COMPLEMENT-MEDIATED NEUTROPHIL ACTIVATION

by

Lorna M Williamson

Thesis submitted for degree of Doctor of Medicine

July 1986
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>1</td>
</tr>
<tr>
<td>Declaration</td>
<td>3</td>
</tr>
<tr>
<td>Ethical Considerations</td>
<td>4</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>5</td>
</tr>
<tr>
<td>Publications and presentations at meetings</td>
<td>7</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>9</td>
</tr>
<tr>
<td>General introduction</td>
<td>11</td>
</tr>
</tbody>
</table>

Chapter 1 Introduction and literature review:

- **Section I** The polymorphonuclear leucocyte: structure, functions and activation processes 13
- **Section II** The complement system and its effects on neutrophils 30
- **Section III** The role of neutrophil activation by chemotactic complement factors in human disease 40
- **Section IV** In vivo models of neutrophil-mediated tissue damage 49

Chapter 2 Identification of PMN degranulating activity in activated complement and use of a PMN degranulating system to detect complement activation.

- Introduction 58
- General Methods 61
- Experimental work 71
- Discussion 103
Chapter 3 Conditions influencing cobalamin binding protein release from stimulated and unstimulated neutrophils.

Introduction 114
Experiments 118
Discussion 130

Chapter 4 The role of C_5 and neutrophils in the wheal and flare response to intra-dermal zymosan-activated serum (ZAS).

Introduction 134
Experimental work 137
Discussion 162

Chapter 5 Studies into the mechanisms of PMN involvement in the skin response to activated complement.

Introduction 169
Experimental work 172
Discussion 196

Chapter 6 The effects of histamine and histamine antagonists on stimulus-mediated cobalamin-binding protein release from neutrophils.

Introduction 205
Experimental work 207
Discussion 220

Chapter 7 Inhibition of neutrophil cobalamin binding protein release and phagocytosis by extracts of Tanacetum parthenium (feverfew).

Introduction 224
Experimental work 227
Discussion 239
<table>
<thead>
<tr>
<th>Chapter 8</th>
<th>Conclusions, and implications of neutrophil secretion in the inflammatory response.</th>
<th>243</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix 1</td>
<td>Suppliers of materials.</td>
<td>250</td>
</tr>
<tr>
<td>Appendix 2</td>
<td>Buffers.</td>
<td>253</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>255</td>
</tr>
</tbody>
</table>
This study has examined activation of human polymorphonuclear leucocytes (neutrophils) by complement components and the role of such activation in the production of inflammation. Using release of the secondary granule component cobalamin binding protein as a marker of cell activation, complement activated serum was shown to contain a single low molecular weight peak of degranulating activity for cytochalasin B treated neutrophils dependent on the presence of C₅.

Thus neutrophil degranulation could be used as a functional assay for the detection of C₅ fragments and anti-C₅ fragment activity.

Cobalamin binding protein was also slowly lost from cells in the presence of serum, a phenomenon which is not complement dependent but which may be of importance in control of granulopoiesis.

Autologous complement-activated serum, when injected intradermally rapidly produced an inflammatory response of flare, wheal and accumulations of intravascular neutrophils. The wheal and flare response was C₅ dependent and also partially neutrophil dependent, since severely neutropenic subjects showed significantly impaired skin responses, despite normal serum levels of C₅ fragments, and irrespective of platelet count.

Possible mechanisms of neutrophil involvement in this microvascular response to C₅ fragments were examined. Complement-activated neutrophils did not release the
inflammatory arachidonic acid products prostaglandin \(E_2 \) or leukotriene \(B_4 \), nor were the skin responses to complement reduced by aspirin, hydrocortisone or ibuprofen. Oxygen radicals did not appear to be important as chronic granulomatous disease carriers (and one affected male) had normal reactions. Chronic granulocytic leukaemia patients, however, had impaired responses, for reasons as yet unclear.

Skin responses to complement in normal subjects were reduced by local anti-histamine drugs of anti-\(H_1 \) type. This could, however, have been due to neutrophil blockade rather than histamine antagonism, for \(H_1 \) antagonists significantly reduced neutrophil degranulation \textit{in vitro}, as did histamine. Studies with \(H_1 \) and \(H_2 \) antagonists suggested the presence of \(H_2 \) receptors on neutrophils with \(H_1 \) antagonists having local anaesthetic type effects on the cell membrane.

Neutrophil degranulation was also blocked by extracts of the plant \textit{Tanacetum parthenium} (feverfew), a herbal remedy for migraine and arthritis. Studies with different degranulating stimuli suggested that feverfew might be acting on the pathway to protein kinase C activation. Phagocytosis of opsonised yeasts was also blocked by feverfew.

Neutrophil activation by complement fragments thus appears to lead, by unknown mechanisms, to increased vascular permeability and vasodilatation. Such activation which may be particularly important in the pathogenesis of the adult respiratory distress syndrome and rheumatoid arthritis, appears to be amenable to pharmacological modulation by \(H_1 \) antagonists and feverfew extracts. The therapeutic significance of these observations remains to be tested.
DECLARATION

I hereby declare that this thesis has been composed entirely by myself, and that the studies contained herein have been conducted either solely by myself, or in collaboration with others. Such collaboration is acknowledged at the beginning of the relevant chapters. Where collaborative studies have been done, I have contributed significantly to the work.

July 1986
ETHICAL CONSIDERATIONS

All studies in this thesis involving human subjects, including blood sampling, skin testing and drug administration, have been performed with the approval of the Nottingham City Hospital Ethical Committee, and with the informed written consent of the subjects.
ACKNOWLEDGEMENTS

I am most grateful to the Trent Regional Health Authority Research Fund for financial support, without which this project would not have been possible.

Special thanks are due to my supervisor, Dr John Fletcher, whose enthusiasm and insight were invaluable throughout the project, and to Mr Kelvyn Sheppard, for his patient teaching of techniques, and for hours of stimulating discussion.

Parts of this project were carried out in collaboration with colleagues. I wish to thank them for contributing so much time and energy to the work, particularly Dr John Davies, and also Drs S Heptinstall, P Maurice, B Gomperts and Mr N Jackson.

I wish to thank my advisor, Dr J A Raeburn for his ever willing help and encouragement. I am also grateful to Drs R J Powell, R F A Logan and R J Sokol for timely advice at various points during the project.

I received considerable practical help from Ms Shelagh French and staff of the Pharmacy of the City Hospital, Nottingham, for which I am extremely grateful.

I also wish to acknowledge the generous gifts of C\textsubscript{5} deficient serum from Dr R A Thompson, an injectable preparation of clemastine from Sandos Ltd, and a large supply of feverfew plants from Mrs Ruth Brown.

I owe a special debt to the many volunteers and patients who showed such willingness to donate blood, and to take part
in the in vivo studies. I also wish to thank Drs P A E Jones, T E Bletcher, E A French, J A Raeburn, W G Reeves, O B Eden and J Fletcher for permission to study patients under their care.

I am grateful to the staff of the libraries of the City Hospital, Nottingham, and the Regional Blood Transfusion Centre, Sheffield, for their cheerful help in the pursuit of references.

Many thanks are due to Mrs Sally Azadehdel who drew the figures and the Departments of Medical Illustration, Northern General Hospital, Sheffield and University Hospital, Nottingham for taking the photographs.

I am particularly grateful to Mrs Janet Morley, who skillfully typed and patiently redrafted my none-too-legible script.

Finally, very special thanks to my husband Tony, for his constant interest in the work, discerning criticism of both science and writing, and for providing endless encouragement and equally endless cups of coffee.
Parts of this thesis have already been presented and/or published as follows:-

Presentations at meetings
1. Release of vitamin B\textsubscript{12} binding protein from cytochalasin treated neutrophils - a functional assay for C\textsubscript{5a} (oral presentation).

 European Society for Clinical Investigation,

2. The role of the neutrophil in the inflammatory response to intra-dermal zymosan-activated serum (poster).

 3rd International Congress on Inflammation,

3. The role of the neutrophil in the inflammatory response to intra-dermal zymosan-activated serum (oral presentation).

 British Society for Haematology Scientific Meeting,
 (Awarded British Society for Haematology's Young Investigator Award).

4. Neutrophil degranulation is inhibited by anti-histamine drugs of anti-H\textsubscript{1} type (oral presentation).

 European Society for Clinical Investigation,
5. Could feverfew have anti-thrombotic potential? (poster presentation)

Publications

1. Extracts of feverfew inhibit granule secretion in blood platelets and polymorphonuclear leucocytes.

2. Neutrophils are involved in the increased vascular permeability produced by activated complement in man.

 British Journal of Haematology (in press).
ABBREVIATIONS USED THROUGHOUT

ARDS: Adult Respiratory Distress Syndrome
BSA: Bovine Serum Albumin
CB: Cytochalasin B
(N)CBP: (Neutrophil) Cobalamin Binding Protein
CGD: Chronic Granulomatous Disease
CGL: Chronic Granulocytic Leukaemia
CH50: Total Haemolytic Complement
DMSO: Dimethyl Sulphoxide
EACA: Epsilon Amino Caproic Acid
EDTA: Ethylene Diamine Tetraacetic Acid
EGTA: Ethylene-bis (oxy-ethylene nitrile) Tetraacetic acid
FFE: Feverfew Extract
FMLP: Formyl-Methionyl-Leucyl-Phenylalanine
5 HETE: 5 Hydroxy Eicosa Tetraenoic Acid
IEP: Immunoelectrophoresis
LMWfr: Low Molecular weight fraction
LTB₄: Leukotriene B₄
NaAA: Sodium Salt of Arachidonic Acid
NSAI: Non-Steroidal Anti-inflammatory agent
PBS: Phosphate Buffered Saline
PBS-A: Phosphate Buffered Saline containing albumin, calcium and magnesium (see appendix 2).
PGE₂: Prostaglandin E₂
PKC: Protein Kinase C
PMA: Phorbol Myristate Acetate
PMN: Polymorphonuclear Leucocyte
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLC</td>
<td>Thin Layer Chromatography</td>
</tr>
<tr>
<td>TXA₂</td>
<td>Thromboxane A₂</td>
</tr>
<tr>
<td>ZAS</td>
<td>Zymosan Activated Serum</td>
</tr>
<tr>
<td>EACA-ZAS</td>
<td>Zymosan Activated Serum containing epsilon amino caproic acid</td>
</tr>
</tbody>
</table>
Although the human polymorphonuclear leucocyte (PMN) has been considered primarily as a phagocytic cell, increased attention has recently focussed on its role as a secretory cell with involvement of its extracellular products in the processes of inflammation and immunity. PMN secretory events can occur independently of phagocytosis in response to soluble stimuli such as activated complement components and bacterial peptides. Products released include hydrolytic enzymes, inflammatory derivatives of arachidonic acid and membrane phospholipids, toxic oxygen radicals and binding proteins for iron and cobalamin such as vitamin B_{12}.

Secretory activities of PMN's are being increasingly implicated in the microvascular changes and tissue damage seen in a number of diseases associated with either complement activation and/or sepsis, such as the adult respiratory distress syndrome (ARDS) and rheumatoid arthritis.

PMN activation also occurs during elective surgery, with loss of secondary granules within hours1, and a transient defect in cell killing associated with loss of primary granule myeloperoxidase2. Investigation of the possible source of a stimulus to degranulation focussed on the complement system, although secondary granule secretion can also occur in serum without complement activation3. In view of the possible role of complement-mediated neutrophil secretion in the production of inflammation, this study has attempted to answer the following questions:

1. Which complement components are the main secretory stimuli
for PMN's?
2. What are the other factors controlling PMN secretion?
3. Does PMN activation by complement lead to tissue
 inflammation, and if so, what are the mechanisms?
4. Can these tissue damaging processes be inhibited?

The experimental work falls into three sections. The
first section examines secondary granule secretion from PMN's
in vitro, both in the presence of activated complement and by
other stimuli (Chapters 2 and 3). In the second section, an
in vivo model of inflammation is developed, namely intradermal
injection of activated complement and measurement of the
resulting flare and wheal reaction. Identification of active
complement components and the role of PMN activation in the
response are then investigated (Chapter 4), followed by
examination of the possible mechanisms of PMN involvement and
ways of inhibiting the in vivo response (Chapter 5). Finally,
in further in vitro studies, potential inhibitors of PMN
secretion are examined (Chapters 6 and 7). The significance
of the findings are discussed (Chapter 8).
CHAPTER 1
INTRODUCTION AND LITERATURE REVIEW

SECTION 1. THE POLYMORPHONUCLEAR LEUCOCYTE: STRUCTURE, FUNCTIONS AND ACTIVATION PROCESSES.

A. Introduction

White blood cells or leucocytes are broadly divided on the basis of nuclear appearance into two types, mononuclear forms (monocytes and lymphocytes) and polymorphonuclear forms. The latter are further subdivided according to the staining characteristics of their cytoplasmic granules into eosinophils, basophils and neutrophils. Neutrophil polymorphs, otherwise known as neutrophil granulocytes, or polymorphonuclear leucocytes (PMN's, although strictly this term should include eosinophils and basophils also), are the most numerous white cell in the peripheral blood, numbers ranging from 1.8 - 7.3 x 10^9/l, and are 8-10 times more numerous than either eosinophils or basophils. The main function of the PMN is recognition, ingestion and killing of micro-organisms, and removal and repair of dead or damaged tissue. It thus has a primarily restorative function, though as will be discussed later in this chapter, PMN recruitment and activation may under certain circumstances lead to unwanted tissue injury.
B. PMN production and kinetics.

The lifespan of the PMN takes place sequentially in three body compartments, the marrow, the circulation and the tissues.

(i) Marrow

Generation of vast numbers of PMN's occurs in the bone marrow from stem cells which undergo a number of cell divisions to produce more differentiated forms (Table 1).

Table 1 (from Boggs 1975)

<table>
<thead>
<tr>
<th>Cell type</th>
<th>Average no divisions for each cell type</th>
<th>Cell output per stem cell</th>
<th>Approx transit time (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stem cell</td>
<td>? infinite</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>myeloblast</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>promyelocyte</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>myelocyte</td>
<td>2</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>metamyelocyte</td>
<td>-</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>band</td>
<td>-</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>segmented</td>
<td>-</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

The earliest stem cells in the maturation process are probably pluripotent i.e. they can produce progeny of any blood cell line. Stem cells committed to myeloid or granulocyte differentiation then give rise to myeloblasts, and further cell divisions and maturation steps proceed through the promyelocyte and myelocyte stages till the non dividing
metamyelocyte form is reached. There is thereafter no further increase in numbers, but changes in the nucleus continue, giving rise firstly to the band form, and finally to the mature segmented PMN.

It can be seen from Table 1 that the total time spent by a PMN in the marrow is about 17-25 days \(^5\) of which 2-5 days is storage time once maturation is completed. This storage pool is enormous, consisting of between 7 and 13 times as many PMN's as in the peripheral blood \(^5\) and is of great importance in providing an immediate response to infection. The storage pool can be mobilised by endogenous or exogenous glucocorticoids \(^7\) or by the complement component \(C^3\) \(^8\). Segmented PMN's are released preferentially to band forms, although the latter may appear if demand is excessive. The presence of more immature forms such as myelocytes in the blood may be 'physiological' as in recovery from hypoplasia, but may also indicate an abnormal process in the marrow such as fibrosis or tumour invasion.

(ii) Circulation

Once in the peripheral blood, PMN's move between two pools of approximately equal size \(^5\), the circulating pool and the marginated pool which are cells adherent to blood vessel endothelium and therefore not included in peripheral blood PMN counts. Movement between these two pools is rapid, as shown by studies using labelled cells \(^9\), and the marginated pool can be rapidly mobilised by exercise, glucocorticoids or catecholamines \(^10\). Movement of cells from marrow to blood and from blood to tissues is presumed to take place via the marginated pool (Fig 1). Margination appears to take place
Fig 1. Movement of neutrophils between different body pools.
widely, with particular sites being lung, and to a lesser
degree, liver and spleen. The time spent by PMN's in the
peripheral circulation, whether in margined or circulating
pools, appears to be only a few hours, with a half life of
labelled cells in man being only 6-7 hours. Since loss of
labelled cells from the blood is exponential, it can be
calculated that the average PMN spends about 10 hours in the
bloodstream, and that the mass of blood PMN's turns over about
two and a half times daily. The exponential loss of labelled
cells also suggests that loss to tissues is random, with no
preferential loss of older cells, although there is also some
evidence that PMN's may become senescent. Labelling studies
also confirm that while PMN's move from marrow to blood and
blood to tissues, there is little or no migration in the
opposite direction.

(iii) Tissues

The general response of PMN's to tissue damage or
infection begins with adhesion to endothelium followed by
migration between endothelial cells (diapedesis) through into
the tissue. PMN's enter tissues even in health and spend
1-2 days there, where they undergo damage and death, being in
turn phagocytosed by macrophages. PMN's in tissues do not
constitute a mobile reserve of cells, so local tissue demands
for increased numbers of PMN's can be met only by increased
migration from the circulation. Clearly, reduced PMN
numbers in the peripheral blood will result in fewer available
cells to enter damaged or infected tissue. If, however,
neutrophilia is induced, no increase in migration is seen,
numbers entering an infected site being proportional solely to
the intensity of the stimulus15.

C. The mature PMN: structure and functions

(i) Structure

The mature PMN (Fig 2) has a diameter of 12-14\textmu16 and a characteristic multilobed nucleus. The cytoplasm contains glycogen particles, important as an energy source, microfilaments and microtubules essential to the cell's mobility, and also important in phagocytosis and secretion, a few mitochondria and a small Golgi apparatus. The most striking feature of the cytoplasm, however, is the granules, which are of two main types with different constituents (Table 2).

Table 2

Contents of primary and secondary granules of human PMN's

(\textit{after Spitznagel 1974})

<table>
<thead>
<tr>
<th>Primary</th>
<th>Secondary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myeloperoxidase</td>
<td>Cobalamin binding protein</td>
</tr>
<tr>
<td>B glucuronidase</td>
<td>lactoferrin</td>
</tr>
<tr>
<td>neutral proteases</td>
<td>lysozyme (50%)</td>
</tr>
<tr>
<td>elastase</td>
<td>collagenase</td>
</tr>
<tr>
<td>cationic proteins</td>
<td>\textit{C}_b activator</td>
</tr>
<tr>
<td>lysozyme (50%)</td>
<td>folate binding protein</td>
</tr>
</tbody>
</table>

Alkaline phosphatase appears to exist in a completely separate population of granules.

The primary granules (also known as azurophilic, since they take up 'sky-blue' dyes, although their final stained colour is reddish purple) appear at the promyelocyte stage of cell development from the concave side of the Golgi apparatus18. Their numbers are thereafter diluted by cell division. They
Fig 2. THE HUMAN POLYMORPHONUCLEAR LEUCOCYTE

SECONDARY (specific) GRANULES

PRIMARY (azurophil) GRANULES

GOLGI

NUCLEUS
contain mainly degradative enzymes and their function is to kill and break down material contained within the phagocytic vacuole or phagosome, with which they fuse19 (see (vii) below). The secondary or specific granules appear at the myelocyte stage of development and outnumber the primary granules by 2:118. Although they contain the antibacterial protein lysozyme, the functions of their main constituents lactoferrin and cobalamin binding protein are not fully known. Since behaviour of the secondary granules constitutes a large part of this study, they are discussed more fully in part D of this section.

(ii) \textbf{Responses to phagocytosable and soluble stimuli.}

The mature PMN when stimulated is capable of a variety of responses, including chemotaxis, aggregation, degranulation, phagocytosis and killing, a respiratory burst, and production of biologically active mediators such as prostaglandins and leukotrienes. Which of these responses it displays in a given situation depends on whether the stimulus is particulate and therefore phagocytosable, bound to a surface too large to ingest, or soluble. Examples of soluble stimuli include the complement components C\textsubscript{5a} and C\textsubscript{5a} des Arg, discussed more fully in section 2 of this chapter, for which PMN's have receptors on their surface20. Peptides from bacteria, which are generally formylated, also attach to surface receptors. An example is the tripeptide produced by Escherichia coli, formyl-methionyl-leucyl-phenylalamine21 (FMLP). Both C\textsubscript{5a} and FMLP are used as PMN stimuli in this study. They can promote chemotaxis, granule release and a respiratory burst in the absence of any phagocytosable
stimulus21, 22. PMN responses also differ according to whether the cells are in suspension, or whether they are attached to a solid surface23.

(iii) Stimulus-response coupling.

Occupation of surface receptors for stimuli such as \(C_5a\) and FMLP results in a rapid reduction in membrane negative surface charge24, and a rise in free cytoplasmic calcium, due at least partly to calcium loss from the cell membrane25. Recent evidence suggests that biochemical events linking membrane receptor occupation with responses such as chemotaxis and degranulation may also involve breakdown of membrane phosphatidylinositol 4,5-bisphosphate to form two intracellular messengers, 1, 2-diacyl glycerol and inositol 1, 4, 5-triphosphate26. The former activates the membrane enzyme protein kinase C, which via a series of phosphorylation steps, leads to polymerisation of the actin and myosin-containing microfilaments responsible for chemotaxis, phagocytosis and granule release. Inositol 1, 4, 5-triphosphate, on the other hand, mobilises calcium from an intracellular store, possibly in the endoplasmic reticulum27. Thus the rise in intracytoplasmic calcium may be preceded by these lipid changes, rather than being their cause. The events may be summarised thus:
(iv) Chemotaxis.

This complex process by which PMN's move on a surface along a chemical gradient, firstly involves detection by the cell via surface receptor occupation, of a directional difference in chemotactic factor concentration across its dimensions28. The cell changes from round to wedge shaped, spreads out and finally moves in an amoeboid fashion. These processes appear to involve both actin and myosin-containing microfilaments, for locomotion, and also the microtubule system, for stability and orientation29. Migration of cells exposed to attractants is accompanied by other receptor-mediated events, including a respiratory burst and degranulation. Secondary granule release involves fusion of the granule membrane with the plasma membrane with which it is identical and interchangable. This may be important in renewing surface chemotactic factor receptors, which, with their bound ligands, are constantly lost from the cell surface.
by internalisation29. Degranulation thus provides the free receptors necessary for PMN migration.

The nature of the substratum on which the cell moves is also an important determinant of direction of migration. Cells will tend to follow grooves or dips in the surface, even if their orientation conflicts with the chemotactic gradient30.

(v) Adhesion and recognition.

One process in the final maturation of the PMN is the development of surface receptors for two important immunological aids to phagocytosis namely C_3b, derived from the third component of complement, and the F_c end of the immunoglobulins IgG_1 and $IgG_3$31. Bacteria and viruses become coated with IgG antibody which then fixes complement to the bacterial surface. This process, known as opsonisation, greatly facilitates phagocytosis, for IgG opsonisation increases both affinity of the coated particle for the PMN receptor site as well as increasing the maximal rate of phagocytosis32. C_3b does not increase receptor affinity but does maximise the phagocytic rate.

(vi) Phagocytosis.

Phagocytosis takes place by the PMN forming two cytoplasmic outflowings (filopodia) round the particle. These then fuse, and the particle, along with some fluid and the relevant portion of plasma membrane becomes internalised forming the phagocytic vacuole or phagosome31. The phagocytic process, like chemotaxis, probably involves both microfilaments and microtubules, and divalent cations are required33. Energy can be derived from anaerobic metabolism
of cytoplasmic glycogen34.

(vii) **Intracellular killing and degradation.**

Microbicidal mechanisms are of two types, oxygen-dependent and oxygen-independent.

a. Oxygen-dependent. Phagocytosis is accompanied by an increase in oxygen consumption, which is converted by a cell membrane NAD(P)H oxidase (described more fully in the next section) to hydrogen peroxide (H_2O_2) and other reactive oxygen metabolites. Since the oxidase is incorporated, as part of the membrane, into the phagocytic vacuole, a high concentration of H_2O_2 can be generated within the vacuole33. Although H_2O_2 is bactericidal alone, this activity is greatly enhanced by the presence of the enzyme myeloperoxidase, which becomes incorporated into the phagosome when it fuses with primary granules. An oxidisable cofactor such as halide ions is also required33. Low levels of myeloperoxidase may underly the defect in killing found in pregnancy35 and following surgery2. Oxidative microbial damage may also occur independently of myeloperoxidase, by the reactive unstable products of oxygen reduction, namely the superoxide anion (O_2^-), singlet oxygen (1O) and hydroxyl radical (OH-) as well as hydrogen peroxide itself33 (see (viii) below).

b. Oxygen-independent. At least four systems are recognised:

1. The low pH in the phagocytic vacuole, which may be due to accumulation of both lactic acid from glycolysis36 and carbonic anhydrase-mediated carbonic acid production37.

2. Lysozyme, which enters the phagocytic vacuole from the primary granules38.
3. Cationic proteins, which are also found in the primary granules, and which can bind to and damage bacteria.\(^{39}\)

4. Lactoferrin, a secondary granule component. In its unsaturated form, lactoferrin can chelate the iron required for growth of certain bacteria.\(^{33}\) As discussed later in this section, its main site of action may be outside the cell.

(viii) The PMN oxidase and its deficiency.

As stated above, an increase in oxygen consumption or respiratory burst accompanies phagocytosis in human PMN's. As it is not inhibited by cyanide\(^{33}\) and because PMN's contain few mitochondria, this appears to take place almost exclusively via the membrane NAD(P)H oxidase.\(^{40}\) As well as being activated during phagocytosis, the oxidase can be stimulated by soluble factors such as the complement component \(C_{5a}\), particularly in the presence of serum,\(^{14}\) and the bacterial peptide FMLP.\(^{42}\) Under these circumstances, measurable amounts of superoxide anion (\(O_2^-\)) appear outside the cell. Hydrogen peroxide can also be detected, generated probably from the dismutation of superoxide, thus:

\[2H^+ + O_2^- + O_2^- \rightarrow O_2 + H_2O_2. \]

It is highly likely that other reactive oxygen species are also generated, and from their destructive effects on bacteria, it could be predicted that the extracellular appearance of such reactive moieties could cause unwanted damage to normal tissue. This is believed to be the case in certain disease states (see sections 3 and 4 of this chapter).

Deficiency of the PMN oxidase is seen in the inherited condition chronic granulomatous disease, in which impaired function of the microbicidal myeloperoxidase-halide-hydrogen
peroxide system leads to chronic sepsis from early in life with both Gram positive and Gram negative bacteria, which are ingested but not killed. There is no respiratory burst during phagocytosis, which can be detected by failure of reduction of nitroblue tetrazolium, or by direct measurement of superoxide or hydrogen peroxide.

D. PMN secondary granules and their extra-cellular functions.

(i) Contents (see Table 2)

The secondary or specific granules of PMN's contain about half the cell's lysozyme, and practically all the intracellular lactoferrin and cobalamin binding protein (CBP), also referred to as vitamin B₁₂ binding protein although it binds other cobalamins as well as vitamin B₁₂ or cyanocobalamin.

(ii) Responses to stimuli

Secondary granules respond quite differently from primary granules during either phagocytosis or exposure to soluble stimuli. Phagocytosis produces a degree of secondary granule fusion with the phagosome, but most of the secondary granule components CBP and lactoferrin appear extra-cellularly. In contrast, very little primary granule content appears extracellularly during phagocytosis. A similar disparity is seen when considering extracellular granule release in response to a variety of soluble stimuli. For some stimuli e.g. the phorbol ester phorbol myristate acetate, significant secondary granule release occurs with absolutely no primary granule discharge at all. For other stimuli such as C_{5a} or FMLP, secondary granule release takes
place both more rapidly and to a much greater extent than does primary granule release47. This sequential release of granule contents would support the hypothesis that the two granule types are controlled by different mechanisms.

(iii) The use of cytochalasin B in degranulation studies

Cytochalasin B (CB) is a fungal metabolite which prevents the polymerisation of cytoskeletal actin necessary for phagocytosis48. When presented to the cell along with a phagocytic stimulus, CB thus blocks phagocytosis and the primary granules discharge themselves not into the phagosome, but into the extracellular environment49. Addition of CB to PMN's along with a soluble stimulus, however, greatly speeds up and magnifies both primary and secondary granule release49, with secondary granule release beginning in seconds and reaching a plateau in 2 or 3 minutes, as opposed to the 45 or 60 minutes needed in the absence of CB. Despite these major effects, CB causes little or no degranulation when added in the absence of a stimulus.

CB has become widely used in experimental studies of control of degranulation and investigation of the actions of degranulation inhibitors. It may be argued that its use is unphysiological and renders interpretation of results open to question. On the other hand, it has been pointed out that the study of PMN's in suspension is in itself highly unphysiological, as responsive PMN's \textit{in vivo} are almost invariably adherent to a surface23, be it vascular endothelium, collagen or fibrin. The addition of CB to \textit{in vitro} studies, it has therefore been argued, actually restores conditions to a more natural state by substituting
for an adherent surface, and allowing the cells to behave as
they would in vivo23. CB has been used in this study as an
enhancer of stimulus-induced secondary granule release,
although many comparable experiments have been performed
without it. The role of surfaces in the PMN response to
in vivo inflammation is further discussed in section 4 of this
chapter.

(iv) The extracellular functions of PMN secondary granule
components.

a. Lysozyme. Its actions on bacteria outside the cell
are probably similar to those seen when it enters the
phagosome. In addition, it appears to inhibit PMN
chemotaxis50, thus localising PMN's to inflammatory sites.
Lysozyme also appears to act as a negative feedback of PMN
activation, for there is some evidence that it suppresses
superoxide generation50.

b. Cobalamin binding protein (CBP). This occurs with
lactoferrin in many body fluids, as well as in PMN secondary
granules, where it is in a completely unsaturated form. There
are several different cobalamin binding proteins
(transcobalamins) in the body, with different binding
affinities for the various cobalamins and corrinoids, of which
cobalamins are a subgroup. The CBP in neutrophils is of the R
binder type i.e. it particularly binds cobalamin analogues of
vitamin B\textsubscript{12} (cyanocobalamin) rather than the vitamin itself51.
Its function is not known, although it may have a role in
removing cobalamin analogues produced by bacteria.

There may also be a binding protein for folate in PMN
secondary granules, (Sheppard K, unpublished observations) but
as yet this is poorly characterised.

c. Lactoferrin. This iron binding protein is present in PMN's in a completely unsaturated form, so that it readily binds any free iron present in the surroundings. Since iron is a growth factor for certain bacteria, this chelating action may be protective. Lactoferrin also promotes PMN adhesion both to other PMN's and to endothelium, a property which may amplify the inflammatory response. Lactoferrin may additionally have a role in bacterial killing, for in the rare inherited condition of specific granule deficiency, moderate impairment of bactericidal activity is seen. While the exact basis for this is not known, it may be indirectly due to lack of lactoferrin-bound iron, which can promote the production from superoxide of the highly toxic hydroxyl radical. A further important role for lactoferrin appears to be in the control of PMN production (granulopoiesis). The growth of myeloid or granulocytic colonies in culture depends on the presence of one or more colony stimulating factors (CSF) produced via a series of complex interactions between monocytes and lymphocytes. Cell-free supernatants from activated PMN's can exert an inhibitory effect on CSF production, and there is now evidence that lactoferrin may play a major role in this control process.

It can thus be seen that extracellular discharge of PMN secondary granules plays an important role in the inflammatory response, as do also biologically active lipid mediators generated on cell stimulation. A fuller discussion of the effects of these and of PMN products generally in inflammation and tissue damage follows in section III of this chapter.
SECTION II. THE COMPLEMENT SYSTEM AND ITS EFFECTS ON NEUTROPHILS

A. Functions and activation pathways

The human complement system consists of a series of nine plasma proteins (Cl-9) which circulate in an inactive state, and which, when activated, undergo a cascade of cleavage reactions resulting in the generation of biologically active peptides, and of complexes which can damage the membranes of bacteria, viruses and foreign cells. In addition, attachment of complement proteins, particularly C₃b, to foreign material assists in its adhesion to and phagocytosis by PMN's and macrophages. Thus the system exerts a primarily protective function, although endogenous tissue damage may also result from complement activation. There are two pathways by which the system may become activated, each with its own control proteins. The classical pathway is primarily activated by antigen-antibody complexes, while the alternative pathway is triggered largely by foreign material and cell surfaces⁵⁸ (Table 3). The later steps in each pathway are identical. The classical and alternative pathways (Fig 3) differ in their requirement for divalent cations, the former being calcium dependent, while the latter requires magnesium.
Fig 3. The classical and alternative complement pathways.
Table 3

Factors which activate classical and alternative complement pathways

<table>
<thead>
<tr>
<th>Classical</th>
<th>Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antigen-antibody complexes</td>
<td>Complex polysaccharides (e.g. inulin)</td>
</tr>
<tr>
<td>Antigen may be soluble or a surface component</td>
<td>Bacterial lipopolysaccharides (endotoxins)</td>
</tr>
<tr>
<td>Antibodies must be either IgM, IgG, IgG₂, IgG₃</td>
<td>Yeast cell walls (zymosan)</td>
</tr>
<tr>
<td></td>
<td>Cell surfaces of certain bacteria and fungi</td>
</tr>
<tr>
<td></td>
<td>Certain immune complexes e.g. containing IgA or IgD</td>
</tr>
<tr>
<td></td>
<td>Dialyser membrane cellophane</td>
</tr>
</tbody>
</table>

Modified from Goldstein 1980^58.

B. Anaphylotoxins

It is crucial to the understanding of the complement system to appreciate that many active conversion products of complement proteins will remain attached to the target cell e.g. C₃b, C₅b, and will fix to that site later components in the pathway. These solid phase components contrast with a number of smaller proteins, e.g. C₃a, C₅a and C₄a, known collectively as anaphylotoxins, which can diffuse through tissue fluids and set up concentration gradients with effects on motile cells such as PMN's and monocytes. In addition, such proteins can interact with fixed cells such as mast cells and tissue macrophages, triggering secretion and thereby amplifying the tissue response to infection. The term anaphylotoxin refers to the ability of C₃a and C₅a to trigger
severe anaphylactic reactions in animals and man, with collapse, hypotension, bronchospasm and death. This property appears to be mainly due to mast cell activation, with release of histamine and other mediators, leading to contraction of bronchial and vascular smooth muscle. Indeed contraction of guinea pig ileum is one traditional biological assay for these mediators. A further property of C₃a and C₅a is the production of increased microvascular permeability in the skin. All properties of C₃a and C₅a are displayed down to nanomolar concentrations. Not surprisingly, these powerful molecules have a half-life of only a few minutes in vivo, being acted upon by a plasma enzyme carboxypeptidase B, which removes their carboxy terminal amino acid arginine generating C₃a des Arg and C₅a des Arg respectively. Although these stable derivatives are 100-1000 times less active towards mast cells than C₃a or C₅a, they remain active in their effects on PMN's and macrophages, and C₅a des Arg remains a potent producer of increased vascular permeability (see Table 4). The anaphylotoxic properties of C₄a are 2-4 orders of magnitude less than those of C₃a or C₅a.
Table 4

Biological activities of C_{3a}, C_{5a} and their des Arg derivatives

<table>
<thead>
<tr>
<th></th>
<th>C_{3a}</th>
<th>C_{3a} des Arg</th>
<th>C_{5a}</th>
<th>C_{5a} des Arg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contraction of smooth muscle</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Mast cell degranulation</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Increased vascular permeability</td>
<td>+</td>
<td>?</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>PMN chemotaxis and activation</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+*</td>
</tr>
</tbody>
</table>

* may require 'helper factor' or 'cochemotaxin' from plasma.

C. Interactions between C_3 and C_5 fragments and PMN's.

This study is particularly concerned with the effects of C_{3a} and C_{5a} and their des Arg derivatives on PMN activation and degranulation in vitro, and on the micro-circulation and permeability control in vivo. One of the technical difficulties in describing the actions of C_3 and C_5 cleavage products is that native C_3 and C_5 are structurally very similar, as are C_{3a} and C_{5a}, although human C_{5a} has a small carbohydrate side chain. The methodological limitations to the separation of these molecules were not overcome till 8 or 10 years ago, so that in discussing the biological actions of C_{3a} and C_{5a}, the literature prior to the mid 1970's referred to both of them as chemotactic factors for PMN's. More recent work on the
effects of C_{3a} and C_{5a} on PMN's however has cast doubt on whether C_{3a} or its des Arg derivative have any effects on PMN's at all. A careful study of chemotaxis showed that neither C_{3a} nor C_{3a} des Arg could activate PMN's, and proposed that earlier results suggesting that they could were due to contamination of C_{3a} preparations by small amounts of potent C_{5a}. This point will be further examined in this study.

C_{5a} and C_{5a} des Arg are both capable of activating PMN's through the same receptor although the des Arg form has reduced binding affinity, and its ED_{50} for PMN effects is 10-20 times higher. (See Table 5)
Table 5
Concentrations of human C_{5a} and $C_{5a\text{-des Arg}}$
which produce various responses from polymorphonuclear leucocytes

<table>
<thead>
<tr>
<th></th>
<th>C_{5a}</th>
<th>$C_{5a\text{-des Arg}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ED$_{50}$</td>
<td>values (M)</td>
</tr>
<tr>
<td>Chemotaxis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boyden chamber method</td>
<td>0.9x10$^{-9}$</td>
<td>2.0x10$^{-8}$</td>
</tr>
<tr>
<td>Agarose method</td>
<td>1.0x10$^{-9}$</td>
<td>6.3x10$^{-8}$</td>
</tr>
<tr>
<td>Skin window technique</td>
<td>1.7x10$^{-7}$</td>
<td>3.3x10$^{-7}$</td>
</tr>
<tr>
<td>(rabbit PMN's)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMN receptor affinity</td>
<td>3-7x10$^{-9}$</td>
<td>N.D.</td>
</tr>
<tr>
<td>B glucuronidase release</td>
<td>1-5x10$^{-9}$</td>
<td>1-8x10$^{-7}$</td>
</tr>
<tr>
<td>O_2^- generation</td>
<td>3-6x10$^{-8}$</td>
<td>1-3x10$^{-6}$</td>
</tr>
</tbody>
</table>

N.D. = Not determined

Combined data from Hugli 197960 and Webster et al 198022.

