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ABSTRACT

This paper describes the AMI transcription system for speech in
meetings developed in collaboration by five research groups. The
system includes generic techniques such as discriminative and speaker
adaptive training, vocal tract length normalisation, heteroscedastic
linear discriminant analysis, maximum likelihood linear regression,
and phone posterior based features, as well as techniques specifi-
cally designed for meeting data. These include segmentation and
cross-talk suppression, beam-forming, domain adaptation, web-data
collection, and channel adaptive training. The system was improved
by more than 20% relative in word error rate compared to our previ-
ous system and was usd in the NIST RT’06 evaluations where it was
found to yield competitive performance.

Index Terms— Speech recognition,, Meetings

1. INTRODUCTION

Many people spend considerable time in meetings despite of low
complaints of low efficiency. So far computers are rarely used in
streamlining the process and for extracting and retaining of the es-
sential information. Projects like AMI (Augmented Multiparty In-
teraction) aim to investigate to use of machine based techniques to
aid people in and outside of meetings to gain efficient access to in-
formation. Meetings are an audio-visual experience by nature, how-
ever verbal communication forms the backbone of most meetings.
The automatic transcription of speech in meetings is of crucial im-
portance for meeting analysis, content analysis, summarisation, and
analysis of dialogue structure. This paper presents the system for
meeting transcription for the AMI project. The system was devel-
oped in a joint effort by the authors and others on the project and
hence required very close international collaboration.

Widespread work on automatic transcription of speech in meet-
ings started with yearly performance evaluations by the U.S. Na-
tional Institute of Standards and Technology (NIST) with a first trial
run in 2002. The Work was initially facilitated by the availability of
the ICSI meeting corpus [9]. Further meeting resources were later
made available by NIST [4] and Interactive System Labs (ISL) [1].
During NIST evaluations also recordings made at the Virgina Tech
(VT) University were used. More recently two European projects,
AMI and CHIL have collected and annotated substantial amounts of
data. The AMI corpus [2] is now freely available.
1.1. Transcription of Meetings

Work on meeting transcription has has in part been dominated by the
fact that the amount in-domain data is usually very small. As for any
other spontaneous speech source, the cost of manual transcription is
usually prohibitive. The number of speech resources for meetings
is still small and most systems make use of adaptation of models
from other domains. In [15] a recognition system for conversational
telephone speech (CTS) formed the starting point, others have re-
ported that bootstrapping from Broadcast News (BN) systems works

well. In the following we also compare adaptation from CTS with
unadapted training. in [8] we investigated whether meetings can be
considered a domain, i.e. sufficiently uniform to warrant identical
modelling of the language. We found that the vocabulary is very
similar to that of BN with small out of vocabulary rates once BN is
included. Meeting specific language models could give better per-
plexity and lower error rate, but with low margin.

Another issue is the recording source variability. Most corpora
have audio recorded from individual head microphones (IHM), but
ideally only microphones on the table, in microphone array config-
uration or not, should suffice for this task (multiple distant micro-
phones, MDM). However, for MDM data a substantial performance
degradation is observed.

The transcription system presented in this work makes use of the
standard ASR framework, i.e hidden Markov model (HMM) based
acoustic modelling and N-gram based language models (LMs). In
the following we describe the main components of the AMI system
for participation in the NIST RT06 evaluations. A brief description
of the data used is followed by details on acoustic and language mod-
elling. The final system architecture is described and results on the
evaluation test set are presented.

2. DATA
In our initial work we found that including all above corpora into
the training data helped [6]. However, the recording conditions dif-
fer considerably between corpora. The least difference is for IHM
recordings where both lapel or head-mounted microphones of vary-
ing quality are used. This has an effect on the amount of noise and
acoustic occlusion. For MDM microphones number and placement
as well as quality differ. Whereas AMI and NIST have high quality
microphone arrays, ICSI microphones where spread across the table,
in approximately known location. For ISL and VT only one or two
microphones were used.

For our IHM stem about 70 hours of speech data from the ICSI
corpus [9], 13 hours from the NIST corpus [4] and 10 hours from
ISL[1] were used. The AMI corpus collection was not completed at
the time of system development and only 16 hours were included in
the training set.The data consisted of data collected at IDIAP, and
to a small extent at Edinburgh University [2]. This yielded a total
training set (ihmtrain05) size of 108 hours.

