ARCHITECTURAL IDEALS IN CANADA: 1885-1914

KELLY J. CROSSMAN

Ph.D. THESIS
UNIVERSITY OF EDINBURGH
Statement

I declare that this thesis is my own original work.
Acknowledgments

At the end of a project of this sort there are many people one would wish to thank. I am grateful in particular to my advisor Dr. M. S. Higgs, whose understanding, patience and help was unfailing, and to Mr. Martin Birkhans and Dr. Peter Savage also of the Department of Architecture, Edinburgh University, who helped me along the way with ideas and encouragement. I should like to thank as well my fellow research students for their help and good nature, and the Department's administrative and secretarial staff.

I am indebted as well to the Social Science and Humanities Research Council of Canada and to the Government of Manitoba for their financial assistance as well as to the following people, all of whom went out of their way to help me: Professor John Eland of McGill University, Dr. Douglas Richardson at the University of Toronto, Margaret Carter, Edward Mills, Ann Thomas, Geoff Hunt, Donald Bassett, Marilyn Baker, Mr. and Mrs. W. G. Burns, Randy Rostecki, Susan Wagg, J. D. McGovern, Jim Burnet at the Public Archives of Canada, Mr. Bill Cooper at the Archives of Ontario, and Mr. Don Herperger at the Saskatchewan Archives Board, Regina.

In addition I should like to thank all of my friends who helped me in many ways, and especially Neil Bingham who read the manuscript, offering advice and encouragement all the while, and Victoria Keller who helped in the preparation of the typescript.

Finally, I should like to thank my family, whose help and understanding was inexhaustible and for which I am deeply grateful.
Abstract

Based on a reading of architectural writing in Canada from 1885 to 1914, that is the proceedings of architectural societies, addresses, journals, diaries and the like, the thesis describes the general pattern of Canadian architectural life and thought during the late Victorian and Edwardian period.

During the late 1880s American architectural ideas and fashions became especially influential in Canada; a consequence both of the rapid development made by American architecture at this time and the ever-increasing commercial links between the two countries. On the one hand this led to the emulation and adaptation of American architectural fashions and techniques by Canadian architects and on the other to calls by Canadian architects for greater mutual co-operation and for statutory protection against American competition. In reaction, and in a way that paralleled developments in the United States and Great Britain, Canadian architects adopted the ideal of architectural professionalism, formed professional societies, pressed for statutory registration, and formalised architectural education.

Alongside these developments, the Canadian architectural profession during the period was greatly influenced by ideas from abroad, particularly those concerning the use and exploitation of new materials of construction such as steel and reinforced concrete, by the ideas and theory of the English Arts and Crafts movement as they were articulated in Great Britain and as they had influenced architecture in the United States, and finally, by the techniques
and manner of the Ecole des Beaux-Arts in Paris.

After 1900 and under the influence of these ideas, Canadian architects were increasingly concerned with the need to develop an architecture that reflected the conditions of Canadian life. With the arrival of Percy Nobbs to the faculty of McGill University in Montreal, the nationalist impulse in Canadian architecture was given a forceful and effective voice. As a result of these factors, and as part of a wave of nationalism which was characteristic of Canadian society as a whole during these years, national considerations came to play an important part in Canadian architectural thought from the turn of the century onwards.
Table of Contents

Contents (vi)
List of Plates (vii)
List of Abbreviations (xiv)
Preface 1

Part I: Professionalism
Chapter 1: Developments to 1890 9
Chapter 2: Organization 43
Chapter 3: Statutory Registration 66
Chapter 4: Architectural Education 99

Part II: The Influence of New Ideas
Chapter 5: The Eighteen Club Reaction; Arts and Crafts and the Ecole des Beaux-Arts 125
Chapter 6: The Challenge of Architectural Science 178

Part III: Nationalism
Chapter 7: The National Idea 239
Chapter 8: Percy Nobbs and a National Theory 269
Chapter 9: Towards a National Architecture; The Ottawa and Saskatchewan Competitions 309

Bibliography: 366
List of Plates

2. The Legislative Building, Queen's Park, Toronto, Ontario, (1886), R. A. Waite, architect. The Notman Photographic Collection, McGill University. (p. 20)

3. Toronto Municipal and County Buildings, front elevation, (1887), E. J. Lennox, architect. City of Toronto archives. (p. 22)

4. Windsor Station, Montreal, Quebec, detail drawing of tower, Bruce Price, architect. AABN, June 16, 1888. (p. 23)

5. Building for the Standard Life Assurance Association, Montreal, Quebec, (1886-1887), R. A. Waite, architect. AABN, December 5, 1887. (p. 25)

7. The Toronto Board of Trade Building, Toronto, Ontario, (1888-91), James and James, architects. CAB, 1889. (p. 29)

8. Sun Life Assurance Company Building, Montreal, Quebec, (1889), Robert Findlay, architect. CAB, 1890. (p. 34)

9. The Board of Trade Building, Montreal, Quebec, Shepley, Rutan, and Coolidge, architects, (1891). CAB, June, 1891. p. 40

14. Summer cottage and chapel, Onteora, Catskill Mountains, New York State, George Reid, R.C.A., architect. CAB, March, 1901. (p. 144)

17 Design for a new Post Office building at Winnipeg, Darling, Pearson and Over, architects. CAB, November, 1904. (p. 148.)

18 Design for an office building for Messrs. Lever Brothers, Toronto, Sproatt and Rolph, architects. Architectural Annual, 1901. (p. 149)

19 Design for an art museum, Toronto Beaux Arts Society Competition, A. E. Watson, Atelier Lyle. Construction, April, 1910, p. 51 (p. 167)

21 Bank of Montreal extension, Craig Street elevation, Montreal, Quebec, (1904), McKim, Mead and White, architects. Monograph of the Works of McKim, Mead and White 1879-1915, reprint, New York, 1973, Plate 216. (p. 168)

22 Bank of Montreal extension, Craig Street elevation and Banking Hall, Montreal, Quebec, (1904), McKim, Mead and White, architects. Monograph of the Works of McKim, Mead and White 1879-1915, reprint, New York, 1973, Plate 214. (p. 169)

24 Office building for the London and Lancashire Assurance Company, St. James Street, Montreal, Quebec, Edward Maxwell, architect, (1898). CAB, September, 1898. (p. 174)

26 The New York Life Insurance Company building, Montreal, Quebec, (1888), Babb, Cook and Willard, architects. AABN, August 10, 1889. (p. 181)

27 The Golden Lion dry-goods store, Toronto, Ontario. Metropolitan Toronto Library Board. (p. 185)

29 The Robert Simpson Store, Toronto, Ontario, (1894), Edmund Burke, architect. CAB, January, 1895. (p. 197)

30 Yonge Street, Toronto, with the second Robert Simpson store of 1895, Edmund Burke, architect. Ontario Archives. (p. 200)

31 Redpath Library, McGill University, Montreal, Quebec, A. T. Taylor, architect. AABN, May 25, 1895. (p. 203)

34 Electric Railway Chambers, Winnipeg, Manitoba, (1912-13), Pratt and Ross, architects. The Dominion, December, 1912. (p. 218)

36 Advertisement for Thomas Black, 76-82 Lombard Street, Winnipeg. Manitoba Archives. (p. 228)

38 Reinforced concrete water tower, chemical mills of the Wood Products Company, Donald, Ontario, Pitt and Robinson, engineers. Concrete and Constructional Engineering, 1909, p. 117. (p. 231)

40 The Hermant Building, Toronto, Ontario, (1913), Bond and Smith, architects. Construction, April, 1914. (p. 233)

41 Reinforced concrete apartment house, Rue St. Denis, Montreal, Quebec, picture credit, K. Crossman. (p. 236)

43 Design for the St. John Gate, Quebec City, by W. H. Lynn, architect, signed and dated September, 1878. Plans by Mr. W. H. Lynn for the Gates of the City of Quebec as Erected at the Suggestion of the Earl of Dufferin, 9 drawings, copied by C. Baillarge, City Engineer, 1878, Public Archives of Canada. (p. 242)

44 Design for the Kent Gate, Quebec City, November, 1878. Plans by Mr. W. H. Lynn for the Gates of the City of Quebec as Erected at the Suggestion of the Earl of Dufferin, 9 drawings, copied by C. Baillarge, City Engineer, 1878, Public Archives of Canada. (p. 243)

45 Design for the St. Louis Gate, Quebec City, November, 1878. Plans by Mr. W. H. Lynn for the Gates of the City of Quebec as Erected at the Suggestion of the Earl of Dufferin, 9 drawings, copied by C. Baillarge, City Engineer, 1878, Public Archives of Canada. (p. 244)

46 Drill Hall at Quebec, Jerome and Taché, architects. CAB, August, 1898. (p. 246)

51 The Scott House, Dorval, Quebec, (1924), Percy Nobbs, architect. Nobbs Collection, McGill University. (p. 285)

52 The Scott House, Dorval, Quebec, (1924), ground floor plan, Percy Nobbs, architect. Nobbs Collection, McGill University. (p. 286)

53 The Scott House, Dorval, Quebec, (1924), side elevations, Percy Nobbs, architect. Nobbs Collection, McGill University. (p. 287)

54 The Royal Victoria Hospital, Montreal, Quebec, H. Saxon Snell and Son, architects. CAB, December, 1890. (p. 294)

55 A view of the Pathological Institute, Montreal, Quebec, under construction, Nobbs and Hyde, architects. Nobbs Collection, McGill University. (p. 295)

56 The Pathological Institute, Montreal, Quebec, perspective drawing by Percy Nobbs. Nobbs Collection, McGill University. (p. 296)

57 The Pathological Institute, Montreal, Quebec, elevation to Pine Avenue, with block plan and sections, (1923), Nobbs and Hyde, architects. Nobbs Collection, McGill University. (p. 297)

58 The Pathological Institute, Montreal, Quebec, elevations to University Street and to the courtyard, (1923), Nobbs and Hyde, architects. Nobbs Collection, McGill University. (p. 298)

59 The Pathological Institute, Montreal, Quebec, ground, first and second floor plans, (1923), Nobbs and Hyde, architects. Nobbs Collection, McGill University. (p. 299)

60 Macdonald Engineering Building, McGill University, Montreal, Quebec, (1907), Percy Nobbs, architect. Nobbs Collection, McGill University. (p. 302)

61 McGill University Union, Montreal, Quebec, (1904), Percy Nobbs, architect. Nobbs Collection, McGill University. (p. 303)

62 McGill University Union, Montreal, Quebec, (1904), ground floor plan, Percy Nobbs, architect. Nobbs Collection, McGill University. (p. 304)
63 McGill University Union, Montreal, Quebec, (1904), first floor plan, Percy Nobbs, architect. Nobbs Collection, McGill University. (p. 305)

64 Perspective view of the proposed Justice and Departmental Buildings, Ottawa, (1907), Darling and Pearson, architects. Public Archives of Canada. (p. 316)

65 Perspective view of the proposed Justice Building, Ottawa, (1907), Public Archives of Canada. (p. 317)

66 Perspective view of proposed Justice Building, park elevation, Ottawa, (1907), E. and W. S. Maxwell, architects. Public Archives of Canada. (p. 319)

69 Proposed Justice Building, first floor plan, Ottawa, (1907), E. and W. S. Maxwell, architects. CAB, September, 1907. (p. 322)

70 Proposed Departmental Building, street elevation, Ottawa, (1907), E. and W. S. Maxwell, architects. Public Archives of Canada. (p. 323)

71 Minnesota State Capitol Building as it appeared in 1895, Cass Gilbert, architect. Minnesota Historical Society. (p. 331)

73 Winning design in the Saskatchewan Parliament Building competition, front elevation, E. and W. S. Maxwell, architects. Saskatchewan Archives Board. (p. 336)

74 Block plan of site for proposed Parliament Buildings, Regina, Saskatchewan, E. and W. S. Maxwell, architects. (1907). Saskatchewan Archives Board. (p. 339)

75 Winning design in the Saskatchewan Parliament competition, end elevation, E. and W. S. Maxwell, architects. Saskatchewan Archives Board. (p. 340)

76 Winning design in the Saskatchewan Parliament Building competition, ground floor plan, E. and W. S. Maxwell, architects. Saskatchewan Archives Board. (p. 341)

77 Winning design in the Saskatchewan Parliament Building competition, main floor plan, E. and W. S. Maxwell, architects. Saskatchewan Archives Board. (p. 342)

78 Design for proposed Parliament Building, Regina, Saskatchewan, elevation of front and detail, Storey and Van Egmond, architects, (1907). Saskatchewan Archives Board. (p. 343)
Design for proposed Parliament Building, Regina, Saskatchewan, main floor plan, Storey and Van Egmond, architects, (1907). Saskatchewan Archives Board. (p. 344)

Design for proposed Parliament Building, Regina, Saskatchewan, front elevation, Marchand and Haskell, architects, (1907). Saskatchewan Archives Board. (p. 345)

Design for proposed Parliament Building, Regina, Saskatchewan, side elevation, Marchand and Haskell, architects, (1907). Saskatchewan Archives Board. (p. 346)

Design for proposed Parliament Building, Regina, Saskatchewan, main floor plan, Marchand and Haskell, architects, (1907). Saskatchewan Archives Board. (p. 347)

Design for proposed Parliament Building, Regina, Saskatchewan, front elevation, Darling and Pearson, architects, (1907). Saskatchewan Archives Board. (p. 348)

Design for proposed Parliament Building, Regina, Saskatchewan, west elevation, Darling and Pearson, architects, (1907). Saskatchewan Archives Board. (p. 349)

Design for proposed Parliament Building, Regina, Saskatchewan, first floor plan, Darling and Pearson, architects, (1907). Saskatchewan Archives Board. (p. 350)

Design for proposed Parliament Building, Regina, Saskatchewan, main elevation, Mitchell and Raine, architects, (1907). Saskatchewan Archives Board. (p. 351)

Design for proposed Parliament Building, Regina, Saskatchewan, side elevation, Mitchell and Raine, architects, (1907). Saskatchewan Archives Board. (p. 352)

Design for proposed Parliament Building, Regina, Saskatchewan, first floor plan, Mitchell and Raine, architects, (1907). Saskatchewan Archives Board. (p. 353)

Design for proposed Parliament Building, Regina, Saskatchewan, front elevation, Frank Rattenbury, architect, (1907). Saskatchewan Archives Board. (p. 354)

Design for proposed Parliament Building, Regina, Saskatchewan, side elevation, Frank Rattenbury, architect, (1907). Saskatchewan Archives Board. (p. 355)

Design for proposed Parliament Building, Regina, Saskatchewan, first floor plan, Frank Rattenbury, architect, (1907). Saskatchewan Archives Board. (p. 356)

Design for proposed Parliament Building, Regina, Saskatchewan, front elevation and section, Cass Gilbert, architect, (1907). Saskatchewan Archives Board. (p. 357)
93 Design for proposed Parliament Building, Regina, Saskatchewan, detail of front elevation, Cass Gilbert, architect, (1907), Saskatchewan Archives Board. (p. 358)

94 The Bank of Nova Scotia, Winnipeg, Darling and Pearson, architects. CAB, April, 1908; and The Bank of British North America, Montreal, Barott, Blackader and Webster, architects. RIBA Journal, 31, 23 February, 1924, p. 244. (p. 362)

95 Bank of British North America, Montreal, Quebec, Barott, Blackader and Webster, architects. Construction, September, 1915. (p. 363)
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AABN</td>
<td>American Architect and Building News</td>
</tr>
<tr>
<td>ACO</td>
<td>Art Gallery of Ontario</td>
</tr>
<tr>
<td>AN</td>
<td>Archives Nationales, Quebec.</td>
</tr>
<tr>
<td>CAB</td>
<td>Canadian Architect and Builder</td>
</tr>
<tr>
<td>DFW</td>
<td>Department of Public Works</td>
</tr>
<tr>
<td>OAA</td>
<td>Ontario Association of Architects</td>
</tr>
<tr>
<td>OSPS</td>
<td>Ontario School of Practical Science</td>
</tr>
<tr>
<td>PAC</td>
<td>Public Archives of Canada</td>
</tr>
<tr>
<td>PQAA</td>
<td>Province of Quebec Association of Architects</td>
</tr>
<tr>
<td>RAIC</td>
<td>Royal Architectural Institute of Canada</td>
</tr>
<tr>
<td>RCA</td>
<td>Royal Canadian Academy of Arts</td>
</tr>
<tr>
<td>RIBA</td>
<td>Royal Institute of British Architects</td>
</tr>
<tr>
<td>SAB</td>
<td>Saskatchewan Archives Board</td>
</tr>
</tbody>
</table>
Within the tradition of Canadian historical writing, Canadian architecture of the late Victorian and Edwardian period has been commonly regarded as dull and unimaginative and criticised in hindsight for what one writer has called a "tenacious adherence to traditional forms." To a degree this criticism can be understood as part of the familiar reaction of each generation against the work of its fathers, but at a deeper level, it is founded upon an historical perspective which sees Canadian architecture during those years as an art characterised by an overwhelming provincialism and artistic conservatism. In a review of late Victorian architecture in Canada Alan Gowans has commented:

It was an age faced with great architectural problems and conspicuously failing to solve them.

The root of those problems lay in the remarkably tenacious way High Victorian ideas lived on in Canada, long after they had ceased to be useful, appropriate, or even very well understood. Like children inhibited by some senile but domineering grandparent, Canadian architects from 1890 well into the 1920s continued to take their tastes, attitudes, and standards from the High Victorian Age. . . .

In the light of a growing interest in Canadian architectural history it is time that this interpretation of the period after 1890 be re-examined. Even a cursory look at architectural life in Canada during those years suggests that far from being a period of rentrenchment, the years around 1900 were marked by a burst of activity. It was during this time that the first architectural journals were founded, that Canadian architects first organised

\[2\] Ibid., p. 132.
themselves into professional societies and that architectural education was organised and established within the universities. During the 1890s foreign architects and foreign architectural ideas entered Canada on an unprecedented scale, and the rapid economic development of the period from 1896 to 1914 ensured the expression of these new ideas and techniques not only on the drawing board but in practice as well. At the height of prosperity, in the years just before 1914, Canadian architects themselves spoke not of a golden age just vanished but rather in confidence of the new go-ahead ideas and sophistication of architectural practice in the country as it then was.

From the point of view of the historian, one of the most striking aspects of the period is the sudden appearance around 1890 of written materials pertaining to architecture in Canada and of which so little exists before this time. This change of circumstance can be pin-pointed to the appearance of the first issue of the Canadian Architect and Builder in October, 1888, and to the publication shortly thereafter by the CAB press of documentary sources of other kinds, including articles, addresses, and proceedings of the newly founded architectural societies. These records give evidence of a general quickening of the architectural climate in Canada during the 1890s, and this impression is supported by other evidence.

We know for instance that during most of the nineteenth century Canadian architects, even those practicing in the towns and cities, worked in comparative isolation. This is not to say that they were unaware of developments in architecture either within Canada or beyond its borders; foreign architectural journals and pattern books were well known among Canadian architects, and it was common for
an architect charged with the design of a new court house or town hall to travel to nearby towns and cities with a view to seeing the latest in building fashion or technique. In 1885 E. J. Lennox travelled to Boston, New York, Philadelphia, and Pittsburg before submitting his final proposal for the new Toronto city hall. Rather, this isolation was of a more fundamental kind; architects seem to have had relatively little day to day contact with each other and there seems to have been little feeling of camaraderie.

By 1914 much of this was a thing of the past. Architects in Canada continued to disagree amongst themselves, but in the twenty-four years since 1890s they had organised and taken on the professionalism with which we associate the practice of architecture today. This transformation was due largely to the foundation of the Ontario Association of Architects in 1889 and the Province of Quebec Association of Architects the following year. With this, architects across the country were prompted to establish similar societies and in 1907 the Canadian architectural profession as a whole was brought together with the establishment of the Royal Society of Canadian Architects.

In their annual meetings and informal activities, these professional associations acted as a catalyst, stimulating debate and giving architectural life in the country a focus it had not had before. The societies encouraged dialogue between architects and pressed for a closer relationship between the architectural profession and society as a whole; an open-ended policy which

3 City of Toronto Archives, E. J. Lennox, and Municipal Buildings file.
led architects to forward their cause in Parliament on the one hand and to advocate better fire standards, building codes and planning laws on the other.

The minutes and proceedings of these societies, together with reports of the lectures and speeches which they sponsored and to which their members contributed, deal with virtually every issue of importance to Canadian architects at the time and constitute a great source of information. They also suggest, that in the course of the years from 1890 to 1914, Canadian architects, both in their thought and in their practice, attempted to create an architecture responsible to Canadian conditions and founded on a clear and rational theory.

Up to the present time however, there has been no attempt to review the writings of Canadian architects during this period in a thorough and consistent way and it is this, in essence, which has been the aim of this study. But in doing this it has been our intent not simply to present a catalogue of architectural writing and thought in the country between 1885 and 1914, but rather, working from these historical documents, to find one's way to a greater understanding of architecture and architectural practice in Canada during these years so that one might be able first to describe the general pattern of architectural life and thought, and secondly formulate some first conclusions upon which later research might be based.

It must be said as well, that despite the generally chronological organisation of the thesis and the use of illustrations, this is not intended to be a survey of Canadian architecture from 1885 to 1914. Rather it is hoped that it might be a first step towards a study of that kind. The number of illustrations has been kept
to a minimum and are intended simply to aid the reader in his understanding of the argument and not to stand as a representative sample of Canadian architecture in the late Victorian and Edwardian age. To claim that they were would be nothing short of a misrepresentation of the facts, for to give but one example, while the strength of American influence on Canadian architecture during this period is a major theme of the thesis and certainly marked the character of architecture in the country, the illustrations included in the thesis to support the argument of the text are for the most part of public and commercial buildings, while American influence on domestic design in Canada, which was also very strong, is demonstrated by only one or two examples.

Nonetheless, despite the limitations of our particular perspective, it has been possible to outline the main patterns of architectural life in the country, and to bring into relief the ideas and issues which concerned architects in Canada during the years around the turn of the century. Taken together, they comprise a fascinating story, of an incipient profession squeezed by the creative power of American architecture in the 1880s and 90s, yet at the same time open to its ideas and those of Europe, all the while struggling to produce an architecture at once national and cosmopolitan. Baldly stated, this is indeed the main thrust of the thesis, and it will be quickly seen that the structure of the paper conforms for the most part to this arrangement. The first section deals with the reaction of Canadian architects to American influence and competition and to the development of the professional ideal. The second discusses the influence of the Arts and Crafts movement, the ideas of the Ecole des Beaux-Arts and the development
of architectural science, and the final section deals with nationalism as an ideal in Canadian architecture after 1885.

It was evident early in the writing of the thesis that architectural life in Canada during this period was intimately bound up with developments not only in architectural life in other countries such as Great Britain and the United States, but also with those in Canadian society as a whole. The conflicting demands of the need to point out these relationships in a clear and unequivocal way and at the same time to keep to the main line of argument was a difficulty inherent in a study of this sort, and in this matter the thesis is the result of compromise. When it was thought absolutely necessary to an understanding of architectural events in Canada, larger developments outside the main scope of the thesis were briefly described in the text. Otherwise, readers are referred to the select bibliography which includes general works on Canadian history and on the architectural history of the United States, Great Britain, and to a lesser extent, continental Europe.

Finally, just before turning to the text, it is probably worthwhile to remind the reader of two things which provide the backcloth to architectural life in Canada at this time. The first is that following a mild prosperity in the late 1880s, Canada fell into a severe economic depression during the early 1890s which lifted slowly during the rest of the decade and which gave rise after 1906 to a period of unprecedented economic development. And secondly and as many Canadian historians have pointed out, the years from 1885 to 1914 were years of great and radical change in Canada during which the country was transformed from its position
as a small and largely agricultural society centered on the St. Lawrence Valley, to a modern continental nation in the throes of industrialisation.
Part I: Professionalism

Chapter 1: Developments to 1890
The impact of American architectural ideas in Canada during the 19th century has yet to be the subject of scholarly investigation and so it is impossible to say with any certainty the extent to which the architecture of Canada before 1890 was influenced by developments in the United States. The question is a difficult one, and it puzzled Canadian architects themselves when at the end of the 19th century they began to search for architectural forms that would reflect not only the material conditions of the country around them, but the past history of Canada as well. Most writers agreed that before 1850 Canadian architecture could be divided quite easily into two periods reflecting the changing fortunes of French and English in North America: "From the foundations of this country up to about thirty years ago we can easily trace the influence of the architecture of the older countries of Europe, especially of France in the first period and England in the second," wrote a Montreal architect in 1896. After mid-century he went on to say, the currents of architectural influence were more difficult to sort out.

Some observers of the Canadian scene found architecture in Canada as late as 1895 to be predominantly British in character

1 Two recent studies have appeared addressing themselves in part to this issue. They are: Christina Cameron and Janet Wright, Second Empire Style in Canadian Architecture, (Ottawa: Canadian Historic Sites: Occasional Papers in Archaeology, No. 24, 1980), and Mathilde Brosseau, Gothic Revival in Canadian Architecture, (Ottawa: Canadian Historic Sites: Occasional Papers in Archaeology, No. 25, 1980.)

3 Ibid.
while others saw things in a quite different light: "since 1850 we have reflected all the mixed styles which have held sway in the United States, from the Neo-Grec to the revival of the Colonial." To a degree, the impression Canadian architecture made had a good deal to do with what one was accustomed to seeing; to many Americans Canadian architecture was surprisingly British in character while to travellers from the United Kingdom it often seemed overwhelmingly American. Of course there were exceptions, for instance when Rupert Brooke visited Montreal in 1913 he found "a Scotch spirit sensible in the whole place -- in the rather narrow, rather gloomy streets, the solid, square, grey, aggressively prosperous buildings, the general greyness of the city, the air of dour prosperity."

Whatever position one was inclined to take there was little doubt after 1880 that the influence of American ideas in Canada was strong and as the century approached its end it grew stronger. In consequence there were many Canadian architects who would have agreed with the Toronto architect Grant Helliwell when he wrote in 1894, "Interesting and instructing as it is to study the architectural types of English building art, it is with an even keener interest and greater profit that we turn our attention to prevailing styles in America, for though bound by ties of kinship and political sovereignty to the motherland, in all those conditions which affect the subject of discussion here, we have much more in

4"Montreal," Canadian Architect and Builder, January 1896, p. 2

common with our neighbours on this side of the Atlantic."^6

That Canadian architects were concerned at all with looking at the architecture of their own past was something of a novelty, but in retrospect it is best seen as part of a larger pattern of events, corresponding to trends visible throughout Canadian society during the 1890s. It has often been pointed out, and correctly so, that the late 1880s and early 1890s were years of crisis in the country. Growing tension between the two founding races on the one hand and pressure for closer economic ties with the United States on the other suggested that Confederation might not last the century. With the publication of Canada and the Canadian Question by Goldwin Smith in 1891, the case against the continued existence of a Canada independent of the United States was put forth with such power that it remains, in the words of the contemporary historian Carl Berger, "the classic statement of North American continentalism."^7

Alongside the gloom and uncertainty of which the continentalism of Goldwin Smith was but the political expression, there existed a growing sense of nationalism and far from accepting the failure of the Canadian experiment as inevitable, the nationalist cause saw in Canada a unique and creditable alternative to the bare-faced republicanism of the United States. In the end, and especially after the turn of the century, nationalism was to win

the day, but while Canada was to survive the doubts and depressions of the 1890s, the debate over the future of the country which marked those years reflected a very real tension between those forces which naturally pulled Canada towards a greater intimacy with the United States and those which sought true expression in a mature and independent nationhood.

Within the realm of architecture it is possible to see, during the period from about 1885 to 1914, the presence of these same underlying issues. Both nationalism on the one hand and crisis and self-examination on the other were characteristic of the mood of the profession in Canada at the time and the struggle of the country’s architects to come to terms with the problems they posed was the motivating factor behind much of the architecture of the age. There is evidence, for example, of a desire on the part of Canadian architects to create a vocabulary of forms which could be identified as Canadian by virtue of their association with the Canadian past as early as the 1870s. The best example of this are the plans for the improvement of Quebec City in 1873, and in particular the design for the new city gates. At that time, both the decision to improve much of the old city together with the conscious use of forms borrowed from the traditional architecture of Quebec reflected an openly nationalistic reading of Canadian history and a recognition that there already existed in Canada a city which was quite unlike any other in the world.\(^8\) (see Plates 43-45, pp. 242-244)

\(^8\) Luc Noppen, Claude Paulette, Michel Tremblay, Quebec: Trois Siecles d'Architecture, (Quebec: 1979) pp. 32-34.
Despite the existence of this incipient architectural nationalism in the Quebec of 1873, the issue that dominated the minds of Canadian architects during the 1880s turned out to be not nationalism, but like the nation itself, national survival. The true nature of the situation at hand was brought home to Canadian architects when a number of important and well-publicised architectural competitions were awarded to American architects in the late 1880s. This, coupled with a fashion for American designs and designers which was described by one contemporary as an 'epidemic', put Canadian architects on the defensive and led to a crisis of confidence not unlike that experienced by the country as a whole. The success of American designers with the Canadian public exposed weaknesses in the Canadian profession of which the most notable were its disorganization and inadequate facilities for the training of students. In the end, Canadian architects were forced to overcome their differences, reform the profession and meet the Americans on their own ground by designing buildings that were of the highest standard.

