and neoplastic lesions. Expression of mdr was also dramatically increased 24-72 hours after partial hepatectomy in regenerating rat liver. This suggests that the expression of the mdr gene is regulated in liver and represents a component of the hepatic response to toxic insults.

More recently, Marino et al (1990) reported a study to determine whether the increased levels of mdr mRNA observed in regenerating rat liver was due to an increased rate of transcription or a post-translational event. Nuclear run-on assays were performed on nuclei from regenerating rat liver,
isolated 4 -72 h, after partial hepatectomy. Northern blot analysis showed that a greater than 20-fold increase in mdr mRNA levels had occurred but no increase was found in mdr gene transcription rates. This suggests that the observed increase in mdr mRNA levels may be due to a post-transcriptional event, for example message stabilisation.

It is unlikely that an increased expression of the mdr gene can totally explain the resistance to chemical carcinogens in early initiated cells since many of these carcinogens are compounds not usually effected by the mdr phenotype. These compounds do not appear to be transported by P-glycoprotein, for example mdr cells with high levels of P-gp are not more resistant to 2-AAF than their drug resistant counterpart (see chapter 4). Also if increased mdr following partial hepatectomy made liver cells resistant to 2-AAF then the Solt-Farber protocol would not result in liver nodules. Therefore other factors such as over-expression of GST may be contributing significantly to the development of the resistant phenotype, as suggested by Cowan et al (1986).

In this chapter, the effects of xenobiotics on mdr genes in mouse liver will be investigated. All three mouse mdr genes are expressed in the liver (Croop et al, 1989) but the changes in the expression levels of these particular genes following toxic insult have not been studied. The use of gene specific cDNA probes has allowed such a study of mouse mdr gene expression.

Burt and Thorgeirsson (1988) speculated that as a detoxification transport system, mdr 1 might be coordinately regulated in the liver, and other tissues, with such enzymes as UDP-glucuronyltransferase and cytochrome P450 isoforms. They demonstrated that treatment of rats in vivo with certain chemical carcinogens namely 2-AAF, isosafrole, phenothiazine and TCCD increases mRNA levels for mdr 1 and the CYP1 family.

Therefore, interaction of these compounds within the cell may generate an intracellular signal which results in alterations in RNA levels for several different detoxification systems.
AIMS

The aims of this part of the study were to investigate the acute effects of a range of xenobiotic compounds, including both P450 and GST enzyme inducers, on hepatic mdr levels in both rat and mouse. The expression of mdr genes compared to P450 and GST genes were compared to determine whether or not similar regulatory mechanisms are operating following exposure to xenobiotics. Since the induction of gene expression is different in the rat and mouse, both rodent groups were examined.

In rats both mRNA and protein levels were studied, whereas in mice only mRNA levels were measured. Western blotting on mouse liver tissue resulted in cross-reactivity between a 60 kd protein and the C219 monoclonal antibody. Northern blotting was conducted using gene-specific cDNA probes in mouse but using a non-specific human cDNA clone in the rat. Therefore the expression of specific rat genes could not be determined.

5.2 XENOBIOTIC REGULATION OF MDR GENES IN RAT

5.2.1 TREATMENT OF WISTAR AND FISCHER RATS

Adult (~250g) male Wistar rats (2 per group) and Fischer 344 rats (4 per group) were treated with various xenobiotics.

The protocol for treating the Wistar rats is shown in Table 5.1. Figure 5.1 shows the structures of these compounds. The Fischer rats were treated with 3-MC and AFB$_1$ as for the Wistar rats except that two of the 3-MC treated rats were also treated for an extra day and then sacrificed 24 hours later. Two Fischer rats were dosed with 20 mg/kg of 2-AAF for 3 days and two rats for 4 days and then sacrificed 24 hours later respectively. The appropriate controls were included for all rat treatments. Both corn-oil and PBS were used to dissolve the compounds and therefore both corn-oil and PBS controls were done.

Most compounds were administered intraperitoneally. The exceptions were ethanol which was given in the drinking water, carbon tetrachloride, which was given sub-cutaneously, and 2-AAF which was administered
TABLE 5.1
COMPOUNDS USED TO TREAT WISTAR RATS AND INDUCTION PROTOCOL

<table>
<thead>
<tr>
<th>TREATMENT</th>
<th>ROUTE*</th>
<th>DOSE</th>
<th>DAYS</th>
<th>VECTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>P450 inducer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corn oil/PBS</td>
<td>ip</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>ip</td>
<td>100 mg/kg</td>
<td>3</td>
<td>corn oil</td>
</tr>
<tr>
<td>Aroclor 1254</td>
<td>ip</td>
<td>500 mg/kg</td>
<td>1</td>
<td>corn oil</td>
</tr>
<tr>
<td>Ethanol</td>
<td>drinking</td>
<td>1%</td>
<td>10</td>
<td>corn oil</td>
</tr>
<tr>
<td>3-methylcholanthrene</td>
<td>ip</td>
<td>100 mg/kg</td>
<td>3</td>
<td>corn oil</td>
</tr>
<tr>
<td>Clofibric acid</td>
<td>ip</td>
<td>200 mg/kg</td>
<td>4</td>
<td>corn oil</td>
</tr>
<tr>
<td>α-Napthaflavone</td>
<td>ip</td>
<td>80 mg/kg</td>
<td>3</td>
<td>corn oil</td>
</tr>
<tr>
<td>β-Napthaflavone</td>
<td>ip</td>
<td>80 mg/kg</td>
<td>3</td>
<td>corn oil</td>
</tr>
<tr>
<td>Pyrazole</td>
<td>ip</td>
<td>200 mg/kg</td>
<td>3</td>
<td>PBS</td>
</tr>
<tr>
<td>Hepatotoxins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>sc</td>
<td>1:1 (0.3 ml)</td>
<td>3</td>
<td>corn oil</td>
</tr>
<tr>
<td>4-Acetamidophenol</td>
<td>ip</td>
<td>300 mg/kg</td>
<td>3</td>
<td>corn oil</td>
</tr>
<tr>
<td>Lead Nitrate</td>
<td>ip</td>
<td>0.1 mM/kg</td>
<td>3</td>
<td>PBS</td>
</tr>
<tr>
<td>Carcinogens</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aflatoxin B1</td>
<td>ip</td>
<td>0.2 mg/kg</td>
<td>1</td>
<td>corn oil</td>
</tr>
<tr>
<td>4-Nitroquinolene oxide</td>
<td>ip</td>
<td>50 mg/kg</td>
<td>3</td>
<td>PBS</td>
</tr>
<tr>
<td>2-Acetylaminofluorene</td>
<td>ig</td>
<td>50 mg/kg</td>
<td>4</td>
<td>corn oil</td>
</tr>
<tr>
<td>Diethyl Nitrosamine</td>
<td>ip</td>
<td>200 mg/kg</td>
<td>3</td>
<td>PBS</td>
</tr>
</tbody>
</table>

* ip intraperitoneal; ig intragastric; sc subcutaneous
FIGURE 5.1 STRUCTURES OF INDUCING COMPOUNDS

Dexamethasone

2-acetylaminofluorene

3-methylcholanthrene
clofibrate

pyrazole

4-acetaminophen

aflatoxin B₁

4-nitroquinoleneoxide
intragastrically by means of a 100 mm plastic cannula, size 8 FG (International Market Supply, Cheshire) after grinding the compound with a mortar and pestle and resuspending it in corn-oil.

Both liver and kidney from Wistar rats were removed following treatment. Some was retained for histological examination and the remainder was washed briefly in PBS and frozen at -70°C until RNA was prepared and cytosolic and microsomal protein fractionated. Only liver was removed from Fischer rats. No histological examination was performed on it.

5.2.2 HISTOLOGICAL EXAMINATION OF 2-ACETYLAMINOFLUORENE-, AFLATOXIN B1- AND DIETHYLNITROSAMINE-TREATED WISTAR RAT LIVER AND KIDNEY

Liver and kidney were removed from Wistar rats following treatment with the compounds 2-AAF, AFB₁ and DEN. Pieces of these organs were washed briefly in PBS and prepared for histological examination as described in Section 2.3.

Both the liver and kidney tissues from all three treatments and the control were stained with hematoxylin and eosin (H/E). Such staining shows the morphology of the tissue. Glycogen distribution was also examined using the PAS method as described in Section 2.3.2.

The results of the H/E staining is shown in Figure 5.2 and 5.3. Necrotic areas are clearly visible around the central vein and in zone 3 of the DEN treated liver but the 2-AAF and AFB₁ treated livers appear apparently normal in comparison. Such a result for a potent hepatotoxin such as DEN is expected. Figure 5.3 depicts the results of the treatments on the rat kidney. Some renal tissue damage is occurring for all three treatments but is much more readily apparent in the DEN treated kidney. Glycogen distribution in the treated livers is shown in Figure 5.4. Widespread glycogen storage, which is found in normal liver, is absent in the DEN treated liver. Following DEN treatment, glycogen storage is greatly diminished compared to 2-AAF and AFB₁ treated livers, which resemble the normal state of diffuse glycogen distribution.
Wistar rats were treated with 2-acetylaminofluorene, aflatoxin B1 and diethylnitrosamine, as described in Table 5.1, and the livers removed following treatment and sectioned. Hematoxylin and eosin staining was performed, as described in Section 5.2.2.

Control untreated (x 10 magnification)

2-AAF treated (x 10 magnification)
AFB₁ treated
(x 10 magnification)

DEN treated
(x 4 magnification)

DEN treated
(x 10 magnification)
Wistar rats were treated with 2-acetylaminofluorene, aflatoxin B1 and diethylnitrosamine, as described in Table 5.1, and the kidneys removed following treatment and sectioned. Hematoxylin and eosin staining was performed, as described in Section 5.2.2.
AFB$_1$ treated
(x 4 magnification)

DEN treated
(x 10 magnification)
FIGURE 5.4
GLYCOGEN DISTRIBUTION IN CONTROL AND TREATED WISTAR RAT LIVER

Wistar rats were treated with 2-acetylaminofluorene, aflatoxin B1 and diethylnitrosamine, as described in Table 5.1, and the livers removed following treatment and sectioned. Glycogen distribution was assessed using the Periodic Acid Schiff reaction, as described in Section 2.3.2.

Control untreated
(x 10 magnification)

2-AAF treated
(x 10 magnification)
AFB$_1$ treated
(x 10 magnification)

DEN treated
(x 10 magnification)
ANALYSIS OF RAT MDR EXPRESSION FOLLOWING XENOBIOTIC TREATMENT

From each of the Wistar and Fischer rat treatment groups described, total RNA was extracted and microsomes prepared from pooled livers. Cytosolic fractions were also extracted from the Wistar rats. Actin controls were run on the RNA samples as well as comparing intensities of ethidium bromide staining to check for equal loading on Northern blots.

SDS PAGE gels were run on the cytosolic and microsomal fractions to check for equal loading. Immunoblotting was then performed using antibodies raised against P450 and GST proteins (Section 2.5.2). The monoclonal C219 was used to immunoblot P-glycoprotein (Section 2.5.3).

(a) NORTHERN BLOT ANALYSIS

Northern blots were performed on 15μg of each RNA sample. The human mdr 1 gene cDNA probe, MDR5A, was used to detect the mdr transcript in treated rat livers. This clone encompasses the middle third of the human cDNA (Fojo et al, 1987) and has been previously used in Northern blot analysis against cultured rat cells treated with different chemotherapeutic drugs (Chin et al, 1990) and in rats following partial hepatectomy (Marino et al, 1990). Other cDNA probes such as the human cDNA probe pADR-1, isolated from AdrRmcf7 cells, have also been used to probe rat liver treated in various ways (Fairchild et al, 1987; Burt and Thorgeirsson, 1988).

The use of such probes was necessary since no rat probes were available at that time. Recently, clones have been identified which encode the rat homologue of the mouse mdr 2 gene and a full length gene of 4253 bp which is 90% homologous to the mouse mdr 1 gene.

The MDR5A probe (hybridised at a final stringency of 2xSSC) detected two transcripts in the Wistar rat liver treated with 2-AAF, AFB1 and DEN as shown in Figure 5.5. The transcript sizes were calculated to be approximately 5.3 and 4.3 kb. However, the 4.3 kb transcript was expressed at a much greater level than the 5.3 kb transcript. No other treatment induced
mdr mRNA levels above control, which was in fact undetectable using this system. Since it is known that a high degree of homology exists between the rodent mdr genes, as shown in Table 5.2, it could be speculated that these rat gene transcripts have equivalent mouse homologs which are also induced by similar compounds.

FIGURE 5.5 EXPRESSION OF MDR 1 IN TREATED WISTAR RAT LIVER

Wistar rats were treated, as described in Table 5.1, and the liver RNA (15 μg of each treated liver) probed with the mdr 1 human probe MDR5A, as described in Section 2.11.

<table>
<thead>
<tr>
<th>DEX</th>
<th>dexamethasone</th>
<th>CF</th>
<th>clofibrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARA</td>
<td>arachlor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-AAF</td>
<td>2-acetylaminofluorene</td>
<td>DEN</td>
<td>diethylnitrosamine</td>
</tr>
<tr>
<td>3-MC</td>
<td>3-methylcholanthrene</td>
<td>CF</td>
<td></td>
</tr>
<tr>
<td>AFB1</td>
<td>aflatoxin B1</td>
<td>CF</td>
<td></td>
</tr>
<tr>
<td>PYZ</td>
<td>pyrazole</td>
<td>CF</td>
<td></td>
</tr>
<tr>
<td>β-NF</td>
<td>β-naphthaflavone</td>
<td>CF</td>
<td></td>
</tr>
</tbody>
</table>

Liver from each rat was kept separate and Northern blots were done using the livers from each individual treated rat. This blot represents the results obtained from one of the two rats from each treatment group. The results from the duplicates in each group were identical.

In all three cases where the induction of mdr in rat occurs, both transcripts
are induced together above control levels. This suggests a co-induction of both genes by a common regulatory element activated by such compounds.

TABLE 5.2 PERCENTAGE IDENTITY OF RAT, HAMSTER, MOUSE AND HUMAN MDR SEQUENCES

<table>
<thead>
<tr>
<th></th>
<th>HUM MDR 1</th>
<th>HUM MDR 2</th>
<th>HAM MDR 1b</th>
<th>MS MDR 2</th>
<th>MS MDR 1</th>
<th>MS MDR 3</th>
<th>HAM MDR 1a</th>
<th>HAM MDR 1b</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAT</td>
<td>79.1</td>
<td>71.5</td>
<td>82.5</td>
<td>90.4</td>
<td>69.6</td>
<td>78.1</td>
<td>80.4</td>
<td></td>
</tr>
<tr>
<td>HAM</td>
<td>75.7</td>
<td>47.7</td>
<td>76.8</td>
<td>83.4</td>
<td>77.9</td>
<td>82.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAM</td>
<td>83.5</td>
<td>64.2</td>
<td>89.3</td>
<td>77.9</td>
<td>65.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>71.1</td>
<td>86.1</td>
<td>71.1</td>
<td>69.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>78.7</td>
<td>70.6</td>
<td>84.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>82.2</td>
<td>71.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUM</td>
<td>74.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adapted from Silverman *et al* (1991b)

Chin *et al* (1990) employed the same probe and conditions of
stringency as used in this study. He also detected two different transcript sizes in the rat PC12 pheochromocytoma cell line treated with Adriamycin, daunomycin, m-AMSA and mitoxantrone but did not elude to this fact in the discussion of his findings. Subsequent slot blots used in his study failed to distinguish between the two different transcripts and therefore it cannot be determined which of the genes were being regulated. The use of slot blotting in examining mdr gene expression is only completely valid when the

FIGURE 5.6 EXPRESSION OF MDR 1 mRNA IN TREATED FISCHER RAT LIVER

Fischer rats were treated with 3-methylcholanthrene, aflatoxin B1 and 2-acetylaminofluorene, as described in Section 5.2.1, and the liver RNA (15 μg of each treated liver) was probed with the mdr 1 human probe MDR5A, as described in Section 2.11.

<table>
<thead>
<tr>
<th>CON</th>
<th>control</th>
<th>AFB1</th>
<th>aflatoxin B1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-MC</td>
<td>3-methylcholanthrene</td>
<td>2-AAF</td>
<td>2-acetylaminofluorene</td>
</tr>
</tbody>
</table>

Livers from each treatment group (2 rats per group) were combined. This blot represents the results obtained from one experiment.
specificity of the probe for a particular gene has been proven.

Fischer rats treated with AFB₁ and 2-AAF also demonstrated raised hepatic mdr levels, as shown in Figure 5.6. Again, two transcripts of 5.2 and 4.3 kb were co-induced, but the 4.3 kb transcript was induced to a much greater extent. 3-MC failed to cause any change to mdr levels in these rats. AFB₁ had a greater effect (~2-fold) in these Fischer rats than the Wistar rats. Induction of mdr by 2-AAF was maximal after 3 days of treatment as opposed to 4 days.

(b) IMMUNOBLOTTING ANALYSIS

Microsomal fractions for immunoblotting were prepared from both Wistar and Fischer rat liver. C219 monoclonal antibody was used to detect P-glycoprotein in these samples. This antibody has been used in both immunoblotting of rat cannalicular membrane vesicles (Thiebaut et al, 1987; Kamimoto et al, 1989) and in immunohistochemical detection of P-glycoprotein in rat hepatocellular carcinomas (Volm et al, 1990). The transcript size detected in the liver membrane vesicles was ~160 kD which was smaller than the 170 kD CHREC5 cell line P-gp standard, used in the study (Kamimoto et al, 1989).

The immunoreactivity of C219 with the rat membrane vesicles prepared from the Wistar rat livers, treated with different xenobiotics, is shown in Figure 5.7.

Table 5.3 shows the relative expression of P-gp, following each treatment, as defined by high, moderate or slight induction.

The molecular weight of the protein detected by C219 was calculated and found to be 150 kD. Dex also induced a lower protein of 60 kD not detected by any other treatment. The band of 150 kD on the immunoblot appeared to represent two reactive proteins migrating very closely together.

C219 does not distinguish between the various classes of P-gp and will therefore detect all the rat mdr transcript products, which contain the highly conserved epitope VQAALD.

From Figure 5.7, it can be seen that Dex, Ara, 2-AAF and pyrazole induced the expression of P-pg in Wistar rat liver to a high extent. 3-MC and
FIGURE 5.7 EXPRESSION OF P-GLYCOPROTEIN AND CYP1A1, CYP2B1, CYP2E1 AND CYP3A1 IN WISTAR RAT LIVER TREATED WITH VARIOUS COMPOUNDS

Wistar rats were treated, as described in Table 5.1, and the liver microsomal protein was Western blotted using the monoclonal antibody C219 and cytochrome P450 polyclonal antibodies.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEX</td>
<td>dexamethasone</td>
</tr>
<tr>
<td>ARA</td>
<td>Araclor</td>
</tr>
<tr>
<td>ETOH</td>
<td>ethanol</td>
</tr>
<tr>
<td>2-AAF</td>
<td>2-acetylaminofluorene</td>
</tr>
<tr>
<td>CO</td>
<td>corn-oil</td>
</tr>
<tr>
<td>3-MC</td>
<td>3-methylcholanthrene</td>
</tr>
<tr>
<td>CF</td>
<td>clofibric acid</td>
</tr>
<tr>
<td>α/β-NF</td>
<td>α/β-napthoflavone</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PYZ</td>
<td>pyrazole</td>
</tr>
<tr>
<td>CTC</td>
<td>carbon tetrachloride</td>
</tr>
<tr>
<td>LEAD NIT</td>
<td>lead nitrate</td>
</tr>
<tr>
<td>4-AAP</td>
<td>4-acetaminophen</td>
</tr>
<tr>
<td>AFB1</td>
<td>aflatoxin B1</td>
</tr>
<tr>
<td>4-NQO</td>
<td>4-nitroquinoline N oxide</td>
</tr>
</tbody>
</table>

Livers from each treatment group (2 rats per group) were pooled. This blot represents the results obtained from one experiment.
TABLE 5.3 INDUCTION OF P450 ENZYMES AND P-GLYCOPROTEIN IN WISTAR RAT LIVER

P450 FAMILY

<table>
<thead>
<tr>
<th>Chem</th>
<th>1A1</th>
<th>2B1</th>
<th>2E</th>
<th>3A1</th>
<th>PGP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dex</td>
<td>NC</td>
<td>++</td>
<td>NC</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Ara</td>
<td>+++</td>
<td>+++</td>
<td>NC</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Eth</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>2-AAF</td>
<td>NC</td>
<td>++</td>
<td>NC</td>
<td>NC</td>
<td>+++</td>
</tr>
<tr>
<td>3-MC</td>
<td>+++</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>++</td>
</tr>
<tr>
<td>Clo</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>α-NF</td>
<td>NC</td>
<td>++</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>β-NF</td>
<td>+++</td>
<td>NC</td>
<td>NC</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Pyz</td>
<td>+</td>
<td>+</td>
<td>+++</td>
<td>NC</td>
<td>+++</td>
</tr>
<tr>
<td>Car Tet</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Lead Nit</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>4-AAP</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>AFB₁</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>4-NQO</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>+</td>
<td>NC</td>
</tr>
</tbody>
</table>

+++ High induction
++ Moderate
+ Slight
- Suppression
NC No change

AFB₁ both induced P-gp to a moderate level. Clofibrate and β-naphthoflavone (β-NF) induced the expression of P-gp only slightly above control levels. Both corn-oil and PBS control rat liver cross-reacted with the C219 antibody to show the presence of P-gp in these samples occurred to the same extent, but were themselves not inducing the level of protein to any
The induction of P-gp by certain compounds is occurring post-transcriptionally. Although 2-AAF and AFB₁ caused an increase in both mRNA and protein, the other P-gp inducers failed to increase the level of mRNA for the rat mdr genes.

FIGURE 5.8
EXPRESSION OF P-GLYCOPROTEIN IN TREATED FISCHER RAT LIVER

Fischer rats were treated, as described in Section 5.2.1, and the liver microsomal protein was Western blotted using the monoclonal antibody C219.

3-MC 3-methylcholanthrene
2-AAF 2-acetylaminofluorene
AFB₁ aflatoxin B₁
Figure 5.8 shows the result of blotting the Fischer rat liver microsomes treated with 3-MC, 2-AAF and AFB$_1$ with the C219 antibody. A membrane fraction of CHRC5 (50 μg), the mdr chinese hamster cell line, was also examined to compare the relative sizes of the immunoreactive protein identified. The molecular weights of the proteins recognised by C219 against CHRC5 and the rat liver microsomes were 160 kD and 150 kD respectively.

Both 2-AAF, at day 5, and AFB$_1$, at day 2, did induce P-gp expression significantly above controls.

Figure 5.6 shows that 3-MC did not cause an increase in P-gp mRNA in Fischer rat liver and this is reflected in the immunoblot results (Figure 5.8).

5.2.4 ANALYSIS OF RAT CYTOCHROME P450 AND GST EXPRESSION FOLLOWING XENOBIOTIC TREATMENT

(a) NORTHERN BLOT ANALYSIS

The cDNA probes described in Section 2.7 were used to determine the mRNA levels in the Wistar and Fischer rat livers. The CYP2B and CYP4A cDNA clones used were of rat origin. CYP2A and CYP3A were human cDNA clones. Human CYP2A7 displays 85% homology to the rat CYP2A3. The CYP2C cDNA is of mouse origin but is also highly homologous to the rat sequence.

The effect of various xenobiotic treatments on hepatic cytochrome P450 and GSTα mRNA levels in Wistar rats is shown in Figure 5.9. Table 5.4 summarises the results of Figure 5.5 and 5.9.

The actin mRNA levels were assessed and DEN treatment appeared to increase actin levels substantially. The reason for this may be due to the necrotic effect of acute administration of DEN on the liver tissue. Liver regeneration can be induced by any acute treatment, surgical or chemical, that removes or kills hepatic parenchyma. Loss of parenchyma induces cell proliferation to restore the total mass of the liver (Michalopolous, 1990). Several chemical treatments including DEN and carbon tetrachloride cause necrosis around the central zone of the hepatic lobule. mRNA levels for
Wistar rats were treated as described in Table 5.1. RNA was extracted from each individual rat and Northern blotted using cDNA probes for CYP2A, CYP2B, CYP2C, CYP3A, CYP4A, GST \(\alpha \) and actin, as described in Section 2.11.

Livers from each treatment group (2 rats per group) were pooled. This blot represents the results obtained from one experiment.
TABLE 5.4
EFFECT OF XENOBIOTIC TREATMENT ON P450, α-GST, MDR AND ACTIN HEPATIC mRNA LEVELS IN WISTAR RATS

<table>
<thead>
<tr>
<th>CHEMICAL</th>
<th>2A</th>
<th>2B</th>
<th>2C</th>
<th>3A</th>
<th>4A</th>
<th>GST-α MDR</th>
<th>ACTIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dex</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>+++</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Ara</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>NC</td>
<td>++</td>
<td>NC</td>
</tr>
<tr>
<td>Ethanol</td>
<td>NC</td>
<td>++</td>
<td>+++</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>2-AAF</td>
<td>+</td>
<td>++</td>
<td>+++</td>
<td>++</td>
<td>NC</td>
<td>++</td>
<td>NC</td>
</tr>
<tr>
<td>DEN</td>
<td>NC</td>
<td>-</td>
<td>NC</td>
<td>-</td>
<td>NC</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>3-MC</td>
<td>+</td>
<td>NC</td>
<td>+++</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Clofibrate</td>
<td>NC</td>
<td>NC</td>
<td>++</td>
<td>+</td>
<td>+++</td>
<td>++</td>
<td>NC</td>
</tr>
<tr>
<td>α-NF</td>
<td>NC</td>
<td>NC</td>
<td>+++</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>β-NF</td>
<td>NC</td>
<td>NC</td>
<td>+++</td>
<td>+</td>
<td>NC</td>
<td>++</td>
<td>NC</td>
</tr>
<tr>
<td>Pyrazole</td>
<td>++</td>
<td>+++</td>
<td>++</td>
<td>NC</td>
<td>+</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>Car. Tet.</td>
<td>NC</td>
<td>NC</td>
<td>+++</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>+</td>
</tr>
<tr>
<td>Lead Nitrate</td>
<td>+</td>
<td>NC</td>
<td>+++</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>4-AAP</td>
<td>NC</td>
<td>NC</td>
<td>+++</td>
<td>NC</td>
<td>-</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>Starve o/n</td>
<td>+</td>
<td>++</td>
<td>+++</td>
<td>++</td>
<td>NC</td>
<td>-</td>
<td>NC</td>
</tr>
<tr>
<td>AFB1</td>
<td>+</td>
<td>++</td>
<td>+++</td>
<td>++</td>
<td>NC</td>
<td>-</td>
<td>+++</td>
</tr>
<tr>
<td>4-NQO</td>
<td>-</td>
<td>++</td>
<td>NC</td>
<td>NC</td>
<td>-</td>
<td>NC</td>
<td></td>
</tr>
</tbody>
</table>

+++ High induction
++ Moderate
+ Slight
- Suppression
NC No change

certain proteins such as actin, α- and β-tubulin increase during liver regeneration 12 - 72 hours after partial hepatectomy (Friedman et al, 1984). From microtome-cut sections of DEN treated Wistar rat liver it was observed
that such necrosis had in fact occurred in zone 3 and around the central vein, as shown in Section 5.2.2. However, 2-AAF and AFB$_1$ treated liver showed no such necrotic areas. No increase in actin mRNA was observed for 2-AAF or AFB$_1$ (Figure 5.9).

Messenger RNA encoding the major cytochrome P450 families in rat liver were determined, as shown in Figure 5.9, and found to be induced with various treatments. CYP2A1 and CYP2A2 are only just detectable in the liver (Matsuaga et al, 1988). CYP2A mRNA is induced by 3-MC as shown in Figure 5.9. Dex, Ara, 2-AAF, lead nitrate and AFB$_1$ also slightly induced the level of CYP2A mRNA. Whether such induction represents CYP2A1 or CYP2A2 is not clear from the probe used. Rat CYP2A3 is expressed only in rat lung but is 71% and 73% homologous to CYP2A1 and CYP2A2 gene expression cannot be determined from the CYP2A3 probe used.

The P450 2B sub-family mRNA was measured using the rat CYP2B1 full length cDNA clone. Rat CYP2B1 and CYP2B2 exhibit 97% amino acid homology (Atchison and Adesnik, 1983) and have similar substrate specificities. The two genes are coordinately regulated in liver by phenobarbital (PB) due to an increased gene transcription rate (Atchison and Adesnik, 1983). CYP2B2 is constitutively expressed whereas CYP2B1 is transcriptionally inactivated in untreated rats. CYP2B3 shares 77% homology to CYP2B1 and CYP2B2, and is constitutively expressed as a minor form in rat liver (Labbe et al, 1988). Figure 5.9 shows the induction of CYP2B by Ara to a high extent. Dex and ethanol also induce CYP2B to a moderate extent. 2-AAF, pyrazole, starvation overnight and AFB$_1$ induced CYP2B above control levels. DEN reduced CYP2B levels below control values.

CYP2C genes are in most cases constitutively expressed. Two members of the rat CYP2C family, designated CYP2C6 and CYP2C7 have been isolated and sequenced (Haniu et al, 1984) and have 75% amino acid similarity to each other. CYP2C11 is an adult male-specific form and is 70% similar to the sequence of rat CYP2C6 (Yoshioka et al, 1987). Rat CYP2C12 and rat CYP2C13 have also been described.

The complexity of the rat CYP2C sub-families means that it is not possible to exclude the possibility that the mouse Cyp2c probe used to blot
rat CYP2C RNA levels are detecting more than one member of the CYP2C sub-family.

A human cDNA CYP3A4 clone was used to probe the rat livers. Humans have at least four CYP3 genes all of which having 90% or greater similarity to each other. A cytochrome P450 inducible by the synthetic steroid, pregnenolone 16α-carbonitrile (PCN) was purified from rat liver (Elshourbagy and Guzelian, 1980) and was identified as a cytochrome P450 sub-family 3 gene. Both rat CYP3A1 and CYP3A2 have now been isolated and share 90% nucleotide sequence identity. Rat CYP3A1 is inducible by glucocorticoids such as Dex due to increased transcription rates (Simmons et al, 1987) but the regulation is distinct from glucocorticoid regulated genes such as tyrosine aminotransferase (Shuetz and Guzelian, 1984), since CYP3A1 induction requires approximately 10 fold higher levels of steroid to induce it.

Rat CYP3A was induced to a high extent by Dex and Ara. It was also induced by 2-AAF and AFB1 to a moderate extent. DEN caused suppression of mRNA levels for CYP3A.