For MDM the audio signal was enhanced (see Section 3.2) using
selective bean-forming. Only a single speaker can be selected at each
time. This approach cannot cope with overlapped speech and hence
it had to be excluded from training. The final size of the training set
(mdmtrain05) was 66 hours of speech.

3. PREPROCESSING

The audio pre-processing stages address several issues: The seg-
mentation of the audio and implicit discarding of silence or noise;
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Fig. 1. Frontend Processing Stages for SAM and MDM.

the speaker labelling for later acoustic adaptation; the normalisa-
tion of input channels; and the suppression of noise. For IHM a
system for segmentation and cross-talk suppression was developed.
For MDM an enhancement based approach was taken were multiple
channels were converted into a single channel consisting of the dom-
inant speaker only. Segmentation and speaker labels were provided
by ICSI/SRI [14]. Figure 1 shows the processing steps in diagramtic
form. After the initial processing the audio signals are converted into
feature streams, with vectors comprised of 12 MF-PLP features and
raw log energy and first and second order derivatives are added. Cep-
stral mean and variance normalisation (CMN/CVN) is performed on
a per channel basis.

3.1. Individual Head Microphones

Initially cross-talk suppression is performed using an adaptive LMS
echo canceller followed by computation of 12 MF-PLP features. Ad-
ditional features for the detection of cross-talk are extracted prior to
cross talk suppression. These features are cross-channel normalised
energy, signal kurtosis, mean cross-correlation and maximum nor-
malised cross-correlation. The cross-channel normalised energy is
calculated as the energy for the present channel divided by the sum
of energies across all channels. The feature vectors are used to train
a Multi-Layer-Perceptron (MLP) classifier with a 101 frame input
layer, a 50 unit hidden layer and an output layer of two classes.the
models are trained on 90 hours of data from all meetings in theihm-
train05 set. Onrt05sevalthe automatic segmentation gave equal
performance as manual segmentation. More details can be found in
[3].
3.2. Multiple Distant Microphones

Processing of MDM data takes account of the varying number of
microphone channels and potentially unknown location of the micro-
phones in relation to each other. The processing operates in several
stages: First gain calibration is performed by normalising the maxi-
mum amplitude level of each of the input files. Then the background
noise spectrum is estimated using the lowest energy frames in the
recording and this is used to Wiener-filter the data to remove the sta-
tionary noise. In the next step delay vectors between channels are
calculated on a per frame basis using generalised cross-correlation.
Delays are computed in relation to a reference channel which also
yields a relative scale factor. Delays and scale factors are then used
in the final stage implementing superdirective beam-forming. More
details can be found in [5].

While this approach is robust to a variety of configurations, for a
small number of sparsely located microphones the estimates are very
unreliable. In this case simply selecting the channel with the highest
energy for every time frame was found to yield substantially lower
word error rates (WERs).

4. ACOUSTIC MODELLING

All acoustic modells are based on cross-word state-clustered triphone
models.It was found that, similar to CTS, 10-15% relative WER
gain can be obtained using maximum likelihood based vocal tract
length normalisation (VTLN) [6]. Secondly, heteroscedastic lin-
ear discrimant analysis (HLDA) gives consistent performance im-
provements [6]. Further gains could be obtained by discriminative

System Training criterion PLP LCRC+PLP
Baseline ML 28.7 25.2
SAT ML 27.6 23.9
SAT MPE 24.5 21.7

Table 1. %WER results onrt05sevalIHM (manual segmentation)
with and without LCRC features.

training using the minimum phone error (MPE) criterion[11], also
jointly with constrained maximum likelihood regression (MLLR)
based speaker adaptive training (SAT). The left column of Table 1
shows WER results onrt05seval. In both cases substantial improve-
ments are found.
4.1. Phoneme-State Posteriors Features
Recently there is increased interest in feature space representations
that cover a long time span. Here we included features based on
phone state posterior probability as computed by an MLP[13]. In or-
der to generate the LCRC features standard VTLN and CMN/CVN
is applied to Mel frequency log filterbank (FB) coefficients. 23 FB
coefficients are extracted every 10ms and 15 vectors of left context
are then used to find the LC state level phone posterior estimates.
The same procedure is performed with the right context. These pos-
teriors are then combined with a third MLP network and after log-
arithmic compression the 135D feature vector is reduced to dimen-
sion 70 using principal component analysis. This step is only neces-
sary because the final dimensionality reduction using HLDA was not
feasible with such high dimensional vectors. The final 25D feature
vector is appended to the standard 39D feature vector.