The estimated concentration of either C_{5a} or $C_{5a\text{-des Arg}}$ which could be generated in maximally activated plasma is 3-8.5x10$^{-7}$ M60.

Since C_{5a} and $C_{5a\text{-des Arg}}$ are always produced together and because their effects on PMN's are qualitatively similar, they will henceforth be described collectively as C_5 fragments, unless one or other is specifically stated.

Although C_5 fragments are well known for their chemotactic properties towards PMN's, chemotaxis is but one response of the cell to such stimuli. If the cells are in suspension, aggregation follows within minutes, accompanied by
release of secondary granule components and generation of superoxide via the membrane oxidase22. More intense stimulation can also lead to primary granule discharge67. Involvement of such mechanisms in the production of tissue damage in various disease states is discussed in the next section.

D. Inactivation and clearance of C_{5a} des Arg

Two mechanisms of inactivation of C_{5a} des Arg have been described. The first is a plasma inactivator of many different chemotactic factors first described in 197368, known as chemotactic factor inhibitor (CFI). Prolongation of the plasma half-life of C_{5a} des Arg injected intravenously into rabbits by protease inhibitors such as aprotinin may represent blockage of CFI69. CFI, which may have more than one component70, has been reported as being elevated in certain conditions such as sarcoidosis, Hodgkin's disease and cirrhosis71. The significance of this observation to the pathogenesis of these diseases remains unclear.

The second way by which C_{5a} des Arg is cleared from the circulation and tissues appears to be via PMN's themselves. Once C_{5a} des Arg has bound to PMN surface receptors, the C_{5a} des Arg-receptor complex becomes internalised, and the C_{5a} des Arg is no longer available72. The plasma half-life of labelled C_{5a}73 and C_{5a} des Arg69, 73 was prolonged in neutropenic rabbits, almost entirely due to reduced splenic uptake of the label. Accumulation in the lungs, however, was independent of circulating PMN's and was probably due to C_{5a} and C_{5a} des Arg adhering directly to the vascular endothelium73. This may have bearing on the lung damage
believed to be produced by activated complement and PMN's in the adult respiratory distress syndrome or shock lung, described in section III of this chapter.

E. Detection of complement activation.

Although assay of non-activated (native) complement components such as C$_3$ and C$_4$ by radial immunodiffusion is now standard in immunological laboratories, such measurements give little information about the state of complement activation or turnover, since increased conversion and breakdown of C$_3$ and C$_4$ may be offset by increased synthesis. Such information can be gained only by assay of fluid phase activation products such as C$_3$ or C$_5$ fragments. At present, this is readily possible only for C$_3$ fragments. Methods available include 2 dimensional immunoelectrophoresis (measuring mainly C$_{3c}$ and C$_{3d}$) and rocket electrophoresis for C$_{3d}$. Such methods are not however sensitive enough to detect the tenfold lower concentrations of C$_5$ fragments produced even in maximally activated plasma60, and for this reason, biological assays have till now been their main method of detection. The traditional anaphylotoxin assay employing contraction of guinea pig ileum has however two major drawbacks, as well as being time-consuming and technically complicated. Firstly, it does not differentiate between C$_{3a}$ and C$_{5a}$, which both have anaphylotoxic properties, and secondly it does not detect the stable and potent PMN activator C$_{5a}$ des Arg. Assays utilising the unique actions of C$_5$ fragments on PMN's have therefore been devised. These include PMN aggregation75 and degranulation, which is investigated in this project. Finally, radioimmunoassay for C$_{5a}$/C$_{5a}$ des Arg is becoming
available as a research tool. The relative advantages and disadvantages of these various assay systems are discussed more fully in chapter 2.
SECTION III. THE ROLE OF NEUTROPHIL ACTIVATION BY CHEMOTACTIC COMPLEMENT FACTORS IN HUMAN DISEASE.

Clearly the most commonly occurring situation in which generation of \(C_5 \) fragments leads to PMN recruitment and activation is in local tissue infection, where demarcated self limiting tissue injury is seen, but which resolves without major problem.

In other circumstances, however, interaction between \(C_5 \) fragments and PMN's may have more serious consequences. Situations in which \(C_5 \) fragment generation and/or neutrophil activation are believed to be important in disease production are listed in Table 6.

Table 6

Situations in which complement and/or PMN activation may be important in disease production in man.

1. Adult respiratory distress syndrome.
2. Haemodialysis and cardiopulmonary bypass.
3. Following surgery or burns.
4. Rheumatoid arthritis and gout.
5. Myocardial infarction.

A. Adult Respiratory Distress Syndrome (ARDS - synonyms include shock lung and fat embolism syndrome).

This puzzling condition, carrying a 60-70% mortality76, complicates a number of disorders including septicaemia, particularly with Gram negative organisms, multiple trauma,
pancreatitis and thermal injury. The earliest clinical features are dyspnoea and hypoxia, and although the chest X-ray may be initially unremarkable, patchy shadowing quickly develops across both lung fields. A protein-rich alveolar exudate develops so that the lungs become stiff, and artificial ventilation requires high inspiratory pressures. There is no specific therapy, beyond support and treatment of the antecedent condition, although some centres claim benefit from very high dose steroids i.e. in gram quantities.

Although the exact pathogenesis of the condition is not fully known, evidence is accumulating from both animal and human studies that complement and/or PMN activation plays a part in the abnormal permeability of the pulmonary vasculature and the resulting lung damage. For example, the increase in pulmonary capillary permeability to labelled proteins was increased in sheep following experimental pancreatitis and in guinea pigs following challenge with intravenous pneumococci. In either case, the permeability change was absent or reduced in neutropenic animals. Administration of pre-prepared C5 fragments either intravenously or directly into the lungs can also produce some of the changes of ARDS, with PMN adhesion to pulmonary endothelium, migration into alveolar spaces, and increased vascular permeability which is again preventable by neutropenia. Observations in human ARDS have highlighted the frequent development of transient neutropenia immediately prior to the appearance of clinical signs, thought to be due to PMN trapping in the lungs. PMN's entering the lungs may have already been 'primed', with increased basal superoxide production in pulmonary artery
PMN's, and increased basal enzyme release with impaired chemotaxis in peripheral blood PMN's. Neutrophil elastase has also been found in bronchial lavage fluid from ARDS patients.

In a review of experimental complement-mediated ARDS, Henson points out that production of the full picture of ARDS may also require an additional insult such as hypoxia, and also stresses that although C₅ fragments undoubtedly cause PMN aggregation in vitro, they may trigger PMN adhesion to endothelium rather than to each other, when present in the circulation. Indeed the endothelium itself may be altered by C₅ fragments such that PMN/endothelial adhesion is enhanced. Other contributory factors may include pulmonary macrophages which can be acted upon by PMN granule glycoproteins, and which may compound the situation by the release of enzymes capable of generating further C₅ fragments from C₅, and by the synthesis of chemoattractant lipid products such as platelet activating factor and leukotrienes.

One metabolic feature of the PMN which may be important in the production of lung damage is the membrane oxidase which generates the superoxide anion and hydrogen peroxide from molecular oxygen. Lung damage produced in animals by the complement activator cobra venom factor could be prevented by either the hydroxyl radical scavenger dimethyl sulphoxide or the ionic iron scavengers desferrioxamine and apolactoferrin (but not iron saturated lactoferrin). This has led to the hypothesis that generation of the highly reactive hydroxyl radical, a reaction catalysed by Fe³⁺, is an important step in the production of increased vascular permeability, perhaps via
peroxidation of membrane lipids. The reactions are:

$$\begin{align*}
\text{Fe}^3+ + \text{O}_2^- &\rightarrow \text{Fe}^2+ + \text{O}_2 \\
\text{Fe}^2+ + \text{H}_2\text{O}_2 &\rightarrow \text{Fe}^3+ + \text{OH}^- + \text{OH}^- \quad \text{(Fenton reaction)}
\end{align*}$$

One proposed mechanism of ARDS production is therefore that C5 fragments generated either in the circulation or in the lungs, increase adhesion between PMN's and pulmonary capillary endothelium either by altering either the PMN or endothelial cell membrane, or both. Migration of PMN's through into alveoli may then follow, with release of granule contents and toxic oxygen products, leading to increased vascular permeability and exudate production. Possible mechanisms for this will be discussed further in the next section. Some of the lungs' protective mechanisms such as α1 antitrypsin may also be destroyed by oxidation. Other cell types, such as pulmonary macrophages and platelets, may also play a part in the production of some of the features of the condition, but complement and PMN activation appear to be central.

Several points of interest emerge from this hypothesis. Firstly, the role of Gram negative sepsis, and particularly of endotoxin, appears to be a major one. Haemorrhagic
shock alone, for example, does not appear to cause ARDS in man. As well as being a potent activator of the alternative complement pathway, endotoxin may alter pulmonary endothelium directly, rendering it 'sticky' and more liable to trap PMN's by preventing release of temporarily marginated cells.

Secondly, the possible therapeutic benefit of high dose steroids in ARDS may at least in part be explained on the basis of an inhibitory effect on PMN's, for high concentrations of hydrocortisone inhibit PMN degranulation *in vitro* in response to either C₅a or FMLP⁹¹. Although the millimolar concentrations required for inhibition of degranulation *in vitro* are much higher than those achieved by 'normal' steroid dosage *in vivo*, intravenous administration of the 30mg/kg of methyl prednisolone recommended for shock by the current British National Formulary (1985) means that these millimolar levels may be approached in plasma.

Thirdly, it is apparent that clinical diagnosis of ARDS, based on radiological, blood gas, and ventilatory criteria, can only be made once the condition is already well advanced pathologically. While prevention of PMN involvement may be possible with high dose steroids, little can be done once lung damage supervenes. If free C₅ fragments can be detected in the circulation of ARDS patients, and if, as is claimed, their detection is a better predictor of ARDS than the currently available C₃ fragment detection by immunoelectrophoresis⁹², then a reliable, robust detection system for C₅ fragments should prove a valuable tool in ARDS detection and management. This aim is further elaborated in chapter 2.
B. Extracorporeal circulation of blood: haemodialysis and cardiopulmonary bypass.

The observation that when a cellophane membrane was used for haemodialysis a transient neutropenia and monocytopenia was seen during the first hour of dialysis, led to the finding that dialysis cellophane can activate complement\(^93\). Infusion of plasma leaving the dialyser into rabbits produced identical leucopenias, with PMN entrapment in pulmonary capillaries\(^93\). Although dialysis neutropenia is now well documented it rarely gives rise to clinically significant pulmonary damage. Similar activation of C\(_3\) has been seen in cardiopulmonary bypass\(^94, 95\), with the nylon mesh liner of bubble oxygenators being a potent complement activator, as well as the oxygenation process itself\(^95\). Although elevated levels of free C\(_{5a}\) in association with bypass have not been reported, the neutrophilia pertaining during bypass may be followed by a neutropenia immediately on reestablishment of cardiopulmonary circulation, suggesting pulmonary entrapment of C\(_{5a}\)-coated granulocytes\(^95\). Whether this phenomenon is responsible for any of the pulmonary complications of cardiopulmonary bypass is as yet unclear.

C. Post-operatively and following burns.

The complement and neutrophil changes in ARDS may differ only in degree from the effects of much less severe trauma, such as elective surgery. Elective gastric surgery, for example, is frequently associated with rapid conversion of C\(_3\) and a fall in C\(_3\) and C\(_5\) levels\(^96\). A study of patients undergoing elective hysterectomy has also shown evidence of intravascular release of PMN secondary granules, with
intracellular levels of both lysozyme and NCBP falling to about 60\% of their pre-operative levels within four hours of skin incision\(^1\). The changes were not seen in patients undergoing minor procedures only, and could not be accounted for by anaesthesia, endogenous release of glucocorticoids or release of young cells from the marrow. Plasma levels of both NCBP and lysozyme both rose post operatively and were significantly elevated by the fifth post operative day. Similarly, loss of PMN lysozyme has been seen following burns\(^97\), as have raised plasma levels of another secondary granule marker, lactoferrin\(^98\). Interestingly, intravenous administration of the chemotactic peptide FMLP into rabbits has resulted in both transient neutropenia and raised plasma lactoferrin\(^99\), confirming that stimulus-mediated lactoferrin release from PMN's can occur intravascularly. The clinical significance of such changes following surgery and burns is not clear, although in both circumstances there are also defects in neutrophil function\(^2, 97\).

D. Rheumatoid Arthritis and Gout.

Although rheumatoid arthritis is characterised by the development of lymphocyte-derived rheumatoid factors, a prominent PMN infiltrate is seen in synovial fluid and in the synovium itself, where some of the tissue damage may be caused by PMN proteases\(^100\) and oxygen products\(^101\). Evidence of classical complement pathway activation is also seen in synovial fluid with isolation of C\(_3\) breakdown products, C\(_{5a}\) and the C\(_{567}\) complex\(^100\), and low levels of C\(_1\), C\(_4\) and C\(_2\)\(^102\). Such complement activation is not a feature of traumatic or degenerative joint conditions.
C$_{5a}$ generation and neutrophil activation may also play a part in gout. Monosodium urate crystals can not only activate the alternative complement pathway103, but may trigger PMN's directly. Indeed, joint damage due to intra-articular urate may depend on the presence of PMN's100.

E. Myocardial Infarction.

There is evidence for plasma activation of the classical complement pathway in the first 72 hours following acute myocardial infarction in man104. In experimental infarction in dogs, prior complement depletion using cobra venom factor significantly reduces both PMN infiltration and extent of myocardial necrosis105. The zone at the edge of an area of established infarction usually receives an early influx of PMN's and may itself then become infarcted. Infusions of PMN-inhibiting anti-inflammatory drugs such as the cycloxygenase inhibitor ibuprofen106 and the combined cycloxygenase/lipoxygenase inhibitor BW755C107 both attenuate this PMN infiltrate and reduce infarct size significantly, with no effect on platelet infiltration. Moreover, induction of neutropenia prior to experimental infarction also results in smaller infarcts107.

F. Sepsis.

In discussion of ARDS, myocardial infarction and gout, the basic hypothesis has been the same, i.e. that unwanted PMN activation by C$_5$ fragments or other complement components leads to the extracellular release from PMN's of tissue damaging compounds, and that inhibition of such PMN involvement might prevent some of the clinical manifestations.
Excessive exposure of PMN's to C₅ fragments or other soluble stimuli may have another effect however, which is to prevent the cell responding appropriately to an infective agent. As mentioned previously, both surgery and burns are conditions in which complement and PMN activation appear to occur in the absence of infection. Both are also associated with defects of PMN function, namely reduced intracellular killing postoperatively², and impaired chemotaxis with loss of granules following burns⁹⁷. It may therefore be that once the cell has been initially activated by C₅a and partially degranulated, a state of unresponsiveness ensues.
SECTION IV. IN VIVO MODELS OF NEUTROPHIL-MEDIATED TISSUE DAMAGE

A. Introduction

Attempts to relate the in vitro responses of PMN's to the in vivo signs of inflammation have been in progress for over thirty years. The cardinal signs of inflammation, namely rubor (redness), calor (heat), tumor (swelling), and dolor (pain) are almost invariably accompanied by a marked PMN infiltrate, but the ways in which these relate to one another are not yet fully unravelled. The aspects of PMN-related inflammation with which this study is concerned are the vasodilatation responsible for both heat and redness, and the increase in vascular permeability which must precede the formation of tissue oedema and swelling. The work attempts to explore the ways in which these changes result from PMN-complement interactions. Most previous studies of this nature have been done, for obvious reasons, in animals, but since there is considerable interspecies variation in the properties of certain complement components, extrapolation from animal studies to man is not always valid. However, a review of some animal models will demonstrate how the problem has been approached.

B. Early descriptive studies of PMN-dependent tissue damage

In the late 1940's and 1950's, before immunoglobulin and complement components could be purified, a number of models were used to produce inflammatory tissue damage in the skin of animals. Two such models were the Arthus and Schwartzman phenomena, which were recognized as having many
features in common108. The Arthus phenomenon is produced by giving an animal repeated intradermal injections of an antigen till it becomes sensitized i.e. produces an appropriate antibody response. Further injections of antigen at the same site then produce local necrosis, with a histological picture showing clumps of PMN's in vessels and migrating into the tissues109. A slightly different technique, the Reversed Passive Arthus reaction (RPA), involves giving the antigen intravenously followed by intra-dermal injection of antibody. A similar histological picture results110. The Schwartzman phenomenon is produced by injecting bacterial endotoxin into the skin, followed 24 hours later by an intravenous injection of the same endotoxin, and was first described by Schwartzman in 1928111. Two to six hours after the intra-dermal injection, a haemorrhagic skin reaction develops locally, with evidence of PMN accumulation and vascular injury histologically. Unlike the Arthus reaction, agglutinating or precipitating antibody is not involved112. With present day knowledge, it is clear that the Arthus reaction involves the development of complement fixing antibodies. The exact mechanism of the Schwartzman reaction is less clear, but probably, as with both the Arthus and RPA reactions, includes complement activation. Generation of C\textsubscript{5} fragments would then result in PMN recruitment.

The technical limitations of the time did not prevent investigators making astute observations and speculations as to how the tissue damage of the Arthus and Schwartzman phenomena might be being produced. These included the
following:-

1. In 1948, Becker produced suppression of the Schwartzman reaction in the rabbit by benzol (the alternative name for benzene), irradiation and nitrogen mustard, provided they were given 2-3 days before the intravenous injection112. He concluded, however, that:

"suppression by these agents is exerted through their specific but common suppressive action on the reticulo-endothelial system, primarily the vascular endothelium. These endothelial cells being rendered anergic are not able to react to the active principles in a way that otherwise would be self-destructive"

We do not now think that these agents would significantly alter vascular endothelium, but were probably working via marrow suppression.

2. In 1951, Stetson and Good, also using rabbits, confirmed the suppressive effects of benzene and nitrogen mustard on the Schwartzman reaction, and found that this suppression correlated closely with the degree of neutropenia113. Lack of suppression was seen in animals whose marrow was protected from the effects of the nitrogen mustard.

3. Stetson also observed that the intravenous injection of antigen was accompanied by a transient neutropenia114 prior to the onset of skin necrosis, and that clumps of PMN's and platelets were seen plugging capillaries in the lungs and other organs. These observations bear close resemblance to changes seen in experimental models of ARDS.

Following these studies, Stetson drew attention to the similarities in development of Arthus and Schwartzman lesions, viz:-
(i) perivascular PMN accumulation in affected skin area
(ii) increased aerobic glycolysis in injected area
(probably due to the large numbers of PMN's)
(iii) production of leucocyte and platelet blockage of capillaries locally and elsewhere
(iv) transient systemic neutropenia
(v) haemorrhage from affected vessels

4. Observations on the Reversed Passive Arthus reaction in the rabbit were made by Humphrey in 1955, who again demonstrated suppression of the reaction by exposure of marrow to nitrogen mustard. Partial restoration of responses could be obtained by local injection of harvested exudate PMN's from other animals. These PMN's would have been already activated and partly granule depleted by the initial harvesting procedure, so lack of complete restoration of responses is not surprising. Humphrey also formally demonstrated an increase in capillary permeability and showed marked inhibition of responses by cortisone or ACTH and partial reduction by sodium salicylate, though not by antihistamines. He attributed these findings to an effect on endothelium, but inhibition of PMN activation is an alternative possibility.

5. In 1965, Kniker and Cochrane induced yet another type of antigen-antibody mediated tissue reaction in rabbits, namely serum sickness. In this model, antigen-antibody complexes, formed in antigen excess and hence soluble, are deposited in the vessel walls of many organs, including kidneys, joints and heart. Lesions in coronary arteries show endothelial proliferation and damage to the internal elastic
lamina, with sub-endothelial fibrinoid and damage to the media. In animals rendered neutropenic, although immune complexes could still be demonstrated in vessels by immunofluorescence, coronary artery damage was much reduced, and damage to the internal elastic lamina was absent.

C. Quantitative studies using purified chemotactic factors.

Studies which have attempted to quantify the vascular permeability changes and other skin changes produced by purified complement components and other chemotactic stimuli, have been notably performed by two groups of workers, Issekutz and colleagues in Toronto, and Williams and colleagues in London, both using rabbits. Issekutz and co-workers demonstrated that intradermal injection of various chemotactic factors, including human complement-activated plasma, partially purified C_{5a} des Arg, and the bacterial peptide FMLP not only caused accumulation of 51Cr-labelled PMN's in the skin, but was associated with a rapid increase in vascular permeability, as measured by leak of 125I-labelled albumin from capillaries$^{117, 118}$. Both PMN accumulation and the permeability increase took place in the first hour following injection, and PMN's continued to accumulate for 3-4 hours. In some animals, neutropenia was induced by intravenous nitrogen mustard. During the period of neutropenia, intradermal injection of activated complement was not associated with either an increase in vascular permeability or red cell leakage118.

A further model which the Toronto group used was intradermal injection of whole E coli which, as expected, also caused PMN accumulation, as well as the permeability and
red cell effects produced by chemotactic factors alone. Their action was independent of complement, but again, neutropenic animals did not show the micro-vascular changes of neutrophil replete animals. Their work therefore suggests that activated PMN's in some way are able to impair the ability of small vessel endothelial lining cells to prevent fluid and protein loss from the circulation.

Williams and co-workers confirmed that complement activation results in the generation of a permeability factor with the physico-chemical characteristics of C5a and also found that this permeability factor was inactive in the skin of neutropenic animals. Their studies on the mechanism of action of C5a also demonstrated that:

1. its permeability effects in rabbit skin could not be inhibited by concentrations of anti-histamines which totally abolished histamine-induced skin oedema, suggesting that C5a does not act via skin mast cell activation.

2. the des Arg form of human C5a, demonstrated to be inactive by the standard guinea pig ileum assay for anaphylotoxic activity, could still increase skin vascular permeability, further proof of a mast cell-independent mechanism.

Their observations and conclusions, however, differ in one important regard from those of Issekutz et al. While Issekutz et al found that both complement-activated plasma and partially purified C5a des Arg each produced significant permeability changes when injected alone, Williams et al could not demonstrate a permeability effect of either C5a or C5a des Arg unless a vasodilator such as prostaglandin E2.
(PGE₂) was injected also. This has been termed the 'two mediator hypothesis' of inflammation and proposes that for significant tissue oedema to be produced by an inflammatory stimulus, there must be generation of both an endogenous vasodilator such as PGE₂ and a permeability promoting factor such as C⁵a des Arg. Thus a stimulus like whole zymosan (dead yeast cell walls) can cause extravasation of plasma through both complement activation and prostaglandin synthesis. Anti-inflammatory agents which inhibit prostaglandin synthesis (e.g. aspirin, indomethacin etc) suppress the increase in local blood flow and hence block local oedema formation. Exogenous C⁵a or C⁵a des Arg, in contrast, produces little extravasation alone, but its action can be greatly potentiated by the addition of PGE₂.

Why there should be such disparity between the findings of the two groups is not immediately obvious. Williams et al appear to have used much purer preparations of C⁵a and C⁵a des Arg so it may be that the partially purified material used by Issekutz et al contained an additional vasodilator or permeability promoting factor. Alternatively, the results may simply reflect differences in concentrations of mediators injected. Williams' group used human C⁵a des Arg at a concentration of 10⁻¹⁰ - 10⁻¹² mol/site in an injection volume of 0.1ml, equivalent to 10⁻⁶ - 10⁻¹⁰ M, which, at least at the upper end of that range, is within the effective concentrations of C⁵a des Arg for PMN activation. Because Issekutz et al used less than pure material, exact concentrations of C⁵a des Arg cannot be calculated, and their technique for measuring skin response is also different from
that of Williams et al, so quantitative comparisons cannot readily be made. These disparities, although important when considering detailed mechanisms of inflammation, do not alter the two main findings agreed by both groups, which are (1) the C$_{5a}$ derivative, C$_{5a}$ des Arg, increases vascular permeability in rabbit skin when injected locally (2) this effect is absent in neutropenic animals. Some possible explanations for this will now be considered briefly.

D. Possible mechanisms for the effects of PMN's on vascular permeability

For PMN's to increase vascular permeability in the skin, they would require to have one or more of the following effects:

1. release of a mediator or mediators which would act directly on vascular endothelial cells to produce gaps between them or to impair their integrity. Examples of possible mediators with direct effects on the vessels are the cyclooxygenase product prostaglandin E$_2$124, the lipoxygenase product leukotriene B$_4$125 and the phospholipid derivative platelet activating factor126. Endothelial integrity might also be impaired by toxic oxygen species generated by the PMN oxidase127.

2. release of mediators which would act on another cell type to release a second mediator with effects on the endothelium. An example of this is the mast cell stimulation produced by the myeloperoxidase-H_2O_2-halide system128.

3. production of gaps between endothelial cells by direct PMN/endothelial interaction and PMN migration, as suggested by Williams121.
The work in the *in vivo* section of this study (Chapters 4 and 5) will therefore attempt to answer the following questions:

1. Does activated human complement increase blood flow and vascular permeability in human skin, and if so, which complement components are responsible?
2. Does this effect require an exogenous vasodilator?
3. Does this effect require circulating PMN's?
4. If so, how are they acting?
CHAPTER 2

IDENTIFICATION OF PMN DEGRANULATING ACTIVITY IN ACTIVATED COMPLEMENT AND USE OF A PMN DEGRANULATING SYSTEM TO DETECT COMPLEMENT ACTIVATION.

The work in this chapter was performed in collaboration with Dr J M Davies.

INTRODUCTION

In this chapter, the effects of activated complement on PMN cobalamin binding protein (NCBP) release are studied, and attempts made to identify, both functionally and immunologically, the complement component(s) responsible. The uses of a PMN degranulating system are then explored, with particular reference to the detection of complement activation.

The role of activated complement as an important source of PMN degranulating activity in the circulation was suggested by observations on patients following elective surgery, as discussed in Chapter 1, Section III. Surgery causes a rapid fall in intracellular levels of NCBP and lysozyme, within circulating PMN's taken postoperatively, suggesting that surgery generates a degranulating stimulus intravascularly. This stimulus does not appear to arise from the coagulation, kinin, or fibrinolytic pathways. PMN's incubated in vitro,
however, with serum in which the alternative complement pathway has been activated with the yeast cell wall product zymosan, show rapid release of NCBP\(^3\). Evidence that activated complement is the PMN degranulating stimulus generated postoperatively is suggested by studies showing that plasma complement is activated by surgery\(^9\), and also from \textit{in vitro} observations on PMN's taken from postoperative patients. These PMN's show stimulus-specific desensitisation to complement, which works as follows. If normal PMN's are exposed to a degranulating stimulus, washed, and re-exposed to the same stimulus, little further degranulation is seen. If, however, the second stimulus is different to the first, degranulation occurs normally. This phenomenon, known as stimulus-specific desensitisation, is probably due to a temporary loss of specific surface receptors for the initial stimulus due to internalisation of receptor-ligand complexes\(^2\). Receptors for other stimuli are largely unaffected. Post-operative PMN's, when challenged \textit{in vitro} with different stimuli, degranulate normally in response to the bacterial peptide FMLP, but are refractory to complement-activated serum\(^1\). This suggests that they have been exposed to activated complement \textit{in vivo} and that this stimulus can arise within hours of the start of the operation\(^1\).

The following steps in the identification of the complement-derived degranulating activity will now be described and discussed.

1. Optimal method for isolating PMN's and setting up a degranulation system to detect NCBP release.
2. Optimal method for preparing activated complement.

3. Identification of degranulating activity by physical and immunological means.

4. Uses of a PMN degranulation system.
EXPERIMENTAL WORK

For details of suppliers of materials, see Appendix 1.
For details of buffers, see Appendix 2.

GENERAL METHODS

1. Preparation of Neutrophil Suspensions

Venous blood was mixed in plastic universal containers with the anti-coagulant EDTA (ethylene diamine tetraacetic acid-disodium salt). 0.34 mls of 1.34 x 10^{-1} M EDTA was mixed with 15 mls blood giving a final EDTA concentration of 3.04 x 10^{-3} M. Two different separation procedures could then be followed.

Method (i) 7.5 mls blood were carefully layered over 3 mls Monopoly Resolving Medium, a Ficoll-Hypaque density gradient with a specific gravity of 1.114, in a 10 ml glass tube. When spun at 400g for 45 minutes at room temperature, separation of plasma, mononuclear cells and PMN's in a single step was seen^{130} (Fig 4).

The PMN layer was harvested and washed twice in cold phosphate buffered saline, (PBS) by resuspending and spinning at 100 g for 10 mins, and finally suspended in 4 mls PBS for counting.

Notes 1. As contamination by red cells was usually very slight, no specific measures were taken to lyse them. 2. To prevent nonspecific release of neutrophil granules during the preparation process, all washing and counting steps were performed in PBS devoid of calcium and magnesium, which are
Fig 4. Separation of blood into red cells, mononuclear cells, neutrophils and plasma in a single step on a Ficoll-Hypaque gradient.
required for degranulation. Only when the degranulation experiment was ready to begin was the required final volume of phosphate buffered saline with albumin (PBS-A), containing calcium and magnesium, added to the cells. Preliminary studies determined the best concentration of albumin to use in this solution (see below).

Method (ii)

Although method (i) of neutrophil preparation worked satisfactorily for most donors, the blood of certain individuals, usually females, did not fractionate satisfactorily by this technique, because the red cells failed to sediment through the Ficoll-Hypaque gradient. Examination of these individuals' blood films and distribution of red cell volumes usually indicated a mild degree of iron deficiency. For such donors, neutrophils could be prepared by the following technique:

EDTA-anticoagulated venous blood was layered on to Lymphocyte Separation Medium, a Ficoll Hypaque mixture with a specific gravity of 1.077, in the ratio of 3 volumes of blood to 1 of LSM and centrifuged at 400 g for 20 minutes at room temperature. This causes separation of the mononuclear cell layer while the red cells and PMN's sediment to the bottom. The mononuclear cell layer was then discarded and the red cell/PMN mixture remixed with the plasma. This suspension was then mixed with 6% dextran in 5% dextrose, (MW = 70,000 Daltons), in a 1:1 ratio in a 30 ml syringe and allowed to stand at an angle of 45° at room temperature for 60 minutes. At the end of this time, most of the red cells had sedimented, and the supernatant containing PMN's and some red cells was
collected. The remaining red cells were lysed by exposure to 0.87% \(\text{NH}_4\text{Cl} \) containing a small amount of \(\text{NaHCO}_3 \) at 4°C for 5 minutes. The remaining PMN's were washed twice in PBS as before then counted.

2. Preparation of activated complement in whole serum

Three main complement preparations were used as degranulating stimuli (i) whole serum in which the alternative complement pathway had been activated with the yeast cell wall product zymosan, giving zymosan-activated serum (ZAS), (ii) a similar preparation in which conversion of \(C_{3a} \) and \(C_{5a} \) to their des Arg forms had been prevented by the addition of epsilon-amino caproic acid (EACA), giving EACA-ZAS, (iii) a partially purified preparation of EACA-ZAS containing the fraction which had passed through a 30,000 dalton molecular exclusion filter (low molecular weight fraction - LMW fr, see Exp 7 below).

Other complement-activated sera used in the identification of the degranulating activity were heated, \(C_5 \) depleted or chromatographed (see below).

(i) Zymosan-activated serum (ZAS)

Venous blood from three or four donors was allowed to clot in glass tubes for 60 minutes at room temperature, and the serum separated by centrifugation at 1500g for 10 minutes. The serum was pooled and mixed with boiled, washed zymosan (final concentration 2mg/ml of serum) on a rotator at 37°C for 60 minutes. To remove the zymosan, the serum was centrifuged at 1500g for 15 minutes and passed through a 0.8μ filter. 1.0 ml aliquots of the ZAS were stored under liquid nitrogen.
(ii) Zymosan-activated serum containing EACA (EACA-ZAS)

To pooled serum, EACA was added and thoroughly dissolved, and the serum complement activated with zymosan as before. Preliminary studies compared various EACA concentrations (see below), following which 0.5M was used in all experiments.

3. The degranulation system

The general method of this type of experiment was the same no matter what the stimulus, except that in some experiments the cells were exposed to the fungal metabolite cytochalasin B, which although unable to degranulate PMN's on its own, both accelerates and amplifies degranulation in response to most stimuli. The general outline is illustrated in Fig 5. Where a drug inhibitor of degranulation was being tested, it was usually added prior to the cytochalasin B.

Details of method

The PMN's were kept at room temperature, in an undiluted form in PBS till the start of the experiment, when they were diluted to the required volume with PBS-A. Each experimental condition was performed in duplicate, and the final reaction volume in each tube was 1.0ml. To start the experiment, 2 x 10^6 PMN's in PBS-A were pipetted into LP3 polypropylene tubes and prewarmed at 37°C for 5 minutes. If cytochalasin B was used, 0.1 ml of a 50 µg/ml solution was then added giving a final concentration of 5 µg/ml, and the cells incubated with it for 5 minutes at 37°C. 0.1 ml of the stimulus was then added and the incubation continued for a further 5 minutes, after which degranulation was terminated by centrifugation at 4°C at 1500 g for 10 minutes. The supernatants were removed
DEGRANULATION SYSTEM

2 x 10^6 neutrophils in PBS 0.1% albumin

Cytochalasin B 5μg/ml in DMSO

5 minutes at 37°C

Stimulus - ZAS low MW fraction

5 minutes at 37°C

Centrifuge at 4°C

Supernatant assayed for cobalamin binding protein

Results expressed as a percentage of the total intracellular cobalamin binding protein obtainable by sonication of the cells.
and stored at -20°C till the NCBP assay was performed. Where
cytochalasin B was not included, the incubation time with the
stimulus was lengthened appropriately (see Chapter 3).

Calculation of results

Each experiment contained a blank (PMN's in PBS-A with
cytochalasin B if appropriate), and a sonicate, obtained by
sonicating a measured aliquot of PMN suspension containing 2 x
10^6 cells, at setting 5 on a cell sonicator for 2 minutes.
These conditions have been previously shown to give maximal
release of granule contents\(^3\). The amount of NCBP in the
sonicate was therefore presumed to be 100% of the
intracellular level. Results were therefore calculated as
follows:

\[
\% \text{ NCBP release} = \frac{\text{mean of duplicates} - \text{blank}}{\text{sonicate}} \times 100\%
\]

4. Assay of neutrophil cobalamin binding protein

(unbound vitamin B\(_{12}\) binding capacity)\(^{131}\)

This assay is based on the binding of vitamin B\(_{12}\)
labelled with the \(\gamma\) emitter \(^{57}\)cobalt (\(^{57}\)CoB\(_{12}\)), to the NCBP.
Excess \(^{57}\)Co B\(_{12}\) is added, and any which has not bound to NCBP
is removed by adsorption on to protein-coated charcoal\(^{132}\).
The \(^{57}\)Co B\(_{12}\) which has bound to NCBP is not taken out by the
charcoal, and appears in the supernatant which is collected
for counting. Each batch of samples contains a standard (no
charcoal or NCBP) and a blank (no NCBP). Thus:
Thus the number of counts in the supernatant is directly proportional to the concentration of NCBP present.

Notes

1. Because the assay depends on the availability of vitamin B$_{12}$ binding sites on the binding protein, only CBP which has not already bound some B$_{12}$ can be counted. PMN cobalamin binding protein has no B$_{12}$ bound to it, and can thus be measured in this way. Hence results are expressed as vitamin B$_{12}$ binding capacity i.e. the amount of vitamin B$_{12}$ (ng/ml) which could be bound by the CBP present.

2. It follows that all test samples and reagents used must be free from extraneous vitamin B$_{12}$ or CBP, which sometimes occurs as a contaminant in preparations of albumin and other proteins. Where this is unavoidable, e.g. when whole complement-activated serum is used as the degranulating stimulus, the serum CBP is measured and subtracted, since at a final serum concentration of 10%, the serum CBP may be as much as 25% of the total3.

3. If all the supernatant is removed from cells which have
secreted, and the cell pellet then sonicated, the total NCBP in supernatant plus cell pellet is the same as in a sonicate of unstimulated cells. Thus the cells do not appear to rapidly resynthesise NCBP as it is secreted.

4. The charcoal used to remove the unbound $^{57}\text{Co B}_{12}$ must be coated with a protein to reduce the pore size and thereby exclude any $^{57}\text{Co B}_{12}$-NCBP complexes. Initial experiments used bovine serum albumin although later, bovine haemoglobin was used. This had certain advantages:

(i) there was less CBP contamination
(ii) its binding to the charcoal was more stable, allowing more samples to be processed in one batch.

The overall results were not affected by whether albumin or haemoglobin was the protein used.

Details of NCBP assay (After Lau et al 1965)

To save reagents, smaller volumes were used, so to achieve greater accuracy, positive displacement pipettes were used throughout.