CYP4A mRNA levels are increased in clofibrate- and aflatoxin B1-treated rat livers. Clofibrate activation occurs within one hour of administration (Hardwick et al, 1987).

A wide range of chemicals, both natural and synthetic induce GST in the rat, including PAHs (Igarishi et al, 1987). GST α (rat subunits 1 or 2) was induced by Ara, 3-MC, β-NF, pyrazole and substantially suppressed by DEN.

(b) IMMUNOBLOT ANALYSIS

The results of the cytochrome P450 analysis for the Wistar rats is shown in Figure 5.7 and summarised in Table 5.3.

CYP1A1 is induced by Ara, 3-MC and β-NF. CYP2B1 protein is induced by Ara to the greatest extent but also by Dex, 2-AAF, α-naphthoflavone (α-NF) and pyrazole. α-NF failed to cause an increase in the mRNA level of CYP2B (Figure 5.9), therefore the increase in CYP2B1 protein with α-NF seems to be due to protein stabilisation or increased
Fischer rats were treated, as described in Section 5.2.1, and the microsomal protein was Western blotted using polyclonal antibodies against cytochrome P450 isozymes as described in Section 2.6.2.

3-MC 3-methylcholanthrene
AFB1 aflatoxin B1
2-AAF 2-acetylaminofluorene

Livers from each treatment group (2 rats per group) were pooled. This blot represents the results obtained from one experiment.
FIGURE 5.11 EXPRESSION OF Yk, Yb and Yf GST IN TREATED WISTAR RAT LIVER

Wistar rats were treated, as described in Table 5.1, and the cytosolic protein was Western blotted using polyclonal antibodies against the glutathione S-transferases, as described in Section 2.6.2.

<table>
<thead>
<tr>
<th>CON</th>
<th>control</th>
<th>CAR TET</th>
<th>carbon tetrachloride</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEX</td>
<td>dexamethasone</td>
<td>LEAD NIT</td>
<td>lead nitrate</td>
</tr>
<tr>
<td>ARA</td>
<td>Araclor</td>
<td>4-AAP</td>
<td>4-acetaminophen</td>
</tr>
<tr>
<td>ETOH</td>
<td>ethanol</td>
<td>AFB1</td>
<td>aflatoxin B1</td>
</tr>
<tr>
<td>2-AAF</td>
<td>2-acetylaminofluorene</td>
<td>4-NQO</td>
<td>4-nitroquinoleneoxide</td>
</tr>
<tr>
<td>3-MC</td>
<td>3-methylcholanthrene</td>
<td>STD</td>
<td>standard</td>
</tr>
<tr>
<td>β-NF</td>
<td>β-napthoflavone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PYZ</td>
<td>pyrazole</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The standards are purified proteins for each respective isozyme.

Livers from each treatment group (2 rats per group) were pooled. This blot represents the results obtained from one experiment.
transcription efficiency. CYP2E1 protein is induced by pyrazole but appears to be completely unaffected by dosing the rats with 1% ethanol for 10 days although the cytochrome is known to be inducible by such a regimen (Koop et al, 1982).

CYP3A1 induction by Dex, Ara, β-NF and AFB1 at the mRNA level is also reflected at the protein level. However, the increased mRNA in 2-AAF treated rat is not reflected in the protein analysis, suggesting that increased translation of the message is not occurring.

Figure 5.10 shows the results of the P450 immunoblotting following treatment of adult male Fischer rats with 3-MC, 2-AAF and AFB1. 3-MC clearly induced CYP1A1 and CYP2A1 but suppressed CYP2B1, CYP2C3 and CYP2E1 in the Fischer rat liver. AFB1 and 2-AAF induced CYP2C3 moderately.

Wistar rat cytosolic protein was immunoblotted with GST antibodies against the Yk, Yb and Yf subunits. As shown in Figure 5.11, Wistar rat Yk (α-class) GST is suppressed by acute administration of Dex, ethanol, 2-AAF and 3-MC. Rat Yb (μ-class) is suppressed by acute administration of Dex, ethanol, 3-MC, carbon tetrachloride, 4-AAP and 4-NQO. In contrast the negligible level of rat Yf (π-class) GST observed in control liver are induced to some extent by all the treatment compounds.

Although it has been shown that hepatic mdr levels in rodent tissue can be regulated, the specific genes affected or their role in drug resistance is not yet known.

In order to examine a more well defined rodent model, it was decided to examine the regulation of the hepatic mdr genes of mouse. All three gene sequences have been published and the involvement of these genes in the MDR phenotype has been elucidated.

5.3 XENOBIOTIC REGULATION OF MDR GENES IN MOUSE

In order to study mdr gene expression in mouse liver and other tissues, cDNA probes specific for each gene was necessary. To establish the specificity of the cDNA probes being used, it was decided to probe liver and
pregnant uterus (day 16 of gestation) of C57BL/6 mice.

The mdr 1 mouse gene is known to be localised to the luminal surface of the secretory epithelium of the uterus during pregnancy (Arceci et al, 1988). At day 16 of gestation, the mRNA is expressed at it's highest level. Mdr 2 and 3 are not detected in this tissue.

Croop et al (1989) reported the high level of expression of mdr 2 in normal mouse liver with lower levels of mdr 3 also expressed in this tissue. Mdr 1, 2 and 3 mRNA species are 5, 4.5 and 6 kb respectively. The distinct pattern of tissue-specific expression is shown in Table 5.5.

The actual cDNA probes used in this study are shorter than those used by Croop, although they cover the same region. The mdr probe used by Croop was a 424bp fragment of λDR11 whereas a 165 bp fragment of λDR11 was used in this study. The mdr 3 probe used by Croop was 373 bp as opposed to 121 bp used in this study. The mdr 2 cDNA probe was the same length as that used by Croop. The shorter probes distinguish between the three genes to a greater extent and have been used in hybridisation experiments to study the sub-chromosommal organisation of the mouse mdr gene complex and identify the degree of specific gene amplification and expression in a series of mdr cell lines (Raymond et al, 1990).

The specificity of the probes is shown in Figure 5.12.
FIGURE 5.12 EXPRESSION OF MDR 1, MDR 2 AND MDR 3 IN LIVER AND PREGNANT UTERUS

RNA (15 μg) was prepared from C57BL/6 mouse liver and pregnant uterus (day 16 of gestation) and Northern blotted against mdr 1, mdr 2 and mdr 3 specific cDNAs, as described in Section 2.11.
TABLE 5.5
EXPRESSION OF MDR RNA IN VARIOUS MOUSE TISSUES

<table>
<thead>
<tr>
<th>TISSUE</th>
<th>mdr 1</th>
<th>mdr 2</th>
<th>mdr 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pregnant uterus</td>
<td>++++</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Uterus</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Adrenal</td>
<td>++++</td>
<td>++</td>
<td>-</td>
</tr>
<tr>
<td>Kidney</td>
<td>++</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Liver</td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Muscle</td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Spleen</td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Heart</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Brain</td>
<td>+</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>Lung</td>
<td>+</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>Intestine</td>
<td>-</td>
<td>-</td>
<td>+++</td>
</tr>
<tr>
<td>Spinal cord</td>
<td>-</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>Testes</td>
<td>-</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>Stomach</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Placenta</td>
<td>+++</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Symbols represent expression compared with that of the 3T3 cell line.

- less than one half of the level of expression
++ 1-10 fold
+++ 10-20 fold
++++ 20-40 fold
+++++ greater than 40 fold
- no detectable levels

Adapted from Croop et al (1989).
5.3.1 TREATMENT OF C57BL/6 AND DBA 2/N MICE WITH PB, DEX AND TCPOBOP

8 week old male and female mice of the C57BL/6 and DBA2/N strains (4 per group) were treated with the xenobiotic compounds phenobarbital (PB), dexamethasone (Dex) and TCPOBOP in order to determine whether known P450 inducers also affected mdr gene expression.

PB (in PBS) and Dex (in corn-oil) were administered i.p. at 80 mg/kg for three days and 100 mg/kg for four days respectively. Mice were sacrificed 24h after the final dose of treatment. One i.p. injection of TCPOBOP (3 mg/kg, in corn-oil) was administered and the animals killed four days after treatment. Control animals received corn-oil.

Following sacrifice, the livers were removed, rinsed in cold PBS and frozen rapidly on dry-ice before storage at -70°C.

The effect of TCPOBOP in DBA2/N male and female mice was studied over a period of 12 weeks following a single injection of the compound, as described above. Two mice of each sex were sacrificed at 4 dy, 4, 8 and 12 weeks following treatment.

5.3.2 ANALYSIS OF MOUSE MDR CONTENT FOLLOWING XENOBIOTIC TREATMENT AND COMPARISON WITH CYTOCHROME P450 AND GST π EXPRESSION

(a) NORTHERN BLOT ANALYSIS

Northern blots were performed on 15μg of hepatic RNA from the mice treated as described in Section 5.3.1. The RNA was probed with the mouse mdr 1, 2 and 3 genes previously described. The C57BL/6 mouse RNA was also examined for Cyp2b and GST π mRNA expression.

The RNA samples were checked for equal loadings by staining with ethidium bromide and probing with actin. The results of the analysis following Dex, PB and TCPOBOP treatment of DBA2/N and C57BL/6 mouse liver are shown in Figures 5.13(a) and 5.14(a) respectively.
FIGURE 5.13 (a) MDR 1, 2, 3, GST Pi AND ACTIN mRNA LEVELS IN DBA2/N TREATED MICE

DBA2/N mice were treated, as described in Section 5.3.1, and the liver RNA (15 µg per sample) was Northern blotted using mdr 1, mdr 2, mdr 3, glutathione S-transferase π and actin cDNAs, as described in Section 2.11.

<table>
<thead>
<tr>
<th>PU</th>
<th>control</th>
<th>M</th>
<th>male</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>control</td>
<td>F</td>
<td>female</td>
</tr>
<tr>
<td>D</td>
<td>dexamethasone- treated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>phenobarbital- treated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>TCPOBOP- treated</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PU</th>
<th>control</th>
<th>M</th>
<th>male</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>control</td>
<td>F</td>
<td>female</td>
</tr>
<tr>
<td>D</td>
<td>dexamethasone- treated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>phenobarbital- treated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>TCPOBOP- treated</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Livers from each treatment group (4 mice per group) were pooled. This blot represents the results obtained from one experiment.
C57BL/6 mice were treated, as described in Section 5.3.1, and the liver RNA was Northern blotted using mdr 1, mdr 2, mdr 3, Cyp2b1, glutathione S-transferase π and actin cDNAs, as described in Section 2.11.

Livers from each treatment group (4 mice per group) were pooled. This blot represents the results obtained from one experiment.
MDR 2 ABSORBANCE RATIO FOR DEXAMETHASONE-, PHENOBARBITAL- AND TCPOBOP-TREATED MICE.

FIGURE 5.13 (b) DBA2/N TREATED MICE

FIGURE 5.14 (b) C57BL/6 TREATED MICE

Mdr 2 absorbance ratio: Ratio of the integrals of the optical densities of hybridisation signals on Northern blots probed with mdr 2 cDNA compared to actin cDNA.

1, 3, 5 and 7 represent male mice
2, 4, 6 and 8 represent female mice

CON control
DEX dexamethasone
PB phenobarbital
TCPOBOP 1,4-bis [2-(3,5-dichloropyridyloxy)] benzene
CALCULATION OF THE ABSORBANCE RATIO (MDR 2 COMPARED TO ACTIN) FOR DBA2/N MICE

TABLE 5.6

DBA2/N MICE - MDR 2 LEVELS NORMALISED TO ACTIN

<table>
<thead>
<tr>
<th>SEX</th>
<th>TREATMENT</th>
<th>ACTIN</th>
<th>MDR 2</th>
<th>ABSORBANCE RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>CON</td>
<td>2471</td>
<td>23044</td>
<td>9.33</td>
</tr>
<tr>
<td>F</td>
<td>CON</td>
<td>3065</td>
<td>18668</td>
<td>6.09</td>
</tr>
<tr>
<td>M</td>
<td>DEX</td>
<td>4068</td>
<td>14757</td>
<td>3.63</td>
</tr>
<tr>
<td>F</td>
<td>DEX</td>
<td>5400</td>
<td>14430</td>
<td>2.67</td>
</tr>
<tr>
<td>M</td>
<td>PB</td>
<td>2783</td>
<td>13666</td>
<td>4.91</td>
</tr>
<tr>
<td>F</td>
<td>PB</td>
<td>3510</td>
<td>13838</td>
<td>3.94</td>
</tr>
<tr>
<td>M</td>
<td>TCPOBOP</td>
<td>8750</td>
<td>7384</td>
<td>0.84</td>
</tr>
<tr>
<td>F</td>
<td>TCPOBOP</td>
<td>10188</td>
<td>10142</td>
<td>0.99</td>
</tr>
</tbody>
</table>

CALCULATION OF THE ABSORBANCE RATIO (MDR 2 COMPARED TO ACTIN) FOR C57BL/6 MICE

TABLE 5.7

C57BL/6 MICE - MDR 2 LEVELS NORMALISED TO ACTIN

<table>
<thead>
<tr>
<th>SEX</th>
<th>TREATMENT</th>
<th>ACTIN</th>
<th>MDR 2</th>
<th>ABSORBANCE RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>CON</td>
<td>4038</td>
<td>18573</td>
<td>4.59</td>
</tr>
<tr>
<td>F</td>
<td>CON</td>
<td>4819</td>
<td>18389</td>
<td>3.82</td>
</tr>
<tr>
<td>M</td>
<td>DEX</td>
<td>5088</td>
<td>10817</td>
<td>2.13</td>
</tr>
<tr>
<td>F</td>
<td>DEX</td>
<td>5324</td>
<td>11017</td>
<td>2.07</td>
</tr>
<tr>
<td>M</td>
<td>PB</td>
<td>6164</td>
<td>14452</td>
<td>2.34</td>
</tr>
<tr>
<td>F</td>
<td>PB</td>
<td>8279</td>
<td>17049</td>
<td>2.06</td>
</tr>
<tr>
<td>M</td>
<td>TCPOBOP</td>
<td>6476</td>
<td>2293</td>
<td>0.35</td>
</tr>
<tr>
<td>F</td>
<td>TCPOBOP</td>
<td>9184</td>
<td>2111</td>
<td>0.23</td>
</tr>
</tbody>
</table>

The values in columns 1 and 2 represent the integrals of peak areas derived from densitometry readings, of one representative autoradiograph, using a Joyce Loebl scanner.
Semi-quantitation of the mRNA levels for mdr 2 were obtained by scanning the blots using a densitometer. The autoradiographs used for scanning were non-saturated. Tables 5.6 and 5.7 show the calculations for the absorbance ratio of mdr 2 compared to actin, for both strains of mice following the various treatments. The normalised results for DBA2/N and C57BL/6 are shown as histograms in Figures 5.13(b) and 5.14(b) respectively.

The RNA from both mouse strains had slightly variable actin levels. However, after taking these levels into account, the overall results do not alter.

Mdr 1 could not be detected in control animals of either strain, but was strongly detected in C57BL/6 pregnant uterine tissue as a mRNA transcript of 5 kb.

Mdr 2 mRNA was detected at moderate levels in both strains of mice. Control levels between male and female mice did not vary significantly indicating no sexual difference in mdr mRNA 2 hepatic expression.

Treatment of both mouse strains with PB and Dex resulted in a slight suppression of mdr 2 mRNA levels. However, treatment of the mice with a single dose of TCPOBOP (75µg for a 25g mouse) caused a dramatic suppression of mdr 2 levels in DBA2/N and C57BL/6 mice.

Mdr 3 mRNA levels were also measured in these samples and the results were comparable to those for mdr 2. TCPOBOP again caused substantial suppression of mRNA levels. Dex and PB also caused slight suppression of mRNA in both strains of mice.

The influence of Dex, PB and TCPOBOP on GST π levels was also assessed in these samples. Male and female control levels were significantly different in both strains with females being much lower than males. In male mice, the π class GST is known to dominate (McLellan and Hayes, 1987) and expression has been demonstrated to be testosterone-dependent. Male levels were not induced by Dex, PB and TCPOBOP. Female mRNA levels were increased by Dex and PB. TCPOBOP caused no increase in GST π mRNA levels in either species of mouse.

All three treatments induced the level of mouse Cyp 2b mRNA in C57BL/6 mice (Figure 5.14 (a)). Female mRNA levels were higher than male levels in each case. TCPOBOP induced both male and female mRNA levels
to the greatest extent, although female levels were still greater than male. Figure 5.15 (a) shows the Northern blot of DBA2/N mice sampled over a 12 week period, following a single i.p. injection of TCPOBOP.

Mdr 2, actin and Cyp2c mRNA levels were measured after 4 days, 4, 8 and 12 weeks. Actin levels were essentially equal for all time points. Control male and female mdr 2 mRNA levels were similar to previous DBA2/N controls, whereas mRNA levels for both male and female mice were dramatically suppressed after 4 days following TCPOBOP administration. Levels remained low even up to 12 weeks. In contrast, Cyp2c1 mRNA levels rose above control at 4 days and remained high up to 12 weeks. At 12 weeks, both male and female Cyp2c1 mRNA levels were starting to fall back to control but were still elevated.

Figure 5.15 (b) shows the semi-quantitation of the mdr 2 mRNA levels after long-term TCPOBOP exposure, after normalising the absorbance ratio of mdr 2 to actin as calculated in Table 5.8.

<table>
<thead>
<tr>
<th>SEX</th>
<th>TREATMENT</th>
<th>ACTIN</th>
<th>MDR 2</th>
<th>ABSORB RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>CON</td>
<td>4272</td>
<td>15314</td>
<td>3.58</td>
</tr>
<tr>
<td>F</td>
<td>CON</td>
<td>4387</td>
<td>13107</td>
<td>2.99</td>
</tr>
<tr>
<td>M</td>
<td>4 DY TCPOBOP</td>
<td>3242</td>
<td>1697</td>
<td>0.52</td>
</tr>
<tr>
<td>F</td>
<td>4 DY TCPOBOP</td>
<td>4012</td>
<td>1443</td>
<td>0.36</td>
</tr>
<tr>
<td>M</td>
<td>4 WK TCPOBOP</td>
<td>4785</td>
<td>297</td>
<td>0.06</td>
</tr>
<tr>
<td>F</td>
<td>4 WK TCPOBOP</td>
<td>7769</td>
<td>1188</td>
<td>0.15</td>
</tr>
<tr>
<td>M</td>
<td>8 WK TCPOBOP</td>
<td>5998</td>
<td>933</td>
<td>0.10</td>
</tr>
<tr>
<td>F</td>
<td>8 WK TCPOBOP</td>
<td>6811</td>
<td>290</td>
<td>0.04</td>
</tr>
<tr>
<td>M</td>
<td>12 WK TCPOBOP</td>
<td>6298</td>
<td>340</td>
<td>0.05</td>
</tr>
<tr>
<td>F</td>
<td>12 WK TCPOBOP</td>
<td>6811</td>
<td>559</td>
<td>0.07</td>
</tr>
</tbody>
</table>
FIGURE 5.15 (a) EXPRESSION OF MDR 2, ACTIN AND Cyp2c1 AT 4 DAYS, 4, 8 AND 12 WEEKS FOLLOWING A SINGLE INJECTION OF TCPOBOP

DBA2/N male and female mice were treated with a single injection (3 mg/kg) of TCPOBOP. RNA was extracted from the mouse livers at various time points and Northern blotted using mdr 2, actin and CYP2C1 cDNAs.

<table>
<thead>
<tr>
<th>C</th>
<th>control</th>
<th>4 D</th>
<th>4 days following treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>TCPOBOP treated</td>
<td>4 W</td>
<td>4 weeks following treatment</td>
</tr>
<tr>
<td>M</td>
<td>male</td>
<td>8 W</td>
<td>8 weeks following treatment</td>
</tr>
<tr>
<td>F</td>
<td>female</td>
<td>12 W</td>
<td>12 weeks following treatment</td>
</tr>
</tbody>
</table>

Livers from each treatment group (2 mice per group) were pooled. This blot represents the results obtained from one experiment.
FIGURE 5.15 (b) SUPPRESSION OF MDR 2 LEVELS UP TO 12 WEEKS WITH TCPOBOP

Mdr 2 absorbance ratio: Ratio of the integrals of the optical densities of hybridisation signals on Northern blots probed with mdr 2 cDNA compared to actin cDNA.

1, 3, 5 and 7 represent male mice
2, 4, 6 and 8 represent female mice

con control
4 dy 4 days following 3 mg/kg TCPOBOP
4/8/12 wk 4/8/12 weeks following treatment

(b) IMMUNOBLOTTING ANALYSIS

Microsomes were prepared from male and female mouse Dex, PB and TCPOBOP treated liver as well as control. Microsomal protein (15 μg) was immuno-blotted with antibodies against Cyp1a, Cyp2a, Cyp2c, Cyp3a and Cyp4a. The analysis was performed to verify that the compounds had induced the various cytochrome P450 enzymes as expected and also to determine whether or not P-glycoprotein is coordinately regulated along with them. The results are shown in Figure 5.16.

The control male and female liver expressed very low levels of all cytochromes compared to treated animals; Cyp2a1 and Cyp2c showed the highest control levels. PB induced all the cytochrome P450 subfamilies, but induced male levels to a greater extent that female for Cyp3a1 and Cyp4a, whereas Cyp1a2, Cyp2a1 and Cyp2c were induced to an equivalent extent.
DBA2/N mice were treated, as described in Section 5.3.1, and microsomal liver protein Western blotted using polyclonal antibodies against cytochrome P450 isozymes, as described in Section 2.6.2.

<table>
<thead>
<tr>
<th>M</th>
<th>male</th>
<th>F</th>
<th>female</th>
</tr>
</thead>
<tbody>
<tr>
<td>con</td>
<td>control</td>
<td>PB</td>
<td>phenobarbital</td>
</tr>
<tr>
<td>dex</td>
<td>dexamethasone</td>
<td>TCBOP</td>
<td>1,4-bis [2-(3,5-dichloropyridyloxy)] benzene</td>
</tr>
</tbody>
</table>

Livers from each treatment group (4 mice per group) were pooled. This blot represents the results obtained from one experiment.
by PB in males and females.

Dex, a synthetic glucocorticoid, induced all the cytochrome P450s examined in the male and female livers with Cyp3a1 being induced to the greatest extent.

TCPOBOP also induced females to a greater extent than males. This difference was apparent in all five gene families analysed.

Dex and TCPOBOP showed a similar pattern of induction but TCPOBOP induced female Cyp2a1 and Cyp2c to a greater extent than Dex whereas dex induced Cyp3a1 to a slightly greater extent. Dex induced male liver Cyp3a1 levels to a great extent whereas TCPOBOP did not. Both dex and TCPOBOP induced Cyp4a to the same high level in female and to a lower level in males.

TCPOBOP itself is highly hydrophobic and accumulates primarily in adipose tissue and to a lesser extent in the liver (Poland et al, 1980). It is metabolised slowly and hence exerts an effect over a long period of time during which time it is released from the fatty tissue of the animal.

5.3.3 TREATMENT OF C57/ICRF AND DBA2/N MICE WITH OTHER P450 SUBSTRATES

8 week old C57BL6 mice (4 per group) were treated with the compounds shown in Table 5.9. All animals were sacrificed by cervical dislocation the day after their last dose of treatment, except mice treated with TCPOBOP which were left for four days after a single dose of the compound. Control mice were administered with corn-oil.

Immediately following sacrifice, the livers and kidneys were removed, washed briefly in PBS and snap-frozen on card-ice. The tissues were then stored frozen at -70°C until RNA, microsomal and cytosolic protein was prepared from them.

DBA2/N male mice (4 per group) were also treated with 3-MC and PB, using the same protocol as shown in Table 5.9. Control mice were again treated with corn-oil.
TABLE 5.9
COMPOUNDS AND INDUCTION PROTOCOL USED FOR MOUSE TREATMENTS (SECTION 5.3.3)

<table>
<thead>
<tr>
<th>COMPOUND</th>
<th>VECTOR</th>
<th>ROUTE</th>
<th>DOSE</th>
<th>DAYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>corn-oil</td>
<td>ip</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>corn-oil</td>
<td>ip</td>
<td>100 mg/kg</td>
<td>3</td>
</tr>
<tr>
<td>3-Methylcholanthrene</td>
<td>corn-oil</td>
<td>ip</td>
<td>200 mg/kg</td>
<td>3</td>
</tr>
<tr>
<td>Pyrazole</td>
<td>PBS</td>
<td>ip</td>
<td>200 mg/kg</td>
<td>3</td>
</tr>
<tr>
<td>Diethylnitrosamine</td>
<td>PBS</td>
<td>ip</td>
<td>200 mg/kg</td>
<td>3</td>
</tr>
<tr>
<td>β-Naphthoflavone</td>
<td>corn-oil</td>
<td>ip</td>
<td>80 mg/kg</td>
<td>3</td>
</tr>
<tr>
<td>Phenobarbitone</td>
<td>PBS</td>
<td>ip</td>
<td>80 mg/kg</td>
<td>3</td>
</tr>
<tr>
<td>2-Acetylaminofluorene</td>
<td>corn-oil</td>
<td>ig</td>
<td>50 mg/kg</td>
<td>4</td>
</tr>
<tr>
<td>TCPOBOP</td>
<td>corn-oil</td>
<td>ip</td>
<td>3 mg/kg</td>
<td>1</td>
</tr>
<tr>
<td>Aflatoxin B₁</td>
<td>corn-oil</td>
<td>ip</td>
<td>0.2 mg/kg</td>
<td>1</td>
</tr>
</tbody>
</table>

PBS phosphate buffered saline
ip intraperitoneal
ig intragastric
- not applicable

5.3.4 ANALYSIS OF MDR, CYTOCHROME P450 AND GST EXPRESSION FOLLOWING TREATMENT WITH A RANGE OF P450 SUBSTRATES

From each treatment group described, total RNA was extracted from both liver and kidney. RNA loading for Northern blots was assessed by ethidium bromide staining and probing with actin.

Both cytosolic and microsomal fractions were also extracted from the
mouse livers. 12% SDS PAGE gels were run on these fractions to check for equal protein loading. Cytosolic and microsomal proteins were electrophoresed using 12% and 9% gels respectively, and immunoblotted for GST and cytochrome P450 isozymes.

(a) NORTHERN BLOT ANALYSIS

Mdr 1, 2 and GST π mRNA levels were assessed in each kidney and liver sample (Figures 5.17, 5.18 respectively) using the probes previously described in Section 2.7.

Actin levels were high in both the liver and kidney of mice treated with DEN. PB and TCPOBOP increased actin levels slightly in mouse liver. Dex, PB and TCPOBOP increased actin levels in C57BL/6 mouse kidney. PB is known to cause massive proliferation of liver endoplasmic reticulum membrane (Remmer and Merker, 1963). TCPOBOP has similar effects on liver proliferation (Poland et al, 1980). Therefore, it is not surprising that these compounds affect cell cycle regulated genes such as actin. DEN causes increases in actin levels probably due to it's necrotic effects on liver tissue, as discussed in Section 5.2.4(a).

Interestingly, PB did not cause an increase in the actin levels of DBA mice treated with the compound.

Mdr 1 mRNA levels were measured in both kidney and liver. Kidney has been previously reported to express mdr 1 to a moderate level (Croop et al, 1989) using a specific 424 bp probe. Kidney mRNA levels in Croop's study were much smaller than those detected in the pregnant uterus tissue, which shows the highest expression of the mdr 1 gene.

Figure 5.17 shows the results obtained after probing the kidney RNA from normal and treated mice with a 165 bp mdr 1 specific probe. Mdr1 mRNA in pregnant uterus control hybridised strongly whereas mdr 1 could only be detected in the DEN treated mouse kidney RNA sample. Figure 5.19 shows a longer exposure of the DEN treated kidney mdr 1 mRNA expression level. This experiment was repeated and blots washed at both 0.2 x and 2 x SSC to determine whether or not stringency of washing would effect the result. However, even at a lower stringency, the result was still negative for
FIGURE 5.17 LEVELS OF EXPRESSION OF ACTIN AND MDR 1 mRNA IN C57BL/6 MOUSE KIDNEY TREATED WITH VARIOUS COMPOUNDS

C57BL/6 male mice were treated, as described in Section 5.3.3, and kidney RNA (15 µg) was Northern blotted using actin and mdr 1 cDNAs.

Livers from each treatment group (4 mice per group) were pooled. This blot represents the results obtained from one experiment.
C57BL/6 male mice were treated, as described in Section 5.3.3, and liver RNA (15 µg) was
Northern blotted using mdr 1, mdr 2, glutathione S-transferase π and actin cDNAs.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Description</th>
<th>Compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREG UTER</td>
<td>pregnant uterus</td>
<td>β-NF</td>
</tr>
<tr>
<td>CON</td>
<td>control</td>
<td>PB</td>
</tr>
<tr>
<td>DEX</td>
<td>dexamethasone</td>
<td>2-AAF</td>
</tr>
<tr>
<td>3-MC</td>
<td>3-methylcholanthrene</td>
<td>AFB1</td>
</tr>
<tr>
<td>PYZ</td>
<td>pyrazole</td>
<td></td>
</tr>
<tr>
<td>DEN</td>
<td>diethylnitrosamine</td>
<td></td>
</tr>
<tr>
<td>TCBOP</td>
<td>1,4-bis[2-(3,5- dichloropyrydyl)oxy]benzene</td>
<td></td>
</tr>
</tbody>
</table>

Livers from each treatment group (4 mice per group) were pooled. This blot represents the results obtained from one experiment.
all other kidney samples. The samples appeared intact on ethidium stained gels and after probing with actin. It was concluded that the kidney tissue from these particular C57BL/6 mice contained extremely low levels of mdr1 which could not be detected using such a system of Northern blotting. Extraction of mRNA instead of total RNA from the kidney samples, or using a longer probe might allow for better detection of the gene transcript.

Mdr1 could not be detected in normal C57BL/6 mouse liver as shown in Figure 5.18.

DEN treated mice did however induce the expression of mdr1 in the liver. Figure 5.19 shows the relative levels of expression of mdr1 in the DEN treated liver and kidney tissues are equivalent. Such induction may be similar to the increase in mdr genes seen in rat liver treated with DEN and may be due to the necrotic effects of DEN in the tissue.

PB treated mice demonstrated decreased mdr2 transcript levels. Following actin adjustment, Dex, 3-MC, pyrazole, DEN, TCPOBOP, 2-AAF, β-NF and AFB1 treated C57BL/6 mouse livers had equivalent levels of mdr2 mRNA as control.