The first indication of what was to come lay in the administration and eventual outcome of a competition announced in 1880 for designs for a new legislative building to house the legislature and government offices of the Province of Ontario. At that time, the provincial assembly continued to meet in a building which had been constructed in 1829 and which, despite various alterations, was hopelessly overcrowded and inadequate to the demands made upon it.

There had been various proposals for a new legislature since 1853 and so when the competition was announced in 1880 it generated a good deal of interest. In response to the competition, the government received thirteen sets of plans, of which six were entered by Americans while the remainder were the work of Canadians, including an entry by the young, up-and-coming architect Frank Darling.¹⁰

To judge the competition the government appointed a panel consisting of three members: the Honourable Alexander Mackenzie, W. G. Storm and Richard A. Waite. Both Alexander Mackenzie and William Storm were obvious choices; Mr. Mackenzie was not only a successful politician but earlier in life he had worked as a building contractor in Sarnai, Ontario, while William Storm was well known as an architect and as a founding member of the Royal Canadian Academy.¹¹ Richard Waite, on the other hand, was something of an outsider and it is not clear how he gained his appointment. It is known that Waite had trained as an architect in England before settling in Buffalo, New York from where he had come to Toronto on the invitation of the Ontario Government.¹² As we shall see, it was an appointment that was to be full of meaning for beginning with his role in the Ontario Legislature competition, Richard Waite was to become one of the most successful architects practicing in the country during the 1890s.

¹⁰An account of the competition was published in CAB, May, 1890, p. 51.
Once the thirteen entries had been received, it was decided that a second competition would be held between the three finalists, all of whom were Canadian. This, the three firms of Darling and Curry, Gordon and Helliwell, and Smith and Gemmell agreed to do, but once these revised plans were submitted the three jurors still found themselves unable to come to a final decision. Appealing once more to the first and second prize winners, the jury asked Darling and Curry together with Gordon and Helliwell to prepare yet another set of drawings on the understanding that one of the two firms would be given the commission while the "defeated competitor would be paid a fair compensation for the preparing of their design for tendering."

The jury, however, had not considered the vagaries of politics, and when the completed plans were put to tender the government came to the conclusion that it would be unable to finance a project of these proportions and so the entire programme was shelved for the time being. Disappointing as this decision must have been for the architects involved--Darling, Curry, Helliwell and Gordon--there was as yet no indication either of wrongdoing or bad faith on the part of the government; this was still to come.

Five years after the original competition, in 1885, the Ontario Government decided that it was finally in a position to proceed with construction of a new building. To this end it secured an appropriation of $750,000 from the legislature and directed Richard Waite to review the two plans and make a

13 OAB, May, 1890, p. 51.
recommendation. Waite's report was never released, but it was widely known that he was unsympathetic to the final designs submitted in 1880 and prepared instead a sketch of his own which he submitted to the government.¹⁴

To this day, the precise nature of the deliberations between Richard Waite and the Ontario Government has never been revealed, but the upshot to the affair was that several months after the decision had been made to review the plans of Darling, Curry, Gordon, and Helliwell, and proceed with construction of the parliament house, the government suddenly announced that the decision had been made to forego those plans it had received in competition and erect a building to designs by Richard Waite. The announcement was received with surprise and anger, and caused a reaction among Toronto's architects, the echoes of which are still heard today.¹⁵

On examination, it was clear the Toronto architects had been badly treated. The government's decision was made on the basis of preliminary sketches alone, and when the design was put to tender its estimated cost was well over the appropriation of $750,000 with a figure that was closer to two million dollars.¹⁶ There is also evidence to suggest that the government made its decision months before it announced its choice either in public or to the

¹⁴Ibid.
¹⁵For example see an account of the competition in Eric Arthur, No Mean City, (Toronto: University of Toronto Press, 1964) p. 209.
Canadian architects. 17

In retrospect the government's handling of the affair seems curious. Not only did the government have a moral obligation to the winners of the competition, but Darling and Curry's carefully prepared design -- which Darling was to submit as his diploma work on election to the R.C.A. -- was a work of considerable sophistication in comparison to Waite's heavy-handed reference to the Richardsonian Romanesque. (see Plates 1 and 2) The fact of the matter however, is that in the eyes of the general public, the decision to employ Richard Waite as well as the design of the legislative building itself seems to have been a modest success. Outside the small circle of practicing architects and their supporters, there was little criticism of the government and even occasions of support; the Toronto Globe commented for example, that "if Toronto architects would do better work, we should not need to go elsewhere." 18

In his design, Richard Waite had capitalized on the growing admiration for the richly inventive and original style of H. H. Richardson, and this in itself must have been a major factor in the decision of the government to abandon its previous plans. When the competition was announced in 1880, the Richardsonian manner seems hardly to have entered Canada, though there is little reason to think that his major work to that time, in particular the Trinity Church and his re-organization of the New York State House was unknown among Canadian architects. By 1885 however, the

17 Ibid; and CAB, May, 1890, p. 51.
18 Ibid.
Plate 1, Competition drawing for Ontario Legislative Building, Toronto, Ontario. Darling and Curry Architects.
Plate 2, The Legislative Building, Queen's Park, Toronto, (1886), R.A. Maife, architect.
country was on the brink of a fashion for the Romanesque that would capture the imagination of the public and colour the work of a good many architects before its eventual passing in the 1890s.19 Only months after Waite was given the go-ahead, E. J. Lennox was awarded first prize in the Toronto City Hall competition for a design modelled on Richardsons' Allegheny Court House and in 1886-7, Bruce Price introduced Romanesque elements into his design for the Montreal terminus of the just completed Canadian Pacific Railway.20 (Plates 3+4)

Whatever the final reason for Waite's success with the Ontario Government, the fact of the matter was that he was a man quite capable of making the best of the opportunities which presented themselves. That this was true was proved all too readily for the comfort of Toronto's architects when, shortly after the legislature competition, Waite won a commission to design a new office building in Montreal for the Standard Life Assurance Association. It proved to be an absolute triumph. Carried out in red sandstone, the building dazzled a Montreal accustomed to the sombre tones of the local greystone, and heralded a fashion for coloured stone that was to alter the face of the city. Some notion of the effect of the building at the time can be gained from the notes of an American journalist who visited the city in the late summer of 1887 and commented that while the Standard Life

19Michael Hunchberger, et al., Romanesque Toronto, (Toronto: Department of Fine Art, University of Toronto, 1971)

20Harold Kalman, The Railway Hotels and the Development of the Château Style in Canada, (Victoria: Maltwood Museum, University of Victoria, 1968, pp. 8+9)
Plate 3, Toronto Municipal and County Buildings, front elevation, (1887), E.J. Lennox, architect.
Plate 4, Windsor Station, Montreal, detail, Bruce Price, architect.
building might be considered good anywhere, it "here attains unapproachable pre-eminence from the fact that it appears to be the only building in the city which is built of red sandstone." With this, Waite's reputation was secured, and over the next decade he was offered and accepted some of the most important commissions going, including a multi-storey office block for the Canadian Bank of Commerce in Toronto in 1889 and two towers for the Canada Life Company, one in Toronto in 1889-90 and a second in Montreal in 1895. (see Plates 5-6)

If there was a lesson to be learned from the events of 1885, it was simply that as things stood, Canadian architects were completely at the mercy of a government and a public that showed scant regard for the sensibilities or talents of local men. In this the competition of 1880-85 was a harbinger of things to come, for the issues it raised and the reactions it provoked were to be characteristics of the decades immediately ahead. As if chilled by a change of weather, Canadian architects were confronted with evidence that for the first time their ability, at least in those circumstances which demanded the highest talents and gifts, was under question. The new fashion was for American architects and American buildings, and with the tide running against them the Canadian profession seemed all at once to be caught unawares and ill-prepared.

That this change of circumstance was something real and something to be reckoned with was to be demonstrated forthwith,

21 "A Day in Montreal," AABN, October 1, 1887, p. 163.
Plate 5, Building for the Standard Life Assurance Association, Montreal, (1886-1887), R.A. Waite, architect.
again in an important and well-publicised competition. In 1845 the Toronto Board of Trade had been founded as the focus of the city's incipient business community. Since that time it had grown in power and prestige so that by 1884 when the Board of Trade amalgamated with the Toronto Corn Exchange, it was a centre of great wealth and influence; a status which reflected the importance of commerce and trade to the city's prosperity. Following the amalgamation of 1884, it was decided that new quarters would be needed and that the Board of Trade should sponsor an open architectural competition so that the best architect and the best design might be found.

Like the Ontario Government in 1880, the Board of Trade turned to the United States in its search for an architectural assessor, choosing the influential American architect and educator William R. Ware; at that time director of the architecture course at Columbia University. In its choice of an architectural assessor from outside the country, the Board of Trade was adopting a practice which gained momentum during the 1880s and remained common well into the twentieth century. It would be too much to say however, that the practice of resting decisions of this nature in the hands of American architects meant necessarily the importation of American architects into Canada, for while it might reflect a quickening of contact between the two countries and an acknowledgement

23 "Canada," AABN, February 16, 1889, and April 19, 1890; an account of the competition is given in William Dendy, Lost Toronto, (Toronto: Oxford University Press, 1978) pp. 647.
of metropolitan influence, it did not always mean, as events were to prove, that Canadian competitors laboured under a disadvantage.

When the Board of Trade competition closed it was found that in all, nineteen entries had been made, of which eight were American in origin and eleven Canadian. In accordance with the rules of the competition, the plans were delivered to Professor Ware for adjudication, whereupon he selected three finalists, made a personal recommendation and left the final decision to the Board of Trade. Shortly thereafter, it was announced that first place in the competition had been given to the firm of James and James; again British trained architects now practicing in the United States. Second place had gone to Darling and Curry.²⁵ (Plate 7)

With this the matter seemed closed, but in the late spring of 1890 an article appeared in the AABN which suggested that far from following the report of Ware, and the rules of the competition, the Board of Trade had openly ignored Professor Ware's advice and given the award to James and James on prejudicial grounds. It seemed that upon receipt of Professor Ware's report, the Board had illegally opened the letter which contained the names of each of the candidates and then had proceeded to award the premium to the sole American finalist, James and James.²⁶ When the conditions surrounding the Board's decision became known, there was an outspoken reaction on the part of the city's architects and one would, indeed, feel a greater

Plate 7, The Toronto Board of Trade building, Toronto, (1888-91), James and James, architects.
surprise if there had been little or no response at all. Even now, it is difficult not to reach the conclusion that the commissioners of the Toronto Board of Trade harboured a prejudice against the Canadian competitors and went out of their way to ensure that an American architect should design their building.

The point to be taken was not lost on the many Canadian architects who had followed the course of the competition with interest. The circumstances surrounding the Toronto Board of Trade and Ontario Parliament House competitions clearly betrayed the existence of a very real prejudice against Canadian architects among some of the wealthiest and most influential men in the country; a state of affairs which prompted the society architect Samuel Townsend to comment "there was a feeling among a certain class of the community that Canada could not produce architects." 27

Despite the dismay voiced by Canadian architects, the success of men like Richard Waite and the real admiration aroused by buildings such as the new legislature and the Board of Trade demonstrated that whatever fears Canadian architects might have about the dangers of an increasing American presence in the country's architectural life, they were not shared by the public at large. Indeed one is reminded of nothing so much as Goldwin Smith's remark in the face of what he saw to be a spurious and ill-conceived anti-Americanism: "Of the antipathy to Americans

sedulously kept up within select circles and in certain interests," he said, "there is absolutely none among the Canadian people at large."

Although it would be far from the truth to claim that all important commissions in Toronto during the late 1880s and early 1890s were awarded to Americans, the rising tide of American influence and a certain lack of confidence in the capacities of the Canadian profession stand out quite clearly as issues typical of the period after 1885 and of great concern to the architects of that time. That they were issues of more than local significance is demonstrated by an analysis of events in Montreal which appeared in the CAB in 1896. In the article, the writer, looking over the architecture of the recent past, commented on developments since the construction of Richard Waite's Standard Life Building in 1886:

American architecture commenced to get a foothold here, with the erection of the Standard Building on St. James Street, which was built from the design of an American architect. Whether people were prejudiced against the architecture done by local architects is an open question, but it is nevertheless true that since the erection of that building many works of importance have been entrusted to American architects, as exemplified in the New York Life building in Place d'Armes, the Y.M.C.A. building on Dominion Square and the Montreal Board of Trade....which seems to have the effect of forcing our architects to study the architecture of our neighbours in order to meet the popular demand and craze of the day for Americanism.

Although that article appeared in 1896, Canadian architects had not been blind to the events which surrounded them and they had

begun to speak out against this preference for American architects on the part of wealthy Canadians long before. In 1888, the Toronto architect M. B. Aylsworth complained that for several years past "the very best buildings have been entrusted to foreigners," adding that "surely, we have a right to expect more of a national sentiment." His feelings were echoed two years later following the decision of the C.P.R. magnate James Ross to hire Bruce Price as architect for his new Peel Street mansion. Writing in the CAB, a Montreal critic commented "I cannot understand how it is when Canadians have any money to spend they always avoid local men and prefer to employ alien architects." The anger and resentment of Canadian architects over the treatment afforded them was displayed in the short term by resistance against a competitive system which offered Canadian architects little hope of success. In the late 1880s criticism against competitions which were openly prejudicial or poorly administered became a common feature of the architectural press. Canadian architects also began to press for competitions that were closed to Americans, a tactic that achieved some success, notably in the case of the Sun Life Assurance Company competition of 1889. In the Spring of 1889, the Montreal based company announced its attention to hold an open competition, but under pressure from

32 CAB, August, 1890, p 89 and June, 1890, p. 62 are two examples.
the city's architects it agreed to limit entries to Canadians. In a country made up of immigrants however, such a policy could hardly be rigidly applied, nor does it seem to have been, as the firm of James and James who had come to Toronto from New York to design the Board of Trade were permitted to enter as architects, James and James, Toronto; unsuccessfully as it turned out. First prize was awarded to the Montreal architect Robert Findlay (see Plate 8) while James and James placed fourth following the Montreal architects W. T. Thomas and W. Mclea Wallbank.33

The terms of the Sun Life competition did have the effect of setting a certain precedent and when the Board of Trade of Montreal made known its intention to hold an architectural competition in the autumn of 1890, the CAB for one, suggested that it follow the example set by Sun Life. The Board of Trade, the journal said, "had an opportunity of showing a patriotic spirit by opening their competition for their new building to Canadian architects only, following the example set by the Sun Life Insurance Co."34

The Board of Trade competition however, was to be a matter of far greater difficulty than that for the Sun Life Co. and one which compared in impact with the controversies surrounding the Board of Trade and Parliament House in Toronto. In many ways the circumstances concerning the Montreal Board of Trade competition were similar to those in Toronto; it was to be an office building

33 The assessors for the competition were the Toronto based firm of Knox, Elliot and Jarvis and their report was published in CAB, January, 1890, p. 5.
34 "Board of Trade Building," CAB, August, 1890, p. 89.
Plate 8, Sun Life Assurance Company building, Montreal, (1889), Robert Findlay, architect.
of the first class to be built in the heart of an expanding financial
district and designed to house the interests of the city's leading
businessmen. But this time, with the experience of the Toronto
competition behind them, Canadian architects seem to have been
determined to forestall any repetition of the events which had
caused them so much embarrassment in Toronto.

In August of 1890, less than two months after the appearance
of the article in the AABN alleging open discrimination against
Canadians on the part of the Toronto Board of Trade, an article
appeared in the CAB which suggested that the Montreal Board of
Trade had already come to the conclusion that they would be unable
to find a Canadian of fit qualifications to design their new
headquarters. According to the journalist,

...the Board of Trade of the City of Montreal, having acquired
a site acceptable to all, have now under consideration the
advisability of having their plans prepared. The president
and secretary have recently made a tour through the States,
examining the various Boards of Trade buildings, and have
returned to the city fully convinced that no Canadian
architect will be found fit to erect their building.35

As the journalist went on to say, "I suppose the Board of Trade
would hardly consider it fashionable to employ purely local
architects while other large corporations import theirs from the
United States."36

During their tour through the United States, the president
and secretary of the Board of Trade had approached five American
architects requesting that they submit proposals for which they
would each receive three hundred dollars toward their expenses.

35 Ibid. 36 Ibid.
At the same time they had asked Richard Morris Hunt to judge the competition. When the competition was finally announced however, it turned out that the Board of Trade had decided to open the competition to Canadians but only under terms that were clearly discriminatory. While the selected American architects would each receive their three hundred dollars, all other architects would be expected to compete without payment "thus discriminating against the Canadian architects in favour of the five American ones."37

The feelings of Canadians were summed up in the CAB, "It is rather rough on Canadian architects" it said "to see the president and secretary of an influential body scouring American towns and interviewing American architects regarding plans for a comparatively insignificant building. Surely the Dominion of Canada," it continued, "--if not the City of Montreal--contains architects well qualified to erect a building equal if not superior to any produced by American architects."38 In response to the Board of Trade, Canadian architects began to act in concert in order to pressure the Board to change the competition rules.

During the autumn of 1890 events moved quickly, and in retrospect it is difficult to know what role the Board of Trade competition played in bringing the architects of Quebec together in a provincial association. As we shall see, association was already underway in both Ontario and Quebec by this time, but it is also the case that the resentment which architects felt over the high-handed

37"Organization of the Province of Quebec Association of Architects," CAB, October, 1890, p. 114.

38"Board of Trade Building," CAB, August, 1890, p. 89.
approach of the Board of Trade united architects in both Montreal and Toronto to a degree that had never been seen before. Following the announcement of the details of the Board of Trade competition, leading members of the architectural community met in Montreal in late August to discuss the situation and it was this meeting that led to the formal organization of the Province of Quebec Association of Architects on the tenth of October.

One of the first acts of the newly elected council of the PQAA was to approach the Board of Trade with a list of grievances and proposals that six Canadian architects should be invited to submit designs, that a Canadian should be appointed to act as jury together with Mr. Hunt, and finally that the Board should provide a guarantee that no design would be accepted which was estimated at more than 10% of the amount stipulated in the competition programme. In response to these demands, negotiations continued between the Quebec architects and the Board of Trade for the next few months, but when it became clear that the businessmen had no intention of acceding to the proposals put forth by the Canadian architects, the PQAA in a show of force advised all its members to refrain from entering the competition.

The issues in question over the Montreal Board of Trade competition were of interest not only to architects in Quebec

39 Archives Nationales, Quebec, Minutes of the Province of Quebec Association of Architects, October 1890-January 1891.

but to architects across the country as well. In Ontario, the Ontario Association of Architects had been founded just a year earlier in 1889, and throughout the autumn of 1890 it watched the developments in Montreal with great interest, communicating with the PQAA, and urging the Board of Trade, by way of correspondence, to agree to the proposals put forth by the Quebec architects.41

Once the decision had been made by the Board of Trade to refuse the petition of the Quebec architects, the OAA, in December of 1890, decided to join with the PQAA and advised its members to follow suit and boycott the competition. In a letter to the Montreal Board of Trade the secretary of the OAA outlined the reasons for their decision:

1st. That the Board has selected six architects resident in the United States and agreed to pay them $300 each to send in competitive designs and has not seen fit to select six Canadian architects in like manner, but has decided to award $300 each to the authors of six Canadian designs placed highest in order of merit by the expert. Under such an invidious distinction the most capable architects will not compete for the paltry sum of $300 and the slight possibility of obtaining the commission to erect the building. If your board had selected six Canadian architects of the highest standing, the competition would have been one between six representative architects resident in the United States, and six resident in Canada, and would have been likely to meet with a hearty response from Canadians, but under the conditions advertised the most capable architects in Canada will not compete, and the competition will really be between six firms of architects in the United States—some of them of the highest standing—and such men in Canada as are prepared to compete for the $300, knowing that the best men in the profession are not competing.

2nd. That the amount appropriated is utterly inadequate for the erection of the building, and that any design which could be carried out for any sum near the amount named would be absolutely sure of rejection.42

Although the combined boycott of the Montreal Board of Trade competition by the leading architects of Montreal and Toronto could hardly be said to have put an end to the issues which prompted it, it was an accomplishment in almost every other way. True to their word, most architects belonging either to the PQAA or the OAA did not enter the competition, and when Richard Morris Hunt awarded first prize to the Boston firm of Shepley, Rutan, and Coolidge, in the summer of 1891 (see Plate 9) those Canadians who had entered and lost, accused the Board of Trade of precisely that duplicity which the PQAA Council had warned against; the competition, they charged, had been biased against Canadians and all the estimates of tender for the winning design far exceeded the appropriation given in the competition regulations.43

On a deeper level, the show of strength and unity which marked the response of the architects to the arrogance of the Board of Trade signalled the beginning of a new era in the history of the architectural profession in Canada. This concerted action was the first test of the fledgling associations, and it proved that the associations and the professional idea itself were concepts whose time had come. There was no going back to the

42 "Ontario Association of Architects," CAB, December, 1890, p. 135.
43 CAB, August, 1891, p. 78.
Accepted Design for Board of Trade Building. Montreal, Que.
isolation of the mid-1880s.

If 1885 was marked by the rising star of Richard Waite heralding a new wave of American influence, the year 1890 offered the hope of a profession organized to meet the challenge, and so it is to an examination of the OAA and the PQAA and the circumstances surrounding their establishment which we should now turn. But before leaving aside our investigation of American architectural ideas in Canada for a closer look at the idea and implications of architectural professionalism, it is well to remember that the vitality of American architecture at the end of the 19th century, and indeed the thriving promise of the United States itself, were considerations never far from the minds of Canadian architects during those years.

The struggle to achieve a modus vivendi with the United States which left room for the achievement of a true national expression is in many ways a backdrop against which all other actions can be seen, and it was the growing realization of this sombre and overriding consideration which was to propel Canadian architects forward in the years ahead. Between 1890 and 1914 this tension between the needs of the Canadian profession and the natural influence of American architecture and its architects was to have its concrete expression in matters as prosaic as the implementation of a tariff on foreign blueprints and as far-reaching in their consequence as an awakening desire for a Canadian vocabulary of forms. All these are considerations to which we shall return, but in the meantime should anyone doubt the correspondence of national considerations to the work of architects during those years, he
need only remember these words written by a young J. C. B. Horwood in 1893:

How often we see in our daily papers the assertion that still more intercourse with the United States—some even going so far as to say complete subjugation to them—is the panacea for all our ills; and some businessmen have been very much disposed of late to place a premium on American architects by engaging their services when any work of importance is under consideration. What wonder then is it, that if some of our fellow countrymen exhibit such an unfortunate bias of mind in this direction, that many of our important buildings should express the same.

We need to be weaned from all such habits of thought, and to awake to a consciousness of our position as a nation, and our value to, as well as our dependence upon, the older countries of the world. I am fully convinced that never till that is accomplished within us, and it has become a habit of our mind to think thus broadly, can we have work which will possess a distinctively national mode of expression, and which shall thereby be of such a character that other peoples will study it with profit as they have studied American architecture.

Chapter 2: Organization
One of the effects of the controversies of the 1880s was to make Canadian architects painfully aware of the need for greater communication among themselves and, this having been attained, to dramatize—in the case of the Montreal Board of Trade competition—its usefulness. It would be misleading however to conclude from this that either the sentiment in favour of architectural organization or indeed the idea itself, was something completely new to Canada in 1885. What is nearer the truth is that while there had been a feeling in some circles and for some time that Canadian architects might be well to organize themselves into an association, it was not until the 1880s that a series of events combined to bring Canadian architects together.

There had, for example, been earlier attempts at organization. As early as 1834 W. W. Baldwin had suggested that Toronto might "improve greatly the style, stability, salubrity and accommodation" of its building "either by forming an architectural society independent of the Mechanic's Institute or as a branch of it." While this had little effect, a number of architects did form a society of architects in Toronto "somewhere about 1856." The society seems to have got off to a strong start, electing George Brown its president and William T. Thomas vice-president, but despite this and further accomplishments, including the establishment of by-laws and agreement on a schedule of charges, it collapsed shortly after, ostensibly a victim of professional rivalry.

1 Dr. W. W. Baldwin, "Notes for a lecture," Baldwin Papers, Baldwin Collection, Metropolitan Toronto Central Library, Toronto.
3 Ibid.
A second attempt was made in Toronto in 1876 and earlier in Montreal in 1865 a group of architects had met "with a view to form an association of architects," but without exception these early efforts at organization had had little long-term effect. So familiar had this pattern of early success and subsequent failure become to architects hoping to form a society or association, that in 1890 when the Quebec architects met to found the PQAA, a journalist for the AABN remarked rather dryly, "It really looks this time as if they mean business...although the half-dozen attempts that have been made to bring the members of the profession together in Montreal during the last twenty years have failed."5

If there is a lesson in all of this, it must be that, on balance, Canadian architects through the course of the 19th century had shown little opposition to the idea of organization in principle. Indeed, rather the opposite seems true; the various and sporadic attempts to form an institute of architects in Canada as then existed in Great Britain and after 1856 in the United States is evidence of at least a certain support for a professional society since the middle of the century. The fact remains, however, that all of these efforts had come to the same, early end, but as far as it is possible to tell in the absence of surviving records there seems to have been no single reason

4 "Province of Quebec Association of Architects," CAB, October, 1890, p. 112.

5 "Canada," AABN, June 21, 1890, p. 181.
for their failure.

From the speeches and writings of Canadian architects made once organization had been accomplished, and looking back, it does seem to be the case that in the minds of the architects themselves, previous attempts at organization had failed above all for two reasons. The first was that up until the 1880s the profession seems to have been too weak and dispersed for organization—"I suppose we were not numerous enough"—offered Charles Baillarge in 1890, and secondly, the profession itself seems to have been torn by division and personal jealousy.

Of the first it is possible to find only intimations such as Charles Baillarge's remark, already quoted, or the spirit of remarks made by one of Toronto's early architects, Kivas Tully, to the OAA in 1892 where, describing the practise of architecture in Toronto during the 1850s he commented on the real shortage of trained men. Of the second, there is no lack of evidence and it was a theme taken up and described by W. George Storm in 1889. Speaking as the first president of the OAA he remarked:

I need not now remind you of the many attempts made in the past to form organizations for the advancement of the art and science of architecture in this city and province, and their utter failure in every instance, principally I think from two causes - petty professional jealousies on the one hand, and want of energy and interest in the management on the other. Well has it bee said by one writer—speaking in reference to the profession of Architecture—that the 'modern system of competition and the rivalries of private practice, bring into undue

6 "Province of Quebec Association of Architects," CAB, October, 1890, p. 112.
prominence individual interests, until the members of the profession may be described as a number of fortuitous atoms with a strong tendency to develop the antithesis of esprit de corps.

Neither was it the case that dissension of this sort was confined to Toronto, for touching on these same points in a way that seems almost to paraphrase Mr. Storm, the Montreal architect David Robertson Brown told the first meeting of the PQAA in 1890, "I have seen for years past, as Mr. Baillarge has said, the need of a Society like this. I have reluctantly thought it could never be formed, because as I have said, jealousy is a strong feeling amongst us all." Continuing in the same vein he said, "The great trouble and dissension amongst the architects in past days has been to vie with each other as to how much more work one should do than the other for nothing, and how much they might do to try and keep others from getting employment." Finally, in a pointed reference to that problem of competitions which W. George Storm had described and which the architects of both Ontario and Quebec had so recently been caught up in he said "I have opposed from the first and still oppose—I might as well tell the members of the Association who are present—entering into any competition whatever, unless each professional brother is paid for his ideas."

Judging from the comments of architects during the 1880s

9 "Province of Quebec Association of Architects," CAB, October, 1890, p. 115.
10 Ibid. 11 Ibid.
and early 1890s it also seems to have been the case that Canadian architects during most of the 19th century were not only divided but saw relatively little of each other. Speaking in 1890, the Montreal architect A. T. Taylor said "I have felt in common with all of us, that we have been far too much apart. We have all been like stars shining each in his own sphere...I have listened with pleasure" he said, "to those who have said that they hoped all jealousies and ill will would disappear."\(^{12}\)

Much the same point was made by A. C. Hutchison, another well known Montreal architect and an elected member of the Royal Canadian Academy. At the first meeting of the PQAA he rose to say "I feel very proud this day to see so many of our architects meeting together for a common object," noting that "This it has been my wish for many a year to see, and I have talked to many of my confreres about it in the past, but the time never seemed opportune until the present."\(^{13}\) He added in a very telling passage:

I have practised my profession in Montreal for a number of years—not so many years as some of my confreres who are present, but a quarter of a century now—and this is the first time that I have met in a social capacity with any of my confreres. I hope from year to year that we will meet in this social capacity and form friendships and make acquaintances among our members, some of whom we have hardly known to speak to before.\(^{14}\)

\(^{12}\)Ibid., p. 116.
\(^{13}\)Ibid., p. 112.
\(^{14}\)Ibid.
For both A. C. Hutchison and A. T. Taylor the idea of organization offered the hope of a greater communication between architects, and, in time, the dissolution of those divisions which had separated the profession. For others, of which W. George Storm and David Robertson Brown are two examples, the situation was more critical. To their mind, those differences, the lack of communication, and professional jealousy, all of which earlier on in the century may have been at worst an unfortunate fact of life had, by the mid-1880s, come to block the development of architecture within the country. Taken together, they seemed to lie at the base of those difficulties—including a poor public standing and ill-managed competitions—with which Canadian architects were increasingly confronted.