1. 50 μl of each sample was pipetted into an LP$_3$ polypropylene tube, 50 μl distilled water being used for the standard and blank tubes.

2. Using an Eppendorf multipipette, 100 μl $^{57}\text{CoB}_{12}$ was added to all the tubes, which were vortexed and incubated at room temperature in the dark (because of photolability of the $^{57}\text{Co B}_{12}$) for 30 minutes.

3. Using the multipipette 200 μl protein-coated charcoal was added to all tubes except the standard, which received 200 μl distilled water.

4. All tubes were vortexed and immediately centrifuged at 1500
g at 4°C for 7 minutes.

5. 200 μl of supernatant was removed from each tube and placed in a separate tube for counting. The tubes were counted for 4 minutes each in a gamma counter.

<table>
<thead>
<tr>
<th>Volumes (μl)</th>
<th>distilled water</th>
<th>plasma</th>
<th>$^{57}\text{Co-B}_{12}$</th>
<th>Charcoal</th>
</tr>
</thead>
<tbody>
<tr>
<td>standard (A)</td>
<td>250</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>blank (B)</td>
<td>50</td>
<td>0</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>test (C)</td>
<td>0</td>
<td>50</td>
<td>100</td>
<td>200</td>
</tr>
</tbody>
</table>

*: total volume = 0.35 ml.

Calculation of results:

\[
\text{Unbound} \text{ B}_{12} = \frac{C-B}{A} \times \text{conc.} \times 57\text{Co-B}_{12} \times \text{plasma dilution}
\]

Provided that $^{57}\text{Co-B}_{12}$ of specific activity 15 μCi/μg of B$_{12}$ is used, at a concentration of 2000 ng/l. (see below).

Preparation of reagents

1. $^{57}\text{Co-B}_{12}$ ($^{57}\text{Co-cyanocobalamin}$)

A 1 ml vial of high specific activity $^{57}\text{Co-B}_{12}$ was diluted to a concentration of 2000 ng/l in 0.9% benzanol in distilled water, and stored at 4°C.

2. Protein coated charcoal (made fresh daily).

0.5g activated charcoal was added to 20 ml of either bovine haemoglobin (2.5g/l in distilled water) or bovine serum albumin (6g/l in distilled water). After mixing on a magnetic stirrer for at least five minutes, the charcoal was ready for use, and could be stored at 4°C for the rest of the working day.
Experiment 1 Comparison of PMN's prepared by the single step and two step preparation methods.

As preparation of PMN's by the single step method was considered a departure from standard techniques, PMN's prepared by the 2 methods were compared for yield, purity, viability, NCBP levels, and response to stimuli.

A. PMN counting and calculation of yield.

Method PMN suspensions were counted by diluting 20 \(\mu l \) of suspension in 10 mls isotonic saline (Isoton II). Red cells were lysed by the addition of 4 drops of Zaponin. Counts were performed on a Coulter DN counter.

Yield was calculated from the final PMN count and the donor's peripheral blood PMN count obtained by performing a differential count of 100 leucocytes on a standard blood film.

\[
\text{Then yield} = \frac{\text{actual count} \times 100}{\text{expected count} \times 1}
\]

For example, from 1 donor, \(44 \times 10^6 \) PMN's were obtained from 30 mls blood, in which the initial count was \(4.24 \times 10^9/l \).

\[
\text{yields} = \frac{44 \times 10^6}{4.24 \times 10^9} \times 100 \times \frac{1}{1}
\]

\[
= \frac{44 \times 10^6}{1.27 \times 10^8} \times \frac{100}{1} \%
\]

\[
= \frac{44 \times 10^8}{1.27 \times 10^8} \%
\]

\[
= 34.65\%
\]

Results For most experiments, yields of between 30 and 40\% were obtained. There was no difference in yield between the two methods.
B. PMN Purity

Method A slide of the PMN suspension was made by passing 0.1 ml of a 0.2 x 10^6/ml dilution of cells through a cytopin. The slide was dried and stained with Diff-Quik, a variation of the Leishman stain. Two hundred cells were counted, and a differential count calculated.

Results PMN suspensions were usually at least 95% pure, the main contaminant being eosinophils, with the occasional lymphocyte and monocyte, and there were no significant differences between PMN's prepared by the two methods.

C. PMN Viability

Method Viability was assessed using the fact that viable PMN's can exclude the dye Trypan Blue, while dead cells take it up passively. Three drops of a 0.3 x 10^6/ml cell suspension were mixed with 1 drop of a 5% solution of Trypan Blue in isotonic saline on a microscope slide. After 5 minutes, the proportion of stained cells was counted.

Results Greater than 99% of PMN's were viable as assessed by this method, no matter by which method they were prepared.

D. NCBP levels and release

Previous studies had compared behaviour of PMN's prepared by the new single step method using monopoly resolving medium to those separated by the traditional 2 step method of mononuclear cell removal followed by dextran sedimentation of red cells. In these studies, no differences in PMN random mobility or chemotaxis were found, but no comparison of degranulation had previously been made.

Method PMN's prepared by each of the two methods were
challenged with ZAS as described above in the general methods.

Results Figure 6 shows that both stimulated and unstimulated cells separated by the two methods behaved identically. Levels of NCBP in sonicated cells were within 10% of each other, suggesting that the new method does not cause excessive granule loss during preparation.

Experiment 2 *Effect of the albumin concentration in PBS-A on NCBP release in response to ZAS.*

Method As exposure of PMN's to albumin alone can cause aggregation and hence possibly granule release, control tubes had to include albumin to correct for that present in serum-based stimuli. A comparison of NCBP release in response to ZAS was therefore made in PBS containing albumin concentrations of zero, 0.1% and 1.0%, using the general method.

Results Measurement of NCBP in sonicated PMN's was unaffected by albumin concentration, but NCBP release from both unstimulated and stimulated cells was influenced by it (Fig 7). Release from unstimulated cells increased as the albumin concentration rose, so that at an albumin concentration of 1.0%, release was nearly 30% of the sonicate. There was no difference in NCBP release in response to ZAS between cells containing 0.1% albumin and those containing 1% albumin. Therefore all subsequent experiments were performed in PBS containing 0.1% albumin.
Fig 6. Release of NCBP, measured as unbound vitamin B₁₂ binding capacity (UBBC), from sonicated PMN's, PMN's in PBS only, and PMN's stimulated with ZAS (1%). Comparison is made of responses of cells prepared either on monopoly or on lymphocyte separation medium.

Fig 7. Effect of different albumin concentrations on release of NCBP (measured as UBBC) by sonication, in resting cells, in PBS and in cells stimulated with ZAS 1/100.
Experiment 3 Effect of the concentration of epsilon amino caproic acid (EACA) on the generation of degranulating activity in EACA-ZAS.

Method Although inhibition of conversion of C$_{5a}$ to C$_{5a}$ des Arg by the plasma enzyme carboxypeptidase B requires high concentrations of EACA, it has been suggested that excessively high concentrations can actually block C$_{5a}$ formation135. A preliminary comparison was therefore made of the degranulating activity in dilutions of EACA-ZAS prepared in the presence of different EACA concentrations, namely 0.1M, 0.5M and 1.0M, using the general method.

Results There was no significant difference between degranulating activity generated in the presence of 0.5M and 1.0M EACA (Fig 8). The reduced amount of degranulating activity generated in the presence of 0.1M EACA suggests that this concentration of EACA is insufficient to prevent conversion of C$_{5a}$ to its less potent des Arg form. Therefore an EACA concentration of 0.5M was used in all subsequent preparations of EACA-ZAS.

Note on release from unstimulated cells.

Cytochalasin B treated cells, when suspended in PBS-A, will secrete a small amount (<5%) of their NCBP during the incubation period, probably due to activation during the separation process3. In early experiments, this release was noted to be excessively high, up to 25-30% of sonicate values. This was eventually discovered to be due to the stimulation of the cells by micro-crystals of calcium and magnesium phosphate, formed when calcium and magnesium chloride were added to the cell suspensions in PBS just prior to the start of the
Fig 8. Effect of different concentrations of EACA during complement activation on the generation of NCBP-releasing activity in EACA-ZAS.

Fig 9. NCBP release from cytochalasin B treated PMN's by dilutions of ZAS and EACA-ZAS. (mean ± SEM, n = 10).
experiment. The method was altered so that PBS-A was prepared as described in Appendix 2, so that the calcium and magnesium salts were thoroughly dissolved before addition to the cells. When this method was adopted, secretion of NCBP by unstimulated cells fell to less than 5% of sonicate values.

Experiment 4 Release of NCBP from PMN's by zymosan-activated serum with and without EACA.

Method Dilutions of ZAS and EACA-ZAS (containing 0.5M EACA) were added to cytochalasin B treated PMN's as above.

Results Both ZAS and EACA-ZAS produced dose dependent NCBP release (Fig 9). Serum activated in the presence of EACA was approximately 5 times more potent a stimulus than non-EACA-treated serum. The dose-response curve obtained for EACA-ZAS begins to flatten off at the top end, while that for ZAS does not. It is likely that if the serum could be concentrated further, both curves would flatten off. However, the highest concentration (10^{-1}) was obtained by adding neat serum to the cell suspension. No release above that obtained with PBS-A alone was seen with 0.5M EACA alone or with unactivated serum.

Experiment 5 The effects of heat-treated sera, and EDTA and EGTA plasmas on NCBP release.

Method In order to inactivate complement components, pooled serum was heated at 56°C for 30 minutes prior to, or following, zymosan activation. To assess the relative importance of the classical and alternative complement pathways, plasma was obtained from venous blood containing either ethylene-diamine
tetraacetic acid (EDTA), which chelates calcium and magnesium ions, or ethylene-bis-(oxy-ethylene-nitrile) tetraacetic acid (EGTA), which chelates calcium ions only (final concentration of each = 10 mM). EDTA, by chelating both calcium and magnesium ions, inhibits both classical and alternative complement pathways, while EGTA, chelating only calcium ions, inhibits only the classical pathway. To allow degranulation to occur in response to these sera, excess calcium and magnesium had to be added so that the chelating effects could be overcome. Therefore, calcium and magnesium chloride were added to a final concentration of 12 mM, estimating that between 1 and 2 mM of these would remain in the ionised form.

Results Heating serum to 56°C for 30 minutes prior to zymosan activation prevented the generation of degranulating activity, but sera heated after zymosan activation showed little loss of activity (Fig 10).

The inhibitory effect of EDTA, but not EGTA, suggested that an intact alternative complement pathway, requiring Mg++ but not Ca++ , is necessary for generation of degranulating activity (Fig 10).

Experiment 6 Column chromatography of EACA-ZAS.

Method EACA-ZAS was passed downwards on a Sephadex G200 column, 28 x 300 mm, using 0.4M PBS containing 0.01M EDTA at room temperature. Fractions were collected, and 0.5 ml aliquots of each fraction were tested for their ability to stimulate NCBP release.

Results A single broad peak of degranulating activity was obtained, representing material with a molecular weight of less
Fig 10. NCBP release from cytochalasin B treated PMN's by various complement activated sera and plasmas.

Fig 11. NCBP release from cytochalasin B treated PMN's by fractions of EACA-ZAS from a Sephadex G 200 column.
than that of the marker protein haemoglobin (MW 64,500 Daltons, Fig 11).

Experiment 7 Use of a micropartition membrane to further identify and partially purify the degranulation activity in EACA-ZAS.

Method The sample to be fractionated was layered in 1ml aliquots over a 30,000 Dalton exclusion ultrafiltration membrane (Fig 12) and centrifuged for 30 minutes at 2000g at room temperature. This membrane excludes >99.9% albumin, and it can therefore be assumed that the ultrafiltrate is of low molecular weight, although not all small molecules in the original solution are able to pass through, due to 'clogging up' of the membrane pores by large molecules.

Results When the chromatography peak of degranulating activity in EACA-ZAS was applied to the micropartition membrane degranulating activity was found only in the low molecular weight fraction (ultrafiltrate) (Fig 13).

When whole EACA-ZAS was applied to the 30,000 Dalton exclusion filter, degranulating activity again appeared in the ultrafiltrate. When aliquots of a batch of ultrafiltrate were applied to cytochalasin B treated PMN's, dose-dependent NCBP release was obtained (Fig 14). As with whole ZAS and EACA-ZAS, the dose-response curve does not flatten off at higher concentrations, although this may have been demonstrated had it been possible to concentrate the stimulus further.

When ZAS prepared in the absence of EACA was ultrafiltered, very little degranulating activity appeared in the ultrafiltrate, in contrast to that obtained with EACA-ZAS.
Fig 12. The micropartition membrane system (membrane cut off point 30,000 Daltons) used to prepare the low molecular weight fraction of EACA-ZAS.
Fig 13. NCBP release from cytochalasin B treated PMN's by the peak of degranulating activity from sephadex chromatography (Fig 11) separated into high (X.F) and low (U.F) molecular weight fraction.

Fig 14. Release of NCBP from cytochalasin B treated PMN's by the low molecular weight fraction of EACA-ZAS. (Mean ± SEM, n = 10).
Possible reasons for this are discussed below.

Experiment 8 Preparation and assessment of an affinity gel
to remove C₅ and products of C₅ from sera.

To assess the role of C₅ derived products in NCBP release
serum was depleted of C₅ prior to or following zymosan
activation using an anti-C₅ antibody bound to a carbohydrate
gel. When serum, or any other mixture of proteins, is exposed
to such a gel, the appropriate antigen, in this case C₅, will
bind to the antibody while other antigens remain unbound,
allowing specific removal of a single protein in a mixture. In
some instances, the bound protein can be eluted from the gel by
a change in pH or ionic strength, although in the case of C₅
this is not possible without damage to the molecule\(^{136}\). In any
case, the bound protein must be washed from the gel before
further use. For linking any ligand with NH\(_2\) groups, including
antibodies, to a gel, cyanogen-bromide-activated sepharose 4B
is the gel used\(^{137}\). The coupling is probably via
imidocarbonate groups:-
Methods (from handbook of Pharmacia Fine Chemicals Ltd, Upsalla).

The antibody bound was a polyclonal sheep anti-human C₅ antiserum (see Appendix 1 for details of all antibodies).

(i) Preparation of the gel

Since 1 gram of gel binds 10 mg of protein, the exact protein concentration in the antiserum was calculated from its optical density at 280 nanometers (OD₂₈₀), knowing that an IgG solution of 1 mg/ml has an OD₂₈₀ of 1.4.

\[\text{OD}_{280} \text{ of a 1 in 30 dilution of sheep anti-human C}_5 = 0.526. \]

\[\therefore \text{protein concentration} = \frac{30 \times 0.526}{1.4} \text{ mg/ml} \]

\[= 11.25 \text{ mg/ml} \]

Therefore 5 ml antiserum and 5 g freeze dried gel were used. The gel was first washed with 1 litre 1 mM HCl (pH 2.5) on a sintered glass funnel (64) to allow reswelling and to remove the dextran and lactose which are added to the gel as stabilisers. The gel was then washed with coupling buffer (pH 8.3) (see Appendix 2 for details of buffers). The antiserum
was dissolved in coupling buffer to a final protein concentration of approximately 2 mg/ml. This was then mixed with the gel in a cell culture flask on a rotator overnight at 4°C to allow binding, then washed with coupling buffer. To block any remaining active groups on the gel which might nonspecifically bind proteins in samples, the gel was mixed with 1.0 M diethanolamine (pH = 8.0) for two hours at room temperature, then washed again alternately with 1 litre aliquots of 0.1 M acetate buffer containing 1.0 M NaCl (pH = 4.0), and 0.1 M borate buffer containing 1.0 M NaCl (pH = 8.0) to a total of 4 litres of each. The gel was finally washed with 1 litre PBS and two drops sodium azide added as a preservative. The gel was packed into a 10 ml column, covered with a permeable disc, filled to the top with PBS and stored at 4°C.

(ii) Use of the anti-C5 gel to remove C5 and C5 conversion products from sera

A. Removal of C5 by incubation of serum with the anti-C5 gel.

A portion of gel-antibody was added to 3 mls of neat unactivated serum in a 10 ml glass tube, and mixed on a rotator at room temperature for 30 minutes. The serum was collected by passage through a serum harvester (Fig 15). In an attempt to wash the bound C5 off the gel, the gel was washed twice for 20 minutes with glycine HCl to produce 'eluates' which were collected in the same way as the serum. The gel was then washed 4 times in PBS, in which it was stored. This method was also applied to EACA-ZAS and ZAS, and to the low molecular weight fraction of EACA-ZAS. Serum and eluates were examined for C3 and C5 (see Experiment 9).
Fig 15. Preparation of C_5-depleted serum by incubation with anti-C_5 gel.

CHO gel - CNBr + NH$_2$ - anti C_5

Glycine HCl

Serum containing C_5 followed by PBS

Gel binds C_5

C_5 depleted serum

Gel washed with glycine HCl to allow further binding

Fig 16. Preparation and use of Anti-C_5 affinity column.
B. Removal by passage over a column of gel.

Three mls neat pooled unactivated serum were layered over the filter disc and allowed to flow into the gel by gravity alone (Fig 16). When all the serum had entered the gel, it was washed through with PBS and 3 ml fractions collected at the bottom. The protein concentration in each fraction was calculated from its OD$_{280}$, and fractions were collected until the OD$_{280}$ was less than 0.050. Most of the protein appeared in 2 or 3 consecutive fractions, usually numbers 3-5, when dilutions had to be made to measure the OD$_{280}$. The column was then washed with glycine HCl (pH 2.8) and further 3 ml fractions collected.

Results These are the results of a typical preparation.

<table>
<thead>
<tr>
<th>fraction No</th>
<th>OD$_{280}$</th>
<th>protein conc (g/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.103</td>
<td><0.175</td>
</tr>
<tr>
<td>2</td>
<td>0.890</td>
<td>0.8</td>
</tr>
<tr>
<td>3</td>
<td>20.10</td>
<td>25.00</td>
</tr>
<tr>
<td>4</td>
<td>33.98</td>
<td>33.00</td>
</tr>
<tr>
<td>5</td>
<td>1.621</td>
<td>2.85</td>
</tr>
<tr>
<td>6</td>
<td>0.308</td>
<td>0.35</td>
</tr>
<tr>
<td>7</td>
<td>0.125</td>
<td>0.175</td>
</tr>
<tr>
<td>8</td>
<td>0.102</td>
<td><0.175</td>
</tr>
<tr>
<td>9</td>
<td>0.064</td>
<td><0.175</td>
</tr>
<tr>
<td>10</td>
<td>0.055</td>
<td><0.175</td>
</tr>
</tbody>
</table>

etc.

When the gel was washed with glycine HCl, there appeared to be a small amount of protein in one fraction (No 4), suggesting that the C$_5$ had been washed off:-
<table>
<thead>
<tr>
<th>fraction No</th>
<th>following</th>
<th>OD$_{280}$</th>
<th>protein conc (g/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>0.132</td>
<td><0.175</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0.164</td>
<td>0.175</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0.113</td>
<td><0.175</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>0.63</td>
<td>0.60</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0.117</td>
<td><0.175</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>0.046</td>
<td><0.175</td>
</tr>
</tbody>
</table>

The gel was then washed thoroughly with PBS, and the eluate neutralised with NaOH 1.0 M to pH 7.4.

The above process was followed for unactivated serum, and for both EACA-ZAS and ZAS containing the C_5 conversion products C_{5a} and C_{5a} des Arg respectively. The low molecular weight fraction of EACA-ZAS was also treated identically. All preparations were examined for C_3 and C_5 (see Experiment 9).

Experiment 9 Immunological examination of normal serum, ZAS, and sera and eluates from the anti-C_5 gel.

In order to examine the effects of exposure to the anti-C_5 gel on complement activated sera, the immunological properties of normal serum and ZAS first had to be defined. Both immunoelectrophoresis (IEP) and Ouchterlony immunodiffusion were used to attempt to identify C_3, C_5 and their products in these preparations.

Methods

(A) Ouchterlony Immunodiffusion

Principle

Antigen and antibody are placed in wells cut in agar. From there they diffuse towards each other, and precipitation lines are formed if the appropriate antigen is present. Since lines between antibody and a single antigen always form at the
same distance into the gel, lines of identity will form round the central antibody-containing well if the same antigen is present in several wells (Fig 17). Additional antigens to which the antiserum also reacts will form 'spurs' beyond the lines of identity.

Details of Method

4 ml agar (1%) was poured into a 3 inch round plastic Petri dish, and when cool, holes were cut in the agar. 20 μl of a 1 in 5 dilution of sheep anti-human C₅ antiserum were placed in the centre well, and 20 μl of the following sera were placed in the other 6 wells:

1. neat untreated human serum
2 & 3. the high protein fractions 3 & 4 (pooled) from column-treated serum (not zymosan activated)
4. the eluted protein fraction (fraction 4 post glycine-HCl)
5 & 6. fractions 6 & 7 post glycine HCl (Low OD₂₅₀ controls).

Further plates were prepared using either sheep anti-human C₅ or rabbit anti-human C₃ (Blood Transfusion service, Bristol) (both 1 in 5 dilutions) in the centre well and the following preparations in the outer wells:

1. neat untreated human serum
2 & 5. high protein fractions (pooled) after passage of pooled unactivated serum
3. serum incubated with the anti-C₅ gel as above
4. glycine HCl eluate from column
6. glycine HCl wash from incubation method.

The plates were placed in a moist cupboard at room temperature for 18 hours to allow diffusion to occur.
Fig 17. Ouchterlony immunodiffusion.

Fig 18. Two-directional immunoelectrophoresis (IEP).
Two-dimensional immunoelectrophoresis (IEP)

Principle

This separates a mixture of protein antigens on the basis of electrophoretic mobility on a gel. The plate is then turned through 90°, and a second electrophoresis performed into a gel containing antibody. Peaks of precipitation form where antibody and antigen meet, and the various antigens precipitating with the antibody can be identified by their position on the plate (Fig 18).

Details of Method

1% agarose in barbitone buffer (pH 8.6) was poured on to a 5 cm square glass plate to a depth of 1.5 mm and allowed to cool. A 1.5 mm diameter well was cut in the bottom left corner and 4 μl serum added. The serum proteins were separated by electrophoresis at 8 volts/cm in a 4°C cold room for 60 minutes.

The gel not containing proteins was scraped off the plate and 3.0 cm³ of 1% agarose containing either 90 μl rabbit anti-human C₃ (Blood Transfusion Service, Bristol) or 40 μl sheep anti-human C₅ layered on. The separated proteins were then electrophoresed into the antibody-containing gel at 5 volts/cm for 3 hours at 4°C. Visible precipitates could then be seen. To make a permanent record unprecipitated protein was removed by covering the plates with wet filter paper and leaving overnight. The plates were then dried with filter paper and stained with 0.5% Coomassie Blue in a solvent mixture of ethanol, distilled water, glacial acetic acid (45:45:10). Excess stain was washed out with solvent, and the plates thoroughly dried.
Results

A. Normal serum, ZAS, and EACA-ZAS.

(i) C₃

When the IEP appearances of either ZAS or EACA-ZAS were compared with those of normal unactivated plasma, an obvious C₃ peak persisted, representing either unconverted C₃ or large C₃ conversion products with similar mobility and antigenic structure to C₃ (Fig 19). There were also additional peaks representing small C₃ conversion products with faster mobility. The polyclonal anti-C₃ antisera obviously contained some activity towards these fragments, likely to be C₃c and C₃d.

(ii) C₅

On IEP, an obvious C₅ peak was detected in normal serum, with or without EACA, and in ZAS, with or without EACA (Fig 19). Unlike the findings with anti-C₃, however, neither ZAS nor EACA-ZAS contained extra peaks of small C₅ conversion products, suggesting that they did not form visible precipitates with the anti-C₅ antibody. IEP of the low MW fraction of EACA-ZAS produced no detectable peaks at all.

Immunodiffusion studies using anti-C₅ diluted 1 in 5 revealed a single line of identity linking normal serum with and without EACA, and ZAS with and without EACA. There were no additional lines which might have represented C₅ conversion products.

As with IEP, immunodiffusion studies of the low MW fraction of EACA-ZAS produced no visible lines at all.
Fig 19. Immunoelectrophoresis of normal serum (2 left squares) and ZAS (2 right squares) into gel containing anti-C₃ (top 2 squares) or anti-C₅ (bottom 2 squares).

When anti-C₃ is used, activation of serum by zymosan produces 2 obvious additional peaks, a small 'hump' to the right of the main C₃ peak, and a faint peak to the right of and further out than the main peak.

When anti-C₅ is used, however, activation of serum by zymosan produces no similar additional peaks.
B. Sera which had been treated with the anti-C$_5$ gel.

(i) C$_3$

To ensure that the key complement component C$_3$ was not also being removed by the anti-C$_5$ gel, normal serum, serum after treatment with gel, and eluates from the gel were all examined with anti-C$_3$ by IEP and immunodiffusion.

Similar findings were obtained with both methods. Normal serum and gel-treated serum both gave clear precipitation lines with anti-C$_3$, suggesting that little, if any, C$_3$ is removed by the anti-C$_5$ gel. Eluates from the gel gave no precipitation lines with anti-C$_3$.

(ii) C$_5$

Both IEP and immunodiffusion gave similar results. While normal human serum gave strong precipitation lines in both detection methods, no precipitation lines were seen with serum which had been exposed to the anti-C$_5$ gel, either by incubation or on the column. This suggests that either method completely removes C$_5$ from normal human serum, or that any residual C$_5$ is present in concentrations below the limits of detection of these methods.

When eluates from the gel were examined, no precipitation lines were seen either by IEP or immunodiffusion. The most likely explanation for this is that the elution process using glycine HCl destroys the antigenic structure of the molecule, as previously found136.

As C$_5$ conversion products in neither ZAS, EACA-ZAS nor low MW fraction could be detected by IEP or by immunodiffusion, their possible removal by gel-bound anti-C$_5$ antibody could not be detected by these techniques. Sera so treated were
therefore merely tested for degranulating activity.

Experiment 10 Release of NCBP from PMN's by ZAS prepared from sera depleted of, or deficient in, C₅.

This experiment was designed to assess the importance of C₅ products compared with C₃ products, in triggering NCBP release.

Method Sera depleted of C₅ by exposure to the anti-C₅ gel, whether by incubation or on a column, were then activated with zymosan in the presence of 0.5M EACA and added to cytochalasin B treated PMN's as before. Since sera depleted by either the incubation or column methods gave similar results in the degranulation system, the data from the two methods have been pooled.

Congenitally C₅ deficient serum was also used in this experiment (kindly supplied by Dr R A Thompson). This was investigated at East Birmingham Hospital and found to be deficient in C₅, while having normal levels of other complement components. Insufficient material was available to confirm these findings.

Results NCBP release in response to sera which had been C₅ depleted prior to zymosan activation was very markedly reduced compared to normal (Fig 20), and indeed at concentrations which would normally give more than 80% NCBP release, less than 5% release was obtained. These differences were highly significant statistically (Student's t test for paired samples). A similar reduction in NCBP release was seen when the low molecular weight fraction of serum which was C₅ depleted then zymosan activated in the presence of EACA was
Fig 20. NCBP release by serum depleted of C₅, then zymosan activated, and by the low molecular weight fraction of that serum.

(mean ± SEM, n indicated above each pair).

Fig 21. NCBP release from cytochalasin B treated PMN's exposed to C₅ depleted serum (1%) which was then zymosan activated. Restoration of degranulating activity of C₅ depleted serum by addition of fractions of EACA-ZAS.

* Addition of low MW fr produced significantly more NCBP release than C₅ depleted serum alone (p = 0.05, n = 4).
† Addition of high MW fr produced no significant increase in degranulation.
Attempts were made to restore the degranulating activity of C₅ depleted serum by addition of the low molecular weight fraction (ultrafiltrate) or high molecular weight fraction (retained by the 30,000 Dalton exclusion filter) prepared from normal EACA-ZAS (Fig 21). There was a slight, but not significant restoration of activity by high MW fr, but a much greater and significant rise in degranulating activity was achieved by the addition of low MW fr, as expected from the results of experiment 7 above.

Activation of the congenitally C₅ deficient serum with zymosan, in the presence of EACA, yielded practically no degranulating activity, NCBP release being little greater than that seen with PBS-A alone (Fig 22). There was insufficient serum to prepare a low molecular weight fraction.

Experiment 11
NCBP release from PMN's by sera which had been zymosan activated, then exposed to the anti-C₅ gel.

The purpose of this experiment was to see whether the gel could remove C₅-dependent degranulating activity, as well as unconverted C₅.

Methods
Both EACA-ZAS and its low MW fraction were treated with the anti-C₅ gel, either by incubation or on a column, then added to cytochalasin B treated PMN's as before.

Results
Results by either method were identical and so the data were pooled. As shown in Figure 23, treatment of either EACA-ZAS or its low MW fraction produced no loss of degranulating activity when compared with untreated preparations. Thus, although the anti-C₅ gel was extremely
Fig 22. NCBP release from cytochalasin B treated PMN's by dilutions of EACA ZAS prepared from either normal serum or congenitally C₅ deficient serum.

(mean ± SEM, n indicated above each pair).

Fig 23. NCBP release by EACA-ZAS (or its low molecular weight fraction) produced by zymosan activation followed by passage over the anti-C₅ column (Mean ± SEM, n indicated above each pair.
effective at removing \(\text{C}_5 \), it appeared not to bind \(\text{C}_5 \)-dependent degranulating activity.

Experiment 12 Use of antibodies in the degranulation system.

From the above data on \(\text{C}_5 \) deficient or depleted sera, it appeared that the major degranulating stimulus in ZAS or EACA was of low molecular weight and was derived from \(\text{C}_5 \). It seemed likely that this stimulus was \(\text{C}_5 \) fragments, either \(\text{C}_{5a} \) or \(\text{C}_{5a} \) des Arg. To further test this possibility, and to specifically examine the role of \(\text{C}_3 \) conversion products in NCBP release, antisera to various serum components were mixed with either ZAS or low MW fraction before addition to the cells. As specific antisera to \(\text{C}_{3a}/\text{C}_{3a} \) des Arg and \(\text{C}_{5a}/\text{C}_{5a} \) des Arg were not readily available, antisera to whole \(\text{C}_3 \) and \(\text{C}_5 \) were used.

Method Initially 100 \(\mu l \) EACA-ZAS and 100 \(\mu l \) antibody were incubated together for 30 minutes at 37°C prior to addition to cytochalasin B treated cells. In later experiments, antisera were similarly incubated with the low molecular weight fraction of EACA-ZAS.

The following polyclonal antibodies were used (see Appendix 1 for details):

With ZAS:
- goat anti-human IgG
- 2 different rabbit anti-human \(\text{C}_3 \) antisera
- goat anti-human \(\text{C}_5 \)

With LMW fr:
- 4 different anti-human \(\text{C}_3 \) antisera
 - (2 rabbit, 1 goat, 1 sheep)
- 2 different anti-human \(\text{C}_5 \) antisera
 - (1 goat, 1 sheep)

Results When whole ZAS was the stimulus, anti-human IgG and 2
different anti-C₃ preparations did not cause any inhibition of
degranulation (Fig 24). The addition of an anti-C₅ antiserum,
however, caused marked inhibition of degranulation. This
effect was even more striking when low MW fraction was the
stimulus, for 2 different anti-C₅ antisera then caused complete
inhibition of release (Fig 25). Again antisera to
non-complement components cause no inhibition. Although 3
anti-human C₃ antisera were likewise non-inhibitory, partial
(35%) release was seen with a fourth, an anti-C₃d preparation
(C₃(2) on Fig 25). This antiserum has been shown by Dr R J
Powell to also react immunochemically with human C₅, unlike
those anti-C₃ preparations which did not inhibit NCBP release.

When the anti-C₅ antisera were diluted before addition to
the degranulating system, their inhibitory effects could be
overcome (Fig 26). Antisera differed in the concentration at
which they ceased to be inhibitory, suggesting that they varied
in their degree of activity against C₅-dependent degranulating
activity.
Fig 24. Effect of antisera to human IgG, C3, and C5 on NCBP release from human cytochalasin B treated PMN's by EACA-ZAS (Mean ± SEM, n = 4).

Fig 25. Effect of four antisera to human C3 and two different antisera to C5 on release of NCBP from cytochalasin B treated PMN's by the low molecular weight fraction of EACA-ZAS (mean ± SEM, n = 4).
Fig 26. The effect of dilutions of anti-C\textsubscript{3}, anti-C\textsubscript{3d} and anti-C\textsubscript{5} antisera on NCBP release from cytochalasin B treated PMN's by low molecular weight fraction of EACA-ZAS.

Each result was expressed as a percentage of NCBP release obtained without antisera.
DISCUSSION

The work in this chapter reports dose-dependent release of the PMN secondary granule component NCBP, in response to a stimulus derived from the alternative complement pathway, as shown by the effects of heating and divalent cation chelators on the generation of degranulating activity.

The findings using column chromatography and the ultrafiltration membrane suggest that low molecular weight conversion products of either C₃ or C₅ are responsible. The absence of NCBP release with activated C₅-deficient or C₅-depleted sera (using an affinity gel which appears to remove only C₅) is consistent with the hypothesis that the main degranulating stimulus in either ZAS or EACA-ZAS is derived from C₅. C₃ remains readily detectable in sera after exposure to the anti-C₅ gel, and will thus form C₃a and C₃a des Arg on zymosan activation. The fact that C₅-depleted serum is totally inactive suggests that C₃ conversion products are not degranulating stimuli for PMN's, just as they have been shown not to be chemotactic. The data obtained using the gel are supported by the findings with congenitally C₅ deficient serum. It is not possible to study the effect of removal of C₃ on the generation of degranulating activity, since this would block the complement pathway totally, and prevent activation and conversion of C₅ and other later components. Although there is no absolute proof in these studies that the active moiety is actually C₅a and/or C₅a des Arg, the body of evidence in the literature from studies using pure compounds, suggests strongly that C₅a and C₅a des Arg are the main degranulating stimuli in
this system. Since degranulating activity is generated whether the carboxypeptidase B inhibitor EACA is present or not, it would appear that both \(C_{5a} \) and \(C_{5a} \) des Arg are effective, as would be expected from other studies on their chemotactic and degranulating properties\(^{22, 60}\). EACA-ZAS, however, is only 5-10 times more potent than ZAS, whereas the ED\(_{50}\)'s for pure \(C_{5a} \) and \(C_{5a} \) des Arg with regard to PMN activation would predict that ZAS formed in the presence of EACA would be 100-1000 times more potent\(^{22}\). The apparent enhancement of effect of ZAS without EACA may lie in the fact that the activity of \(C_{5a} \) des Arg generated in whole serum may be enhanced by a high molecular weight 'helper factor' protein\(^{63}\).

Some apparent anomalies in the results require consideration. Firstly, the activity of the low MW fraction of EACA-ZAS appears much less than that of unfractionated material, causing a maximum of 40-50% release of total NCBP, as opposed to the 80% or so maximal release triggered by whole EACA-ZAS. This loss of activity by fractionation was seen in several different batches of EACA and is probably explained simply on the basis of 'clogging up' of the ultrafilter with large proteins so that a proportion of serum, with solutes and low molecular weight peptides cannot pass through. Concentration of the ultrafiltrate by dialysis or lyophilisation would probably have yielded a more potent material. Secondly, it proved impossible to generate an active low MW fraction from ZAS formed in the absence of EACA. The material collected in the ultrafiltrate caused virtually no NCBP release. Although the reason for this is not absolutely clear, it may again be due to binding of \(C_{5a} \) des Arg to a high
molecular weight helper protein. Such binding would prevent C₅₅a des Arg from appearing in the ultrafiltrate, which would thus fail to trigger NCBP release.

Results of experiments using various antisera to detect, remove or inhibit either native C₅ or its conversion products have also produced some anomalies. For example, anti-C₅ antisera form visible precipitates with C₅ in unactivated and activated sera using IEP or immunodiffusion techniques, and, when coupled to a gel, effectively remove C₅ from whole unactivated sera. C₅ conversion products, however, are not detected by anti-C₅ by either IEP or immunodiffusion. Similarly, degranulating activity, which cannot be generated in congenitally C₅ deficient or C₅ depleted serum, and which therefore is likely to be derived from C₅, is not removed by the anti-C₅ gel. This may be explained by the fact that the anti-C₅ antisera used were polyclonal antisera raised in animals, so that they would contain antibodies against many different antigenic determinants on the C₅ molecule. Little antibody may therefore have been formed specifically against the C₅₅a part of the molecule, which is only a small part of the end of the chain of C₅. Thus adequate binding of C₅₅a would not necessarily be achieved. In addition, when the antiserum is exposed to whole ZAS or EACA-ZAS, it might preferentially bind to any unconverted C₅, reducing the concentration of antibody available to bind C₅ fragments. This factor cannot however totally explain the inability of anti-C₅ to complex C₅ fragments, since low MW fraction, containing no C₅, can be neither detected nor removed by anti-C₅.

Given the inability of anti-C₅ to either detect or remove
C₅ fragments it is surprising that anti-C₅, when incubated in the fluid phase with either ZAS or low MW fraction can block their ability to trigger NCBP release. This blockage is partial in the case of ZAS, again perhaps because of preferential binding to unconverted C₅, but is total in the case of low MW fraction. This ability of various anti-C₅ antisera in the fluid phase to block the cellular effects of C₅ fragments is unlikely to be due to a direct effect of antibody on the cells, since control antisera had no such inhibitory effects on NCBP release. One possible explanation is that fluid phase incubation of antigens and antibody together allows more effective complexing to take place than during IEP or using the anti-C₅ gel. This would have to take place rapidly, to prevent the initiation of cellular events which normally follows occupation of receptors. Because C₅ₐ and C₅ₐ des Arg differ by only one arginine residue, it seems unlikely that anti-C₅ antisera would bind to one and not the other.