Table 1 shows WER results both in comparison with standard
features and with different training procedures. One can observe
that the substantial gain from using these features is additive to other
techniques. Similar patterns have been found on other test sets and
MDM microphone data.
4.2. Adaptation to meetings
As shown in previous sections, word error rats on meeting data are
still high. Part of the reason is the lack of sufficient training mate-
rial. Hence adaptation of models trained on other domains is desir-
able and Maximum-A-Posteriori (MAP) based adaptation has been
used successfully in this context (e.g. [14]). However, CTS op-
erates on audio with reduced bandwidth. In [6] it was shown that
better performance can be obtained using the full bandwidth avail-
able. As a consequence a MLLR based transform from narrow-band
to wide-band data was derived and used in MAP adaptation of CTS
models to meeting data. However, such a scheme is not viable with
both HLDA and discriminative training. The solution to this prob-
lem was to project the meeting data into a narrowband space where
both HLDA statistics can be gathered and discriminative training can
be performed without regeneration of training lattices.

Initial full covariance statistic is estimated on the CTS training
set. A single CMLLR transform is trained to map the 52D wide-
band (WB) meeting data to a 52D narrowband (NB) CTS space.
The meeting data is mapped with this transform and full covariance
statistics is obtained using models based on CTS state clustering.
The two sets of statistics are then combined in using MAP and the
combined set of statistics is used to obtain a joint HLDA transform
(JT). Now combined models in JT space can be trained using both
CTS and mapped meeting data. These are then used to retrain CTS
models in JT space, followed by SAT and MPE training. Equiva-
lently to adaptation of ML models with MAP, the JT/SAT/MPE mod-
els are adapted to meeting data using MPE-MAP[12]. The inclusion
of SAT requires the presence of speaker transforms on meeting data.
These are obtained from SAT training of MAP adapted CTS models
in JT space. Table 2 shows results in JT space. A comparison of



Initial models Adaptation WER
CTS SAT MPE 30.4
CTS SAT MPE ML-MAP 26.0
CTS SAT MPE + ML-MAP MPE-MAP 23.9

Table 2. %WER results onrt05sevalIHM with adaptation from CTS
to ihmtrain05.

TOT AMI CMU ICSI NIST VT
baseline 53.6 46.5 50.2 48.2 53.6 63.0
all channel 54.7 48.4 51.3 49.4 55.1 63.3
CHAT 52.9 47.2 48.0 47.1 52.0 63.3

Table 3. %WER results onrt05sevalMDM with automatic segmen-
tation.

the final WER results with that in Table 1 shows a 0.6% absolute
improvement. However, the elaborate process prohibited inclusion
of LCRC features at this point. A more detailed analysis of this pro-
cedure can be found in [10].
4.3. Channel Adaptive Training Experiments

For MDM training the amount of training data is even smaller, due
to the constraint of using only non-overlapped speech. Furthermore
speech enhancement introduces additional distortions that are not
modelled appropriately. One approach to address this issue is by
training on all microphone channels (as used in [14]). Table 3 shows
that performance degraded. However, when using a SAT style train-
ing on each microphone channel (CHAT), i.e. one set of CMLLR
transforms per channel, a small performance gain was observed.
Table 4 shows that with VTLN, HLDA, and discriminative training
a moderate gain is retained. Note that decoding is till performed on
the enhanced single audio channel.

5. LANGUAGE MODELLING AND VOCABULARY

The UNISYN pronunciation lexicon forms the basis of dictionary
development with pronunciations mapped to the General American
accent [6]. The original phoneme set was mapped to 45 phonemes
which introduced some unusual pronunciations for words including
flaps. However experiments did not suggest that this was problem-
atic. Normalisation of lexicon entries to resolve differences between
American and British derived spelling conventions was performed.
Pronunciations for a further 15000 words were generated manually
for work in this paper.