It was exactly this argument which Storm developed in an article which appeared in the Canadian Architect and Builder in February of 1888 titled "An Appeal for Organization."

"The profession is not held in the highest esteem by the outside public," he argued, and this he said "is the fault of the members themselves who exhibit such jealousy of one another that it causes all this indifference to them." The beginning of a solution, he suggested, lay in an association of architects:

It is in the hope of achieving a new unity that an association should be formed and it is our duty to resuscitate it [the architectural profession] here in Canada to its proper and legitimate position. Such organisation is necessary, not only in order that the dignity of the profession be maintained, but also that by means of the united action which could then be secured, Canadian architects might protect their rights.

16Ibid. 17Ibid.
The connection between the problems facing Canadian architects and their past failure to organize was made even more emphatically several months later in another article in the CAB. Writing on the "Need for Organisation," the Toronto architect M. B. Aylsworth argued that a professional association was badly needed if only to counter the inroads made by American architects. "I know of no city whose architects have more cause for complaint and protest than Toronto," he wrote, "where for the few years past the very best buildings have been entrusted to foreigners."\(^{18}\)

As the writings of people like W. G. Storm and M. B. Aylsworth illustrate, the worsening situation which faced the profession at the end of the 1880s led a good many architects to press for another attempt at some form of professional organization despite the failures of the past. That they should at this time have finally succeeded is probably best explained by the very urgency of the situation, but besides this these new efforts coincided with a series of developments which taken together had the effect of bringing the architects at last into full fraternal communion.

Of these developments, the first that should be mentioned was the foundation and publication during the winter of 1887-88 of the CAB. To be published "monthly in the interest of architects, civil and sanitary engineers, contractors, and manufacturers of and dealers in building materials and appliances," the magazine was the first Canadian journal devoted to architecture and the building trades.\(^{19}\)

\(^{19}\)CAB, January, 1888, p. 1.
The editor and publisher of the new magazine was C. H. Mortimer, a journalist by trade who had been born in Barrie, Ontario in 1856. After first working in the office of the Toronto Evening News, Mortimer had set out on a more independent path in 1885 with the purchase of a trade journal by the name of the Dominion Mechanical and Milling News. This was followed by the publication in 1888 of the CAB, and subsequently of a series of magazines and journals including Canadian Engineering and Contract Record, Canadian Lumberman, and Home and Youth. In addition, Mr. Mortimer, under the guise of the CAB press, published the proceedings of the OAA from 1901 onwards.

According to Mortimer, the magazine had been founded because of what he saw to be "the rapid improvement in methods of construction, in decorative art, and in sanitary appliances, which has marked the history of the last ten years in Canada, and the field of usefulness which seems to lie open to a printed medium of information and communication between the thousands of persons interested in such subjects." From the outset, it was Mortimer's intention to play an active role in the architectural life of the country. As he stated in his opening number, it was his expectation that the CAB would "prove a useful addition to the technical literature of the country and assist in bringing about many reforms."

The result of this was that the journal very quickly

22 Ibid.
became a focus for matters architectural to a degree and in a manner that had not existed before; a position it managed to retain until it was superseded by better and more professional architectural journals after the turn of the century. Before the publication of the CAB, Canadian architects had been forced to rely on foreign architectural journals for information. None of these however carried much news of a specifically Canadian nature and it was to fill this need that C. H. Mortimer had founded the journal. From its first issue the CAB contained a full range of information on the Canadian architectural profession, including besides leading articles, technical information and illustrations of new work, numerous articles, letters and, after the formation of the provincial associations, the proceedings of the country's architectural societies. In short, its pages became a forum for architectural debate and discussion.

Shortly after the CAB appeared, it became clear that as regards the issue of professional organization, Mortimer was strongly on the side of those who lobbied for the creation of a formal architectural association. More than this, in the face of American competition, and the development of architectural practice as an increasingly complex and scientific art, Mortimer supported those who argued for the professionalization of architecture in the full sense of the word; as a profession on par with medicine and the law and with all the rights, restrictions and responsibilities associated therein.

In consequence, when the first edition of the CAB appeared in January, 1888, it included two articles dealing with the role of the architect as a professional in society: one titled
"The Architect," and written by James Young and the other, "The Position, Standing and Status of an Architect," by "Constans Fides," a nom de plume used by W. George Storm. This first issue was typical of what was to come, and in the months and years that followed, the CAB resolutely supported the ideals of organization, professionalism, registration, and formalized architectural education, all of which Mortimer saw as necessary for the development and strength of architectural practice in Canada.

Besides the influence of the CAB, which did a great deal to forward the ideas of those who argued for association, a second factor leading to the eventual organization of Canadian architects was the support given the idea by the Ontario Education Minister, Mr. George Ross. By virtue of a coincidence of interests, Mr. Ross, who was later to be prime minister of Ontario, agreed to take up the cause of the architects, and it was largely as a result of his efforts that a bill incorporating an association of architects in Ontario was brought before the provincial assembly and subsequently passed. The role of George Ross in the formation of the OAA is an interesting one and it is probably best to begin an account of his part in the move towards organization with a short review of events immediately prior to his appearance on the architectural scene.

We have already noted that the disorganization of Canadian architects during the 1880s had left them vulnerable to the indignities of ill-managed competitions and to the inroads of architects based in the United States. A further consequence was a serious lack of educational opportunities for young men who wished to
further their architectural training, especially for young men working as draughtsmen. Suffering the lack of any other organization to act on their behalf, a group of young architectural draughtmen and students in Toronto took it upon themselves during the late autumn of 1886 to form an architectural draughtsmen's club which would meet on a regular basis for mutual criticism and instruction. The first meeting of the club was held on the 23rd of December, 1886, and within a few months the draughtsmen's club had affiliated with the Canadian Institute, taking on its name to become the Architectural Section of the Canadian Institute. 23

With the change of name came a change of quarters and following its affiliation the club met in the rooms of the Canadian Institute. The first meeting of the club had been held in the office of the Toronto architectural firm of Langley and Burke, a location significant in that it was evidence of an interest in the student's club on the part not only of Langley and Burke, but also of the profession in general. Within a short time the club had become something of a center for architectural discussion and with the help of practicing architects such as Edmund Burke and W. George Storm, instruction was offered on topics as practical as the detailing of columns, wood floors, arched foundations, carpentry and plumbing. The meetings also included a series of lectures which included during the first year, papers on "The Uses and Abuses of the Romanesque", and

another on "The Best Style for Canada." 24

It was here in the rooms of the Canadian Institute that a generation of architects including W. L. Symons, A. Frank Wickson, Charles Langley, Henry Sproatt, A. H. Gregg, J. C. B. Horwood, J. Francis Brown and Henry Simpson first found their way into an emerging community of architects. Moreover, the foundation of this early draughtsmen's club is of particular interest, because in the determination of the students to improve what was at best an unsatisfactory situation and in the willingness of practicing architects to come to their aid, one can see the first concrete manifestation of that belief, expressed in the writings of architects at the time, that through co-operation some progress might be made. It was, indeed, a portent of things to come. Less than a year later, in October, 1887, a group of Toronto architects again found cause to come together, this time in the office and at the request of W. George Storm, to consider a suggestion that the architects of the city "make an effort to settle a strike which was then on in the building trades." 25 From this meeting was to emerge the first architectural society of any consequence in Canadian history: the Architectural Guild of Toronto.

Because the formation of the Architectural Guild was to have such a long term effect, and because it was so clearly a response to conditions at that time, it is worthwhile to quote in full an

24 Ibid., p. 10.

account of the formation of the Guild given by one of its first members, S. G. Curry, to the Royal Architectural Institute of Canada in 1930:

The Architectural Guild of Toronto which was organized in 1887, was the first architectural association to be formed in Canada. Its formation came about when the writer found it necessary to consult the late Mr. W. G. Storm on a matter which concerned the firm of Darling & Curry in relation to the proposed erection of the Ontario Legislative Buildings. During one of these consultations, Mr. Storm produced a letter from the builder's association, suggesting that the architects of the city make an effort to settle a strike which was then on in the building trades. As there was no existing organization at the time, it was thought best to call a meeting of a number of architects. This meeting was held at Mr. Storm's office on October 3rd, 1887, and after considerable discussion, it was decided to form an organization forthwith to be called the Architectural Guild of Toronto. Meetings were arranged to take place once each month around the dinner table, at which architecture and other matters of interest to the profession were to be discussed.

As Mr. Curry went on to say, "The Guild was successful from the very first meeting." The Guild lost little time in establishing its goals, defining them as the promotion of "good fellowship by social intercourse; to discuss subjects of professional interest; to foster friendly criticism of one another's work; to secure better public recognition; and to raise standards of professional ethics." By the end of 1888, just a little over a year after its founding, the Guild included twenty-two architects. Besides Storm and Curry the members of the Guild were as follows: Edmund Burke, Frank Darling, A. R. Denison, D. B. Dick, Grant Helliwell, W. R. Strickland,

26 Ibid. 27 Ibid.

Taken together, these men were the cream of the architectural profession in Toronto, and it was not long before they were taking an active role in the affairs of the city. Writing to the RIBA Journal in February, 1889, R. W. Gambier-Bousfield reported that "A committee of the Guild is in communication with the City Authorities, in connection with revised building laws, and assisting them in the revision." Besides this, he said, "Another committee is in consultation over the Plumber's By-Law, which is a new thing here enforcing every master journeyman plumber to pass an examination and obtain a license or certificate before being allowed to work," while a third committee was busy "taking up the question of remuneration of architects."29

With so much accomplished so fast the Architectural Guild was soon the chief voice representing the interests of Ontario’s architects. Thus it was no surprise that when the provincial government announced its intention to introduce a post-secondary course in architecture to the programme at the Ontario School of Practical Science, the Architectural Guild was soon drawn into the discussion surrounding the nature and function of the proposed course.

What is surprising, even now, is that given the beginning which had been made with the draughtsmen's club by the architects and students of Toronto, the proposal of an advanced course in architecture should have come not from the architects but from the provincial government. But although the Architectural Guild was by 1889 much concerned with the whole question of architectural education, there is no doubt whatsoever that the prime mover behind the proposal was George Ross. That this was so seems to have been very much a measure of the man.

Born in 1841, George Ross had worked for fifteen years as a teacher and inspector of schools before entering politics. In 1883 he was offered and accepted the post of minister of education for Ontario, and based on his personal experience he set out to reform the provincial school system and make it among the best in the world. It was thus as minister responsible for the School of Practical Science at the University of Toronto that Ross in 1885-86 toured the "leading schools of the United States, such as Cornell...and the Boston Technological College and found that the Americans had provided very liberally for education of this kind: and he felt it to be his duty to place within reach of Canadians equal facilities." In comparison

30 R. W. Gambier-Bousfield noted in his letter to the RIBA of February, 1889, that "A matter taken up strongly by the Guild is the education of students."

32 "The Ontario Association of Architects," CAB, February, 1891, p. 16.
to the United States, Ross discovered, education in the applied sciences in Ontario was underfinanced, and the government faced a choice either of improving the situation or of losing students to the United States. As a 1906 report on the development of the School of Practical Science was to comment, "The demands of Science, with the expensive laboratory teaching it entailed, became imperative. The foundation and rise of Cornell University forced upon Canadian universities the alternative of setting up a costly equipment or of seeing their students go to the United States for training."\(^{33}\)

The final outcome of Ross' proposals for an improvement in the School of Practical Science was its reorganization in 1889 including, a closer affiliation with the University of Toronto, construction of a new building, and the introduction of a course in architecture. The idea of an architecture course as part of an improved programme in the applied sciences seems to have been part of Ross' plans as soon as he had returned from the United States, for the recommendation was included in the minister's report for 1886 and supported by the University magazine Varsity, which called it "an exceedingly valuable suggestion."\(^{34}\) To gain support for the idea, Ross, in December of 1888, invited leading manufacturers and industrialists

\(^{33}\)"The Act of Federation", Draught of Report, 1906 University Commission, University of Toronto Archives, Box 1.

\(^{34}\)Ontario Minister of Education, Report for 1886, (Toronto, 1887) p. 167; The Varsity, 2 April, 1887. p. 239.
such as Hart Massey and the directors of the Imperial Bank of Canada, to meet with him and discuss "the providing of full courses in applied chemistry, applied mechanics and architecture."

It was in the midst of this that the Architectural Guild met with George Ross, and out of their meeting came the proposal that the Guild, if it was to act in concert with the government on behalf of the province's architects, would do well to broaden its membership. From this it was only a short step to the formation of a province-wide association, and writing to the RIBA R. W. Gambier-Bousfield explained that this was exactly the path the Guild had decided to follow:

...a very important movement is now on foot. The Minister of Education for the Province has hit on the idea of establishing a "Chair of Architecture" in connection with the provincial schools. A deputation from the Guild waited on him and requested him to listen to them as a professional body and to take some advice from them as to the manner in which this Chair should be founded. As a rule, this Minister is a difficult man to deal with, but he threw out a hint that it would be well for the Guild to become an incorporated Society, that its representations might have more weight. Naturally, the Guild is taking the matter up without delay, and treating it with the seriousness it demands; and it has told off a Committee to draft by-laws, and work out a scheme for associating all architects now practising in the Province. This work must be carried out very judiciously, as there will undoubtedly be opposition from certain quarters, and it is necessary to show what advantages will accrue to members through incorporation. We propose to have a regular course of instruction for students and thus satisfy the Government that the Guild is capable of examining students. The "Chair" of Architecture being a provincial foundation the Guild must become a provincial association, and apply for incorporation at the next session.

35 Letter from George Ross re the Ontario School of Practical Science, 17 December, 1888, Ontario Archives, SPC File.
Gambier-Bousfield's letter to the RIBA Journal was written on the 6th of February, 1889, and the meeting he referred to at which the Guild had resolved to work towards a province-wide association had taken place almost exactly three months earlier on the 8th of November, 1888. Following this meeting, the committee of organization had draughted a tentative constitution and canvassed architects across the province, inviting them to an organizational meeting to be held in Toronto on the 21st of March, 1889.

It was at this meeting that the OAA can be said to have had its beginning. The meeting was open to every bona fide architect, that is all men "who have received the training and practice necessary to qualify them to perform satisfactorily the duties of an architect." In total, sixty-three of the province's architects met to consider the draught constitution and vote on the proposed organization. Both the draught constitution and the principle of formal organization were upheld, a temporary council was elected and provision made for the first annual convention of the OAA to be held in Toronto on the 20th and 21st of November, 1889. Following the convention, a bill to incorporate the new association was brought before the Ontario Legislature, and under the sponsorship of George Ross received third reading on the 31st of March, 1890.

38 Journals of the Legislative Assembly of the Province of Ontario, Vol. XXIII, 53 Victoria, 31 January to 7 April, 1890, p. 142.
The passage of the Ontario Architect's Act in the Spring of 1890 was followed within the space of a year by similar legislation in Quebec, creating the Quebec counterpart to the OAA: the Province of Quebec Association of Architects, (PQAA). As we have seen, the feelings of architects in Quebec in the late 1880s—in particular an increasing frustration at the turn of events and a growing desire for change—were virtually identical to those expressed by architects in Ontario. By 1889 conditions in Quebec were ripe for change as they were in Ontario and so it was that in the same way that the recommendations of George Ross finally brought the architects of Ontario together, the model of the OAA acted as a catalyst which, with the incentive of the Board of Trade competition before them, prompted the Quebec architects to overcome their differences and organize.

As early as January, 1890, the CAB reported that in the wake of the formation of the OAA, "steps were being taken to form Architectural Associations for the cities of Montreal and Quebec."39 Despite this, no consensus was reached between the two groups until August, when following the announcement of the details of the Montreal Board of Trade competition, a group of leading Montreal architects consisting of J. Nelson, A. Raza, A. C. Hutchison, J. B. Resther, J. W. Hopkins, A. F. Dunlop, W. E. Doran, Christopher Clift and A. T. Taylor met to discuss the situation and draw up plans for a provincial association.

39CAB, January, 1890, p. 2; a second notice was printed in the CAB, February, 1890, p. 14.
On the 11th of September they met again in the board room of the Mechanic's Hall "to receive the constitution and by-laws framed by a committee of organization, and to consider the adoption of a few alterations suggested by the Quebec Association of Architects." At the same time it was resolved "to ask the Quebec Association of Architects to appoint a date for a general meeting of the architects of the province, to take steps at once to form a provincial association and to proceed with the general routine in connection with the same." With this the formation of an association in Quebec complementary to the OAA was well on its way. On the 10th of October, 1890, the combined architects of Montreal and Quebec met, adopted the report of the Montreal organization committee and formally established the PQAA.

That the new architectural associations filled a very real need was demonstrated by the eagerness with which architects joined the associations, and by the fact that the united architects lost little time in making use of the new powers at their disposal. Within days of its formation the PQAA approached the Montreal Board of Trade to press their case while in both Ontario and Quebec, the association soon began to sponsor regular meetings, lectures, and the like and to concern themselves with a whole range of issues from the need for a set schedule of charges to

40 "Province of Quebec Association of Architects," CAB, September, 1890, p. 102.
41 Archives nationales, Quebec, PQAA minutes, pp. 10-41; CAB, May, 1891, p. 56.
the demands of architectural education.

By this time, however, the energy and spirit of the new associations was no longer founded on that vague ideal of professional fraternity which had been the mark of those early attempts at organization, but now drew its inspiration from an ideal and aspiration which was at once greater and less noble: that of architectural professionalism. By the first convention of the OAA held in November of 1889, it was already evident from the draught constitution, that the full implications of the sort of relationship envisaged by George Ross, where the Ontario architects would work hand in hand with the government to set and maintain standards of architectural practice, had begun to dawn on the great mass of the membership. And in a way foreseen by a few architects such as W. George Storm and David Robertson Brown, and yet far beyond the considerations of so contemporary a group as the Architectural Guild, the majority of architects in Ontario and then in Quebec considered and then accepted as somehow inevitable the principle not just of association but of professionalism in the broadest sense.

It was this professional idea, that the practice of architecture might and should be controlled through a professional society with rights of registration and examination which lay behind the legislation brought on behalf of the OAA and the PQAA before the assemblies of Quebec and Ontario. But as the architects were to discover, while the professional idea might have seemed self-evident in principle, in practice it was a matter complicated and contentious. So much was this the case, that when the architects attempted to carry out through a system of statutory registration what they saw to be the natural
consequence of their organizational achievement, they found themselves up against a wall of public opposition so intractable that within the space of a few years the OAA in particular seemed on the verge of collapse. It is to this that we now turn.
Chapter 3: Statutory Registration
By their own admission, the Architectural Guild of Toronto was as much a social club as a professional one; despite their range of interest, they were in the end primarily a group of architects who met informally from time to time over dinner. While this was, in its own way, a fine thing, and as we have seen the success of the guild was in view of the history of architectural societies in the country no mean accomplishment, the guild was by its very nature too exclusive and irregular to deal with the sorts of issues raised by George Ross.

Of these, the most important was the issue of architectural education within the province, and then by extension the formation of some sort of representative architectural society to work with the government. The problem with this, as the members of the Guild were quick to see, was that the foundation of any sort of province-wide association would soon give rise to the difficulty of distinguishing between trained and untrained architects:

Unfortunately every one actually making his livelihood by the practise of architecture at the present time must be included in the incorporation, so that until an examination is instituted we shall have to form some kind of inner association to distinguish between the good and bad--that is to say--between those entitled by their education to practise, and those who practise without any right to the name of architect. But the whole scheme is now under discussion, and requires consideration and development. ¹

The product of this subsequent discussion and consideration was the draught constitution brought before the OAA at the first convention in November of 1889 and then presented to the Ontario

Legislature as an "Act respecting the Profession of Architects," or in short form, "The Ontario Architects' Act."\(^2\) It had been George Ross' suggestion that the Ontario architects incorporate themselves as a registered society and this it was the prime intention of the Act to do. But besides this, the Act contained a series of measures and stipulations which gave the OAA a range of powers designed to enable it to deal with the duties set before it, namely the regulation of architectural education and standards of practice.

Pride of place within the Act was given to those measures dealing with architectural education. Under the terms of the Act, the council of the OAA, which would be elected after incorporation, would be given the power to set and administer examinations and,

(1) To appoint an examiner or examiners, for the purpose of ascertaining and reporting upon the qualifications,
(a) of all persons who shall present themselves for admission and enrolment as students at any of the matriculation, preliminary, intermediate or final examinations.
(2) To make all necessary rules, regulations and by-laws respecting the admission and registration of students, the periods and conditions of study, and the enrolment of architects as members of the association and all matters relating to the discipline and honour of the profession.\(^3\)

Following incorporation, entry to the profession would be possible only after passing the OAA examinations, or by giving evidence of previous training; members of foreign architectural

\(^2\) An Act respecting the Profession of Architects, 1890, 53 Victoria, Chapter 41.
\(^3\) Ibid, section 20.
societies such as the RIBA would be allowed free entry. The only exception to this, and it was a tacit reminder of the negotiations behind the Act, was the provision that "any student who has matriculated in arts in any university in Her Majesty's dominions, or in the Ontario School of Practical Science shall not be required to pass the preliminary examination."^4

Clearly, the intention of the Act was to make the OAA responsible for the establishment of educational standards for architecture in the province, and for the policing of those standards. But by way of compensation for the assumption of this task, and to give force to these provisions, three further measures were included within the Act. Taken together, they would if passed, have the effect first of raising architecture to the rank of a profession on a par with medicine and the law, and secondly, they would give the OAA complete control over the practice of architecture in the province.

The first of these was that upon introduction of the Act, no person "shall be entitled to take or use the name or title architect, either alone or in combination with any other word or words, or any name, title or description, implying that he is registered under this Act, unless he be so registered, and he so doing would be liable to conviction and fine."^5 Secondly the Act would make it impossible for any man not registered under the Act to obtain or recover fees for professional services in a court of law, and finally,

^4Ibid., section 21.

^5"Letter from Canada," AABN, 24 May, 1890, p. 115.
under the terms of the Act, it would be unlawful "for any city authorities, local boards, boards of works, or other public body in receipt of public moneys, to appoint any unregistered person to the office of building inspector or similar offices, under which inspection and approval of plans for buildings of all kinds would be done."\(^6\)

These last two provisions addressed issues of great concern to Canadian architects at the time and it is natural that the OAA included them in their bill. Throughout the 1880s, the haphazard and inconsistent inspection of buildings had led to protests from architects in both Montreal and Toronto, who pointed out that loss of life and property due to faulty construction or the abuse of such regulations as existed was often placed, quite unfairly, on their shoulders.\(^7\) At the same time, in the absence of an incorporated society of architects, the courts had refused to give architects any right of professional standing. This meant that if an architect was called to give evidence in court on the basis of his professional expertise, he was still compensated for his time at the tradesman's rate of one dollar a day, while a land surveyor who belonged to a professional society would be paid at five times this rate.\(^8\)

\(^6\)Ibid.

\(^7\)CAB, February, 1890, p. 14; April, 1890, p. 38; July, 1890, p. 76; October, 1891, p. 94.

\(^8\)This was the difference of rates in 1892 based on a report of the Toronto Builder's Exchange, CAB, April, 1892, p. 40.
The first of these sections, however, stating that after passage of the Act only those registered with the OAA would be able to title themselves architect, was quite a different matter altogether. It was in fact nothing less than a straightforward resolution imposing statutory registration on the architects of the province. That is, to quote Dr. Barrington Kaye: "the setting up, by Act of Parliament, of a register of practitioners, the qualifications for admission to the register being laid down, either in the Act, or by a Board appointed for the purpose." 9

According to the OAA, the introduction of statutory registration would, as introduced by the Ontario Architects' Act, be the cause of hardship to no one and would on the contrary be a source of great benefit to the public. To ensure that no man might lose his livelihood, all men then practicing as architects would be allowed to join the Association regardless of their training, while once this period of grace was over, the standards of entry established by the bill would guarantee that in the future all practicing architects would have at least a minimum expertise. This was, indeed, the long-term solution to that problem of distinguishing between trained and untrained architects. All this was included in the preamble to the Act which stated:

Whereas it is deemed expedient for the better protection of the public interests in the erection of public and private buildings in the Province of Ontario, and in order to enable

persons requiring professional aid in architecture to distinguish between qualified and unqualified architects, and to ensure a standard of efficiency in the persons practising the profession of architecture in the Province, and for the furtherance and advancement of the art of architecture;...the Legislative Assembly of the Province of Ontario, enacts as follows:—

Behind this public argument however, there was a further consideration, and it was the hope that statutory registration, through the power it gave the OAA, would lift the Ontario architects from out of their depressed and disorganized state. In one sweep, it would give the architects professional status, close Canadian practice to Americans living outside the country, and over time raise the standard of the profession. In consequence, it seemed the logical step for the OAA to take; as Gambier-Bousfield observed in December of 1889, the OAA had been organized not only to accommodate George Ross and increase public safety, but also "for the purpose of procuring legislation by which means the whole tone of the profession should be raised out of the wretched condition it now occupies."\footnote{RIBA Journal, new series, 6 (19 December, 1889), p. 86.}

As it happens, and despite the undeniable fact that the move of the Ontario and then Quebec architects towards registration and professional status came about in direct response to particular conditions in those provinces, the adoption of the ideals of professionalism and statutory registration by Canadian architects was matched by similar and contemporary developments throughout the English-speaking
Moreover, leaving aside for the moment the particular circumstances of the Canadian profession during the 1880s, this description of the pattern of events leading to statutory registration in Great Britain could easily be applied, with only a change of place-name, to Canada:

Professionalism developed in England during the nineteenth century as a means of affording the professional man security of employment in a free market economy dominated by the principles of laissez-faire and caveat emptor. Its development in any given profession followed a fairly general pattern: the foundation of a voluntary association, excluding unqualified or other persons liable to lower public prestige; the development of an explicit code of conduct; the growth of a system of tests and examinations; the extension of control over the relevant educational institutions; the widening of interests, first to national, and then to international activities within the field; a movement towards statutory registration.

The significance of this for our story is that it puts into a larger perspective the motivations and influences which lay behind the adoption of the registration idea by the Ontario architects and gives further weight to the connection made here between the advent of professionalism among Canadian architects during the late 1880s and the fears expressed at that time over the future of the Canadian profession.

13 Barrington Kaye, p. 22.
profession. Not only in Canada, but in Britain, Australia, and the United States as well, concern over the problems of competition, education and public standing was giving rise during the 1880s and 90s to agitation for a greater architectural professionalism and the institution of statutory registration. In a general way, the move of the Canadian architects towards professionalism was part of this world wide pattern.

This correspondence between events in Canada and Britain or the United States was not of course a simple coincidence. While architectural life in Canada followed its own momentum, Canadian architects were well aware of developments outside the country, and were often influenced by them. The best example of this was the communication which took place through the spring and summer of 1889 between the OAA, which was then draughting its Act of Incorporation, and the Society of Architects.

Founded in London in June of 1884 as an alternative to the RIBA, the Society of Architects had quickly adopted the principle of statutory registration and spearheaded a campaign to have a registration bill passed in the Commons in 1886. While the bill was defeated, the Society supported successive attempts in 1889, 1890 and 1892 which led finally to a celebrated break among British architects over the issue in 1891.

A leading figure in the British efforts to introduce statutory registration was Hugh Roumieu Gough, vice-president and then president of the Society of Architects, and the records of the OAA given evidence of correspondence between Gough and W. A. Langton, secretary of the OAA during the months leading up to incorporation. Gough seems to have played an important role in the final nature of the Ontario Architects' Act as it was submitted to the House, offering advice and sending copies of the British registration bills to the Canadians.¹⁵

It was then for a variety of reasons and under various influences that the proposed Act of Incorporation draughted by the OAA had, by the time of its submission to the Legislature, taken on the character of a bill for architectural registration. It was intended to take the architects of Ontario from voluntary association to a full professional status, but despite the fact that architectural registration had yet to be instituted as law by any elected assembly in the United States or Britain, and had already been rejected by some, the general feeling among the Ontario architects was that the bill would be brought before the house and quickly passed. It was, after all, an Act responsive to the needs of society, of great benefit to architects, and it

¹⁵At the proceedings of the OAA in January, 1891, a letter was read from Mr Gough demonstrating quite clearly the close communication between the OAA and the registration lobby in the United Kingdom, CAB, February, 1891, p. 15.
provided the framework for architectural education which George Ross had wanted.

To the dismay of the architects, this proved not to be the case. The proposed Act was duly introduced to the House by George Ross on the 5th of March, 1890. At the second reading it was referred to committee and there it encountered some rather strong and unexpected criticism. Under pressure, the bill was amended and then passed in a somewhat truncated form, receiving Royal assent on 7 April, 1890.16

The central criticism faced by the bill in committee was that its prime effect would be to create a closed corporation, establishing what amounted to a monopoly over architectural services. At a time when there was a growing distrust of industrial and commercial combines, heightened by nervousness over the power of the new trade unions, the members of the legislature proved to be unenthusiastic about a bill which seemed to create yet another protected interest, and which seemed to be of less benefit to the public than to the architects. Hoping to strike a balance between what they saw to be the advantages of the bill for the public and its less agreeable side-effects, the House in Committee amended the Act to read that after its passage, no person would be able to use the title "registered architect" rather than simply "architect" as had been proposed.