The apparent specificity of C₅ fragments in triggering NCBP release, and the difficulty in detecting these fragments immunologically, suggests that this degranulating system might be of value as a functional assay for complement activation in general, and C₅ conversion in particular. The most widely used assay to detect complement activation in present use is measurement of C₃ split products, particularly C₃d by IEP. This 2-stage procedure is time consuming and labour-intensive, and results are rarely available the same day. A double-decker rocket IEP technique has been described, however, which may shorten the procedure. Because of the unique actions of C₅ fragments on PMN's, however, and because such actions may
mediate tissue damage in disease states such as ARDS80, 81, an assay for \(C_5\) conversion may be a better predictor of outcome in these situations. This has been described in one study of ARDS92.

Previous functional assays for \(C_5\) conversion products such as contraction of ileal smooth muscle depend on the anaphylotoxic properties of the \(C_{5a}\) molecule. They are therefore of very limited value in a clinical context, since \(C_{5a}\) des Arg, the stable form of \(C_{5a}\) in plasma, has only 0.1\% the spasmogenic activity of \(C_{5a}\), and is virtually undetectable by these means139. Functional assays using PMN's have the advantage that both \(C_{5a}\) and \(C_{5a}\) des Arg can be detected, since both trigger chemotaxis, aggregation, and degranulation. Chemotactic systems do not readily lend themselves to use as an assay for \(C_5\) conversion, since not many samples could be handled at once. In addition, depending on the system, \(C_{5a}\) des Arg may need the presence of the serum 'helper factor'63. PMN aggregation has been used as a functional assay for \(C_5\) fragments, and appears to be a more sensitive index of complement activation than either \(C_3\) breakdown products detected immunochemically92 or \(C_5\) fragments detected by chemotaxis75. They do, however, require a platelet aggregometer, channeliser, and expertise in their use.

Degranulation assays, on the other hand, are easy to learn, are robust and reproducible, and require no special equipment. When neutrophils are stimulated by \(C_{5a}\) and \(C_{5a}\) des Arg to degranulate, primary granule markers such as B glucuronidase and myeloperoxidase can also be released67, and could theoretically be used as the detection system. At the
same time, however, the superoxide anion is generated via the
neutrophil oxidase22. Under such circumstances, β
-glucuronidase is liable to intracellular oxidative damage,
resulting in up to 20% loss of detectable activity140. The
same problem arises with myeloperoxidase, where phagocytosis of
opsonised zymosan by human neutrophils produces a 40-50%
reduction in intracellular myeloperoxidase levels, while only
5-10% is detectable extracellularly141. In addition any
functional assay system for myeloperoxidase will measure both
neutrophil and eosinophil peroxidase. As eosinophil peroxidase
is several times more potent than neutrophil peroxidase142,
minimal amounts resulting from eosinophil contamination of
neutrophil suspensions markedly influences results143.

An alternative neutrophil enzyme to assay as a reflection
of degranulation is lysozyme, which, although present in both
primary and secondary granules, is released in similar
proportions to NCBP144. The principal advantage of NCBP over
lysozyme in this system is that fewer cells are required (2 x
106 compared with 1 x 107), a factor which becomes important
when large numbers of samples are to be tested. In addition,
lysozyme, like myeloperoxidase and β-glucuronidase, is liable
to intracellular oxidation140 and is more time consuming to
assay than NCBP. The latter, however, is more expensive and
requires the use of a radio-isotope label as well as a system
free of extraneous cobalamin and cobalamin binding protein.
Because of the presence of unsaturated cobalamin binding
protein activity in human plasma, whole blood cannot be used as
a "substrate" for test samples, as there would be competition
between neutrophil CBP and the plasma binder for uptake of the
radiolabelled cyanocobalamin used in the assay. Availability
of a one-stage neutrophil preparation medium\(^1\), however,
greatly shortens the duration of the assay, allowing its
potential development in clinical situations.

Non-functional assays of C\(_5\) conversion products are
becoming available, using radioimmunoassay techniques\(^{145, 146}\).
These assays incorporate antisera specifically raised against
C\(_{5a}\) or C\(_{5a}\) des Arg, and estimate their concentrations by
competition with a known amount of radiolabelled C\(_{5a}\) for the
antibody. However, it is recognized that even with an
antiserum raised against C\(_{5a}\), binding to whole C\(_5\) may occur,
giving falsely high results. The success of the assay depends
therefore on initial removal of whole C\(_5\) from the sample by
precipitation with acid or other agents. The success of this
awaits full evaluation, although the assays appear to be able
to detect concentrations of C\(_{5a}\) 10-20 ng/ml\(^{145}\), equivalent to
1-2 \times 10^{-6}M. This is greater than the estimated concentration
of C\(_{5a}\) achievable in maximally activated plasma \textit{in vitro},
although \textit{in vivo} levels could be higher in states of rapid
turnover. Comparison of NCBP release and radioimmunoassay as
detection methods for C\(_5\) conversion has not yet been made. One
potential problem with immunological assays is the albeit rare
situation of an immunochemically reactive but functionally
defective molecule. This has been described in a case of
congenital C\(_5\) deficiency\(^{147}\).

Whatever method is used for the detection of C\(_5\)
conversion, extreme care is needed in the method of blood
collection and plasma separation. Artefactual complement
activation can readily occur, for example if blood is allowed
to coagulate3, or by contact with siliconised plasma separators148. An anticoagulant is therefore required, preferably in the syringe. However, this presents problems for the degranulation system described above. Firstly, heparin can itself occasionally activate PMN's, causing NCBP release from PMN's in the sample before the plasma can be separated3. The plasma will therefore contain spuriously high levels of NCBP which will be detected in the final assay system. This emphasises the importance of measuring the NCBP in all plasma samples tested, and subtracting the result from the total measured after PMN release. Other PMN factors contaminating plasma samples may further interfere with the assay by triggering complement activation \textit{in vitro}, giving falsely high results. An alternative anticoagulant to use for blood collection would be EDTA, since this inhibits both coagulation and complement activation \textit{in vitro}. However, this would interfere with degranulation by removing Ca++ and Mg++ from solution. Overcoming this by increasing the Ca++ and Mg++ concentrations then carries the risk of initiating coagulation. A suggested method of blood collection for C\textsubscript{5} conversion assay is therefore shown in Figure 27. This involves rapid removal of cells from plasma at 4\textdegree C before the addition of a small amount of heparin.

The two clinical situations in which measurement of C\textsubscript{5} conversion might be of most value are in ARDS and in joint inflammation. As discussed in Chapter 1, PMN activation by C\textsubscript{5} fragments is believed to play an important part in the lung damage seen in the former condition. Plasma from ARDS patients has been shown to contain PMN aggregating activity, likely to
Minimal stasis or trauma

Cold syringe

Refrigerated centrifuge rapidly (Preferably in venepuncture room)

5-10 minute spin at 200 g at 4°C to remove cells

Carefully remove plasma from heparised tubes

Syringes and tubes stored at -20°C.
(not needles as they become brittle).

Heparin (preservative free) final concentration 2 units/ml

Can then be stored at -20°C till assay

Fig 27. Suggested method of blood collection for assay of plasma C5 fragments using PMN degranulation assay.
be C$_{5a}$ des Arg92. This may be a more accurate predictor of ARDS than C$_3$ conversion and the facility of a rapid semi-quantitative assay for C$_{5a}$ des Arg should now allow further prospective studies to be done, not only to monitor the progress of established ARDS, but as an early predictor for high risk patients on intensive care units. Activated complement components may be present in plasma before clinical features develop, and it is at this time, before lung damage is established, that therapeutic intervention should have its greatest chance of success. Examination of bronchial lavage fluid for C$_5$ fragments could also be performed.

Since activated components of the classical complement pathway have been found in synovial fluid in rheumatoid arthritis102 (see Chapter 1), examination of synovial fluid for C$_5$ fragments could aid in the diagnosis of the inflammed joint. In established rheumatoid disease, such examination would provide an opportunity to study local disease activity as it proceeds.

An assay of C$_5$-related degranulating activity also has certain in vitro uses, and may be of value in quantitating the titre of anti-C$_{5a}$ activity present in antisera. In experiments which examined the inhibition by antisera of NCBP release in response to activated complement, release was inhibited by two different anti-C$_5$ antisera but not by three different anti-C$_3$ antisera. The exception was the inhibition produced by a single anti-C$_{3d}$ antiserum, but this antiserum also reacted immunochemically with human C$_5$. To determine a titre of anti-C$_{5a}$ activity, serial dilutions of test antisera could be incorporated into the degranulation assay.
A further application of this assay system is in the in vitro testing of anti-inflammatory agents. Indomethacin and other non-steroidal anti-inflammatory agents have been shown to inhibit both superoxide production42 and NCBP release91 from neutrophils triggered with soluble stimuli. In neither case was acetyl salicylic acid affective. Corticosteroids appear to inhibit both secondary91 and primary149 granule discharge. The inhibitory effect of a given anti-inflammatory drug, however, does not correlate with its ability to block the cyclo-oxygenase pathway91 so that degranulation inhibition may provide a new model for assessing such agents. It may be particularly valuable in the development of agents active in the prevention of complement and neutrophil mediated damage as seen in ARDS and rheumatoid arthritis. Inhibition of NCBP release by pharmacological agents is considered further in chapters 6 and 7.
CHAPTER 3

CONDITIONS INFLUENCING COBALAMIN BINDING PROTEIN RELEASE
FROM STIMULATED AND UNSTIMULATED NEUTROPHILS

INTRODUCTION

The work in the previous chapter was concerned with NCBP release from cytochalasin B (CB) treated PMN'S in response to C5 derived fragments of activated complement. In this chapter, the following aspects of NCBP release will be considered:

1. release by activated complement in non CB treated cells.

2. the kinetics of release in both CB and non CB treated cells (in collaboration with Dr Tony Brown).

3. release in non complement-activated serum, and the effect of cell concentration on this.

4. the role of the lipoxygenase pathway of arachidonic acid metabolism in NCBP release (in collaboration with Dr Paul Maurice).

As mentioned in Chapter 1, CB greatly amplifies and speeds up PMN secondary granule release in response to various stimuli, but degranulation can occur in its absence. Comparison of the kinetics of NCBP release in the presence and absence of CB might indicate whether CB merely allows normal
secretory processes to take place more rapidly, or whether a different degranulation mechanism is induced.

When CB treated cells are exposed to serum in which complement system has not been activated, NCBP secretion is not significantly greater than in PBS-A alone. This would suggest that no specific stimulus to NCBP release is present in unactivated serum. In the absence of CB, however, NCBP is slowly lost from PMN's suspended in such serum. Moreover, PMN's from post-operative patients, which are refractory to in vitro NCBP release in response to activated complement also release much less NCBP than normal when suspended in unactivated serum. Since NCBP release by such post operative PMN's is normal when FMLP is the stimulus, it is possible that unactivated serum also contains a specific degranulating stimulus to which post operative PMN's are desensitised. The nature of any such stimulus is not clear, but the complement system is one possible source. The role of C5 activation in NCBP release by unactivated serum will therefore be examined, as will the effect of cell concentration.

Stimulation of PMN's by certain degranulation factors, such as the calcium ionophore A23187 also triggers metabolism of membrane arachidonic acid (AA). One possible fate of AA is transformation via the enzyme 5'lipoxigenase, via a series of unstable intermediates, to the biologically active 5,12 dihydroxy-eicosatetraenoic acid, or leukotriene B4 (LTB4). LTB4 can also trigger PMN reactions, including chemokinesis, and aggregation. It is therefore possible that LTB4 acts as an intracellular messenger, and that its synthesis is a prerequisite for NCBP release in response to
Fig 28. The pathways and products of arachidonic acid oxygenation.
stimuli such as C5 fragments or FMLP. The literature on this is however conflicting, with some authors concluding that although LTB4 synthesis and degranulation frequently occur together, they are independent events151. Others, however, believe that blockade of LTB4 synthesis will prevent degranulation152. This point is therefore examined in this chapter, firstly by examining degranulation and lipoxygenase activity in parallel in response to FMLP and A23187, and secondly by examining the effects of a known lipoxygenase inhibitor, BW755C, on NCBP release by these stimuli. Lipoxygenase products can be detected by providing a radiolabelled source of arachidonic acid, and separating the products by thin layer chromatography. The peaks of activity can then be counted and each product quantified.
EXPERIMENTAL WORK

Experiment 1 Stimulus-mediated NCBP release in cytochalasin B and non-cytochalasin B treated cells.

Method The general method for the degranulation assay was followed. PMN's were incubated at 2×10^6/ml in PBS-A with either unactivated pooled human serum, ZAS or C5 depleted serum prepared as described in chapter 2, and incubated at 37°C for 45 minutes. The reaction was stopped by centrifugation at 4°C and NCBP assayed in the cell-free supernatants.

An additional stimulus used was formyl-methionyl-leucyl-phenylalanine (FMLP) dissolved in dimethyl sulphoxide (DMSO). The final concentration of DMSO (<0.05%) was insufficient to interfere with either PMN responses or NCBP assay.

Result Pretreatment of PMN's with CB (5ug/ml) prior to exposure to either EACA-ZAS or LMW fr more than doubled the percentage of intracellular NCBP release (Fig 29), despite the fact that the incubation time with the stimulus was 5 minutes in the case of CB treated cells, and 45 minutes where CB was not used. Similar differences were seen when the stimulus was FMLP (Fig 30). The presence of CB did not increase release from cells suspended in PBS-A only.
Fig 29. Release of NCBP by EACA-ZAS and its low MW fraction with (+) and without (-) cytochalasin B. (mean ± SEM, n = 4).

Fig 30. Release of NCBP by different concentrations of FMLP in the presence and absence of cytochalasin B. (mean ± SEM, n = 4).
Experiment 2 Kinetics of NCBP release in response to FMLP with and without cytochalasin B (in collaboration with Dr Tony Brown).

A. With Cytochalasin B

Method A 20ml suspension of PMN's (2 x 10^6/ml) in PBS-A was divided into 4 5ml aliquots and incubated for 5 minutes at 37°C with CB. FMLP (final concentration 10^-5 M) or PBS-A was then added. Two of the 4 tubes were stirred - thus:-

(i) - PBS not stirred
(ii) - FMLP stirred
(iii) - FMLP not stirred
(iv) - PBS stirred

At each time point from 15-300 seconds, 0.4ml cell suspension was transferred to an Eppendorf tube and centrifuged for 10 seconds through dibutyl phthalate oil (to prevent diffusion of NCBP from cells into supernatant as they are spun) in a microcentrifuge. Replicates at 2 time points were centrifuged without oil to ensure that no NCBP was retained by the oil. The supernatants were removed for NCBP assay, and an aliquot of cells was sonicated to release all the NCBP as before.

B. Without cytochalasin B

Method PMN's (2 x 10^6/ml) were incubated in PBS-A with FMLP 10^-5 M, and the reaction stopped at time points from 10 seconds to 60 minutes by centrifugation as in (A) above.

Results There was no influence of stirring or of the presence of dibutyl phthalate oil on release or recovery of NCBP. In CB-treated cells, NCBP release proceeded extremely rapidly on addition of the stimulus (Fig 31), reaching 50% maximal
Fig 31. Kinetics of release of NCBP by FMLP 10^{-5}M with and without cytochalasin B.

Fig 32. Release of CBP from PMN's in PBS-A, unactivated AB serum (5%) and unactivated C₅ depleted serum (5%) in the presence and absence of cytochalasin B.
release in 10-15 seconds, 95% maximal release in 60 seconds and a plateau of maximal release by 90 seconds. In contrast, non-CB treated cells took 5 minutes to reach 50% maximal release, and greater than 40 minutes to reach 95% maximal release. Considering that only 40% of the total intracellular NCBP was released during a 45 minute incubation with 10^{-5}M FMLP, it is likely that maximal release had not been reached within this time period, and that a slow increase in release would have persisted had the incubation been continued.

Experiment 3 Release of NCBP by non-cytochalasin B treated cells suspended in pooled unactivated AB serum and C$_5$ depleted unactivated serum.

Method A pool of unactivated serum was prepared from 2 normal subjects of blood group AB. This was chosen to minimise possible PMN activation due to red cell agglutination by anti-A or anti-B present in added serum. Non CB treated cells at various concentrations were incubated in this serum (final concentration 10%) for 45 minutes.

Some of the pool of AB serum was depleted of C$_5$ either by passage over the anti-C$_5$ column or by incubation with anti-C$_5$ gel as described in chapter 2. Non CB treated cells were incubated in this C$_5$-depleted, non-activated serum for 45 minutes as above.

Results Cells incubated in PBS-A lost intracellular NCBP very slowly, with less than 5% secretion in 60 minutes (Fig 32). When AB serum was present, release was significantly greater, reaching 12% by 60 minutes. This release did not appear to depend on the presence of C$_5$ derived products, for release in
C₅ depleted serum was at least as great as, but not significantly greater than, that seen in AB serum. For a constant stimulus concentration, NCBP release in both ABS and C₅-depleted serum was inversely proportional to the concentration of the cells over the range 4 x 10⁵ - 2 x 10⁷/ml (Fig 33). The effect of cell concentration was identical to that seen when either FMLP or EACA-ZAS was the stimulus (Fig 33).

Experiment 4 Measurement of lipoxygenase products during NCBP release in response to FMLP and the calcium ionophore A₂₃₁₈₇ (in collaboration with Dr Paul Maurice).

Method Venous blood was anticoagulated with EDTA (final concentration 5mM), and spun at 160g for 10 minutes to produce platelet-rich plasma, which was removed. Platelets have previously been shown not to affect NCBP release from PMN's, but, since they also have a lipoxygenase, they interfere with assay of lipoxygenase products from PMN's. PMN's were then isolated by dextran sedimentation, removal of mononuclear cells by LSM, and hypotonic lysis of red cells as described in chapter 2. Aliquots of PMN's were suspended at 2 x 10⁶/ml in PBS-A (for degranulation studies) or at 1 x 10⁷/ml for leukotriene assay. Cytochalasin B, final concentration 5μg/ml was added, and the cells incubated for 5 minutes. The stimuli (A₂₃₁₈₇ 2μM or FMLP 10⁻⁵ M) and ¹⁴C arachidonic acid in toluene (60mCi/mmol, final concentration 1.6μM) were then added, and the incubation continued for a further 5 minutes. Control cells had unlabelled AA 1.6μM added. The reactions were stopped either by centrifugation at 4°C (for degranulation) or
Fig 33. The effect of cell concentration on NCBP release in non cytochalasin B treated cells.
(mean ± SEM, n = 4).
by acidification to pH 3 (for lipoxygenase products assay). NCBP was assayed in cell-free supernatants as before. Lipoxygenase products were detected by thin layer chromatography (TLC) (kindly performed by Dr Paul Maurice) as follows:

1. The lipid products in the cell-free supernatants were extracted twice in ethyl acetate and the residue resuspended in a small volume of ethyl acetate.

2. The samples were applied to multi-lane TLC plates (Whatman LK6D).

3. The plates were developed in toluene : dioxane : acetic acid (65:34:1) at 4°C. This gives good separation of cyclooxygenase and lipoxygenase products.

4. The plates were scanned to locate peaks of radioactivity. These areas were scraped and counted in a liquid scintillation counter.

The results of each peak were expressed as a percentage of total radioactivity added. Arachidonic acid not converted into cyclooxygenase or lipoxygenase products is incorporated into neutral lipids.

Results When FMLP was the stimulus, very little arachidonic acid was metabolised to either the cyclooxygenase product PGE₂ or the lipoxygenase products 5 hydroxyeicosatetraenoic acid (5 HETE) or 5,12 diHETE (LTB₄) (Fig 34), despite nearly 80% NCBP release. In contrast, stimulation with A₂₃₁₈₇, causing only 45% NCBP release, was accompanied by much greater lipoxygenase activity, with 20% of the labelled arachidonic acid appearing as LTB₄ (Fig 34).
Fig 34. NCBP release and synthesis of PGE₂, 5, 12 diHETE and 5 HETE in cytochalasin B treated PMN's by FMLP and A²3187. (n = 2)

Fig 35. NCBP release from cytochalasin B-treated PMN's by FMLP, A²3187 and arachidonic acid: effect of the lipoxygenase inhibitor BW755C. (n = 2)
Experiment 5 Effect of BW755C on NCBP release in response to different stimuli

Method The lipoxygenase inhibitor BW755C was dissolved in DMSO, and incubated at various concentrations with 2 x 10^6 PMN's/ml for 5 minutes. Because of the possibility of BW755C binding to albumin, none was added to the PBS, and non serum derived stimuli were used. Cytochalasin B (final concentration 5μg/ml) was then added and the incubation continued for a further 5 minutes. Three different degranulating stimuli were then used:

(i) FMLP (final concentration 10^{-5} M)
(ii) the calcium ionophore A_{23187} in DMSO (final concentration 2μM).
(iii) arachidonic acid in hexane (final concentration 0.25mM.)

After 5 minutes with the stimulus, the reaction was terminated by centrifugation at 4°C and NCBP assayed in the supernatants as before.

Results BW755C did not interfere with NCBP assay nor did it cause any NCBP release when added to the cells alone. At final concentrations up to 10^{-4} M, BW755C did not cause any inhibition of NCBP release by any of the stimuli examined (Fig 35). This contrasts markedly with its effect on lipoxygenase product synthesis at lower concentrations (Table 7, courtesy of Dr Paul Maurice). While arachidonic acid alone at micromolar concentrations caused no stimulation of prostaglandin E₂ or LTB₄ synthesis (Table 7, column 1), addition of A_{23187} caused 35-40% of the radiolabel to appear in PGE₂, LTB₄ or the LTB₄ precursor 5 HETE (column 2). The presence of BW755C with A_{23187}, however, completely blocked
Table 7

The effect of BW755C on arachidonic acid metabolism by PMN's with and without A$_{23187}$.

(% incorporation of recovered radioactivity into products: each value is a mean of 2).

<table>
<thead>
<tr>
<th></th>
<th>AA (4μM) only</th>
<th>AA + A$_{23187}$ (4μM)</th>
<th>AA+ BW755C (8 x 10$^{-5}$M)</th>
<th>AA+ A$_{23187}$ + BW755C (8 x 10$^{-5}$M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polar lipid</td>
<td>7.3</td>
<td>14.4</td>
<td>6.2</td>
<td>38.4</td>
</tr>
<tr>
<td>PGE$_2$</td>
<td>-</td>
<td>4.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TxB$_2$</td>
<td>3.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5, 12 diHETE</td>
<td>-</td>
<td>18.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(LTB$_4$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 HETE</td>
<td>-</td>
<td>14.4</td>
<td>-</td>
<td>1.1</td>
</tr>
<tr>
<td>12 HETE</td>
<td>14.4</td>
<td>6.8</td>
<td>0.2</td>
<td>-</td>
</tr>
<tr>
<td>AA</td>
<td>2.6</td>
<td>3.1</td>
<td>3.8</td>
<td>8.3</td>
</tr>
<tr>
<td>Neutral lipids</td>
<td>52.7</td>
<td>23.8</td>
<td>86.3</td>
<td>44.2</td>
</tr>
</tbody>
</table>

AA = arachidonic acid
production of any of these metabolites, so that practically all the radiolabel appeared in either neutral or polar lipids.
DISCUSSION

As is well documented\(^4^9\), preincubation of PMN's with CB both greatly amplifies and accelerates NCBP release in response to whole EACA-ZAS, its low molecular weight fraction, or FMLP, all of which trigger non-cytotoxic dose-dependent degranulation via surface receptors. The kinetic pattern, however, appears similar whether CB is present or not. There is initially rapid secretion of NCBP, slowing down with time, perhaps due to loss of surface receptors by internalisation of receptor-ligand complexes. The similarity in kinetics of release with and without CB would suggest that CB enhances normal stimulus-induced secretory processes, rather than triggering or permitting NCBP loss from the cells by other means.

The apparent anomaly in the results is that while release by unactivated AB serum is no greater than in PBS-A for CB-treated cells, release is much greater in AB serum than in PBS-A when no CB is present. Similarly, when no CB is present, cells secrete just as much NCBP in ABS as they do in ZAS, whereas in CB treated cells ZAS stimulates considerably more secretion. Release of NCBP in the presence of AB serum thus seems to differ fundamentally from release triggered by specific complement fragments. The degranulating activity in AB serum is stable at room temperature for 16 hours, and is only partially abrogated by heating to 56°C for 30 minutes, suggesting that it is not derived from complement\(^3\). Release from non-CB treated cells is also seen in C\(_5\)-depleted serum, and in plasma prepared by the 'rapid spin' technique designed to minimise complement activation\(^3\), suggesting that
serum-dependent release is not mediated via C₅ fragments. Chromatography of AB serum on Sephadex G200 reveals 1 peak of degranulating activity of high molecular weight for non-CB treated cells yet none for CB-treated cells. A similar high MW peak appears to be present in ZAS, as well as the low MW peak representing C₅ fragments. The high MW peak, however, has no activity for CB treated cells. Release in ABS by non-CB treated cells varies with the concentration of both serum and cells, as shown above, in the same way as degranulation in response to known receptor-mediated stimuli such as EACA-ZAS and FMLP. The stimulus-specific loss of responsiveness of post operative PMN's to ABS and EACA-ZAS might also argue for a specific receptor-mediated mechanism. However, in normal cells in ABS concentrations as high as 60%, release is never greater than 25% of the total NCBP. Release also proceeds slowly in whole blood. It would thus appear that 2 serum-derived degranulating stimuli can be identified. The first is of high molecular weight, and is present in both ZAS and ABS. It degranulates non CB treated cells slowly and its activity is not enhanced by CB. The second stimulus is of low molecular weight and arises from serum complement, probably from C₅. It also degranulates non CB treated cells slowly but its activity is greatly enhanced by the addition of CB.

It has been suggested than PMN secondary granules may contain a labile subpopulation which are slowly lost from the cell under appropriate conditions, as when serum is present. The presence or absence of CB would thus be irrelevant to such granule loss. The lack of secretion in CB treated cells could
be simply due to the much shorter incubation time used when CB is present, i.e. 5 minutes instead of 45 or 60 minutes. This slow 'background' release of secondary granules could influence various systems - granulopoiesis, via lactoferrin, reactivity of other PMN's via lysozyme, and possibly bacterial function via binding of cobalams by NCBP. Thus NCBP release in normal serum may be a physiologically normal and desirable phenomenon, although its exact mechanism remains unclear.

NCBP release by CB-treated cells in response to FMLP is accompanied by very little synthesis of lipoxygenase products as assayed by thin layer chromatography. This is consistent with previous observations using radioimmunoassay for LTB₄, in which the primary granule marker β-glucuronidase was released from CB-treated cells by FMLP without detectable LTB₄ synthesis. Receptor-mediated stimuli such as FMLP therefore appear much less able to stimulate leukotriene production than does A23187. The TLC method used in our study to detect lipoxygenase products also detected other stable products of the lipoxygenase pathway, and none was produced in significant quantities. The calcium ionophore A23187, however, triggered both NCBP release and synthesis of cyclooxygenase and lipoxygenase products in significant quantities. The different behaviour of these stimuli may relate to the direct effects of the ionophore on cytoplasmic calcium levels, while FMLP acts via occupation of surface receptors, followed by calcium mobilisation and breakdown of membrane phosphotidyl lipids. In any case, it appears that NCBP release can occur without significant lipoxygenase
activity. The behaviour of cells exposed to BW755C confirms this, with concentrations of drug shown to totally block lipoxygenase having no effect on NCBP release. This finding is similar to that of Palmer and Salmon151. In inflammatory sites, secondary granule release and leukotriene synthesis would both modify the inflammatory reaction. LTB\textsubscript{4} would recruit and activate further PMN's, while release of lysozyme could localise PMN's to inflammatory sites. Within individual cells, however, secondary granule release and leukotriene synthesis appear to be separate events.
CHAPTER 4

THE ROLE OF C5 AND NEUTROPHILS IN THE WHEAL AND FLARE RESPONSE TO INTRA-DERMAL ZYMOGAN ACTIVATED SERUM (ZAS).

INTRODUCTION

Activation of PMN's by C5 conversion products in vitro clearly triggers a rapid secretory response by the cells, as shown above, as well as chemotaxis and aggregation. C5 products have also been implicated in vivo in the increased vascular permeability and inflammatory tissue damage seen in conditions such as the adult respiratory distress syndrome and rheumatoid arthritis, as discussed in Chapter 1. The question to be investigated in this chapter is whether PMN recruitment by C5 fragments can be implicated in the immediate vascular response to activated complement in the skin.

Injection of activated complement into the skin produces an immediate wheal and flare response, but the exact mechanism remains unclear. The anaphylotoxins C3a and C5a cause release of histamine and leukotrienes from mast cells, but the des Arg form of C5, with little activity towards mast cells, remains active in the skin, suggesting that a mast cell independent mechanism may be operating. The observations of Issekutz and Williams on the role of PMN's in the skin response to complement in the rabbit suggest that PMN products may mediate the permeability response. Their studies also throw into question the role of C3 fragments in the skin reaction, since they have little chemotactic activity towards PMN's. The
role of C_5 fragments and neutrophils in the skin response to complement in human subjects will thus be examined here.

While studies with normal and neutropenic animals suggest that circulating PMN's are necessary for the vasodilatation and microvascular permeability response to intradermal C_{5a} (reviewed in Chapter 1), no similar studies have yet been performed in neutropenic human subjects. There are obvious ethical and practical limitations to such work. The main one is the necessity to inject each subject's skin only with complement products from his or her own serum, rather than with a well characterised and standardised batch of C_{5a} prepared from a serum pool. Another difficulty is in obtaining patients with severe enough neutropenia, yet who are well enough to be studied and totally infection-free. This has of necessity limited the number of neutropenic patients who could have been studied.

The other point which is examined here is whether Williams' "two-mediator hypothesis" of inflammation applies to this skin model in man. The hypothesis states that demonstrable inflammatory reactions require both a vasodilator and a permeability producing mediator (discussed in Chapter 1). Thus C_{5a} alone, despite increasing permeability, would not produce a wheal, as no vasodilator component would be present. This was borne out in studies in the rabbit, where wheals were not produced by C_{5a} unless PGE$_2$ has been present also. To see whether this two mediator hypothesis applies in man, the skin response to ZAS and to PGE$_2$ has been examined for synergy between the two mediators. Synergy between two mediators exists if the response to a mixture of
the two is greater than the sum of the responses when the two mediators are injected separately.
EXPERIMENTAL WORK

Experiment 1 Preliminary studies on technique

A. Assessment of accuracy of measurement of 50 μl injection volume.

Method By weighing weigh boats on an analytical balance before and after the addition of 50 μl distilled water from a 1 ml syringe, the accuracy and reproducibility of this method of measuring 50 μl could be assessed.

Results The results are shown in Table 8. The mean weight of 10 50 μl aliquots was 50 mg weight and all values lay within 10% of that figure, which was considered acceptable for this study.

B. Reproducibility of measurement of wheal volume.

Method To assess the reproducibility of wheal response in different subjects, and within each subject at different times, repeat injections of dilutions of ZAS were made over several weeks, and the wheal volume measured as described below. Any variability in the results would therefore reflect true variability of response, as well as inconsistencies in measurement.

Results The results are shown in Table 9. The reproducibility of wheal volumes at 12 minutes by both concentrations of ZAS was acceptable considering the number of variables involved (see discussion). There was, however considerable inter-subject variation in response. By 30 minutes, both intra- and inter- subject variation was much greater than at 12 minutes. Therefore, although many experiments have measurements taken at both 12 and 30 minutes, the 12 minute measurements are probably more meaningful.
Table 8

The weights of 10 50μl aliquots of distilled water

<table>
<thead>
<tr>
<th>No</th>
<th>Weight (mg)</th>
<th>No</th>
<th>Weight (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>46.5</td>
<td>6</td>
<td>51.0</td>
</tr>
<tr>
<td>2</td>
<td>50.8</td>
<td>7</td>
<td>44.3</td>
</tr>
<tr>
<td>3</td>
<td>54.0</td>
<td>8</td>
<td>52.3</td>
</tr>
<tr>
<td>4</td>
<td>52.6</td>
<td>9</td>
<td>47.8</td>
</tr>
<tr>
<td>5</td>
<td>47.7</td>
<td>10</td>
<td>52.8</td>
</tr>
</tbody>
</table>

Mean = 50.00 mg
Standard error of the mean = 1.02

Table 10

Comparison of wheal volumes produced by buffered and non buffered saline (n = 6)

<table>
<thead>
<tr>
<th>Time (mins)</th>
<th>Unbuffered saline</th>
<th>Phosphate buffered saline</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>12.11</td>
<td>15.67</td>
</tr>
<tr>
<td>12</td>
<td>8.88</td>
<td>8.94</td>
</tr>
<tr>
<td>20</td>
<td>3.76</td>
<td>2.78</td>
</tr>
<tr>
<td>30</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Table 9

Wheal volumes at 12 and 30 minutes after injections of ZAS: assessment of reproducibility. Results 1 and 2 were obtained from injection of the same material days or weeks apart.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Injection</th>
<th></th>
<th></th>
<th>Injection</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ZAS 1/2 : 12 mins</td>
<td></td>
<td></td>
<td>ZAS 1/2 : 30 mins</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Result 1</td>
<td>2</td>
<td></td>
<td>Result 1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>105.67</td>
<td>100.37</td>
<td></td>
<td>96.09</td>
<td>93.01</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>107.35</td>
<td>86.05</td>
<td></td>
<td>121.66</td>
<td>114.66</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>126.08</td>
<td>128.07</td>
<td></td>
<td>204.92</td>
<td>158.76</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>90.49</td>
<td>99.70</td>
<td></td>
<td>38.59</td>
<td>58.62</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>83.23</td>
<td>101.46</td>
<td></td>
<td>115.68</td>
<td>161.63</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>132.38</td>
<td>131.67</td>
<td></td>
<td>86.60</td>
<td>124.99</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>79.77</td>
<td>69.39</td>
<td></td>
<td>86.47</td>
<td>43.02</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>70.12</td>
<td>99.39</td>
<td></td>
<td>50.32</td>
<td>77.99</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>76.57</td>
<td>59.17</td>
<td></td>
<td>62.34</td>
<td>39.27</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subject</th>
<th>Injection</th>
<th></th>
<th></th>
<th>Injection</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ZAS 1/2 : 12 mins</td>
<td></td>
<td></td>
<td>ZAS 1/2 : 30 mins</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Result 1</td>
<td>2</td>
<td></td>
<td>Result 1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>63.40</td>
<td>84.30</td>
<td></td>
<td>17.85</td>
<td>11.82</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>68.70</td>
<td>86.65</td>
<td></td>
<td>106.89</td>
<td>42.18</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>52.08</td>
<td>55.73</td>
<td></td>
<td>74.93</td>
<td>74.68</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>62.59</td>
<td>44.31</td>
<td></td>
<td>59.15</td>
<td>41.25</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>43.30</td>
<td>33.58</td>
<td></td>
<td>16.37</td>
<td>10.44</td>
<td></td>
</tr>
</tbody>
</table>
C. Comparison of wheals produced by sterile, unbuffered 0.9% NaCl and phosphate buffered saline (pH = 7.4).

Sterile, pyrogen tested saline has no buffering capacity, but phosphate buffered saline made from laboratory chemicals, while it can be autoclaved, is not necessarily pyrogen free. A comparison was therefore made of wheals produced by each of them (Table 10), which shows no significant differences. Sterile pyrogen-tested saline was therefore used for all subsequent dilutions and injections.

Experiment 2 Wheals and flares produced by ZAS preparations in normal subjects.

Normal subjects were informed medical and laboratory staff of both sexes aged 21-49.

Methods

A. Preparation of activated complement.

Serum from each subject was incubated with boiled washed zymosan 2 mg/ml at 37°C for 60 minutes. Complement activation was terminated by centrifugation at 2000 g for 5 minutes followed by passage through a 0.2 μm filter. A partially purified low molecular weight fraction was prepared from zymosan-activated serum (ZAS) which was layered over a 30,000 Dalton micro-partition membrane and centrifuged at 2000 g for 30 minutes at room temperature. The fraction of ZAS which had passed through the membrane was used for injection. All manoeuvres were performed under sterile conditions in a laminar flow cabinet. Sera were stored under liquid nitrogen and were sterilised by filtration immediately prior to injection.
B. Injection of solutions.

Control solutions injected were saline, the supernatant from zymosan incubated alone, and serum not exposed to zymosan. Solutions were coded by someone not involved in the measurement and were injected randomly at numbered sites on the flexor surfaces of both forearms, which had been cleaned with alcohol. 50µl of each solution was injected from a 1 ml syringe through a 27 gauge needle into the skin so that a raised 'bleb' was formed on the skin surface (Fig 36). Where the solution entered subcutaneously, no such bleb was formed, and the injection was repeated at a fresh site.

C. Measurement of response.

Flare areas 10 minutes after injection, were calculated by measuring 2 diameters, 1 in the long axis of the arm \(D_1\) and 1 at right angles to it \(D_2\), and calculating the area from the formula

\[
\text{Area (mm}^2\text{)} = \frac{1}{4} \times (D_1 + D_2)^2
\]

where \(D_1\) and \(D_2\) are in mm.