Burt and Thorgeirsson (1988) showed that both 2-AAF and AFB1 induced the expression of mdr in C57BL/6 mouse liver, using the human mdr cDNA probe, pADR-1. No mdr transcript was detected in the normal mouse liver control. In this study, a 4.5 kb transcript was detected. Croop et al (1989) described mdr2 mRNA in mouse liver as being 4.5 kb. The mdr2 transcript was found to be the major mdr RNA species in normal mouse liver. From these studies, it is uncertain which mdr transcript was induced by 2-AAF and AFB1 by Burt and Thorgeirsson (1988) since the probe was not gene specific. However, their results for control mice do not suggest that the transcript was mdr2.

Figure 5.20 contrasts the results found with C57BL6 and DBA2/N mice following treatment with 3-MC and PB. The actin levels following treatment with PB were elevated in C57BL/6 mouse liver whereas no such increase was found in the DBA2/N liver. All other actin mRNA levels were approximately equivalent. Control levels for C57BL/6 and DBA2/N for mdr2 mRNA were equivalent. PB treatment caused no decrease in mdr2 mRNA levels in DBA2/N mouse liver whereas C57BL liver showed a decline in the
Male C57BL/6 mice were treated, as described in Section 5.33, and liver RNA was prepared from both liver and kidney. Northern blotting (15 µg samples) was performed using the mdr 1 cDNA, as outlined in Section 2.11.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREG UT</td>
<td>pregnant uterus</td>
</tr>
<tr>
<td>CON</td>
<td>control</td>
</tr>
<tr>
<td>DEN</td>
<td>diethylnitrosamine</td>
</tr>
<tr>
<td>2-AAF</td>
<td>2-acetylaminofluorene</td>
</tr>
<tr>
<td>AFB₁</td>
<td>aflatoxin B₁</td>
</tr>
</tbody>
</table>

Livers and kidneys from each treatment group (4 mice per group) were pooled. This blot represents the results obtained from one experiment.
Male C57BL/6 and DBA2/N mice were treated, as described in Section 5.3.3. Mice of both species, treated with 3-methylcholanthrene and phenobarbital, were Northern blotted (15 µg per sample) using actin mdr 2 and glutathione S-transferase cDNA probes, as described in Section 2.11.

CON control
3-MC 3-methylcholanthrene treated
PB phenobarbital treated

Livers from each treatment group (4 mice per group) were pooled. This blot represents the results obtained from one experiment.
expression of this transcript. 3-MC caused a slight decline in the level of mdr 2 mRNA for DBA2/N mouse liver, whereas no change occurred in the C57BL/6 mouse. GST \(\pi \) mRNA levels were also measured in these mouse strains.

The level of GST \(\pi \) mRNA was higher in C57BL mice than DNA2/N mice. PB induced GST \(\pi \) mRNA slightly in DBA2/N mice.

Figure 5.18 also shows the results of a range of treatments on GST \(\pi \) mRNA levels.

DEN, \(\beta \)-NF and PB caused a slight decrease in the mRNA levels in C57BL6 mice; all other GST \(\pi \) levels were unaffected by the treatments.

(b) IMMUNOBLOTTING ANALYSIS

Immunoblotting of microsomal protein (15\(\mu \)g) and cytosolic protein (30\(\mu \)g) was performed on the mouse livers using cytochrome P450 and GST antibodies respectively. Rat CYP4A1 and CYP4A2/3 specific monoclonals were also available for use. CYP4A1 shares \~65\% sequence similarity with CYP4A2 and CYP4A3. Polyclonal antibodies used against CYP4A do not differentiate between CYP4A1 (51.5 kD), CYP4A2 (51.1 kD) and CYP4A3 (52 kD).

Monoclonal antibodies were raised against two different CYP4A preparations from clofibrate treated male Sprague-Dawley rat liver. Immunoglobulins purified from the clones were characterised by isoelectric focusing and immunoblotting and were found to cross-react with the antigens used for immunisation (Henderson et al, 1991).

The results of the treatments on both C57BL/6 and DBA2/N mouse liver cytochrome P450 protein levels is shown in Figure 5.21 and summarised in Table 5.10.

The control level of C57BL/6 protein was found to be higher than DBA2/N for each cytochrome P450 family examined. Both intra- and interspecies variations in the activities and enzyme expression for the P450s has been found (Gonzalez et al, 1989).

C57BL/6 and DBA2/N mouse livers show a difference in response to the CYP1A1 inducer 3-MC, which indicates that the C57BL6 mouse strain
Mice were treated, as described in Section 5.3.3, and liver microsomes prepared following treatment. Microsomes were Western blotted (15 μg) using P450 polyclonal antibodies, as outlined in Section 2.6.2.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pyrazole</td>
<td>PYZ</td>
<td></td>
</tr>
<tr>
<td>diethyl nitrosamine</td>
<td>DEN</td>
<td></td>
</tr>
<tr>
<td>β-naphthoflavone</td>
<td>β-NF</td>
<td></td>
</tr>
<tr>
<td>aflatoxin B₁</td>
<td>AFB₁</td>
<td></td>
</tr>
<tr>
<td>standard</td>
<td>STD</td>
<td></td>
</tr>
</tbody>
</table>

Livers from each mouse strain (4 mice per strain) were pooled. This blot represents the results obtained from one experiment.
<table>
<thead>
<tr>
<th>CHEM</th>
<th>DOSE MG/KG (DAYS)</th>
<th>1a1</th>
<th>2a1</th>
<th>2b1</th>
<th>2e1</th>
<th>3a1</th>
<th>4a1</th>
<th>4a2/3</th>
<th>Ya1</th>
<th>Ya2</th>
<th>Ya3</th>
<th>Yb1</th>
<th>Yf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dex</td>
<td>100 (3)</td>
<td>NC</td>
<td>NC</td>
<td>+++</td>
<td>NC</td>
<td>++</td>
<td>NC</td>
<td>-</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>3MC</td>
<td>200 (3)</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
<td>NC</td>
<td>+</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Pyz</td>
<td>200 (3)</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>DEN</td>
<td>200 (3)</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>-</td>
<td>NC</td>
</tr>
<tr>
<td>BNF</td>
<td>8(3)</td>
<td>+++</td>
<td>++</td>
<td>NC</td>
</tr>
<tr>
<td>PB</td>
<td>80(3)</td>
<td>++</td>
<td>++</td>
<td>+++</td>
<td>NC</td>
<td>NC</td>
<td>++</td>
<td>-</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>2AAF</td>
<td>50 (4)</td>
<td>NC</td>
<td>NC</td>
<td>+</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>TCPOBOP</td>
<td>3 (3)</td>
<td>NC</td>
<td>NC</td>
<td>+++</td>
<td>NC</td>
<td>+++</td>
<td>NC</td>
<td>NC</td>
<td>++</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>AFB1</td>
<td>0.2 (1)</td>
<td>NC</td>
<td>NC</td>
<td>+</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
</tbody>
</table>

++++ high induction ++ moderate + slight - suppression () DBA2/N mice NC no change
has an intact Ah receptor whereas the 'non-responsive' DBA2/N mouse has a much lower number of cytosolic Ah receptors, a qualitative defect in receptor ligand binding or both (Okey et al., 1980). C57BL/6 mice showed a high induction of Cyp1a-1 whereas DBA2/N showed no such elevation in Cyp1a-1 protein levels. β-NF also induced C57BL/6 Cyp1a-1 protein to a high level. Both 3-MC and β-NF operate via the Ah locus (for a review see Eisen et al., 1983). PB induced both strains to a moderate extent. This compound does not operate via the Ah locus but all PB-like compounds are hypothesised to bind a common receptor.

DEN suppressed the expression of all the cytochrome P450 proteins examined in C57BL/6 mouse liver, with the notable exception of Cyp2b.

Cyp2a was highly induced by 3-MC and moderately by β-NF. PB also induced Cyp2a in both mouse species to a moderate extent. Both Dex and PB treated livers showed highly increased Cyp2b protein. Dex is known to stabilise the CYP2B1 protein in rat (Simmons et al., 1987). TCPOBOP, the PB-like ligand, also highly induced Cyp2b protein levels. 2-AAF and AFB_1 are known to be weak inducers of cytochrome P450 gene families 1 and 2 (Astrom et al., 1986; Ishii et al., 1986). These compounds induced Cyp2b slightly above control protein levels.

Cyp3a was moderately induced by Dex in this study. This has been described previously by other investigators for the rat (Simmons et al., 1987). PB increased DBA2/N Cyp3a expression levels to a much greater extent than C57BL/6. TCPOBOP showed elevated protein levels to a similar extent as Dex treatment in C57BL/6 mice and PB treatment in DBA2/N mice. In mouse, TCPOBOP and Dex both induce Cyp2b and Cyp3a to similar extents. PB also induces Cyp2b but fails to affect Cyp3a in C57BL/6 mice. Both species of PB treated mice showed increased protein levels for the Cyp4a family using the polyclonal antibody. However, using monoclonal antibodies it was shown that the mouse orthologue of the rat CYP4A1 was induced to a greater level than the mouse orthologue of the rat CYP4A2/3. DEN decreased the levels of the mouse orthologues of the rat CYP4A1 and CYP4A2/3 in C57BL/6 mice.

In addition to measuring the P450 protein levels, GST Ya_1, Ya_2, Ya_3, Yb_1 and Yf protein levels were assessed, as shown in Figure 5.22 and
Mice were treated, as described in Section 5.3.3, and liver cytosols prepared following treatment. Microsomes were Western blotted (20 μg for Ya1, Ya2 and Ya3; 5 μg for Yb and Yf) using glutathione S-transferase polyclonal antibodies, as outlined in Section 2.6.2.

Microsomes were Western blotted (20 μg for Ya1, Ya2 and Ya3; 5 μg for Yb and Yf) using glutathione S-transferase polyclonal antibodies, as outlined in Section 2.6.2.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Treatment</th>
<th>Exposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CON</td>
<td>control</td>
<td>DEN</td>
</tr>
<tr>
<td>DEX</td>
<td>dexamethasone</td>
<td>β-NF</td>
</tr>
<tr>
<td>3-MC</td>
<td>3-methylcholanthrene</td>
<td>PB</td>
</tr>
<tr>
<td>PYZ</td>
<td>pyrazole</td>
<td>2-AAF</td>
</tr>
<tr>
<td>TCPOBOP</td>
<td>1, 4-bis [2-(3,5-dichloropyridyloxy)] benzene</td>
<td></td>
</tr>
</tbody>
</table>

Livers from each treatment group (4 mice per group) were pooled. This blot represents the results obtained from one experiment.
Both Ya₂ and Ya₃ protein subunits were present at much higher levels in DBA2/N mice compared to C57BL/6. No treatment caused induction in either of these subunits. Ya₁ control levels were equivalent in C57BL6 and DBA2/N mice. 3-MC and PB caused an increase in the DBA2/N Ya₁ subunit protein. Pyrazole and, to a lesser extent, TCPOBOP treatment of C57BL/6 mice elevated Ya₁ protein levels. GST Yb₁ C57BL/6 protein levels remained unchanged following various treatments, whereas 3-MC and PB treated DBA2/N mice exhibited elevated levels of Yb₁ and Yf GST.

5.4 ANTICANCER DRUGS AND CYP3A SUBSTRATES AS REGULATORS OF MDR GENES IN MICE

5.4.1 TREATMENT OF C57BL/6 MICE WITH ANTI-CANCER DRUGS AND CYP3A SUBSTRATES

8 week old male C57BL mice (4 per group) were treated with the compounds listed in Table 5.11. Figure 5.23 shows the structures of these compounds and also includes the structure of butylated hydroxyanisole (BHA).

All compounds were administered intraperitoneally except progesterone which was given sub-cutaneously. Control mice were injected with corn-oil.

All mice were sacrificed 24h following the last dose of treatment. Livers, lungs and kidneys were removed, washed briefly in PBS and snap-frozen on card-ice. Tissues were stored at -70°C until required. RNA was extracted from the liver and kidney. Microsomal and cytosolic protein was fractionated from liver, lung and kidney.

Liver RNA samples were probed using mdr 1, mdr 2, GST π and actin cDNAs. Kidney RNA was probed with mdr 1. Samples were assessed for equal loading using ethidium bromide staining and actin level measurements. Cytosolic and microsomal fractions from liver, lung and kidney tissues were immunoblotted against GST and cytochrome P450 antibodies respectively.
The compounds outlined in Table 5.11 can be broadly divided into two groups. Triacetyloleandomycin (TAO), rifampicin (RIF), erythromycin (ERY), clotrimazole (CLOT) and progesterone (PROG) are all Cyp3a substrates whereas adriamycin (ADR), etoposide (VP-16), vincristine (VINC) and vinblastine (VINB) are all used as anti-cancer drugs in clinical medicine.

It is likely that multiple Cyp3a proteins are expressed in liver, as suggested by cDNA cloning (Beaune et al, 1986a; Gonzalez et al, 1988; Molowa et al, 1986). CYP3A is expressed in human fetal liver to significant levels (Kitada et al, 1985). CYP3 expression varies in human liver which could have important clinical implications since CYP3A metabolises a variety of drugs including the calcium channel blocker nifedipine (Gonzalez

<table>
<thead>
<tr>
<th>COMPOUNDS</th>
<th>VECTOR</th>
<th>ROUTE</th>
<th>DOSE</th>
<th>DAYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>corn-oil</td>
<td>ip</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Triacetyloleandomycin</td>
<td>corn-oil</td>
<td>ip</td>
<td>500 mg/kg</td>
<td>3</td>
</tr>
<tr>
<td>Rifampicin</td>
<td>corn-oil</td>
<td>ip</td>
<td>200 mg/kg</td>
<td>3</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>corn-oil</td>
<td>ip</td>
<td>500 mg/kg</td>
<td>3</td>
</tr>
<tr>
<td>Clotrimazole</td>
<td>corn-oil</td>
<td>ip</td>
<td>50 mg/kg</td>
<td>3</td>
</tr>
<tr>
<td>Adriamycin</td>
<td>PBS</td>
<td>ip</td>
<td>4 mg/kg</td>
<td>3</td>
</tr>
<tr>
<td>VP-16 (Etoposide)</td>
<td>corn-oil</td>
<td>ip</td>
<td>12 mg/kg</td>
<td>3</td>
</tr>
<tr>
<td>Vincristine</td>
<td>corn-oil</td>
<td>ip</td>
<td>0.3 mg/kg</td>
<td>3</td>
</tr>
<tr>
<td>Vinblastine</td>
<td>corn-oil</td>
<td>ip</td>
<td>3 mg/kg</td>
<td>3</td>
</tr>
<tr>
<td>Progesterone</td>
<td>corn-oil</td>
<td>sc</td>
<td>1 mg/kg</td>
<td>11</td>
</tr>
</tbody>
</table>

ip intraperitoneal
sc sub-cutaneous

203
FIGURE 5.23 STRUCTURES OF THE P450 SUBSTRATES
AND ANTI-CANCER DRUGS USED TO TREAT C57BL/6 MICE

phenobarbitone
progesterone
TCPOBOP

clostrimazole
adriamycin
erythromycin A

\[
\begin{align*}
\text{butylated hydroxyanisole} & : Y = H, X = \text{C} (\text{CH}_3)_3, \\
\text{2-butyl-4-hydroxyanisole} & : X = H, Y = \text{C} (\text{CH}_3)_3, \\
\text{3-butyl-4-hydroxyanisole} & : X = Y = \text{C} (\text{CH}_3)_3,
\end{align*}
\]

etoposide
rifampicin

Vinblastine, \(R = -\text{CH}_3 \)
Vincristine, \(R = -\text{CHO} \)
et al, 1988), progesterone (Schwab et al, 1988), the immunosuppressant cyclosporin (Kronbach et al, 1988) and the antibiotic erythromycin (Watkins et al, 1985). It is extremely interesting to note that all of these CYP3A substrates are also substrates for P-gp.

TAO is a macrolide antibiotic and an inducer of Cyp3a1 (Wrighton et al, 1985). The TAO metabolite binds strongly to the reduced iron of the haem prosthetic group of this cytochrome resulting in the formation of a persistent metabolic intermediate complex (Pessayre et al, 1981). The rabbit CYP3A6 mRNA is stabilised by TAO (Dalet et al, 1986) as are the rat CYP3A1 and CYPp3A2 proteins (Watkins et al, 1986). Dex however transcriptionally activates the rat CYP3A1 gene (Simmons et al, 1987).

CYP3A6 catalyses erythromycin N-demethylation and is induced significantly by rifampicin (Murray and Reddy, 1990). Clotrimazole can also induce the expression of CYP3A1.

5.4.2 ANALYSIS OF MOUSE MDR, CYTOCHROME P450 AND GST EXPRESSION FOLLOWING TREATMENT WITH ANTI-CANCER DRUGS AND CYP3A SUBSTRATES

Treated mouse liver RNA samples (15μg), including a C57BL/6 mouse pregnant uterus control for mdr 1, were blotted. Liver, kidney and lung microsomes were immunoblotted using polyclonal antibodies raised against rat CYP2A1, CYP2B1, CYP2C3, CYP2E1, CYP3A1 and CYP4A. Monoclonal antibodies raised against rat CYP4A1 and CYP 4A2/A3 were also used to immunoblot the microsomal samples. Liver, kidney and lung cytosolic protein was immunoblotted using polyclonal antibodies against Ya1, Ya2, Ya3, Yb1 and Yf GST subunit proteins.

Yf is the most highly expressed GST subunit in male mouse liver and Yb1 is also highly expressed.

(a) NORTHERN BLOT ANALYSIS

The results obtained following Northern analysis on the liver RNA samples of treated mouse livers is shown in Figure 5.24.
FIGURE 5.24 LEVELS OF EXPRESSION OF MDR 1, MDR 2, GLUTATHIONE S-TRANSFERASE Pi AND ACTIN mRNA IN MALE C57BL/6 LIVER FOLLOWING TREATMENT WITH ANTI-CANCER DRUGS AND CYP3A SUBSTRATES

Mice were treated, as described in Section 5.4.1, and RNA was prepared from the liver following treatment. Northern blotting (15 μg of each sample) was performed, as described in Section 2.11, using mdr 1, mdr 2, glutathione S-transferase Pi and actin cDNA probes.

<table>
<thead>
<tr>
<th>PREG UT</th>
<th>Pregnant uterus</th>
<th>ADR</th>
<th>adriamycin</th>
</tr>
</thead>
<tbody>
<tr>
<td>CON</td>
<td>control</td>
<td>VP 16</td>
<td>etoposide</td>
</tr>
<tr>
<td>TAO</td>
<td>triacetyloleandomycin</td>
<td>VINC</td>
<td>vincristine</td>
</tr>
<tr>
<td>RIF</td>
<td>rifampicin</td>
<td>VINB</td>
<td>vinblastine</td>
</tr>
<tr>
<td>ERY</td>
<td>erythromycin</td>
<td>PROG</td>
<td>progesterone</td>
</tr>
<tr>
<td>CLOT</td>
<td>clotrimazole</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Livers from each treatment group (4 mice per group) were pooled. This blot represents the results obtained from one experiment.
Actin levels were approximately equivalent in all the samples. The mdr 1 cDNA detected a strongly hybridising 5 kb transcript in the pregnant uterus control but detected no other transcript in control or treated mice. The mdr 2 cDNA probe strongly detected a 4.5 kb transcript in both control and treated mice. Rifampicin, etoposide (VP-16) and vincristine substantially induced mdr 2 mRNA levels to above control levels and progesterone increased mdr 2 mRNA slightly. No other Cyp3a substrates or anti-cancer drugs examined in this study altered mdr 2 mRNA levels. GST π mRNA levels were suppressed in both erythromycin and vinblastine treated mice. Vincristine treated mice had normal GST π expression. The difference in the expression of mdr 2 and GST π in vinblastine and vincristine treated mice was somewhat surprising since these compounds are remarkable similar in structure (Figure 5.23). Progesterone only slightly induced mdr 2 mRNA levels although it is a known substrate for rat CYP3A and mdr 1 (Waxman et al, 1988; Yang et al, 1989).

From the results shown in Figure 5.24, it is evident that progesterone does not induce the expression of mdr 1 mRNA in mouse liver although it has been shown to induce the gene to high levels in mouse uterus.

VP-16 is a DNA topo II inhibitor and causes an increase in mdr 2 expression. Since topo II is a common drug target, down-regulation in expression of topo II and a concomitant rise in mdr expression could protect the cell against the toxic effects of these drugs. Chin et al (1990) found a coordinated response of mdr and topo II was found in rat and mouse cell lines challenged with several anti-tumour drugs. Agents that caused an elevation of mdr RNA levels promoted a rapid decline in topo II RNA levels.

The lack of regulation of mdr 2 mRNA levels by triacytyleoleandomycin, erythromycin and clotrimazole indicates that not all Cyp3a substrates act as regulators of mdr 2 mRNA expression.

(b) IMMUNOBLOTTING ANALYSIS

To assess the induction characteristics of the compounds used in this study, the microsomes and cytosols prepared from liver were probed with cytochrome P450 and GST antibodies respectively.
Male C57BL/6 mice were treated, as described in Section 5.4.1, and liver microsomes were prepared. Western blotting (30 µg per sample) was performed, as described in Section 2.6.2, using P450 polyclonal antibodies.

The standards are purified proteins for each respective isozyme.

Livers from each treatment group (4 mice per group) were pooled. This blot represents the results obtained from one experiment.
FIGURE 5.26 INDUCTION OF GST ISOZYMES IN C57BL/6 MOUSE LIVER FOLLOWING TREATMENT WITH VARIOUS COMPOUNDS

Male C57BL/6 mice were treated, as described in Section 5.4.1, and liver cytosols were prepared. Western blotting (20 µg for Ya1 and Ya2; 5 µg for Yb1 and Yf) was performed, as described in Section 2.6.2, using glutathione S-transferase polyclonal antibodies.

CON control ADR adriamycin
TAO triacetyloleandomycin VP 16 etoposide
RIF rifampicin VINC vincristine
ERY erythromycin VINB vinblastine
CLOT clotrimazole PROG progesterone

The standards are purified proteins for each respective isozyme.

Livers from each treatment group (4 mice per group) were pooled. This blot represents the results obtained from one experiment.
As shown in Figure 5.25, triacetyloleandomycin, rifampicin, erythromycin, clotrimazole and progesterone all induced the mouse orthologue of rat CYP3A1 above control levels. The anti-cancer drugs did not induce CYP3A1. Clotrimazole and progesterone induced the mouse orthologue of rat CYP2A1, CYP2B1 and CYP4A above control levels. Vincristine and vinblastine varied slightly in their induction pattern. Vinblastine induced the mouse orthologue of rat CYP2A1, CYP2E1 and CYP4A2/A3, whereas vincristine only induced CYP4A2/A3. Metabolism of these compounds would therefore appear to vary in mouse liver and hence differences in the regulation of mdr genes by these compounds might be expected. As a general observation, the anti-cancer drugs induced the mouse orthologue of rat CYP4A most significantly in mouse liver. The results of the GST immunoblotting is shown in Figure 5.26.

Progesterone caused dramatic induction of \(\text{Ya}_1 \) GST mRNA levels as well as a moderate increase in the \(\text{Yb}_1 \) GST mRNA. The other compounds had little effect on GST mRNA levels in the mouse liver.

To assess the effects of these compounds in extra-hepatic tissue, both kidney and lung tissues from the treated mice were probed with the P450 and GST antibodies.

As shown in Figure 5.27, mouse kidney orthologues of rat CYP2B1, CYP4A1 and GST isozymes \(\text{Ya}_1, \text{Ya}_3, \text{Yf} \) and \(\text{Yb}_1 \) were largely unaffected by these compounds apart from the slight induction of CYP2B1 by rifampicin and clotrimazole. The CYP4A1 orthologue did not appear to be induced by the anti-cancer drugs to any extent in mouse kidney.

All isozymes measured remained unchanged by treatment in mouse lung (Figure 5.28).

Table 5.12 summarises the immunoblotting results for the P450 and GST protein expression in mouse liver.
Male C57BL/6 mice were treated, as described in Section 5.4.1, and both microsomes and cytosols were prepared from the kidney. Western blotting (30 μg of microsomal and cytosolic protein) was performed, as described in Section 2.6.2, using P450 and glutathione S-transferase polyclonal antibodies.

CON control ADR adriamycin
TAO triacytyleleandomycin VP 16 etoposide
RIF rifampicin VINC vincristine
ERY erythromycin VINC vinblastine
CLOT clotrimazole PROG progesterone

Kidneys from each treatment group (4 mice per group) were pooled. This blot represents the results obtained from one experiment.
Male C57BL/6 mice were treated, as described in Section 5.4.1, and both microsomes and cytosols were prepared from the lungs. Western blotting (50 μg of microsomal and cytosolic protein) was performed, as described in Section 2.6.2, using P450 and glutathione S-transferase polyclonal antibodies.

Lungs from each treatment group (4 mice per group) were pooled. This blot represents the results obtained from one experiment.

212
<table>
<thead>
<tr>
<th>CHEM</th>
<th>DOSE MG/KG (DAYS)</th>
<th>2a1</th>
<th>2b1</th>
<th>2c3</th>
<th>P450 FAMILY 2e1</th>
<th>3a1</th>
<th>4a1</th>
<th>4a2/3</th>
<th>GST</th>
<th>Ya1</th>
<th>Ya2</th>
<th>Yb1</th>
<th>Yf</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAO</td>
<td>500 (3)</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>++</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>RIF</td>
<td>200 (3)</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>++</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>ERY</td>
<td>500 (3)</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>++</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>CLOT</td>
<td>50 (3)</td>
<td>++</td>
<td>+++</td>
<td>NC</td>
<td>+++</td>
<td>++</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>ADR</td>
<td>4 (3)</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>++</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>VP16</td>
<td>12 (3)</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>++</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>VINC</td>
<td>0.3 (3)</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>++</td>
<td>+++</td>
<td>NC</td>
<td>++</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>VINB</td>
<td>3 (3)</td>
<td>+</td>
<td>NC</td>
<td>NC</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>PROG</td>
<td>1 (11)</td>
<td>++</td>
<td>+++</td>
<td>NC</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
<td>NC</td>
<td>+++</td>
<td>NC</td>
<td>+</td>
<td>NC</td>
<td>NC</td>
</tr>
</tbody>
</table>

+++ High induction ++ Moderate + Slight NC no change
5.5 EFFECT OF BHA ON MDR EXPRESSION IN MOUSE LIVER

5.5.1 TREATMENT OF BALB/C MICE WITH BUTYLATED HYDROXYANISOLE (BHA)

8 week old female Balb/c mice were fed the monofunctional anticarcinogen BHA (7.5 g/kg) for 14 days, as described by Pearson et al (1988). Following treatment, both RNA and cytosolic protein were prepared from the snap-frozen liver tissue. Control mice were fed a standard laboratory chow diet. Untreated DBA2/N mouse RNA was included in the Northern blot analysis to act as a control for the mdr 2 probe.

BHA is a phenolic anti-oxidant and is known to activate the transcription of the GST Ya subunit gene, through the antioxidant responsive element (ARE) (Rushmore and Pickett, 1990).

5.5.2 ANALYSIS OF MDR 2 AND GST EXPRESSION IN MOUSE LIVER

(a) NORTHERN BLOT ANALYSIS

RNA (15μg) from Balb/c control and BHA treated mouse liver as well as control DBA2/N mouse liver was probed with actin and mdr 2 cDNAs. RNA amounts were standardised using ethidium bromide staining.

As shown in Figure 5.29, actin levels were found to be approximately equivalent, although the BHA treated mice were slightly higher.

After adjustment for this slight discrepancy in actin levels, mdr 2 mRNA for BHA treated Balb/c mice liver was still found to be induced two fold over the control.

Control DBA2/N mice had far greater expression of mdr 2 mRNA than control Balb/c mice. Such a difference will be further discussed in Chapter 6.

GST α protein levels in BHA treated mice were much higher than controls as expected. GST π protein levels were also slightly increased by BHA treatment.
FIGURE 5.29 LEVELS OF ACTIN AND MDR 2 mRNA AND ALPHA AND PI GST ISOZYME EXPRESSION IN BHA TREATED BALB/C MICE

Male C57BL/6 mice were treated, as described in Section 5.5.1, and hepatic RNA and cytosolic protein prepared following sacrifice. Northern blotting (15 µg RNA per sample) was performed, as outlined in Section 2.11, using mdr 2 and actin cDNA probes. Western blotting (20 µg of protein for alpha; 5 µg of protein for pi) was performed, as outlined in Section 2.6.2, using glutathione S-transferase polyclonal antibodies.

CON control
BHA butylated hydroxyanisole
STD standard

Livers from each treatment group (4 mice per group) were pooled. This blot represents the results obtained from one experiment.
5.6 SUMMARY OF RESULTS AND DISCUSSION

From previous studies on rat and mouse, it appeared that both rodent groups respond to xenobiotics by inducing the expression of mdr genes (Burt and Thorgeirsson, 1988).

The compounds chosen to study the inducibility of mdr levels in rat, as shown in Table 5.1, were grouped into P450 inducers, hepatotoxins and carcinogens. The compounds do not strictly adhere to these groupings, for example 2-AAF is both a hepatotoxin and hepatocarcinogen. Much is already known about the effects of these compounds on P450 and GST expression and their mechanism of action.

3-MC is a classical inducer of a major xenobiotic regulated P450 family. Among the enzymes actively induced by 3-MC, is aryl hydrocarbon hydroxylase (AHH) activity (Conney et al, 1956). The mechanism of 3-MC induction of AHH activity was found to be under the control of the Ah locus or TCDD receptor. Poland et al (1986) synthesised a specific photoaffinity ligand that binds to the TCDD receptor and showed that it has a molecular mass of 95-126 kD (Poland and Glover, 1987). An extensive review of this receptor has been published by Whitlock (1987).

The regulatory pathway by which 3-MC and other polyaromatic hydrocarbons (PAHs) affect the expression of specific genes has been well documented (Eisen et al, 1983). A possible model for regulation of CYP1A1 gene expression by the Ah locus might be as follows. PAHs form a ligand complex with the Ah receptor which is translocated to the nucleus and interacts with the xenobiotic responsive element (XRE) leading to transcriptional activation of the P450 gene. The XRE core sequence,

\[
5' - T - GCGTG - 3' \\
3' - A - CGCAC - 5'
\]

is found in multiple copies of the 5' flanking region of the CYP1A1 structural gene (Whitlock, 1987). For the GST Ya gene, two regions of the 5' flanking sequence have regulatory elements involved in the regulation of gene expression by poly-aromatic compounds (Rushmore et al, 1990; Paulson et
One of the regions is identical to the consensus sequence shown above but the second region has no identity to such a sequence and is responsive to β-NF and 3-MC as well as contributing to the maximal basal level of expression of the Ya subunit gene. This element is also responsive to phenolic anti-oxidants in cells that lack functional Ah receptors, and is known as the antioxidant responsive element (ARE). However, response of this element to β-NF requires a functional Ah receptor and functional CYP1A1 protein (Rushmore and Pickett, 1990).