In this way the public would still be able to distinguish between qualified and unqualified practitioners, and the House would be able to avoid the political complications connected with close corporation. In the words of W. A. Langton:

To legislators the measure appealed only as a provision for the safety of the public and they thought that this would be sufficiently provided for by giving a distinguishing title, different from the usual title, to architects who had passed the qualifying examinations of the Association; thus setting members of the Association apart as a special class of qualified architects. The bill was accordingly amended in Committee so as to make the distinguishing title of members of the Association not "architect", as desired, but "Registered Architect," and in this form it was assented to on April 7th, 1890.

Besides this, the House Committee made several other changes. It cut those sections allowing that only registered architects might be taken on as public inspectors or give evidence in court, and retained only that clause which guaranteed registered architects who acted for the court professional fees. The terms of student study were made more flexible and finally, the last clause of the bill, which gave the council of the OAA the power, in the case of a criminal conviction or a breach of the Association's by-laws, to remove an architect from the register, was struck from the Act in its entirety. In the words of a speaker for the opposition, "...it was unfair to trust this power into the hands of the Association of Architects."

18 "Letter from Canada," AABN, 24 May, 1890, p. 115.
There was no denying that the architects' bill had suffered rather badly. As a Canadian journalist noted in an article published in the AABN, "practically this last clause, and the one restricting the use of the word "architect," formed the backbone of the bill as prepared by the Association. The one the Government obliterates, and the other it renders objectionable and almost useless by the interpolation of the word "registered." In the opinion of the reporter, the amendments to the bill called into question its very usefulness to the public and the profession. Speaking of the government he wrote, "They declare their purpose to be that of protecting the public, and then make no attempt to hinder those who do them injury, for who among the public is going to look out for the word "registered" on an architect's name-board. No, they all will see "architect" as heretofore, and will be bitten in consequence."21

Not only in the United States, but in Britain and Australia this early attempt at statutory registration had been followed with interest, and in general the reaction of architects there to the Ontario Architects' Act as finally passed echoed that of the AABN. In the view of the Australian Builder, some of the changes to the bill had been for the better, notably that which had made the terms of student study more flexible. But in the final analysis,

20 AABN, 24 May, 1890, p. 115.
21 Ibid.
it argued, the compromises made by the architects had been too great: "If a Registration Bill is to be anything at all, it should be a reality and not a farce," it said, and "It seems to us by their rejection of these clauses the Ontario Parliament have stultified and rendered almost negatory an act that in many respects is admirable."

The reaction of the RIBA which had watched the progress of the OAA with interest, was, if anything, even more critical. The Institute had been kept informed of developments in Canada throughout the correspondence of R. W. Gambier-Bousfield, and in June, 1890 it published in the Society Journal the Ontario Architects' Act in its entirety together with notes by Gambier-Bousfield and a separate leader. Commenting on the Act, the RIBA Journal said that to its mind those passages relating to the constitution and appointment of the council and those "which lay down definite rules respecting the qualifications of students desirous to register, are undoubtedly valuable and important, because they open a way for the Association to permanently influence the welfare of young men starting in life as architects within the Province of Ontario." But responding to the hope expressed by the Ontario legislature and by its Canadian correspondent, Mr. Gambier-Bousfield, that the bill would at least enable the public to distinguish between the qualified and unqualified

22 Australian Builder as printed in CAB, August, 1891, p. 77.
practitioner, the Journal had this to say:

But does it? And will an architect who carries to Ontario the Certificate of Fellow or Associate of the Royal Institute of British Architects be distinguished by the inhabitants of that Province as "unqualified" if he fails to register under the Ontario Architects' Act? Such a consummation is hardly to be wished, and the Council of the Ontario Association will probably not be long in finding it out. In one particular, however, they will be regarded by the architectural profession with curiosity: they are "the first by whom the new is tried." For though, during three centuries, the world has known that there are always architects and architects, a British Legislative Assembly has now decided that, within at least the confines of the Province of Ontario, there shall be architects and "Registered Architects."

Despite these comments and others like them, the mood of the OAA itself was one characterised more by a cautious optimism that by despair and self-disparagement. Given the complete lack of success of the registration lobby in the United States and Great Britain, theirs had been only a partial defeat, and the feeling was widespread that with hard work and a little luck, an amendment to the bill could soon be introduced which would bring about full registration. In the meantime there was room for genuine self-congratulation: the profession was now legally recognized and the groundwork had been laid for a post-secondary course in architecture.

The fact of the matter, however, was that whatever hopes the OAA might have for the future, the amendments to the Architects' Act had fundamentally altered the

24 Ibid., p. 354.

character of the association. For the time being and however the Ontario legislators might try to disguise the fact, the principle of compulsory registration had been rejected in favour of voluntary association. The failure of the OAA registration bill was also important in that it set the scene for similar developments across the country. In the wake of the Ontario Architects’ Act, registration bills were defeated in Quebec and British Columbia.

In Quebec especially, the progress of the Ontario architects was followed step by step and the Act of Incorporation of the Province of Quebec Association of Architects submitted to the Quebec Legislature was virtually identical to that draughted by the OAA, including the provision establishing compulsory registration. Unfortunately for the Quebec architects, the members of the Quebec Assembly had also followed the progress of the OAA, and in the words of one Quebec architect insisted on following as well "the bad example of the Ontario Legislature by mutilating the Act by giving powers to 'registered architects,' rather than to 'architects.'"26

The situation in British Columbia was somewhat different. In June of 1891, a group of architects met in the capital of the province, Victoria, with the intention of forming an architectural association. They seem to have set as their model the OAA and the PQAA for a month earlier, in May of 1891.

26 "Province of Quebec Association of Architects," CAB, October, 1892, p. 100.
the secretary of the OAA had received a letter from some architects on the West coast requesting him to send a copy of the by-laws and Act of Incorporation of the Association "to assist in the formation of a similar association in British Columbia." By the spring of 1892 the British Columbia architects had draughted a bill and submitted it to the legislature only to have it defeated on third reading after the speaker ruled that while it had been entered as a private member's bill, it was in character a public bill and would have to be re-introduced as such. To circumvent this, the architects then registered as a society under the Literary Societies Act, and on the 24th of June, 1892, the British Columbia Institute of Architects was born.

A consequence of this was that the new Institute could only be a voluntary association, for any form of architectural registration would have to be established by a separate act of the legislature. The intention of the architects themselves seems to have been some form of statutory registration, for just over half a year later, in February 1893, the British Columbia Institute of Architects was born.

Architects introduced another act which would have required all architects to register with the Institute by law. This was defeated in the House on second reading, but by the occasion of their third annual convention in December of the same year, the British Columbia architects were considering yet another attempt at an architects' registration bill. After some discussion "it was the opinion of the meeting that it would probably best further the object to be attained, to place the society in communication with the eastern societies to ascertain what if anything was being done by them, and to consider the question as a Dominion one."

After this, the British Columbia Institute of Architects seems to have gradually disbanded and the architects on the west coast then remained unorganized until after the turn of the century. In the absence of any surviving records it is difficult to know whether the failure of the Institute was a result of material circumstances on the coast at the time—in the early 1890s British Columbia was still something of an outpost having been linked with the rest of the country only in 1885—or a consequence of the failure of registration. It is significant nonetheless that even at this early stage the British Columbia architects were well aware of the efforts to achieve registration in Ontario and Quebec and had taken the idea as their own.

Despite their altered nature, the immediate effect of the Architects' Acts in both Ontario and Quebec was the formal registration and entry into the professional societies of the great majority of architects then practicing in those provinces. By November 1890, one hundred and forty architects had registered with the OAA and by July of 1891 this number had risen to one hundred and fifty-four. The same pattern could be seen in Quebec where the number of registered architects had climbed from forty in May of 1891 to seventy by the following September.30 Besides this, and no less important was the response of architectural students. During the first year in Ontario, thirty-five students wrote one of the three examinations allowing them entry to the professional registers.31

The base upon which this early success stood was the expectation that membership in the Associations would be widely recognized by the public and that those who opted out of membership would soon find themselves isolated and unemployed; in other words that the practical effect of the new Acts would be something close to full statutory registration. When it became clear, however, that this was not to be the case, and that whatever the profession felt about distinctions between registered and non-registered architects

30 CAB, November 1890, p. 121; May, 1891, p. 56; July, 1891, p. 69; September, 1891, p. 88.

31 CAB, April, 1892, p. 36; May, 1892, p. 46.
architects, the Canadian public was prepared to ignore the distinction entirely, it was not long before the euphoria surrounding organization began to look somewhat premature. The cracks in professional solidarity were not long in coming, and only a year later in the spring of 1892, a number of students refused to take the OAA examinations "stating that they could not see that they would be placed in any better position as architects by taking the examination." 32

This early reaction of the students was but a portent of things to come; it soon became apparent that membership in the PQAA and OAA, however congenial, was of little more need to the average architect than the student who was still able to practice as an architect without any formal training. The result of this was that by the mid-1890s the strength of the Association in Ontario especially was severely weakened. As membership and interest declined, the OAA was in danger of becoming less a representative body for the province's architects than a Toronto-based architectural club. As W. A. Langton was to write several years later, the effect of the registration amendment "was to kill the movement as conceived—as a universal movement towards the advancement of architecture—and to leave the Association with a struggle before it to attain even the partial effectiveness of a voluntary and partial Association. It proved to be impossible" he observed, "to elevate

an arbitrary title over the accepted title; or in other words to degrade the title Architect by law without there being any other reason for its degradation." He went on to say:

If the charter members of the Association had been forced to pass a stiff examination, so that the legal title had from the start a real significance, the result might have been different; but as all practicing architects were of necessity admitted to the Association in order that no vested interest might be injured, the select character proposed for the Association had no real existence, nor could it have any real existence until the ten or fifteen years should pass which were necessary to bring about the retirement of the older charter members and an influx into the Association of young men who had won their membership by fitting themselves to pass the entrance examination of the Association. But this period was a longer time than the Association could be held together to no immediate purpose. The Act for all practical purposes, in its first years, was merely a law licensing practicing architects to call themselves Registered Architects. As such it had no influence with the public, and thus the only inducement that the general body of the profession had to support the title and the Association was gone; indeed the most ardent workers for the advancement of Architecture had an objection to the title and did not use it, though they continued to support the Association in its aims and in the work which it still tried to carry on in the way of regulating competitions, testing material, procuring good building and fire by-laws and other public and professional matters, as well as meetings of members for mutual improvement, and annual examinations for students.

The failure of the Architects' Acts only confirmed the fears of those who had called from the first for compulsory registration and led many to the conclusion that in Canada at least, only registration could bring about the changes in the profession for which they had organised.

34 Ibid., pp. 11+12.
The effect of this was to bring the registration idea to the forefront of architectural concerns, and during the 1890s especially, the energies of the associations were given over, in large measure, to the propagation of the registration idea and to securing an amendment to the Architects' Acts which would bring statutory registration about.

Although the records of the OAA give the best account of a prolonged debate over registration, it was no less a goal for architects in Quebec. But while the Ontario architects very quickly began to press for an amendment to their Act, the policy of the Quebec architects was one of greater patience, and in the end, of greater success, for by 1898 the Quebec architects alone had succeeded in securing statutory registration while the architects of Ontario were unable to achieve a similar status until 1931.35

As in Ontario, the initial interest generated by the formation of the architect's association in Quebec soon gave way to a general apathy on the part of rank and file architects towards the general affairs of the council. For instance in November, 1892, a special meeting of the association was held "to propose ways to encourage attendance" and it was agreed that "in the future dinners might be held once a month to be followed by a discussion and in addition classes might be arranged for students."36

35 Raymond Card, The OAA, p. 16.
36 AN, Quebec, PQAA minutes, 24 November, 1892, p. 284.
It was in this way, through civic work, the promotion of art exhibitions, and the like, that the council of the PQAA worked to build up the prestige and authority of the Association. As a reporter noted in AABN, the plan of the PQAA "has been to make itself, through perhaps a long course of years, recognized by the public as a public-spirited body, having at heart the interests of art, and taking an active part in all movements for the furthering of art in the two chief cities of the Province, Montreal and Quebec."\(^{37}\)

By 1897, when the Association decided to approach the Quebec legislature, it had established itself at the forefront of the profession in the province with a number of accomplishments to its credit, of which the most significant was the institution of a chair in architecture at McGill University.

A proposal had been made as early as 1895 that "registered be removed from section 13 of 54 Victoria, Chapter 59," but while the idea was accepted by the Quebec architects meeting at their annual convention it made little headway. Two years later, in September of 1897, the idea was suggested again and this time it was agreed that "the association shall and do take immediate proceedings to call on the legislature to obtain amendments to the charter having especially in mind to erase the word 'registered.'\(^{38}\)

With this a special committee was appointed to look into the

\(^{37}\)"Canada," AABN, 5 June, 1897, p. 77.

\(^{38}\)AN, Quebec, PQAA minutes, 30 September, 1897, p. 195.
Immediately following the general meeting, the special committee met to plot their course and decided at once to write the OAA "to get a file of documents and other details concerning their attempt to have the word 'registered' struck off from their act."\(^{39}\) At the same time, they resolved to write to their lawyer, Mr. R. Dandurend, to determine his opinion on the prospect of their eventual success. In reply Mr. Dandurend agreed to take on the action noting that after examination of the proposal "I have every reason to believe you could obtain the eradication of the word 'registered' in such manner as to monopolise the title architect."\(^{40}\)

With this the special committee met to draught the text of their proposed amendment which they then forwarded to Dandurend. The heart of the amendment was that section altering section thirteen of the original act which was now to read that after passage of the bill, "...no person shall be entitled to take or use the name or title of architect either alone or in combination with any other word or words or any title or designation implying that he is an architect under this act unless he is registered in accordance with the conditions of the clause hereof..."\(^{41}\)

\(^{39}\)Ibid., 7 October, 1897, p. 207.

\(^{40}\)Ibid.

\(^{41}\)Ibid., 3 November, 1897, p. 223.
During the months that followed, the bill was introduced and proceeded through the successive readings of the House. At Dandurend's advice, the bill was altered so that architectural students who had already served four years apprenticeship in an office might be able to join the register without any supplementary examination. With this, all serious opposition to the bill was side-stepped, and the Act was passed, receiving royal assent on the 15th of January, 1898.

With the passage of the amendment bill the Quebec architects became the first in Canada to secure full statutory registration, and they looked forward to a future marked by rising architectural standards. As the Montreal architect John. S. Archibald observed in a paper read at the Seventh International Congress of Architects held in London in 1905, the Quebec registration bill had been designed to benefit both the public and the profession. The bill, he said, had been passed because "first, it is deemed expedient for the better protection of public interests, second, to ensure that any persons requiring the services of an architect shall be given duly qualified architectural advice, thirdly to ensure a standard of efficiency in the persons practicing

42 An Act to amend the Act incorporating the Province of Quebec Association of Architects, 1898, 61 Victoria, Chapter 33, amending the Act 54 Victoria, Chapter 59; AN Quebec, PQAA minutes, 15 February, 1898, p. 258; 23 September, 1898, p. 136.
the profession, and lastly, for the advancement of the art of architecture in our community."\(^{43}\)

As we have already suggested, the policy of the Ontario architects in the face of government opposition to statutory registration was considerably more aggressive than that of the PQAA who had chosen, first off, to build up the reputation of the Association before petitioning the government for greater powers. In February 1892, less than two years after the incorporation of the OAA, S. G. Curry rose at the annual convention of the Association to move that the council request the Ontario government to alter their Act on the grounds that "nearly every architect in the Province of Ontario was entitled to use the title, so that there were practically none who could claim to be architects outside of the Association, and if the word 'registered' was struck out and the members of the Association given the privilege of using the title 'Architect', no injury would be done to anyone and the members of the Association would be in a very much better position."\(^{44}\)

Behind Curry's proposal was the feeling that given the history of the OAA with its formation and incorporation at the suggestion of George Ross, statutory registration, though denied at the first instance, was the natural resolution of that course of co-operation between the architects and

\(^{44}\) CAB, February, 1892, p. 16.
the government. As Curry went on to say, "having now got
in such a shape that they can give the education that the
Department asked for, and having put it within the range
of all who wish to come into the association...the Council
should now be given very full power to obtain the full
privileges that the association should now possess."45
The case for registration was put even more strongly by
A. H. Gregg who argued that "It should be a matter of
paramount importance with the Association to push this
through, for until that word 'registered' is struck out
we will have accomplished practically nothing."46

By the following year, as it became apparent that
the educational programme of the OAA was failing to attract
those students for which it was designed, Curry, now
president of the OAA, made it clear that to his mind the
root of the problem lay in the inadequacy of the Act under
which they were working. "The trouble lies," he said,
"in the fact that we are expected to do educational work
without the power to do it effectively. The Association"
he said, "is working under an act of the Provincial
Legislature which to all intents and purposes gives us
neither benefits nor privileges, while it imposes on us
the duty of educating the future members of the profession,
that the public may be benefitted in the future."47

45 Ibid.
46 "Ontario Association of Architects: Proceedings,"
47 Ibid., p. 22.
Already by 1893, some architects within the Association were suggesting that the OAA would do well simply to abandon its educational programme. But as Curry noted, and this is evidence of a growing awareness that the architects would have to justify statutory registration against charges that it was of great benefit to the profession but of none whatsoever to the public, "the strongest argument which I can urge in favour of the Association carrying on this work of education, is that it is about the only way in which we, as members of the profession can show that we have, not only our own interests, but those of the public at large."48

However, criticism of this kind was beginning to be heard not only from the public but from architects as well. At the OAA convention in February, 1892, an Ottawa architect rose to speak "in the interests of those architects who had remained outside the Association." According to this Mr Billings, the public was already well protected if it cared to be, and the OAA ought not to press for increased powers. "The system of men styling themselves architect was in existence long before the formation of the Association," he said, and "nothing should be done to injure them." What is more, while he agreed that it might be well for every man wanting to practice to be required to pass an examination and to have a certain degree of competency, ultimately, "if a man wanted to engage the services of someone who was not a registered architect, it was a matter for the client

48 Ibid.
and not the Association."\(^49\)

It was in the midst of this growing crisis that the Council of the OAA decided to approach the provincial government in the hope of winning its support for a registration bill. As the council reported to the OAA convention in February 1893 however, they had found the "opposition from the members of the legislature against legislation having the slightest appearance of giving special privileges to any profession or organization so strong, that it was worse than useless to press it at that time."\(^50\) Under these circumstances and given that registration bills were under consideration at that time in both British Columbia and New York State--both of which failed--the Council decided to postpone their attempt at amending the Architects' Act.

They were, nonetheless, unwilling to give up completely, and a few months later the Council again approached the government which this time agreed to support the proposal in principle, so long as it was introduced by way of a private member's bill. Under these conditions a registration bill was brought before the House only to receive so rough a hearing in Committee that the Council decided to withdraw the bill rather than see it defeated.\(^51\)

\(^49\)CAB, February, 1892, p. 16.

\(^50\)Ibid., February, 1893, p. 22.

The fact of the matter was that the Ontario architects had run headlong into the powerful reaction against monopolies, corporations, and trusts which was then so marked a feature of political life in the province. During the same session of 1893, not only the architects, but undertakers, druggists and milkmen had all pressed for regulation and restriction, and as the premier told the OAA delegation, "the temper of the House at that time was such, that any proposal which seemed to point in the direction of increasing the number of close corporations would certainly be voted down." 52

Whatever may have been the architect's legitimate position, the House was little inclined to make a distinction for them alone. As the three architects on the OAA registration committee, S. H. Townsend, Frank Darling and D. B. Dick reported: "There is no doubt that the principle difficulty in the way of obtaining the desired amendment is the feeling prevailing amongst a large number of the members of the Legislative Assembly that the Association is of the nature of a Trades Union." 53

Faced with this, and convinced of the justice of their cause, the OAA set forth on a campaign designed to win the support of both the public and the legislature.

52 Ibid.
To this end the OAA began a policy of lobbying the members of the legislature. In January, 1896, Frank Darling, then president of the OAA told the members of the Association, "Whenever you can get a hold of a member of the legislature, see that you do not neglect the opportunity, but seize the chance, and explain to him as clearly and definitely as you can what it is we are asking for, remove his apprehensions, which you will find are many, and do all in your power to make him understand the matter properly." 54

The OAA also printed a series of statements and pamphlets outlining their aims and the reasons why they thought their position just. For instance in June of 1894, an open letter was printed and sent to all candidates then campaigning in the provincial election. The letter made clear the intention of the OAA to press their case once again. Most of the argument was not new, but it is worthwhile repeating the main points once again, if only to illustrate how clear the issues, by 1894, had become.

First of all the statement said, the OAA Act had failed because the title 'registered architect' "is considered to be of no practical advantage so long as there is no restriction as to the use of the traditional title 'architect' ." For this reason, the statement continued, "the influence of the association upon both students and architects is materially weakened." It was pointed out that this had come

about in two ways; students refused to sit the OAA examinations "giving openly as their reason that they can see no use in doing so when they can call themselves architects without examination, and secondly "Many architects, also, who as persons practicing architecture at the time the Act came into force were registered as members of the Association, have since withdrawn their names and support from the Association on the ground that they do not find it necessary to belong to it."

In this way, the letter concluded, "there will soon be a majority of persons practicing architecture in the province who will not be members of the Association." This it noted, was detrimental if only because building was becoming increasingly complicated and scientific, and the interests of public safety demanded that architects be well-educated. As things stood in Canada it said, architectural education was particularly important because of the lack of long traditions of good design and in the absence of "ancient standards of excellence constantly before us."

Despite these efforts and the support of many members of the legislature as well as such influential newspapers as the Toronto World and the Toronto Mail, the Association failed in 1896 and then again in 1897 in their attempt

56 Ibid.
to secure statutory registration. These successive defeats were a bitter blow which left the OAA severely weakened and demoralised, especially in view of the fact that by 1898 the Quebec architects had won so easily what they, in Ontario, had fought so long and so hard to secure.

As it turned out, the registration issue was yet far from dead, even though the OAA after 1898 decided to abandon its efforts for the time being. In Quebec, where registration had been won, it became apparent that closed corporation was not the panacea it had seemed to be, while in Ontario the registration issue was, within the space of two years, to dominate the profession yet again although this time it was to take on a new character as new ideas came sweeping in from the United States and from across the Atlantic. Before we turn to these developments after 1900, however, it is necessary to stop for a moment and look at the ideas and issues behind that second ideal for which the Canadian architects had organized, and in which they placed so much hope, that of architectural education.
Chapter 4: Architectural Education
The role of George Ross in the formation of the OAA guaranteed that the question of architectural education would be well to the front of issues demanding the attention of the Ontario architects in the days following organization. That the same could be said of the PQAA, which lacked the incentive of Mr Ross, is indicative of the fact that even apart from the intentions of the Ontario government, the inadequacy of architectural education in the country was such that it could no longer be ignored. To Canadian architects looking for ways to improve their situation at the end of the 1880s, it was increasingly obvious that one of the basic weaknesses of the Canadian profession was its inability to offer young Canadians the sort of training available in Europe, and above all--simply because it was closer to home--in the United States.

In Canada during the 1880s, the training of architects was disorganized, sporadic and inconsistent at best. The basis of the system, such as it was, was the age-old tradition of apprenticeship; the training of architectural students through the practical experience of work in an office. Ideally, this system, and especially its counterpart of pupillage, whereby young men paid a premium to the architect at the commencement of the period of training could give the prospective architect a solid grounding in surveying, measuring, costing, superintendence, and draughtsmanship. Exactly this sort of training has been described in an account of the office of Sir John Soane at the beginning of the 19th century, but while this might have been the ideal, its practical application in late Victorian Canada
was a different matter altogether.¹

Of course some offices gave their students a better training than others; for instance the office of the Toronto architect Henry Langley was well known for its training of young architects, including among others Frank Darling and Langley's nephew, Edmund Burke.² But if one can judge by surviving accounts of student life in the office of W. George Storm, an architect equally well known for his interest in architectural education, the sort of training available in an architectural office was highly informal, and students were generally left to pick up as much as they could in the way of professional skills amidst the day to day activities of architectural practice.³

According to the Montreal architect A. C. Hutchison, most Canadian architects were, by necessity, self-made men. In an address to the PQAA given in 1891 he said that in his opinion "...the study of architecture in many of our offices has been somewhat of a farce," adding that "I do not think that there is an office in the Province of Quebec where there has been a systematic teaching of architecture."⁴ A year earlier, again

³An account is given in the diaries of W. G. Burns whose journal from the early 1890s survives. It includes a description of the education of Mr. Burns from the time of his entry in Storm's office to his engagement in an office in New York. The diaries remain in the hands of the family.

⁴CAB, September, 1891, p. 90.
speaking before the PQAA, he had been even more explicit:

I mean to say specifically, that up to the present time we have had no means of giving any young man who wishes to learn the profession a systematic training. It is true that young men may enter the office of an architect and spend a few years there, and pick up a knowledge of architecture as far as the means at his command will enable him to do so, but as to any systematic teaching it has been completely ignored—in fact there are no means of providing it."

The inadequacy of pupillage and apprenticeship was put, if anything, even more directly by John Ireland, principle of the Hamilton Art School in 1896. "The era of the articled pupil is no longer existant," he said, "and the meaness of the proprietors of almost numberless offices has brought about this state of affairs. I ask, is it just to a young man after he has attended public school, collegiate and perhaps university, to enter an office as a pupil, when in reality he is an office drudge." 6

But if the age of the articled pupil was over, the difficulty was to know what to establish in its place and the earliest efforts at reform were designed not to supplant training in an office but to supplement it through the institution of courses which might give young men basic skills in draughting, freehand drawing and the like. It was with this in mind that the Quebec government introduced courses in architecture to the curriculum at the government Écoles des Arts et Métiers; schools which had been established throughout the province during the 1870s following complaints about the poor quality of Canadian design.

5 CAB, October, 1890, p. 114.

By 1894 the Montreal school offered courses in architectural and freehand drawing, as well as lithography, mechanical drawing, modelling, wood carving, stair building and building construction. All the same, each student entering the course was required to appear before the professor "accompanied by a letter of recommendation from their employer," and when a particular class was oversubscribed "preference is given to those whose occupations require a knowledge of the study sought."8

Similar sorts of courses and evening classes were offered in Ontario at the schools of art and design. These were established throughout the province from 1876 onwards and were openly modelled on the South Kensington Schools. In 1896 the Hamilton Art School offered instruction in architectural perspective and architectural design.9 Besides this, occasional courses in matters concerning architecture could be found here and there; at the Mechanic’s Institutes, and in Montreal at the Mont. St. Louis Institute which offered a course in design, and at the Montreal Presbyterian College where first A. C. Hutchison and then A. T. Taylor lectured in ecclesiastical architecture.10 Finally, and of more lasting significance was the introduction in 1875 of a course in design

7 "Montreal--Council of Arts and Manufactures of the Province of Quebec," CAB, 1894, p. 142.
8 Ibid.
10 Mont St. Louis: un demi-siècle au Mont St. Louis, (Montreal: 1939) p. 399; and Presbyterian College Annual Calendar (Montreal, 1875, 1887, 1889).
to the programme at the Montreal École Polytechnique.

With the exception of this course at the École Polytechnique, which was in any case an innovation incidental to the main purpose of the school namely the instruction of students in the applied sciences, none of these measures went far to alleviate the need for architectural education at a professional level. It was in an effort to make some headway in this direction that the Architectural Draughtsmen's Club was formed in Toronto in 1886.

But while the Draughtsmen's Club was a considerable success, and the first of a series of student clubs formed in Toronto during the 1880s and 90s, it was not in itself a long-term solution to the problem of architectural education in the country. Its formation was nonetheless a manifestation of growing concern among students and architects over the problem of education. Despite this concern and the establishment of the Draughtsmen's Club in 1886 however, by 1890 Canadian architectural students were leaving the country in ever-increasing numbers to study abroad, or alternatively, to gain experience by working in a foreign office, usually in Boston or New York, or if the passage could be found, in London.

The reason for this was simply that in an age marked by a growing sophistication in public taste and in the rapid development and introduction of new techniques of construction, those architects who stayed to complete their education in Canada were in danger of being left behind. The only alternative was to study or work abroad. As A. C. Hutchison told the PQAA in 1890, "I have often

advised young men who wished to obtain a knowledge of architecture to go to the United States and obtain an education there." This, he said, was because "in Boston and other cities in the United States" they might obtain "an education which they could not get in Montreal."12

As we have seen, it was this exodus of young Canadians which had prompted George Ross to advise the establishment of a course in architecture at the School of Practical Science. But this departure of students and draughtsmen had not gone unnoticed by Canadian architects. At a very practical level it had led to complaints about the lack of trained draughtsmen in the country, though as one hard-pressed student pointed out, good draughtsmen were not encouraged to stay in Canada, because as things stood, Canadian draughtsmen were so poorly paid that they "could afford neither to study nor travel but were forced to spend their free hours in 'money-making'."13

To many architects the departure of gifted young Canadians was symptomatic of the weakness of the Canadian profession. As J. C. B. Horwood suggested in an article written from New York, it was this lack of opportunity, and in particular the lack of training and consequent low standard of design which hampered the development of Canadian architecture as much as the country's social or economic conditions:

One decided advantage which accrues to a draughtsman in these large offices is the frequent occurrence of detail drawing

12CAB, October, 1890, p. 115.