Wheal volumes were calculated from wheal area, measured as for flare area, and wheal thickness. 'Pseudopodia' were not included in the measurement of wheal diameters. Wheal thickness was calculated by measuring a double thickness of skin (excluding sub-cutaneous tissue) at each site before and after injection, using spring-loaded skin calipers (Fig 37). This technique has previously been described154 and validated155. The calculation of thickness and volume is shown in Fig 38. Because the skin calipers measure 2 thicknesses of skin, the final thickness of the wheal is half
Fig 36. Intradermal injection of ZAS to produce a raised 'bleb' on the skin.
Fig 37. Measurement of wheal thickness using spring-loaded skin calipers.
Pre-injection

Wheal vol. of a cylinder volume

\[= \frac{\pi d^2}{4} \times \text{height (wheal thickness)} \]

= thickness \(\times 2 \)

Post-injection

Wheal volume (\(\text{mm}^3 \))

\[= \frac{\pi}{4} \times \text{mean diameter}^2 \times \frac{\Delta \text{thickness}}{2} \]

Fig 38. Technique and formula for measurement of skin wheals.
the difference in skin caliper measurement pre and post injection. To simplify the volume calculation, the formula for the volume of a cylinder is used, where wheal area = base and thickness = height. While the wheal is obviously not cylindrical, its volume will be proportional to that of a cylinder with the same base area and height. Each set of injections included a saline control, the response to which was subtracted from all other results when calculating volumes, unless otherwise stated.

Results Injection of 50 µl sterile saline always resulted in a wheal volume at 12 minutes of less than 10 mm³ (Fig 39). No significant increase on this was produced by either unactivated serum or zymosan supernatant (Fig 39). Dilutions of ZAS, however, produced a dose dependent wheal and flare response by 12 minutes (Fig 40). The flare appeared within minutes of injection, followed by the wheal, which was readily measurable with well-defined edges by 12 minutes (Fig 41). At lower serum concentrations, the wheals were reduced in size by 40 minutes, although with neat serum an increase in wheal size occurred between 12 and 30 minutes (Fig 42). All wheals faded over an hour or two, and no late reactions were noted, but unlike histamine (see Chapter 5), injection of ZAS was not associated with any pain or itching. Injection of the low molecular weight fraction of ZAS also produced a wheal and flare response (Fig 43), although less than that produced by whole ZAS. Quantitative comparisons of potency with whole ZAS are not meaningful, because not all low molecular weight fraction is recoverable from the fractionation process. The fact that the low molecular fraction of ZAS can generate a
Fig 39. Wheal volumes in normal subjects 12 and 30 minutes after injection of saline, zymosan supernatant and unactivated serum. (mean ± SEM, n = 10).

Not corrected for saline alone.

Fig 40. Wheal and flare responses to dilutions of ZAS at 12 minutes (mean ± SEM, n shown above each bar).
Fig 41. Wheals of different sizes after injection of coded solutions. Site 6 received ZAS and has a flare.
Fig 42. Time course of wheal response to ZAS (mean ± SEM) (numbers are shown for each group).

Fig 43. Wheal and flare response in normal subjects to the low molecular weight fraction (50%) of ZAS. (mean ± SEM, n = 7).
wheal and flare response, albeit an attenuated one, suggests that the inflammatory mediators in ZAS are of low molecular weight.

Experiment 3 Wheal and flare responses to heated or C5 depleted sera.

Method

A. Inactivation of complement

Sera were heated at 56°C for 30 minutes prior to or following zymosan activation.

B. C5 depletion

Sera from normal subjects were depleted of C5 using an affinity chromatography gel, as described in Chapter 2. Sera passed over the gel were negative for the hepatitis B surface antigen. Sera prepared by this method were shown by two-dimensional immuno-electrophoresis and Ouchterlony immunodiffusion to be devoid of C5 while retaining C3. They were then zymosan activated as before. Statistical comparisons were made between normal and either heated or C5 depleted sera by paired t test, but because the responses were not necessarily normally distributed, the non-parametric Wilcoxon's signed rank test was also used.

Results Removing C5 from sera prior to zymosan activation resulted in a highly significant reduction in wheal volume at both 12 and 30 minutes (Fig 44). The p values refer to those obtained by paired t test; by Wilcoxon's signed rank test all pairs were significantly different at the 1% level. No flares were produced by C5 depleted sera at any concentration.

Heating sera to 56°C for 30 minutes prior to zymosan activation similarly prevented generation of wheal producing
Fig 44. The effect of C₅ depletion or heating on generation of wheal-producing activity in the skin (mean ± SEM, n = 8 except for zymosan activated then heated, where n = 2).
activity (Fig 44), and likewise such sera produced no flares. When sera were first zymosan activated then heated there was an approximately 25% reduction in wheal size, but this was not significant.

Experiment 4 Wheal and flare responses to ZAS, LMW fr and histamine in subjects with severe neutropenia.

(Studied with kind permission of Drs J Fletcher and Dr PAE Jones).

Methods Ten neutropenic subjects of both sexes with peripheral blood neutrophil counts of less than $0.5 \times 10^9/\text{l}$ were studied with their informed consent and hospital ethical committee approval. Their ages ranged from 16-72 (mean age = 50) and their diagnoses included marrow dysplasia or hypoplasia, hypersplenism, and neutropenia following chemotherapy for Hodgkin's disease or acute leukaemia (Table 11). All subjects were apyrexial and free from infection when studied and no subject was taking antibiotics or anti-inflammatory agents. Subjects were injected with autologous ZAS, and its low molecular weight fraction (LMW fr) as described above.

To ensure that sera in the normal and neutropenic groups contained comparable amounts of complement components, C_3 and C_4 were measured turbidometrically, and total haemolytic complement was measured by a standard haemolytic assay in sera from normal and neutropenic subjects prior to zymosan activation (kindly arranged by Dr R J Powell). C_5 conversion products were measured in sera from neutropenic subjects following zymosan activation by the release of cobalamin-binding protein from normal cytochalasin B treated
<table>
<thead>
<tr>
<th>Age</th>
<th>Sex</th>
<th>Diagnosis</th>
<th>Hb</th>
<th>Pl. count</th>
<th>WCC</th>
<th>PMN’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(g/dl)</td>
<td>(x10^9/l)</td>
<td>(x10^6/l)</td>
<td>(x10^6/l)</td>
</tr>
<tr>
<td>1</td>
<td>M</td>
<td>AML</td>
<td>10.2</td>
<td>190</td>
<td>400</td>
<td>NP</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>Hypoplasia</td>
<td>9.5</td>
<td>46</td>
<td>1300</td>
<td>460</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>ALL</td>
<td>10.8</td>
<td>33</td>
<td>800</td>
<td>72</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>Hypoplasia/HD</td>
<td>5.9</td>
<td>46</td>
<td>280</td>
<td>170</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>SLE</td>
<td>12.8</td>
<td>110</td>
<td>1190</td>
<td>119</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>Hypersplenism</td>
<td>11.8</td>
<td>97</td>
<td>1920</td>
<td>450</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>NHL</td>
<td>13.0</td>
<td>197</td>
<td>1170</td>
<td>120</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>Myelodysplasia</td>
<td>11.0</td>
<td>257</td>
<td>5000</td>
<td>450*</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>Hypersplenism</td>
<td>12.2</td>
<td>138</td>
<td>590</td>
<td>NP</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>Felty's syndrome</td>
<td>14.2</td>
<td>355</td>
<td>5480</td>
<td>448</td>
</tr>
</tbody>
</table>

* Also contained 750 myelocytes and 750 metamyelocytes.

Abbreviations: - Hb = haemoglobin; Pl. = platelet; WCC = white cell count; PMN = polymorphonuclear leucocyte; AML = acute myeloid leukaemia; ALL = acute lymphoblastic leukaemia; HD = Hodgkin's disease; NP = not possible (too few cells for accurate count).
neutrophils, as described in Chapter 2. This release appears to depend on C₅ conversion products. To ensure that the neutropenic patients were capable of producing reactive wheals and flares, 3 neutropenic subjects also received 50 μl 1.2 × 10⁻⁴ M histamine intradermally.

Results In neutropenic subjects, the flare response to both concentrations of ZAS was significantly reduced (Fig 45), and the low MW fr produced no flares at all in the neutropenic group. The p values were obtained by both unpaired t test and Wilcoxon's signed rank test, which gave identical values. Wheal responses to ZAS were also significantly less in neutropenic subjects, both at 12 minutes (Fig 45) and at 30 minutes (Fig 46). The low MW fr also generated much less of a wheal response in the neutropenic group at both time points (Figs 45 and 46), although the difference at 30 minutes did not reach statistical significance. These findings suggest that PMN's are involved in producing both vasodilatation and an increase in vascular permeability.

There was no significant difference between normal and neutropenic subjects in the response to saline or unactivated serum (Fig 47), and the wheal and flare response to histamine in three neutropenic subjects was not impaired (Fig 48). Because these subjects found the histamine injections both painful and itchy, and because of the increased risk of skin infection, it was not felt justified to test the rest of the neutropenic group with histamine. Serum C₃, C₄ and total haemolytic complement (CH₅₀) were normal in neutropenic subjects (Table 12) except for one (subject 7) who had slightly low C₃ and C₄. His CH₅₀ was normal and his skin
Fig 45. Wheal and flare responses at 12 minutes to ZAS and LMW fr. in normal and neutropenic subjects. (mean ± SEM, numbers of subjects indicated above each bar).

Fig 46. Wheal responses at 30 minutes to ZAS and low molecular weight fraction in normal and neutropenic subjects (numbers of subjects indicated above each bar). Mean ± SEM shown in each case.
Fig 47. Wheal volumes 12 and 30 minutes after 50μl saline or 50% unactivated serum in normal and neutropenic subjects. (mean ± SEM, 10 in each group).

Fig 48. Wheal and flare responses 12 minutes after intradermal injection of 10^-4M histamine in normal and neutropenic subjects. Results show mean ± SEM in each case, with n indicated above each bar.
Table 12

Complement levels in unactivated serum from neutropenic subjects
(nos 1-10 are as in Table 1).

<table>
<thead>
<tr>
<th>Normal range</th>
<th>C₃ 0.79-1.60g/l</th>
<th>C₄ 0.12-0.36g/l</th>
<th>CH50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject 1</td>
<td>1.36</td>
<td>0.33</td>
<td>Spec. broken</td>
</tr>
<tr>
<td>2</td>
<td>1.16</td>
<td>0.11</td>
<td>370</td>
</tr>
<tr>
<td>3</td>
<td>0.87</td>
<td>0.21</td>
<td>>350</td>
</tr>
<tr>
<td>4</td>
<td>1.37</td>
<td>0.25</td>
<td>>350</td>
</tr>
<tr>
<td>5</td>
<td>1.35</td>
<td>0.20</td>
<td>>350</td>
</tr>
<tr>
<td>6</td>
<td>0.77</td>
<td>0.08</td>
<td>>350</td>
</tr>
<tr>
<td>7</td>
<td>1.22</td>
<td>0.13</td>
<td>331</td>
</tr>
<tr>
<td>8</td>
<td>1.21</td>
<td>0.32</td>
<td>>350</td>
</tr>
<tr>
<td>9</td>
<td>1.48</td>
<td>0.32</td>
<td>>350</td>
</tr>
<tr>
<td>10</td>
<td>1.35</td>
<td>0.24</td>
<td>>350</td>
</tr>
</tbody>
</table>
responses were not lower than other neutropenic subjects. C₅ conversion products as assessed by degranulation of normal PMN's were similar in ZAS from normal and neutropenic subjects (Fig 49), so that the reduced inflammatory responses in neutropenic subjects could not be attributed to injection of reduced levels of complement derived mediators.

There appeared to be no influence of platelet count on the response, for when wheals and flares in those neutropenic subjects who were also thrombocytopenic (platelet count < 50 x 10⁹/1 were compared with those with platelet counts of > 100 x 10⁹/1 no significant differences were seen (Fig 50).

Experiment 5 Effect of prostaglandin E₂ (PGE₂) and ZAS together.

Method To see whether ZAS and PGE₂ together produced synergy of response, 50 μl injections were made of ZAS (10 and 20%) and prostaglandin E₂ (50 μl of a 5.68 x 10⁻⁶ M solution, giving 3 x 10⁻¹⁰ mols/site, as previously described¹²¹). 50 μl of mixtures of ZAS and PGE₂, containing the same final concentrations of each as when prepared separately, were also injected. Synergy was considered to be present if the response to ZAS + PGE₂ when injected together was significantly greater than the sum of the responses to the two substances injected separately.

Results When injected alone, PGE₂ produced small wheals, little bigger than saline alone, but with a noticable flare response disproportionate to the size of the wheal (bars A, Fig 51). There was no evidence of synergy with ZAS (Fig 51), for wheals and flares produced by the ZAS/PGE₂ mixture (bars
Fig 49. NCBP release from normal cytochalasin B treated PMN's by ZAS from normal and neutropenic subjects. (mean ± SEM, n indicated in each case).

Fig 50. Effect of platelet count on response to ZAS in neutropenic subjects (n indicated in brackets above, mean ± SEM shown in each case).
Fig 51. Wheal and flare responses to ZAS and PGE$_2$, injected together and separately (mean ± SEM, n = 4).
D) were not greater than the sum of the responses to ZAS and PGE$_2$ injected separately (bars C). Indeed, responses produced by the mixture were always less than the sum of the separate responses, particularly wheals produced by the higher ZAS concentration, but this difference never reached statistical significance.

Experiment 6 Biopsy of a wheal.

Method Punch biopsy of a wheal was made 10 minutes after injection of 50 µl 50% ZAS in 1 subject (kindly performed by Dr Paul Maurice). The biopsy was taken into gluteraldehyde (to prevent mast cell degranulation), processed for light microscopy, and stained with haematoxylin and eosin.

Result There was obvious oedema in the tissues. The most striking feature was in the blood vessels as in Fig 52, which shows a number of PMN's adherent to the wall of what is probably a venule. There were no PMN's seen extravascularly.
Fig 52. Light micrograph of biopsy of a skin wheal 10 minutes after injection of 50μl 50% ZAS, stained with haematoxylin and eosin.

This shows oedematous tissue with a venule containing an accumulation of PMN's apparently adherent to the vessel wall.
DISCUSSION

These studies have demonstrated the feasibility of using a simple skin model to assess the inflammatory activity of mediators. The technique of measuring wheal thickness using skin calipers has been evaluated by others154, 155. Their data, and that presented here, shows that it is an acceptably reproducible method, provided that not too many measurements are made of each wheal during the response, for each act of measurement may compress its size by up to \(10\%\)155. There is, however, considerable variation between subjects in their skin response to autologous ZAS. This is, surprisingly, no greater than that seen with a standard stimulus such as histamine (see Chapter 5), and therefore suggests that variations in basal complement levels and generation of vasoactive complement fragments are not as important as would be expected in producing the variability of the final response, which therefore appears to be much more dependent on factors inherent in the skin and blood vessels.

The observation that activated complement can cause local wheal and flare reactions in the skin is long established. This study has attempted to define the mechanism with respect to both the complement component(s) and cell type(s) involved. The results of the experiments with heated ZAS confirm a complement source for the inflammatory activity, with loss of wheal producing activity by heating sera before complement activation, as unactivated \(C_3\) and \(C_5\) are heat labile. There is much less loss of activity when sera are heated following complement activation, as complement split products are much more heat stable60. Separation of ZAS into
high and low molecular weight fractions suggests that a major source of inflammatory activity lies in the molecular weight range of less than 30,000 Daltons. This low MW fraction, at the same concentration as the ZAS from which it was formed, produced much less inflammatory activity than whole ZAS, but as discussed in Chapter 2, not all small molecules can pass through the filter due to 'clogging up' by large molecules. For this reason, finding inflammatory activity in the 'high MW' fraction would actually have yielded little information about the molecular size of the inflammatory mediators.

C₅ depleted sera, despite the persistence of C₃, produced very little wheal and flare reaction in the skin. C₃, on maximal complement activation in the absence of EACA, would yield C₃a des Arg at a concentration of approximately 0.45-1.0 x 10⁻⁵ M, about 10 times the maximal concentration of C₅a des Arg⁶⁰. C₃a des Arg therefore appears to have no role in wheal and flare production in human skin, and the findings point to low molecular weight C₅ products being the main inflammatory mediator. The main such product generated when serum is activated without EACA is C₅a des Arg, formed from C₅a. It did not prove possible to test EACA-ZAS (which would contain mainly C₅a) in the skin, as the EACA itself was highly inflammatory.

What cell type(s) could C₅a des Arg be activating? The main contenders, from in vitro studies, are mast cells and PMN's. Although unconverted C₅a is a highly potent mast cell activator, the des Arg form, at least at concentrations achievable in serum, has little activity towards mast cells⁶⁰. It is possible that mast cells could be activated by any
unconverted C_3a or C_5a in ZAS, but in the absence of EACA removal of the arginine proceeds extremely rapidly. An alternative mast cell stimulus could be one or more of the PMN-derived mast cell triggering systems which have been described. The possible role of mast cell histamine in the response is examined further in Chapter 5, but the notable lack of stinging and itching produced by intradermal ZAS is in marked contrast to histamine, even when the subjects do not know which injection is which, and suggests that any histamine component in the response to ZAS is relatively minor. Moreover, to invoke the mast cell as a major contributor to the reaction, it would have to be postulated that mast cells were in some way impaired in neutropenic subjects. Mast cells have a slow rate of turnover, and are therefore unlikely to be affected by alkylating agents or other chemotherapeutic drugs. Mast cell function in neutropenic subjects has not been formally tested, by, for example, intradermal injection of the mast cell degranulator 48/80, but there was no difference in response to ZAS between those who had had chemotherapy and those who had not.

The data can therefore best be explained by the hypothesis that the final wheal and flare response in some way involves circulating PMN's. Although reactions to ZAS were not totally abolished in neutropenic subjects, as they were in the mustine-treated neutropenic rabbits, the peripheral blood counts in our subjects were often much greater than the 1% of normal obtainable experimentally, for even a count of $0.5 \times 10^9/\text{l}$ is no less than 10% of normal. Concentrations of C_5a des Arg achievable in ZAS are well within the range which
activates PMN's, which is 10^{-8}-10^{-7} M. The lack of wheal response to C₅ depleted serum in the skin is strikingly similar to the failure of C₅ depleted serum to attract PMN's into skin chambers in human subjects and to its inability to degranulate PMN's in vitro. Thus wheal production and PMN activation seem closely linked. Indeed the size of the permeability response produced by chemotactic factors seems to correlate closely with the rate of PMN accumulation.

The response to activated complement in man also differs from that in the rabbit in that ZAS is entirely effective in producing wheals and flares without the simultaneous presence of a vasodilator such as PGE₂. PGE₂ can be synergistic with permeability agents such as platelet activating factor in man, suggesting that basal blood flow in human skin is not rate-limiting to be permeability reaction. However, not only was there no synergy between ZAS and PGE₂, but the response to ZAS was actually reduced when PGE₂ was present, for reasons as yet unclear. It has been suggested that exogenous vasodilators are not required in man for the permeability response to ZAS to be seen, because a minor degree of mast cell activation might be occurring with release of histamine and leukotrienes A, C and D. This itself could dilate the vascular bed sufficiently to allow wheal production without the need for exogenous vasodilators (Williams TJ, personal communication).

The exact mechanisms of PMN involvement in the production of the vascular response to ZAS remain unclear, in terms of both how C₅ fragments and PMN's come into contact with each other, and how PMN's then contribute to the
permeability increase. Contact between C_5 fragments and PMN's could be explained either by diffusion of C_{5a} between endothelial cell junctions160, or by transport of C_{5a} through the endothelial cell from the abluminal to the luminal side161. A further alternative mechanism is that the binding of C_5 fragments to be abluminal side of the endothelial cell leads to alterations in the characteristics of its luminal membrane, such that PMN's adhere to it.

There are many possible ways in which PMN activation might produce microvascular changes. Activated PMN's undergo degranulation and a respiratory burst, the possible role of which will be examined in Chapter 5. They also convert membrane lipids into products which have been implicated in the inflammatory response. Prostaglandin E_2, as was observed in this study, certainly causes a small wheal and notable flare in the skin, confirming the observations of others124. Thromboxane A_2, on the other hand, causes vasoconstriction162, and the lipoxygenase product leukotriene B_4 (LTB4), although a moderately powerful chemoattractant$^{163, 164}$ and promoter of neutrophil adhesion to endothelium$^{164, 165}$, does not cause immediate wheals and flares in human skin$^{166, 167}$ but a delayed, indurated reaction with neutrophil infiltration$^{166, 168}$. In animals, its effects in skin are neutrophil dependent$^{121, 169}$, and blockage of its synthesis does not impair the skin response to C_{5a} des Arg in the rabbit170, so that although LTB$_4$ may have a role in amplification of the inflammatory response by recruitment of further PMN's, its synthesis by them is unlikely to play a major part in immediate wheal and flare production in response to C_5.
fragments.

PAF-acether, on the other hand, which is produced by PMN's within minutes of exposure to C$_5$ a171, or C$_5$ a des Arg172 does cause an immediate wheal and flare response in rabbit skin which is independent of circulating neutrophils126, and has similar effects in man173, where it is 100-1000 times more potent than histamine. Some subjects also show a late reaction to PAF-acether, with erythema and hyperalgesia, which we have not observed with ZAS, but it remains possible that PAF-acether is one of the permeability-producing mediators involved in the skin reaction to ZAS. An alternative source of PAF-acether is vascular endothelium171, although whether PMN adhesion could stimulate its synthesis remains to be seen.

PMN's could also cause capillary leakage by direct effects on the endothelial cell barrier. It has been proposed that the actual movement of PMN's through capillary or venule walls might open up tight junctions between the cells, allowing the escape of plasma121. This may not actually require the physical presence of the PMN's between the endothelial cells, but could result from impairment of endothelial cell integrity by PMN products. Oxidation products, for example, can cause K$^+$ efflux and purine release from endothelium127. Adhesion to, or movement through, a tissue barrier do seem to be important in activating PMN release mechanisms. PMN's moving into sterile suction skin blisters released secondary, but not primary granule contents into the blister fluid174, a phenomenon which may be important in renewing surface receptors. The permeability response to C$_5$ a des Arg correlates closely in time with the period of PMN
adherence to and migration across the vessel wall118, while the presence of PMN's actually in the tissues seems to contribute little to the vascular response to these mediators. In this study, biopsy of a well-developed wheal showed many intravascular PMN's adherent to vessel walls, but none extravascularly, supporting the suggestion that PMN's activated during adhesion but prior to migration into the tissues can produce an increase in permeability. PMN's in the tissues might actually be refractory to further activation by the same stimulus, for stimulus-specific desensitisation of PMN's moving into inflammatory skin sites has been described175.

$C_5\alpha$ des Arg might attract PMN's by sticking, not only to the PMN's but also to the vascular endothelium. The evidence is however conflicting, with pre-treatment of the endothelium with $C_5\alpha$ being reported to either increase176 or have no effect on161 PMN adhesion. Once adherent to endothelium, PMN's could secrete factors such as oxidation products and PAF-acether, thus promoting both vasodilatation and microvascular permeability.
CHAPTER 5

STUDIES INTO THE MECHANISMS OF PMN INVOLVEMENT IN THE SKIN RESPONSE TO ACTIVATED COMPLEMENT

INTRODUCTION

As indicated in Chapter 4, there are many possible mechanisms by which PMN's could cause an increase in vascular permeability. The work in this chapter attempts to examine the role of some of these mechanisms.

The oxidase enzyme of PMN's, situated in the cell membrane, converts free oxygen to reactive tissue-damaging oxygen radicals, such as the superoxide anion, the hydroxyl radical and hydrogen peroxide. PMN's in certain inflammatory sites, such as those entering the lung in ARDS, show increased activity of this enzyme as demonstrated by chemiluminescence. PMN oxidative products may also be responsible for some of the damage to cartilage and synovium in rheumatoid arthritis. In vitro studies using cultured endothelial cells and perfused rabbit lungs have suggested that these oxidative products might be important in increasing endothelial permeability to proteins.

The capacity of activated normal PMN's to increase albumin transfer across cultured endothelial cells appears to be absent in PMN's from individuals suffering from chronic granulomatous disease (CGD), in which oxidase function is defective. To see whether the oxidase is equally important in
increasing endothelial permeability in vivo, we have examined wheal and flare responses to ZAS in an individual with CGD and in four female carriers of the condition.

A further situation in which functional and biochemical abnormalities of PMN's have been repeatedly described is chronic granulocytic leukaemia (CGL). These include impaired adhesion to glass179 and nylon180, reduced emigration to extravascular sites181, and defective phagocytosis182 and killing183. Biochemically, low levels of lysozyme184 and lactoferrin185 have been observed, as well as the well characterised deficiency of alkaline phosphatase. In addition, there may be defects in metabolism of oxygen products, for reduced levels of hydrogen peroxide are formed during phagocytosis186, and in response to soluble stimuli (Rule S, unpublished observations), though superoxide generation appears to be normal. CGL PMN's appear to degranulate normally during phagocytosis and in fact a greater percentage of granule enzymes can be recovered from the medium than when normal cells are used44. Since normal PMN's degrade up to 20\% of their primary granule enzymes by oxidation140, the increased enzyme recovery from CGL cells may reflect reduced production of oxygen radicals44. To see if these in vitro defects are mirrored in an in vivo response, the skin reactions to ZAS have been examined in CGL patients in the chronic phase of the disease.

The role of mast cells in the skin response to complement is investigated in two ways. Firstly a comparison of the reaction is made in the presence and absence of local and systemic anti-histamines of anti-H\textsubscript{1} type. Secondly, the
possibility that activated PMN's can trigger mast cell release of histamine in vitro is examined, as previously suggested by the observations of Stendahl and Coble.

Finally the possibility that stable inflammatory products, such as prostaglandins and leukotrienes, contribute to the reaction is tested by examining the skin reaction following systemic corticosteroid, aspirin, or non-steroidal anti-inflammatory (NSAI) drug administration. Steroids act by preventing the release of arachidonic acid from membrane phospholipids, thus blocking both cyclooxygenase and lipoxygenase pathways, while NSAI's in standard doses inhibit the cyclooxygenase pathway. The supernatant from actively phagocytosing PMN's is also examined for wheal producing activity in the skin to see whether stable inflammatory mediators can be detected and identified.
EXPERIMENTAL WORK

Experiment 1 Skin responses to ZAS and histamine in subjects with chronic granulomatous disease (CGD).

(Studied with kind permission of Drs WG Reeves, JA Raeburn and OB Eden)

Methods One male case of CGD (aged 9) and four female carriers of the condition (including the mother of the case) received intradermal injections of 50 μl of autologous ZAS 50%, 20% and 10%, LMW fr from autologous ZAS, and histamine 1.2 x 10^{-4} M. Wheal and flare responses were measured at 12 and 30 minutes as before. All subjects had been previously investigated and found to have either impaired reduction of nitroblue tetrazolium, reduced chemiluminescence, or both. Individuals were well when studied, and on no antibiotic therapy.

Results No definite conclusions could be drawn. The case of CGD was able to produce wheals and flares in response to both ZAS and histamine. Wheals in response to both stimuli were well below normal, (Fig 53), but there were no age matched controls. Flare responses, on the other hand, were above normal to both stimuli (Fig 53). The carriers also showed normal flare responses to both stimuli, and normal wheal production to histamine (Fig 53). Wheal responses to ZAS appeared to be reduced, but whether this is a real finding is unclear on such a small sample.
Fig 53. Wheal and flare responses to 50% ZAS and histamine in a case of CGD (▲) and 4 female carriers (●). Mean (± SEM) of carriers = Mean (± SEM) of 10 normal subjects =
Experiment 2 Skin responses to ZAS and histamine in subjects with chronic granulocytic leukaemia (CGL).

(Studied with kind permission of Drs J Fletcher, PAE Jones, DR Ryrie, T E Bletcher and E A French)

Methods Nine subjects of both sexes, aged 34-68, previously diagnosed as having CGL, were tested as above. All were in the chronic phase of the disease – for details see Table 13. All subjects received 50 μl of dilutions of autologous ZAS and LMW fr, as well as histamine 1.2×10^{-4}M as control. Serum C_3, C_4 and CH_50 was measured in unactivated serum from each subject as described in Chapter 4, and C_5 conversion products were assayed in ZAS by release of NCBP from normal PMN's as described in Chapter 2.

Results There was no difference between normal and CGL subjects in wheal size after saline or unactivated serum (Fig 54). Similarly, the wheal size 12 minutes after histamine was no different in the two groups (Fig 54), although resolution was slower in the CGL group, which also showed a slightly greater flare response to histamine. Neither of these differences, however, reached statistical significance.

Wheal and flare responses to 50% and 20% autologous ZAS were, however, significantly reduced in subjects with CGL (Fig 55). Responses to 10% ZAS were also reduced, but only the flare response was significantly less (Fig 56). The biggest difference was in the reaction to 50% LMW fr (Fig 56), with minimal wheal formation and no flare response at all in CGL subjects. These differences could not be accounted for by reduced levels of baseline complement components in CGL group, for all subjects had normal C_3, C_4 and CH_50 levels (Table 14),
<table>
<thead>
<tr>
<th>Age</th>
<th>Sex</th>
<th>Hb (g/dl)</th>
<th>WCC (x10^9/l)</th>
<th>PMN's (x10^9/l)</th>
<th>Platelets (x10^9/l)</th>
<th>Ph1 Pos</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>12.1</td>
<td>34.0</td>
<td>20.5</td>
<td></td>
<td>yes</td>
<td>Busulphan</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>13.2</td>
<td>36.2</td>
<td>24.4</td>
<td>171</td>
<td>yes</td>
<td>Busulphan</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>13.1</td>
<td>20.1</td>
<td>15.5</td>
<td>743</td>
<td>yes</td>
<td>Busulphan</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>15.1</td>
<td>14.7</td>
<td>8.5</td>
<td>394</td>
<td>yes</td>
<td>Busulphan Prev. Splenectomy</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>17.6</td>
<td>6.9</td>
<td>2.9</td>
<td>178</td>
<td>yes</td>
<td>Busulphan 6 Thioguanine</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>13.8</td>
<td>31.9</td>
<td>21.1</td>
<td>193</td>
<td>yes</td>
<td>Busulphan</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>15.3</td>
<td>29.5</td>
<td>21.2</td>
<td>140</td>
<td>yes</td>
<td>Busulphan</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>14.6</td>
<td>14.9</td>
<td>12.1</td>
<td>906</td>
<td>yes</td>
<td>Busulphan</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>13.1</td>
<td>24.6</td>
<td>14.0</td>
<td>689</td>
<td>yes</td>
<td>Nil</td>
</tr>
</tbody>
</table>

Table 13

Clinical details of patients with chronic granulocytic leukaemia (CGL)
Fig 54. Wheal responses to saline and unactivated serum (50%) and wheal and flare responses to histamine, in normal subjects (n = 10) and subjects with CGL (n = 9), (mean ± SEM) NS - No significant difference between groups.

Fig 55. Wheal and flare responses to 20% and 50% autologous ZAS in normal subjects (n = 14) and subjects with CGL. (mean ± SEM, n = 9) NS = No significant difference.
Table 14

Serum complement levels in patients with CGL

<table>
<thead>
<tr>
<th>Subject</th>
<th>C_3</th>
<th>C_4</th>
<th>CH50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal range</td>
<td>0.79-1.60g/l</td>
<td>0.12-0.36g/l</td>
</tr>
<tr>
<td>1</td>
<td>ND</td>
<td>ND</td>
<td>>350</td>
</tr>
<tr>
<td>2</td>
<td>1.11</td>
<td>0.26</td>
<td>>350</td>
</tr>
<tr>
<td>3</td>
<td>1.43</td>
<td>0.28</td>
<td>>350</td>
</tr>
<tr>
<td>4</td>
<td>1.41</td>
<td>0.27</td>
<td>295</td>
</tr>
<tr>
<td>5</td>
<td>1.20</td>
<td>0.27</td>
<td>285</td>
</tr>
<tr>
<td>6</td>
<td>1.29</td>
<td>0.35</td>
<td>>350</td>
</tr>
<tr>
<td>7</td>
<td>1.09</td>
<td>0.17</td>
<td>>350</td>
</tr>
<tr>
<td>8</td>
<td>1.20</td>
<td>0.22</td>
<td>>350</td>
</tr>
<tr>
<td>9</td>
<td>ND</td>
<td>ND</td>
<td>309</td>
</tr>
</tbody>
</table>

Fig 56. Wheal and flare responses to autologous ZAS (10%) or low molecular weight fraction (LMW fr 50%) in normal subjects or subjects with CGL. (Number of subjects is beside each bar). Mean ± SEM is shown in each case.
and \(C_5 \) conversion products in dilutions of ZAS were no different to those from normal subjects (Fig 57).

Experiment 3 The effect of local and systemic anti-histamine drugs (\(H_1 \) antagonists) on the wheal and flare response to intradermal ZAS.

Methods

(A) **Local antihistamines**

Ten normal subjects were injected at three separate sites with 50\(\mu l \) of either saline, clemastine \(2 \times 10^{-4} M \), or clemastine \(2 \times 10^{-5} M \) (all solutions coded). Thirty minutes later, as previously described\(^{187} \), each site was reinjected with histamine (50\(\mu l \) of \(1.2 \times 10^{-4} M \)) and the wheal and flare response measured as before. Having ascertained that these concentrations of clemastine produced inhibition of histamine-induced reactions, 10 subjects were injected with saline or clemastine as before, followed at 30 minutes by 50\(\mu l \) 50% autologous ZAS at the same sites. Reactions were measured as above.

(B) **Systemic antihistamines**

The wheal and flare reactions to 50\(\mu l \) of dilutions of ZAS and to 50\(\mu l \) histamine \(1.2 \times 10^{-4} M \) were measured in six subjects before and after clemastine 1mg bd orally for three days. The second set of tests was done two hours after the last tablet.

Results

(A) **Local antihistamines**

When injected into the skin 30 minutes before histamine the \(H_1 \) antagonist clemastine caused significant reductions of
Fig 57. NCBP release from normal cytochalasin B treated PMN's by ZAS (without EACA) from normal subjects (n = 10) or subjects with CGL (n = 9). Mean ± SEM shown for each group.
both wheal volume and flare area when compared to sites injected with saline prior to histamine (Fig 58). Both concentrations of clemastine were effective, but inhibition was much greater at the higher concentration. When ZAS was the stimulus, clemastine again caused a significant reduction in both wheal and flare (Fig 59), but this time both drug concentrations were equally potent with regard to their wheal-inhibiting properties, with only a slight dose effect seen in flare inhibition. Interestingly, however, clemastine caused much greater inhibition of wheal production when the stimulus was histamine than when it was ZAS, particularly at the higher drug concentration (Fig 60). Histamine wheals were reduced in volume by about 80%, but ZAS wheals by only about 40%. This difference did not hold true for flare responses (Fig 60), with histamine and ZAS induced flares being inhibited identically by clemastine at either concentration.

(B) Systemic antihistamines

As with local administration of the drug, oral clemastine caused significant inhibition of the flare reaction to two concentrations of histamine, and to dilutions of ZAS (Fig 61), although this did not always reach statistical significance. There was little difference between the stimuli in the degree of inhibition achieved by the drug. Reduction of wheal responses by oral clemastine was much less apparent for both stimuli than when the drug was injected locally (Fig 62) and was highly significant only at the highest concentration of either stimulus. The reduction in responses also differed from local use of the drug in being similar in degree for the two stimuli.
Fig 58. Wheal and flare responses produced in normal subjects by histamine $1.2 \times 10^{-4}M$ in the presence of either saline or clemastine $2 \times 10^{-4}M$ or $2 \times 10^{-5}M$. (mean ± SEM, n = 10).

Fig 59. Wheal and flare responses produced in normal subjects (mean ± SEM, n = 10) by 50% ZAS in the presence of either saline or clemastine $2 \times 10^{-4}M$ or $2 \times 10^{-5}M$.
Fig 60. Percentage reductions in wheal and flare size by clemastine ($2 \times 10^{-5} \text{M}$ and $2 \times 10^{-4} \text{M}$) in response to either histamine ($1.2 \times 10^{-4} \text{M}$) or 50% ZAS. (mean ± SEM, n = 10) NS = No significant difference.

Fig 61. Flare areas produced by histamine and ZAS before and after 3 days of oral clemastine 1mg bd (mean ± SEM, n = 6) NS = no significant difference between pairs.
Fig 62. Wheal volumes produced by saline, histamine and ZAS before and after 3 days of oral clemastine 1mg bd (mean ± SEM, n = 6). Measurements at 12 mins only.

Fig 63. Percentage reduction in wheal volume between 12 and 30 minutes in wheals of comparable initial volume produced by different stimuli. Mean wheal volume at 12 minutes (mm²) is above each column followed by (n). Mean ± SEM shown in each case.
While measuring wheals during these studies on antihistamines, a further difference between the responses to histamine and ZAS because apparent, namely the rate at which the wheals resolved. Histamine wheals reduced in volume by 25-40% between 12 and 30 minutes (Fig 63), while ZAS wheals of comparable size reduced by only 10-13% over the same time period.

Experiment 4 The effect of activated PMN's on histamine release from mast cells.

(kindly helped by Dr B Gomperts, Dept of Experimental Pathology, University College Hospital, London).