Dexamethasone induces the steroid inducible CYP3A1 gene in a non-classical glucocorticoid manner. Either such activation depends on other factors or differences exist between classical glucocorticoid-regulated genes and CYP3A1 in their affinity for receptor ligand binding to cis-acting DNA control elements.

Araclor induces cytochromes in a manner similar to PB. PB induces CYP2B1, CYP2B2 and also CYP3A1. Data regarding the specific PB receptors or cis-acting DNA sequence elements in this induction process are lacking. The PB-like ligand, TCPOBOP, is 660 fold more potent than PB as an inducer in mice but is ineffective in rats (Poland et al, 1981).

Such P450 inducing agents as discussed above were studied to examine their effects on rat mdr levels in order to examine whether common induction of any P450 or GST genes occurs in association with the mdr genes. Burt and Thorgerisson (1988) suggested that induction of rat mdr genes and P450 1 and 2 gene families by these compounds represent a coordinated response to harmful xenobiotics in the rat liver regulated through the Ah locus. Compounds known to regulate expression via the Ah locus, were administered to rats in order to clarify this hypothesis.

3-methylcholanthrene and β-NF both failed to induce the levels of Wistar rat mdr mRNA. Also in Fischer rats, 3-MC caused no increase in mdr mRNA above control values. In both strains of rat, 2-AAF and AFB1 did however induce mdr mRNA. 2-AAF induction has not been shown to be mediated via the cytoplasmic Ah receptor. Receptor mediation has been suggested as a mechanism for AFB1 induction but convincing results to prove such a mechanism are still lacking.

From these results, it is doubtful whether the Ah receptor is involved
in mdr induction. However, a receptor or class of receptors, similar to the Ah receptor, may regulate xenobiotic mediated induction of mdr expression. Such receptors may activate genes in order to protect the cell from xenobiotic insult.

The induction of rat mdr by 2-AAF is known to occur by increased gene transcription in rats exposed to the compound in vivo from studies done using nuclear run-on assays.

Whether or not AFB\textsubscript{1} and DEN cause increased transcription or stabilisation of the message is not known.

Marino et al (1990) reported that increased expression of the mdr gene in regenerating rat liver appears to be regulated by a post-transcriptional event such as message stabilisation. The mdr 1 gene is normally a rapidly turned over message, with a half life of 30-60 minutes (Chin et al, 1990). The 3' non-coding region of the gene contains the Shaw and Kamen motif ATTTA, is AT rich and is capable of forming stem and loop structures.

Therefore both increased transcription and message stabilisation may contribute to the increase in mdr 1 mRNA in treated rat livers.

Both 2-AAF and AFB\textsubscript{1} cause an increase in P-gp protein as assayed using the C219 monoclonal antibody.

C219 reacts with an epitope on the cytoplasmic face of P-gp (Riordan et al, 1985). It recognises a region which is highly conserved in all P-gps analysed and represents a universal probe for the protein (Kartner et al, 1985). This antibody has been used extensively in studies designed to detect the localisation of P-gp in different tissues in order to elucidate it's normal function. Tobe et al (1990) used C219 to assay rat renal brush border membranes (BBM) and basolateral membranes and glomeruli by immunoblotting. He found that the apparent molecular weight of P-gp in CHO cells was 170 kD, whereas C219 bound to a protein of 155 kD in BBM. In the immunoblots shown in Figure 5.7 and Figure 5.8 the Mr of the protein detected by C219 in rat liver is 150 kD.

Dex, pyrazole and Ara also strongly induced the expression of P-gp in rat liver. However, these compounds did not increase the level of mdr transcription as measured by Northern blotting. This suggests that the RNA
from rat livers treated with Dex, Ara and pyrazole is more efficiently translated and/or the protein translated is more stable.

Many examples exist whereby challenging hepatic enzymes with various chemicals results in increased protein but decreased mRNA levels compared to untreated animals. Rats treated with pyridine display induced expression of CYP2E protein but a decline in CYP2E mRNA expression (Kim and Novak, 1990). This also occurs in rabbits treated with acetone (Porter et al, 1989). The reason for this is thought to be due to increased translatability of the message caused by transfer of RNA to larger polysomes.

In the mouse, DEN induced mdr 1 in the liver and kidney (Figure 5.19), whereas it suppressed all cytochrome P450 families at the protein level with the exception of Cyp2b1 (Figure 5.9).

The damaging effects of DEN on rat liver and kidney was assessed (Figure 5.2 - 5.4). The necrotic areas around the central vein in liver and in the kidney tissue indicated extensive and acute damage to the tissues. Actin levels were also induced to a high extent in rat (Figure 5.9) and mouse (Figure 5.17).

Short-term exposure of the liver to a high dose of DEN causes a decrease of P450 enzymes and an increase in mdr genes in a very short period of time. P450 isozymes decrease due to a decline in the number of hepatocytes which express P450 enzymes to a high extent, with the development of necrotic areas around the central vein. P450 and GST expression is normally found in these cells (Figure 5.30). Such zonal expression of P450s is decreased in DEN treated liver compared to normal liver as shown in Figure 5.30. In contrast, P-gp expression is induced in the DEN treated rat liver. The hepatotoxic nature of the compounds capable of
Male Wistar rat was treated with diethylnitrosamine, as described in Section 5.3.3. Control rats were treated with corn-oil. Following treatment the livers were removed and prepared for histological staining, as outlined in Section 2.3.3., using P450 and glutathione S-transferase polyclonal antibodies.

Control (x 4 magnification) GSTα

Control (x 4 magnification) CYP4A

DEN treated (x 10 magnification) CYP4A
inducing mdr 1 expression appears to be significant. DEN may initiate regenerative changes and thus induce mdr 1. Liver regeneration is well known to cause increases in mdr genes in the rat (Marino et al, 1990).

The cell population which is non-necrotic in the DEN treated liver may be rapidly dividing. The increase in actin levels following DEN treatment would suggest such a state. Rapid division of cells often results in a less well differentiated phenotype. This may also partly explain the loss of P450 expression in the liver tissue treated with DEN.

From the studies on xenobiotic induction in the rat, several conclusions were reached.

1. Hepatocarcinogens such as 2-AAF, AFB₁, and DEN quickly induced mdr mRNA levels, whereas other well known P450 inducers such as 3-MC and Dex failed to do so.

2. Compounds known to operate via the Ah locus, for example 3-MC and β-NF, did not induce mdr mRNA levels. This suggests that mdr induction is not operating through this mechanism. The possibility of the induction operating via another receptor however is not excluded.

3. The pattern of mdr induction does not mimic any particular P450 family and is therefore presumed to be part of the general response to xenobiotic insult shown by P450 and GST isozymes.

TCPOBOP causes dramatic increases in the expression of all the cytochrome P450 proteins in mouse liver. The mechanism of action of TCPOBOP is unknown, but for any drug-induced response the presence of a potent agonist suggest that the effect may be mediated through a receptor. Some evidence for such a receptor exists (Kende et al, 1985; Kelley et al, 1985).

The suppression of mdr 2 and 3 mRNA levels by TCPOBOP may represent an important and effective route by which P-gp expression levels in tumours may be regulated to allow for for effective chemotherapy. Certain anti-cancer drugs such as VP-16 and vincristine increase mdr 2 mRNA levels in mouse liver. Both compounds induced the mouse orthologue of rat CYP4A to a moderate extent. It can be concluded that mdr 2 expression is effected by some anti-cancer drugs in mouse liver.

Cyp3a family substrates in general do not appear capable of
influencing the level of expression of mdr 2 mRNA in mouse liver. However, rifampicin and to a small extent progesterone increased the level of mdr 2 mRNA above those of control.

Progesterone induced many P450 families including the mouse orthologue of rat CYP2A1, CYP2B1, CYP3A1 and CYP4A. It also induced the expression of GST Yα1 to high levels. Progesterone and deoxycorticosterone cause an increase in labelled vinblastine accumulation and a modest reversal of vinblastine resistance in mdr J7 VI-1 murine macrophages (Yang et al, 1989). Progesterone also inhibits azidopine photoaffinity labelling of endometrial P-gp (Naito et al, 1989). These studies indicate that progesterone may be a substrate for the mdr 1 gene product, P-gp. The regulation of mdr 1 mRNA by progesterone suggested the possibility that steroid hormones may also be substrates for mdr 2. However, progesterone only slightly elevated mdr 2 mRNA levels in mouse liver. Progesterone also had no effect on mdr 1 mRNA levels in mouse liver. Therefore, progesterone induction appears to be mdr 1 and uterus specific.

Butylated hydroxyanisole increased mdr 2 levels by 3 fold in female Balb/c mice. BHA is known to induce hepatic mRNAs that code for α, μ and π class GST by 50, 15 and 2-5 fold respectively (Pearson et al, 1988). An element known as the ARE has been shown to be required for the activation of the Ya subunit gene, in the rat, by phenolic anti-oxidants (Rushmore and Pickett, 1990). The induction of the mdr 2 gene by this compound may be due to a similar type of control mechanism.

To examine the transcriptional regulation of the mdr 2 gene, it will be necessary to characterise the 5' upstream region to identify regulatory elements. The mechanism by which TCPOBOP down-regulates the expression of mdr 2 and 3 in C57BL/6 and DBA2/N mice may then be elucidated.
CHAPTER 6

ENDOGENOUS REGULATION OF MULTIDRUG RESISTANCE GENES IN MOUSE

6.1 INTRODUCTION

The endocrine system and the nervous system control adjustments in the body to enable it to adapt to environmental changes. The endocrine system operates through hormones which circulate in the blood and modify the activity of target organs. Some hormones act on several tissues rather than on a specific target tissue, for example, growth hormone (GH), thyroxine and insulin, which implies that the receptors for these hormones are widespread. Other hormones act on one tissue, for example, thyrotrophin, adrenocorticotrophin (ACTH) and gonadotrophins are secreted by the anterior pituitary and have specific target tissues, namely the thyroid gland, adrenal cortex and gonads respectively.

Some of the principle endocrine glands and the hormones they produce are shown in Table 6.1.

Regulation of hormonal release by the anterior pituitary is complex. Modulation of pituitary secretion by hormones secreted from the target endocrine gland is known as “direct negative feedback”. Feedback control can occur via the hypothalamus and may be positive or negative. “Short-loop” feedback also occurs, in which the pituitary hormone regulates its own secretion.

GROWTH HORMONE

Growth hormone (somatotropin, GH) is a protein hormone produced in somatotrophs in the pituitary gland. GH has many different metabolic effects and stimulates the synthesis of proteins and nucleic acids in a wide range of tissues. Predominant among these is somatomedin C/insulin-like growth factor (SmC/IGF-1) which is stimulated in many tissues, especially
the liver (D'Ercole et al, 1984, McConaghey and Sledge, 1970) and probably mediates the actions of GH. Specific binding sites for GH are found in high concentrations in the liver and have been studied in many species.

TABLE 6.1
PRINCIPLE ENDOCRINE GLANDS AND THE HORMONES PRODUCED

<table>
<thead>
<tr>
<th>GLAND</th>
<th>HORMONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypothalamus median eminence</td>
<td>Thyroid releasing hormone</td>
</tr>
<tr>
<td></td>
<td>Somatostatin</td>
</tr>
<tr>
<td></td>
<td>Gonadotrophin releasing hormone</td>
</tr>
<tr>
<td></td>
<td>Corticotrophin releasing factor</td>
</tr>
<tr>
<td></td>
<td>Growth hormone releasing hormone</td>
</tr>
<tr>
<td></td>
<td>Prolactin inhibiting factor (Dopamine)</td>
</tr>
<tr>
<td>Anterior Pituitary</td>
<td>Thyroid stimulating hormone</td>
</tr>
<tr>
<td></td>
<td>Luteinising hormone</td>
</tr>
<tr>
<td></td>
<td>Follicle stimulating hormone</td>
</tr>
<tr>
<td></td>
<td>Prolactin</td>
</tr>
<tr>
<td></td>
<td>Adrenocorticotrophin</td>
</tr>
<tr>
<td>Posterior Pituitary</td>
<td>Vasopressin (antidiuretic hormone)</td>
</tr>
<tr>
<td></td>
<td>Oxytocin</td>
</tr>
<tr>
<td>Thyroid</td>
<td>Thyroxine and triiodothyronine</td>
</tr>
<tr>
<td></td>
<td>Calcitonin</td>
</tr>
<tr>
<td>Parathyroid</td>
<td>Parathyroid hormone</td>
</tr>
<tr>
<td>Adrenal cortex</td>
<td>Aldosterone and cortisol</td>
</tr>
<tr>
<td>Adrenal medulla</td>
<td>Adrenaline and noradrenaline</td>
</tr>
</tbody>
</table>

Adapted from Gould et al (1982).
and cultured cell lines (Wallis, 1980).

The nature of somatomedins is now well understood. Somatomedin C stimulates cartilage growth in vitro, DNA synthesis and proliferation. It acts as a growth factor for many cells in culture and appears to synergise with platelet derived growth factor (PDGF) to promote growth (Stiles et al, 1979).

In the hypophysectomised rat, circulating levels of somatomedin C are lowered to 5 - 10% compared to those in the intact animal (Maes et al, 1986; D'Ercole et al, 1984). Greater than 50% of circulating somatomedin C in the rat is produced by the liver (D'Ercole et al, 1984) and this is a major target organ for the effects of GH on the production of the polypeptide.

GH also stimulates somatomedin C levels in a variety of other species, including mouse and man (Copeland et al, 1980). In man and other species, shortage of GH due to pituitary deficiency lowers somatomedin levels. From studies done by Mathews et al (1986) on the GH deficient (lit/lit) mouse and Roberts et al (1986) on hypophysectomised rat, it was concluded that GH causes a transcriptional increase in somatomedin C in the liver.

THYROTROPHIN

Thyrotrophin releasing hormone produced by the hypothalamus stimulates the synthesis and release of thyrotrophin by the pituitary thyrotrophs. Thyrotrophin or thyroid stimulating hormone (TSH) is bound to a specific receptor on the thyroid follicular cell surface and activates release of the thyroid hormones, thyroxine (T4) and triiodothyronine (T3).

With hypothyroidism, the concentrations of T4 and T3 are diminished.

ADRENOCORTICOTROPHIC HORMONE (ACTH)

ACTH is a 39 amino acid peptide synthesised and secreted by the anterior pituitary and acts on several target tissues including the adrenal cortex where it stimulates the synthesis of steroids. ACTH interacts with a receptor in the adrenocortical plasma membrane and activates cAMP which in turn activates a protein kinase within the cortical cells (Schimmer, 1980; Bost and Black, 1986).
The short-term action of ACTH on the adrenocortical cell is the stimulation of the conversion of cholesterol to glucocorticoid, mineralocorticoid or androgen precursor steroids and is catalysed by enzymes in the endoplasmic reticulum and mitochondria (Hornsby, 1988).

As well as short-term effects, ACTH also exerts long-term effects on the synthesis of enzymes involved in steroidogenesis. All the cytochrome P450 enzymes involved are inducible by ACTH, acting via cAMP (Waterman and Simpson, 1985; Zuber et al, 1986). The mode by which ACTH causes such induction is not fully understood. John et al (1986) showed using nuclear run-off experiments that increased transcription of steroid enzyme genes accounts for increased protein.

REGULATION OF XENOBIOTIC METABOLISING ENZYMES BY HORMONES

A major mechanism by which the organism regulates xenobiotic metabolism is hormonal control. The control is directed mainly at the liver with most of the pituitary regulated hormones (adrenal, thyroid and sex hormones) involved (for a review see Skett, 1987).

The expression of constitutively expressed cytochrome P450 genes is regulated by hormones in various ways. During development, P450 gene expression is activated. Immediately following birth in rats, CYP2E1, CYP2D1 and CYP2D2 mRNA levels are elevated (Gonzalez et al, 1987; Song et al, 1986). Changes in the methylation state of the CYP2E1 gene correlates with transcriptional activation (Umeno et al, 1988).

The role of pituitary hormones in the regulation of sex-specific P450s has been thoroughly investigated. In rats, pituitary growth hormone secretion in male and female varies, with male rats having a pulsatile pattern of secretion whereas females have a more constant secretory pattern. These patterns are determined by neonatal androgen exposure and adult testosterone levels (Jansson et al, 1985). CYP2C11 expression in males is dependent on pulsatile growth hormone secretion and hypophysectomy reduces its expression (Kato et al, 1986). Growth hormone secretion is also involved in the regulation of the female specific CYP2C12 (Mode et al,
Mice have also been investigated for developmental and sex-specific regulation of P450 enzymes. A female specific testosterone 16α-hydroxylase in the Cyp2b subfamily has been characterised (Noshiro and Negishi, 1988).

Certain male and female P450 forms are suppressed on reaching puberty. The expression of CYP3A2 mRNA in female rats decreases and leads to loss of testosterone 6β-hydroxylase expression at puberty (Gonzalez et al, 1986a). The developmental decrease was found to be due to the continuous levels of GH found in adult females (Kato et al, 1986). Waxman (1988b) also suggested that such suppression could be the result of decreased circulating corticosteroid. The actions of GH on hepatic metabolism appear to be inextricably intertwined with those of other endocrine systems notably the thyroid gland and adrenal cortex (Skett, 1987).

Inducibility of genes is also developmentally regulated. TCCD induces the expression of the mouse Cyp1a1 gene at 10 days of gestation whereas Cyp1a2 is not activated until after birth (Ikeda et al, 1983). In rat, both CYP1A1 and CYP1A2 induction occurs one week after birth. Therefore, a species specific difference in developmental control occurs one week after birth (Giachelli and Omiecinski, 1987). In general, most P450 enzymes are not expressed or induced prior to birth.

Cytochrome P450 expression is also tissue specific. Most P450 genes are expressed in hepatocytes, but more specialised steroid hydroxylases, for the biosynthesis of aldosterone and cortisol are found in such tissues as the adrenal gland, ovary and testis. Extrahepatic expression is considerably lower than in the liver.

Changes in GST gene expression during development has been studied most closely in the liver. Before birth, overall GST activity is low whereas after birth the levels increase. At maturity the α family is more highly expressed in the female and the µ family is more abundant in the male (Igarashi et al, 1987). In mouse, the Yf (π) subunit is expressed in male liver at levels approximately 10 fold higher than in the female and constitutes ~70% of the total hepatic GST content whereas in the female it represents only a minor form (McLellan and Hayes, 1987). In rat, GST π occurs at high
concentrations in preneoplastic nodules in both males and females (Kitahara et al, 1984). Very little is known about developmental changes in mouse GST isozymes apart from male hormone-dependent expression of the \(\pi \) class in liver (McLellan and Hayes, 1987). Variations in the CDNB-dependent GST activity in female mice have been shown to vary with age in liver, lung and intestinal tissue (Fujita et al, 1985).

In rat, growth hormone was found to be most active of the pituitary hormones in influencing steroid metabolism (Wilson, 1976). Growth hormone was discovered to be the factor responsible for the pattern of drug and steroid metabolism in males and females (Mode et al, 1983). Administration of oestrogens to male rats feminises the pattern of GH secretion whereas androgens masculinise the GH pattern in female rats (Mode et al, 1982).

Many hepatic proteins are sexually differentiated including epidermal growth factor (Ekberg et al, 1989), insulin-like growth factor 1 (Maitler et al, 1989), prolactin and oestrogen (Norstedt, 1982) and are under control of the GH secretory pattern. In the mouse, a similar system operates. The production of the mouse major urinary proteins (MUPS) and metabolism of hexobarbital is regulated by the pattern of GH release (Macleod and Shapiro, 1989).

The role of thyroid hormones in the control of hepatic drug metabolism was reviewed by Skett and Weir (1983) and Leaky et al (1982). The overall conclusions are rather confusing but thyroidectomy does result in substrate- and sex-specific effects on cytochrome P450 drug metabolism. The role of the thyroid gland on Phase II metabolism has also been studied. Moscioni and Gartner (1983) did show however that a thyrotoxic dose of T\(_3\) could decrease bilirubin gluconyl-transferase and increase p-nitrophenol gluronyl tranferase activity in the rat. Decreased glutathione tranferase activity towards CDNB and decreased levels of glutathione transferase A (3-3), AA (2-2) and L (1-1) were found after thyroid hormone treatment in the rat (Beckett et al, 1986; Beckett et al, 1988).
AIMS

From studies on the endogenous regulation of both cytochrome P450 and GST drug metabolising hepatic isozymes, it was decided to examine such regulation for the mdr genes in mouse. In light of the findings for other hepatic enzyme systems, the possible role of the pituitary was investigated.

The first line of consideration was to examine the effects of removing the pituitary by hypophysectomy and thereby ablating the effects of all pituitary hormones. Subsequent studies relied on the use of animal models to examine the effects of deleting specific pituitary hormones on the expression levels of the hepatic mdr genes. These various models are discussed below.

HYPOPHYSECTOMY

Hypophysectomy involves the removal of the pituitary gland, which is the main regulator of the endocrine system. The hypothalamus releases various factors which control the function of the pituitary. Removal of the gland leads to the functional paralysis of the adrenal, thyroid and gonads. Many diverse processes are governed by the anterior pituitary and removal of such a gland is an extremely crude way of examining hormonal control but can provide useful information as an initial study.

However, to determine which hormones are acting directly to regulate specific effects and which are acting permissively, a more subtle approach must be taken.

"LITTLE MOUSE" MODEL

Mutant mouse strains are commonly used to examine endocrine-related phenomena. The "little" mouse mutant was derived from the C57BL/6 strain and has a specific autosomal recessive defect in GH synthesis and secretion. Growth hormone releasing hormone (GHRH) is secreted from the hypothalamus and stimulates GH synthesis and secretion from pituitary somatotrophs via a specific receptor on the surface of these cells. In the
mutant (lit/lit) mouse, GH is neither synthesised nor released in response to GHRH, due to defective cell receptors (Clark and Robinson, 1985; Jansson et al, 1986). Homozygous mice are ~60% of the size of normal mice. Pituitary GH content and GH mRNA levels in “little mice” was measured to be 4-8% of normal levels (Cheng et al, 1983; Clark and Robinson, 1985). Other pituitary functions are however normal which makes it an excellent model for the study of GH regulation in gene expression.

TRANSGENIC HYPOTHYROID MOUSE MODEL

In the anterior pituitary, many hormones including thyrotropin, are produced by different specialised secretory cells (see Section 6.1). Since cells with different specialised functions are often physically close to and interspersed with each other, it is almost impossible to produce an experimental animal with a single hormone deficiency using surgery. In order to study the involvement of thyroxine in the regulation of mdr genes in the liver, a model in which to explore complete thyroid deprivation was required.

The thyroid gland contains two known types of secretory cell; follicle cells which produce thyroxine and C-cells which secrete calcitonin. The gland is in close contact with the parathyroid gland which secretes parathyroid hormone (PTH). The C-cells lie in clusters between the thyroid follicles. Surgical removal of the thyroid results in the loss of the parathyroid and the thyroid C-cells as well as the follicle cells. Drugs which have been used to inhibit thyroxine production, such as methimazole and propylthiouracil, do not consistently inhibit thyroxine and have toxic side-effects in some cases. However, genetically hypothyroid mice retain significant levels (10%) of circulating thyroxine (Stein et al, 1989).

A mouse model employing the technique of transgenic ablation was utilised in this study. The model was kindly provided by Dr. R. Al-Shawi, University of Edinburgh. The basis of such a technique has been well established. Behringer et al (1988) targeted the expression of diptheria toxin A-protein to the pituitary with the GH promoter which resulted in the specific destruction of the pituitary somatotrophs and lactotrophs. An alternative
approach was examined by Borrelli et al (1989) and is based on the properties of herpes virus thymidine kinase (HSV1-TK). The expression of the herpes virus gene (HSV-tk) was targeted to the pituitary by means of the GH promoter. Following treatment of the transgenic mice with 1-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)-5-iodouracil (FIAU), the somatotrophs and lactotrophs of the pituitary were completely and selectively ablated. Removal of FIAU resulted in regeneration of these cells.

FIAU and Ganciclovir (9-[1,3-dihydroxy-2-propoxy(methyl)]-guanine; DHPG) are phosphorylated by HSV1-TK but not by cellular nucleoside kinases. These compounds are lethally toxic when phosphorylated.

In the model used in this study (Wallace et al, 1991), transgenic mice were examined in which HSV-TK expression was targeted to the thyroid follicle cells by coupling the HSV-tk gene to the bovine thyroglobulin promoter (deMartynoff et al, 1987). Expression was largely confined to the thyroid follicle cells. Female mice were used since transgenic HSV1-tk reporter genes are expressed in the testis irregardless of the promoter used, resulting in male sterility (Al-Shawi et al, 1988).

Mature female mice were infused with DHPG which resulted in complete loss of thyroxine production. The thyroid glands regressed and follicle cells were destroyed. Serum levels of circulating thyroxine fell below the limit of detection within 14 days while the level of PTH was unaffected and calcitonin levels were reduced by less than 50%. Following withdrawal of DHPG, thyroxine levels remained negligible for at least 60 days. The production of mouse major urinary protein (MUP), known to require thyroxine (Knopf et al, 1983) ceased in the hypothyroid mice but was restored by thyroxine administration (Wallace et al, 1991).

As part of the thesis aims, developmental regulation of expression was briefly examined in order to assess whether or not mdr genes are expressed in a similar manner to P450 and GST hepatic enzymes both pre- and post-natally.

Finally, four rodent species were compared to determine the extent of variation of mdr 2 gene expression.
6.2 PITUITARY REGULATION

6.2.1 HYPOPHYSECTOMISED MOUSE MODEL - ANIMAL TREATMENT

Male and female C57BL/6 mice were obtained from Charles River Laboratories, Willmington, Massachusetts, USA. These animals were hypophysectomised at eight weeks of age. Control animals were sham-operated. Mice were allowed to recover from the operation for two weeks before treatment. Animals (four per group) were treated with phenobarbital (80 mg/kg, 3 dy, i.p.) and dexamethasone (100 mg/kg, 3 dy, i.p.). Control animals received corn-oil. Animals were sacrificed by cervical dislocation 24 hr after the final treatment. The liver was removed immediately after sacrifice, frozen on dry ice and stored at -70°C.

Changes in body weight and measurements of triiodothyronine (T₃) levels were used to measure the success of the operative procedure. Completely hypophysectomised mice have a stable or gradually decreasing body weight whereas incompletely hypophysectomised animals have an increase in body weight. T₃ decline is also indicative of successful surgery. These measurements had been previously recorded and it was concluded that the hypophysectomy procedure had been successful on these animals (Dolan, 1990).

6.2.2 ANALYSIS OF MDR AND GST π GENE EXPRESSION FOLLOWING HYPOPHYSECTOMY

RNA was prepared from male and female hypophysectomised (hypox) and sham-operated (sham) C57BL/6 male and female control, dexamethasone (100 mg/kg, 3 dy) and phenobarbital (80 mg/kg, 3 dy) treated. Dexamethasone and phenobarbital treated mice had been previously used to study the expression of GST Pi following hypophysectomy. The known results of such treatment acted as an internal control for the experiment. RNA (15µg) from each treatment was probed with mdr 2, mdr 3, GST π and actin (Figure 6.1).

The actin levels for the hypox animals were consistently higher that
Male and female mice were treated, as described in Section 6.2.2, and RNA was prepared from the liver following treatment. Northern blotting (15 μg per sample) was performed, as described in Section 2.11, using glutathione S-transferase Pi, actin, mdr 2 and mdr 3 cDNA probes.

hx hypophysectomised
sh sham operated
C control
D dexamethasone treated
P phenobarbital treated

Livers from each treatment group (4 mice per group) were pooled. This blot represents the results obtained from one experiment.
the sham operated animals, although the ethidium bromide staining of the ribosomal RNA was equivalent. Actin may be regulated to some extent by pituitary factors which are removed after hypophysectomy.

Following hypophysectomy a sharp decline in the levels of GST π in the male mouse occurs. In the female, a slight elevation in hepatic Yf was noted after removal of the pituitary. Treatment with the compounds phenobarbital and dexamethasone had little effect on sham male mice but induced Yf mRNA levels in female mice substantially.

Dexamethasone and phenobarbital may fail to induce Yf levels in male mice due to the already high levels of expression seen in untreated animals. Following hypophysectomy, the male control level falls due to removal of the positive regulation by GH (McLellan and Hayes, 1987). Dexamethasone and phenobarbital are then observed to induce Yf levels above those of the greatly suppressed control levels. Phenobarbital induces mRNA levels to a greater extent than dexamethasone. In female mice by contrast, the control levels rise following hypophysectomy probably due to release of suppression by GH and perhaps other hormones. The induction of Yf levels by phenobarbital and dexamethasone appears to be maintained following hypophysectomy, with phenobarbital inducing Yf mRNA levels to a greater extent than dexamethasone.

The mdr 2 and mdr 3 mRNA levels show a similar pattern following hypophysectomy and xenobiotic treatment. In both male and female mice, the levels of mdr 2 and mdr 3 mRNA are decreased in hypophysectomised mice compared to sham-operated mRNA levels. The actin levels for sham-operated dexamethasone treated females are low in comparison to the sham-operated control and phenobarbitone treated female mice. Following adjustment for actin, control, dexamethasone and phenobarbital treated sham-operated female mice samples have similar mdr 2 and mdr 3 levels of expression, as the sham-operated male mice. Following hypophysectomy, male control, phenobarbital and dexamethasone treated mice mdr 2 and mdr 3 mRNA levels are all significantly reduced. Phenobarbital treated mice show greatly reduced levels of both mdr 2 and mdr 3 mRNA expression. Such a result may indicate that the suppression caused by phenobarbital in hypophysectomised male C57BL mice is normally masked by the pituitary
factor(s) maintaining the levels of mdr 2 and 3 expression observed in the control male animals. Following hypophysectomy, control, dexamethasone and phenobarbital treated female mice mRNA mdr 2 and mdr 3 levels were again significantly reduced in agreement with the male pattern. However, phenobarbital does not have the same effect in suppressing mdr 2 and mdr 3 levels in hypox female animals as it does in hypox male mice. Therefore the effect of phenobarbital on mdr 2 and mdr 3 expression appears to be male specific. This finding does however require to be verified by further treatment of more animals.