13"Remuneration of Draughtsmen," CAB, January, 1890, p. 2.
of good and elaborate work, and I cannot help but think that if we Canadians spent more time in training ourselves in ornamental work in order to have it, as it were, more at our finger ends, notwithstanding the somewhat limited expenditures of our clients, we would find it easier to occasionally introduce it in our work then when we neglect our education in this respect, and consequently too often pass the matter over by concluding that it is altogether because we have not the money to spend upon it.14

For J. C. B. Horwood and others like him, the improvement of architectural education in Canada was coming to be seen as an essential part of any programme designed to raise the standard of the profession. In an address made to the OAA as president in 1895, Edmund Burke called for better education to raise the standard of practice and to do away with architectural charlatans and unprofessional conduct of various kinds. He then went on to point out that educational standards and the status of the profession were inseparably linked:

The coming Canadian architect needs a better education for another and more sordid reason, but a very present one nevertheless, and one which we have very severely felt in this country of late years, namely--the competition of foreign architects. Some of our most expensive buildings have been erected from the designs of aliens. The apology for this is the alleged want of experience and ability on the part of the native architect. We do not admit for one moment the validity of this contention, the fine buildings erected by local men attesting to the contrary; but that this is, to a considerable extent, the condition of affairs is a well known fact. This contention is not advanced with regard to the employment of other professions in Canada, because they have aimed at and attained a high standard of professional education. The lesson for us is evident.15

Although Edmund Burke was speaking five years after the formation of the OAA, the need for better facilities and standards...
was recognized by Canadian architects at the time of organization. Indeed, as the Montreal architect A. F. Dunlop noted at the first convention of the PQAA, the improvement of architectural education was a leading consideration behind professional organization. "We are formed into this Association," he said, "for the advancement of architecture, for the better serving of our clients, and for the better education of our students; also for the establishment of schools and classes of architecture, and for the purpose of making every architect of the future a competent one, whom the public may employ with confidence."16

For A. F. Dunlop, and in this he was representative of the organized architects, the problem of architectural education was a two-fold one. On the one hand there was the problem we have already described of somehow improving the facilities for education, while on the other there was a clear need for higher standards of practice. By 1890-91 Canadian architects had come to realise that the generally low professional standards were bound up with and in part a consequence of the unsatisfactory nature of architectural education in the country, and to right one it would be necessary in the long-term to right the other but in the short term, these were two somewhat distinct issues which could be dealt with in turn.

Turning first to the question of professional standards, the tactic adopted by the OAA, and this was copied by the PQAA, was to introduce a set of progressive examinations which each

16CAB, September, 1891, p. 90.
student would have to pass and which would give entry to the new professional associations. At first this would have little effect because under the terms of the Ontario Architects' Act and the Province of Quebec Architects' Act, anyone practicing as an architect before the incorporation of the provincial associations would be able to join irrespective of their training. After a period of six months however, this resolution would come into effect so that over time, as new members came to outnumber the old, the standard of the profession would rise.

In adopting a set of progressive examinations to test the development of students and control professional standards, the Canadian architects were following the principles and forms of the RIBA. Under pressure from the provincial architectural societies in Great Britain, the RIBA had introduced a compulsory examination for those seeking election as associates of the Institute in 1882. In 1890 this was replaced by a system of three progressive examinations. As Dr. Barrington Kaye has pointed out, the institution of progressive examinations was the logical development and consequence of the idea, adopted by the RIBA in 1882, that examinations might provide a guarantee of professional competence:

The first step towards complete professional closure by securing examination for entrance to the Institute having thus been achieved, the logic of the professional's viewpoint led them to make the further demand that, in order to guarantee competence with any degree of assurance, it was necessary to control, not only the entry to the profession by way of examination, but also the educational system itself. As a preliminary means of doing this, it was suggested that the examination for Associateship should be made progressive,
thus enabling a series of checks to be made on the progress of the candidate.17

In Canada, as in Britain, a series of three separate examinations was instituted.18 These consisted of a general preliminary examination for those wanting to be registered as students as well as an intermediate and final examination which gave entry to the Association. Under the respective acts of the OAA and PQAA, a board of examiners was to be appointed by the Council of each of the Associations, and the examinations held on a regular basis.

An impression of the sort of questions faced by the students during the 1890s can be gained from a pamphlet printed in 1898 to advise students preparing for the OAA examinations. According to the guide, the fee for each examination was ten dollars and each candidate was required to submit his name to the registrar at least a month in advance of the examination day. The preliminary examination consisted of questions on trigonometry, algebra, technical terms, and the

17Barrington Kaye, p. 130.

18The Acts, 53 Victoria, Chapter 41, in Ontario, and 54 Victoria, Chapter 59 in Quebec. Besides the OAA and the PQAA, the principle of professional examination was also adopted by the short-lived British Columbia Institute of Architects. In a report on the formation of the Institute, the \textit{RIBA Journal} noted that its by-laws "...provided that after the expiration of two years from its registration, the Institute shall have power to declare that candidates for Fellowship shall have passed an examination—exactly like Section 3 of the RIBA charter. \textit{RIBA Journal}, new series, 9 (24 November, 1892), p. 47.
history of architecture to the close of the Roman period. Besides this, the candidate was expected to submit a set of drawings on the Roman orders. A second set of drawings, this time on Romanesque, Gothic and modern architecture was required for the intermediate examination along with a knowledge of statics, strength of materials, structural ironwork and the history of architecture from the Roman to modern times. The final examination was simply an extension of the intermediate one, including, once again, history of architecture, strength of materials, steel and iron construction, a knowledge of the building trades, heating and ventilation, sanitary science, architectural jurisprudence, foundations, design and perspective drawing. Finally, students were expected to be able to draw the characteristic mouldings, features and ornaments of any style.

It was the intention of the OAA and PQAA that these professional examinations would complement the institution of statutory registration, and lead over time to that degree of professional competence which the architects saw as essential to their progress. For this examination system to function successfully, however, it was necessary that students in Canada be able to obtain the sort of training which would prepare them for entry into the professional world. In practical terms this meant the improvement of facilities for architectural education, and in an age dominated by the development of new building technologies, facilities for training in architectural science

19 Ontario Archives, Horwood Collection, papers 1892-1899.
in particular.

In Ontario, the main instrument of progress in this direction was to be the architecture course at the Ontario School of Practical Science. Whatever the long range intention of the architects, it was not intended at first that the SPS course be an inclusive one; rather it was to give architectural students a grounding in those subjects, such as mathematics, statics, structures and so on, which although founded in science, were becoming increasingly necessary to architectural practice and which could only be mastered through the sort of systematic study not generally available in an architectural office. Outside of these subjects, it was thought that the skills needed for successful practice could still best be learned through training in an office. As the report of the minister of education noted in a plea made on behalf of funds for the new course in architecture,

It is not the object of this department to turn out Civil or Mechanical Engineers, Surveyors, and Architects, fully prepared for professional life, but simply to afford students an opportunity for obtaining such systematic training in the chemical, physical and mathematical sciences upon which the above professions are founded, as will enable them when they enter upon the work of shops, office or field to devote themselves chiefly to the practical side of the work. 20

This idea, that the SPS course be only a supplement, albeit an important one, to the full training of an architect, was also an assumption underlying the educational provisions of the Ontario Architects' Act. According to sections twenty-one and twenty-four of the Act, "Any student who has matriculated in arts in any

university in Her Majesty's dominions, or in the Ontario School of Practical Science, shall not be required to pass the preliminary examination," and secondly, that "Any person who has graduated from the Ontario School of Practical Science shall be required to serve only three years as a student, one of which three years may be served during the vacations of such school," rather than the usual five years.\(^\text{21}\)

Behind this emphasis on formal training in science, lay the feeling, forcibly expressed by Frank Darling in 1896, that it was in the maintenance of a high standard of competence in the mechanics of architectural construction that the architects had the best chance of success. "You will never make an artist of a man," he said, but

You can teach him, however, to put up buildings that will not fall down. You can teach him the science of construction, the property and strength of materials, their proper application and use, the principles and theory of sanitary science, of plumbing, heating, ventilation, and many other kindred matters, and you can so direct his reading and his study that when he is able finally to pass his examinations successfully and attains the right to assume the title of "Architect" and commence the practice of his profession the public may feel justified in considering that they will be safe in entrusting the expenditure of their money into his hands.\(^\text{22}\)

There was also, in the case of the SPS, the question of economics. The school had been founded principally for instruction in the applied sciences, and in order to economize, the Minister of Education in 1889 recommended that "in the selection of the

\(^\text{21}\) An Act, 53 Victoria, Chapter 41.

\(^\text{22}\) Ontario Association of Architects: Proceedings, CAB, January, 1896, p. 17.
of the demonstrator in the laboratory and lecturer in architecture
an endeavour should be made to obtain teachers who could relieve
the Professor of Engineering of a portion of his present work
as well as attend to the new work for which they would be
specially appointed."

The result of this, was that the
lecturer appointed in charge of the new course in architecture
was C. H. C. Wright, a graduate of the SPS, and although
Wright, during the first year, lectured on subjects which
included the history of architecture, principles of decoration
and architectural drawing, his appointment meant that for
some time to come, the course in architecture at the SPS
would remain primarily a scientific one.

The establishment of a course in architecture affiliated
with a university was also the aim of architects in Quebec
during the early 1890s. As early as 1888 Charles Baillargeé
had called for a Canadian school of arts on the grounds that
"it is time that we should have men educated here in full view
of the difficulties of our climate, and whose minds could mature
schemes proportionate to the scale of our vast inter-oceanic
dominion."

A less nationalistic appeal for a post-secondary course
in architecture was made by A. C. Hutchison in 1891. In a paper

\[25\] Charles Baillargeé, "On the Necessity for a School of
Arts for the Dominion," Canadian Society of Civil Engineers
Transactions, 1887, (Montreal, 1888)
A year earlier, at the convention of the PQAA, Hutchison had spoken out on the question of architectural education, saying that the provision of systematic training in architecture should be a priority of the new Association:

It should be one of the early objects of the Association to establish some means of founding a college or providing other ways of giving young men a systematic training in architecture, and until that is done, our profession will never be what it should be. It is true that we have a College of Technology in Montreal, but I do not think it any part of the subjects taught there. It might be made part of the course and now that our McGill College here has, through the munificence of some of our citizens of Montreal been so largely endowed in the Science Department, and where there are so many subjects that would be common between architecture and engineering, I hope the time is not far distant when we shall have a Chair of Architecture or lectures on architecture

26 A. C. Hutchison, CAB, November, 1891, pp. 97-98.
in connection with the Science and Art Departments.27

Hutchison's ideas were well-received and gained the support of other architects such as A. F. Dunlop, who commented that "I hope this chair at McGill College which Mr Hutchinson has spoken of, and also a French Chair at Laval Institute, will soon become a fact, and that we shall call on the Quebec Government to assist the project."28 During the discussion which followed Hutchison's address, it was even suggested that the establishment of a course in architecture would be accomplished in the very near future. "These projects which have been suggested are all in the bud," said W. E. Doran, "I mean the project of having a chair in architecture in McGill College, and a course of lectures on architecture."29 But despite these intimations, it was not until 1896 that a chair in architecture was finally established at McGill University, while a regular course in architecture at the École Polytechnique (College of Technology) was not instituted until after the turn of the century.

In the meantime, Hutchison was behind an effort on the part of the PQAA to establish evening classes for students and draughtsmen to assist them in their preparation for the Association examinations. By December of 1891, Hutchison was lecturing on Roman Architecture, while A. F. Dunlop and Edward Maxwell had agreed to take a class in pen and ink drawing.

These efforts at supplementary instruction do not seem to have been a great success, however, for repeated attempts to establish

27"Province of Quebec Association of Architects," CAB, October, 1890, p. 115.

28Ibid., p. 116. 29Ibid.
evening classes in 1891, 1892, 1893 and 1894 all failed due to a lack of interest on the part of both students and architects. In 1894 a report was delivered to the council of the PQAA which noted that just such an attempt made earlier in the year had failed "owing to the difficulty in obtaining teachers and to the lack of interest in the matter by members and students."

The efforts of the PQAA to establish an architectural course at McGill were finally successful when Sir William MacDonald, one of the university's principal benefactors, agreed in 1896 to grant the university fifty thousand dollars towards the cost of setting up a department of architecture. Unlike the course in architecture at the Ontario School of Practical Science, which, as we have seen, was primarily intended to give prospective architects a training in architectural science, the course at McGill aimed to give students a broader introduction to professional life with a course which included the study of architectural design and theory as well as science.

Such a course was possible at McGill in a way quite different from the OSFPS simply because at McGill architecture was established as a department independent of the Faculty of Applied Science. But leaving that difference aside, the wider aims of the course at McGill vis a vis that at Toronto

30 AN, Quebec, PQAA minutes, October, 1894; reports of these classes can be found in CAB, December, 1891, p. 103; October, 1893, p. 104 and p. 110; October, 1894, p. 128.

were to no small degree a consequence of the interests and skills of the man chosen to head the new department, S. Henbest Capper.

The arrival of Professor Capper at McGill is something of a landmark in the history of architectural thought in Canada, not so much because of his accomplishments in Montreal, significant though they were, but because it marks the establishment in Montreal of a Scottish-based academic tradition which was to dominate the architectural life of the University well into the next century and exert a powerful influence on the development of Canadian architecture. Educated in Edinburgh at the Royal High School, Professor Capper had taken an MA in Classics at Edinburgh in 1880 before touring Europe and enrolling at the École des Beaux-Arts under Pascal. In 1887 he returned to Edinburgh where he established an architectural practice, producing a number of designs, including, most notably, those for Ramsay Gardens, a model university residence for the Edinburgh writer and reformer, Patrick Geddes. In 1896, just before taking up the post at McGill, Capper had been appointed an examiner in the Faculty of Arts at Edinburgh University, for the Department of Archaeology and Art History under the direction of Gerald Baldwin Brown.32

With his background in design and the humanistic tradition of the universities, Capper's intention was to bring to the study of architecture at McGill the sort of theoretical inquiry and systematic study which was the mark of a university education, and which was characteristic of the developing courses in architecture

32"Professor S. H. Capper," CAB, November, 1896, p. 175
in the United States such as those at Pennsylvania, Harvard and Columbia Universities. In a way that differed markedly from the limited and somewhat prosaic approach of C. H. C. Wright in Toronto, Capper argued in his inaugural address to the University that the time had come for architecture to take its proper place in the curriculum of the university. "Architecture is at once," he said, the most artistic of the sciences and the most scientific of the arts."

In the long-term, the principles of architectural study proposed by Capper, and in particular the idea that the rightful place of architectural education was in the university where it might be a combination of scientific inquiry and artistic training, was to be accepted and adopted across the country. In the short-term, and this is not to minimize the influence Capper had as a critic and writer, the course in architecture set up by Capper met with only limited success.

There were several reasons for this. First of all the course at McGill was unsuccessful at attracting French-Canadian students. Even in the absence of an independent architectural programme at one of the French-speaking universities, French-Canadian students continued to study at the Ecole Polytechnique where they received a grounding in architectural science supplemented

\[\text{\footnotesize For an account of the development of post-secondary architectural education in the United States see Arthur Clason Weatherhead, The History of Collegiate Education in Architecture in the United States, (Los Angeles, 1941).} \]

\[\text{\footnotesize 34"Architecture in the University," CAB, November, 1896, p. 179.} \]
by work in an office or study abroad. Secondly, even after the passage of the registration bill there was only a limited incentive for students to take the university course. The McGill degree in architecture was recognized as the equivalent of three out of the four years training by pupillage, but graduates had still to spend time in an office and sit the PQAA examinations in order to qualify as a professional. Finally, and this was perhaps the most important reason, in Canada at the end of the 19th century very few young men had the means to give themselves over to full-time study for three years and in consequence most architects continued to qualify through work in an office. Taken together, these factors ensured that the architectural course at McGill got off to a very slow start, so that when Percy Nobbs replaced Professor Capper as MacDonald Professor of Architecture in 1903, he thought it "highly desirable that something be done to assure the numerical increase of students of this department in order that the splendid equipment already invested in many not remain idle." \(^{35}\)

The fate of the architectural course at the OSFS was even more discouraging. As we have seen, its establishment was met with hope and expectation on the part of the architectural profession in Ontario that it would soon attract most of the young students in the province. When S. C. Curry commented in 1891 that "The school is now only in its infancy, but it will be an easy matter to make it equal to any in America," he seemed not to be exaggerating but merely expressing a sentiment that was widely felt. \(^{36}\)

\(^{35}\)Peterson Papers, McGill University, Report on the Department of Architecture, Percy Nobbs, October, 1903.

\(^{36}\)CAB, February, 1891, p. 20.
Before long, however, the school had fallen victim to exactly that malady which affected the OAA as a whole; the disinclination of both architects and students to qualify for the Association when membership seemed to offer little material benefit. So pronounced was this failure to attract students, that by 1898, a year when only one student presented himself for the examinations, the council of the OAA came under strong pressure from the Association to abandon its education programme altogether; a suggestion that was rejected only on the grounds that without this raison d'etre the Association would soon cease to exist.\footnote{Ontario Association of Architects: Proceedings, \textit{CAE}, January, 1898, pp. 9+10.}

It was inevitable that having from its foundation such a direct connection with the OAA the architectural programme of the OSPS would be effected by the difficulties of the Association. The correspondence between the problems facing his course and those of the profession as a whole was made quite clearly in a letter written by C. H. C. Wright to George Ross in February of 1899. Referring to the failure of the Ontario architects to amend their act as the Quebec architects had done, he said that as a result the OSPS was now in a precarious state vis a vis the architecture course at McGill. Over time, students would necessarily be attracted to Montreal where the profession enjoyed a situation which, relative to Ontario, was respected and secure.

More than this, he went on to say, the Ontario Architects' Act as passed, actually discouraged students from attending the School of Practical Science. "On examination," he said, the public
finds "that in order to make architects of their sons they may choose one of two courses. They may either give them a technical education or register them with a practicing architect." Of the two, a technical education at the OSFS compared very badly at least in terms of time spent. Including four years spent at high school, three years at the OSFS and a further three years work in an architect's office, a young man would have to study a full ten years before qualifying to write the OAA examinations. In comparison to this, a student was just as able to sit the Association exams after five years work in an office, preceded by only a year's formal study to gain the necessary standing in Mathematics and French or German. Under these circumstances and given that many students and architects had, by the mid-1890s, come to ignore the requirements of the OAA altogether, it is not surprising that the OSFS course in architecture conspicuously failed to attract the students for which it had been established.

Despite the hopes of a decade earlier and the commitment to architectural education which had been made by the professional societies in both Ontario and Quebec after organization, it was clear by the end of the 1890s that the problems of education were yet far from resolved. To a considerable extent the architectural programmes of the OAA and PQAA had followed quite closely the success or failure of those organizations. In Quebec, where statutory registration had been achieved, both it and post-secondary education

38 Ontario Archives, OSFS file, a letter C.H.C. Wright to George Ross, Minister of Education, 4 February, 1899.
39 Ibid.
and the gradual rise of standards were slowly getting off the ground. In Ontario, where registration had failed, both the OAA and the OSPS course were close to collapse.

But while the situation might have been marginally better in Quebec than in Ontario, nowhere in Canada had architectural education yet taken on that systematic and formal character which the architects of the early 1890s saw as essential to the long-term development of professional practice in the country. As we have seen, the reasons for this were many and not easily overcome, but even so, the virtual failure of the educational programme in Ontario led architects there to review those suppositions about architectural education which had been proposed and adopted earlier in the decade. Of these the most important had been the idea that above all it was architectural science which demanded systematic study, while skill in design could well be left to take care of itself in the architectural office. As early as 1895, Edmund Burke noted that this may well not be the case, and that the OSPS continued to ignore the teaching of design at its peril. Reviewing the progress of the OSPS he commented:

The architectural department of the School of Practical Science is making considerable progress and appears to have developed as fast as the funds at disposal will permit. The period of study embraces a course of 3 years with a 4th of post-graduate work. An expansion of the course, however, is a prime necessity if this department is to be fully and properly developed. If this is not done, there is a danger that the architectural schools in the United States will attract many of our young men, who can afford the additional expense, by reason of the more complete courses of study
afforded, including training in design, a most necessary phase of an architectural student's education.40

As Burke went on to say, the growing awareness of the need for artistic education had come about largely as a result of the return to the United States of American architects who had received their training at the École des Beaux-Arts and who were now engaged in the "spread on this continent of that phase of Renaissance architecture which had long been the fashion in Europe and which bore such abundant fruit in the buildings of the great fair at Chicago." The consequence of this, he said, was a new understanding that "The need of our architectural era is therefore without doubt such education in design as will enable us to make architecture as a fine art keep pace with science."41

As events were to prove, Edmund Burke's observations were as prophetic as they were perceptive. By 1900 the growing fashion for a revived classicism had begun to spread northward to Canada, demanding a skill and polish not easily produced by architects lacking a formal training in design. At the same time, the ideas of the Beaux-Arts, in particular ideas concerning the nature of design and the nature of architectural education also found their way to Canada, often by way of Canadian architects returning from study abroad, in France or the United States. At a time when the educational experiments of the 1890s seemed a failure,

40Ontario Association of Architects: Proceedings, \textit{CAP}, February, 1895, p. 22.

41\textit{Ibid.}
these new ideas here found fertile ground, as they had in the United States, and their arrival in Canada, coming propitiously as it did at the end of the century, was to have a profound effect not only on architectural education in the country but on virtually every aspect of architectural life. To this we now turn.
Part II: The Influence of New Ideas

Chapter 5: The Eighteen Club Reaction; Arts and Crafts and the École des Beaux-Arts
By the late 1890s in Quebec, the introduction of statutory registration had brought the PQAA credibility and the promise of an assured future. In Ontario however, the failure of the successive registration bills and disappointment over the educational policy of the OAA had led to a growing disillusionment with the OAA in general. In March of 1898, in the midst of the debate within the OAA over whether the Association should continue or abandon its programme of architectural examinations, the depth of this dissatisfaction with the OAA on the part of at least some architects was made clear and in public view in an open letter written and submitted to the CAB by Arthur Wells, a young Toronto architect.

Titled "The Ontario Association of Architects and What It Should Do," the main argument of the letter was that the OAA itself was largely to blame for its own demoralization because in pursuit of statutory registration it had been acting in the interests of the architectural profession to the virtual exclusion of any consideration of the public good. The public, Wells said, would gain little by registration, and therefore it was no surprise that the OAA had not succeeded in winning public support for its legislative proposals. The only thing to be done, he concluded was for the OAA and the architects of Ontario to abandon any hope of statutory registration and work for the improvement of architecture in general:

The truth is, this whole movement for legislation has been rather petty in its aim and not too farsighted. The proper sphere of action for an architects' society lies along other lines. In the purchase of a library, and in the institution of examinations, the association has done much work to its credit, work that has been of real value to junior members of the profession. What the architects
of Ontario need is not legislation to protect them or the public, but the grace to see that they have embraced an art and profession which is rich in interest, which has fields for study that are very broad, and in the practice of which, even at this time and place, it is possible to preserve some germs of what really is "Architecture."¹

Wells' letter was greeted with strong protestations by the OAA which pointed in defense to its accomplishments and to the many reasonable arguments made on behalf of architectural registration by members of the profession around the world. But although Wells' arguments were dismissed by the OAA, it soon became apparent that his ideas were representative of those of a good many other young architects in Toronto and within two years time disagreement over what the proper function of the OAA, and indeed of the architect, should be in society had led to an open break between a group of young Toronto architects and the OAA.

The agency of this break between the Ontario architects was the Architectural Eighteen Club of Toronto. By their own admission, the members of the Eighteen Club had first come together in January of 1899 with the sole intention of meeting weekly on an informal basis over lunch. It soon became clear, however, that the members of the group, most of whom were young and of whom Arthur Wells was one, shared a dissatisfaction with the policies of the OAA as they had developed since the Association's formation in 1888. It was this, as well as a common desire to improve the standard of architectural

practice in Toronto which led to the development of the Eighteen Club into an architectural association in its own right.

The formal organization of the club came about following the affiliation of the young architects—who did not formally adopt the name Eighteen Club until the autumn of 1899—with the Architectural League of America. In June of 1899 the architects of the Eighteen Club had sent one of their number, J. P. Hynes to Cleveland to attend the formative convention of the Architectural League, an organization which was being formed to bring together progressive members of the profession in the United States and which was to include among its affiliated societies the T Square Club of Philadelphia, the Architectural League of New York and the Chicago Architectural Club. Unlike the OAA which had declined an invitation to send along a representative, the Eighteen Club had been quite keen to join and with Hynes' representation the Eighteen Club was admitted to the Architectural League. It was with this that the young architects drew up a constitution, took on their name and formally organized themselves as an architectural society.\(^2\)

Unlike the OAA which from its foundation was dedicated to the legal establishment of certain rights and standards for the architectural profession, the Eighteen Club, despite its constitution remained for the entire period of its existence primarily a social club. What influence it had on the development

\(^2\) The Toronto Society of Architects, Catalogue (Toronto: 1909) p. 9.
of the profession in Canada, and it was considerable, was the result primarily of two factors. The first was the gifts and talents of its members, and in 1899 the Eighteen Club included among its membership the best of the new generation of architects coming into prominence in Toronto, and the second was that in their words and in their work, the members of the Eighteen Club gave expression to certain ideas and perspectives about architecture which very few members of the profession did not come in time—at least in part—to share, and which until their appearance had remained largely unarticulated.

The event which more than any other brought the Eighteen Club to the forefront of architectural life in the country was an address given to the annual convention of the OAA in January, 1900. As the AABN was later to report, given the state of the Association with its dwindling membership and its registration and educational policies in disarray "It was felt by all the members of the Association present that the crisis in their affairs had arrived and that this convention would practically settle the question of the existence or extinction of the Society."\(^3\) In the hope that a consensus might be found for the future development of the Association, the OAA had approached the newly formed Eighteen Club, which was already developing an identity distinct from that of the OAA, inviting it to address the convention and to put forth any ideas or proposals it might have for the Association.

\(^2\)"Canada," AABN, March 3, 1900, pp. 67+68.
At the insistence of the OAA, Eden Smith, the attending member of the Eighteen Club, agreed to read a report to the convention which had been prepared by a committee of the Eighteen Club especially established to formulate the Club's position on such matters as the role of the OAA, professional standards and architectural education, even though as he explained to the convention, the report remained in an unfinished state. Although the first intention of the report, ostensibly at least, had been to advise the OAA on the direction which the members of the Eighteen Club thought the Association should take, its opening paragraphs were a virtual indictment of the OAA, both in the past and as it then existed.

With a voice that echoed the arguments of Arthur Wells two years earlier, the Eighteen Club accused the OAA of a policy designed "for the purpose of doing good to architects rather than Architecture", adding that if instead "of using every effort to make the profession a close corporation, the same energy had been applied towards making the profession better, more results would have been obtained...." Indeed, as Eden Smith was to point out during the discussion which followed his address, the indifference of the Eighteen Club architects to the OAA "arose from their belief that the Association had identified itself more with the effort to close the profession than any

4 Ontario Association of Architects: Proceedings, CAB, January, 1900, p. 11.
5 Ibid.
other subject."

In the view of the Eighteen Club, the very structure of the OAA needed to be altered. The charter of the OAA, the report said, had come to be more of a hindrance than a help as it kept many good architects out of the Association, while the educational policy of the OAA had "proved somewhat of a farce and necessarily so" simply because the examinations had been established "without any means being given to the student of obtaining the necessary education to pass them."

The report urged that "the energy of the Association be devoted for the present almost entirely to education as it feels that only starting at the fundamental basis can any permanent improvement or success be gained." Finally the Eighteen Club suggested that the OAA would be best to restrict its membership "to the reputable architects of Toronto and the other large cities of and towns of Ontario" and that "in lieu of asking for any close legislation at present, the few really earnest and sincere members, who may stay in this smaller association proposed, will agree to take only pupils in their respective offices who will bind themselves to take the course of education laid down by the Association."

It was in this way, the Eighteen Club suggested, that over time the prestige and authority of the OAA would gradually increase, and it was a suggestion that met with some support.

\[6\text{Ibid., p. 12.}\]
\[7\text{Ibid., p. 11.}\]
\[8\text{Ibid., p. 12.}\]
In the opinion of the AABN "This introduction to the meeting of the representatives of the Eighteen Club...probably saved the life of the Association." But although it was true as the AABN also reported that the report "voiced so well the contentions of all those who have objected to the management of successive councils and the policy they have persistently followed, to the great injury of the Association, that, being made to swallow it, the members of the Council and officers sat up as they had never sat up before," the long-term effect of the Eighteen Club report was not to bring the Ontario architects together but simply to point out the differences which divided them.14

The reason for this, is that while Eden Smith's address was fairly well-received, even by those members of the OAA cast in an awkward light, it had raised issues and differences which were to prove exceedingly difficult to overcome. For example in 1906, efforts to amalgamate the two groups broke down over the reluctance of the OAA to give up its rights under the Ontario Architects' Act and the refusal of the Eighteen Club to join with the OAA until it had taken on the character of a voluntary association with no pretense to closure.15 Why this should have been so can only be explained by the fact that at base, the

13 AABN, March 3, 1900, p. 68.
14 Ibid.
differences between the young architects of the Eighteen Club and the established members of the OAA were founded not on age and experience but on ideology.