Methods Human PMN's were isolated using LSM and dextran, as described in Chapter 2. Mast cells were obtained from the peritoneal cavities of adult male Wistar rats by lavage with Hepes buffer (pH 7.2) containing Mg++ 1mM, Ca++ 1.7mM, D-glucose 5mM and 0.1% albumin. After washing and counting, mast cells (5 x 106/tube) were suspended in buffer and the PMN degranulating stimuli added - FMLP, LMW fr or ZAS.

The PMN suspension was pre-exposed to cytochalasin B (final concentration 5\mu g/ml) for 20 seconds and aliquots of the suspension then added to the tubes containing the stimulus and mast cells such that the final PMN concentration was 2 x 106 cells/tube. The stimulated PMN's and mast cells were incubated together for 5 minutes at room temperature. The supernatants were then removed for assay of histamine and in some cases, NCBP. Histamine was assayed by a standard fluorometric method188. Control tubes contained mast cells, cytochalasin + stimuli, but no PMN's.
Results PMN's incubated with mast cells were not prevented from responding to the degranulating stimuli, as assessed by their release of NCBP (Table 15). This PMN activation did not result, however, in any increase in histamine secretion above that seen in unstimulated suspensions alone.

It is of interest that concentrations of both ZAS and LMW fr capable of causing wheal and flare reactions in the skin did not trigger release of any histamine from mast cells. At the end of the experiment, the mast cells were still viable, and secreted histamine normally in response to the stimulus 48/80.

Experiment 5 The effects of the anti-inflammatory drugs, aspirin, hydrocortisone and ibuprofen on the skin response to ZAS and histamine.

Methods Eighteen normal subjects were injected with 50ul intradermal histamine \(1.2 \times 10^{-4} M\) and ZAS (20% and 50%), and wheal and flare responses measured as before. Six subjects in each group then received the following:

A. Hydrocortisone 100mg by intravenous bolus injection
B. Aspirin 600mg q.i.d. for three days
C. Ibuprofen 400mg t.i.d. for three days.

Group A then received an identical set of skin injections, beginning 30 minutes after the injection of hydrocortisone. Groups B and C received the repeat skin injections on day 4, two hours after the last tablet.

Results
A. Hydrocortisone

Hydrocortisone caused no change in haemoglobin or
Table 15
Release of histamine from mast cells incubated with PMN's and a PMN degranulating stimulus, and release of PMN NCBP (mean of 2)

<table>
<thead>
<tr>
<th></th>
<th>Mast cells alone</th>
<th>Mast cells + PMN's</th>
<th>% NCBP release</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. FMLP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>none</td>
<td>0.68</td>
<td>2.21</td>
<td></td>
</tr>
<tr>
<td>$10^{-9.5}$</td>
<td>1.36</td>
<td>1.22</td>
<td></td>
</tr>
<tr>
<td>10^{-9}</td>
<td>0.68</td>
<td>0.54</td>
<td></td>
</tr>
<tr>
<td>$10^{-8.5}$</td>
<td>1.63</td>
<td>5.58</td>
<td></td>
</tr>
<tr>
<td>10^{-8}</td>
<td>1.09</td>
<td>1.36</td>
<td></td>
</tr>
<tr>
<td>$10^{-7.5}$</td>
<td>0.95</td>
<td>1.77</td>
<td>37.3</td>
</tr>
<tr>
<td>10^{-7}</td>
<td>1.77</td>
<td>1.36</td>
<td>37.2</td>
</tr>
<tr>
<td>$10^{-6.5}$</td>
<td>0.95</td>
<td>1.77</td>
<td>39.1</td>
</tr>
<tr>
<td>2. ZAS (no EACA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>none</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>10^{-3}</td>
<td>0.00</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>$10^{-2.5}$</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>10^{-2}</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>$10^{-1.5}$</td>
<td>0.00</td>
<td>1.22</td>
<td></td>
</tr>
<tr>
<td>10^{-1}</td>
<td>0.81</td>
<td>1.77</td>
<td>49.58</td>
</tr>
<tr>
<td>$10^{-0.5}$</td>
<td>0.47</td>
<td>0.45</td>
<td>53.77</td>
</tr>
<tr>
<td>10^0 (neat)</td>
<td>0.00</td>
<td>0.00</td>
<td>40.31</td>
</tr>
<tr>
<td>3. Low Mw Fraction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>none</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>10^{-3}</td>
<td>0.00</td>
<td>2.18</td>
<td></td>
</tr>
<tr>
<td>$10^{-2.5}$</td>
<td>0.68</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>10^{-2}</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>$10^{-1.5}$</td>
<td>1.50</td>
<td>3.26</td>
<td></td>
</tr>
<tr>
<td>10^{-1}</td>
<td>2.04</td>
<td>2.18</td>
<td>47.28</td>
</tr>
<tr>
<td>$10^{-0.5}$</td>
<td>0.00</td>
<td>0.00</td>
<td>48.24</td>
</tr>
<tr>
<td>10^0 (neat)</td>
<td>0.00</td>
<td>0.00</td>
<td>38.72</td>
</tr>
</tbody>
</table>
platelet concentrations, but produced the well documented neutrophilia and lymphopenia, (Fig 64). An unexpected finding was the highly significant monocytopenia, which has also been previously described.

Hydrocortisone intravenously did not however cause any changes in the wheal and flare reactions to 50% or 20% ZAS (Fig 65) or to histamine (Fig 66).

B. Aspirin

Aspirin produced no changes in wheal responses to 20% or 50% ZAS (Fig 67). The flare areas after both ZAS concentrations were reduced by about 25%, but this was not statistically significant. There was likewise no significant reduction in the wheal and flare response to histamine by aspirin (Fig 68).

C. Ibuprofen

Ibuprofen did not affect skin responses to either 50% or 20% ZAS (Fig 69) or to histamine (Fig 70).

Experiment 6 The skin response to intradermal injection of medium from phagocytosing PMN's.

Principle

When PMN's phagocytose a bacterium or inert particle, a proportion (50-90%) of the secondary granule contents appears extra-cellularly. The stimulus (if particulate) and the cells can then be removed, leaving a neutrophil conditioned medium (PNCM) containing granule contents and other PMN secretory products.

Method

A. By phagocytosis of Candida guilliermondii
Fig 64. Changes in haematological parameters in normal subjects (mean ± SEM, n = 6) before, and 30 mins after hydrocortisone 100mg intravenously. Hb - haemoglobin; WCC - White Cell Count; PMN's - neutrophils

Fig 65. Wheal and flare responses in normal subjects to 20% and 50% ZAS, before, and 30 mins after, intravenous hydrocortisone 100mg. (mean ± SEM, n = 6).
Fig 66. Wheal and flare response to histamine (1.2 x 10^{-4} M) in normal subjects before, and 30 mins after intravenous hydrocortisone 100mg. (mean ± SEM, n = 6).

Fig 67. Wheal and flare responses produced by 20% and 50% ZAS in normal subjects before and after aspirin 600mg qid for 3 days.
(mean ± SEM, n = 6).
Fig 68. Wheal and flare response to histamine 1.2×10^{-4} M in normal subjects before and after aspirin 600mg qid for 3 days. (mean ± SEM, n = 6)

Fig 69. Wheal and flare responses to 20% and 50% ZAS in normal subjects before and after ibuprofen 400mg tid for 3 days. (mean ± SEM, n = 6). NS = No significant difference between groups.
Fig 70. Wheal and flare response to histamine $1.2 \times 10^{-4} \text{M}$ in normal subjects before and after ibuprofen 400 mg tid for 3 days (mean ± SEM, n = 6).
PMN's from the subject to be tested were incubated at a concentration of 12.5×10^6/ml with 62×10^6/ml Candida guilliermondii for 60 minutes at 37°C on a rotator. These conditions have already been shown to allow maximal phagocytosis of Candida.

The cells and Candida were removed by centrifugation at 1700g at room temperature for 10 minutes followed by passage through a 0.2\(\mu\) filter. The supernatant was stored under liquid N\(_2\) till injection.

B. By phagocytosis of latex beads

2mls of latex beads (10^{10}/ml, mean diameter 0.8\(\mu\)) were opsonised by incubation with 2mls of the subject's serum at 37°C on a rotator for 60 minutes. The beads were washed twice in PBS by spinning for 10 minutes in a microcentrifuge and then resuspended in PBS containing 1mM Ca\(^{2+}\) and 0.7mM Mg\(^{2+}\) but no albumin. Because of losses during washing, the beads were recounted at this stage in a counting chamber and mixed with the subject's PMN's at a bead: cell ratio of 50:1 (cell conc = 5×10^7/ml; bead conc = 2.5×10^9/ml). The cell/bead mixture was incubated at 37°C for 60 minutes on a rotator and the cells and beads removed by spinning in a microcentrifuge followed by passage through a 0.2\(\mu\) filter as before.

Control supernatants were prepared from tubes containing cells alone, and opsonised beads alone. To ensure that phagocytosis had occurred, a cytopsin preparation was stained with Leishman stain. To assess PMN secretion during phagocytosis, an aliquot of PMN's was sonicated and NCBP release during phagocytosis was assessed by measurement of NCBP in the PNCM and in the sonicate.
Results Initial experiments used C. guilliermondii as the phagocytic stimulus. The PNCM thus generated had a very small degree of wheal-producing activity in the skin (Fig 71, Exp 1) but several days later the skin sites became red, itchy and scaley. This was presumed to be due to pre-existing anti-Candida antibodies in the subject reacting with unremoved Candidal antigens in the PNCM, which could possibly also have accounted for the small immediate inflammatory response. For this reason, subsequent preparations of PNCM were performed with latex beads as the phagocytic stimulus. These latex beads were actively taken up by the PMN's (Fig 72) associated with release of about 40% of the total NCBP (Table 16). Despite this, the PNCM so produced did not result in any wheals and flares when injected into the skin of two different subjects (Fig 71, Exps 2 and 3). No delayed reactions were seen.
Table 16

NCBP levels from PMN sonicates and in the supernatants from PMN's undergoing phagocytosis of opsonised beads

<table>
<thead>
<tr>
<th></th>
<th>Experiment 1</th>
<th>Experiment 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonicate</td>
<td>4896.3</td>
<td>2413.9</td>
</tr>
<tr>
<td>Cells & Beads</td>
<td>1873.4</td>
<td>1073.5</td>
</tr>
<tr>
<td>% son</td>
<td>38.26%</td>
<td>44.47%</td>
</tr>
</tbody>
</table>

Fig 71. The effects of the supernatant from phagocytosing PMN's (PNCM) injected intradermally.
Fig 72. Cytospin preparation of neutrophils showing ingested latex beads in the cytoplasm of nearly every cell. Some cells contain 15-20 beads. (Leishman stain).
DISCUSSION

The studies in this chapter have attempted to delineate the mechanism(s) by which PMN's might act to produce a wheal and flare response in the skin, and although no definite conclusions have been reached, some interesting points have emerged.

The results with CGD subjects have proved difficult to interpret. The fact that the subject with CGD, known to have very low superoxide production, can generate a wheal and flare of any size in response to ZAS, suggests at least that oxidative metabolism of PMN's is not the sole mechanism involved. While oxidants may be the main source of permeability producing activity in some in vitro models127,177, clearly other mechanisms also operate in vivo. For example, CGD PMN's can synthesise thromboxanes190 and leukotrienes191 normally in vitro, and while these may not themselves be the mediators involved, it does suggest that deficiency of the oxidase does not render the cell incapable of inflammatory activity. Had more CGD subjects been tested, clear differences between them and normals might have become apparent but this remains speculative.

The CGD carriers showed normal histamine reactions and a normal flare response to ZAS, but there is a suggestion that wheal production by ZAS was impaired. By the Lyon hypothesis, whereby one X chromosome in every cell in females is rendered inactive, these subjects should have 50\% normal and 50\% affected PMN's in the circulation. This means that the two cell populations may not behave identically with respect to adhesion to endothelium or migration to inflammatory sites.
However, the normal cells seem to be able to compensate in terms of bacterial defence, since these carriers gave no history of increased tendency to infections, and could therefore presumably compensate for the defective cells in the overall response to complement. Studies on greater numbers of subjects would be required to ascertain this.

Subjects with CGL showed a clearcut impairment of both wheal and flare response to ZAS, with normal responses to histamine, and normal complement levels. As with the neutropenic subjects, the defect was particularly obvious when LMW fr was the stimulus. These observations do not in fact help in elucidating the PMN mechanism(s) involved in generating a permeability change, for the defects described in CGL cannot be localised to one area of cell metabolism. In addition to the defects described above, impaired lipoxygenase activity192, and failure of release of inhibitors of myeloid colony growth193 have been described. These new findings may, like the others, reflect a defect in stimulus-response coupling in CGL cells, which, even when the disease is controlled by drugs, are still found in the marrow and peripheral blood. Such a defect does not seem to lead to impaired host defence, but might give clues to the mechanism of the abnormal control of granulopoiesis seen in the condition.

The studies using local antihistamines were done to see whether mast cell activation could be implicated in the skin response to ZAS. Local clemastine was effective in greatly reducing histamine wheals and flares, as previously reported187. The drug also had some inhibitory effects on ZAS
induced wheals and flares, unlike its effects in the rabbit, in which the response to C$_{5a}$ was not affected at all by H$_1$ antagonists121. The degree of inhibition seen in the human subjects was similar for ZAS and histamine flares. However, ZAS wheals were reduced much less than those caused by histamine.

It could be argued, therefore, that flares are produced by either stimulus through the same mechanism, one which can be partly inhibited by clemastine and which therefore might involve release of mast cell histamine. This argument would not hold for wheals, since the inhibition produced by the drug was so different for the two stimuli. The results suggest rather that a histamine independent mechanism might be at least partly responsible for the permeability response to ZAS. This histamine-independent system might involve PMN's.

Interpretation of the results, however, is rendered even more complicated by the observations on the inhibitory effects of H$_1$ antagonists on PMN degranulation, as will be described in Chapter 6. An alternative explanation of the in vivo data is that the inhibitory effects of clemastine on skin responses to ZAS are due to its actions on PMN's, not its anti-histamine properties. In addition, the H$_1$ blocker brompheniramine injected locally also appears to inhibit wheals produced by the PAF analogue AcGEPC194, so that antagonism of PAF secreted from activated PMN's might be a yet further action of H$_1$ antagonists in this system. The inhibition of PMN's by H$_1$ antagonists in vitro however, requires high drug concentrations, which although they can be injected locally into the skin cannot be achieved in plasma by oral
administration of the drug. Histamine antagonism, however, is seen with concentrations achievable orally. Thus the results of studies using oral clemastine, where both histamine and ZAS responses were partially reduced, does suggest that the inhibition seen with local clemastine is not solely due to PMN inactivation, but that histamine antagonism might also be taking place.

A further piece of evidence to suggest that histamine release is probably not the only permeability-producing effect of ZAS is that the kinetics of the responses to the two stimuli are different. Williams et al.1,2,1 observed that C_{5a} wheals had a $t_{1/2}$ for resolution of 90-100 minutes, while that for histamine wheals was only 4-6 minutes. Such estimations were not possible using our method of measurement, for each single thickness measurement using calipers can itself reduce volume by up to 10%.15 However, by comparing wheal sizes for the two stimuli at 12 and 30 minutes, it was possible to confirm that ZAS wheals of comparable initial volume had decreased in size by 30 minutes much less than histamine wheals. This suggests that ZAS had induced a much more sustained mechanism of permeability production, supporting the idea that a histamine-independent mechanism is operating. The kinetics of response of whole ZAS appear similar to those of pure C_{5a} or C_{5a} des Arg195.

A further hypothesis tested was that activated PMN's themselves triggered mast cell secretion. This was considered possible because at least two such mechanisms have been described, one from the myeloperoxide-\textsubscript{H_2O_2}-halide system of PMN's128 and the other requiring other oxidative metabolites,
but not MPO156. PMN cationic proteins have also been implicated in mast cell activation196. This hypothesis was particularly interesting, because it might have explained the impaired responses in CGL, where \(\text{H}_2\text{O}_2 \) production appears to be deficient186. Under the conditions tested, however, no PMN activation of mast cells occurred, despite normal PMN secretion of NCBP and mast cell responsiveness to the degranulating stimulus 48/80. There are two possible explanations for this. One is that the incubation period of mast cells and PMN's together was too short and another is that the ratio of PMN's to mast cells was too low. A study which appeared after this experiment was performed suggested that a 40-60 minute incubation period was necessary156, admittedly with non-cytochalasin treated PMN's, although detectable amounts of histamine were present by 10 minutes. The PMN : mast cell ratio of 0.5:1 (as used here) was probably far too low, as ratios of 10:1 - 50:1 seem to be optimum156. An alternative approach would be to prepare PNCM, concentrate by lyophilisation if necessary, and test the concentrated solution for mast cell degranulating activity.

An important incidental observation in the experiment with mast cells was that neither ZAS nor LMW fr containing the des Arg forms of \(\text{C}_3\text{a} \) and \(\text{C}_5\text{a} \), caused any PMN-independent release of mast cell histamine, in contrast to the potent mast cell releasing properties of unchanged \(\text{C}_3\text{a} \) and \(\text{C}_5\text{a} \). As the mast cells were of rat origin, it cannot be absolutely certain that these preparations would have no activity for human mast cells, but the findings do support the hypothesis that mast cell involvement in the skin response to ZAS is probably only
The complete lack of inhibition of skin reactions by any of the three anti-inflammatory drugs tested is not totally unexpected. The concentrations of these drugs achievable in plasma by conventional doses are insufficient to produce the inhibition of PMN secondary granule release and superoxide production seen with high concentrations of ibuprofen and indomethacin in vitro. There has been one report (published after this study was completed), suggesting that PMN's from subjects taking ibuprofen orally can show reduced FMLP-induced lysozyme release, but the doses of drug used were twice those taken by the subjects reported here. Interestingly, even the higher dose of ibuprofen failed to inhibit FMLP-induced superoxide production. Any inhibitory effects produced by these drugs, therefore, would primarily reflect inhibition of cycloxygenase, in the case of aspirin and ibuprofen. The actions of hydrocortisone will be discussed below. In the rabbit, the increase in blood flow and vascular permeability and leucocyte infiltration caused by intradermal E coli or zymosan activated plasma could be reversed by systemic indomethacin or local acetylsalicylic acid. However, administration of exogenous PGE₂ into the skin reversed not only the changes in blood flow and vascular permeability, but restored the leucocyte infiltrate also. Since PGE₂ is not of itself chemotactic, the inference is that the numbers of leucocytes present reflect solely the changes in flow and/or permeability, and are not themselves influenced by the drugs. As Williams has shown, lesions produced by intradermal C₅a in the rabbit depend on the simultaneous presence of vasodilator
prostaglandins. As discussed in Chapter 4, this requirement for prostaglandins appears to be much less important in the response to C5a in man, and is clearly not a rate limiting step. Thus prostaglandins appear to play only a minor role in the vascular response to activated complement in this system. The significance of the finding of increased PGI₂ production from endothelial cells exposed to hydrogen peroxide from activated PMN's is therefore unclear.

The actions of hydrocortisone are more complex. The rapid production of neutrophilia is mainly due to movement of marginated PMN's from the endothelial surface into the circulating pool. There is also a small contribution from young PMN's which emerge from the marrow, although these do not appear to differ from peripheral blood PMN's in their granule contents. Hydrocortisone also acts at a cellular level to inhibit the membrane phospholipase which makes arachidonic acid and other lipids available for synthesis of prostaglandins, leukotrienes and platelet activating factor. It is not clear whether these cellular effects would be in operation only 30 minutes after a bolus injection of hydrocortisone, but, as seen from the peripheral blood counts, the effects on PMN distribution had occurred. It is generally accepted that PMN activation and secretion takes place only when the cells are on a suitable surface, such as endothelium. Despite its effects on marginated PMN's hydrocortisone does not seem to have prevented this, and of course the stimulus of extravascular ZAS may well have overridden any hydrocortisone-induced tendency of the cells not to adhere to the endothelium. Similar results have been
obtained in the rabbit where much larger doses of hydrocortisone failed to inhibit the increased blood flow and vascular permeability or the leucocyte infiltration stimulated by ZAS201.

Anti-inflammatory drugs seem therefore to have very little role in inhibiting the actions of activated complement in this system, consistent with their limited usefulness in states of generalised complement activation such as ARDS.

The final experiments in this chapter attempted to find permeability-producing activity in supernatants from phagocytosing PMN's. Phagocytosis is associated with a respiratory burst, and ingestion of either Candida44 or coated latex beads202 is associated with the appearance of of the secondary granule contents in the extracellular environment. There is evidence from animal work that supernatants from PMN's stimulated with arachidonic acid or A\textsubscript{23187} could increase the permeability of post-capillary venules in a hamster cheek pouch model203. Phagocytosis seemed a more appropriate stimulus for human studies, since the stimulus could be totally removed with the cells. The lack of permeability-producing activity in supernatants from phagocytosing PMN's suggests that the permeability factor(s) are unstable, have short half lives, or need to be generated in situ for an effect to be seen. Direct contact with endothelium, for example, may be necessary for any effect of superoxide or other oxygen radicals to become apparent. Similarly, any mast cell stimulus would only be effective if it were stable in a cell free environment. The latex beads used as a phagocytic stimulus may themselves have adsorbed out
some active factors.

In summary, therefore, the work in this chapter has not provided firm evidence of the mechanism of action of ZAS and PMN's in this system. However, the data do not suggest a major role for cyclooxygenase products in this model.
CHAPTER 6

THE EFFECTS OF HISTAMINE AND HISTAMINE ANTAGONISTS ON
STIMULUS-MEDIATED COBALAMIN BINDING PROTEIN RELEASE FROM
NEUTROPHILS.

(in collaboration with Neil Jackson, B Med Sci Honours student)

INTRODUCTION

The possibility that histamine antagonists might have an inhibitory effect on PMN activation arose from the observations in the last chapter on their inhibitory action on the inflammatory effects of intra-dermal complement. In normal subjects, the wheal and flare response to activated complement was significantly reduced by the prior injection of the anti-histamine drug \((H^1)_clemastine\) at high concentration.

While one obvious explanation for the inhibitory effect of clemastine in the skin was that the inflammatory effects of complement were being mediated at least in part via histamine release, an alternative explanation is that both complement fragments and clemastine were exerting their effects via PMN's. This has prompted an examination of the \textit{in vitro} effects of histamine itself and of its antagonists on stimulus-mediated NCBP release from PMN's. Such inhibition is produced, for example, by high concentrations of anti-inflammatory agents, an effect independent of cyclo-oxygenase inhibition.\(^{91}\)

Histamine has long been known to act via cell surface receptors, which in the last 15 years, have been considered to be of 2 classes, \(H_1\) and \(H_2^{204, 205}\). The relative distribution
of H_1 and H_2 receptors varies throughout the body, with H_1 predominating in the lung, for example, and H_2 in the gastric mucosa. Histamine activates both H_1 and H_2 receptors equally, but histamine antagonists, because of their ring substitutions show preferential binding to either H_1 or H_2 receptors\(^{206}\). This specificity is not absolute in the case of H_1 antagonists which also show some binding to H_2 receptors. H_2 antagonists show much greater specificity, with very little binding to H_1 receptors.

Physiological concentrations of histamine also appear to modulate PMN function, but reports are conflicting as to its overall effect. Inhibition by histamine of β glucuronidase release\(^{207}\), FMLP-induced superoxide production and degranulation\(^{208, 209}\), and chemotaxis across membranes\(^{201}\) have all been described. On the other hand, stimulation of cell movement\(^{211}\) and thromboxane production\(^{212}\) by histamine have also been reported. The nature of PMN histamine receptors is also uncertain, for both H_1\(^{213}\) and H_2\(^{208}\) receptors have been identified.

In an attempt to clarify the situation, this study has examined the separate and combined effects of histamine and H_1 and H_2 antagonists on FMLP-induced NCBP secretion from cytochalasin B treated PMN's in vitro. Secretion has also been examined in PMN's from subjects after a 3 day oral course of the H_1 antagonist clemastine.
EXPERIMENTAL WORK

Experiment 1 Effect of anti-histamine drugs on NCBP assay.

Method Identical aliquots of PMN sonicate were mixed with an equal volume of each drug (final concentration 10^{-4}M), histamine (10^{-3}M) or PBS as control, and the liberated NCBP assayed as before.

Results NCBP values in the presence of the drugs were always within 10% of values obtained without them. (Table 17).

Table 17 The Effect of H_1 and H_2 Antagonists on the Cobalamin Binding Protein Assay

<table>
<thead>
<tr>
<th>Drug Present</th>
<th>Value of Sonicate (%)</th>
<th>S.E.M. (n=4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Drug</td>
<td>100.0</td>
<td>-</td>
</tr>
<tr>
<td>Promethazine (10^{-4}M)</td>
<td>92.7</td>
<td>8.2</td>
</tr>
<tr>
<td>Clemastine (10^{-4}M)</td>
<td>98.4</td>
<td>6.7</td>
</tr>
<tr>
<td>Cimetidine (10^{-4}M)</td>
<td>95.0</td>
<td>7.4</td>
</tr>
<tr>
<td>Ranitidine (10^{-4}M)</td>
<td>98.4</td>
<td>6.9</td>
</tr>
<tr>
<td>Histamine (10^{-3}M)</td>
<td>97.2</td>
<td>6.8</td>
</tr>
</tbody>
</table>

Experiment 2 Effect of clemastine on cell viability.

Method PMN's 2×10^6/ml were suspended in clemastine 10^{-3}M for 15 minutes and their viability tested with trypan blue as described in Chapter 2.

Results Cell viability after 15 minutes incubation with clemastine 10^{-3}M (higher than concentrations used experimentally) was always >94%.
Experiment 3 Effect of H₁ and H₂ antagonists on NCBP release
by FMLP or LMW fr.

Method Injectable preparations of the H₁ antagonists
clemastine and promethazine and the H₂ antagonists cimetidine
and ranitidine were diluted in PBS to 10⁻³ - 10⁻⁷M. 2 x 10⁶
PMN's in 0.7ml PBS-A were incubated with 0.1ml drug for 5
minutes at 37°C. Cytochalasin B (final concentration 5 µg/ml)
was added and the incubation continued for a further 5 minutes.
The degranulating stimulus, either FMLP (final concentration
10⁻⁷M) or low MW fr (66kD) was then added, and after 5 minutes,
degranulation was terminated by centrifugation at 4°C. The
supernatants were retained for NCBP assay.

Results The results of experiments involving H₁ and H₂
antagonists will be expressed as % release, where
\[
\text{\% release} = \frac{\text{\% NCBP release with drug}}{\text{\% NCBP release without drug}} \times 100\%
\]

The H₁ antagonists clemastine and promethazine both showed
dose-dependent inhibition of NCBP release when stimulated by
either FMLP or LMW fr (Fig 73). Promethazine was slightly more
potent than clemastine at concentrations of 10⁻⁵M and below,
but both drugs caused complete inhibition of release at 10⁻⁴M.
H₂ antagonists, on the other hand, caused no significant
inhibition of LMW fr-induced release at any concentration,
although, when FMLP was the stimulus, there was some inhibition
of release at drug concentrations of 10⁻⁵M and greater (Fig
74). In all cases, however, inhibition of release was
considerably less than with H₁ antagonists.
Fig 73. The effect of H₁ antagonists on NCBP release by FMLP and low molecular weight fraction. (mean ± SEM, n = 6)

Fig 74. The effect of H₂ antagonists on NCBP release by FMLP and low molecular weight fraction. (mean ± SEM, n = 6).
Experiment 4 Effect of stimulus concentration on H₁ antagonist-mediated inhibition of NCBP release.

Method Keeping a constant drug concentration (10⁻⁶ M), both clemastine and promethazine were used with concentrations of FMLP from 10⁻⁵ M - 10⁻⁹ M, as above.

Results If the inhibitory effect of a drug can be overcome by increasing the stimulus concentration, then % release will increase with stimulus concentration, provided that the drug concentration is kept constant. When FMLP was the stimulus, neither promethazine nor clemastine at 10⁻⁶ M caused any significant change in % release between FMLP concentrations of 10⁻⁵ - 10⁻⁷ M (Fig 75). At 10⁻⁸ M FMLP, inhibition by promethazine actually fell, allowing 76% release, while that by clemastine greatly increased, allowing only 42% release. The reason for this difference is not apparent. When LMW fr was the stimulus, inhibition by both clemastine and promethazine was constant (but very slight) when 50 μl or more LMW fr was added (Fig 75). With less LMW fr than this, % release by both drugs fell. In the case of LMW fr, a lower drug concentration would probably have demonstrated the effect more clearly.

These results suggest that inhibition of release by H₁ antagonists is influenced by stimulus concentration only at the lower end of the dose response curve for the stimulus, but that at higher stimulus concentrations, inhibition remains fairly constant.
Fig 75. The effect of stimulus concentration on H_1 antagonist mediated inhibition of NCBP release. (mean ± SEM, n = 6).

Fig 76. The effect of cell washing on H_1 antagonist mediated inhibition of NCBP release. (mean ± SEM, n = 6). Stimulus = FMLP 10^{-7}M.
Experiment 5 Effect of cell washing on H_1
antagonist-mediated inhibition of NCBP release.

Method PMN's 2 x 10^6/ml were incubated with either clemastine or promethazine $10^{-4} - 10^{-6}$M for 5 minutes at 37°C. The cells were then centrifuged at 4°C at 115g for 5 minutes and washed once by resuspending in cold PBS devoid of calcium, magnesium or albumin and centrifuging at 115g for 5 minutes. The cells were then resuspended in PBS-A and exposed to cytochalasin B and FMLP 10^{-7}M as before. After centrifugation at 4°C 50 µl supernatant was removed for NCBP assay as before. To assess cell and NCBP loss during washing, the cell pellet was resuspended and sonicated. Control cells without drug were washed and otherwise treated identically.

Results Washing the cells after incubation with either drug completely removed the inhibitory effect (Fig 76), restoring % release to 100% or greater, except for promethazine at 10^{-4}M, when % release improved from 0% to 80%.

Experiment 6 The effect of histamine on basal and FMLP-induced NCBP release.

Method Cells were exposed to either histamine alone ($10^{-3} - 10^{-8}$M) or histamine followed by cytochalasin B and FMLP 10^{-6}M as above.

Results Histamine alone ($10^{-3} - 10^{-9}$M) caused no release of NCBP from cytochalasin B treated PMN's. When added before FMLP, however, histamine caused dose-dependent inhibition of NCBP release (Fig 77). This was not as pronounced as the inhibition produced by H_1 antagonists (Fig 73) as, even at 10^{-3}M, 38% of the release obtained by FMLP alone was seen.
Fig 77. The effect of histamine on NCBP release from cytochalasin B treated PMN's by FMLP 10^{-8}M (mean ± SEM, n = 6).
Experiment 7 The effects of combining H_1 and H_2 antagonists either with histamine or with each other on FMLP-induced NCBP release.

Method Cells were incubated for 5 minutes at 37°C with drug A, then, without washing, with drug B for 5 minutes. They were then exposed to cytochalasin B and FMLP 10^{-7}M as before.

The following combinations were used:-

<table>
<thead>
<tr>
<th>Drug A</th>
<th>Drug B</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. Clemastine $10^{-4} - 10^{-8}$M</td>
<td>Histamine 10^{-5}M</td>
</tr>
<tr>
<td>ii. Promethazine $10^{-4} - 10^{-8}$M</td>
<td>Histamine 10^{-5}M</td>
</tr>
<tr>
<td>iii. Histamine $10^{-4} - 10^{-8}$M</td>
<td>Clemastine 10^{-6}M</td>
</tr>
<tr>
<td>iv. Histamine $10^{-4} - 10^{-8}$M</td>
<td>Promethazine 10^{-6}M</td>
</tr>
<tr>
<td>v. Cimetidine $10^{-4} - 10^{-8}$M</td>
<td>Histamine 10^{-5}M</td>
</tr>
<tr>
<td>vi. Histamine $10^{-4} - 10^{-8}$M</td>
<td>Cimetidine 10^{-6}M</td>
</tr>
<tr>
<td>vii. Clemastine $10^{-4} - 10^{-8}$M</td>
<td>Cimetidine 10^{-6}M</td>
</tr>
<tr>
<td>viii. Cimetidine $10^{-4} - 10^{-8}$M</td>
<td>Clemastine 10^{-6}M</td>
</tr>
</tbody>
</table>

Results

A. Histamine and H_1 antagonists [(i) - (iv)]

When cells were incubated firstly with either promethazine or clemastine, and then with histamine, the inhibitory effect on FMLP-induced release was very similar to that seen when the drugs were used alone [Fig 78 (i) and (ii)]. However when histamine preceded the drugs, the inhibition seen with either drug alone or with histamine alone was abolished, so that release was restored to more than 80% of the FMLP-only value [Fig 78 (iii) and (iv)].
Fig 78. Effect of combining H_1 antagonists and histamine on NCBP release by FMLP 10^{-7}M (mean ± SEM, n = 6).
B. Histamine and H_2 antagonists [(v) and (vi)]

When the cells were exposed to cimetidine before histamine, there was less inhibition of NCBP release at high concentrations of drug than when cimetidine was used alone [Fig 79(i)]. At drug concentrations of 10^{-6}M and below, there was no significant change in inhibitory effects. Exposing the cells to cimetidine after histamine reproduced the effect seen in Fig 78 when H_1 antagonists followed histamine, namely that the inhibitory effect of histamine alone was abolished [Fig 79 (ii)].

C. H_1 and H_2 antagonists [(vii) and (viii)]

When clemastine was present first, no greater inhibition of release was produced by the subsequent addition of cimetidine [Fig 80 (i)]. The inhibitory effect of cimetidine, however, was somewhat abrogated by subsequent addition of clemastine [Fig 80 (ii)], an effect most marked at high concentrations of cimetidine.

Experiment 8 The effect of systemic clemastine on NCBP release.

Method Six healthy volunteers of both sexes, aged 21-48 took oral clemastine 1 mg b.d. (the standard therapeutic dose) for 3 days. NCBP release in response to LMW fr and FMLP was examined in PMN's prepared from each of them before and after administration of the drug. The intracellular level of NCBP in 10^5 cells (obtained by sonication) was also examined in unstimulated cells before and after administration of the drug.

Results There was no difference in intracellular levels of NCBP/10^5 cells before and after administration of the drug (Fig
Fig 79. The effect of combining H_1 antagonists and histamine on NCBP release by FMLP 10^{-7}M (mean ± SEM, n = 6).

Fig 80. The effect of combining H_1 and H_2 antagonists on NCBP release by FMLP 10^{-7}M (mean ± SEM, n = 6).
Similarly, NCBP release in response to 3 concentrations of either FMLP or LMW fr was not affected by oral clemastine (Fig 81).
Fig 81. The effect of 3 days of oral clemastine on total intracellular NCBP and on NCBP release by FMLP and LMW fr. (mean ± SEM, n = 6).
DISCUSSION

The effects of H_1 and H_2 antagonists on NCBP release appear to be fundamentally different. Both the H_1 antagonists tested produce dose-dependent inhibition of NCBP release in response to either FMLP or LMW fr, with complete inhibition of release at a concentration of 10^{-4}M. This inhibition is therefore seen at drug concentrations 10-100 fold lower than those required for NSAI-mediated inhibition. Inhibition of release by H_2 antagonists, on the other hand, is never more than 20% when LMW fr is the stimulus, and, even at a drug concentration of 10^{-4}M reaches only 40% when FMLP is the stimulus. Like NSAI's, the inhibitory effect of H_1 antagonists is reversed by cell washing, suggesting reversible binding to the cell surface. Their inhibition can also be overcome to an extent by increasing the stimulus concentration, but this is much less marked than with NSAI's, and suggests that H_1 antagonists do not work by simply competing with the stimulus for surface receptors. Other workers have similarly found no effect of these drugs on either binding or internalisation of FMLP.

The effects of H_1 antagonists may best be explained by their actions on cell membranes at concentrations of 10^{-6}M or more, at which they have local anaesthetic type properties, inhibiting transmembrane depolarisation and calcium flux (S Hill, personal communication), events which precede NCBP release in PMN's. These effects are also seen, but to a lesser extent, with H_2 antagonists, which might explain the partial inhibition seen with these drugs at high concentrations.

In contrast to their effects in vitro, the inhibitory
effects of H_1 antagonists are not reproduced in PMN's from subjects taking clemastine orally. Since their effect in vitro is abolished by cell washing, and since PMN preparation from whole blood involves several washing steps, this lack of effect is not very surprising. It was theoretically possible that the drugs could have become incorporated into the cells during maturation and therefore remained inhibitory after cell washing, but there was no evidence that this occurred.

Another factor influencing the failure of systemic clemastine to block PMN activation is that the peak free blood level of the drug following conventional dosage is 10^{-9}M214, well below the concentrations effective in vitro. Considerable binding (>95%) to serum proteins is the major reason for the low level achieved (Thompson EM, personal communication).

The actions of histamine itself appear to be more complex. Although having no effects on NCBP release in resting PMN's, histamine inhibits FMLP-induced NCBP release, although with a much flatter dose-response curve than H_1 antagonists over the range tested. Such inhibition of stimulus-induced PMN responses has also been shown by other workers, with effects on degranulation207,208, superoxide and hydrogen peroxide production208 and chemotaxis210. Histamine may produce these effects via an action on adenylate cyclase, since cAMP in unstimulated cells rises ten-fold in the presence of histamine 10^{-6}M215. Cyclic AMP levels in zymosan-stimulated cells are also increased by 80% by histamine 10^{-5}M207, associated with impairment of β-glucuronidase release. Such blockage of degranulation is greatly potentiated by the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine215, again suggesting
that inhibition is mediated via high levels of cAMP. The cAMP may act intracellularly to directly block protein kinase. The failure of histamine to inhibit PMN activation by the protein kinase activator phorbol myristate acetate\(^{216}\) is consistent with this mode of action.