6.2.3 “LITTLE MOUSE” MODEL - ANIMAL TREATMENT

Male and female “little” mice (lit/lit) and controls (+/+) were obtained from Charles Rivers Laboratories, Willmington, USA at the age of eight weeks. The mice were acclimatised for two weeks before treatment commenced. Phenobarbital (80 mg/kg, 3 dy) and dexamethasone (100 mg/kg, 4 dy) were administered to the mutant and normal mice. The animals were sacrificed 4 days following the start of treatment. Livers were removed, snap-frozen and stored at -70°C until required.

6.2.4 ANALYSIS OF MULTI-DRUG RESISTANCE GENE EXPRESSION IN “LITTLE MICE”

Northern blot analysis was performed on the above animals using RNA (15μg) extracted from the liver. Both mdr 2 and mdr 3 levels were examined.

As shown in Figure 6.2, no difference was observed between male +/+ (control) and male lit/lit (GH-deficient) treated with dexamethasone. Female +/+ and lit/lit treated with dexamethasone and phenobarbital showed equivalent mRNA levels. A slight increase was observed in lit/lit male mice compared to +/+ male mice treated with phenobarbital. Since hypophysectomy caused a marked decrease in the expression of mdr 2 and 3 mRNA in phenobarbital treated male mice, such a result does not agree with the hypothesis that growth hormone is suppressing mdr 2 mRNA levels.
Male and female $+/-$ and lit/lit mice were treated, as described in Section 6.2.3, and RNA prepared from the liver following treatment. Northern blotting (15 µg per sample) was performed, as described in Section 2.11, using mdr 2 and mdr 3 cDNA probes.

+/- growth hormone sufficient D dexamethasone treated
lit/lit growth hormone deficient P phenobarbital treated
M male F female

Livers from each treatment group (4 mice per group) were pooled. This blot represents the results obtained from one experiment.
in these mice. These observations may be due to a slight variation in actin levels. Mdr 3 mRNA levels were much lower than those seen for mdr 2, but were equivalent between +/- and lit/lit mice.

6.2.5 TRANSGENIC HYPOTHYROID MOUSE MODEL - ANIMAL TREATMENT

Transgenic mouse lines were established by injecting the HSV-tk thyroglobulin construct into either pronucleus of C57BL/6 x CBA/CaF2 embryos (Al-Shawi, 1988). Transgenic offspring were identified and four lines were established. Transgenic female mice, 12-18 weeks of age, were implanted with mini-pumps to administer DHPG (4.5 mg/dy for 14 days). Control animals were given saline.

6.2.6 ANALYSIS OF MDR GENE EXPRESSION IN HYPOTHYROID MICE

RNA was prepared from both hypothyroid and control mice and probed with actin, mdr 2 and GST \(\alpha \).

The results, shown in Figure 6.3, demonstrate that the actin levels between control and hypothyroid mice were equivalent. Mdr 2 mRNA levels were also unchanged between hypothyroid and normal mice, which indicated the lack of involvement of thyroid hormones in the pituitary regulation of hepatic mdr 2 mRNA levels. Interestingly, the expression of the \(\alpha \) class GST increased in the hypothyroid animal compared to control. The levels of Ya_1 has been shown to increase in hypox mouse liver (Dolan, 1990). Such an increase may be due, in part, to diminished levels of thyroid hormone affecting the transcriptional expression of the gene.

6.2.7 REGULATION OF ADRENOCORTICOTROPIC HORMONE BY DEXAMETHASONE AND TCPOBOP - ANIMAL TREATMENT

In order to establish whether or not adrenal hormones are involved in the regulation of hepatic mdr 2 and mdr 3 gene expression, adult male C57BL/6 mice (4 per group) were treated with dexamethasone (200 mg/kg,
FIGURE 6.3 LEVELS OF ACTIN, MDR 2 AND GST-α IN HYPOTHYROID COMPARED TO NORMAL MICE

Transgenic mice were obtained, as described in Section 6.2.5, and RNA was prepared from the livers of hypothyroid animals and control animals. Northern blotting was performed, as described in Section 2.11, using actin, mdr 2 and glutathione S-transferase alpha cDNA probes.

Livers from each treatment group (4 mice per group) were pooled. This blot represents the results obtained from one experiment.
3 dy) and TCPOBOP (3 mg/kg, 1 dy). Control animals (6 mice) were given injections (0.2 ml, 3 dy) of corn-oil.

The mice were sacrificed 4 days following the start of treatment. Cardiac puncture was performed on each animal to collect the serum for measurement of corticosterone levels. Livers were also collected from these animals and frozen at -70°C. RNA was prepared from the tissue to assess whether or not the treatments had effected mdr expression levels.

6.2.8 MEASUREMENT OF CORTICOSTERONE LEVELS IN DEXAMETHASONE AND TCPOBOP TREATED MICE

Corticosterone levels were measured in the three groups of mice described above, as outlined in Section 2.13.2.

The standard curve data and graph for the assay is shown in Appendix 2. From the assay, the percentage binding for the control, dexamethasone and TCPOBOP treated mice was found to be 39.4%, 41.1% and 36.6% respectively. From the standard curve, the corticosterone levels were calculated as 380 nmol/l (control), 200 nmol/l (dexamethasone treated) and 660 nmol/l (TCPOBOP-treated).

The control value was as expected. Normal rat corticosterone levels vary between 100-300 nmol/l. Dexamethasone treatment decreased normal corticosterone levels by ~50% and TCPOBOP increased levels by ~70%.

Dexamethasone is a known synthetic glucocorticoid and would be expected to exert negative feedback on ACTH release and thereby reduce plasma glucocorticoid concentrations.

In this study, dexamethasone administered for a period of 3 days did suppress corticosterone levels but the response was not large.

TCPOBOP has been shown to be a potent inducer of mouse microsomal monooxygenase activity (Poland et al, 1980). The effects of TCPOBOP in mouse hepatocarcinogenesis have also been well studied. The compound was shown to be a hepatic neoplasm promoter when administered at 3 mg/kg, once a week for 5 months after an initiating dose of diethylnitrosamine; hepatic enzymes involved in drug metabolism were also shown to be induced by TCPOBOP (Dragini et al, 1985, 1987).
In this study, TCPOBOP was shown to cause ~70% increase in corticosterone levels. The pathway in the adrenal cortex leading from cholesterol to glucocorticoids (corticosterone in the case of mice) is known to involve several different forms of cytochrome P450 enzymes. Such P450 enzymes in the adrenal may be induced by TCPOBOP to cause an increase in overall corticosterone production. This hypothesis is an interesting one and requires further examination, but is outwith the scope of this study.

6.2.9 ANALYSIS OF MDR GENE EXPRESSION IN ANIMALS WITH ELEVATED AND DEPLETED CORTICOSTERONE LEVELS

Animals were treated as described in Section 6.2.7. Following sacrifice, livers were removed and RNA was prepared from the three groups. RNA (15µg) was probed with mdr 2 and actin.

As shown in Figure 6.4, the actin level for dexamethasone-treated mice were slightly raised above control levels. Following visual adjustment for actin, it was concluded that TCPOBOP significantly decreased mdr 2 levels compared to the control value whereas dexamethasone caused only a slight decrease to mdr 2 mRNA levels. The effects of dexamethasone on corticosterone levels were not considered great enough to be significant in terms of causing changes to hepatic enzymes. The effect of TCPOBOP on C57BL6 mice mdr 2 mRNA expression in this study was significant and the corticosterone levels were increased substantially.

The effect of dexamethasone treatment following hypophysectomy on mdr 2 and mdr 3 mRNA expression was negligible (see Figure 6.1). The effects of corticosterone administration on hepatic drug metabolism in vivo are manifested in hypophysectomised rats (Bousquet et al, 1965). Therefore adrenocortical steroids can exert effects on hepatic microsomal enzymes independent of the pituitary gland.

The changes in corticosterone levels by TCPOBOP treatment are interesting in light of the decrease in mdr 2 expression as a consequence of such treatment.
6.3 DEVELOPMENTAL REGULATION

Since many hepatic enzymes are developmentally regulated, including cytochrome P450s and GSTs (see Section 6.1), it was of interest to determine whether or not the mdr genes were likewise regulated.

FIGURE 6.4 LEVELS OF MDR 2 AND ACTIN IN DEXAMETHASONE- AND TCPOBOP-TREATED C57BL/6 MICE

Mice were treated with dexamethasone and TCPOBOP, as described in Section 6.2.7, and RNA prepared from the liver following treatment. Northern blotting was performed, as described in Section 2.11, using mdr 2 and actin cDNA probes.

DEX dexamethasone
TCPOBOP 1,4-bis [2-(3,5-dichloropyridyloxy)] benzene

Livers from each treatment group (4 mice for dexamethasone and TCPOBOP and 6 mice for control) were pooled. This blot represents the results obtained from one experiment.
In order to examine expression both before birth and pre- and post-pubertally, a time course from 15 days of gestation to 8 week old adult mouse was examined.

6.3.1 TIME COURSE OF EXPRESSION - ANIMAL TREATMENT

Untreated C57BL/6 male mice (2 per group) were sampled at 1, 2, 4, 6 and 8 weeks of age. Liver at day 15 of gestation was also obtained from fetal mice (4 animals pooled).

All livers were removed quickly following sacrifice, washed in PBS and snap-frozen on card-ice. Tissue was stored at -70°C until RNA was prepared from it.

6.3.2 ANALYSIS OF MDR GENE EXPRESSION IN EMBRYONIC AND ADULT MOUSE LIVER

Hepatic RNA was extracted from mice at all time points and RNA (15µg) was examined with actin and mdr 2 cDNA probes. Figure 6.5 shows the results of such analysis on mdr 2 expression during development.

In the 15 day fetal liver, mdr 2 mRNA levels are just detectable but very low. Following birth, the levels of mdr 2 begin to increase and at 2 weeks the mdr 2 mRNA reaches maximal levels. Figure 6.5 also shows the actin measurements for the same blot. The levels were equivalent for the RNA from 1-8 weeks inclusive. The 15 day fetal liver RNA had been overloaded compared to the other liver samples. Following adjustment for actin, the mdr 2 levels in the liver appear to be negligible before birth and rise rapidly post-natally.

MacFarland et al (1991) investigated the levels of expression of mdr 1 in fetal tissue. In the fetal brain and testis, the polyclonal antibody MRK16, specific for mdr 1, gave strong staining. In the testis the strongest staining was in the interstitial cells (Leydig cells) which actively secrete testosterone. In the brain the cell surface of the Ependimal cells, which line the central canal and ventricular surface between the brain cells and cerebrospinal fluid were stained most strongly. In liver mdr 1 staining was found on the microvilli
Male C57BL/6 mice were sampled at various ages, as described in Section 6.3.1, and RNA was prepared from the liver. Northern blotting (15 μg per sample) was performed, as described in Section 2.11, using mdr 2 and actin cDNA probes.

Livers from each time point (2 mice per group) and from embryonic liver (4 mice per group) were pooled. This blot represents the results obtained from one experiment.
of the bile canaliculi and in cytosolic granules in some sinusoidal cells. However, the P-gp staining was much weaker in the liver than in other tissues such as the brain. The levels of the mdr 2 gene product has not been examined using immunohistochemistry since a peptide specific antibody is not yet available.

6.4 VARIATION IN RODENT MDR GENE EXPRESSION

In order to assess whether variation in expression of the mdr 2 gene occurs between different strains of mice, C57BL/6, C57BL (ICRF strain), DBA2/N and Balb/c mouse liver was examined. Mdr 2 and actin mRNA levels were measured. All animals (4 per strain) were adult when sacrificed. Livers were collected, snap-frozen and stored at -70°C until RNA was prepared from it.

Although the actin levels varied, with C57BL/6 being greater than the rest, it was still evident that the Balb/c mice showed negligible levels of mdr 2 gene expression compared to other strains examined (Figure 6.6).
Male mice from different strains were obtained, as described in Section 6.4, and RNA was prepared from the liver. Northern blotting was performed, as outlined in Section 2.11, using mdr 2 and actin cDNA probes.

Livers from each mouse strain (4 mice per strain) were pooled. This blot represents the results obtained from one experiment.
6.5 SUMMARY OF RESULTS AND DISCUSSION

From the results in this chapter, it was concluded that mdr 2 and mdr 3 gene expression in mouse liver is controlled by the pituitary.

Removal of the pituitary by hypophysectomy resulted in a decrease in mdr 2 and mdr 3 gene expression in both male and female animals (Figure 6.1).

However, from analysis of animal models with depleted growth hormone (Figure 6.2) and thyroid hormone (Figure 6.3), neither of these hormones appeared to affect mdr expression when their release was impaired. The growth hormone model has previously been used to show the involvement of this hormone in GST expression and the effects of GH depletion was assessed by measuring weight gain and T₃ levels in these animals (Dolan, 1990).

The thyroid hormone model was confirmed as being valid for the study of hypothyroid mice by measurement of MUP and T₃/T₄ levels. Histological examination of follicular cell was also performed. All these parameters confirmed the hypothyroid state of the animals (Wallace et al., 1991).

Adrenal hormone status was also examined by using compounds which elevated and depleted corticosterone levels. Depletion of corticosterone levels by dexamethasone was not considered to be substantial enough to mimic the effects of adrenalectomy. Further studies in this regard would require removal of the adrenal gland to ensure complete down-regulation of corticosterone production. However, the effects of glucocorticoids on hepatic mdr 2 and mdr 3 expression is dubious since dexamethasone given to mice following hypophysectomy did not cause an elevation in mdr 2 or mdr 3 mRNA levels (Figure 6.1). TCPOBOP administration caused an elevation in corticosterone levels and a significant decrease in mdr 2 gene expression in C57BL/6 mice. The findings from this preliminary investigation would merit further experimentation. This increase in corticosterone is the opposite effect to that seen following pituitary removal and hence does not explain the effect seen with hypophysectomy.

The regulation of mdr 2 and mdr 3 gene expression by pituitary
hormones other than GH, thyroid hormone and adrenal hormones seems unlikely since no male/female sex difference in mdr expression exists in normal untreated mice. Pituitary hormones such as FSH and LH are known to affect the gonads. Prolactin stimulates milk production and breast development in females and facilitates reproductive function in males.

The models used in this study do not allow for interaction between different types of hormones in a regulated manner. However it is known that certain hormones act synergistically, for example GH and thyroid hormone. Knopf et al (1983) reported that transcription of the MUP genes in mouse liver depends on both thyroxine and GH, which appear to act synergistically. Thyroxine stimulates GH gene transcription (Evans et al, 1982). Thyroxine deprivation influences MUP expression directly and indirectly through GH. GH deprivation reduces growth by up to 50% for up to at least eight and a half weeks after birth due to GH deficiency and partly due to consequential IGF-I deficiency (Behringer et al, 1990). There are many interactions between hormones and it is difficult in vivo to dissect out the individual effects of the various hormones. Some hormones, for example glucocorticoids, are permissive agents for the actions of other hormones (Skett et al, 1987).

Another approach to the study of hormonal control is by supplementing hormones to hypophysectomised animals. However, such supplementation must mimic the normal pattern of hormone secretion. The use of osmotic mini-pumps can be employed to overcome this problem. Such a system can be readily adapted to allow two (or more) hormones to be administered simultaneously. Using this approach, the interaction between different hormones could be used to assess their role in the regulation of mdr gene expression in the liver.

The examination of mdr 2 gene expression in the liver showed that the expression was very low before birth; was maximal at two weeks following birth and thereafter remained unchanged. In mice, puberty occurs at ~4 - 6 weeks of age and therefore mdr 2 gene expression is not affected by changes in sex hormone expression occurring at puberty.

Such elevation in expression following birth is commonly observed for many hepatic enzymes and may be due to an increase in xenobiotic
metabolism which occurs concomitantly with birth.

The differences in mdr 2 mRNA expression noted between the Balb/c mouse strain and other strains examined was of interest. Differences in the expression of mdr 2 transcripts was also noted in a study by Teeter et al (1990) in which he noted that individual variations in the levels of mdr gene expression within the same strain was apparent and especially true for mdr 2. Whether the low level of mdr 2 gene expression in the Balb/c mouse strain is due to strain variation or individual variation is not known, since these observations are still preliminary ones, made on a small group of animals.

Further studies are required to determine whether the variation in mdr 2 gene expression in different mice is genetically determined. Animal models with different levels of mdr 2 gene expression may be useful in studies on the physiological role of the mdr 2 gene product.
Considerable evidence has accumulated to indicate that P-gp plays a central role in both intrinsic and acquired resistance to cancer chemotherapy. Inhibition of P-gp may aid in overcoming such resistance. An attractive approach to inhibit the function of P-gp is to modulate or suppress P-gp at the transcriptional level. It was presumed that P-gp, like enzymes such as cytochrome P450s may be part of an adaptive response system against environmental toxins. Therefore in an analogous way to the P450 system, P-gp may be subject to regulation by foreign chemicals and hormones. To circumvent the resistance conferred by P-gp, an understanding of how it is regulated is of obvious importance.

The major aim of the work presented within this thesis was to determine the factors which contribute to the regulation of expression of rodent mdr genes. The findings presented strongly suggests that both xenobiotic and hormonal controls are involved in such regulation.

In conjunction with in vivo xenobiotic regulation studies in rat and mouse, in vitro studies using established cell lines of hamster origin were performed to investigate whether or not carcinogens act as substrates for P-gp without prior metabolism by cytochrome P450 enzymes. It was concluded that unmetabolised carcinogens failed to act as substrates for P-gp in cell lines which express the protein to high levels.

7.1 Xenobiotic Regulation

At the outset of the project, both C219 and MRK16 monoclonal antibodies were available to study the regulation of mdr proteins. However, both antibodies were of limited usefulness for different reasons. Monoclonal antibody C219 was considered to cross-react with proteins, other than P-gp, which were not involved in drug efflux. Thiebaut et al (1989) concluded that the antibody cross-reacted with muscle myosin. This conclusion was reiterated by Wishart et al (1990) following immunohistochemical studies using C219 on frozen sections of skeletal and granulation tissue, known to
contain myosin. However, more recent findings are not consistent with this proposal. Bradley et al (1990) demonstrated the specific expression of the class III hamster P-gp isoform, homologous to mouse mdr 2, in cardiac muscle fibres and a subset of striated muscle fibres using C219. To prove that specific staining was achieved, the antibody was competed with excess of the C219-epitope peptide; staining which was non-specific was not removed by co-incubation with the peptide. This study demonstrated that C219 did not cross-react non-specifically with myosin as previously reported.

Monoclonal antibody MRK16, generated against human myelogenous leukemia K-562 cells resistant to adriamycin (K562-Adm), was found to be species specific (Hamada and Tsuruo, 1986). Such an antibody was therefore of no use in the investigation of rodent P-gp expression.

In order to study the expression of P-gp in rodent liver, it was decided to raise polyclonal antibodies for use in Western blotting and immunohistochemistry. The method chosen for raising antibodies was to immunise rabbits with peptide conjugates. The peptides represented 5 sequences of between 5 and 15 amino acids in length covering different parts of the human mdr 1 gene (Chen et al, 1986). This strategy was employed in an effort to raise antisera against specific regions of P-gp which were considered to be highly conserved, extracytoplasmic or potentially immunogenic. Such a strategy for raising antibodies was also adopted and reported subsequently by Marquadt et al (1990) and Tanaka et al (1990). Marquadt et al (1990) prepared antisera against peptides that corresponded to the deduced sequence of human mdr 1 and found these to be highly reactive with P-gp contained in HL60 cells, isolated for resistance to vincristine. Tanaka et al (1990) generated antibodies against the amino- and carboxy-terminal halves of P-gp using recombinant protein fragments produced in E. Coli. These antibodies specifically immunoprecipitated 3H-azidopine-labelled P-gp from mdr KB-C1 cells.

This type of strategy for raising antibodies differs from the ones employed by Kartner et al (1985) and Hamada and Tsuruo (1986). Kartner raised the C219 monoclonal antibody by immunizing mice with purified
plasma membranes from CHRB30 and CEM VLB500 P-gp expressing cell lines. In contrast, Hamada and Tsuruo immunized mice with intact K-562/ADM cells to raise the MRK16 antibody.

In the present study 2 antibodies of high titre were raised following immunisation of rabbits with mdr peptide conjugates. Both these antibodies cross-reacted with P-gp in mdr hamster and human cell lines. Polyclonal antibody 21 detected P-gp in bovine adrenal medulla and adrenal cortex microsomes to the same level found in the CHO colchicine resistant cell line CHRC5. Immunoreactivity was shown to be specific by competing the PA21 antibody with an excess of the PA21 epitope peptide; staining that remained following co-incubation with excess peptide was considered non-specific. Similar high levels of P-gp expression have been reported in the hamster adrenal cortex (Bradley \textit{et al}, 1990) and the mouse adrenal gland (Croop \textit{et al}, 1989) as those found in bovine adrenal in the present study. Due to the high levels of expression found in bovine adrenal and the suggested role of P-gp in steroid transport (Thiebaut \textit{et al}, 1987), primary bovine adrenal cell culture would be a potentially useful model to study the regulation of P-gp expression. The relatively large size of the adrenal in this mammalian species would facilitate these kinds of study using primary cell culture.

Polyclonal antibody 21 failed to detect P-gp in normal rat liver and kidney microsomes. Since the sequence of the rat P-gp protein has not yet been published, it is not known whether the epitope (1273-1280 of human mdr 1) against which the peptide antibody was raised is conserved in this rodent species. Low sequence homology in this region of the mdr protein may account for the lack of cross-reactivity in liver and kidney. In contrast, PA61 detected P-gp in normal rat and mouse liver as well as the mdr hamster cell line CHRC5. This antibody was raised against a peptide region which mapped to the putative ATP binding site of human mdr 1. From the known mouse and hamster sequences, homology to the human mdr 1 sequence was compared and found to be between 80-100%. This probably explains the strong inter-species cross-reactivity shown by PA61.

Unfortunately, neither PA21 nor PA61 were effective in detecting differences between P-gp expression levels in the mdr cell line CHRC5 and
its parental sensitive cell line AuxB1 in immunohistological studies. Both the antibodies cross-reacted with other proteins present in the membrane and cytosol. This is not unexpected since the antibodies were raised against short peptide sequences which could potentially cross-react with many proteins. Antibodies raised against the entire purified P-gp would have an advantage in this respect. Pre-adsorption of the antibodies with pre-immune serum may have increased the specificity of the two antibodies. In retrospect, it would have been more useful to raise antibodies specific for particular rodent proteins, for example the products of mouse mdr 1, 2 or 3. Mouse liver is known to express the products of mdr 1, 2 and 3 with mdr 2 expression being highest. Gene specific antibodies would have been more useful in differentiating between the gene products in liver tissue, and would have allowed an examination of the factors regulating the expression of particular mdr gene products at the protein level.

The expression of 3 hamster P-gp isoforms have been studied in normal hamster tissues by immunohistochemical analysis using isoform-specific monoclonal antibodies (Bradley et al, 1990). It was shown that each isoform is expressed in small distinct cell groups and is tightly regulated, in some cases by hormonal control. These distinct patterns of expression of P-gp has relevance to chemotherapy. An understanding of the expression of distinct isoforms in normal cells may elude to the basis of P-gp expression in malignant cells.

Since it was already established that certain well-known hepatocarcinogens induced the mRNA levels of P-gp in rat liver (Burt and Thorgeirsson, 1988), studies were conducted to examine the possibility of carcinogens acting as substrates for P-gp. It has been previously established, from examination of rodent cytochrome P450 drug metabolising enzymes, that compounds which act as inducers of different cytochrome P450 isozymes also act as substrates for those enzymes (see review of Gonzalez, 1989). Co-induction of P-gp and cytochrome P450 1 and 2 gene families, representing a coordinated response of rats against harmful xenobiotics, has been suggested by other studies (Burt and Thorgeirsson, 1988). On the basis of potential overlapping regulation of cytochrome P450s and mdr genes, the possibility of carcinogens acting as P-gp substrates was studied.
The mdr cell line CHRC5 and its parental cell line AuxB1 were used in a tissue culture assay to determine whether or not carcinogens could compete with P-gp for efflux of colchicine, a well known P-gp substrate. The carcinogens studied included 2 acetylaminoflourene and aflatoxin B1. These have previously been shown to induce P-gp expression in rats in vivo (Burt and Thorgeirsson, 1988). These compounds are also known to be metabolised by and weak inducers of cytochrome P450 gene families 1 and 2 (Astrom et al, 1986; Ishii et al, 1986). Benzo(a)pyrene, also studied as a potential substrate for P-gp, is also actively metabolised by cytochrome P450 1A1 (Goldstein et al, 1982).

Both cell lines were grown exponentially for 4 days in the presence of a non-toxic dose of carcinogen and a range of colchicine concentrations. The cell lines showed a differential response to colchicine; CHRC5 cells were 21 fold more resistant than AuxB1 cells.

The assay was designed to show whether or not the unmetabolised carcinogens could compete with colchicine for P-gp efflux and hence increase the toxic effect of colchicine in the P-gp expressing cell line. However, the compounds used in the assay failed to increase the toxicity of colchicine towards the P-gp expressing cell line.

It was concluded from the study that unmetabolised carcinogens could not compete for P-gp efflux and hence do not act as substrates for P-gp. The results from this work may be due to the lack of phase I metabolism in the immortalised mdr cell line. The requirement for cytochrome P450 metabolism of the carcinogens in order to interact with P-gp correlates well with the hypothesis proposed by Burt and Thorgeirsson (1988) which suggested the coordinated response of mdr and cytochrome P450 families 1 and 2 against xenobiotics. Such a coordinate response may be due to the requirement for P450 metabolism of compounds before they can act as P-gp inducers.

Xenobiotic regulation of P-gp was studied in vivo using rodent species. Two rat strains, Wistar and Fischer, and two mouse strains, DBA2/N and C57BL/6, were examined. Regulation of mdr gene expression by xenobiotics in these rodent species were shown to vary considerably. However, inter-strain variation was negligible.

253
In order to determine the type of compounds capable of inducing mdr expression, rats were treated with a range of compounds known to be inducers of specific cytochrome P450 isozymes, hepatotoxins and carcinogens. Following treatment of the animals using standard dosing regimes the expression of the inducible cytochrome P450 enzymes was examined at both the mRNA and protein level. The compounds were found to induce specific cytochrome P450 enzymes, as reported in the literature (for a review see Gonzalez, 1989). At the mRNA level, the carcinogens 2-acetylamino fluorene (2-AAF), diethylnitrosamine (DEN) and aflatoxin B1 (AFB1) induced the expression of rat mdr. It has been previously proposed that mdr genes may respond to the same set of inducers as cytochrome P450s 1 and 2. Since polycyclic aromatic hydrocarbons are known to affect gene expression via the cytoplasmic aromatic hydrocarbon (Ah) receptor (Eisen et al, 1983), it was suggested that various ligands, such as AFB1, on binding the Ah receptor, may result in induction of cytochrome P450 1 or mdr (Burt and Thorgeirsson, 1988). The results from the present studies disagree with such a hypothesis. 3-methylcholanthrene and β-naphthoflavone, both known to potently induce CYP1A1 via the Ah locus, failed to induce mdr mRNA levels whereas 2-AAF and AFB1, which are weak inducers of CYP1A1, successfully induced mdr mRNA. These results strongly suggest that the regulation of mdr is not via the Ah locus. The original hypothesis was subsequently retracted following further studies conducted in an isolated hepatocyte system using the very potent cytochrome P450 1A inducer TCDD (Thorgeirsson et al, 1991). TCDD is the definitive compound for the Ah receptor and it was expected to be the most potent inducer of mdr. At concentrations of TCDD found to cause maximal induction of CYP1A, induction of mdr expression was very poor, therefore the proposed involvement of the Ah receptor in mdr regulation was disproved. However, an alternative receptor (mdr-R) sharing overlapping substrate specificity with the Ah receptor and involved in xenobiotic induction of mdr expression was hypothesised (Thorgeirsson et al, 1991). Experiments conducted to show that inhibition of protein synthesis in primary rat hepatocytes induced mdr mRNA levels also suggested the involvement of a distinct trans-acting regulatory protein (Thorgeirsson et al, 1991). If such a receptor for mdr
induction exists, antagonists for this receptor could potentially overcome resistance.

Results of mdr induction in the rat differed from the mRNA level to the protein level. 2-AAF and AFB1 induced both mdr mRNA and protein levels. However some compounds which did not induce mdr mRNA, such as dexamethasone, arachlor and pyrazole, did induce mdr protein levels. These findings suggest that the regulation of mdr by xenobiotics may occur by both transcriptional and post-transcriptional mechanisms depending on the compound. AFB1, for example, may induce mdr protein levels by increasing transcription rates or improving message stability whereas dexamethasone may induce mdr protein levels by increasing the translatability of the mdr message. In future, to assess whether or not mRNA levels are induced by increased transcription rates or increased message stability, nuclear run-off assays could be done.

Diethylnitrosamine decreased the mRNA expression of cytochrome P450 enzymes but induced mdr mRNA levels. On this basis, the induction of mdr mRNA levels by diethylnitrosamine appeared to differ from that of 2-AAF and AFB1. DEN caused widespread necrosis in the liver leading to a decrease in cytochrome P450 expression. However, at the start of animal dosing, DEN may have initially induced cytochrome P450 enzymes, in a manner similar to 2-AAF and AFB1. Therefore, it cannot be concluded whether or not DEN induces mdr mRNA by the same or different mechanisms as 2AAF and AFB1. By dosing rats with DEN at a less toxic level it could be determined whether or not cytochrome P450 and mdr expression is co-ordinated following administration of DEN.

The regulation of mdr mRNA levels by cytotoxic agents was recently studied in rodent cells (Chin et al, 1990). It was found that mdr levels in immortalised rodent cells increased substantially following exposure of these cells in vivo to chemotherapeutic agents such as adriamycin, duanomycin, m-AMSA and mitoxantrone. From nuclear run-off experiments, the increase in mRNA was suggested to be due to both transcription and post-transcriptional mechanisms. This was concomitant with a down-regulation of topoisomerase II. This type of concerted response was hypothesised to be a mechanism by which cells could protect themselves
against the toxic effects of these drugs.

In this thesis, the overall findings of mdr regulation by xenobiotics in rats were as follows:

1. Hepatocarcinogens (for example 2-AAF, DEN and AFB1) induced two rat mdr genes (5.3 kb and 4.3 kb). The identification of these genes is unknown, although a recent report regarding the cloning and sequencing of the first rat mdr cDNA suggests that the 4.3 kb transcript may represent the homologue of the mouse mdr 1 gene (Silverman et al, 1991).