This ideological character of the Eighteen Club was made evident some months later in the course of a paper delivered, again by Eden Smith, to the 1901 convention of the Architectural League of America and subsequently published in the CAB. Although the subject of the paper was architectural education, Eden Smith quickly turned his attention in his address to a more fundamental discussion of what the practice of architecture, in his view, had become. And here there is no doubting that the prime source of Smith's ideas was the writings of William Lethaby. "Architecture," Smith said, had become "the harmonious association of all the crafts." "Architects," he continued, had "formed societies with the intention of mutually advancing their own interest and that of architecture for the good of the community." The commodity of these modern day societies or guilds was architecture he went on to say and "it is our business as Guilds to improve the quality or raise the standard of it, and instead of grumbling at the community for its want of sympathy 'we must discuss materials and methods and build up a new tradition of beautiful craftsmanship, and become by means of our societies responsible to the community.'"16

This idea, taken from the English Arts and Crafts theorists, that the practice of architecture involved the association of the various crafts of building, and that the architect was called upon to play a profoundly social role lay behind the criticism of the OAA by the Eighteen Club. Indeed, the ideas of the Arts and Crafts movement were the single most important influence on the Eighteen Club in its early years around the turn of the century and conversely, the propagation of those ideas in Canada must be seen as one of the most important consequences of the Club's formation.

In concrete terms, the expression of these ideas was opposition on the part of the Eighteen Club to the statutory registration proposed by the OAA and in general to the legalistic agreements which had been embodied in its charter. In a way that is reminiscent of the celebrated controversy over registration which led to the withdrawal of the Memorialists from the RIBA in 1891, the reluctance of the Eighteen Club to accept the principle of architectural professionalism upon which the OAA had been founded led them in turn to withhold their support from the OAA. For an account of the controversy see Barrington Kaye, The Development of the Architectural Profession, pp. 137-41.
and engineering training he thought an architect should have he replied simply enough that in his view "An architect should have as much mathematical and engineering training as will enable him to solve, by means of formulas derived from the experimental research of scientific experts, every problem the erection of a modern building may involve in the safe and economical use of the materials of its construction." But having said this, he noted that in the end, "The architect's work is the harmonious association of all the crafts, which harmony can only be considered complete when the possibilities of each craft in relation to the whole are perfectly developed, and to do this a knowledge of the nature and functions of every material is necessary." ¹⁸

Although, as this statement demonstrates, the ideas of the Arts and Crafts were widely held by the members of the Eighteen Club, there is little doubt that of the architects in the Club it was Eden Smith who played the leading role in the development of the Club's theory and policies. Not only did Smith quickly emerge as the leading spokesman for the group, but he came so naturally to the ideas of the Arts and Crafts, both by birth and training and was so consistent in his expression of them in his work that even now he stands out as a key figure in any discussion of the influence of the Arts and Crafts movement on Canadian architecture.

Born in Birmingham in 1858 he trained first as a water

¹⁸"Education in Architecture," AABN, June, 1901, p. 92.
colourist and draughtsman before touring the continent with his cousin William Eden, who was later to gain a certain distinction both as a painter and as the father of Sir Anthony Eden. In 1885 Smith came to Canada moving first to Manitoba and two years later to Toronto where he entered the office of Strickland and Symons. After completing his apprenticeship, he wrote the OAA examinations and in 1895 began practice with Eustace Bird, a young Toronto architect recently returned from several years spent in London at Colcutt's office. Four years later Bird left for New York, and Eden Smith took office space with J. P. Hynes, a native Torontonian and a fellow founding member of the Eighteen Club.

Although Smith does not seem to have opened his own office until 1895 his earliest commissions date from the early 1890s, and a measured drawing by Smith of The Oak House, Staffordshire, survives from 1890. (see Plate 10) It is evidence of precisely that interest in the vernacular architecture of England which was characteristic of the Arts and Crafts architecture and which was such a marked feature of the movement as a whole, and it is not surprising that Smith drew upon English work throughout his life. This is true even of his earliest work, notably two churches which he designed for the Anglican congregations of St. John's and St. Thomas' in Toronto in 1892. Both were

19 Ontario Archives, Diaries of Eustace Bird, 1892-1894.
Plate 10, The Oak House, West Bromwich, Staffordshire, measured and drawn by Eden Smith, (1890).
carried out in a carefully worked brick and employed the horizontal proportions and exposed timberwork characteristic of the English country church.

From these beginnings Smith developed a flourishing practice that was notable especially for his domestic work. Again, working for the most part in brick he produced houses for Toronto's rapidly growing middle classes, which with their assymetrical gables, mullioned windows, fireplaces, inglenooks and doglegged stairs owed a great deal to English domestic work of the period. Throughout his life he remained faithful to the ideas and concerns of the Arts and Crafts movement; for instance in 1909 he wrote that the architect "must understand the nature and function of the materials with which he expresses himself," and that this could be done by "combining different kinds of workers to get the most effective whole."

For his part he tried to carry out these principles in his practice, working closely with local firms and craftsmen and employing simple, everyday materials so that one architect who knew him was given to remark that "No other architect of his generation could compete with him in the use of materials for he could work wonders with a common brick and a rough sawn board."

While Eden Smith was clearly one of the most influential and successful arts and crafts architects in Canada and one who

21 Construction, February, 1909, p. 68.

22 A. S. Mathers quoted in Carolyn Neal, Eden Smith, p. 16.

This house is built of brick and rough cast on the outside. The shingles on the walls and roof are stained brown, the windows are casement windows equipped with metal weather strip. The ground floor is quarter cut oak and the upper floors narrow quarter at Georgia Pine. The staircases are oak and trim is Georgia Pine with pine doors. All the woodwork inside is stained brown and waxed. The beam ceiling in living-room shows the real beams and the ceiling between is sheeted.

Plate 11, George Howell residence, Toronto, Eden Smith and Son, architects.
Plate 12. George Howell residence, Toronto, Living Room and Dining Room, Eden Smith and Son, architects.
Plate 13, Stable for J.E. Seagram, Waterloo, Ontario, Eden Smith, architect, (c.1902).
was instrumental in directing the interests and sympathies of the Eighteen Club along such lines, it would be a mistake to conclude that he acted in an atmosphere of pioneering isolation. Not only in Ontario but in Quebec and British Columbia as well the ideas of the Arts and Crafts movement had considerable influence, while across the country architects and patrons alike were influenced in their taste and fashion by journals such as the *Craftsman* or *Studio*.

In Toronto there were others besides Eden Smith who demonstrated an interest in and were influenced by the English Arts and Crafts theorists. One of the most interesting was the Ontario painter and sometime architect, George Reid. Born at Wingham, Ontario in 1860 Reid studied first in Toronto and then in Philadelphia and Paris before returning to Toronto in 1890 where he took a job as instructor at the Ontario College of Art. During the 1890s he developed an interest in that aspect of Arts and Crafts theory which emphasized the unity of architecture with the so-called sister arts of painting and sculpture. This led to an increasingly public role for George Reid and one which included lectures on the unity of the fine arts to the Ontario Association of Architects and an active public campaign for wall murals in public buildings and in particular in the new city hall which was then nearing completion.²³

While this last programme was one which owed as much to influences from Paris and the United States and in particular

²³For information on George Reid’s life and position in the history of Canadian painting see J. Russell Harper, *Painting in Canada: A History*, (Toronto: 1977)
to the growing fashion for the mural work of Puvis de Chavannes as to the Arts and Crafts, it nonetheless reflected on the part of George Reid that self-consciousness about the social role of the artist which was such a marked feature of Eden Smith's thinking. Under the influence of the Arts and Crafts Reid turned briefly to architecture designing several houses and a church during the late 1890s all of which, with their vernacular forms and expressive use of natural materials such as timber and fieldstone, reflect Reid's exploration of Arts and Crafts theory.24 (see Plate 14)

After 1900 both Eden Smith and George Reid accepted the invitation of the English-born painter Marmaduke Matthews to build houses on a piece of forested land in northwest Toronto. In a way that echoed the aestheticism of the English garden suburbs like Bedford Park and later Hampstead, Wychwood Park, as Matthews land came to be known developed by 1914 into a community of architects, painters and artists.25 In retrospect, the Wychwood Park development, like to a considerable degree the Eighteen Club or the Arts and Letters Club—an informal club of painters, writers, architects and musicians formed in Toronto in 1908—seems to have taken a good part of its character from English models and indeed can only be seen as part of

Plate 14, Summer Cottage and Chapel, Onteora, Catskill Mountains, New York State, George Reid, R.C.A., architect.
a larger pattern of British influence which the architect and historian Hugh Jones was later to describe as "a new British invasion."

The nature of this British influence will be described in greater detail in succeeding chapters, but the point being made here is that in 1900 many of the ideas of the Eighteen Club owed their inspiration to British architects and thinkers and secondly, that evidence of British influence is not difficult to find either in the work of Eighteen Club architects like Eden Smith or others outside the club such as Frank Darling. (see Plates 15-17) An 1899 drawing by two young Eighteen Club architects, Henry Sproatt and E. R. Rolph for an office building in Toronto for Lever Brothers caused one American critic to comment that contemporary work in the United States had had little effect on Canadian design even in Toronto "the most American of the larger Canadian cities."

As was the case with Eden Smith, the English sympathies of Sproatt and Rolph, both of whom were Canadian born however, was based on personal experience. Drawings entered by the two men in the 1902 exhibition of the Architectural League of America included sketches of houses built at the Lever Brothers

Plate 15, The Toronto Hunt Club, Darling and Pearson, architects, (1895).
Plate 16, Canadian Bank of Commerce, Toronto, (1897),
Darling and Pearson, architects.
Plate 17, Post Office Building, Winnipeg, (c. 1906), Darling and Pearson, architects.
interesting to note how little contemporaneous work in the United States influences and designs in even the most American of the larger Canadian cities. The above eleva-

ted, aside from the lion and the unicorn over the doorway; it is distinctly insular and

charm, perhaps in keeping with local business methods, and in the high roof there is

particularly indigenous to northern countries.
model town at Port Sunlight. But both the career of Sproatt and Rolph as it was to unfold and the occasion of the Architectural League exhibition remind us that despite what we have said about the influence of English architecture and architectural ideas in Canada, and despite the arguments of those who saw Canadian architecture during the period as strongly British in orientation, the influence of American architecture during the period remained strong.

In this, the Eighteen Club was no exception. Many of the Eighteen Club architects had studied in the United States including Henry Sproatt, J. P. Hynes, Arthur Wells and of course J. C. B. Horwood, and one effect of this was the development of institutional links between the Eighteen Club and American architects. Of these the most important was the Eighteen Club's affiliation with the Architectural League of America, the direct result of which was the arrival in Toronto in 1901 of the touring exhibit of the league. The following year the convention of the Architectural League was held in Toronto.

The exhibitions of the Architectural League were the biggest exhibitions of architectural drawings which had been held in the country up to the time and they were events of some significance, not least because they brought to public view drawings representing a wide range of American work of the period. Sproatt and Rolph, Eden Smith, Frank Darling and Burke and Horwood were among the Canadian contributors, while American architects included Wilson Eyre, Cass Gilbert and Frank Lloyd Wright.28 As one reviewer noted,

28 Architectural Eighteen Club, Catalogue, 1902, (Toronto: 1902)
above all it was the quality of the American rendering which attracted notice. In comparison to the American work, the critic said, "Our own architects have not made a study of rendering as was evident from many of their exhibited works, and there is no doubt that this exhibition could give them some useful hints in the art of making attractive drawings." 29

As the reviewer went on to say, the foundation of the skill in drawing displayed by the Americans was the training they had received, and in particular their training based on the traditions and techniques of the Ecole des Beaux-Arts. While it was true, he said, that Beaux-Arts rendering was not suitable for all architectural themes, nonetheless "...it is from such a training as the students of the University of Pennsylvania are receiving, who in this exhibition play like young Raphaels with the classic forms and make such beautiful drawings of their designs, that the best results may be expected." And he concluded that "If the interest in drawing which this exhibition has created does not die away without stimulating some of our younger architects to practice with the pencil and brush it will have done good service in Toronto." 30

By 1900 at the University of Pennsylvania and other leading American architectural schools such as Cornell University and the Massachusetts Institute of Technology, the teaching of design

30 Ibid.
had come to be dominated by the ideas of the École des Beaux-Arts in Paris. The spread of the ideas of the École des Beaux-Arts from France to the United States is a story of considerable interest and one of great consequence in the history of American architecture, and although it lies in the main outside our immediate interest here it is important to us in that having been established among the architectural establishment of the United States, the influence of the Beaux-Arts began to spread across the continent, including Canada.

Outside the revival of interest in Classicism, which was a feature of architectural fashion throughout the English-speaking world at the end of the nineteenth century and which American Beaux-Arts architects exploited with great success and great effect at the 1893 Columbian Exhibition at Chicago, the influence of the Beaux-Arts in the United States was based on the introduction of Beaux-Arts ideas and methods to the curriculum of American architecture schools. Beginning with the work of William Robert Ware at MIT in the late 1860s, a generation of American educators in collaboration with French teachers such as Eugène Letang and Desiré Despradelle, both at MIT, worked to adapt Beaux-Arts principles to the United States.31

One feature of the Beaux-Arts system was the degree of importance given to the study of design, and at the University of Pennsylvania especially, freehand drawing and design was given great emphasis. For instance during the academic year 1900-1901 first year students at the University were given a total of eight hours instruction a week in engineering, construction and architectural history, and twenty-four hours in freehand drawing and design.32 Besides this, and in part one result of this, the school took on the air of a department of fine arts reminiscent of Parisian architectural studios and ateliers. Describing the architectural school at Pennsylvania in the Architectural Record, Percy Stuart wrote:

An interesting characteristic of the design courses was the spirit of the student body in the Pennsylvania drafting room. Here the students worked together with the utmost freedom. They criticized each other’s work and there was an atmosphere of congenial competition which was, probably, excelled only by the Paris ateliers. The presence of able instructors and brilliant advanced students, combined with the importance placed upon design, established and fostered this tradition.33

As the Architectural League Exhibition demonstrated, the study of design in this way gave architectural students a polish and style in their drawing which was quite unequalled. As we have seen at the end of Chapter four, it was to exactly this development in the study of design in the United States that Edmund Burke pointed in 1895, warning his colleagues at the OAA that steps

32Ibid., pp. 50-55.
needed to be taken to improve the teaching of design in Canada. And when Eden Smith addressed the OAA in January of 1900 he demanded that the Association reform their educational programme to include some system of atelier work, in addition to office work.34

In the view of the Eighteen Club, the teaching of design could no longer be left to the haphazard and irregular methods of the office; on the one hand it was inconsistent as "all pupils do not get in equally good offices," while on the other "in a busy office a student cannot and does not get the close personal criticism which he might do under the atelier system." In the past Smith said, "the cry has always been that design cannot be taught", but he argued steps could be taken and that students should be encouraged to spend several months of the year working in a similar manner to the student at the École des Beaux-Arts in Paris—under patrons, these patrons to be here, as in Paris, five or six of the best known and most respected architects of the city,..." There, as in Paris, students would work on assigned projects which would then be criticised by the patron. The great advantage of this system, Smith said,

....must be obvious to anyone, for in addition to this, of course there should be a course of lectures and examinations to test the student's theoretical knowledge. Then in the atelier the student has a chance to apply this theoretical knowledge, in connection with design under the direct criticism of men who have actually practiced and have been successful, not under mere professors. The promotion and progress of the students could be arranged somewhat similarly to the Paris school, details of which need not be gone into here. Much valuable information

34 CAB, January, 1900, pp. 11+12.
could be obtained on this point from Mr. Ernest Flagg, of New York, Mr. Thos. Hastings and several others, who the Committee feel quite sure would be only too willing to assist in this matter. The two architects mentioned above have started ateliers of their own in New York and to the knowledge of the Committee the influence they have had with young men entering them, has been really remarkable. 35

In response to the proposals of the Eighteen Club, a joint education committee was set up comprised of C. H. C. Wright from the School of Practical Science, Edmund Burke and A. H. Gregg from the OAA and Eden Smith from the Eighteen Club. The committee was directed to investigate the question of architectural education and prepare a report and make recommendations to the OAA the following year, which it did.

According to the committee the study of architecture was best divided into three parts namely the science of architecture, the business or craft of architectural practice and design. Each in turn had their particular character and had to be taught in particular ways. Thus the committee recommended that students continue to study architectural science at the SPS, while the 'craft' of architecture could only be learned in an office. Finally the committee recommended that some sort of atelier be set up based on the principles of the Beaux-Arts for the teaching of design. The atelier system, A. H. Gregg reported,

...is one of the most important developments of architectural education. At the present time it is recognized that design is not learned by sitting down with a blank paper before you and a blank brain, and trying to put a building on the paper. It is a matter of teaching the student to think and to do a thing in the proper way and this studio work is as great a

35 Ibid.
boon to architectural education as the kindergarten is to primary education.36

At the recommendation of the Eighteen Club-OAA committee the two groups agreed to act in concert to establish in Toronto classes in design which would be carried out on the atelier principle. But while the idea of the atelier system seems to have been introduced by the Eighteen Club it is important to note that the idea was quickly taken up by the OAA, and it was an attitude that betrayed a growing admiration for the Beaux-Arts system founded on a recognition of the effect which its introduction had had on the practice of architecture in the United States.

For instance in his presidential address to the annual convention of the OAA in 1901, the year after the break of the Eighteen Club, A. F. Wickson told his audience "There is a vitality in the architecture of the present, perhaps we might say the whole world over, and this is noticeable to no small degree in the great country beside us. We should therefore not be lagging in the struggle also to emerge from the foggy atmosphere of past methods of study in our profession."37

And if there was any doubt as to where the source of this new vitality might be, he noted that

The French themselves and those who can afford to become French temporarily have a great advantage in the well known school of architecture, though America is advancing with such strides in the study of this art that the incentive to go to France is becoming less each year, the influence of the former having permeated the latter to a great extent, and as Mr. Ernest Flagg says, that although 'architects' are still

36 Proceedings of the Ontario Association of Architects, 1901, (Toronto: 1901) p. 34.

37 Ibid., p. p. 19.
striving for the extraordinarily original, and deprecate the Frenchifying of American architecture, students are working along the correct and same lines of study fully convinced that the logical reasoning taught by the great French masters is the proper preparation for their work.

The following year, Grant Helliwell, the new president of the OAA told the annual Association convention that architectural progress in the United States "has undoubtedly been more marked and rapid than in any other country in modern times" while in 1903 W. A. Langton asked "What is at the bottom of the development of American architecture in the last twenty years? only to answer "nothing but education." The country is full of architectural colleges," he said, "a course at the École des Beaux-Arts is an ordinary thing now for an aspiring young architect. It has come to be recognised in the United States that office practice alone is not enough; that it is necessary to study design theoretically, and to train the mind to powers of creative imagination, by exercising it in consecutive courses of study, designed expressly to develop those powers."

In practical terms the introduction of classes on the atelier principle meant the appointment of practicing architects willing to meet with students on a regular basis for criticism and instruction, and after some discussion Frank Darling, John Gemmell, W. A. Langton, W. L. Symons, J. C. B. Horwood and Eden Smith agreed to take studio

38 Ibid.
40 Ibid.
classes two nights a week as part of the course leading to entry to the OAA.\(^{41}\) According to the first report of the studio committee delivered in January of 1902, classes had begun based on Beaux-Arts principles; Frank Darling reported: "We gave themes for design presented to the students in various ways and criticised their work with a view to giving them an idea of the fundamental principles of composition." He went on to say however, that it had soon become apparent that the students were "not sufficiently instructed to make this exercise profitable" and the decision had been made to concentrate on a "systematic study of the principles of design as exemplified in the historical styles," beginning with the Roman orders followed by the Gothic and Renaissance.\(^{42}\)

In the meantime, Eden Smith and J. C. B. Horwood had declined to help with the OAA classes and instead the Eighteen Club had begun its own series of classes for students. In 1903 the two groups again decided to combine their efforts in this direction and form a joint committee on studio education with design classes under the direction of the Eighteen Club and supplementary mathematics classes established and run by the OAA. As had been the case with the OAA studio, the Eighteen Club design classes were conducted "on methods similar to those adopted at the Ecole des Beaux-Arts, problems in design been given the student and worked out under the supervision of the visiting architects forming the committee."\(^{43}\)

\(^{41}\)Idem, 1901, p. 40.
\(^{42}\)Idem, 1902, p. 20.
\(^{43}\)Idem, 1905, p. 23.
Beaux-Arts Influences from 1907

Despite these efforts on the part of both the Eighteen Club and the OAA to introduce the teaching of design along Beaux-Arts methods to Canada, by 1907 the studio classes had collapsed, largely because of a declining interest on the part of students. In the light of this, the OAA was forced to conclude once again that little could be done unless architectural students were required by law to take university level training. The 1907 report of the OAA educational committee commented:

To this committee, the real solution of these difficulties seems to be in the hands of the government. Were the profession of Architecture put on a plane with other professions, students could be required by law to take a proper course of training and the proper place to take it would be in such an institution as the School of Practical Science. At present, the architectural students there are almost a negligible quantity, but if the legislation desired were obtained, the numbers would be so increased that the government would be warranted in providing a full architectural staff and the best possible training in design as well as in the more technical branches. The atelier system could be adopted and practicing architects retained as patrons, whose interest in the work would not necessarily be wholly altruistic. But one thing seems clear, that no matter what efforts are made to improve conditions at the School of Science, it is hopeless to expect that a sufficient number of architectural students will attend to warrant the government in providing the professorial staff and the equipment which is needed unless it were made obligatory for all desiring to become architects to take the course.

As ever, the problem continued to be that there was little incentive for students and particularly draughtsmen to follow the OAA course. Nonetheless, while Ontario's young men might choose to forego the various educational programmes of the OAA there remained a need for some sort of training for students working in offices, and so in 1907 a number of draughtsmen and students

\[44\] Idem, 1907, pp. 25+26.
in Toronto banded together to form a Beaux-Arts Society "to provide a better opportunity for the pursuit of knowledge in the theory and application of laws of building design than is to be obtained in the average office." The efforts of the students and draughtsmen were supported by the Eighteen Club, who had recently changed their name to the Toronto Society of Architects, and in the autumn of 1908 an atelier was established by the Beaux-Arts Society with the architect John Lyle as the patron.

Both the arrival of John Lyle in Toronto and the formation of the atelier Lyle, as it came to be known, were significant in the development of Beaux-Arts ideals among Canadian architects. Born in Ireland in 1872, Lyle grew up in Canada, studying at the Hamilton School of Art before leaving the country to study in the United States and at the École des Beaux-Arts. After graduating from the École he returned to New York, and then to Toronto in 1906 where he quickly emerged as a leading apologist for the Beaux-Arts.

The affiliation of the Toronto students and draughtsmen with the Society of Beaux-Arts architects is interesting because it represents the spread into Canada of the educational wing of the Society. Formed in New York in 1893 by a small group of American architects who had recently returned from the École, the Society of Beaux-Arts Architects was devoted to the propagation of the

46Ibid.
47Hugh G. Jones, History of the Royal Canadian Academy, p. 12.12.
principles of the Beaux-Arts and to further their aims had launched a programme of education based on the Beaux-Arts method in 1894. The principle of their programme was remarkably simple. After organizing three ateliers in New York, the Society began a regular series of competitions based on the Beaux-Arts programme. Any group of students could choose a patron and send their problems to the Society for exhibition and judgement, and upon completion of the course the student was given a certificate of proficiency.48

The Society programme was extremely successful; in 1905 238 students were registered with the Society and by 1912 a total of 102 ateliers across the country included 994 students.49 The reasons for the Society's success were not difficult to find, for as the Montreal architect W. S. Maxwell explained in 1908, the Beaux-Arts Society programme helped precisely those who needed help most:

The greatest movement to assist draughtsmen who cannot afford to attend college is that instituted by the Society of Beaux-Arts of America. This society aims to help the man who is not in a position to go through college. In all parts of the United States and I believe some parts of Canada, there are ateliers conducted by practising architects. Programmes are sent out from headquarters to the different patrons and then given to the men who are studying in their ateliers. The esquisse principle is followed and the men study the problems during their spare time and receive criticisms from their patrons. In some cases they work part of the day in an office and part in the atelier. The drawings are sent to New York and are exhibited and judged by a jury of architects, mentions and medals being awarded. This society is doing a remarkable work and in many of the regular schools several of their programmes are followed each year. The quality of the work produced is very fine and the belief is held that by this system there will probably be evolved an architecture which will suitably represent the ideals and conditions of this country. The prize designs are published

48 Arthur Clason Weatherhead, \textit{The History of Collegiate Education}, pp. 76-79.

49 Ibid., p. 78.
in the magazine named 'Architecture' and the competitors who are unable to attend the exhibitions can at least examine those solutions which were deemed most worthy. Any practising architect of standing may by application start an atelier.

The atelier Lyle occupied a set of rooms on the first floor of a brick building at the corner of Yonge Street and Yorkville Avenue in Toronto and contemporary descriptions suggest that not only the techniques but the mood of the École des Beaux-Arts was reproduced. "The environment is of the humblest," commented Construction in 1910; "the unkept condition of the room reminds one of the abode of an artist—everything that might tend to give the quarters a utilitarian atmosphere has been studiously avoided. A cabinetmaker occupies one of the lower stories. A Chinese laundry is also located in this old building and the bohemian atmosphere is accentuated by the pungent odour peculiar to Oriental emporiums of this nature."

The reporter went on to remark that "the atelier or workshop occupies a long room, the draughting room and the smaller adjoining room—the library; neither one bears evidence of having imposed any undue responsibilities upon the class for their upkeep; they are unkept and in a state of chaos, as most workshops are." He concluded by saying that "The rooms are full of plaster casts, drawings, sketches and at times much smoke and hilarity. The students are left free to do as much as they please—there being

50 W. S. Maxwell, "Architectural Education in Canada," Construction, February, 1908, p. 51

no recognized code or rules of conduct."

It was under these conditions that Lyle taught the gospel of the Beaux-Arts. The pattern of teaching was familiar; students were first required to make a rough sketch during the space of an evening, a copy of which was kept and filed with the secretary. The student then had a limited time in which to develop his scheme and make his final drawings. The majority of problems were short, "requiring about three weeks work," and when the final drawings were completed, they were hung together with the original sketch for judgement and comment by Lyle. By 1910 the students at the atelier Lyle were beginning to produce the sort of formal, carefully organized schemes typical of Beaux-Arts work around the world, of which a drawing for an art museum by A. E. Watson and a boundary monument on a bridge by A. N. Martin are examples.

(see Plate 19)

It can be seen quite clearly then, that in Ontario the ideas and mannerisms of the Beaux-Arts were introduced from about 1900 onwards by architects returning to Canada from study abroad, and that this natural movement of ideas was quickened by efforts on the part of Canadian architects to adapt the educational methods of the Ecole to Canadian conditions. In Quebec this pattern is, if anything, more easily seen.

Unlike Ontario, where the earliest influence of the Beaux - Arts came northward from the United States, Quebec architects

52 Ibid.
53 Ibid.
Plate 19, Design for an art museum, Toronto Beaux Art Society Competition, A.E. Watson, Atelier Lyle.
were in direct contact with developments in Paris at least as early as the 1890s. The first Canadian to study at the École was the Montreal architect J. Omer Marchand who was in Paris by 1893.

That Marchand should go to Paris while his English speaking compatriots continued to study in the United States or London only underscores what were natural links between French speaking Quebec and Paris. Consequently it was natural that when French Canadian architects began to work to improve the architectural course at the École Polytechnique in Montreal, which in the late 1890s remained a poor cousin to the architectural programme at McGill University, they turned not to Edinburgh but to Paris. During the winter of 1897-98 Rene Doumic was invited to come to Montreal from the École and ten years later when the course in architecture at the École Polytechnique was established as a programme independent from the course in engineering, the directors of the school sent emissaries to Paris to secure a teacher of design:

Le 4 janvier 1907, la Corporation décide l'établissement, en septembre suivant, d'un cours spécial d'architecture, aux soins des deux professeurs déjà nommés, et donnant droit à un diplôme d'architecte. M. Balète rédige tout de suite un règlement, qui est accepté, le 4 mars. Ce n'était qu'un commencement. En avril, on écrit à M. de Foville, prêtre de Saint-Sulpice, qui avait vecu plusieurs années à Montreal et était retourné à Paris, pour le prier de trouver en France un architecte, lauréat des Beaux-Arts, autant que possible, qui consentirait à enseigner au Canada. C'est ainsi que nous vint M. Max Doumic, frère de M. René Doumic de l'Académie Française, esprit vraiment distingue et véritable artiste.