The experiments combining histamine with \(H_1\) and \(H_2\) antagonists attempted to determine which histamine receptors are involved in its inhibitory effects. Previous studies had reported reversal of inhibition of both cellular function and cAMP elevations by specific \(H_2\) antagonists\(^{207, 208}\). We have similarly found that cimetidine added before or after histamine abrogates the inhibition of release seen with histamine alone. The finding of reversal of inhibition when histamine is combined with \(H_1\) antagonists requires an additional explanation. This may be because histamine itself, when prevented from occupying \(H_2\) receptors by \(H_2\) or poorly specific \(H_1\) antagonists, begins to exert non-receptor mediated effects on the cell membrane (Hill S, personal communication). These effects tend to promote NCBP release, thus overcoming the inhibitory effects of \(H_1\) antagonists provided the histamine is present first. Histamine added after \(H_1\) antagonists does not alter the dose-response curves for the drugs alone. Thus histamine may have either inhibitory effects on PMN degranulation, as when no antagonists are present, or stimulatory effects, as in the presence of \(H_1\) or \(H_2\) antagonists.

The relevance of the above in vitro findings to PMN activation and inhibition remains speculative. At first glance it would appear that the concentrations of \(H_1\) antagonists...
required to inhibit PMN activation would preclude any such use clinically, being more than 1000 fold greater than the peak plasma level achievable with conventional doses. However, the same is true for NSAI's and steroids, where 'normal' plasma levels are in the micromolar range, while levels effective in vitro are in the millimolar range. Despite this, gram doses of corticosteroids may be given in ARDS and other states of shock, during which millimolar concentrations may be reached in plasma. Local administration, for example, into the lung may also provide a means of achieving PMN inhibitory concentrations in vivo. Thus, as drugs with potential for reducing PMN activation, H₁ antagonists may yet find a clinical use.

The levels of histamine effective at inhibiting PMN's, on the other hand, fall well within the range present physiologically. Tissues undergoing repair have high levels of endogenous histamine. This may have a role in switching off the PMN activation triggered by activated complement so that PMN products do not impede the reparative processes. At the same time, PMN activation, at least by opsonised particles, releases a histaminase enzyme, so that a balance between PMN activation and inhibition may be struck. One situation where high histamine levels do seem to impair PMN function is in hyperimmunoglobulinaemia E where reduced chemotaxis with staphylococcal infection is seen. Interestingly the chemotactic defect can be reversed by treatment with the H₂ antagonist burimamide.
INTRODUCTION

Following the observations that granule release from PMN's could be inhibited by both NSAID's and H_1 antagonists, it was observed that degranulation of platelets could be effectively inhibited by extracts of the herb feverfew (Tanacetum parthenium) (Heptinstall S, personal communication). This prompted examination of the effects of this herb on human PMN's.

Feverfew has been used medicinally for centuries to treat not only fever, but also such diverse disorders as migraine, arthritis, psoriasis and disordered labour and menstruation. Evidence of its efficacy has till recently been largely anecdotal, but a recent controlled trial of feverfew tablets in migraine sufferers did suggest positive benefit from their use. At the present time, it seems likely that feverfew, in one form or another, is taken by thousands of sufferers from the above conditions. Recently, there has been renewed interest in establishing the chemical nature of the active principle of feverfew and its biochemical and cellular effects.

It has long been known that an active preparation can be extracted from the plant by either water or alcohol, and
indeed a tea brewed from the leaves has been a traditional form of consumption. The literature contains little, however, on the precise mode of action of such extracts. One study has demonstrated an inhibitory effect of feverfew extract (FFE) on prostaglandin synthesis in seminal vesicles, thought not to be due to cyclooxygenase inhibition224. The possibility that FFE might influence PMN reactivity arose from studies on blood platelets. In 1981, Makheja and Bailey reported activity of a water-soluble FFE, which inhibited platelet aggregation in response to collagen, ADP, and thrombin, but not to arachidonic acid225. Thromboxane A\textsubscript{2} synthesis stimulated by thrombin was also inhibited, but not if a external source of arachidonic acid was provided. This study raised the possibility that FFE might be acting as an inhibitor of membrane phospholipases. Recent studies by Dr S Heptinstall and colleagues have confirmed the inhibitory actions of FFE on platelet aggregation induced by various stimuli226.

Aggregation in response to adrenaline, collagen and the thromboxane A\textsubscript{2} (TXA\textsubscript{2}) mimetic U46619 was abolished, and the irreversible aggregation induced by ADP and by sodium arachidonate (NaAA) was converted to a reversible response. Release of \(\alpha\) granules, assessed by secretion of \(^{14}\text{C}-\text{serotonin}\), was also inhibited by FFE, in response to ADP, adrenaline, NaAA, collagen and U46619. In contrast, secretion induced by the calcium ionophore A\textsubscript{23187} was increased rather than decreased in the presence of FFE, and the platelet aggregation induced by A\textsubscript{23187} was not inhibited. The effects of FFE on TXA\textsubscript{2} synthesis in platelets depended on the nature of the stimulus. FFE had little effect on TXA\textsubscript{2} synthesis induced by
NaAA, ADP or thrombin, but that induced by adrenaline was greatly reduced.

To see whether the effects of FFE on platelets could be reproduced in PMN's, its actions on NCBP release induced by various stimuli were studied. To see whether other PMN functions could also be influenced, the effects of FFE on PMN phagocytosis of opsonised yeast have been assessed.
EXPERIMENTAL WORK

Experiment 1 Preparation of Extracts of Feverfew.

Methods

A. Chloroform-methanol extraction

Initial extracts were prepared from plants kindly supplied by Dr E W Jones, Department of Medicine, University Hospital, Nottingham. Leaves of the plant were air-dried for several weeks at room temperature, then ground to a powder in a mortar and pestle. Extraction was performed in a 1:2 mixture of chloroform and methanol (100mg powder to 5ml mixture) in a tissue homogeniser. Unextracted material was removed by centrifugation and passage through filter paper. The chloroform/methanol was blown off under N₂ and the extract resuspended in PBS. After filtration and adjustment of the pH to 7.4, the extract was stored at -20°C.

B. PBS extraction

A large batch of PBS-extracted material was prepared from plants kindly supplied by Mrs Ruth Brown.

Air-dried leaves were powdered as before, then 16 grams of powder were suspended in 200 mls PBS and extracted by homogenisation in a domestic food processor for 20 minutes. Unextracted material was removed by centrifugation and filtration as before, the pH adjusted, and the extract stored at -20°C in 5ml aliquots. On thawing this extract for the first time a brown precipitate appeared, which could be removed by filtration without loss of the extract's activity. The extract was stable at -20°C for at least 3 months and could be thawed and refrozen repeatedly with only slight loss
of activity.

Result Extracts prepared in either chloroform/methanol or in PBS behaved similarly in all experiments.

Experiment 2 Effect of FFE on PMN viability.

Method Viability was tested after 15 minutes incubation with FFE using trypan blue as before.

Result Neither extract had any significant effect on cell viability which was >95% after 15 minutes.

Experiment 3 Use of Feverfew extracts as inhibitors of NCBP release.

Method The general method described in Chapter 6 was followed. The PMN's were exposed to the feverfew extracts (FFE) for 5 minutes, followed by 5 minutes with cytochalasin B (if used) and 5 minutes with the stimulus.

The stimuli used were:

(i) EACA ZAS
(ii) FMLP
(iii) Sodium Arachidonate (NaAA), previously demonstrated to be a degranulating agent for rabbit PMN's
(iv) A23187
(v) Phorbol myristate acetate (PMA)

NCBP release obtained in the presence of FFE was expressed as a percentage of that obtained in the presence of stimulus plus buffer alone.
Results

(i) and (ii) EACA-ZAS and FMLP

In preliminary experiments, fixed volumes of PBS-extracted FFE greatly inhibited NCBP release from cytochalasin B treated PMN’s in response to three different concentrations of EACA-ZAS or FMLP (Fig 82). The dose-response curve for FFE was almost identical for the 2 stimuli, showing significant inhibitory activity by only 20 μl FFE with complete inhibition by 200 μl (Fig 83).

(iii) Sodium arachidonate (NaAA)

Preliminary experiments established significant release of NCBP by 0.25 mM AA within 5 minutes whether cytochalasin B was present or not (Fig 84a). Release by 0.1mM AA was little enhanced by the addition of CB, and the increase produced by it with 0.25 mM AA was much less than that seen with either FMLP or EACA-ZAS (Chapters 2 and 3). Release by 0.25 mM AA, either with or without CB, was inhibited in a dose-dependent manner by either PBS-extracted or chloroform/methanol-extracted FFE (Fig 84b). The shape of the dose-response curve differed to that seen when either FMLP or EACA-ZAS was the stimulus (Fig 83), with much less inhibition of release by low concentrations of FFE.

(iv) A23187

Significant NCBP release (45-50%) was demonstrated in Chapter 3 by 2 μM A23187. Release by this stimulus in the presence of chloroform-methanol-extracted FFE demonstrated, with small amounts of FFE, a steady rise in NCBP release (Fig 85), reaching 140% of control values with 50-70 μl FFE. This enhancement of release was less marked at higher FFE
Fig 82. NCBP release from cytochalasin B treated PMN's by EACA-ZAS and FMLP without and with constant volumes of FFE (n = 2).

Fig 83. The effect of PBS extracted FFE on NCBP release from cytochalasin B treated PMN's by 5% EACA-ZAS and 10^{-5}M FMLP. (mean ± SEM, n = 4).
Fig 84. NCBP release by arachidonic acid and % release by PBS- and chloroform-methanol extracted FFE with 0.25mM AA with and without cytochalasin B (mean ± SEM, n = 4).

Fig 85. The effect of chloroform-methanol extracted FFE on NCBP release from non-cytochalasin B treated PMN's by 2μM A_{23187} (mean ± SEM, n = 4).
concentrations, but with up to 100 µl FFE, no inhibition of release was produced. This effect is therefore fundamentally different to that seen with other stimuli.

(v) Phorbol myristate acetate (PMA)

Fig 86 shows the dose response curve for NCBP release by PMA in the presence and absence of FFE (100 µl PBS-extracted). At all concentrations of PMA, the addition of FFE significantly inhibited NCBP release. At a constant PMA concentration of 500 ng/ml, addition of 30 µl or more of FFE caused significant inhibition of release (Fig 87).

Experiment 4 The effect of timing of addition and cell washing on the inhibitory effects of FFE.

Method To ensure that FFE was not merely inhibiting the actions of cytochalasin B, comparison was made of inhibition when the order of addition was:

- a) FFE → CB → stimulus (either FMLP or LMW hr)
- b) CB → FFE → stimulus
- c) CB → FFE/Stimulus together

To see whether the effect of FFE could be removed by washing, cells were incubated in FFE for 5 minutes as before, then spun at 115g for 5 minutes. They were then washed once by resuspension in cold PBS and centrifugation at 115g for 5 minutes, then exposed to cytochalasin B and stimulus as before.

Results Fig 88 shows that the effect of FFE was identical whether it was added before the CB (bar 2) or after the CB (bar 4). To achieve maximal inhibition, it appeared necessary to add the FFE before the stimulus (bar 2), for when it was
Fig 86. NCBP release from cytochalasin B treated PMN's in the presence and absence of 100µl PBS-extracted feverfew by phorbol myristate acetate (PMA). (mean ± SEM, n = 4).

Fig 87. NCBP release from cytochalasin B treated PMN's by phorbol myristate acetate (500ng/ml) in the presence of different volumes of PBS-extracted FFE (mean ± SEM, n = 4).
added at the same time as the stimulus (bar 5), NCBP release approached, although did not reach, the level produced by stimulus alone (bar 1). The effect of washing the cells after incubation with FFE seemed to depend to an extent on the stimulus. For LMW fr, washing removed very little of the inhibitory effect (bar 3), but when FMLP was the stimulus, washing removed about a third of the inhibition seen (bar 3).

Experiment 5 Separation of FFE into low molecular weight (<30,000 Daltons) and high molecular weight (>30,000 Daltons) fractions.

Methods 1ml aliquots of PBS-extracted FFE were applied to the 30,000 MW partition membrane as described in Chapter 2 and centrifuged at 2000g at room temperature for 30 minutes. The resulting fractions were tested for inhibitory activity as above.

Results The inhibitory fraction of FFE, appeared to be, as expected, of low molecular weight, for while the high MW fraction produced no inhibition of FMLP-induced NCBP release, the dose-response curve for the low MW fraction closely resembled that for whole FFE (Fig 89).

Experiment 6 The effect of FFE on PMN phagocytosis of Candida guilliermondii.

Method C. guilliermondii cultured in glucose broth were sonicated for 30 seconds to break up clumps, and opsonised by incubation with fresh human serum for 60 minutes at 37°C on a rotator. After centrifugation, the Candida were resuspended at a concentration of 4x10^7/ml in tissue culture medium TC
Fig 88. Effect of washing and time of addition on the effect of 50μl PBS-extracted FFE on NCBP release from cytochalasin B-treated PMN's by 100μl LMW fr. or FMLP 10^-5 M (mean ± SEM, n = 4).

1. CB + stimulus only
2. FFE→ CB → stimulus
3. FFE→ wash → CB → stimulus
4. CB → FFE → stimulus
5. CB → FFE/stimulus together

Fig 89. NCBP release from cytochalasin B-treated PMN's by FMLP 10^-5M in the presence of the high and low MW fractions of FFE (n = 2).
The Candida were incubated with PMN's at a ratio of 4.5 Candida : 1 cell for 45 minutes at 37°C to allow phagocytosis. This ratio and incubation period have previously been shown to be optimal for phagocytosis to occur. The reaction was stopped by the addition of cold 6mM EDTA and centrifugation at 4°C. Cytospin preparations were made and stained with Leishman stain. Three replicate coded slides were studied microscopically for each experimental condition. Two hundred PMN's on each slide were examined, and the number of Candida in each cell counted. The data were then analysed in 2 ways:

1. the percentage of PMN's containing one or more Candida was calculated and termed 'percentage phagocytosis'.

2. the number of Candida in each cell was counted and a distribution histogram constructed of cells containing:

0 Candida
1-2 "
3-5 "
>5 "

This allowed for an effect of FFE on the number of Candida which each cell could take up, rather than simply making a crude assessment of whether the cell could phagocytose any yeasts at all.

Results Incubation of phagocytosing PMN's with FFE significantly increased the number of cells which fail to ingest any Candida at all (Fig 90). In addition, cells which were actively phagocytosing ingested significantly fewer Candida than normal in the same time period when FFE was present, shifting the distribution curve for number of Candida.
ingested to the left (Fig 91).
Fig 90. Effect of PBS-extracted FFE on phagocytosis of Candida guilliermondii, showing the number of cells which have phagocytosed > 1 Candida. Mean ± SEM, n = 3, with each having 3 replicates.

Fig 91. The effect of FFE on the number of Candida ingested by PMN's (mean ± SEM, n = 3, each with 3 replicates).
DISCUSSION

Both water-soluble and lipid-soluble extracts of FFE inhibited NCBP release from activated PMN's, while water-soluble preparations could also inhibit phagocytosis. Inhibition of degranulation was most marked with stimuli operating through cell surface receptors, such as FMLP and EACA-ZAS, but release in response to arachidonic acid was also blocked. This argues against the suggestion that feverfew operates as a phospholipase inhibitor\(^{225}\), as the exogenous arachidonic acid provided would be able to bypass the blockage of release of cellular arachidonic acid from membrane phospholipids. Observations in platelets also suggest that inhibition of degranulation or aggregation by FFE can occur either without inhibition of thromboxane synthesis, or under conditions where thromboxane synthesis is prevented by aspirin\(^{226}\). Thus another mechanism of action must be postulated.

The effects of FFE, unlike those of non-steroidal anti-inflammatory drugs, cannot be reversed by washing the cells, suggesting a mode of action other than blockade of stimulus-receptor binding. Occupation of cell surface receptors by a stimulus triggers activation of two separate stimulus-response coupling mechanisms within the cell. These are firstly calcium mobilisation\(^{25}\) and secondly activation of protein kinase C by the formation of diacyl glycerol from membrane lipids\(^{27}\) (see Chapter 1, Section A).

Two pieces of evidence suggest that FFE has little effect on calcium mobilisation. Firstly, PMN and platelet degranulation stimulated by the calcium ionophore \(A_{23187}\) is
not inhibited by FFE226, and is in fact somewhat enhanced. Secondly, FFE is able to block platelet thromboxane synthesis in response to adrenaline, a stimulus which differs from other platelet activators in causing no increase in the concentration of free calcium within the platelets228. Thus an alternative site of action for FFE must be found, which may prove to be at sites on the activation pathway for protein kinase C, the pathway probably involved in adrenaline-mediated activation of platelets. A further observation which suggests that the pathway to protein kinase C activation is at least partially blocked by FFE is that PMN degranulation by PMA, which activates protein kinase C directly, is rather less inhibited by FFE that is degranulation in response to stimuli which act via surface receptors. However, FFE does inhibit PMA-induced secretion to a significant extent, suggesting that blockade of protein kinase C activation is not the only site of action of FFE. The microfilament/microtubule system important in both phagocytosis and secretion may be one possible site.

Phagocytic processes in PMN's are susceptible to inhibition by a number of compounds of plant origin. The fungal metabolite cytochalasin B, despite its enhancement of degranulation49, is inhibitory by virtue of its ability to block the polymerisation of cytoskeletal actin229. Colchicine, from the plant Colchium autumnale, also blocks phagocytosis, this time by inhibiting the cytoplasmic microtubule system important in cytoskeletal orientation and stability230. Unlike cytochalasin B, colchicine also inhibits stimulus-mediated granule release, but appears to be much less
potent than feverfew. Release of β glucuronidase by opsonised zymosan particles was reduced only by 40% by colchicicine at a concentration of 10^{-5}M^{231}.

The exact chemical nature of the active principle(s) in FFE has not yet been identified. The plant contains a group of sesquiterpene lactones which are lipophilic. The main lactone in FFE is parthenolide ($MW = 248$ daltons), from which the plant takes its name. Parthenolide has similar effects to whole FFE on platelets, (Dr S Heptinstall, personal communication) and other fractions active in platelet inhibition have also been identified. Like parthenolide, they all contain a chemical grouping which can undergo interaction with SH-, NH- or OH- groups.

Thus:

\[
\begin{align*}
\text{CH}_2 \quad + \quad \text{SH-} \quad \text{OH-} \quad \text{NH-} & \quad \rightarrow \\
& \quad \text{CH}_2^- \quad \text{N}- \\
\end{align*}
\]

known as the Michael addition.

The principal source of SH-groups in platelets is glutathione. Measurable levels of glutathione SH groups in resting platelets fall with time after addition of FFE, an effect which can be prevented by cysteine (containing -SH) but not serine or glycine (Dr S Heptinstall, personal communication). Cysteine can also reverse some of the inhibition of platelet aggregation and degranulation produced by FFE. It is not yet known whether similar involvement of SH groups is seen in the effects of FFE on PMN's, but it may be relevant that the assembly of microtubules required for both
granule secretion and phagocytosis requires conversion of reduced glutathione (glutathione - SH) to the oxidised form G-S-S-G232.

It remains to be seen whether PMN's from subjects taking oral feverfew show the same inhibition of degranulation and phagocytosis as is seen in vitro. While blockade of granule release in platelets and PMN's might be beneficial to an extent in migraine and rheumatoid arthritis, the effects on phagocytosis may prove to be an undesirable side effect. If as is suggested223 further clinical trials of feverfew will be undertaken, then studies of PMN function should be an integral part of such trials.
CHAPTER 8

CONCLUSIONS, AND IMPLICATIONS OF NEUTROPHIL SECRETION IN THE
INFLAMMATORY RESPONSE

The studies described here have demonstrated the
importance of \(C_5 \) as a source of degranulating activity for
PMN's, have examined the inhibition of such degranulation by
\(\text{H}_1 \) antagonists and feverfew extracts, and have attempted to
investigate the ways in which \(C_5 \) fragment-induced PMN
activation might produce microvascular changes in vivo.

What are the implications of these findings in the
understanding of inflammatory and immune processes?

\(C_5 \) fragments appear to be the main fluid phase
complement-derived chemotactic stimulus for PMN's but it is
difficult to assess their importance in the anti-bacterial
role of the cells. Complement activation leads to coating of
bacteria by \(C_{3b} \), for which PMN's have receptors, but \(C_5 \)
fragments may also be important in bringing PMN's and bacteria
together. Human \(C_5 \) may be deficient in either quantity or
function. One family in whom \(C_5 \) was less than 0.05% of normal
in 4 of 5 siblings, experienced recurrent infections with the
intracellular pathogens Neisseria meningitidis and N.
gonorrhoeae233. As expected, chemotactic activity could not
be generated by zymosan from their sera, although no defects
of phagocytosis or killing were present. The CH\textsubscript{50} assay
showed no detectable haemolytic activity in the \(C_5 \) deficient
individuals, while the alternative complement pathway
haemolytic assay showed a delayed endpoint corrected by the
addition of C_5. No C_5 inhibitor was present. Neisserial infections are well recognized in individuals with defects of any of the membrane attack complex components. How protection from other bacteria is achieved is not certain, for the maximum concentration of C_{5a} which could be generated from serum containing less than 0.05% of normal C_5 is 5 ng/ml, only one tenth of the minimum concentration detectable by chemotaxis. The direct chemotactic action of bacterial peptides such as FMLP may largely compensate.

Functional defects of immunologically normal C_5 have been described in a family where the defect was present in 15 relatives. The index case was a child who had repeated local and systemic infections with various Gram-negative bacteria and coagulase positive staphylococci. The patient's serum showed inability to enhance chemotaxis towards, or phagocytosis of E coli, Staph aureus or yeasts, a defect correctable by the addition of normal serum or C_5, but not by C_3. Phagocytosis of pneumococci, which is independent of C_5, was normal. C_5 in the serum was normal by both IEP and immunodiffusion.

It is of interest that quantitative C_5 deficiency and functional impairment of C_5 should render individuals susceptible to different groups of micro-organisms. It may be that the abnormal C_5 actually blocks the binding of any normal C_5, or of other complement components, thus compounding the defect and increasing the range of bacteria which cannot be ingested. Further detailed study of the C_{5a} molecule in such families could reveal much about the nature of C_{5a}-neutrophil binding and activation.
An inhibitor of C₅a-induced chemotactic activity has also been described in patients with SLE, and has been implicated in the increased susceptibility to pyogenic infections seen in that condition²³⁴. The inhibitor described did not inhibit chemotaxis in response to other stimuli, and, oddly, did not impair C₅a-mediated aggregation or degranulation. It appears to be quite different to the chemotactic factor inhibitor described by Berenberg and Ward⁶⁸. It thus appears that C₅ fragment-mediated PMN activation is physiologically important in anti-bacterial defence.

The in vivo studies performed here also suggest a key role for activated PMN's in the production of complement-induced permeability changes in small vessels. However, not every situation in which PMN's are stimulated leads to such permeability changes and tissue injury. For example, the well-described dialysis leucopenia⁹³, thought to be due to complement activation and pulmonary PMN sequestration, has never been reported to cause clinical features of ARDS. Studies in sheep infused with zymosan activated plasma also report marked PMN accumulation in alveoli, but although there is early endothelial injury, this has recovered by 4 hours, even though PMN's remain in the pulmonary micro-circulation²³⁵. The pulmonary damage following infusion of cobra venom factor into rats has also been shown to be transient²³⁶. Experiments using cultured endothelial cells from bovine pulmonary arteries in Boyden chambers have demonstrated that PMN's can migrate across endothelial layers in response to activated complement without
damage to the endothelium, as demonstrated by light and electron microscopy. The PMN's appear to remain in close proximity to the endothelium at all times such that no leak of radiolabelled water or sucrose is seen. In contrast, the addition of histamine to the preparation causes focal dilatations in junctions between endothelial cells, with leakage of radiolabelled solutes. Thus additional factors must dictate whether permeability changes result from contact between activated PMN'S and endothelium. In health there is a large pool of marginated PMN's, particularly in the lungs, yet no damage to lung tissue results. Traditional concepts of complement-induced lung injury have assumed that the important event is the activation of PMN's, with the endothelium being damaged almost as an 'innocent bystander'. However, it now appears that the endothelium plays a more active role in influencing the outcome of such PMN activation than previously thought. It has been suggested that direct damage to or other alterations in endothelial cells themselves must take place before activated PMN's can further impair their integrity. For example PMN adherence to endothelium can be increased by exposure of the endothelial layer to endotoxin, viruses or hyperbaric oxygen. Such damage may also expose endothelial receptors for Fc and C₃b, thus providing a mechanism for cell to cell adhesion with PMN's coated with immune complexes and complement. Normal intact endothelium may actually limit PMN contact with itself, by promoting PMN emigration through the vessels into the tissues. PMN's in Boyden chambers, for example, move much more rapidly through into pulmonary artery implants when the endothelial layer is
intact239.

It may be therefore, that to produce permeability changes and tissue damage a stimulus has to not only activate PMN's but also damage endothelium directly, and that stimuli which affect only PMN's will cause only mild and transient endothelial damage. Circulating factors such as fibrinogen243 and fibronectin244 also alter PMN adherence to endothelium, as do PMN factors themselves, particularly lactoferrin52. Relatively little is known about endothelial activation and behaviour, but further study of PMN–endothelial interaction may fill in many of the gaps in knowledge of the inflammatory processes.

Where these processes are damaging to tissues it may be of advantage to block PMN responsiveness, at least partially. High concentrations of anti-inflammatory drugs can do so in vitro, and now H\textsubscript{1} antagonists and feverfew extracts can be added to the list of drugs active in this way. The difficulty in translating in vitro activity into clinical effect is well demonstrated by the observation that conventional doses of hydrocortisone and anti-inflammatory agents completely failed to block skin responses to activated complement, perhaps because plasma levels of the drugs were too low to inhibit PMN activation. Similarly, degranulation of PMN's from subjects taking clemastine orally was normal, again because of failure to achieve high enough concentrations of the drug in plasma. The problem of achieving suitably high drug concentrations in vivo could perhaps be overcome by local administration to affected sites, for example via a nebuliser to the lungs or directly into inflamed joints.
As well as modifying endothelial function, secretory products from activated PMN's can influence the behaviour of other cell types, notably monocytes and macrophages, and thereby the activity of T and B lymphocytes and granulocyte precursors. Impaired lymphocyte reactivity and absent skin responses to various T and B cell mitogens have been reported in patients with peripheral blood PMN counts of >15 x 10^9/l from whatever cause (excluding chronic granulocytic leukaemia)245. Other possible causes of this anergy were excluded as far as possible, and normal responses returned when the PMN count fell. Of course the underlying causes of the neutrophilia could have produced anergy by independent means, but it remains an interesting speculation that factors from PMN's themselves could have been responsible.

The monocyte/macrophage factor interleukin-1 (IL-1) appears to link many of the diverse effects of infection and inflammation, causing neutrophilia, fever, breakdown of muscle protein, synthesis of collagen from fibroblasts, and release of acute phase proteins from the liver as well as activation of T and B lymphocytes246. The neutrophilia is primarily due to release of young PMN's from the bone marrow. Factors from PMN's undergoing phagocytosis or activation by soluble stimuli may be able to modulate IL-1 synthesis and thus influence many aspects of inflammatory and immune responses. This could certainly produce anergy and may be relevant in the T cell unresponsiveness of Hodgkin's disease, in which PMN's appear to be hyperactive, with high neutrophil alkaline phosphatase scores247, and increased superoxide production248, 249. In addition, pulmonary fibrotic disease may be partly due to
activated PMN's causing increased IL-1 synthesis by pulmonary macrophages, with subsequent stimulation of collagen production. A further monocyte product inhibited by PMN secretions is the colony stimulating factor required for the growth of myeloid colonies in culture. This feedback control of granulocyte numbers appears to involve lactoferrin, and may be defective in chronic granulocytic leukaemia.

It can thus be seen that the PMN has important secretory functions. Release of granule contents, oxidation products and lipid mediators all play a part in the generation of the features of inflammation. The studies described here have demonstrated in vitro and in vivo models suitable for the assessment of possible inhibitors of these often undesirable responses.
APPENDIX 1

SUPPLIERS OF MATERIALS

1. Laboratory equipment

Blood cell counter and Isoton II: - Coulter DN, Coulter, Harpenden.

Centrifuges: - Damon IEC Centra 7
- 4° centrifuge - Beckman TJ6
- Microcentrifuge - MSE.

Cell sonicator: - Rapidis 'S' model - Ultrasonics Ltd, Shipley.

γ counter: - Intertechnique CG4200.

Spectrophotometer: - Pye Unicam SP1800.

Cytospin: - Shandon-Elliott.

Filter systems: - 0.8μ - Millipore
- 0.2μ - Millipore.

Micropartition membrane and holders: - Amicon Corporation.

LP3 polypropylene tubes: - Luckham's.

Universal containers: - Sterilin.

1ml syringes: - Gillette (Sabre).

27 gauge needles: - Monoject.

Skin calipers: - Mitutoyo, Japan.

Serum harvester: - Glasrock Products Inc.

2. Chemicals

Agarose: - Miles Serevac.

Monopoly resolving medium: - Flow Laboratories, Irvine.

Lymphocyte separation medium: - Flow Laboratories, Irvine.

Phosphate buffered saline tablets: - Flow Laboratories, Irvine.

Earl's balanced salt solution: - Flow Laboratories, Irvine.
$^{57}\text{CoB}_{12}$ (high specific activity): - Radiochemicals.
Centre, Amersham.

Dextran - (Lomodex 70): - Fisons Ltd, Loughborough.

Candida guilliermondii: - Public Health Laboratory, Nottingham.

Diffquik: - Merz and Dade.

Epsilon amino caproic acid: - BDH.

Ethylene diamine tetraacetic acid (EDTA): - BDH.

Ethylene-bis-(oxy-ethylene-nitrile) tetraacetic acid (EGTA): - BDH.

Calcium chloride: - BDH.

Magnesium chloride: - BDH.

Bovine haemoglobin: - BDH.

Sodium azide: - BDH.

Glycine: - BDH.

Ammonium chloride: - BDH.

Phorbol myristate acetate: - Sigma.

Latex beads: - Sigma.

Dimethyl sulfoxide: - Sigma.

Formyl-methionyl-leucyl-phenylalanine: - Sigma.

A 23187': - Sigma.

Sephadex G200: - Sigma.

Cyanogen bromide activated sepharose 4B: - Sigma.

Bovine serum albumin: - Sigma.

Zymosan: - Sigma.

Coomassie blue: - Sigma.

Activated charcoal: - Sigma.

Ethanolamine: - Sigma.

Trypan blue: - Sigma.

Cytochalasin B: - Sigma.
Arachidonic Acid: - Sigma.

3. Drugs

Clemastine: - Sandos.

Histamine: - McCarthy's Ltd.

Cimetidine: - Smith, Klein & French.

BW 755C: - Boots Ltd.

Prostaglandin E\textsubscript{2}: - Upjohn Ltd.

Hydrocortisone:
- Hydrocortisone sodium succinate BP - Boots Ltd.

Ibuprofen: - Boots Ltd.

Aspirin: - Aspirin tablets BP.

4. Antisera

Anti-H IgG - Goat anti-human IgG (gamma chain):
- Kent Laboratories. Lot No 1010 AM3.

Anti-H C3 (1) - Rabbit anti-human C3 (C3, C3c, C3d):
- Blood Transfusion Service, Bristol.

Anti-H C3 (2) - Rabbit anti-human C3 (C3d):
- Dako Laboratories. Lot No AO63 - 010D.

Anti-H C3 (3) - Goat anti-human C3 (C3, C3c):
- Kent Laboratories. Lot No 103053.

Anti-H C3 (4) - Sheep anti-human C3 (C3, C3a, C3c):
- Seward Laboratories. Lot No BA10 - 18186.

Anti-H C5 (1) - Goat anti-human C5:
- Kent Laboratories. Lot No 1100 NL-Anti-H C5 (2) - Sheep

Anti-human C5:
- Seward Laboratories. Lot No BA12 - 1653A.
BUFFERS

1. Phosphate buffered saline (PBS). pH = 7.40

8000mg NaCl
200mg KCl or 10 PBS tablets
200mg KH₂PO₄
1442mg Na₂HPO₄·2H₂O

The volume was made up to 1 litre with distilled water, autoclaved and stored at 4°C.

This was used for all PMN washing and counting procedures to prevent spurious degranulation.

8000mg NaCl
200mg KCl or 10 PBS tablets
200mg KH₂PO₄
1442mg Na₂HPO₄·2H₂O

The volume was made up to approximately 900mls with distilled water. To prevent formation of precipitates of calcium or magnesium phosphate, 1ml of 1.0M CaCl₂ and 0.7ml 1.0M MgCl₂ were each diluted in 10mls distilled water and added dropwise to the PBS in a mixer. The solution was autoclaved at this stage. One gram of cobalamin-binding protein-free bovine serum albumin was then added, and when dissolved, the solution was made up to 1 litre with distilled water and stored at 4°C.
Final concentrations of: calcium = 1 millimolar
magnesium = 0.7 millimolar
BSA = 0.1%

This solution was used for all degranulation studies.

3. Coupling buffer. (for anti-C5 column preparation)
 8.401g NaHCO3 (final conc = 0.1M)
 29.22g NaCl (final conc = 0.5M)
made up to 1 litre with distilled water. The pH was adjusted to 8.3.

4. Acetate buffer.
 4.7mls glacial acetic acid
 2.45g sodium acetate
 58.44g sodium chloride (final conc = 1OM)
made up to 1 litre with distilled water. The pH was adjusted to 4.0.

5. Borate buffer
 6.183g boric acid
 58.44g sodium chloride (final conc = 1.0M)
made up to 1 litre with distilled water. The pH was adjusted to 8.0 with strong sodium hydroxide.
REFERENCES

1. DAVIES JM, SHEPPARD K, FLETCHER J.
 The effects of surgery on the activity of neutrophil granule proteins.

2. EL-MAALLEM H, FLETCHER J.
 Effects of surgery on neutrophil granulocyte function.

3. DAVIES JM.
 Human neutrophil cobalamin binding protein.

4. ORFANAKIS NG, OSTLUND RE, BISHOP CR, ATHENS JW.
 Normal blood leukocyte concentration values.

5. BOGGS DR.
 Physiology of neutrophil proliferation, maturation and circulation.
 Clinics in Haematology 1975, 4; Chapter 3: 535-551.

6. McCULLOCH EA, TILL JE.
 Stem cells in normal early haemopoiesis and certain clonal haemopathies.
7. BISHOP CR, ATHENS JW, BOGGS DR, WARNER HR, CARTWRIGHT GE, WINTROBE MM.
Leukokinetic studies XIII. A non-steady-state kinetic evaluation of the mechanism of cortisone-induced granulocytosis.

8. GHEBREHIWET B, MÜLLER-EBERHARD HJ.
C₃ₑ: An acidic fragment of human C₃ with leuκocytosis-inducing activity.

9. UCHIDA T, KARIYONE S.
Organ distribution of the ⁹⁹ᵐTc-labelled white cells.

10. SODERLUND I, ENGSTEDT L, PALEUS S, UNGER P.
Leucocytes: Separation, collection and transfusion.

11. CARTWRIGHT GE, ATHENS JW, WINTROBE MM.
The kinetics of granulopoiesis in normal man.

12. FLIEDNER TM, CRONKITE EP, ROBERTSON JS.
Granulocytopoiesis. I Senescence and random loss of neutrophilic granulocytes in human beings.
13. ALLISON F, SMITH MR, WOOD WB.

Studies on the pathogenesis of acute inflammation. I. The inflammatory reaction to thermal injury as observed in the rabbit ear chamber.

14. BOGGS DR, ATHENS JW, HAAB OP, RAAB SO, CARTWRIGHT GE, WINTROBE MM.

Leukokinetic studies VIII. A search for an extra-medullary tissue pool of neutrophilic granulocytes.

15. ARONOFF SC, BOGGS DR, BOGGS SS.

Failure of neutrophilia to increase the number of neutrophils entering a peritoneal exudate in mice.

16. McDONALD GA, DODDS TC, CRUICKSHANK B.

17. SPITZNAGEL JK, DALLDORF FG, LEFFELL MS, FOLDS JD, WELSH IRH, COONEY MH, MARTIN LE.

Character of azurophil and specific granules purified from human polymorphonuclear leucocytes.

Lab Invest 1974; 30: 774-785.

18. BAINTON DF, ULLYOT JL, FARQUHAR MG.

The development of neutrophilic polymorphonuclear leukocytes in human bone marrow. Origin and content of azurophil and specific granules.

19. SEGAL AW, DORLING J, COADE S.

Kinetics of fusion of the cytoplasmic granules with phagocytic vacuoles in human polymorphonuclear leukocytes. Biochemical and morphological studies.

20. CHENOWETH DE, HUGLI TE.

Demonstration of specific C5a receptor on intact human polymorphonuclear leukocytes.