2. P450 inducers known to operate via the Ah locus failed to induce mdr mRNA levels. This mechanism of mdr regulation was therefore refuted. An alternative receptor with overlapping substrate specificity, as suggested by Thorgeirsson et al (1991), is a viable alternative hypothesis.

3. The induction of mdr mRNA and protein in the rat does not appear to mimic the induction of a specific cytochrome P450 gene family or families as previously proposed (Burt and Thorgeirsson, 1988).

Xenobiotic regulation of mdr induction in mouse was also studied in the course of the thesis. Gene-specific probes for mouse mdr 1, 2 and 3, were reported to correspond to discrete regions showing low sequence homology among the 3 genes (Raymond et al, 1990). It has previously been established that mouse mdr 1 cDNA can convey the mdr phenotype when expressed in the drug-sensitive Chinese Hamster LR 73 cells (Gros et al, 1986). However, mdr 2 mouse cDNA failed to confer drug resistance following similar transfection experiments (Gros et al, 1988). Using these gene specific clones, it was shown that mdr expression was associated with the independent expression of mdr 1, mdr 3 but not mdr 2 (Raymond et al, 1990). The characterisation of the mouse genes has also involved studies into the tissue-specific expression of these genes in normal mouse tissues (Croop et al, 1989). It was found that the expression level of each mouse
The mdr gene was dramatically different from tissue to tissue. Specific mRNA transcript sizes of 4.5, 5 and 6 kb for mouse mdr 1, 2 and 3 respectively were detected. Mouse liver was shown to express all 3 genes to some extent, although mdr 2 was identified as the major mdr RNA species in the tissue. Kidney was found to express mdr 1 more strongly than liver.

Since the liver is the major organ of detoxification it was decided to study the expression of mouse mdr genes in this tissue. Foreign compounds are known to both induce and suppress cytochrome P450 gene expression. In order to determine whether or not this was the case for the mouse mdr genes, mice were treated with a wide range of compounds including known modulators of cytochrome P450 as well as chemotherapeutic drugs and carcinogens. Most of the compounds, including the anti-cancer drugs, did not alter the expression of either mouse mdr 2 or 3. Similar to the findings in rat, the polycyclic aromatic hydrocarbons known to operate via the Ah locus, for example 3-methylcholanthrene, had no effect on mouse mdr expression. Of the compounds tested, DEN alone induced mdr 1 mRNA levels and mdr 2 mRNA was induced by vincristine (~2 fold), etoposide (~2 fold), progesterone (~2 fold) and the phenolic antioxidant butylated hydroxyanisole (BHA) (~3 fold). A profound effect on hepatic mdr expression was seen with the phenobarbital-like inducing agent 1,4 bis [2-(3-dichloropyridyloxy)] benzene (TCPOBOP). TCPOBOP is a herbicide contaminant and is known to be an extremely potent modulator of gene expression (Poland et al, 1980). Phenobarbital and dexamethasone had similar but less marked effects. These 3 agents had the effect of suppressing the expression of mdr 2 and mdr 3 mRNA in mouse liver. TCPOBOP suppressed the level of mdr 2 well below that of control animals.

To determine the duration of the effect of the TCPOBOP response, mice were sampled for up to 3 months following a single injection (75 vg) of TCPOBOP and the effects on cytochrome P450 and mdr expression were studied. Cytochrome P450 enzyme levels, in all the xenobiotic inducible cytochrome P450 families, were still highly induced following this period. This effect has been previously reported and is explained by the fact that TCPOBOP is not metabolised or excreted but stored in adipose tissue (Poland et al, 1981).
The mechanism by which TCPOBOP is effective is unknown at present. Since dexamethasone can also induce the expression of similar cytochrome P450s as TCPOBOP, it was suggested that the effects may involve the glucocorticoid receptor. This has now been shown not to be the case (C. R. Wolf, personal communication). However, this does not exclude the possibility that TCPOBOP may be a ligand for a hitherto unidentified receptor. Nebert (1990) proposed that chemicals, such as TCPOBOP, that can activate particular cytochrome P450s are ligands for receptors in the nuclear receptor super-family.

The effects of TCPOBOP on gene expression in mice are the opposite of those associated with the development of drug resistance in rat liver preneoplastic lesions (Sato, 1989) and in a variety of drug resistant cell lines (Cowan et al, 1986). Under these circumstances, cytochrome P450 gene expression is suppressed whereas mdr is induced. It may be possible to use TCPOBOP to reverse the expression of mdr genes and induce cytochrome P450 gene expression in tumour cells. Following treatment of tumourous tissue with an anticancer drug, treatment with TCPOBOP may increase the metabolism of anti-cancer compounds by increasing cytochrome P450 expression but decreasing the efflux of the drug from the tumour cells by suppressing mdr expression, and hence improve the usefulness of treatment. To study whether or not TCPOBOP can induce cytochrome P450 genes and suppress mdr gene expression in tumours, it will be necessary to treat human tumour xenografts in nude mice with the compound and measure both gene and protein expression.

The mechanism by which TCPOBOP can regulate gene expression is obviously of great interest and importance. Studying and comparing the regulatory elements of the genes which the compound can induce or suppress may determine the important elements involved in such regulation. The regulation of mdr 1 gene expression in the mouse has been examined by Raymond and Gros (1990). They concluded that the regulation of expression of mdr 1 may be conferred through interaction of a combination of positive and negative cis-acting factors with regulatory trans-acting factors. It was theorised that negative trans-acting factors could suppress the basal transcription of cells in which mdr 1 is not expressed.
In a similar manner, TCPOBOP may be able to effect the expression of trans-acting factors involved in mdr gene regulation and cause gene transcription to be suppressed. Alternatively, TCPOBOP may be able to alter the methylation state of the mdr gene and in this way suppress transcription of mRNA.

In future, to determine the regulatory elements involved in TCPOBOP regulation of the mdr 2 and 3 genes, chimeric genes containing 5' deletions in the mdr 2 or mdr 3 promotor region could be constructed. These constructs, fused to the bacterial chloramphenicol acetyltransferase (CAT) reporter gene (Gorman et al, 1982), could be transfected into cells and used in transient expression assays. This system could measure the level of gene expression in the constructs and allow an assessment of the elements involved in basal and TCPOBOP inducible expression of the mouse mdr 2 and mdr 3 genes.

7.2 HORMONAL REGULATION

Studies conducted into the regulation of the mdr genes were based on the premise that the products of these genes, like cytochrome P450 enzymes, may be part of an adaptive response to toxic insult. Therefore, as found with the cytochrome P450 system, P-gp may be regulated by hormones (Skett,1987). Hormonal control of both phase I (cytochrome P450) and phase II (glutathione S-transferase) drug metabolising enzymes has been previously studied.

In the present study, it was found that both mdr 2 and mdr 3 gene expression is regulated by pituitary hormones. However, such regulation was considered to be complex since depletion of growth hormone, thyroid hormone and changes in the status of adrenal hormones failed to influence the expression of these genes. No significant differences between male and female mdr gene expression was detected. The substantial increase in mdr 2 expression in the liver following birth tends to suggest that mdr 2 may play a significant role in the adaptive response of an organism to toxic compound exposure which increases at this time. Cytochrome P450s and other drug
metabolising enzymes are known to be elevated in response to increased xenobiotic metabolism during development (Gonzalez et al, 1987).

7.3 CONCLUDING REMARKS

The original premise on which the studies in this thesis were based was that P-gp, like enzymes such as cytochrome P450 dependent monooxygenases, may be part of an adaptive response system against environmental toxins. By analogy to cytochrome P450s, it was proposed that P-gp may be subject to regulation by hormones and foreign chemicals.

From the main findings of the thesis it can be concluded that xenobiotic compounds can both induce and suppress the expression of mdr genes in the rodent species.

In the rat, compounds known to be weak inducers of the cytochrome P450 1 gene family were shown to induce rat hepatic mdr expression. However, the involvement of the Ah locus in the regulation of such expression, as suggested by Burt and Thorgeirsson (1988), was disproved, in agreement with subsequent literature (Thorgeirsson et al, 1991). The hepatotoxic compound DEN induced rat mdr expression liver.

From these findings it was concluded that mdr and cytochrome P450 genes may be co-regulated and that regulation of gene expression may operate via common regulatory elements. A model for xenobiotic induced regulation of mdr gene expression in rat was suggested by Thorgeirsson et al (1991) and is suitable for explaining the results obtained in this thesis with regard to induction of rat mdr with foreign compounds.

The model proposes that a receptor (mdr-R) is involved in the induction of mdr gene expression and shares overlapping substrate specificity with the Ah locus. The model also suggests the presence of a trans-acting regulatory protein involved in the regulation of mdr gene expression, distinct from the proposed receptor.

The compounds shown to induce mdr in the rat (2-AAF, AFB1 and DEN) may complex with the proposed receptor and induce mdr expression as well as cytochrome P450 gene expression. Due to the high dose of DEN
used to treat the rats in the present study, induction of cytochrome P450 cannot be measured following DEN treatment due to the necrosis of cells normally expressing cytochrome P450 genes to high levels.

In the mouse, the phenobarbital-like cytochrome P450 inducing compound TCPOBOP induced cytochrome P450 gene expression to high and sustainable levels with concomitant decreases in mdr 2 and mdr 3 gene expression. It is proposed that a receptor for TCPOBOP may be able to form a substrate/receptor complex which can induce cytochrome P450 genes but suppress mdr gene expression. Similar inducers such as phenobarbital and dexamethasone, which are known to induce similar cytochrome P450 enzymes, also suppressed the expression of mdr genes.

Various experimental findings support a receptor mechanism for TCPOBOP induction. Poland et al (1980, 1981) identified TCPOBOP as a potent agonist exhibiting a graded response which was tissue and species specific. Furthermore, Kelley et al (1985) conducted studies into the induction of cytochrome P450s in mice by ten structural analogues of TCPOBOP and found that these analogues had distinct structure-dependent potencies. These findings showed that any changes in the pyridyloxy or benzene ring of the compound affected enzyme induction activity. These studies provide evidence for a receptor-mediated response although such a receptor has not yet been identified.

These data regarding the induction and suppression of mdr gene expression in the rat and mouse respectively, via cytochrome P450 inducing agents, show that distinct rodent species display differences regarding the regulation of mdr gene expression. In the rat, regulation of mdr gene expression appears to be via a receptor similar to the product of the Ah locus. Compounds which can induce mdr gene expression appear to belong to cytochrome P450 inducers which operate via such a receptor. However, in the mouse mdr mRNA levels are suppressed by phenobarbital-like compounds. These cytochrome P450 inducers are considered to operate via a phenobarbital-like receptor. Mdr mRNA levels in the mouse are induced by butylated hydroxyanisole (BHA) and some chemotherapeutic agents. BHA is a phenolic antioxidant and known to induce glutathione S-transferase gene expression via xenobiotic regulatory sequences (XREs). Mouse mdr gene
expression has also been shown to be positively regulated by pituitary hormones. Regulation of mouse mdr genes appears to be somewhat complex and may involve both positive and negative regulatory elements.

Further studies into the regulatory elements contained in the promoters of the mouse mdr genes should shed light on the mechanisms involved in both xenobiotic and hormonal regulation.
BIBLIOGRAPHY

Adams, D. J., Carmichael I, J. and Wolf, C. R.
Altered mouse bone marrow glutathione S-transferase levels in response to cytotoxins.
Cancer Res. 45 (1985) 1669 - 1673.

Induction and suppression of glutathione S-transferases by interferon in the mouse.

Agius, C. and Gidari, A. S.
Effect of streptozotocin on the glutathione S-transferase of mouse liver cytosol.

Al-Dujaili, E. A. S., Williams, B. S. and Edwards, C. R. W.
The development and application of a direct immuno-assay for corticosterone.

Al-Shawi, R., Burke, J., Jones, C. T., Simons, J. P. and Bishop, J. O.
A Mup promoter-thymidine kinase reporter gene shows relaxed tissue-specific expression and confers male sterility upon transgenic mice.

Alvarez, K., Carillo, A. Yuan, P. M., Kawano, H., Mroimoto, R. I. and Reddy, J. K.
Identification of peroxisome proliferator binding protein as a member of the heat shock protein HSP 70 family.

Astrom, A., Birberg, W., Pilotti, A. and DePierre, J. W.
Induction of different isozymes of cytochrome P450 and of microsomal epoxide hydrolase in rat liver by 2-acetylaminofluorene and structurally related compounds.

Characterisation of drug-metabolising systems in hyperplastic nodules from the livers of rats receiving 2-acetylaminofluorene in their diet.
Atchison, M. and Adesnik, M.
A cytochrome P450 multigene family: characterisation of a gene activation by phenobarbital administration.

Baas, F. and Borst, P.
The tissue dependent expression of hamster P-glycoprotein genes.

Bains, S. K., Gardiner, S. M., Mannweller, K., Gillett, D. and Gibson, G. G.
Immunochemical study on the contribution of hypolipidaemic-induced cytochrome P450 to the metabolism of lauric acid and arachodonic acid.

Baskin, F., Rosenberg, R. N. and Dev, V.
Correlation of double-minute chromosomes with unstable multidrug cross-resistance in uptake mutants of neuroblastoma cells.

Batist, G., Tulpule, A., Sinha, B. K., Katkis, A. G., Myers, C. E. and Cowan, K. H.
Overexpression of a novel anionic glutathione S-transferase in multidrug resistant human breast cancer cells.

Beaune, P. H., Umbenhauer, D. R., Bork, R. W., Lloyd, R. S. and Guengerich, F. P
Isolation and sequence determination of a cDNA clone related to human cytochrome P450 nifedipine oxidase.

Beck, W. T.
Cellular pharmacology of Vinca alkaloid resistance and it's circumvention.

Beck, W. T., Cirtain, M. C., Look, A. T. and Ashmun, T. A.
Reversal of Vinca alkaloid resistance but not multidrug resistance in human leukemic cells by verapamil.
Cancer Res. 46 (1986) 779 - 784.

Beck, W. T., Mueller, T. J. and Tanzer, L. R.
Altered surface membrane glycoproteins in Vinca alkaloid-resistant human leukemic lymphoblasts.
Can. Res. 39 (1979) 2070 - 2076

Beckett, G. J., Boyd, R., Beddows, S. E. and Hayes, J. D.
Decreased hepatic A, AA and L concentrations produced by prolonged thyroid hormone administration.

Beckett, G. J., Hunter, J. E. and Hayes, J. D.
Hepatic damage in the rat from administration of thyroxine or triiodothyronine assessed by measurement of plasma glutathione S-transferase YaYa concentrations.
Bell, D. R., Gerlach, J. H., Kartner, N., Bruick, R. N. and Ling, V.
Detection of P-glycoprotein in ovarian cancer: a molecular marker associated with multidrug resistance.

Verapamil reversal of doxorubicin resistance in multidrug resistant human myeloma cells and association with drug accumulation and DNA damage.

Benson, A. M., Batzinger, R. P., Ou, S.-Y. L., Bueding, E., Cha, Y.-N. and Tallalay, P.
Elevation of hepatic glutathione S-transferase activities and protection against mutagenic metabolites of benzo(a)pyrene by dietary antioxidants.
Cancer Res. 38 (1978) 4486 - 4495.

Benson, A. M., Cha, Y.-N., Bueding, E., Heine, H. S. and Talalay, P.
Elevation of extrahepatic glutathione S-transferase and epoxide hydratase activities by 2(3)- tert-butyl-4-hydroxyanisole.
Cancer Res. 39 (1979) 2971 - 2977.

Expression of insulin-like growth factor I stimulates normal somatic growth hormone-deficient transgenic mice.
Endocrinology 127 (1990) 1033 - 1040.

Bhushan, A., Kermode, J. C., Posada, J. and Tritton, T. R.
Anthracycline resistance.
Ozols, R. F. (ed.)
Kluwer Academic Publishers, Boston, M. A.

Biedler, J. L., Chang, T., Meyers, M. B., Peterson, R. H. F. and Spengler, B. A.
Drug resistance in chinese hamster lung and mouse tumour cells.

Birnboim, H. C.
Rapid extraction of high molecular weight RNA from cultured cells and granulocytes for Northern analysis.

Birnboim, H. C. and Doly, J.A
Rapid alkaline extraction procedure for screening recombinant plasmid DNA.
Nucleic Acid Res. 7 (1979) 1513 - 1523.

Black, S. D. and Coon, M. J.
P450 cytochromes : Structure and Function.
Transgenic mice with inducible dwarfism.

Bosmann, H. B.
Mechanisms of cellular drug resistance.
Nature 233 (1971) 566 - 569

Bost, K. L. and Black, J. E.
Molecular characterisation of a corticotropin (ACTH) receptor.'

Bousquet, W. F., Rupe, B. D. and Miya, T. S.
Endocrine modulation of drug responses in the rat.

Bradley, G., Georges, E. and Ling, V.
Sex-dependent and independent expression of the P-glycoprotein
isoforms in chinese hamster.

Bradley, G., Naik, M. and Ling, V.
P-glycoprotein expression in multidrug resistant ovarian carcinoma cell
lines.
Cancer Res. 49 (1989) 2790 - 2796.

Bradley, G., Juranka, P. F. and Ling, V.
Mechanisms of multidrug resistance.

Burt, R. K. and Thorgeirsson, S. S.
Coinduction of MDR-1 multidrug resistant and cytochrome P450 genes in
rat liver by xenobiotics.

Burt, R. K., Garfield, S., Johnson, K. and Thorgeirsson, S. S.
Transformation of rat liver epithelial cells with v-H-ras or v-raf causes
expression of mdr-1, glutathione S-transferase P and increased resistance
to cytotoxic chemicals.

Buschman, E. and Gros, P.
Functional analysis of chimeric genes obtained by exchanging homologous
domains of the mouse mdr 1 and mdr 2 genes.

Cameron, R., Sweeney, G. D., Jones, K., Lee, G. and Farber, E.
A relative deficiency of cytochrome P-450 and aryl hydrocarbon
[Benzo(a)pyrene] hydroxylase in hyperplastic nodules induced by 2-
acetylanthaminofluorene in rat liver.
Cancer Res. 36 (1976) 3888 - 3893.

Campbell, A. M.
Laboratory techniques in biochemistry and molecular biology.
Burdon, R. H. and Knippenberg, P. H. (eds.)

266
Candell, J., Valle, V. and Soler, M.
Acute intoxication with verapamil.
Chest 75 (1979) 200 - 201.

Carmichael, J. D., DeGraff, W. G., Gazdar, A. F., Minna, J. D. and Mitchell, J. B.
Evaluation of a tetrazolium based semi-automated colourimetric assay:
Assessment of chemosensitivity testing.

Carmichael, J., Adams, D. J., Ansell, J. and Wolf, C. R.
Glutathione and glutathione S-transferase levels in mouse granulocytes fo
Cancer Res. 46 (1986) 735 - 739.

Carmichael, J., DeGraff, W. G., Gazdar, A. F., Minna, J. D. and Mitchell, J. B.
Evaluation of a tetrazolium-based semiautomated colorimetric assay:
Assessment of radiosensitivity.
Cancer Res. 47 (1987b) 943 - 946.

Carr, B.
Pleiotropic drug resistance in hepatocytes induced by carcinogens
administered to rats.

Carr, B. I. and Laishes, B. A.
Carcinogen-induced drug resistance in rat hepatocytes.

Carr, B. I., Huang, T. H., Buzin, C. H.J. and Itakura, K.
Induction of heat shock gene expression without heat shock by hepatic
carcinogens and during hepatic regeneration in rat liver.
Cancer Res. 46 (1986) 5106 - 5111.

Casazza, J. P., Felver, M. E. and Veech, R. L.
The metabolism of acetone in rat.

Chafouleas, J. G., Bolton, W. E. and Means, A. R.
Potentiation of bleomycin lethality by anti-calmodulin drugs: a role for
calmodulin in DNA repair.

Chan, H. S. L., Thorner, P., Haddad, G., Gallie, B. L. and Ling, V.
Immunohistochemically identified P-glycoprotein correlates with adverse
outcome in childhood soft tissue sarcoma.

Chambers, S. K., Hait, W. N., Kacinski, B. M., Keyes, S. R. and
Hanschumacher, R. E.
Enhancement of anthracycline growth inhibition in parent and multidrug
resistant chinese hamster ovary cells by cyclosporin A and it's analogues.
Cancer Res. 49 (1989) 6275 - 6279.

Chasseaud, L. F.
The role of glutathione and glutathione S-transferases in the metabolism of chemical carcinogens and other electrophilic agents.

Chen, C.-j., Chin, J. E., Ueda, K., Clark, D. P. Pastan, I., Gottesman, M. M. and Roninson, I. B.
Internal duplication and homology with bacterial transport proteins in the mdr 1 (P-glycoprotein) gene from multidrug resistant human cells.

Chen, C.-j., Clark, D., Ueda, K., Pastan, I., Gottesman, M. M. and Roninson, I. B.
Genomic organisation and evolution of the human multidrug resistance (mdr 1) gene.

Chen, G. L., Yang, L., Rowe, T. C., Halligan, B. D., Tewey, K. M. and Lui, L. F.
Non-intercalative antitumour drugs interfere with the breakage-reunion reaction of mammalian DNA Topoisomerase II.

Etiology of growth hormone deficiency in little, Ames and Snell dwarf mice.

Chin, K-V., Chauhan, S. S., Pastan, I. and Gottesman, M. M.
Regulation of mdr RNA levels in response to cytotoxic drugs in rodent cells.

An altered pattern of cross-resistance in multidrug resistant cells results from a spontaneous mutations in the mdr 1 (P-glycoprotein) gene.

Church, G. M. and Gilbert, W.
Genomic sequencing.

Clark, R. G. and Robinson, I. C. A. F.
Effects of a fragment of human growth hormone-releasing factor in normal and 'little' mice.

Structural and functional analysis of the mouse mdrlb gene promoter.

Conney, A. H.
Induction of microsomal enzymes by foreing chemicals and carcinogenesis by polycyclic aromatic hydrocarbons.
G. H. A. Clowes Memorial Lecture.

268
Conney, A. H., Miller, E. C. and Miller, J. H.
The metabolism of methylated aminoazo dyes. V. Evidence for induction of enzyme synthesis in the rat by 3-methylcholanthrene.

Photochemical action spectrum of the terminal oxidase of mixed function oxidase systems.
Science 147 (1965) 400 - 402.

Copeland, K. C., Underwood, L. E. and Van Wyk, J. J.
Induction of immuno-reactive Somatomedin C in human serum by growth hormone: dose dependent relationships and effect on chromatographic profiles.

Multidrug resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites.

Cornwell, M. M., Pastan, I. and Gottesman, M. M.
Certain calcium channel blockers bind specifically to multidrug resistant human KB carcinoma membrane vesicles and inhibit drug binding to P-glycoprotein.

Cornwell, M. M., Safa, A. R., Felsted, R. L. and Gottesman, M. M.
Membrane vesicles from multidrug resistant human cancer cells contain a specific 150 to 170 kDa protein detected by photoaffinity labelling.

ATP binding properties of P-glycoprotein from multidrug resistant KB cells.

Cowan, K. H., Batist, G. and Tulpule, A.
Similar biochemical changes associated with multidrug resistance in human breast cancer cells and carcinogen-induced resistance to xenobiotics in rats.

Cowell, I. G., Dixon, K. H., Pemble, S. E., Ketterer, B. and Taylor, J. B.
The structure or the human glutathione S-transferase gene.

Cowell, J. K.
Double minutes and homogeneously staining regions : gene amplification in mammalian cells.

Cox, R. A.

269
The use of guanidinium chloride in the isolation of nucleic acids.

Croop, J. M., Raymond, M., Haber, D., Devault, A., Arceci, R. J., Gros, P. and Houseman, D.
The three mouse multidrug resistance (mdr) genes are expressed in a tissue specific manner in normal mouse tissues

Curt, G. A., Clendeninn, N. J. and Chabner, B. A.
Drug resistance in Cancer.

Cuthill, S., Poellinger, L. and Gustafsson, J. A.
The receptor for 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin in the mouse hepatoma cell line Hepa Iclc7: a comparison with the glucocorticoid receptor and the mouse and rat hepatic dioxin receptors.

D'Ercole, A. J., Stiles, A. D. and Underwood, L. E.
Tissue concentrations of somatomedin C; Further evidence for multiple sites of synthesis and paracrine or autocrine mechanisms of action.

Dalet, C., Blanchard, J. M., Guzelian, P., Barwick, J., Hartle, H. and Maurel, P.
Cloning of a cDNA coding for P-450 LM3c from rabbit liver microsomes and regulation of it's expression.

Dalton, W. S., Grogan, T. M., Meltzer, P. S., Scheper, R. J., Durie, B. G. M., Taylor, C. W., Miller, T. P. and Salmon, S. E.

Danks, M. K., Metzger, D. W., Ashmun, R. A. and Beck, W. T.
Monoclonal antibodies to glycoproteins of Vinca alkaloid-resistant human leukemia cells.
Cancer Res. 45 (1985) 3220 - 3224.

Dannan, G. H., Guengerich, F. P. and Waxman, D. J.
Hormonal regulation of rat liver microsomal enzymes: role of gonadal steroids in programming, maintenance and suppression of \(\Delta_4 \)steroid 5\(\alpha \)-reductase, flavin-containing monooxygenase and sex-specific cytochromes P450.

Dano, K.
Active outward transport of daunomycin in resistant Ehrlich ascites tumour cells.
David, R. M. and Nerland, D. E.

Debenham, P. G., Kartner, N., Siminovitch, L., Riordan, J. R. and Ling, V.

deJong, A. Zijlstra, J. G., deVries, E. G. E. and Mulder, N. H.
Reduced DNA topoisomerase II activity and drug induced DNA cleavage activity in an adriamycin resistant human small cell lung carcinoma cell line. Cancer Res. 50 (1990) 304 - 309.

deMartynoff, G., Pohl, V., Mercken, L., Van Ommen, G. J. and Vassart, G.

Devault, A. and Gros, P.

Dolan, C.
PhD thesis (1991), University of Edinburgh

Dragini, T. A., Manenti, G., Galliani, G. and Della Porta, G.

Dragini, T. A., Manenti, G., Galliani, G. and Weinstein, I. B.

Dreesen, T. D., Johnson, D. H. and Henikoff, S.

Earnshaw, D., Dale, J. W., Goldfarb, P. S. and Gibson, G. G.
Differential splicing in the 3' non-coding region of rat cytochrome P-452 (P450 IVA1) mRNA.
Eisen, H. J., Hannah, R. R., Legraverend, C., Okey, A. B. and Nebert, D. W.
The Ah receptor: controlling factor in the induction of drug-metabolising enzymes by certain chemical carcinogens and other environmental pollutants.
Academic Press Inc.

Eisenberg, D., Schwarz, E., Komaromy, M. and Wall, R.
Analysis of membrane and surface protein sequences with a hydrophobic moment plot.

Plasma growth hormone pattern regulates epidermal growth factor

Ellison, J. F., Ramuz, H. and Kaufmann, F.
Human mdr cancer cells exhibit a high degree of selectivity for stereoisomers of verapamil and quinidine.

Elshourbagy, N. A. and Guzelian, P. S.
Separation, purification and characterisation of a novel form of hepatic cytochrome P-450 from rats treated with pregnenolone 16a-carbonitrile.

Endicott, J. A. and Ling, V.
The biochemistry of P-glycoprotein mediated multidrug resistance.

Simultaneous expression of two P-glycoprotein genes in drug-sensitive chinese hamster ovary cells.

Eriksson, L. C., Sharma, R. N., Roomi, M. W., Ho, R. K., Farber, E. and Murray, R. K.
A characteristic electrophoretic pattern of cytosolic polypeptides from hepatic nodules generated during liver carcinogenesis in several models.

Evans, R. M., Birnberg, M. C. and Rosenfeld, M. G.
Glucocorticoid and thyroid hormones transcriptionally regulate growth hormone gene expression.

Fairbanks, G., Steck, T. L. and Wallach, D. H. F.
Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane.
Biochem. 10 (1971) 2606 - 2617

Fairchild, C. R., Ivy, S. P., Rushmore, T., Lee, G., Koo, P., Goldsmith, M. E.,
Myers, C. E., Farber, E. and Cowan, K. H.
Carcinogen-induced overexpression is associated with xenobiotic resistance in rat preneoplastic liver nodules and hepatocellular carcinomas.

Faletto, M. B., Koser, P. L., Battula, N., Townsend, G. K., MacCubbin, A. E., Gelboin, H. V. and Gurtoo, H. L.
Cytochrome P3-P450 cDNA encodes aflatoxin B1-4-hydroxylase.

Falkson, G.
Therapeutic approaches to hepatoma.
Cancer Treat. Rev. 2 (1975) 73 - 76.

Feinberg, A. P. and Vogelstein, B.A.
Technique for radiolabelling DNA restriction endonuclease fragments to high specific activity.

Ferguson, P. F. and Cheng, Y.
Transient protection of cultured human cells against antitumour agents by 12-o-tetradecanoylphorbol-13-acetate.
Cancer Res. 4 7 (1987) 433 - 441.

Fine, R. L., Patel, J. A. and Chabner, B. A.
Phorbol esters induce multidrug resistance in human breast cancer cells.

Fojo, A., Akiyama, S., Gottesman, M. M. and Pastan, I.
Reduced drug accumulation in multiple drug resistant human KB carcinoma cell lines.
Cancer Res. 4 5 (1985) 3002 - 3007.

Ford, J. M. and Hait, W. N.
Pharmacology of drugs that alter multidrug resistance in cancer.

Ford, J. M., Bruggeman, E. P., Pastan, I., Gottesman, M. M. and Hait, W. N.
Cellular and biochemical characterisation of thioxanthenes for reversal of multidrug resistance in human and murine cell lines.
Cancer Res. 50 (1990) 1748 - 1756.

Foster, B. J., Groitzinger, K. R., McKoy, W. M., Rubinstein, L. V. and Hamilton, T. C.
Modulation of induced resistance to adriamycin in two human breast cancer cell lines with tamoxifen or perhexiline maleate.

Freeman, J. E., Stirling, D., Russell, A. L. and Wolf, C. R.
Complimentary DNA sequence, deduced amino acid sequence, predicted gene structure and chemical regulation of mouse Cyp2e1.

Freseney, R. I.

Friedberg, T., Waxman, D. J., Atchison, M., Kumar, A., Haaparanta, T., Raphael, C. and Adesnik, M.

Friedlander, M. L., Bell, D. R., Leary, J. and Davey, R. A.
Comparison of Western blotting and immunocytochemistry detection of P-glycoprotein in multidrug resistant cells.

Friedman, J. M., Chung, E. Y. and Darnell, J. E.
Gene expression during liver regeneration.