With the arrival of M. Doumic the principles and methods of the Ecole des Beaux-Arts were firmly established at the Ecole Polytechnique where they influenced a generation of Quebec architects. Even before M. Doumic's appointment in 1904, J. Omer Marchand had been appointed to the staff as professor in perspective drawing, while when Doumic left Montreal in 1909 he was replaced by Jules Poivert, another laureate of the Ecole des Beaux-Arts and Marchand's brother-in-law. 56

In the meantime, Marchand had demonstrated the power of Beaux-Arts technique in a design for a chapel at the Jesuit Seminary in Montreal in 1906. It was his masterpiece and together with several earlier buildings in the Beaux-Arts idiom, notably McKim, Mead and White's Bank of Montreal extension of 1904, marked the ascendency of Beaux-Arts ideals in the design of public buildings. (Plates 20-23)

Just what those ideals were and why they might well be employed in Canada was best explained by W. S. Maxwell. One of the most successful and articulate Canadian architects of his generation, William Maxwell was born in Montreal in 1874 and together with his brother, Edward, had studied architecture in Boston before travelling to Paris to study at the Ecole. While in Boston he had joined the Boston Architectural Club and had come under the influence of Despradelle. As a young man in Montreal he had suffered from the lack of a systematic training for architectural students and

Plate 21, Bank of Montreal Extension, Craig Street Elevation, Montreal, (1904). McKim, Mead and White, architects.
Plate 22, Bank of Montreal Extension, Montreal, (1904),
Craig Street elevation and Banking Hall.
Plate 23, Montreal Art Gallery, (1913), E. and W. S. Maxwell, architects.
it was only in Boston with its clubs for draughtsmen and lectures at the Massachusetts Institute of Technology that he had been able to find his way as an architect. In a speech to the OAA in 1908 Maxwell spoke of the effect this had had on his development:

I had the good fortune to belong to the Boston Architectural Sketch Club for three years, and can look back upon this period as the one when I first seriously realized the greatness and nobility of architecture. On the weekly club evenings one could always listen to a lecture or paper worth hearing and round off the evenings with indigestibles, pipes and good fellowship. Well attended classes in design under Professor Despradelle of the Institute of Technology were held twice a week, also classes in modelling, drawing from life and water colour painting which kept us occupied on most of our evenings.

As Maxwell went on to point out, the great strength of the Beaux-Arts system was that it was in fact systematic. Unlike the traditional means of architectural education in an office where "some practitioners conscientiously train their pupils while many do not," the Beaux-Arts, he said "was a system both consistent and adaptable, useful for training students in a university and draughtsmen working in offices."

At the École des Beaux-Arts, Maxwell argued, what was taught was not so much a manner of forms as a way of approaching architectural design clearly and logically. Planning and design were the subjects of greatest importance, while "a course is given which covers the mathematical and constructional phase of education and which above all things aims to educate the student in the artistic side of architecture." Besides this, working progressively from sketch to

57 W. S. Maxwell, "Architectural Education in Canada," Construction, February, 1908, p. 51
58 Ibid.
to finished product, the system taught the student to develop organizational skills:

The *equisse* principle justifies itself on the following grounds. First of all, the student uses his own powers and exercises his imagination, skill and judgement producing a conception of more or less excellence. Secondly he has a basis upon which to work, he is forced to become a thinker and he is at once concerned with the principles of design and in the development of his idea within the broad limitations of his own imposition is occupied all the time with a problem which develops those powers which must become proficient before he can rightly be considered an architect. 59

It was this grounding in the conception and development of a design, Maxwell said, which the Ecole des Beaux-Arts attempted to give each student and not simply the ability, as was sometimes thought, to manipulate classic forms. There was no intrinsic reason, he said, why a Beaux-Arts education should hamper artistic individualism:

Although the draughtsmanship at the Ecole is of a very high standard, it is never considered as being of equal importance with the conception and development of the design. The exhibitions in a large hall at the Ecole exert a powerful influence, they get a man out of a rut, stimulate his imagination and broaden his point of view. The effect of many solutions of a problem all intelligently worked out cannot be other than broadly educative. The statement is sometimes made that the Ecole training has a tendency to kill the individuality of a man. I fail to see why it should: if a student's work is eccentric and not logical he certainly requires the discipline which a rational system of education will impose. If on the other hand he possesses an individual and open mind, the effort of the patron is always towards fostering and developing his personality.

Upon his return to Montreal from Paris, Maxwell joined his brother Edward who had already begun to produce designs exhibiting

59 Ibid., p. 50.
60 Ibid.
French influence of the sort seen in New York and Boston and of which his office building for the London and Lancashire Assurance Company on St. James Street in Montreal is a good example. (see Plate 24) Working together, the Maxwells had by 1907—the year in which they won the competition for a design for a legislative building for the new province of Saskatchewan—established themselves as one of the country's leading firms.

In the meantime, William Maxwell endeavoured to carry out his ideas concerning the value of the Beaux-Arts educational system in practice by working with students and draughtsmen at classes sponsored by the PQAA. In 1909, the lack of training for draughtsmen especially, led the students to suspend the activities of the PQAA sketch club so that they might "devote their efforts towards organizing a systematic scheme of work as training in design." In a way that echoed the establishment of the atelier Lyle, the students approached Maxwell to direct an atelier in affiliation with the Society of Beaux-Arts Architects. This Maxwell agreed to do and with some success, for the 1909 catalogue of the Society includes a design for a loggia with a mention placed to J. Roxburgh Smith of the atelier Maxwell.61 (see Plate 25)

After 1910 the orientation of architectural education in Canada moved increasingly towards the techniques of the Ecole des Beaux-Arts, with the important exception of the University of McGill which remained strongly under the influence of the

Arts and Crafts. Before 1914 the architectural course at the University of Toronto had come to include the programme of the Beaux-Arts Society within its curriculum while thirteen hundred miles to the west the University of Manitoba appointed the Beaux-Arts trained New York architect Arthur Stoughton to head its new Department of Architecture.62

Concurrent with the establishment of Beaux-Arts ideals at the heart of architectural education in the country was the spread across the country of a classicism which owed a great deal to the work of American Beaux-Arts designers, either by Americans themselves as was the case of work by firms like McKim, Mead and White, Carrere and Hastings and Warren and Wetmore, or by Canadian architects. At the same time the Architectural press continued to encourage the spread of Beaux-Arts influence. In 1913 Construction urged the organization of atelier work on a "broad and sane basis," so as to "give the draughtsman who cannot afford school instruction the proper grasp of good art and at the same time enable the student himself to further the principles already implanted by special teachers."63

It was in this way, argued Construction, that Canadian work would be improved. "Let such a condition prevail throughout our provinces," it said, "and the future architecture will be after the designs of Canadian architects and there will be no further

cause for complaint against our neighbours securing the best work throughout the Dominion." But while this may well have been so there were others who argued that with the dawning of the twentieth century Canadian architects could no longer afford to follow blindly the academic principles of one system or the architectural fashions of any one country but must strive to find a true voice of their own. At a time of rising nationalism not only in Canada, but around the world, this proved to be a powerful idea and one, which like the developments with which we concerned ourselves in this chapter, had its foundation in architectural ideology. But before delving deeper into the influence of the national idea on Canadian architecture before 1914, it is necessary that we stop first to investigate the effect on Canadian architects of powerful ideas of another sort: the development of architectural science.

64 Ibid.
Chapter 6: The Challenge of Architectural Science
To a considerable degree, the debate over architectural education in Canada after 1885, and even more, over whether architecture was a science or an art, was a reflection of the changing character of architectural practice in the country and in particular of the growing influence of applied science on architectural design. Beginning in the 1880s, the use of steel and iron in building began to increase dramatically and architects were soon called upon to demonstrate a skill and expertise in steel construction which less than a generation before had been considered far beyond the concern of the ordinary architect. The Montreal architect A. C. Hutchison commented in 1893, "There is so much steel and iron entering our buildings that an architect requires a knowledge of the quality, strength and resisting power of these materials which thirty years ago would not have been thought of."¹

For the most part, the source of these new techniques and ideas concerning the structural use of steel and iron was the United States; indeed, the skill of American architects in constructing multi-storied office buildings of steel, iron and masonry was a leading factor in the growing influence of American architects in Canada from 1885 onwards. Between 1885 and 1891 a series of office buildings was constructed in Montreal and Toronto including the New York Life Insurance Company Building of 1888 in Montreal, an office building for the Canadian Bank

of Commerce in Toronto in 1889 and the Toronto Board of Trade building of 1890, and virtually all of these new buildings were the work of architects based in the United States. (see Plates 6,7, + 26)

But while American architects can be seen to have played an important role in introducing new techniques of construction to Canada in the period after 1885, Canadian architects were quick to imitate the American example and introduce the new methods into their own work. They soon found however, as did their counterparts throughout the Western world, that science and engineering, applied to architecture, was a mixed blessing. While it gave the designer a new freedom, increasing his ability to respond to the needs of his client, the use of steel, glass and then reinforced concrete, called into question many of the architectural precepts of the time and led inevitably to a searching and often difficult re-evaluation of architectural sensibilities and theory.

One of the best examples of the way steel and iron construction was introduced to Canada, and how architects, caught between the demands of the client and the implications of these new materials, were forced to search for a new aesthetic and architectonic compromise is found in the debate which surrounded the use of plate glass in commercial, and particularly shop front design. The introduction of cheap plate glass earlier in the century had already begun to revolutionise shop design in North America in the 1850s and 60s as architects began to construct fronts composed almost exclusively of iron and glass behind which shop-owners could display their goods. During the 1880s this trend intensified and it became increasingly common to see the panes of glass
Plate 26, The New York Life Assurance Company building,
extended upwards to the first floor and beyond, leading R. W. Gambier-Bousfield to comment in the 1894 that surely "everyone must have observed the increasing number of buildings on Yonge, King, Bay and Front Streets, the proprietors of which were trying to expose their wares to view on every floor, making every floor a shop front."²

Under conditions where clients were demanding that as much of the facade as possible be given over to glass so that goods might be easily and successfully displayed, Gambier-Bousfield noted that architects really had little choice concerning the materials to be used. "It would seem," he said, that in these instances, "the only construction admissible was that of iron or steel and glass—the lightest and most economical as regards space."³ In the discussion which followed Mr Gambier Bousfield's address, which was in fact titled "The Construction of Shop Fronts during the Next Decade," D. B. Dick, the president of the OAA suggested that architects might consider new means of construction in their handling of the problem, that the need for great quantities of glass could be solved by employing a steel frame. If one was confronted with the difficulty of constructing a tall building with a good deal of glass on a narrow frontage, he argued that architects might do well to consider

...the making of the front like a frame, the support on each side carried up and the whole of the inside filled

³ Ibid.
up with light iron and glass. He had seen some instances of that treatment which he thought were quite successful. Architects were very often denounced for not producing a new style, and if a new style was to be introduced he thought this problem was one of the fields in which it could be worked out. A few years ago the system had been adopted of building fronts entirely of iron. There were two objections to that. One was the repetition of the parts necessary to secure cheapness became monotonous, and there was also always some difficulty in attaining really artistic effects in such an intractable a material as cast iron. The other objection was the danger in the event of fire, so he thought the front of the future would be of what might be called the American system, of steel or iron construction with the material encased in terra cotta or other non-combustible material. Instead of regarding it as a disadvantage that merchants at the present time called for plate glass in all their fronts, he thought it quite an advantage because it removed the difficulty of having to provide much light below and less light above.

This difficulty of having to provide a great deal of light below with less light above had been one of the most intractable problems facing Canadian architects during the second half of the 19th century and one which had never really been solved to their satisfaction. The problem was that with glass on the ground floor and masonry above, the heavy superstructure was seen to be supported by a wall of glass. It was a solecism of the most obvious kind, but one which seemed quite unavoidable and which, as William Gregg allowed, had come to gain a certain acceptance through sheer repetition. "The practice of building thick glass fronts on the ground floor with a heavier building above was so old that it had almost come to be accepted," he said, adding that "of course it could not be accepted as high art."^5

^4Ibid., p. 31.
^5Ibid., p. 30.
In the past, architects in Canada had usually dealt with the problem in one of two ways. If the plate glass had been limited to the ground floor, the upper stories were seen to rest on a simple beam supported by piers, but if the glass continued through to the first floor, the traditional solution had been to employ a series of arches, or even, on occasion, a single great arch to span the void. (see Plate 27) The advantage of using an arch was obvious, by seeming to transfer the loading out to the side piers, it went a long way to reducing the aesthetic problems associated with large areas of glass.

Clearly then, it was logical that when the height of buildings began to rise in the late 1880s, and clients wanted large areas of glass on successive levels Canadian architects should seek to employ the arch. Indeed, as Edmund Burke commented, "if one attempted to combine modern requirements—that is large amounts of glazing—with the best models of ancient architecture, the arch was the only satisfactory way of treating it."^6

Despite this, however, there were problems with traditional forms such as the arched or round-headed window, and during the early 1890s the architectural problem of constructing and designing tall buildings with great areas of glass led Canadian architects to reconsider their position and search for alternate solutions. As Edmund Burke pointed out, despite its advantages, the problem with the arch was that "its haunches obstructed the light on that floor and made it not nearly so valuable;" an observation which

^6 Ibid.
led him to conclude that if one desired to follow 'ancient' models, the "combining of proper architecture with what was demanded by the requirements of modern trade...seemed...an almost hopeless task." Besides this, as Mr. Gambier-Bousfield reminded his fellow architects, there was another problem; the boredom of endless repetition. Concluding his lecture to the OAA he asked, "must we forever follow the lines of the Romanesque or be confined by way of variety to the round arch? Would it not be worthwhile to attempt some departure from these, which are becoming stereotyped forms and in danger of endless repetition?" As Gambier-Bousfield had pointed out, in Toronto during the early 1890s, despite the growing tendency for higher buildings, architects had on the whole tended to overlook what he called the lighter forms of construction, that is iron or steel with glass. While it was becoming common for architects to incorporate some iron into their building, they continued to rely on the heavy masonry of the Romanesque without any real incentive, it seems, to change. "He did not think," reported the CAB, "judging from many buildings recently constructed in the city, that construction generally tended in the direction of economizing space. Buildings such as the Court House, Athletic Club, the Drill Hall, the Freehold Loan Offices and others were of very heavy construction." (see Plate 28)
While masonry construction of this sort might continue to be acceptable for most buildings, it was clearly unsatisfactory in those instances where light or space was at a premium, especially, as we have seen, in the case of shops, or increasingly, in warehouses, where large open areas of unencumbered space was a great advantage. Here, the answer to the problem of combining space, light and structural stability seemed to lie in what these architects called iron construction, honestly treated and approached in a business like way, without a self-conscious rendering of 'ancient' styles. "Look at the problem more as a building problem," urged the secretary of the OAA, S. H. Townsend, "more as a practical question of putting up a building, which, while it should not be positively ugly, would at the same time properly fulfill the requirements of the situation."11

Another Toronto architect, W. A. Langton, thought that in the case of commercial buildings given over to a single purpose where a great deal of light was needed, the question was one of designing not only with the aid of iron, but as "an occasion for designing in iron." In the United States, he said, the problem was being worked out "by the aid of iron, but not as a problem in iron design." Moreover, he went on to say, if the building was

10 It should be remembered that at this time, during the early 1890s, the term 'iron construction' was often used by Canadian architects to refer to all of the various structural systems employing iron or steel or both, including what we now refer to as the steel frame.

to be put to various uses, and in particular if the upper stories were to be devoted to offices "where very large windows are a discomfort rather than a gain," he thought it probable "that an artistic result would be obtained by continuing up the lines of the slender supports in the lower story and making the wall surface above by material and construction to be obviously only a filling in to reduce the window space."12

This idea, that the internal structure of the tall building might well be expressed by some sort of external articulation, in this case an emphasis on the vertical piers, without recourse to past forms, is of course similar to the ideas then being developed in Chicago, and Langton's remarks reveal an awareness of developments in the United States. A more open expression of the early recognition by Canadian architects of the undeniable achievements of American architects in the design of tall buildings of iron and steel was made by Edmund Burke who noted that "from the business standpoint, the Chicago men had solved it as nearly as it was possible to do, having resolved their supports into simple iron stanchions with sufficient masonry to protect the iron from damage in case of fire."13

The remarks of Edmund Burke are particularly interesting because only months after the OAA convention where this discussion on iron and glass construction had taken place, Burke was given the opportunity to put his ideas into practice, and in the event he was to design what was certainly one of the first steel frame

12Ibid.

13Ibid., p. 29.
buildings in the country, a department store for the expanding Toronto merchandiser, Robert Simpson.

According to contemporary reports, Robert Simpson wanted a building that would be full of light with great areas of unobstructed space, and in the Toronto of 1894 there is little doubt that Burke was the man for the job.\(^\text{14}\) By 1894 he was a leader of the profession in Toronto. Born in Ireland, he had come to Toronto as a young man, and after graduating from Upper Canada College there had entered the office of Henry Langley. In 1892 Burke left Langley to take over the firm of W. G. Storm who had died in August of that year and in 1894 he had been elected president of the OAA.\(^\text{15}\)

Besides this, by the early 1890s Burke had developed an engaging interest in the development of modern techniques of construction and in particular in the use of iron and steel as integral structural elements in building. During the winter of 1891-92 Burke lectured on building construction to architectural students at the meetings of the Toronto Architectural Sketch Club where he was instructor in structures and set the year end examination. Among his course of lectures was a paper delivered to the students in March of 1892 on "Elements of Building Construction," which dealt with problems of modern construction, including a specific reference to the use of iron and the experiments in

\(^{14}\)"Popular Impressions vs. Fact," CAB, April, 1895, p. 54.

foundation techniques which had been carried out in the course of skyscraper construction in Chicago.16

Among his students at the meetings of the Architectural Sketch Club was the young J. C. B. Horwood who was at that time in the final year of his training with Henry Langley, Burke's old partner. The following winter of 1892-93 J. C. B. Horwood moved to New York to work in an office and while there he remained in close contact with Burke, informing him by mail of developments in the United States.

One of Horwood's letters to Burke dealt with iron fireproof construction in New York and from it we can see how closely Burke and Horwood, who was in fact to join Burke as partner in 1894, followed the progress of the American architects. It has survived because Burke subsequently took the letter to a meeting of the AIA where it was read, and it makes interesting reading. In it Horwood describes the current practice of what he calls iron construction in New York.

The letter begins with a note by Horwood that in New York all buildings of a height over 85 feet above the pavement measuring "from the ground to the top of the duck roof beam" were required to be fireproof. According to Horwood, except for the loftiest buildings, and here he refers specifically to the New York World Building and the twelve storey Havemyer Building then under construction, the principle material of support used in fireproof

buildings was cast iron. There were, however, three principle ways in which this cast iron, or on occasion, steel, was used in construction although "whatever scheme of construction may be used for a fireproof building" he said, "the interior framing remains practically the same, so that it becomes merely a problem of treating the external wall in its relation to the adjoining floor." 17

By this was meant, as he went on to explain, that beginning with a standard internal framing system common to all fireproof buildings in New York, construction could be carried out in one of three ways. In the first instance, the internal iron could be tied to and directly supported by the masonry walls and piers constructed so as to carry their own weight plus that of the floors, roof, and contents of the building. Alternately, masonry walls could be built which were of sufficient strength to sustain only their own weight with the internal framing and contents of the building "carried by iron supports or columns extending from the foundation to the roof with the columns being somewhat recessed in the walls if necessary." Finally, a self-supporting frame of columns and girders could be built which would then "carry the outer masonry walls as well as the adjoining floor construction." 18

In short then, the interior frame could be self-supporting or it could be supported by masonry walls and piers or it could be tied to an exterior frame with which it would support the entire

18Ibid.
structure. Of course it is this last system which we would recognize as the true steel frame, and Horwood commented that this system was usually adopted "where the utmost economy of floor space is desired" adding that "of the three, I think it is the cheapest."19

The introduction of steel and iron into building construction by Canadian architects followed this pattern very closely, and the earliest use of iron was, as we have seen, in conjunction with self-supporting masonry. It is this, in fact, which makes it difficult to say with complete certainty when the first steel frame building was constructed in the country. But while it has been suggested that one or other of the early office buildings constructed in Montreal or Toronto around the year 1890 was of steel frame—such as the New York Life Assurance building in Montreal (1888) or the Toronto Board of Trade (1889-90)—it seems unlikely that a true steel frame building was built in Canada before the end of 1894.20

There are several reasons for this. First of all there is no contemporary evidence to suggest that Canadian architects before at least 1893 were entirely familiar with the self-supporting steel cage as a means of construction. Indeed, as we have seen, what evidence we can find suggests that it was only in 1893 and 1894 that the demands of space and light led Canadian architects to investigate the steel frame as a solution to their problems. Secondly, the development of iron and steel construction in the

19 Ibid.
20 See for example, E. Arthur, No Mean City, p. 215.
country seems to have proceeded gradually as it did in the United States first towards a system of internal framing and then towards a complete cage. As Philip Turner, professor of Architecture at McGill commented in 1927, while the "New York Life Insurance building is of historical interest as being the first high office building to be erected in the city...the construction is honest and very heavy throughout, and though steel is used in the floors and roof it has no steel frame. The walls 32-40" thick carry the superstructure at each story."21 In comparison to this, the Sun Life Assurance Company building, the Toronto Board of Trade and Canadian Bank of Commerce, also in Toronto, all seem to have been composite structures with a supporting internal frame and outside bearing walls of masonry. (see Plates 6-8)
Finally, there is the question of time. If one considers that while steel framing was accomplished in Chicago by 1890, engineers in New York continued to experiment with various combinations of iron, steel and masonry until construction of the first steel frame building in 1893-94, for any architect practicing in Canada to have achieved a similar success by 1890 seems, while not impossible, so early as to be unlikely.22

In any case, for Canadian architects the tall office building, as it first appeared in the country with a height of seven or eight stories, does not in itself seem to have raised the aesthetic or constructional problems faced by architects who were forced to

21 Philip Turner, The Development of Architecture in the Province of Quebec, (Montreal: 1927)
deal with large amounts of glass or the need to provide large areas of unobstructed floor space. Indeed, as both Edmund Burke and Frank Darling noted, many office buildings such as the Freehold Loan building by E. J. Lennox or R. A. Waite's Canada Life building continued to be built of heavy Romanesque-like masonry even though they included internal frames of iron or steel; an arrangement which Darling and Burke considered redundant and wasteful.23 (Plate 28)

The Robert Simpson building however, was another matter. As envisioned by Simpson it was to be a true department store of the new type, with large floor areas capable of housing a range of departments. As the CAB noted, it was this that necessitated the use of steel beams and columns:

The internal columns and beams were of rolled steel and had to be of this material, as the spans were too long for wooden beams. The clear unobstructed space was a \textit{sine qua non} necessitating as few columns as possible. In the case of buildings erected for office purposes, though of great height, and on the same plan, this condition does not apply to the same extent. But in large stores and warehouses great open space is a necessity.24

Despite this, the Simpson building as first constructed was a composite structure, with a lower frame of steel through two storeys, upper walls of load bearing masonry and joists of southern pine. Nonetheless, in his design for the building, Burke attempted to put into practice many of those ideas which he had outlined to the OAA earlier in the year. In a design which owes a great

23 CAB, March, 1893, p. 38.

24 "Popular Impressions vs. Fact," CAB, April, 1895, p. 54.
deal to American models, the two lower floors supported by the steel frame were given over almost entirely to plate glass, while the upper floors with wider piers and smaller lights reflected the masonry construction. The whole building was carried out in Burke's 'business like manner' without recourse to stylistic forms and with as much glazing as the structure would support. (see Plate 29)

The Problem of Fire

As luck would have it, the Simpson building was only just completed when it was destroyed by fire in March of 1895. Given the publicity which had surrounded its construction, its destruction by fire was something of a scandal, and the reaction to the fire serves to put into perspective some of the misconceptions then held concerning the behaviour of steel and iron in the event of fire.

In the immediate aftermath of the fire, there was, amid speculation that this fire together with several others was the direct result of the growing use of electricity, a feeling that the destruction of the building, documented by dramatic photographs of iron girders melted beyond recognition, challenged the belief that steel frame construction was fireproof after all. This seems to have been based on two considerations. The first was that as a result of the great interest generated by Burke's use of steel framing, there was a general impression among the public and some architects that the building had been constructed according to principles of fireproofing. Secondly, despite a growing interest and knowledge in methods of fireproofing, there remained considerable ambiguity about the various abilities of rival forms of construction
Edmund Burke, architect.
to withstand damage by fire. For instance, following the fire, the CAB asked "whether it is wise to encourage the erection of buildings constructed on what is familiarly termed the skeleton plan. Perhaps," it suggested, "the answer lies in the adoption of a happy medium where steel and iron will be mainly used, and yet, where, as we understand is the case in New York, masonry work is not discarded to nearly the same extent as in Chicago." 25

It was soon established by Edmund Burke, however, that contrary to what was popularly thought, the Simpson building had not been designed as a fireproof building simply because Robert Simpson had considered this too costly. Under normal conditions, as the CAB said, the plaster of acme cement which had been applied throughout the building would have successfully resisted an ordinary fire in the new building, "but was powerless, of course to resist the intense heat developed in the old adjoining buildings, which were directly connected with the new, without imposition of any wall." 26

In spite of this, the lower two stories of steel framing which had been enclosed in cut stone, brick and terra cotta, alone of all the building, survived the fire virtually intact. "The protection of these columns and the beams which they carried was so thorough," reported the CAB, "that paper signs which had been pasted on them were intact when the brick work was taken down." 27

The true lesson of the Simpson fire then, was that steel was fireproof only if properly protected, and any decision to construct

25 Ibid.
26 Ibid.
27 Ibid.
a building of iron or steel without encasing it in concrete or terra cotta was to run the risk of destruction by fire. Robert Simpson in any case learned the lesson, and directed Burke to design a new, larger store to be entirely of steel frame and completely fireproof. (see Plate 30) Describing the fireproofing the CAB reported:

The outside columns and beams are covered with stone and and brickwork, those within are enclosed in concrete. Boxes were erected around the uprights and the concrete poured in, the boxes being removed when it had set. The beams are covered with slabs of concrete, and the joints will be filled with the adamant plaster put on for finish. This is a new method of fireproofing such a building, introduced into Canada for the first time.

The controversy surrounding the Simpson fire demonstrates that at least until the mid-1890s there remained considerable uncertainty about the behaviour of steel and iron under conditions of intense heat and about the best means of fireproofing a building. For instance in response to the use of concrete as a means of protecting the steel in the new Simpson building, one architect wrote to the CAB insisting that "so far as my experience goes, clay is the only material which will withstand the action of fire." Five years earlier, even clay had been suspect. In August of 1890, the CAB noted that while fireproof tiles had been proven to block the spread of fire, "for some unknown reason people do not attach any great degree of confidence to fireproofing."

28 "The Simpson Department Store," CAB, October, 1895, p. 115
29 CAB, November, 1895, p. 129.
30 CAB, August, 1890, p. 87.
Plate 30, Yonge Street, Toronto, with the second Robert Simpson store of 1895. Edmund Burke, architect.
Besides this natural conservatism, another factor acting against the fireproofing of buildings was, and the first Simpson building is an example of this, that many clients were reluctant to pay the extra cost for what Charles Baillarge called "the sake of an eventuality which many never occur." This was especially the case as long as underwriters refused to recognize the advances that had been made in fireproof construction. That is to say, during the early 1890s insurance for all building continued to be accounted at the same rate regardless of the method of construction, and in Toronto in 1895 all buildings over four stories paid a premium on fire insurance because of the condition of the local fire department.

Despite all of this, the introduction of fire resistant materials and means of construction increased steadily throughout the 1890s and into the new century if only because the loss of life and property from fire demanded that something be done. In 1893 Charles Baillarge noted with satisfaction that "a very free use is now being made of iron joists and concrete floors."

Two years earlier, A. T. Taylor had turned to steel and terra cotta to fireproof his new Redpath Library at McGill University. "The construction is as nearly fireproof as possible," he wrote, "and the stack room is entirely so. The whole of the main floor is of steel beams and porous terra cotta arching. The other floors and the roof, where not of this material, are of solid oak beams.

32 CAB, September, 1896, pp. 131-132.
33 Baillarge, CAB, October, 1893, p. 107.
and flooring on the slow combustion principle. The stairs are of iron and slate."34 (Plate 31)

Until at least 1895, this sort of composite construction, of masonry with protected steel or iron beams and columns was the best known form of fire resistant construction among Canadian architects, with the sole exception perhaps of heavy mill construction; a special framing technique, which through the employment of certain precautions, such as the cutting down of draughts, gave a reasonable protection against the rapid progress of fire. It was certainly not the case that a fireproof building was thought necessarily to be one of steel frame. Indeed, as we have seen the CAB thought that the best solution might well be the composite structure, and hinted that the tendency towards more and more iron, prompted by the demand for openness and light, might not be entirely beneficial. "There is just this about it," the journal commented, "that where masonry is employed, the openness and light aimed at especially by owners of large stores has to be sacrificed. And wisely or not, in this intensely practical age, utility more frequently predominates in settling these matters than any other influence."35

34"New Library Building, McGill University, Montreal," CAB, August, 1895, p. 96.
35"Popular Impressions vs. Fact," CAB, April, 1895, p. 54.
Plate 31, Redpath Library, McGill University, Montreal.
A.T. Taylor, architect.
The Tall Building

Utility predominates. Despite whatever reservations remained about the fire resistant properties of the steel frame after the fire at the Robert Simpson store—and these over time were destined to disappear in any case—the benefits of space and light made possible by steel construction were too significant to be ignored. The year 1894 and especially 1895 were marked by the appearance of a number of steel frame buildings, including besides the first and second store for Robert Simpson, a new warehouse for the McKinnon Co., also by Burke and Horwood and built to replace an earlier one destroyed by fire, a store and warehouse in Toronto for Catto and Co. by Henry Langley, Burke's old teacher and partner, and a building in Montreal for the Montreal Street Railway. Clearly, the steel frame had arrived in Canada. But while the uses of protected steel with glass in the construction of shops and warehouses was coming to be understood, there remained for Canadian architects the question of the building form for which the steel frame had been invented, the tall office building or skyscraper.