21. MARASCO WA, PHAN SH, KRUTZSCH H, SHOWELL HJ, FELTNER DE, NAIRN R, BECKER EL, WARD PA.

Purification and identification of formyl-methionyl-leucyl-phenylalanine as the major peptide neutrophil chemotactic factor produced by Escherichia coli.

22. WEBSTER RO, HONG SR, JOHNSTON RB Jr, HENSON PM.

Biological effects of the human complement fragments C5a and C5a des Arg on neutrophil function.

23. HENSON PM, HOLLISTER JR, MUSSON RA, WEBSTER RO, SPEARS P, HENSON JE, MCCARTHY KM.

Inflammation as a surface phenomenon: Initiation of inflammatory processes by surface-bound immunologic components.

24. GALLIN JI, DUROCHER JR, KAPLAN AP.

Interaction of leukocyte chemotactic factors with the cell surface. 1. Chemotactic factor-induced changes in human granulocyte surface change.

25. WEISSMANN G, KORCHAK HM, PEREZ HD, SMOLEN JE, GOLDSTEIN IM, HOFFSTEIN ST.

Leukocytes as secretory organs of inflammation.
Advances in Inflammation Research 1979; 1: 95-112

26. MICHELL RH, KIRK CJ, JONES LM, DOWNES CP, CREBA JA.

The stimulation of inositol lipid metabolism that accompanies calcium mobilisation in stimulated cells: defined characteristics and unanswered questions.

27. BERRIDGE MJ.

Inositol triphosphate and diacylglycerol as second messengers.

28. ZIGMOND SH.

The ability of polymorphonuclear cells to orient in gradients of chemotactic factors.

29. SCHIFFMANN E.

Leukocyte chemotaxis.

30. WILKINSON PC, LACKIE JM.

The influence of contact guidance on chemotaxis of human neutrophil leukocytes.
31. LESLIE RGQ.

Evaluation of phagocyte function.

Recent Developments in Clinical Immunology 1984: 77-110 Ed Reeves WG, Elsevier Science Publishing Co Amsterdam.

32. EHLENBERGER AG, NUSSENZWEIG V.

The role of membrane receptors for C_3b and C_3d in phagocytosis.

33. BAEHNER RL.

Microbe ingestion and killing by neutrophils: normal mechanisms and abnormalities.

34. STOSSEL TP, MURAD F, MASON RJ, VAUGHAN M.

Regulation of glycogen metabolism in polymorphonuclear leukocytes.

35. EL-MAALLEM H, FLETCHER J.

Impaired neutrophil function and myeloperoxidase deficiency in pregnancy.

36. KARNOVSKY ML.

Metabolic basis of phagocytic activity.

37. CLINE M.
Mechanism of acidification of the human leukocyte phagocytic vacuole.

38. BRETZ U, BAGGIOLINI M.
Biochemical and morphological characterization of azurophil and specific granules of human neutrophilic polymorphonuclear leukocytes.

39. OLSSON I, VENGE P.
Cationic proteins of human granulocytes. I. Isolation of the cationic proteins from the granules of leukaemic myeloid cells.

40. ROBERTS R, GALLIN JI.
The phagocytic cell and its disorders.

41. MALY FE, KAPP A, ROTHER U.
C$_5$-induced chemiluminescence of human granulocytes and its amplification by a serum factor.

42. SIMCHOWITZ L, MEHTA J, SPILBERG I.
Chemotactic factor-induced generation of superoxide radicals by human neutrophils. Effect of metabolic inhibitors and anti-inflammatory drugs.
43. KANE SP, PETERS TJ.

Analytical subfractionation of human granulocytes with reference to the localization of vitamin B₁₂-binding proteins.

44. MAALLEM H, SHEPPARD K, FLETCHER J.

The discharge of primary and secondary granules during immune phagocytosis by normal and chronic granulocytic leukaemia polymorphonuclear neutrophils.

45. LEFFELL MS, SPITZNAGEL JK.

Fate of human lactoferrin and myeloperoxidase in phagocytizing human neutrophils: effects of immunoglobulin G subclasses and immune complexes coated on latex beads.

46. ESTENSEN RD, WHITE JG, HOLMES B.

Specific degranulation of human polymorphonuclear leukocytes.

47. BENTWOOD BJ, HENSON PM.

The sequential release of granule constituents from human neutrophils.

48. WHITE JR, NACCACHE PH, SHA'AFI RI.

Stimulation by chemotactic factor of actin association with the cytoskeleton in rabbit neutrophils. Effects of calcium and cytochalasin B.

49. ZURIER RB, HOFFSTEIN S, WEISSMANN G.
Cytochalasin B: effect on lysosomal release from human leukocytes.
Proc Natl Acad Sci USA 1973; 70: 844-848.

50. GORDON LI, DOUGLAS SD, KAY NE, YAMADA O, OSSERMAN EF, JACOB HS.
Modulation of neutrophil function by lysozyme.
Potential negative feedback system of inflammation.

51. CHANARIN I.
The Megaloblastic Anaemias Ch5 Vitamin B₁₂ Binding Proteins 1979 pp 59-68

52. OSEAS R, YANG HH, BAEHNER RL, BOXER LA.
Lactoferrin: A promoter of polymorphonuclear leukocyte adhesiveness.

53. GALLIN JI, FLETCHER MP, SELIGMANN BE, HOFFSTEIN S, CEHRS K, MOUNESSA N.
Human neutrophil-specific granule deficiency: a model to assess the role of neutrophil-specific granules in the evolution of the inflammatory response.

54. AMBRUSO DR, JOHNSTON RB Jnr
Lactoferrin enhances hydroxyl radical production by human neutrophils, neutrophil particulate fractions and an enzymatic generating system.
55. GOLDE DW, CLINE MJ.

Identification of the colony-stimulating cell in human peripheral blood.

J Clin Invest 1972; 51: 2981-2983.

56. PHILIP MP, STANDEIN G, FLETCHER J.

Phagocytosing neutrophils rapidly release a factor which inhibits granulopoiesis in vitro.

57. BROXMEYER HE, SMITHYMAN A, EGER RR, MEYERS PA, de SOUSA M.

Identification of lactoferrin as the granulocyte derived inhibitor of colony-stimulating activity production.

58. GOLDSTEIN IM.

59. COCHRANE CG, MULLER-EBERHARD HJ.

The derivation of two distinct anaphylotoxin activities from the third and fifth components of human complement.

60. HUGLI TE.

61. VALLOTA EH, MULLER-EBERHARD HJ.

Formation of C\textsubscript{3a} and C\textsubscript{5a} anaphylotoxins in whole human serum after inhibition of the anaphylotoxin inactivator.

62. FEARON DT.

Complement as a mediator of inflammation in Immune Complexes in Clinical Medicine.

63. PEREZ HD, GOLDSTEIN IM, WEBSTER RO, HENSON PM.

Enhancement of the chemotactic activity of human C\textsubscript{5a} des Arg by an anionic polypeptide (cochemotaxin) in normal human serum and plasma.

64. GORSKI JP, HUGLI TE, MULLER-EBERHARD HJ.

C\textsubscript{4a}: the third anaphylotoxin of the human complement system.

Proc Natl Acad Sci USA 1979; 76: 5299-5302.

65. GERARD C, CHENOWETH DE, HUGLI TE.

Response of human neutrophils to C\textsubscript{5a}: A role for the oligosaccharide moiety of human C\textsubscript{5a} des Arg-74 but not of C\textsubscript{5a} in biological activity.

66. FERNANDEZ HN, HENSON PM, OTANI A, HUGLI TE.

Chemotactic response to human C\textsubscript{3a} and C\textsubscript{5a} anaphylotoxins. 1. Evaluation of C\textsubscript{3a} and C\textsubscript{5a} leukotaxis in vitro and under simulated in vivo conditions.

67. GOLDSTEIN IM, BRAI M, OSLER AG.
Lysosomal enzyme release from human leukocytes: mediation by the alternate pathway of complement activation.

68. BERENBERG JL, WARD PA.
Chemotactic factor inactivator in normal serum.

69. WEISDORF DJ, HAMMERSCHMIDT DE, JACOB HS, CRADDOCK PR.
Rapid in vivo clearance of C5a des Arg: A possible protective mechanism against complement-mediated tissue injury.

70. TILL G, WARD PA.
Two distinct chemotactic factor inactivators in human serum.

71. FANTONE J, SENIOR RM, KREUTZER DL, JONES M, WARD PA.
Biochemical quantitation of the chemotactic factor inactivator activity in human serum.

72. CHENOWETH DE, HUGLI TE.
73. WEBSTER RO, LARSEN GL, HENSON PM.

Tissue distribution of human C$_{5a}$ and C$_{5a}$ des Arg in complement fragments in normal and neutropenic rabbits.

74. BRANDSLUND I, SIERSTED HC, SVEHAG S-E, TEISNER B.

Double-decker rocket immunoelectrophoresis for direct quantification of complement C$_3$ split products with C$_{3d}$ specificities in plasma.

75. HAMMERSCHMIDT DE, BOWERS TK, LAMMI-KEEFE CJ.

Granulocyte aggregometry: a sensitive technique for the detection of C$_{5a}$ and complement activation.

76. FOWLER AA, FISHER BJ, CENTOR RM, CARCHMAN RA.

Development of the adult respiratory distress syndrome: progressive alteration of neutrophil chemotactic and secretory processes.

77. ANON

Neutrophils and adult respiratory distress syndrome. (Editorial).

78. NICHOLSON DP.

Corticosteroids in the treatment of septic shock and the adult respiratory distress syndrome.

79. BARIE PS, TAHAMONT MV, MALIK AB.

Prevention of increased pulmonary vascular permeability after pancreatitis by granulocyte depletion in sheep.

Am Rev Resp Dis 1982; 126: 904-908.

80. HOSEA S, BROWN E, HAMMER C, FRANK M.

Role of complement activation in a model of adult respiratory distress syndrome.

81. BOWERS TK, OZOLINS AL, RATLIFF NB, JACOB HS, HAMMERSCHMIDT DE.

Hyperacute pulmonary vasculitis in rabbits receiving prolonged infusions of activated complement. A possible model for triggering events in adult respiratory distress syndrome.

82. LARSEN GL, McCARTHY K, WEBSTER RO, HENSON J, HENSON PM.

A differential effect of C5a and C5a des Arg in the induction of pulmonary inflammation.

Am J Path 1980; 100: 179-188.

83. THOMMASEN HV, RUSSELL JA, BOYKO WJ, HOGG JC.

Transient leucopenia associated with adult respiratory distress syndrome.

84. ZIMMERMAN GA, RENZETTI AD, HILL HR.

Functional and metabolic activity of granulocytes from patients with adult respiratory distress syndrome.

85. COCHRANE G, SPRAGG RG, REVAK SD, COHEN AB, McGUIRE WW.

The presence of neutrophil elastase and evidence of oxidation activity in broncho-alveolar lavage fluid of patients with adult respiratory distress syndrome.

86. HENSON PM, LARSEN GL, WEBSTER RO, MITCHELL BC, GOINS AJ, HENSON JE.

Pulmonary microvascular alterations and injury induced by complement fragments: synergistic effect of complement activation, neutrophil sequestration and prostaglandins.

87. CAMPBELL EJ.

Human leukocyte elastase, cathepsin G, and lactoferrin: family of neutrophil granule glycoproteins that bind to an alveolar macrophage receptor.

88. GOLDSTEIN IM, WEISSMANN G.

Generation of C₅₉-derived lysosomal enzyme-releasing activity (C₅₉a) by lysates of leukocyte lysosomes.

89. WARD PA, TILL GO, KUNKEL R, BEAUCHAMP C.

Evidence for the role of hydroxyl radical in complement and neutrophil-dependent tissue injury.

90. WARDLE EN.

Shock lungs: the post-traumatic respiratory distress syndrome.

91. DAVIES JM, SHEPPARD K, FLETCHER J.

Inhibition of human neutrophil secondary granule discharge by anti-inflammatory agents.

Inflammation 1984; 8: 343-352.

92. HAMMERSCHmidt DE, WEAVER LJ, HUDSON LD, CRADDOCK PR, JACOB HS.

Association of complement activation and elevated plasma-C5a with adult respiratory distress syndrome.

93. CRADDOCK PR, FEHR J, DALMASSO AP, BRIGHAM KL, JACOB HS.

Haemodialysis leukopenia. Pulmonary vascular leukostasis resulting from complement activation by dialyzer cellophane membranes.

94. BOSCOE MJ, YEWDALL VMA, THOMPSON MA, CAMERON JS.

Complement activation during cardiopulmonary bypass: quantitative study of effects of methylprednisolone and pulsatile flow.

95. CHENOWETH DE, COOPER SW, HUGLI TE, STEWART RW, BLACKSTONE EH, KIRKLIN JW.

Complement activation during cardiopulmonary bypass. Evidence for generation of C3a and C5a anaphylotoxins.

96. HAHN-PEDERSEN J, SØRENSEN H, KEHLET H.

Complement activation during surgical procedures.

Surgery, Gynaecology and Obstetrics 1978; 146: 66-68.
97. **DAVIS JM, DINEEN P, GALLIN JI.**

 Neutrophil degranulation and abnormal chemotaxis after thermal injury.

98. **WOLACH B, COATES TD, HUGLI TE, BAEHNER RL.**

 Plasma lactoferrin reflects granulocyte activation via complement in burn patients.
 J Lab Clin Med 1984; 103: 284-293.

99. **LASH JA, COATES TD, LAFUZE J, BAEHNER RL, BOXER LA.**

 Plasma lactoferrin reflects granulocyte activation in vivo.

100. **HOWE GB, FORDHAM JN.**

101. **ABRAMSON S, EDELSON H, KAPLAN H, GIVEN W, WEISSMANN G.**

 The neutrophil in rheumatoid arthritis: its role and the inhibition of its activation by non steroidal anti-inflammatory drugs.

102. **ZEITLIN IJ, GRENNAN DM.**

103. WOOLF AD, PANAYI GS.

C₅a activation by monosodium urate crystals: effect of adsorption of serum and polymorphonuclear leucocyte homogenate.

104. PINCKARD RN, OLSON MS, GICLAS PC, TERRY R, BOYER JT, O'ROURKE RA.

Consumption of classical complement components by heart subcellular membranes in vitro and in patients after acute myocardial infarction.

105. MAROKO PR, CARPENTER CB, CHIARIELLO M, FISHBEIN MC, RADVANY P, KNOSTMAN JD, HALE SL.

Reduction by cobra venom factor of myocardial necrosis after coronary artery occlusion.

106. ROMSON JL, HOOK BG, RIGOT VH, SCHORK MA, SWANSON DP, LUCCHESI BR.

The effect of ibuprofen on accumulation of indium-111-labelled platelets and leukocytes in experimental myocardial infarction.

107. MULLANE KM, READ N, SALMON JA, MONCADA S.

Role of leukocytes in acute myocardial infarction in anaesthetized dogs: Relationship to myocardial salvage by anti-inflammatory drugs.

108. STETSON CA.

Similarities in the mechanisms determining the Arthus and Shwartzman phenomena.

109. ARTHUS MM.

Injections répétées de serum de cheval chez le lapin.

110. FISCHEL EE, KABAT EA.

A quantitative study of the Arthus phenomenon induced positively in the rabbit.

111. SHWARTZMAN G.

A new phenomenon of local skin reactivity to B Typhosus culture filtrate.

112. BECKER RM.

Suppression of local tissue reactivity (Shwartzman phenomenon) by nitrogen mustard, benzol and X-ray irradiation.

113. STETSON CA, GOOD RA.

Studies on the mechanism of the Shwartzman phenomenon. Evidence for the participation of polymorphonuclear leucocytes in the phenomenon.

114. STETSON CA.

Studies on the mechanism of the Shwartzman phenomenon. Certain factors involved in the production of the local haemorrhagic necrosis.
115. HUMPHREY JH.

The mechanism of Arthus reactions. I The role of polymorphonuclear leucocytes and other factors in reversed passive Arthus reactions in rabbits.

116. KNIKER WT, COCHRANE CG.

Pathogenic factors in vascular lesions of experimental serum sickness.

117. ISSEKUTZ AC, MOVAT KW, MOVAT HZ.

Enhanced vascular permeability and haemorrhage-inducing activity of zymosan-activated plasma.

118. ISSEKUTZ AC.

Vascular responses during acute neutrophilic inflammation. Their relationship to in vivo neutrophil emigration.

119. KOPANIAK MM, MOVAT HZ.

Kinetics of acute inflammation induced by Escherichia coli in rabbits. II The effect of hyperimmunisation, complement depletion and depletion of leukocytes.

120. WILLIAMS TJ, JOSE PJ.

Mediation of increased vascular permeability after complement activation. Histamine-independent action of rabbit C5a.

121. WEDMORE CV, WILLIAMS TJ.

Control of vascular permeability by polymorphonuclear leukocytes in inflammation.

122. JOSE PJ, FORREST MJ, WILLIAMS TJ.

Human C$_{5a}$ des Arg increases vascular permeability.

123. WILLIAMS TJ.

Vascular permeability changes induced by complement-derived peptides.

124. CRUNKHORN P, WILLIS AL.

Cutaneous reactions to intradermal prostaglandins.

Brit J Pharmacol 1971; 41: 49-56.

125. VERHAGEN J, BRUYNZEEL PLB, KOEDAM JA, WASSINK GA, de BOER M, TERPSTRA GK, KREUKNIET J, VELDINK GA, VUEGENTHART JFG.

Specific leukotriene formation by purified human eosinophils and neutrophils.

126. WEDMORE CV, WILLIAMS TJ.

Platelet-activating factor (PAF), a secretory product of polymorphonuclear leucocytes, increases vascular permeability in rabbit skin.

Brit J Pharmacol 1981; 74: 916-917P.
127. AGER A, GORDON JL.
Differential effects of hydrogen peroxide on indices of endothelial cell function.

128. STENDAHL O, MOLIN L, LINDROTH M.
Granulocyte-mediated release of histamine from mast cells.

129. DAVIES JM, SHEPPARD K, FLETCHER J.
Stimulus specific impairment of neutrophil granule secretion in the immediate post-operative period.

130. FERRANTE A, THONG YH.
Optional conditions for simultaneous purification of mononuclear and polymorphonuclear leucocytes from human blood by the Hypaque-Ficoll method.

131. DACIE JV, LEWIS SM.

132. ADAMS JF, MC EWAN PC.
The separation of free and bound vitamin B_{12}.
133. LAU K-S, GOTTLIEB C, WASSERMAN LR, HERBERT V.

Measurement of serum vitamin B₁₂ level using radioisotope dilution and coated charcoal.

134. FERRANTE A, BEARD LJ, THONG YH.

Early decay of human neutrophil chemotactic responsiveness following isolation from peripheral blood.

135. VALLOTA EH.

Inhibition of C₅ convertase by epsilon amino caproic acid (EACA): a limiting factor in the generation of C₅a anaphylotoxin.

Immunology 1978; 34: 439-447.

136. LACHMANN PJ, HOBART MJ.

137. AXEN R, PORATH J, ERNBACK S.

Chemical coupling of peptides and proteins to polysaccharides by means of cyanogen halides.

138. PHARMACIA FINE CHEMICALS, Uppsala, Sweden.

Handbook of Methods.
139. GERARD C, HUGLI TE.

Identification of classical anaphylotoxin as the des-Arg form of the C5a molecule: Evidence of a modulator role for the oligosaccharide unit in human des Arg 74-C5a.

140. VOETMAN AA, WEENING RS, HAMERS MN, MEERHOF LJ, BOT AAAM, ROOS D.

Phagocytosing human neutrophils inactivate their own granular enzymes.

141. WEENING R.

The secretion of lysosomal enzymes by human polymorphonuclear leucocytes (PMN) and its modulation by serum complement.

142. MIGLER R, DECHATELET LR.

Human eosinophilic peroxidase: biochemical characterization.

143. DRI P, CRAMER R, SORANZO MR, COMIN A, MIOTTI V, PATRIARCA P.

New approaches to the detection of myeloperoxidase deficiency.

144. WRIGHT DG, GALLIN JI.

145. HUGLI TE, CHENOWETH DE.

146. JOSE PJ, FORREST MJ, WILLIAMS TJ.

Detection of the complement fragment C₅₉₉ in inflammatory exudates from the rabbit peritoneal cavity using radio-immunoassay.

147. MILLER ME, NILSSON VR.

148. HAMMERSCHMIDT DE, WILSON N.

Artifactual complement activation by blood-drawing apparatus. A clinical and investigational caveat.

149. IGNARRO LJ.

Glucocorticosteroid inhibition of nonphagocytic discharge of lysosomal enzymes from human neutrophils.

150. FORD-HUTCHINSON AW, BRAY MA, DOIG MV, SHIPLEY ME, SMITH MJH.

Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes.

151. PALMER RMJ; SALMON JA.

Release of leukotriene B\(_4\) from human neutrophils and its relationship to degranulation induced by N-formyl-methionyl-leucyl-phenylalanine, serum-treated zymosan and the ionophore A\(_{23187}\).

152. MARONE G, FIMIANI B, TORELLA G, POTO S, BIANCO P, CONDORELLI M.

Possible role of arachidonic acid and of phospholipase A\(_2\) in the control of lysosomal enzyme release from human polymorphonuclear leukocytes.

153. HARVEY J, OSBORNE DJ.

A rapid method for detecting inhibitors of both cyclooxygenase and lipoxygenase metabolites of arachidonic acid.

154. BASRAN GS, MORLEY J, PAUL W, TURNER-WARWICK M.

Evidence in man of synergistic interaction between putative mediators of acute inflammation and asthma.

155. COOK J, SHUSTER S.

Histamine weal formation and absorption in man.

156. COBLE BI, LINDROTH M, MOLIN L, STENDAHL O.

Histamine release from mast cells during phagocytosis and interaction with activated neutrophils.

Int Archs Allergy & Appl Immunology 1984; 75: 32-37.
157. CSABA G.

158. GOLDBERG BS, WESTON WL, KOHLER PF, HARRIS MB, HUMBERT JR.
Transcutaneous leukocyte migration in vivo: cellular kinetics, platelet and C5a dependent activity.

159. McGIVERN DV, BASRAN GS.
Synergism between platelet-activating factor (PAF-acether) and prostaglandin E2 in man.

160. WILLIAMS TJ, JOSE PJ, FORREST MJ, WEDMORE CV, CLOUGH GF.

161. TONNESEN MG, SMEDLY L, GOINS A, HENSON PM.
The microvasculature in inflammation. Interaction between neutrophils and vascular endothelial cells. In Agents and Actions (Suppl); 11: 25-38.

162. SVENSSON J, HAMBURG M, SAMUELSSON B.
Prostaglandin endoperoxides IX. Characterisation of rabbit aorta contracting substance (RCS) from guinea pig lung and human platelets.
163. MOVAT HZ, RETTL C, BURROWES CE, JOHNSTON MG.

The in vivo effect of leukotriene B₄ on polymorphonuclear leukocytes and the microcirculation. Comparison with activated complement (C₅a des Arg) and enhancement by prostaglandin E₂.

164. SAMUELSSON B.

Leukotrienes: Mediators of immediate hypersensitivity reactions and inflammation.

165. HOOVER RL, KARNOVSKY MJ, AUSTEN KF, COREY EJ, LEWIS RA.

Leukotriene B₄ action on endothelium mediates augmented neutrophil/endothelial adhesion.

166. CAMP RDR, COUTTS AA, GREAVES MW, KAY AB, WALPORT MJ.

Responses of human skin to intradermal injection of leukotrienes C₄, D₄ and B₄.

167. JUHLIN L, HAMMARSTRÖM S.

Wheal reactions in human skin after injection of leukotrienes B₄, C₄, D₄, and E₄.

168 SOTER NA, LEWIS RA, COREY EJ, AUSTEN KF.

Local effects of synthetic leukotrienes (LTC₄, LTD₄, LTE₄ and LTB₄) in human skin.

169. BJÖRK J, HEDQVIST P, ARFORS KE.

Increase in vascular permeability induced by leukotriene B4 and the role of polymorphonuclear leukocytes.

170. FORREST MJ, PECK MJ, WILLIAMS TJ.

Is increased vascular permeability induced by C5a dependent on the generation of lipoxygenase products?

Brit J Pharmacol 1981; 74: 921P-922P.

171. BETZ SJ, HENSON PM.

Production and release of platelet-activating factor (PAF); dissociation from degranulation and superoxide production in the human neutrophil.

Mediators of immune-complex induced aggregation of polymorphonuclear neutrophils: II Platelet-activating factor as the effector substance of immune-induced aggregation.

173. ARCHER CB, PAGE CP, PAUL W, MORLEY J, MACDONALD DM.

Inflammatory characteristics of platelet activating factor (PAF-acether) in human skin.

174. GALLIN JI.

Neutrophil specific granules: a fuse that ignites the inflammatory response.

175. COLDITZ IG, MOVAT HZ.

Chemotactic factor - specific desensitization of skin to infiltration by polymorphonuclear leukocytes.

Immunology Letters 1984; 8: 83-87.

176. HOOVER RL, FOLGER R, HAERING WA, WARE BR, KARNOVSKY M.

Adhesion of leukocytes to endothelium: roles of divalent cations, surface charge, chemotactic agents and substrate.

177. SHASBY DM, LIND SE, SHASBY SS, GOLDSMITH JC, HUNNINGHAKE GW.

Reversible oxidant-induced increases in albumin transfer across cultured endothelium: alterations in cell shape and calcium homeostasis.

178. SHASBY DM, SHASBY SS, PEACH MJ.

Granulocytes and phorbol myristate acetate increase permeability to albumin of cultured endothelial monolayers and isolated perfused rabbit lungs.

179. BRANDT L.

Adhesiveness to glass and phagocytic activity of neutrophilic leukocytes in myeloproliferative diseases.

180. TAUB RN, BAKER MA, MADYASTHA KR.

Masking of neutrophil surface lectin-binding sites in chronic myelogenous leukaemia (CML).

181. BANERJEE TK, SENN H, HOLLAND JF.

Comparative studies on localised leukocyte mobilisation in patients with chronic myelocytic leukaemia.

182. ROSNER F, VALMONT I, KOZINN PJ, CAROLINE L.

Leukocyte function in patients with leukaemia.

183. OLOFSSON T, ODEBERG H, OLSSON I.

Granulocyte function in chronic granulocytic leukaemia. II Bactericidal capacity, phagocytic rate, oxygen consumption and granule protein composition in isolated granulocytes.

184. ODEBERG H, OLOFSSON T, OLSSON I.

Granulocyte function in chronic granulocytic leukaemia. I Bactericidal and metabolic capabilities during phagocytosis in isolated granulocytes.

185. BROXMEYER HE, MENDELSON N, MOORE MAS.

Abnormal granulocyte feedback regulation of colony forming and colony stimulating activity-producing cells from patients with chronic myelogenous leukaemia.

186. EL-MAALLEM, H.

Leucocyte function in myeloproliferative disorders.

187. PHILLIPS MJ, MEYRICK THOMAS RH, MOODLEY I, DAVIES RJ.

A comparison of the in vivo effects of ketotifen, clemastine, chlorpheniramine, and sodium cromoglycate on histamine and allergen induced weals in human skin.

188. FEWTRELL CMS, GOMPERTS BD.

Quercetin; a novel inhibitor of Ca$^{2+}$ influx and exocytosis in rat peritoneal mast cells.

Biochim Biophys Acta 1977; 469: 52-60.

189. DALE DC, FAUCI AS, WOLFF SM.

Alternate-day prednisolone; leukocyte kinetics and susceptibility to infections.

190. SEGAL ML, FERTEL RH, KRAUT EH, SAGONE AL.

The role of reactive oxygen species in thromboxane B_2 generation by polymorphonuclear leukocytes.

191. FEINMARK SJ, UDEN AM, PALMBLAD J, MALMSTEN C.

Leukotriene biosynthesis by polymorphonuclear leukocytes from two patients with chronic granulomatous disease.

192. TAKAYAMA H, OKUMA M, KANAJI K, SUGIYAMA T, SENSAKI S, UCHINO H.

Altered arachidonate metabolism by leukocytes and platelets in myeloproliferative disorders.

193. PHILIP MA, STANDEN G, FLETCHER J.
Failure of chronic-granulocytic-leukaemia leucocytes to release an inhibitor of granulopoiesis.

194. PINCKARD RN, KNIKER WT, LEE L, HANAHAN DJ, McMANUS LM.
Vasoactive effects of 1-O-alkyl-2 acetyl-sn-glyceryl-3 phosphorylcholine (Ac GEPC) in human skin.

195. YANCEY KB, HAMMER CH, HARVATH L, RENFER L, FRANK M, LAWLEY TJ.
Studies of human C5a as a mediator of inflammation in normal human skin.

196. RANADIVE NS, COCHRANE CG.
Isolation and characterization of permeability factors from rabbit neutrophils.

197. SPIESANI S, MARANGONI C, TRANIELLO S.
Effect of anti-inflammatory drugs on leukocyte superoxide production by soluble and particulate stimuli.

198. ISSEKUTZ AC, BHIMJI S.
The effect of nonsteriodal anti-inflammatory agents on E coli-induced inflammation.
199. ISSEKUTZ AC, BHIMJI S.
Effect of nonsteroidal anti-inflammatory agents on immune complex - and chemotactic-factor induced inflammation.
Immunopharmacology 1982; 4: 253-266.

200. HARLAN JM, CALLAHAN KS.
Role of hydrogen peroxide in the neutrophil-mediated release of prostacyclin from cultured endothelial cells.

201. ISSEKUTZ AC.
Comparison of the effects of glucocorticoid and indomethacin treatment on the acute inflammatory reaction in rabbits.

202. LEFELL MS, SPITZNAGEL JK.
Fate of human lactoferrin and myeloperoxidase in phagocytosing human neutrophils : effects of immunoglobulin G subclasses and immune complexes coated on latex beads.

203. DUNHAM BM, HECHTMAN HB, VALERI CR, SHEPRO D.
Antiinflammatory agents inhibit microvascular permeability induced by leukotrienes and by stimulated human neutrophils.

204. ASH ASF, SCHILD HO.
Receptors mediating some actions of histamine.
205. BLACK JW, DUNCAN WAM, DURANT CJ, GANELLIN CR, PARSONS EM.

Definition and antagonism of histamine H_2-receptors.

206. GRECHISHKIN LL, GOLDFARB VL, GAVROVSKAYA LK, BROVTSYNA NB.

Structural elements of H_1- and H_2- receptors of histamine.

207. BUSSE WW, SOSMAN J.

Histamine inhibition of neutrophil lysosomal enzyme release: an H_2 histamine receptor response.

208. SELIGMANN BE, FLETCHER MP, GALLIN JI.

Histamine modulation of human neutrophil oxidative metabolism, locomotion, degranulation and membrane potential changes.

209. FANTOZZI R, BRUNELLIESCHI S, CAMBI S, BLANDINA P, MASINI E, MANNAIONI PF.

Autocoid and beta adrenergic agonist modulation of N-formyl methionyl-leucyl-phenylalanine evoked lysosomal enzyme release from human neutrophils.
Agents and Actions 1984; 14: No 3-4 441-450.

210. PATRONE F, DALLEGRI F, LANZI G, SACCHETTI C.

Reversal by cimetidine of histamine-induced inhibition of true chemotaxis in neutrophil polymorphonuclears.
211. ANDERSON R, GLOVER A, RABSON AR.

The in vitro effects of histamine and metiamide on neutrophil motility and their relationship to intracellular cyclic nucleotide levels.

212. PUUSTINEN T, UOTILA P.

Thromboxane formation in human polymorphonuclear leukocytes is inhibited by prednisolone and stimulated by leukotrienes B_4, C_4, D_4 and histamine.

213. WESCOTT S, KALINER M.

Histamine H-1 binding site on human polymorphonuclear leukocytes.

214. THAM R, NORLANDER B, HÄGERMARK O.

Gas chromatography of clemastine.

215. GESPACH C, ABITA JP.

Human polymorphonuclear neutrophils. Pharmacological characterization of histamine receptors mediating the elevation of cyclic AMP.

216. SELIGMANN B, GALLIN JI.

Pharmacologically defined H, and H_2 histamine receptors on human neutrophils modulate chemoattractant f-met-leu-phe stimulated functions.

217. KAHLSOM G, NILSSON K, ROSENGREN E, ZEDERFELDT B.
Wound healing as dependent on rate of histamine formation.

218. MELAMED J, MEDICUS RG, ARNAOUT MA, COLTEN HR.
Induction of granulocyte histaminase release by particle-bound complement C₃ cleavage products (C₃b, C₃bi) and IgG.

219. HILL HR, ESTENSEN RD, HOGAN NA, QUIE PG.
Severe staphylococcal disease associated with allergic manifestations, hyperimmunoglobulinaemia E, and defective neutrophil chemotaxis.

220. BERRY MJ.
Feverfew faces the future.

221. JOHNSON ES.
Patients who chew chrysanthemum leaves.

222. JOHNSON ES, KADAM NP, HYLANDS DM, HYLANDS PJ.
Efficacy of feverfew as prophylactic treatment of migraine.
223. ANON
Feverfew - a new drug or an old wives remedy (Editorial)

224. COLLIER HOJ, BUTT NM, MCDONALD-GIBSON WJ, SAEED SA.
Extract of feverfew inhibits prostaglandin biosynthesis.

225. MAKHEJA AN, BAILEY JM.
A platelet phospholipase inhibitor from the medicinal
herb feverfew (Tanacetum parthenium).
Prostaglandins, Leukotrienes and Medicine 1982; 8:
653-660.

226. HEPTINSTALL S, WHITE A, WILLIAMSON LM, MITCHELL JRA.
Extracts of feverfew inhibit granule secretion in blood
platelets and polymorphonuclear leucocytes.
Lancet (i) 1985: 1071-1074.

227. NACCACHE PH, SHOWELL HJ, BECKER EL, SHA'AFI RI.
Arachidonic acid induced degranulation of rabbit
peritoneal neutrophils.
Biochem Biophys Res Comm 1979; 87: 292-299.

228. WESTWICK J, POLL C, KAKkar VV.
IUPHAR 9th International Congress on Pharmacology.
229. STOSSEL TP.

230. ANDERSON DC, WIBLE LJ, HUGHES BJ, SMITH CW, BRINKLEY BR.

Cytoplasmic microtubules in polymorphonuclear leukocytes: effects of chemotactic stimulation and colchicine.

231. HOFFSTEIN S, GOLDSTEIN IM, WEISSMANN G.

Role of microtubule assembly in lysosomal enzyme secretion from human polymorphonuclear leucocytes.

232. BURCHILL BR, OLIVER JM, PEARSON CB, LEINBACH ED, BERLIN RD.

Microtubule dynamics and glutathione metabolism in phagocytosing human polymorphonuclear leukocytes.

Familial deficiency of C5 in humans: intact but deficient alternative complement pathway activity.

234. PEREZ HD, LIPTON M, GOLDSTEIN IM.

A specific inhibitor of complement (C5) derived chemotactic activity in serum from patients with systemic lupus erythematosus.

235. MEYRICK BO, BRIGHAM KL.
Effect of a single infusion of zymosan-activated plasma on the pulmonary microcirculation of sheep: structure-function relationships.

236. TILL GO, JOHNSON KJ, KUNKEL R, WARD PA.
Intravascular activation of complement and acute lung injury. Dependency on neutrophils and toxic oxygen metabolites.

237. MEYRICK BO, HOFFMAN L, BRIGHAM K.
Chemotaxis of granulocytes across bovine pulmonary artery intimal explants without endothelial cell injury.

238. MEYRICK BO, BRIGHAM KL.
Increased permeability associated with dilatation of endothelial cell junctions caused by histamine in intimal explants from bovine pulmonary artery.

239. BRIGHAM KL, MEYRICK BO.
Granulocyte-dependent injury of pulmonary endothelium: a case of miscommunication.

240. MCGREGOR RR, FRIEDMAN HM, MACARAK EJ, KEFALIDES NA.
Virus infection of endothelial cells increases granulocyte adherence.
241. BOWMAN CM, BULTLER EN, REPINE JE.

Hyperoxia damages cultured endothelial cells causing increased neutrophil adherence.

242. RYAN US, SCHULTZ DR, RYAN JW.

Fc and C3b receptors on pulmonary endothelial cells: induction by injury.

243. PHAIR JP, BASSARIS HP, MORLOCK BA.

Fibrinogen enhances complement-mediated augmentation of retention of polymorphonuclear leukocytes by nylon columns.

244. VERCELLOTTI GM, MCCARTHY J, FURCHT LT, JACOB HS, MOLDOW CF.

Inflamed fibronectin: an altered fibronectin enhances neutrophil adhesion.

245. HEISS LI, PALMER DL.

Anergy in patients with leukocytosis.

246. DINARELLO CA.

Interleukin 1 and the pathogenesis of the acute-phase response.

247. BENNETT JM, NATHANSON L, RUTENBURG AM.

Significance of leukocyte alkaline phosphatase in Hodgkin's disease.
Arch Intern Med 1968; 121: 338-341.

248. HANCOCK BW, BRUCE L, RICHMOND J.

Neutrophil function in lymphoreticular malignancy.

249. VON FLIEDNER V, SALVATORI V, HIGBY DJ, STUTZMAN L, PARK BH.

Polymorphonuclear neutrophil function in malignant lymphomas and effects of splenectomy.
Cancer 1980; 45: 469-475.

250. SNIDER GL.

Interstitial pulmonary fibrosis - which cell is the culprit?