Fujita, S., Kitagawa, H., Ishizawa, H., Suzuki, T. and Kenichi, K.
Age-associated alterations in hepatic glutathione S-transferase activities.

Fuqua, S. A. W., Moretti-Rojas, I. M., Schneider, S. L. and McGurie, W. L.
P-glycoprotein expression in human breast cancer cells.

Ganapathi, R., Grabowski, D., Ford, J., Heiss, C., Kerrigan, D. and Pommier, Y.
Progressive resistance to doxorubicin in mouse leukemia L1210 cells with the multidrug resistance phenotype: reductions in drug induced topoisomerase II-mediated DNA cleavage.

Garman, D. and Center, M. S.
Alterations in cell surface membrane in chinese hamster lung cells resistant to adriamycin.

Gerlach, J. H., Bell, D. R. and Karakousis, C.
P-glycoprotein in human sarcoma: Evidence for multidrug resistance.

* Isolation and characterisation of cDNA clones for cytochrome P450 immunochemically related to rat hepatic P450 form PB-1.
Georges, E., Bradley, G., Gariepy, J. and Ling, V.
Detection of P-glycoprotein isoforms by gene specific monoclonal antibodies.

Gerlach, J. H., Endicott, J. A., Juranka, P. F., Henderson, G., Sarangi, F.,
Deuchars, K. L. and Ling, V.
Homology between P-glycoprotein and a bacterial haemolysin transport protein suggests a model for multidrug resistance.

Giachelli, C. M. and Omiecinski, C. J.
Developmental regulation of cytochrome P-450 genes in rat.

Glossman, H., Ferry, D. R., Striessnig, J., Goll, A. and Moosburger, K.
Resolving the structure of the calcium channel by photoaffinity labelling.

Purification and characterisation of a second form of hepatic cytochrome P488 from rats treated with a pure polychlorinated biphenyl isomer.

Goldstein, J. A., Weaver, R. and Sundheimer, D. W.
Metabolism of 2-acetylaminofluorene by two 3-methylcholanthrene-inducible forms of rat liver cytochrome P-450.

Gonzalez, F. J., Kimura, S., Song, B-J., Pastewka, J., Gelboin, H. V. and
Hardwick, J. P.
Sequence of two related P450 mRNAs transcriptionally increased during rat development : an R.dre.1 sequence occupies the complete 3'-untranslated region of a liver mRNA.

Pastewka, J., Kozak, C. A., Gillette, J., Gelboin, H. V. and Hardwick, J. P.
Debrisoquine 4-hydroxylase : characterisation of a new P450 gene subfamily, regulation, chromosome mapping and molecular analysis of the DNA rat polymorphism.

Gonzalez, F. J., Song, B-J. and Hardwick, J. P.
Pregnenolone 16α-carboltrile-inducible P450 gene family: gene conversion and differential regulation.

Gonzalez, F. J., Tukey, R. H. and Nebert, D. W.
Structural gene products of the Ah locus. Transcriptional regulation of cytochrome P1-450 and P4-450 mRNA levels by 3-methylcholanthrene.

Gonzalez, F. J., Schmid, B. J., Umeno, M., McBride, O. W., Hardwick, J. P.,
Meyer, U. A., Gelboin, H. V. and Idle, J. R.

Crist, W., Brodeur, G. M., Lieber, M., Cossman, J., Gottesman, M. M. and Pastan, I.
Human P450PCN1: sequence, chromosome localization and direct evidence through cDNA expression that P450PCN1 is nifedipine oxidase.
DNA 7 (1988) 79 - 86.

Gottesman, M. M.
Multidrug resistance during chemical carcinogenesis: A mechanism revealed?

Gottesman, M. M. and Pastan, I.
Resistance to multiple chemotherapeutic agents in human cancer cells.
Trends Pharmacol Sci. 9 (1988) 54 - 58

Gottesman, M. M. and Pastan, I.
Clinical trials of agents that reverse multidrug resistance.

Gould, R. P., Malan, P. G. and O'Riordan, J.L. H.
The endocrine system and the molecular basis for hormone action.

Greenberger, L. M., Williams, S. S., Goerges, E., Ling, V. and Horwitz, S.
Electrophoretic analysis of P-glycoproteins produced by mouse J774.2 and chinese hamster ovry multidrug resistant cells.

Gros, P., Croop, J. and Houseman, D.
Mammalian multidrug resistance gene: complete cDNA sequence indicates strong homology to bacterial transport proteins.
Cell 47 (1986) 371 - 380

Gros, P., Raymond, M., Bell, J. and Houseman, D.
Cloning and characterisation of a second member of the mouse multidrug resistance gene family.

Guengerich, F. P.,
Enzymology of rat liver cytochrome P450.
In: Mammalian Cytochrome P450 1 (1987) 1 - 54.
Guengerich, F. P. (ed.)
CRC Press Inc., Boca Raton, FL.

Guild, B., Mulligan, R. C, Gros, P. and Houseman, D.
Retroviral transfer of a murine cDNA for mdr confers pleotropic resistance to cells without prior drug selection.

Gupta, R. S.
Genetic, biochemical and cross-resistance studies with mutants of chinese hamster ovary cell resistant to anti-cancer drugs, VM-26 and VP 16-213.
Cancer Res. 43 (1983 a) 1568-1574

Gupta, R. S.
Taxol resistant mutants of Chinese hamster ovary cells: genetic, biochemical and cross-resistance studies.
J. Cell. Physiol. 114 (1983) b 137 - 144

Haddow, A.
Cellular inhibition and origin of cancer.

Haddow, A. and Robinson, A. M.
The influence of various polycyclic hydrocarbons on the growth rate of transplantable tumours.

Hait, W. N. and DeRosa, W. T.
Role of protein kinase C/phorbol ester receptor in drug transport and sensitivity to chemotherapeutic agents in HL60 human leukemic cells and a phorbol ester resistant mutant.

Hales, B. F. and Neims, A. H.
Induction of rat hepatic glutathione S-transferases by phenobarbital and 3-methylcholanganthrene.

Halliwell, B. and Gutteridge, J. M. C.

Hamada, H. and Tsuruo, T.
Functional role for the 170 to 180 kDa glycoprotein specific to drug resistant tumour cells as revealed by monoclonal antibodies.

Hamada, H., Hagiwara, K-I., Nakajima, T. and Tsuruo, T.
Phosphorylation of the Mr 170,000 to 180,000 glycoprotein specific to multidrug resistant tumour cells: effects of verapamil, trifluoperazine and phorbol esters.

Handschumacher, R. E., Harding, M. W., Rice, J., Drugge, R. J. and Speicher, D. W.
Cyclosporin: a specific cytosolic binding protein for cyclosporin A.

NH2-terminal sequence analysis of four rat hepatic microsomal cytochromes P450.

Hardwick, J. P., Song, B-J., Huberman, E. and Gonzalez, F. J.
Isolation, complimentary DNA sequence and regulation of rat hepatic lauric acid ω-hydroxylase (cytochrome P-450Laω): identification of a new cytochrome P-450 gene family.
Harker, G. W. and Sikic, B. I.
Multidrug (pleotropic) resistance in doxorubicin-selected variants of the human sarcoma cell line MES-SA.
Cancer Res. 45 (1985) 4091 - 4096.

Harker, G. W., Mackintosh, R. F. and Sikic, B. I.
Development and characterisation of a human sarcoma cell line, MES-SA, sensitive to multiple drugs.
Cancer Res. 43 (1983) 4943 - 4950.

Hatayama, I., Satoh, K. and Sato, K.
Development and hormonal regulation of the major form of hepatic glutathione S-transferase in mice.

Hayes, J. D. and Mantle, T.
Use of immunoblot techniques to discriminate between the glutathione S-transferases Yl, Yk, Ya, Yn/Yb and Yc subunits and to study their distribution in extrahaepatic tissue.

Hayes, J. D. and Wolf, C. R.
Role of glutathione S-transferase in drug resistance.
Ketterer, B. and Sies, H. (eds.)

Hayes, J. D., Coulthwaite, R. E., Stockman, P. K., Hussey, A. J., Mantle, T. J. and Wolf, C. R.
Arch. Toxicol. 10 (1987) 136 - 146.

Henderson, C. J., Bammler, T. and Wolf, C. R.
Hormonal regulation of Cyp4a in mouse liver and kidney.

Herrin, D. L. and Schmidt, G. W.
Rapid, reversible staining of Northern blots prior to hybridisation.

Complete nucleotide sequence and identification of membrane components of the histidine transport operon of Salmonella typhimurium.

Hitchins, R. N., Harman, D. H., Davey, R. A. and Bell, D. R.
Identification of a multidrug resistance associated antigen (P-glycoprotein in normal human tissues.

Hofsli, E. and Nissen-Meyer, J.
Effect of erythromycin and tumour necrosis factor on the drug resistance of multidrug resistant cells: reversal of drug resistance by erythromycin.
Hong, J. and Yang, C. S.
The nature of microsomal N-nitrosodimethylamine demethylase and its role in carcinogen activation.
Carcinogenesis 6 (1985) 1805 - 1809.

Hong, J., Pan, J., Gonzalez, F. J., Gelboin, H. V. and Yang, C. S.
The induction of a specific form of cytochrome P450 (P-450) by fasting.

Horio, M., Gottesman, M. M. and Pastan, I.
ATP-dependent transport of vinblastine in vesicles from human multidrug resistant cells.

Hornsby, P. J.
Elsevier Science Publishers BV (Biomedical Division), Amsterdam.

Huet, S. and Robert, J.
The reversal of doxorubicin by verapamil is not due to an effect on calcium channels.

Hutt, M. S. R.
Epidemiology of human primary liver cancer.
Lyon: I. A. R. C. Scientific Publications

Igarashi, T., Irokawa, N., Ono, S., Ohmori, S., Ueno, K. and Kitagawa, H.
Differences in the effects of phenobarbital and 3-methylcholanthrene treatment on sub-unit composition of hepatic glutathione S-transferase in male and female rats.
Xenobiotica 17 (1987) 127 - 137.

Ikeda, T., Altieri, M., Chen, Y. -T., Nakamura, N., Tukey, R. H., Nebert, D. W.
and Negishi, M.
Characterisation of P2-450 (20S) mRNA. Association with the P1-450 genomic gene and differential response to the inducers 3-methylcholanthrene and isosafrole.

Inaba, M. and Maruyama, E.
Reversal of resistance to vincristine in P388 leukemia by various polycyclic clinical drugs, with a special emphasis on quinacrine.
Cancer Res. 48 (1988) 2064 - 2067.

Inaba, M. and Nagashima, K.
Non-antitumour vinca alkaloids reverse multidrug resistance in P388 leukemia cells in vitro.
Inaba, M., Nagashima, K., Sakurai, Y., Fukui, M. and Yanagi, Y.
Reversal of multidrug resistance by non-antitumour anthracycline analogs.
Inaba, M., Kobayashi, H., Sakurai, Y. and Johnson, R. K.
Active efflux of daunorubicin and adriamycin in sensitive and resistant sublines of P388 leukemia.
Cancer Res. 39 (1979) 2200 - 2203.

Ishii, K., Maeda, K., Kamataki, T.
Mutagenic activation of aflatoxin B1 by several forms of purified cytochrome P450.

Israel, D. I. and Whitlock, J. P. Jr.
Regulation of cytochrome P1-450 gene transcription by 2, 3, 7, 8-
tetrachlorodibenzo-p-dioxin in wild type and variant mouse hepatoma cells.

Issemann, I. and Green, S.
Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators.

Ivy, P. S., Tulpule, A., Fairchild, C. R., Averbuch, S. D., Myers, C. E.,
Neberts, D. W., Baird, W. M. and Cowan, K. H.
Altered regulation of P4501A1 expression in a multidrug resistant MCF-7 human breast cancer cell line.

Jakoby, W. B.
The glutathione S-transferases: A group of multifunctional detoxification proteins.

Jansson, J-O., Eden, S. and Isaksson, O.
Sexual dimorphism in the control of growth hormone secretion.
Endocrine Rev. 6 (1985) 128 - 150.

Johansson, I. and Ingelman-Sundberg, M.
Benzene metabolism by ethanol-, acetone- and benzene-inducible cytochrome P450 (2E1) in rat and rabbit liver microsomes.

Transcriptional regulation of steroid hydroxylase genes by corticotropin.

Jollow, D. J. and Smith, C.
Biochemical aspects of toxic metabolites: Formation, detoxication and covalent binding.
In: Biological Reactive Intermediates: Formation, Toxicity and Inactivation. Jollow, D. J. (ed.)

Control of cytochrome P1-450 gene expression: analysis of a dioxin-
responsible enhancer system.

Juliano, R. L. and Ling, V.A
Surface glycoprotein modulating drug permeability in chinese hamster
ovid cell mutants.
Biochimica Biophysica Acta 455 (1976) 152 - 162.

Juranka, P. F., Zastawny, R. L. and Ling, V.
P-glycoprotein: multi-drug resistance and a superfamily of membrane-
associated transport proteins.

Kaltenbach, J. P., Kaltenbach, M. H. and Lyons, W. B.
Nigrosin as a dye for differentiating live and dead cells.

Kamimoto, Y., Gatmaitan, Z., Hsu, J. and Arais, I. M.
The function of Gp 170, the multidrug resistance gene product, in rat liver
canalicular membrane vesicles.

Kartner, N., Evereden- Porelle, D., Bradley, G. and Ling, V.
Detection of P-glycoprotein in mdr cell lines by monoclonal antibodies.
Nature 316 (1985) 820 -823

Kartner, N., Riordan, J. R. and Ling, V.
Cell surface P-glycoprotein associated with multidrug resistance in
mammalian cell lines.
Science 221 (1983a) 1285 - 1288

Kartner, N., Shales, M., Riordan, J. R. and Ling, V.
Daunorubicin-resistant Chinese hamster ovary cells expressing multidrug
resistance and a cell surface P-glycoprotein.

Katakami, Y., Kaibuchi, K., Sawamura, M., Takai, Y. and Nishizuka, Y.
Synergistic action of protein kinase C and calcium for histamine release from
rat peritoneal mast cells.

Kato, R., Yamazoe, Y., Shimada, M., Murayama, N. and Kamataki, T.
effects of growth hormone and ecopic transplantation of pituitary gland on
sex-specific forms of cytochrome P450 and testosterone and drug
oxidations in rat liver.

Kelley, M., Lambert, I., Merril, J. and Safe, S.
1, 4 - bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) and related
compounds as inducers of hepatic monooxygenases.

Kakehi, Y., Kanamaru, H. and Yoshida, O.
Measurement of mdr mRNA in urogenital cancers; elevated expression in renal cell carcinoma
is associated with intrinsic drug resistance.
Kende, A. S., Ebetino, F. H., Drendel, W. B., Sunderadegan, M., Glover, E. and Poland, A.
Structure activity relationship of bispyridyloxybenzene for induction of mouse hepatic aminopyrine N-demethylase activity.
Chemical, biological and X-ray crystallographic studies.

Kensler, T. W., Egner, P. A., Davidson, N. E., Roebuck, B. D., Pikul, A. and Groopman, J. D.
Cancer Res. 46 (1986) 3924 - 3931.

Ketterer, B., Meyer, D. J., Coles, B., Taylor, J. B. and Pemble, S. E.

Ketterer, B., Tan, K. H., Meyer, D. J. and Coles, B.
In: Glutathione S-Transferases and Carcinogenesis. pp. 149 - 163.
Mantle, T. J., Pickett, C. B. and Hayes, J. D. (eds.)

Khandjian, E. W.
Optimised hybridisation of DNA blotted and fixed to nitrocellulose and mylon membranes.

Kim, S. G. and Novak, R. F.
Induction of rat hepatic IIE1 (CYP2E1) by pyridine: evidence for a role of protein synthesis in absence of transcriptional activation.

Kimura, S., Gonzalez, F. J. and Nebert, D. W.
Tissue-specific expression of the mouse dioxin-inducible P1450 and P3450 genes: differential transcriptional activation and mRNA stability in liver and extrahepatic tissues.

Immunohistochemical examinations of cytochrome P-450 in various tissues of human fetuses using antibodies to human fetal cytochrome P-450, P-450 HFLa.
Changes in molecular forms of rat hepatic glutathione S-transferase during chemical hepatocarcinogenesis.

Oxidative metabolism of hexobarbital in human liver: relationship to polymorphic S-mephenytoin 4-hydroxylation.

Knopf, J. L., Gallagher, J. F. and Held, W. A.
Differential multihormonal regulation of the mouse major urinary protein gene family in the liver.

Koop, D. R. and Cassazza, J. P.
Identification of ethanol-inducible P450 isozyme 3a as the acetone and acetol monooxygenase of rabbit microsomes.

Koop, D. R., Morgan, E. T., Tarr, G. E. and Coon, M. J.
Purification and characterisation of a unique isozyme of cytochrome P450 from liver microsomes of ethanol-treated rabbits.

Efflux of chloroquine from Plasmodium falciparum: mechanism of chloroquine resistance.

Kronbach, T., Fisher, V. and Meyer, U. A.
Cyclosporin metabolism in human liver: identification of cytochrome P450PCN as the major cyclosporin metabolizing enzyme explains interactions of cyclosporin with other drugs.

Labbe, D., Jean, A. and Anderson, A. A.
Constitutive member of the rat cytochrome P4502B subfamily: full length coding sequence of the P4502B3 cDNA.

Laemmli, U. K.
Cleavage of structural proteins during the assembly of the head of bacteriophage T4.

Detection of a nafenopin-binding protein in rat liver cytosol associated with the induction of peroxisome proliferation by hypolipidemic compounds.

Lazo, J. S., Hait, W. N., Kennedy, K. A., Brown, D. and Meandzija, B.
Enhanced bleomycin-induced DNA damage and cytotoxicity with calmodulin antagonists.

283

Leader D. P., Gall, I. and Lehrach, H.
The structure of a cloned mouse actin γ-actin processed psuedogene.

Leakey, J. E. A., Mukhtar, H., Fonts, J. R. and Bend, J. R.
Thyroid hormone-independent changes in the hepatic mixed-function oxidase system, haem oxygenase activity and epoxide hydrolase activity in adult male, female and immature rats.

Lee, S. C., Deutsch, C. and Beck, W. T.
Comparison of ion channels in multidrug resistant and sensitive human leukemic cells.

Lehman, I. R. and Richardson, C. C.
The deoxyribonuclease activity present in purified preparations of deoxyribonucleic acid polymerase.

Lehrach, H., Diamond, D., Wozney, J. M. and Boedtker, H.
RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical re-examination.
Biochemistry 16 (1977) 4743 - 4751.

Lewis, A. D., Hickson, I. D., Robson, C. N., Harris, A. L., Hayes, J. D., Griffiths, S. A., Manson, M. M., Hall, A. E., Moss, J. E. and Wolf, C. R.
Amplification and increased expression of alpha class glutathione S-transferase encoding genes associated with resistance to nitrogen mustards.

Ling, V. and Thompson, L. H.
Reduced permeability in Chinese hamster ovary cells as a mechanism of resistance to colchicine.

Ling, V., Carlsten, S. A. and See, Y. P.
Altered drug permeability in mammalian cell mutants.
In: Membrane Toxicity (1977) 247 - 264.
Miller, M. W. and Shamoo, A. E. (eds)

Ling, V., Kartner, N., Sudo, T., Siminovitch, L. and Riordan, J. R.
The multidrug resistant phenotype in Chinese hamster ovary cells.

Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J.
Protein measurement with the Folin Phenol reagent.

Lu, A. Y. H. and West, S. B.
Multiplicity of mammalian cytochrome P450.

284
Lui, L. F.
DNA topoisomerases - enzymes that catalyse the breaking and re-joining of DNA.

Lullman, H. and Wehling, M.
The binding of drugs to different polar lipids in vitro.

MacFarland, A., Mellor, S., Abramovich, D. R., Ewen, S. W. B., Tsuruo, T. and Pearson, C. K.
Distribution of P-glycoprotein in human placenta and fetal tissues.
AACR conference 1991 abstract

MacLeod, J. N. and Shapiro, B. H.
Growth hormone regulation of hepatic drug-metabolising enzymes in the mouse.

Maes, M., Underwood, L. E. and Ketelslegers, J. -M.
Low serum somatomedin-C insulin-dependent diabetes: Evidence for a post receptor mechanism.

Maitler, D., Underwood, L. E., Maes, M., Davenport, M. L. and Ketelslegers, J. M.
Different effects of intermittent and continuous growth hormone administration on serum somatomedin C: insulin-like growth factor 1 and liver growth hormone receptors in hypophysectomised rats.

Maniatis, T., Fritsch, E. F. and Sambrook, J.

Mannervick, B., Alin, P., Guthenberg, C., Jensson, H. and Warholm, M.
In : Microsomes and Drug Oxidations (1985b) pp 221-228.
Taylor and Francis, London.

Identification of three classes of cytosolic glutathione S-transferases common to several mammalian species: Correlation between structural data and enzymatic properties.

Marglin, A. and Merrifield, R. B.
Chemical synthesis of peptides and proteins.

Regulation of the mdr gene in regenerating rat liver.
Cell Growth and Differentiation 1 (1990) 57 - 62.
Marquadt, D., McCrane, S. and Center, M. S.
Mechanisms of multidrug resistance in HL60 cells: Detection of resistance-associated proteins with antibodies against synthetic peptides that correspond to the deduced sequence of P-glycoprotein.
Cancer Res. 50 (1990) 1426 - 1430.

Gene conversion and differential regulation in the rat P4502A gene subfamily: purification, catalytic activity, cDNA and deduced amino acid sequence and regulation of an adult male-specific testosterone 15 α-hydroxylase.

Matthews, L. S., Norstedt, G. and Palmiter, R. D.
Regulation of insulin-like growth factor I gene expression by growth hormone.

McConaghey, P. and Sledge, C.B.
Production of "sulphation factor" by the perfused liver.

McGrath, J. P. and Varshowsky, A.
The yeast STE6 gene encodes a homologue of the mammalian multidrug resistance P-glycoprotein.

McLean, J. W. and Nakane, P. K.

McLellan, L. I. and Hayes, J. D.
Differential induction of class α glutathione S-transferases in mouse liver by the anti-carcinogenic antioxidant butylated hydroxy anisole - purification and characterisation of glutathione S-transferase Ya1Ya1.

McLellan, L. I. and Hayes, J. D.
Sex constitutive expression of the pre-neoplastic marker glutathione S-transferase, YfYf, in mouse liver.

Metabolic processing of 2-acetylaminofluorene by microsomes and six highly purified cytochrome P450 forms from rabbit liver.

* Regulation of phenobarbital-inducible cytochrome P450s in rat and mouse liver following dexamethasone administration and hypophysectomy.
Chromosomal organisation of the cytochrome P450 2C gene family in the mouse: A locus associated with constitutive arylhydrocarbon hydroxylase.

Melzer, M. S.
Paradox of carcinogens as cell destroyers and cell stimulators. A biochemical hypothesis.

Meyer, D. J., Christodoulides, L. G., Nyan, O., Schuster, B. R. and Ketterer, B.
In : Extrahepatic Drug Metabolism Metabolism and Chemical Carcinogenesis. pp. 189 - 190 (1983).
Rydstrom, J., Montellus, J. and Bengtsson, M. (eds.)
Elsevier Science Publishers B.V.

Meyers, M. B. and Biedler, J. L.
Increased synthesis of a low molecular weight protein in vincristine-resistant cells.

Meyers, M. B., Schneider, K. A., Spengler, B. A., Chang, T-D. and Biedler, J. L.
Sorcin (V19), a soluble acidic calcium binding protein overproduced in multidrug resistant cells: identification of the protein by anti-sorcin antibodies.

Gene amplification-associated cytogenetic aberrations and protein changes in vincristine-resistant chinese hamster, mouse and human cells.
J. Cell Biol. 100 (1985) 588 - 597

Michalopoulos, G. K.
Liver regeneration: molecular mechanisms of growth control.

Miles, J. S., Bickmore, W., Brook, J. D., McLaren, A. W., Meehan, R. and Wolf, C. R.
Close linkage of the human cytochrome P450IIA and P450IIB gene subfamilies: implications for the assignment of substrate specificity.

Miles, J. S., McLaren, A. W., Forrester, L. M., Glancey, M. J., Lang, M. A. and Wolf, C. R.
Identification of the human liver cytochrome P450 responsible for coumarin 7-hydroxylase activity.

Miller, K. W. and Yang, C. S.
Studies on the mechanism of induction of N-nitrosodimethylamine demethylase by fasting, acetone and ethanol.
287
Miller, R. L., Bukowski, R. M., Budd, G. T., Purvis, J., Weick, J. K., Shepard, K., Midha, K. K. and Ganapathi, R.
Clinical modulation of doxorubicin resistance by the calmodulin-inhibitor, trifluoperazine: a phase I/II trial.

Association between plasma level of growth hormone and sex differentiation of hepatic steroid metabolism in the rat.

Mode, A., Zaphiropolous, P., Strom, A., Maggeoch, C., Moller, C., Morgan, E. and Gustafsson, J-A.
Complete sequence and hormonal regulation of cytochrome P-450 isozymes 15β and 16α.
In: Microsomes and Drug Oxidations.
Taylor and Francis, London.

Molowa, D. T., Schuetz, E. G., Wrighton, S. A. Watkins, P. B., Kremers, P.,
Mendez-Picon, G., Parker, G. A. and Guzelian, P. S.
Complete cDNA sequence of a cytochrome P-450 inducible by glucocorticoids in human liver.

Moore, G. E., Gerner, R. E. and Franklin, H. A.
Culture of normal human leukocytes.

Mosconi, A. D. and Gartner, L. M.
Thyroid hormone UDP-glucuronosyl transferase activity - contrary effects in rat and mouse.

Moscow, J. A., Faichild, C. R., Madden, M. J., Ranson, D. T., Wieanol, H. S.,
O'Brien, E., Poplack, D. G., Cossman, J., Myers, C. E. and Cowan, K. H.
Expression of anionic glutathione S-transferase and P-glycoprotein genes in human tissues and tumours.
Cancer Res. 49 (1989b) 1422 - 1428.

Moscow, J. A., Townsend, A. J. and Cowan, K. H.
Elevation of pi class glutathione S-transferase activity in human breast cancer cells by transfection of the glutathione S-transferase pi gene and it's effect on sensitivity to toxins.

Mosmann, T.
Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays.

Murray, M. and Reddy, G. F.
Selectivity in the inhibition of mammalian cytochrome P450 by chemical agents.

Nagata, K., Matsunaga, T., Gillette, J., Gelboin, H. V. and Gonzalez, F. J.
Rat testosterone 7α-hydroxylase: isolation, sequence and expression of cDNA and its developmental regulation and induction by 3-methylcholanthrene.

Naito, M. and Tsuruo, T.
Competitive inhibition by verapamil of ATP-dependent high affinity vincristine binding to the plasma membrane of multidrug resistant K562 cells without calcium ion involvement.
Cancer Res. 49 (1989) 1452 - 1455.

Nebert, D. W.
Growth signal pathways.

Nebert, D. W. and Gelboin, H. V.
The role of ribonucleic acid and protein synthesis in microsomal aryl hydrocarbon hydroxylase induction in cell culture. The independence of transcription and translation.

Nebert, D. W. and Negishi, M.
Environmental and genetic factors influencing drug metabolism and toxicity.
Mitchell, J. R. and Horning, M. G. (eds.)
Raven Press.

The P450 superfamily: update on new sequences, gene mapping and recommended nomenclature.

Dioxin-inducible enhancer region upstream from the mouse P4-450 gene and interaction with a heterologous promoter.

Ng, W., Sarangi, F., Zastawny, R. L., Veinot-Drebot, L. and Ling, V.
Identification of members of the P-glycoprotein multigene family.

Nixon, B. T. and Green, H.
Growth hormone promotes the differentiation of myoblasts and preadipocytes generated by azacitidine treatment of 10T1/2 cells.

Noonan, K., Kartner, N., Everden-Porelle, D., Bradley, G. and Ling, V.

289
Quantitative analysis of MDR1 (multidrug resistance) gene expression in human tumours by polymerase chain reaction.

Norstedt, G.A.
Comparison between the effects of growth hormone on prolactin and oestrogen receptors in rat liver.

Noshiro, M. and Negishi, M.
Genetic regulation of estrogen-dependent repression of female-specific 16α-hydroxylase (l-P45016α) in male mouse liver: murine ripr locus.

Noshiro, M., Lakso, M., Kawajiri, K. and Negishi, M.
Rip locus: regulation of female-specific isozyme (l-P45016α) of testosterone 16 α-hydroxylase in mouse liver, chromosome localisation and cloning of P450 cDNA.

Inhibition of DNA synthesis by chemical carcinogens in cultures of initiated and normal proliferating rat hepatocytes.
Cancer Res. 45 (1985) 337 - 344.

Okey, A. B., Bandy, G. P., Mason, M. E.
Temperature-dependent cytosol-to-nucleus translocation of the Ah receptor for 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin in continuos cell culture lines.

Orrenius, S., Erickson, J. L. E. and Ernster, L.
Phenobarbital induced-synthesis of the microsomal drug metabolising enzyme system and it's relationship to the proliferation of endoplasmic membranes: a morphiological and biochemical study.

Owellen, J. R., Hattke, C. A., Dickerson, R. M. and Hains, F. O.
Inhibition of tubulin-microtubule polymerisation by drugs of the Vinca alkaloid class.

Ozols, R. F., Cunnion, R. E., Klecker, R. W., Hamilton, T. C., Ostchega, Y., Parillo, J. E. and Yang, R. C.
Verapamil and Adriamycin in the treatment of drug-resistant ovarian cancer patients.

Pastan, I., Gottelman, M. M., Ueda, K., Lovelace, E., Rutherford, A. and Willingham, M. C.
A retrovirus carrying an MDR-1 cDNA confers multidrug ressitance and polarised expression of P-glycoprotein in MDCK cells.

Patten, C. J., Ning, S. M., Lu, A. Y. H. and Yang, C. S.
Acetone-inducible cytochrome P450 purification, catalytic activity and interaction with cytochrome b5.

Paulson, K. E., Darnelle, J. E., Jrn., Rushmore, T. H. and Pickett, C. B.
Analysis of the upstream elements of the xenobiotic compound inducible and positionally regulated glutathione S-transferase Ya gene.

Tissue-specific inducin of murine glutathione S-transferase mRNAs by butylated hydroxyanisole.