Standard N-gram language models (LMs) were built using the
SRI LM toolkit 1. Table 5 lists the text resources used for training of
bigram, trigram and 4-gram LMs. Note that in contrast to other web-
data, the AMI web-data was collected using techniques to collect
text that is different to the already existing background material [16].
From the interpolation weights it is clear that conversational data is
most important. The perplexity of the interpolated was 84.3 for the
interpolated trigram and 81.2 for the 4-gram model onrt06seval.

6. SYSTEM OVERVIEW AND PERFORMANCE

The AMI 2006 system operates in a total of six passes (see Figure 2).
The system is identical in structure both for IHM and MDM input.
The systems differ in the front-ends and the acoustic models. Hence
we focus on the description of the IHM system and highlight the
differences for MDM later on.

In the first pass, P1, the front-end converts the recordings into
feature streams as described in Section 3. The audio stream is split
into meaningful segments. After segmentation cepstral mean and
variance normalisation (CMN/CVN) is performed on a per channel
basis (see Fig.1). The first decoding pass yields initial transcripts

1http://www.speech.sri.com/projects/srilm

ML MPE
enhancement-based 42.9 40.0
CHAT 43.0 s 39.0

Table 4. %WER results onrt05sevalwith reference segmentation,
VTLN and HLDA.

LM component size weights (trigram)
AMI data from rt05s 206K 0.038
Fisher 21M 0.237
Hub4 LM96 151M 0.044
ICSI meeting corpus 0.9M 0.080
ISL meeting corpus 119K 0.091
NIST meeting corpus 157K 0.065
Switchboard/callhome 3.4M 0.070
webdata (meetings) 128M 0.163
webdata (fisher) 128M 0.103
webdata (AMI) 138M 0.108

Table 5. Language model data set sizes and weights in interpolation.

that are subsequently used for estimation of VTLN warp factors. The
acoustic modelsM1 are ML models trained onihmtrain05only. An
interpolated trigram LM is used in decoding. The feature vectors
and CMN and CVN are subsequently recomputed and the LCRC
features are appended.

TheM2 models are trained onihmtrain05using VTLN, HLDA,
SAT and MPE and LCRC features. They are adapted using the tran-
scripts of the first pass and a single CMLLR transform. Here the
interpolated bigram LM is used to to output the bigram word lattices
in the second pass, P2. In the third pass (P3) the lattices are ex-
panded using the 4-gram LM. These lattices are subsequently used
for acoustic rescoring in all passes.

The third model set,M3, is identical to the one described in
4.2. In the fourth pass bothM2 andM3 models are adapted using
both CMLLR and MLLR with regression class trees for up to four
classes. Lattices are rescoring using the adapted models and a dic-
tionary containing pronunciation probabilities (PPROB). The output
of P4a is used for adaptation of M3 models and the output of P4b is
used to adapt the M2 models in the same fashion. Finally confusion
networks (CNs) are generated, combined and the sequence with the
highest local posterior probability is extracted[7]. During develop-
ment only unreliable improvement was found by combination and
this stage was hence omitted.

Table 6 shows results for each processing stage. A large differ-
ence in WER can be observed by stepping from P1 to P2. After the
third pass the results are already very close to the final performance.
Even though the P4b system has lower performance on its own the
inclusion into the adaptation path yields a further 0.5% WER ab-
solute. Simple adaptation with P4a supervision did not give any im-
provement. Also, note the similarity in WERs across all meeting cor-
pora. The difference between IHM and MDM lies in the front-end,
the acoustic model training set, and that onlyM1 andM2 acoustic
models are used. The MDM performance is given in Table 7 (non-
overlap results). Again the initial pass yields very poor performance
and the difference between the output of the third pass and the final
result is small. Overall there is a considerable difference between
performance on IHM and MDM.

7. CONCLUSIONS

We have presented the AMI 2006 system for transcription of speech
in meetings. Compared to our initial system a WER reduction on
IHM of more than 20% relative and competitive performance in the
NIST RT’06 evaluations was achieved. The MDM performance still
is comparatively poor and requires better modelling. One of the main
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issues is poor use of training data. Schemes such as CHAT can be
used to improve utilisation of the available data and robust adapta-
tion from other domains will allow better smoothing. In combination
this should substantially lower error rates.
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