Peterson, R. H. F. and Biedler, J. L.
Plasma membrane proteins and glycoproteins from chinese hamster cells sensitive and resistant to actinomycin D.
J. Supramolecular Structure 9 (1978) 289 - 298

Pickett, C. B., Danohue, A. M. Lu, A. Y. H. and Hales, B. F.
Rat liver glutathione S-transferase B : The functional mRNAs specific for the Ya Yc subunits are induced differentially by phenobarbital.

Pirker, R., Keilhauer, G., Raschack, M., Lechner, C. and Ludwig, H.
Reversal of multidrug resistance in human KB cell lines by structural analogs of verapamil.

Poland, A. and Glover, E.
Genetic expression of aryl hydrocarbon hydroxylase by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin: evidence for a receptor mutation in genetically non-responsive mice.

Poland, A. and Glover, E.
Variation in the molecular mass of the Ah receptor among vertebrate species and strains of rats.

Photoaffinity labeling of the Ah receptor.

Poland, A., Mak, I. and Glover, E.
Species differences in responsiveness to 1, 4-bis [2-(3, 5-dichloropyridyloxy)] benzene, a potent phenobarbital-like inducer of microsomal monoxygenase activity.

291
Poland, A., Mak, I., Glover, E., Boatman, R. J., Ebetino, F. H. and Kende, A. S
Bis [2-(3, 5-dichloropyridyloxy)] benzene, a potent phenobarbital-like inducer of microsomal monooxygenase activity.

Pommier, Y., Kerrigan, D., Shwartz, R. E., Swack, J. A. and McCurdy, A.
Altered DNA topoisomerase II activity in chinese hamster cells resistant to topoisomerase II inhibitors.
Cancer Res. 4 6 (1986) 3075 - 3081.

Induction and tissue-specific expression of rabbit cytochrome P450 IIE1 and IIE2 genes.

Potter, W. Z., Davis, D. C., Mitchell, J. R., Jollow, D. J., Gillette, J. R. and Brodie, B. B.
Acetaminophen-induced hepatic necrosis: III. Cytochrome P450-mediated covalent binding in vitro.

Prossnitz, E., Gee, A and Ames, G. F-L.
Reconstitution of the histidine periplasmic transport system in membrane vesicles.

Radel, S., Bankusli, I., Mayhew, E. and Rustum, Y. M.
The effects of verapamil and a tripamil analogue, DMDP, on Adriamycin induced cytotoxicity in P388 Adriamycin-resistant and -sensitive leukemia in vitro and in vivo.

Ramu, A., Glaubiger, D. and Fuks, Z.
Reversal of acquired resistance to Adriamycin in P388 murine leukemia cells by tamoxifen and other triparanol analogues.

Ramu, A., Glaubiger, D., MacGrath, I. T. and Joshi, A.
Plasma membrane lipid structural order in doxorubicin sensitive and resistant P388 cells.
Cancer Res. 4 3 (1983) 5533 - 5537.

Raymond, M. and Gros, P.
Mammalian mdr gene: correlation of exon organisation with structural domains and duplication of an ancestral gene.

Raymond, M., Rose, E., Houseman, D. E., Gros, P.
Physical mapping, amplification and overexpression of the mouse mdr gene family in multidrug resistant cells.

Transcriptional regulation of peroxisomal fatty acyl-CoA oxidase and enoyl-CoA hydratase/3-hydroxy-CoA dehydrogenase in rat liver by peroxisome proliferators.

Redick, J. A., Jackoby, W. B. and Baron, J.

Immunocchemical location of glutathione S-transferases in the livers of untreated rats.

Reed, K. C. and Mann, D. A.

Rapid transfer of DNA from agarose gels to nylon membranes.

Remmer, H. and Merker, H. J.

Drug-induced changes in the liver endoplasmic reticulum: association with drug-metabolizing enzymes.

Science (Wash. DC) 142 (1963) 1657 - 1658.

Riehm, H. and Biedler, J. L.

Cellular resistance to daunomycin in chinese hamster cells in vitro.

Cancer Res. 31 (1971) 409 - 412.

Riordan, J. R. and Ling, V.

Genetic and biochemical characterisation of multidrug resistance.

Pharmacology and Therapeutics 28 (1985) 51 - 75

Riordan, J. R. and Ling, V.

Purification of P-glycoprotein from plasma membrane vesicles of chinese hamster ovary cell mutants with reduced colchicine permeability.

J. Biol. Chem. 254 (1979) 12701 - 12705

Riordan, J. R., Deuchars, K., Kartner, N., Alan, N., Trent, J. and Ling, V.

Amplification of P-glycoprotein genes in multidrug resistant mammalian cell lines.

Nature 316 (1985) 817 - 819

Identification of the cystic fibrosis gene: cloning and characterisation of complimentary DNA.

Growth hormone regulates the abundance of insulin-like growth factor I RNA in adult rat liver.

Ross, W. E., Glaubiger, D. and Kohn, K. W.

Protein associated DNA breaks in cells treated with Adriamycin or ellipticum.

Roswell, D. F. and White, E. H.
DeLuca, M. A. (ed.)

Rothenburg, M. and Ling, V.
Multidrug resistance: molecular biology and clinical relevance.

Rushmore, T. H. and Pickett, C. B.
Transcriptional regulation of the rat glutathione S-transferase Ya subunit
gene.

Rushmore, T. H., King, R. G., Paulson, R. E. and Pickett, C. B.
Regulation of glutathione S-transferase Ya subunit gene expression:
Identification of a unique xenobiotic responsive element controlling
inducible expression by planar aromatic compounds.

Characterisation of three highly purified cytochromes P450 from hepatic
microsomes of adult male rats.

Saburi, Y., Nakagawa, M., Ono, M., Solkai, M., Muramatsu, M., Kohno, K and
Kuwano, M.
Increased expression of glutathione S-transferase gene in cis-
diamminedichloro-platinum(II) resistant variants of a Chinese hamster ovary
cell line.
Cancer Res. 49 (1989) 7020 - 7025.

Safa, A. R.
Photoaffinity labelling of the multidrug resistance related P-glycoprotein
with photoactive analogs of verapamil.

Vinblastine photoaffinity labelling of a high molecular weight glycoprotein
specific for multidrug resistant cells.

Safa, A. R., Glover, C. J., Sewell, J. L., Meyers, M. B., Biedler, J. L. and
Felsted, R. L.
Identification of a multidrug resistance related membrane glycoprotein as an
acceptor for calcium channel blockers.

Sato, K., Kitahara, A., Yin, Z., Waragai, F., Nishimura, K., Hatayama, I., Ebina,
T., Yamazaki, T. and Ito, N.
Inducibility of butylated hydroxyanisole of specific molecular forms of
glutathione S-transferase and UDP-glutathione S-transferase and inhibition
of development of γ-glutamyl transpeptidase positive foci in rat liver.

Sato., K.

294
Glutathione S-transferases and hepatocarcinogenesis.

Sato, K.
Glutathione S-transferases as markers of preneoplasia and neoplasia.

Scheper, R. J., Bulte, J. W. M., Brakkee, J. G. P., Quak, J. J., Schoot, E.,
Balm, A. J. M., Meijer, C., Broxterman, H., Kuiper, C. M., Lankelma, J. and
Pinedo, H. M.
Monoclonal antibody (JSB-1) detects a highly conserved epitope on the P-
glycoprotein associated with multidrug resistance.

Schimmer, B. P.
Cyclic nucleotides in hormonal regulation of adrenocortical function.

Schlaifer, D., Laurent, G., Chittal, S., Tsuruo, T., Soues, S., Muller, C.,
Charcossett, J. Y., Alard, C., Brousset, P., Mazerrolles, C. and Delsol, G.
Immunohistochemical determination of multidrug resistance associated P-
glycoprotein in tumour and stromal cells of human cancers.

Schuetz, E. G. and Guzelian, P. S.
Induction of cytochrome P450 by glucocorticoids in rat liver. II. Evidence
that glucocorticoids regulate induction of cytochrome P450 by a non-
classical receptor mechanism.

Schulman, H. and Greengard, P.
Calcium dependent protein phosphorylation systems in membranes from
various tissues and it's activation by "calcium dependent regulator".

Schwab, G. E., Raucy, J. L. and Johnson, E. F.
Modulation of rabbit and human cytochrome P-450-catalysed steroid
hydroxylations by b-naphthoflavone.

Shaw, G. and Kamen, R.
A conserved AU sequence from the 3' untranslated region of GM-CSF
mRNA mediates selective mRNA degradation.

Shen, D. W., Fojo, A., Chin, J. E., Roninson, I. B., Richert, N., Pastan, I. and
Gottesman, M. M.
Human multidrug resistant cell lines: increased mdr1 expression can
precede gene amplification.

Silbermann, M. H., Boersma, A. W. M., Janssen, A. L. W. Scheper, R. J.,
Herweijer, H. and Nooter, K.
Effects of cyclosporin A and verapamil on the intracellular daunorubicin
accumulation in Chinese hamster ovary cells with increased levels of drug

295
resistance.

Cloning and sequencing of the first rat mdr cDNA.

Isolation and characterisation of the first member of the rat mdr gene family.
Poster Presentation (1991)
Membrane Transport in mdr, development and disease. AACR, Banff, Canada.

Simmons, D. C. and Kasper, C. B.
Genetic polymorphisms for a phenobarbital-inducible cytochrome P450 map to the Coh locus in mice.

Simmons, D. L., McQuiddy, P. and Kasper, C. B.
Induction of the hepatic mixed-function oxidase system by synthetic glucocorticoids: transcriptional and post-transcriptional regulation.

Skett, P
Hormonal regulation and sexual differences of xenobiotic metabolism.
In: Progress in drug metabolism (1987)
Bridges, J. W., Chasseaud, L. F. and Gibson, G. G. (eds.)
Taylor and Francis Ltd., UK.

Skett, P. and Weir, A.
Sex- and substrate-dependent effects of the thyroid gland on drug metabolism in the rat.

Skovsgaard, T.
Circumvention of resistance to daunorubicin by N-acetyl duanorubicin in
Ehrlich ascites tumour.

Skovsgaard, T., Dano, K. and Nissen, N. I.
Chemosensitizers counteracting resistance to anthracyclines and vinca

Smith, G., Henderson, C.J. and Wolf, C. R.
Studies on the induction of mouse hepatic cytochrome P450 isozymes by TCPOBOP.
(personal communication)

Sogawa, K., Fujisawa-Sehara, A., Yamane, M. and Fujii-Kuriyama, Y.
Location of regulatory elements responsible for drug induction in the rat
cytchrome P-450c gene.
Solt, D. and Farber, E.
New Principle for analysis of chemical carcinogenesis.

Song, B. -J., Veech, R. L., Park, S. S., Gelboin, H. V. and Gonzalez, F. J.
Induction of rat hepatic N-nitrosodimethylamine demethylase by acetone is
due to protein stabilisation.

Song, B. J., Friedman, F. K., Park, S. S., Tsokos, G. C. and Gelboin, H. V.
Monoclonal antibody directed radioimmunoassay detects cytochrome
P450 in human placenta and lymphocytes.
Science 228 (1985) 490 - 492.

Song, B. J., Gelboin, H. V., Park, S. S., Yang, C. S. and Gonzalez, F. J.
Complimentary DNA and protein sequences of ethanol inducible rat and
human P450s: transcriptional and post-transcriptional regulation of the rat
enzyme.

Squires, E. J. and Negishi, M.
Reciprocal regulation of sex-dependent expression of testosterone 15 α-
hydroxylase (P45015α) in liver and kidney of male mice by androgen :
evidence for a single gene.

Stanners, C. P., Elicieri, G. and Green, H.
Two types of ribosome in mouse-hamster hybrid cells.

Stevenson, K., Forrester, L. M., Spurr, N. K., Gough, A. C., McLaren, A. W.,
Sweeney, J. and Wolf, C., R.
Isolation and characterisation of a human P450III gene: RFLP analysis ,
mapping and expression.
In: Cytochrome P450: Biochemistry and Biophysics.
Shuster I. (ed.)
Proceedings of the 6th International Conference, Vienna.

Stiles, C. D., Capone, G. T., Scher, C. D., Antoniades, H. N., Van Wyk, J. J.
and Pledger, W. J.
Dual control of cell growth by somatomedins and platelet-derived growth
factor.

Strehler, E. E., Strehler-Page, M. E., Perriard, J. C. and Nadal-Ginard, B.
Complete nucleotide and encoded amino acid sequence of mammalian
myosin heavy chain gene.

Stein, S. A., Shanklin, D. R., Krulich, L., Roth, M. G., Chubb, C. M. and
Adams, P. M.
Neuroendocrinology 49 (1989) 509 - 519. *

* Evaluation and characterisation of the hyt/hyt hypothyroid mouse.
II. Abnormalities of TSH and the thyroid gland.
Sugawara, I., Kataoka, I., Morishita, Y., Hamada, H., Tsuruo, T., Itoyama, S. and Mori, S.
Tissue distribution of P-glycoprotein encoded by a multidrug resistance
gene as revealed by a monoclonal antibody, MRK16.

Sugawara, I., Hamada, H., Nakahama, M., Okamoto, S., Tsuruo, T. and Mori, S.
Further characterisation of the human adrenal derived P-glycoprotein
recognised by monoclonal antibody MRK-16 reacting with only human P-
glycoprotein.

Sugoaka, Y., Kano, T., Okuda, A., Sakai, M., Kitagawa, T. and Maramatsu, M.
Cloning and the nucleic acid sequence of rat glutathione S-transferase
cDNA.

Switzer, R. C., Merrill, C. R. and Shifrin, S.
A highly sensitive silver stain for detecting proteins and peptides in
polyacrylamide gels.

Tamburini, P. P., Masson, H. A., Bains, S. K., Makowski, R. J. Morris, B. and
Gibson, G. G.
Multiple forms of cytochrome P450: purification, characterisation and
comparison of a novel clofibrate-induced isozyme with other forms of
cytochrome P450.

Tan, K. H., Meyer, D. J., Gillies, N. and Ketterer, B.
Detoxification of DNA hydroperoxide by glutathione S-transferases and the
purification of the rat liver nucleus.

Tatematsu, M., Mera, Y., Ito, N., Satoh, K. and Sato, K.
Relative merits of immunohistochemical demonstration of placental A, B
and C forms of glutathione S-transferase and histochemical demonstration
of γ-glutamyltransferase as markers of altered foci during liver
carcinogenesis in rats.
Carcinogenesis 6 (1985) 1621 - 1626.

Tatematsu, M., Nagamine, Y. and Farber, E.
Redifferentiation as a basis for remodelling of carcinogen induced
hepatocyte nodules to normal appearing liver.
Cancer Res. 43 (1983) 5049 - 5058.

Taylor, J. B., Craig, P. K., Beale, D. and Ketterer, B.
Construction and characterisation of a plasmid containing complimentary
DNA to mRNA encoding the N terminal amino acid sequence of the rat
glutathione S-transferase Ya subunit.

Taylor-Robson, D.
Cultural and serologic procedures for mycoplasmas in tissue culture.
In: Mycoplasma infection of cell cultures.
McGarrity, G., Murphy, D. G. and Nichols, W. W. (eds.)

Teeter, L. D., Becker, F. F., Chisari, F. V., Li, D. and Kuo, M. T.
Overexpression of the multidrug resistance gene mdr 3 in spontaneous
and chemically induced mouse hepatocellular carcinomas.

Thiebaut, F., Tsuruo, T., Hamada, H., Gottesman, M. M., Pastan, I. and
Willingham, M. C.
Immunohistochemical localisation in normal tissues of different epitopes in
the mdr protein P170: evidence for localisation in brain capillaries and cross-
reactivity of one antibody with a muscle protein.
J. Histochem. Cytochem. 37 (1989) 159 - 164.

Tsuruo, T., Iida, H., Kitatani, Y., Yokota, K., Tsukagoshi, S. and Yakurai, Y.
Effects of quinidine and related compounds on cytotoxicity and cellular
accumulation of vincristine and adriamycin in drug resistant tumour cells.

Tsuro, T., Iida, H., Tsukagoshi, S. and Sakurai, Y.
Increased accumulation of vincristine and adriamycin in drug resistant P388
tumour cells following increase with calcium antagonists and calmodulin

Tsuruo, T., Sugimoto, Y., Hamada, H., Roninson, I., Okumura, M., dachi, K., Morishima, Y. and
Ohno, R.
Detection of multi-drug resistance markers, P-glycoprotein and mdr 1 mRNA, in human
leukemia cells.
inhibitors.
Cancer Res. 4 2 (1982) 4730 - 4733.

Tsuruo, T., Iida, H., Tsukagoshi, S. and Sakurai, Y.
Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro
through enhanced cytotoxicity of vincristine and vinblastine by verapamil.

Twentyman, P. R.
A possible role for cyclosporins in cancer chemotherapy.

Twentyman, P. R., Fox, N. E. and White, D. J. G.
Cyclosporin A and its analogues as modifiers of adriamycin and vincristine
resistance in a multidrug resistant human lung cancer cell line.

Ueda, K., Cardarelli, C., Gottesamn, M. M. and Pastan, I.
Expression of a full length cDNA for the human "MDR 1" gene confers
resistance to colchicine, doxorubicin and vinblastine.

Umeno, M., Song, B. J., Kozak, C., Gelboin, H. V. and Gonzalez, F. J.
The rat P4502E1 gene: complete intron and exon sequence, chromosome
mapping and correlation of development with specific 5'-cytosine
demethylation.

Van der Bliek, A. M., Baas, F., Van der Velde-Koerts, T., Biedler, J. L., Ozols,
P. F. and Hamilton, T. C.
Genes amplified and overexpressed in human multidrug resistant cell lines.
Cancer Res. 4 8 (1988a) 5927 - 5932.

Van der Bliek, A. M., Koolman, P. M., Schneider, C. and Borst, P.
Sequence of mdr 3 encoding a human P-glycoprotein.
Gene 7 1 (1988b) 401 - 411.

Van der Bliek, A. M., Van der Velde-Koerts, T., Ling, V. and Borst, P
Overexpression and amplification of five genes in a multidrug resistant
Chinese hamster ovary cell line.

Van Kuijk, F. J. G. M., Sevanian, A., Handelman, G. J. and Dratz, E. A.
A new role for phospholipase A2: protection of membranes from lipid
peroxidation damage.
TIBS 12 (1987) 31 -34.

Vasilier, J. M. and Guelstein, V. I.
Sensitisation of normal and neoplastic cells to the amaging action of
carcinogenic substances: a review.

Volm, M., Zerban, H., Mattern, J. and Efferth, T.
Overexpression of P-glycoprotein in rat hepatocellular carcinomas induced
with N-nitrosomorpholine.

Wahl, G. M., Stern, M. and Stark, G. R.
Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridisation by using dextran sulphate.

Walker, J. E., Saraste, M., Runswick, M. J. and Gay, N. J.
Distantly related sequences in the a- and b-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold.

Wallace, H., Ledent, C., Vassart, G., Bishop, J. O. and Al-Shawi, R.
Specific ablation of non-dividing thyroid follicle cells in adult transgenic mice.
(personal communication)

Wallis, M.

Wallner, K. and Li, G. C.J.
Adriamycin resistance, heat resistance and radiation response in chinese hamster fibroblasts.

Warholm, M., Jensson, H., Tahir, M. K. and Mannervick, B.
Purification of characterisation of three distinct glutathione S-transferases from mouse liver.
Biochemistry 25 (1986) 4119 - 4125.

Waterman, M. R. and Simpson, E. R.
Regulation of the biosynthesis of cytochromes P-450 involved in steroid-hormone synthesis.

Identification of an in inducible form of cytochrome P450 in human liver.

Macrolide antibiotics inhibit the degradation of the glucocorticoid-responsive cytochrome P450 in rat hepatocytes in vivo and in primary monolayer culture.

Waxman, D. J., Dannan, G. A. and Guengerich, F. P.
Regulation of rat hepatic cytochrome P450: age dependent expression, hormonal imprinting and xenobiotic inducibility of sex specific isoenzymes.
Waxman, D. J.
Rat hepatic P450 isozyme 2c: identification as a male-specific, developmentally induced steroid 16α-hydroxylase and comparison to a female specific cytochrome P450 isozyme.

Waxman, D. J.
Interactions of hepatic cytochromes P-450 with steroid hormones: regioselectivity and stereospecificity of steroid metabolism and hormonal regulation of rat P-450 enzyme expression.

Waxman, D. J., Attisano, C., Guengerich, F. P. and Lapenson, D. P.
Human liver microsomal steroid metabolism: identification of the major microsomal steroid hormone 6β-hydroxylase cytochrome P450 enzyme.

Weiss, B., Prozialeck, W. C. and Wallace, T. L.
Interaction of drugs with calmodulin: biochemistry, pharmacology and clinical importance.

Whitlock, J. P.
The regulation of gene expression by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin.

Williams, M. T., Carrington, H. and Herrera, A.
Stimulation of mouse liver glutathione S-transferase activity in propylthiouracil-treated mice in vivo by tri-iodothyronine.

Single cell analysis of daunomycin uptake and efflux in multidrug resistant and sensitive KB cells: effects of verapamil and other drugs.
Cancer Res. 46 (1986) 5941 - 5946.

Immunocytochemical location of P170 at the plasma membrane of multidrug resistant human cells.

Amplification of a gene related to mammalian multidrug resistance genes in drug resistant Plasmodium falciparum.
Science 244 (1989) 1184 - 1186.

Wilson, T. J. and Spelsberg, T. C.
Growth hormone and drug metabolism.
Acute effects on microsomal mixed-function oxidase activities in rat liver.
Is C219 specific for P-glycoprotein?

Wolf, C. R. and Oesch, F.
Isolation of a high spin form of cytochrome P450 induced in rat liver by 3-methylcholanthrene.

Characterisation, localisation and regulation of a novel phenobarbital-inducible form of cytochrome P450 compared with three further P450 isoenzymes, NADPH-P450 reductase, glutathione S-transferase and microsomal epoxide hydrolase.

Wood, A. W., Ryan, D. E., Thomas, P. E. and Levin, W.
Regio- and stereoselective metabolism of two C19 steroids by five highly purified and reconstituted rat hepatic cytochrome P450 isozymes.

Identification of the cytochrome P450 induced by macrolide antibiotics in rat liver as the glucocorticoid responsive cytochrome P-450p.

Demonstration in multiple species of inducible hepatic cytochromes P450 and their mRNAs related to the glucocorticoid-inducible cytochrome P450 of the rat.

Yamano, S., Nagata, K., Yamazoe, Y., Kato, R., Gelboin, H. V. and Gonzalez, F. J.
cDNA and deduced amino acid sequences of human P450 IIA3 (CYP2A3).

Yang, C-P. H., DePinho, S. G., Greenberger, L. M., Arceci, R. J. and Horwitz, S. B.
Progesterone interacts with P-glycoprotein in multidrug resistant cells and in the endometrium of gravid uterus.

Yang, C-P., H., Mellado, W. and Horwitz, S. B.
Azidopine photoaffinity labelling of multidrug resistance-associated glycoproteins.

Yoshioka, H., Morohashi, K., Sogawa, K., Miyata, T., Kawajiri, K., Hirose, T., Inayama, S., Fuji-Kuriyama, Y. and Omura, T.
Structural analysis and specific expression of microsomal cytochrome P-
450 (M-1) mRNA in male rat livers.

Young, H-K. and Amyes, S. G. B.
A new mechanism of plasmid trimethoprim resistance.

Yusa, K., Hamada, H. and Tsuruo, T.
Comparison of glutathione S-transferase activity between drug-resistant and -sensitive human tumour cell lines: Is glutathione S-transferase associated with multidrug resistance?

Zaphiropoulos, P. G., Mode, A., Strom, A., Moller, C., Fernandez, C. and Gustafsson, J-A.
cDNA cloning, sequence and regulation of a major female-specific growth hormone-inducible rat liver cytochrome P450 active in 15β-hydroxylation of steroid sulphates.

Bovine adrenocortical cytochrome P-45017α.

Zunino, F., Gambetta, D., DiMarco, A. and Zaccara, A.
Interaction of daunomycin and its derivatives with DNA.
APPENDIX 1
MATERIAL SOURCES

Aldrich Fine Chemicals Ltd., The Old Brickyard, New Road, Gillingham, Dorset, SP8 4JL
2-acetoaminoflourene, adriamycin, benzo(a)pyrene vinblastine sulphate, vincristine.

Amersham International PLC, UK Sales Office, Lincoln Place, Green End, Aylesbury, Buckinghamshire
α32P dCTP, Hybond N membrane,125I - Protein A, Western Blotting ECL detection system

Andermann and Co. Ltd., Laboratory Supplies Division, 145, London Road, Kingston-upon-Thames, Surrey, KT2 6NH
0.45uM pore size nitrocellulose sheets

BDH, Macfarlane Robson Ltd., Burnfield Avenue, Thornliebank, Glasgow, G46 7TP.
acetic acid, ammonium formate, boric acid, bromophenol blue, CDTA, carbon tetrachloride, chloroform, Denhardt's, dimethyl sulphoxide, ethanol, formaldehyde, glycine, hydrogen peroxide, magnesium chloride, methanol, N N' - methylenebisacrylamide, NNN N'-tetramethylenediamine (TEMED), orthophosphoric 305
acid, phenobarbital, phenol, poly-acrylamide, KCl, sodium acetate, sodium chloride, sodium citrate, disodium hydrogen phosphate, sodium dodecyl sulphate, sodium dihydrogen orthophosphate, sodium azide, sodium hydroxide, sodium pyrophosphate, sucrose, xylene cyanol.

Boehringer Mannheim, Boehringer-Mannheim House, Bell Lane, Lewes, East Sussex, BN7 1LG

Bristol Myers

CiS Ltd., Unit 5, Lincoln Park Business Centre, Lincoln Road, High Wycombe, Bucks., HP12 3RD

DAKO Ltd, 16 Manor Courtyard, Hughenden Avenue, High Wycombe, Bucks., HP13 5RE

ammonium persulphate, 4 chloro-1 naphthol, ethidium

dATP, dGTP, dTTP, Klenow fragment, RNase A.

Etoposide (Vepesid 16)

C219 monoclonal antibody

ABC complex
Difco Ltd., PO Box 14B, Central Avenue, West Molesey, Surrey.
Agar, bactotryptone, yeast extract, trypsin

Fisons, Gallenkamp, 2-mercaptoethanol, glycerol
Braeview Place, Nerston, East Kilbride, Glasgow, G74 3XJ

Gibco-BRL Ltd., PO Box 35, Restriction enzymes, low melting-point agarose, formamide,
Trident House, Renfrew Road, Paisley, guanidine-HCl, α-MEM, RPMI, newborn calf serum, penicillin/streptomycin, urea, RNA-ladder, fetal calf serum
PA3 4EF

Int. Market Supply, plastic feeding cannula
Dane Mill, Broadhurst Lane,
Cheshire, CW12 1LA

Koch Chemicals Ltd., dipotassium hydrogen orthophosphate,
2, Marshgate Drive, Hertford, potassium dihydrogen orthophosphate
Hertfordshire

Kodak Ltd., Box 33, Kodak X-Omat AR-5 film
Swallowdale Lane,
Hemel Hempstead,
Hertfordshire, HP2 7EU

Northumbria Biologics Ltd., DMEM

307
South Nelson Industrial Estate,
Cramlington, Northumberland,
NE23 9HL

Oxoid, Wade Road,
Basingstoke, Hampshire.

Pharmacia, Pharmacia House,
Midsummer Boulevard,
Milton Keynes, MK9 3HP

Scottish Antibody Production
Unit, Glasgow and West
Scotland Blood Transfusion
Service, Law Hospital,
Carluke, Lanarkshire, ML8 5ES

Sigma Chemical Co. Ltd.,
Fancy Road, Poole,
Dorset, BH17 7NH

phosphate buffered saline
Dextran Sulphate, hexadeoxyribo-
nucleotides.
HRP anti-rabbit IgG, HRP anti-mouse
IgG.

4 acetamidophenol, Aflatoxin B₁,
bovine serum albumin, 1, 2-
benzanthracene, clofibric acid,
clotrimazole, coomassie
brilliant blue R, dexamethasone,
diethyl pyrocarbonate, erythromycin,
ethylenediaminetetra acetic acid,
L-glutamine, isoamyl alcohol, lead
nitrate, lithium chloride, lysozyme,
3-methyl colanthrene, MOPS, MTT,
N, N'-methylene-bis-acrylamide,
molecular weight rainbow markers,
α-napthoflavone, β-napthoflavone, 4-nitroquinolene N-oxide, n-Nitroso-diethylamine, phenol red, PMSF, proteinase-K, potassium acetate, PVP, progesterone, pyrazole, rifampicin, tetracycline, TAO, Tris-HCl, Tween 20, Type II agarose, verapamil.

Whatman, Mackay and Lynn Ltd., 2, West Bryson Road, Edinburgh, EH11 1EH

3 MM paper
APPENDIX 2

CORTICOSTERONE STANDARD CURVE DATA AND GRAPH

<table>
<thead>
<tr>
<th>[Corticosterone] nmol/L (standards/samples)</th>
<th>unbound counts (mean of 3)</th>
<th>bound counts (mean of 3)</th>
<th>% binding (mean of 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>5218</td>
<td>2261</td>
<td>43.3</td>
</tr>
<tr>
<td>2.25</td>
<td>2957</td>
<td>2229</td>
<td>42.7</td>
</tr>
<tr>
<td>4.5</td>
<td>2989</td>
<td>2222</td>
<td>42.7</td>
</tr>
<tr>
<td>9</td>
<td>3027</td>
<td>1919</td>
<td>42.0</td>
</tr>
<tr>
<td>36</td>
<td>3133</td>
<td>2085</td>
<td>39.3</td>
</tr>
<tr>
<td>72</td>
<td>3335</td>
<td>1883</td>
<td>36.1</td>
</tr>
<tr>
<td>144</td>
<td>3483</td>
<td>1735</td>
<td>33.2</td>
</tr>
<tr>
<td>285</td>
<td>3764</td>
<td>1454</td>
<td>27.8</td>
</tr>
<tr>
<td>576</td>
<td>4186</td>
<td>1032</td>
<td>19.8</td>
</tr>
<tr>
<td>1152</td>
<td>4439</td>
<td>779</td>
<td>14.9</td>
</tr>
<tr>
<td>control</td>
<td>3163</td>
<td>2056</td>
<td>39.4</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>3069</td>
<td>2149</td>
<td>41.1</td>
</tr>
<tr>
<td>TCPOBOP</td>
<td>3307</td>
<td>1911</td>
<td>36.6</td>
</tr>
</tbody>
</table>

From standard curve,

- **Control** 39.4% = 380 nmol/L
- **Dexamethasone** 41.1% = 200 nmol/L
- **TCPOBOP** 36.6% = 660 nmol/L

![Graph](image_url)