We have already seen that the first building to be built in Canada and which might be legitimately referred to as an

36 "Building in Canada in 1895," CAB, January, 1896, p. 10; for information on the McKinnon building see CAB, April, 1895, p. 54; Of the Montreal Street Railway Company building the CAB noted that "The entire building is carried on steel columns, which rest in concrete and brick foundations laid in gravel, April, 1896, p. 55."
example of the modern American office building was the New York Life Insurance building constructed in Montreal in 1888. This was followed by a number of buildings of medium height in Montreal and Toronto until in 1892 the country was plunged into a depression which badly affected the construction industry and which brought to a halt the undertaking of most large projects, especially speculative ones such as great commercial buildings. In consequence, until 1895 the number of multi-story office buildings in the country remained few, and of these none was of a height greater than eight stories and none was constructed with a complete steel frame unsupported by masonry.

The result of this was that unlike the problems associated with the use of steel or iron and glass in the design of shops and warehouses, the skyscraper seemed for many Canadian architects during the late 1880s and early 1890s a problem somewhat remote from Canadian needs. There was a feeling that the skyscraper was the product of conditions peculiar to New York and Chicago. For instance in the view of S. C. Curry, the steel-framed skyscraper "was the outcome of special requirements in American cities, and could not well be compared with work done in Canada or the old country. The growth of American cities," he said, "rendered necessary the erection of these enormously high buildings, and as a result this steel construction with curtain walls had been developed in New York and Chicago, especially the latter where despite its great area, the business center was somewhat congested."37

There were other considerations as well. As Curry went on to say, it was a debatable point whether skyscrapers were really the province of architecture at all, or simply the work of engineers. Speaking of skyscrapers he said, "The architectural appearance of a building, of course, is another question, but that, as a whole, was not considered in this class of building to any great extent; they were required for a certain purpose, and it was incumbent upon the architect to do the best he could under limitations. After all," he concluded, "the buildings were to all intent and purposes, in a sense, the works of engineers rather than architects."

Not only were tall buildings the work of engineers, but to many Canadian architects, skyscrapers by their very nature seemed to exploit the powers of iron and steel to the point of travesty and many architects were unwilling to accept the destruction of aesthetic convention which it demanded. For instance it seems no accident that when Sir. A. T. Taylor used (Plate 31) steel with terra cotta to fireproof his Redpath Library of 1891, he surrounded the framework with walls of heavy masonry. The following year in a speech to the PQAA which he titled "The Function of Truth in Art" he explained that to his mind the use of iron and steel was giving rise to an architecture of questionable value:

I am happy to think that the crusade against shams, largely influenced by the powerful and brilliant writings of John Ruskin, has resulted in the abolition of many of the worst, but they are hard to kill, and too many are still left to us and need rooting out also. It seems to me that a fundamental

\[38\text{Ibid.}\]
rule is this: Always let a thing look what it is, and do not make it try to look like something else. Iron and steel are great friends to us, but they have often turned to be our enemies, by reason of our inability to use them rightly; and I am sorry to say they are responsible for much questionable work; the facility with which we can bridge wide spaces, carry heavy walls over voids, and generally disregard the disposing of walls, piers etc. above each other, has led to the violation of some of the elementary principles of construction. We have also to thank the same material for making it possible to construct those enormous lofty buildings in which Chicago has the unenviable notoriety of taking the lead. I cannot but think that these will, before long, come to be looked upon as stupendous blunders; the utter disproportion of scale and mass to their surroundings, the fatal disturbance of harmony and proportion to the environment, to say nothing of the disturbing sense of feeling that what is visible of the slim, lower stone and brick piers, is manifestly and apparently inadequate to support the enormous superstructure without the aid of iron or steel supports behind the piers.39

The fact of the matter is that the skyscraper raised questions of a degree and kind quite unknown before. Even if one attempted to follow artistic convention and articulate the structure of the steel behind the masonry, as the Montreal architect W. E. Doran pointed out, the skyscraper still seemed a lie: "the eye sees piers of brickwork extending skywards ostensibly to support the building," he wrote, "which we instinctively know could not support its own weight."40 What is more, even for those architects like Doran who were willing to accept the modern architecture of steel and glass, the skyscraper seemed to be the product of a very different and not necessarily better society which was coming into being. In a lecture titled "Truth in Architecture" Doran acknowledged 'crystal palaces' and the tall office building to be the only really original

39 \textit{CAB}, December, 1892, p. 121.
40 \textit{CAB}, June, 1896, p. 86.
architecture of the age, but he wondered if the powers of greed had overwhelmed natural considerations of light and air: "When I speak of crystal palaces I include as such the large retail stores" he said, "the skeletons which frame the plate glass that displays the wealth of merchandise. These necessitated metal construction, and the progress seemed fair enough till greed and the desire to make the most of land regardless of the right of neighbours to light and air called into existence the monstrosities of seventeen and twenty stories, now promising to reach out to thirty." 41

This early criticism of the skyscraper based on the larger consideration of its impact on society and the city as a whole was prophetic and it was an idea that outlived many of the earlier criticisms which disappeared as architects in time found their way to an aesthetic convention. After 1900 it was picked up by planners and social reformers who were concerned generally with the conditions of modern life in Canadian cities. Charles Hodgetts for example charged in 1912 that the skyscraper was the product simply of the capitalist "who has no eye but for his money-bags and the dividends," and that the lack of fresh air and sunlight would "weaken and debilitate the people segregated therein." 42 More than a decade earlier, S. Henbest Capper, in a way that looked forward to the twentieth century commented

41 Ibid.

that while the skyscraper might have improved the skyline of New York—a city which lacked natural heights and vantage points—the ubiquitous spread of the tall building would be disastrous. "It would be dreadful, for instance," he said, "to imagine the Acropolis of Athens girt round with buildings like those in Broadway." 43

Although many of these criticisms were reasonable, and indeed had their parallel in the United States and elsewhere, as the decade progressed it became increasingly obvious that despite its drawbacks, the development of the skyscraper was bound up with the conditions of modern life. As S. Henbest Capper reported to the architects of Montreal on his return from New York in 1898:

The problem asking for solution is an eminently modern one. Architecture cannot on pain of proving untrue to her traditions as a living art, refuse to entertain it, to grapple with it, and eventually to reach a satisfactory solution. We must, I hold, put definitely aside the criticism so often heard: These tall monstrosities are not architecture at all; they are only engineering, with a stone veneer. They are buildings of our modern city streets; and if these be not architecture, where indeed is modern architecture to find her place? She is bound to find her own solutions for novel problems, however difficult, and to achieve a harmony between the requirements of today and the accepted canons of artistic taste. It is essentially in responding to the needs of modern complex life, in interpreting and meeting them, that the art itself is modern and living. 44

It was also the case that while the original development of the skyscraper may have been the result of conditions peculiar to New York and Chicago, the tall building soon began to appear in cities across North America and as early as 1893 the CAB

44 Ibid.
warned that if Canadian architects did not familiarise themselves with the techniques of skyscraper construction they were liable to be passed over in favour of Americans. That the tall building was to be as familiar in the cities of Canada as those of the United States was made clear very quickly in any case; the construction of a new seven story building for the Canada Life Company in Montreal during the winter of 1894 was the first of numerous office buildings of ever-increasing height which were to be built across the country in the years leading up to 1914.45 And while the Canada Life building had been the work of Richard Waite, the construction of the Temple Building the following year in Toronto to the designs of the local architect G. W. Gouinlock served notice that Canadian architects were coming to terms with the tall building on their own account.

Despite the proliferation of tall buildings and the increasing use of the steel frame after 1894, it was some time before fears about the safety of the steel frame were put to rest. Of these the most common was the fear of invisible decay. "In many modern buildings the outer walls help little in the construction and are merely enclosures and could be removed without affecting the stability of the floors or roof," wrote A. T. Taylor in 1892. And in view of this he said, "I cannot but feel there is a grave danger looming ahead for many of the skeleton framed buildings in which the iron or steel uprights

45This may have been the first steel frame building in the country if the somewhat ambiguous description of the building which appeared in the CAB can be taken at face value. Describing the building it commented that "The frame work will be of steel, encased in fireproof materials and faced with Ohio bluestone. CAB, February, 1894, p. 42.
are built into brickwork for fireproof purposes, and when in time rust and decay will set in without the possibility of detecting or remedying it until it makes itself known by sudden and fatal failure."46 Similar fears of calamity were expressed four years later by W. E. Doran:

The whole framework depends, for retaining its perpendicular upon being tied together in all its parts. The destruction of a few rivets may mean the toppling over of the whole mass. It is a construction requiring, as in bridges, care and supervision, and sometimes renewal of parts, which enclosed with brick and cement, it can not have. Liable to corrosion, the damp of water services and waste pipes everywhere will hasten the inevitable work of time; the multitude of wires for electrical purposes adds the danger of electrolysis. Granting such a building may survive its designer, has any man a right to build to-day that which in after years will probably collapse without warning.47

By the late 1890s most of these fears about the potential failure of the steel frame had been put to rest by the accumulation of experimental evidence which showed steel construction to be both safe and durable. For instance, as Edmund Burke demonstrated in a lecture in Toronto in 1898, if properly protected the steel frame could be made impervious to decay caused by damp, even in those cases such as Chicago, where the building rested on foundations which literally floated in wet sandy soil.48

A problem that proved to be more difficult, and one which Canadian architects when they turned their hand to skyscraper design were forced to consider was the necessity of finding a new

46 A. T. Taylor, "The Function of Truth in Art," \textit{CAB}, December, 1892, p. 121.

47 W. E. Doran, "Truth in Architecture," \textit{CAB}, June, 1896, p. 86.

aesthetic convention suitable to the proportions and structural realities of the tall building. The essential problem, as A. T. Taylor pointed out, was that to a generation of architects imbued with the idea that architecture should, above all things, be truthful, the skyscraper, with its construction necessarily hidden, seemed an impossible dilemma. Unless a new convention could be found, architects were faced with the choice of either cladding the frame with a face of stone which was clearly inadequate to the demands made upon it, or of loading the steel frame with so much masonry for the purpose of truth that it rendered the steel superfluous; an alternative which was only possible in connection with buildings up to medium height in any case. 49 The nature of the problem was described by S. Henbest Capper in his notes on "The American Tall Building":

A word or two may be here suggested in regard to this construction from the esthetic point of view. Since the Gothic Revival, with its battle-cry of "ornamented construction" and its decry of "constructed ornament", it is natural and inevitable, and surely right, to seize first on genuine construction to be interpreted and expressed in design. Where, then, is there room for this totally concealed construction? Some would, of course, deny in toto its right architecturally to exist; metal cased in stone, they claim, is a quite illegitimate method of architectural construction, being a sham of the most flagrant kind. 50

By the time of Capper's writing in 1898, and this he himself went on to say, "to deny, however, to iron and steel the position they have conquered in the world, is of course

wholly futile"—steel construction had become so common that any attempt to discourage its use was doomed to failure. The obvious solution was to deal with the steel frame by modifying traditional theory to take into account its special characteristics and this Capper did suggesting that architects "case the metal in some form of plastic material, such as terra cotta; steel construction thus treated" he said, "is quite capable of honesty above reproach."\(^51\)

There were others who were more conventional, such as W. E. Doran, who while allowing that "circumstances may sometimes require the use of transitional or debased styles", added that "for the sake of constructive truth, no one should for the sake of strict adherence to style resort to deception. There is such a thing as conventional truth,"he said, "and this should never be violated. It makes one shudder to see in an otherwise pleasing building, a long lintel seemingly composed of a number of stones not only hanging in the air, but supporting sometimes an important pier of the superstructure."\(^52\)

For Doran, a long term solution to iron and steel construction lay not in the creation of a style or the use of a covering material such as terra cotta, but in the development of a method of treating steel so that it might be used uncovered and "the use of exposed iron or steel would therefore lead to an architecture special to itself, and proportions suitable to such construction."\(^53\) This was

\(^{51}\)Ibid.

\(^{52}\)W. E. Doran, "Truth in Architecture," OAB, June, 1896, p. 86.

\(^{53}\)Ibid.
an idea which enjoyed considerable currency during the 1890s and though it never led to any experiments in exposed iron construction by Canadian architects, it does demonstrate how closely critical theory in the country at the end of the 19th century reflected the Ruskinian tradition. For example, while touring France in 1896 W. A. Langton admired just such a frank use of exposed iron. After returning to Canada he commented upon what he had seen and noted, "...it seemed to me that one of the evidences of the living character of French architecture is the straightforward way in which they use iron...I was most impressed with the excellent spirit of the French, by the way they expose iron in roofs and ceilings where it must look well. Sometimes they come out of this well," he concluded, "sometimes the result is crude, but it at any rate appeals to one as a spirited effort."

During the late 1890s this spirit of practical solution combined with the desire to express structural reality was a guiding principle in the design of steel frame buildings in the country and was recognized by architectural critics. For instance commenting on Edmund Burke’s design for the Simpson building which had been entered in the Royal Canadian Academy exhibition of 1895, a reviewer remarked "The problem, a packing box full of windows is an exceedingly difficult one. Mr Burke has succeeded in giving a dignified solution without in the least entrenching upon the first requisite of such a building--abundance of light. Indeed the very determination to fulfill the conditions perfectly

saved the design. In much the same way, S. Henbest Capper commented that a consideration of the restrictions of skyscraper design might well provide the architect with the key to a successful solution:

The requirements of floor space (dictated by financial needs) rigidly limit the supporting and enclosing walls to the least superficial area compatible with safety and stability. Further, the need for maximum of light in the interior equally leads to the reduction of wall thickness and external piers, while it forces the engineer to find a substitute for the ordinary diagonal bracing and cross-ties which are incompatible with windows. With these complicated restrictions, the architect has to design his building, fettered and hampered, or on the other hand inspired, it may be—for restriction is ever a fertile cause of happy ingenuity and an occasion for success.

Under the inspiration of American designers and within the parameters of their own architectural theory, Canadian architects gradually moved from what was an attempt to somehow respond to the conventions of load bearing masonry—expressed in the Temple building by the rusticated base which with its splayed corners and arched doorways seems to support the seven stories which rise above it—to a purer expression of the steel frame. (see Plates 32-35)

But by 1910 the success of the skyscraper as a commercial enterprise was already giving rise to a new theory which saw in the skyscraper not the practical solution of what was essentially a problem of engineering, but an opportunity for self-conscious expression. In a revealing critique of a new thirty-story neo-gothic tower constructed in New York to designs by Cass Gilbert and which was

NEW BUILDING FOR THE INDEPENDENT ORDER OF FORESTERS, TORONTO.
G. W. GOUINLOCK, ARCHITECT, TORONTO.

Electric Railway Building, Winnipeg

Plate 34, Electric Railway Chambers, Winnipeg, (1912-13).
Pratt and Ross, architects.
Plate 35. The Royal Bank building, Toronto, (1914).
Ross and Macdonald, architects.
to be followed in 1913 by Gilbert's Woolworth building, Construction commented:

The combination of the tall office building has been generally adopted as a means of centralizing business and exploiting to the utmost increased land values, until it has become a conspicuous fixture closely associated with the growth and development of cities of even secondary importance. The constructive formula once established, it remained with the architecture profession by applying approved principles of design to save the skyscraper from a prosaic fate, give it grace of outline, symmetry and eloquence of expression....For, if the tall office building is nothing else, it is at least a splendid monument to the commercial and industrial enterprise of the present age.57

As W. A. Langton observed just over a year later, it was in this direction that architecture was bound to go. The reason for this he said, was that "Our manner of construction, so unsightly in itself," had to be "so swaddled in fire-protecting material that it had become inarticulate." In the past, he said, the best architects could hope to do was "to represent on the surface of the construction something like the work that is going on behind the surface," but now it was understood that "it was as easy to represent something different and something greater." In otherwords, he concluded, "in its essence, design has changed from exhibiting concrete character to representing an abstraction."58

Although one finds evidence of this shift in sensibility among Canadian architects before 1914, it was an idea that was not to find its fullest expression in Canada until after the 1918.

57"Thirty Storey Office Building in Gothic Design," Construction, October, 1910, p. 64.

It was an idea as well which reflected a passing from the experimental days of skyscraper construction and design at the turn of the century. By 1914 the skyscraper had become a conspicuous feature of Canadian cities, even where, as the Winnipeg architect S. Frank Peters remarked, "there seemed no necessity—surrounded as they were by boundless prairie—for cooping up a mass of hard workers within such a restricted area." And although he might argue "I cannot help expressing my regret, and I believe that a large number of my fellow architects will join me, in that there is such a tendency among the business men of our communities to copy the skyscraper kind of building for office purposes," the fact remained that tall office building was here to stay.

Just why this was so was explained by F. S. Baker. "The modern skyscraper," he said, "is a delicate piece of machinery of the highest class of construction in every department, and that as conditions are today in large cities, it is just as essential as the electric car or the trunk sewer. This of course," he concluded, "as any business man knows, is caused by the revenue from the high building, making the necessary expenditure possible, where it would be impossible in the small structure.”

Reinforced Concrete

The issues surrounding the introduction of reinforced concrete construction into Canada were similar to those concerning the early use of steel and iron. Its introduction was marked by an early period of uncertainty over the precise nature of its physical properties and this was followed by its increasing use and efforts to find its natural aesthetic expression.

Although reinforced concrete was not to become common in Canada until after the turn of the century, there is evidence of interest in the use of concrete reinforced with iron as early as 1893. In that year the Canadian engineer Henry F. Perley predicted that with the disappearance of timber from the more settled parts of the country, iron, steel, stone, and especially concrete would come to be used as a replacement. 61 Two years later, in 1895, M. B. Aylsworth told the OAA that there was no reason why concrete should not be used more widely in order to fireproof buildings, and that he believed "in California they used concrete beams in which sufficient iron rods were laid and the concrete floor laid at the same time." 62 At the same time a series of articles appeared in the CAB describing the use of concrete slab floors supported on joists of iron or steel. 63 Even more interesting

63 George Elagrove, "Concrete Floors," CAB, September, 1895, p. 110.
is evidence that the Montreal engineer J. A. Jamieson experimented with reinforced concrete construction during the 1890s and especially with the development of the hooped column, and that a church was built at St. Nicolet, Quebec with columns of reinforced concrete but which collapsed in 1899. 64

Despite these early beginnings, the use of reinforced concrete before 1900 in Canada remained sporadic. This seems in part to have been the result of a lack of information about construction techniques. In 1903 A. F. Wickson asked the visiting Chicago engineer E. C. Shankland if he had any information about the construction of concrete superstructures, saying "Although concrete is being used so much in some respects I have found great difficulty in getting any data when I wanted it for concrete building--I mean the superstructure, not so much the foundation. It is rather a new thing," he said, "but still it is being used in some places. Can you give us any way by which we can get data for the strength of the superstructure of a building?". 65

In January, 1905, even as the use of reinforced concrete became more common, the engineer William P. Anderson noted that

64 A mention of J. A. Jamieson's experiments was made by Walter J. Francis in a lecture delivered to the OAA in 1909: "Reinforced Concrete for Architectural Construction," Proceedings of the Ontario Association of Architects, (Toronto: 1909) p. 47; see also James Spelman, "Elevator Construction," Canadian Society of Civil Engineers Transactions 27 (1913) p. 187; for information on the church at St. Nicolet, see CAB, April, 1899, p. 72.

The reinforcement of concrete structures by the inclusion of steel in their members is becoming widely practised, but it is to be feared that a great deal of steel so used has not been disposed in such a manner as to give the best results, and we have yet to learn how the permanence of such structures may be affected through the corrosion of the steel within the concrete. The question of the best method of shaping, connecting, protecting and placing the reinforcing steel requires more attention than it has yet received. Papers on this subject and particularly papers describing the failure of any concrete or reinforced concrete design, if such were procurable, would be of great value to the Society of Civil Engineers.

While as J. A. Jamieson pointed out to the Canadian Society of Civil Engineers in 1909 that the fact remained that the profession's "knowledge of the properties of cement is as yet far from complete," it was also the case as Edmund Burke stated to the convention of the Canadian Cement and Concrete Association that

With regard to reinforced concrete, architects had some complaints to make. They found that as a rule a great deal more careful supervision was required in reinforced concrete work, than in any other type of construction, for the reason that many responsible contractors did not give the care that was required in seeing that the reinforcement was properly placed in the work, that the materials were properly mixed and framed.

It was exactly this sort of difficulty which the Cement and Concrete Association had been founded in 1909 to overcome through education and the recommendation of standards. At the time of its formation the Cement and Concrete Association faced a situation where the legal specifications for concrete construction varied widely from city to city where they were set by local bye-laws.

As Walter J. Francis observed in an address to the Ontario Association of Architects, "the extremely wide variations in the limits set by the municipal authorities are very unsatisfactory from a constructor's point of view," and he recommended the establishment of a committee to set national standards for reinforced concrete construction. In the meantime restrictive standards meant that the use of concrete in some cities lagged behind that in others. At the 1909 Cement and Concrete convention Gustav Kahn delivered a paper on the use of reinforced concrete construction in Canada with examples from across the country, a demonstration which prompted Edmund Burke to comment that "in Toronto it would be impossible to erect such structures in accordance with the city's by-laws which demanded heavier structural members than were really required, unnecessarily increasing the cost of construction." As Gustav Kahn himself noted, while "reinforced concrete had been employed very successfully in many parts of the country...its use was somewhat handicapped in Toronto."

Despite these problems, the use of reinforced concrete construction in Canada increased dramatically between 1900 and 1910. A measure of this was the rise in the consumption of cement which for Canada as a whole increased from 667,090 barrels in 1900 to 4,245,647 barrels in 1910.

70 Ibid., p. 76.
barrels in 1909. As Peter Gillespie, professor in engineering at McGill University observed, reinforced concrete enjoyed many advantages over other forms of construction. It was, he said, particularly useful for horizontal spanning, it was fireproof, it resisted bending forces, it easily absorbed the vibrations of heavy machinery, it was superbly resistant to water, it did not deteriorate with age and it could easily be employed in those instances where steel framing might be used.

It was also the case that in Canada reinforced concrete was an economical form of construction which compared favourably to the cost of steel framing. "As to the cost," Gillespie said, "it is impossible to give general figures other than to say that the actual cost depends altogether on local conditions and requirements. Everything being equally favourable for, say steel and reinforced concrete, the cost may not be materially different, although the writer is aware of heavy reinforced concrete buildings that have been completed for 10 per cent less than the tendered price for the same in steel." A more emphatic statement in support of the economy of reinforced concrete was made in 1907 by the engineer Henry Goldmark who commented that while "even ten years ago concrete steel construction was quite in its infancy... today in buildings concrete steel is used in beams, girders, columns,

71 Gustav Kahn, "The Commercial Aspect of Concrete in Canada," Construction, June, 1910, p. 52
72 "Reinforced Concrete, Its Advantages and Limitations," Construction, March, 1911, p. 51
73 Ibid.
floors, partitions, and even outside walls. It is usually cheaper than steel protected by fireproofing, and not much dearer than timber mill construction. The saving in insurance premiums alone will frequently off-set the extra cost."\(^{74}\)

By 1903 metal rods were being used to reinforce concrete as a matter of course in the construction of the great elevators then being erected to house the wheat of the developing Canadian prairie, but it was the expansion into Canada that year of the Detroit based firm of Julius Kahn which marked the widespread introduction of reinforced concrete to architectural practice. Under the direction of Julius Kahn's brother, Gustav, the Trussed Concrete Steel Company of Canada established offices across the country, and were so successful that within a few years the use of reinforced concrete either by itself or in conjunction with steel for the construction of building frames was commonplace. At the same time local engineering firms also began to carry out concrete work often under an independent patent. For instance the Winnipeg firm of Thomas Black advertised its own system of concrete reinforcement while the Toronto engineers Pitt and Robinson took out a patent in 1908 for the 'Niagara system' of reinforced concrete which they claimed to be more economical than the rival Kahn system.\(^{75}\) (Plate 36)

In 1909 Pitt and Robinson were able to carry out their ideas

\(^{75}\) "Pitt and Robinson, Construction Engineers," Construction, June, 1908, p. 70.
Our Perfect Metal Lath covered with HARD WALL PLASTER makes a wall that is INEXPENSIVE, FIRE-PROOF, and DURABLE as time.

Has it ever occurred to you what a durable and inexpensive building could be erected by using Cement over Perfect Metal Lath?

Concrete Reinforcement is made of hard galvanized steel wire and is wire locked in any size web with any sized mesh, and of any sized wire desired. WE MAKE IT TO ORDER.

Concrete Reinforcement SUPPLIED in 21 or 26 GAUGE.

Concrete Reinforcement is made of hard galvanized steel wire and is wire locked in any size web with any sized mesh, and of any sized wire desired. WE MAKE IT TO ORDER.

Concrete Reinforcement SUPPLIED in 21 or 26 GAUGE.

Concrete Reinforcement is made of hard galvanized steel wire and is wire locked in any size web with any sized mesh, and of any sized wire desired. WE MAKE IT TO ORDER.

Concrete Reinforcement SUPPLIED in 21 or 26 GAUGE.

Concrete Reinforcement is made of hard galvanized steel wire and is wire locked in any size web with any sized mesh, and of any sized wire desired. WE MAKE IT TO ORDER.

Concrete Reinforcement SUPPLIED in 21 or 26 GAUGE.

Concrete Reinforcement is made of hard galvanized steel wire and is wire locked in any size web with any sized mesh, and of any sized wire desired. WE MAKE IT TO ORDER.

Concrete Reinforcement SUPPLIED in 21 or 26 GAUGE.

Concrete Reinforcement is made of hard galvanized steel wire and is wire locked in any size web with any sized mesh, and of any sized wire desired. WE MAKE IT TO ORDER.

Concrete Reinforcement SUPPLIED in 21 or 26 GAUGE.

Concrete Reinforcement is made of hard galvanized steel wire and is wire locked in any size web with any sized mesh, and of any sized wire desired. WE MAKE IT TO ORDER.

Concrete Reinforcement SUPPLIED in 21 or 26 GAUGE.

Concrete Reinforcement is made of hard galvanized steel wire and is wire locked in any size web with any sized mesh, and of any sized wire desired. WE MAKE IT TO ORDER.

Concrete Reinforcement SUPPLIED in 21 or 26 GAUGE.

Concrete Reinforcement is made of hard galvanized steel wire and is wire locked in any size web with any sized mesh, and of any sized wire desired. WE MAKE IT TO ORDER.

Concrete Reinforcement SUPPLIED in 21 or 26 GAUGE.

Concrete Reinforcement is made of hard galvanized steel wire and is wire locked in any size web with any sized mesh, and of any sized wire desired. WE MAKE IT TO ORDER.

Concrete Reinforcement SUPPLIED in 21 or 26 GAUGE.

Concrete Reinforcement is made of hard galvanized steel wire and is wire locked in any size web with any sized mesh, and of any sized wire desired. WE MAKE IT TO ORDER.

Concrete Reinforcement SUPPLIED in 21 or 26 GAUGE.

Concrete Reinforcement is made of hard galvanized steel wire and is wire locked in any size web with any sized mesh, and of any sized wire desired. WE MAKE IT TO ORDER.

Concrete Reinforcement SUPPLIED in 21 or 26 GAUGE.

Concrete Reinforcement is made of hard galvanized steel wire and is wire locked in any size web with any sized mesh, and of any sized wire desired. WE MAKE IT TO ORDER.

Concrete Reinforcement SUPPLIED in 21 or 26 GAUGE.

Concrete Reinforcement is made of hard galvanized steel wire and is wire locked in any size web with any sized mesh, and of any sized wire desired. WE MAKE IT TO ORDER.

Concrete Reinforcement SUPPLIED in 21 or 26 GAUGE.

Concrete Reinforcement is made of hard galvanized steel wire and is wire locked in any size web with any sized mesh, and of any sized wire desired. WE MAKE IT TO ORDER.

Concrete Reinforcement SUPPLIED in 21 or 26 GAUGE.

Concrete Reinforcement is made of hard galvanized steel wire and is wire locked in any size web with any sized mesh, and of any sized wire desired. WE MAKE IT TO ORDER.

Concrete Reinforcement SUPPLIED in 21 or 26 GAUGE.

Concrete Reinforcement is made of hard galvanized steel wire and is wire locked in any size web with any sized mesh, and of any sized wire desired. WE MAKE IT TO ORDER.

Concrete Reinforcement SUPPLIED in 21 or 26 GAUGE.

Concrete Reinforcement is made of hard galvanized steel wire and is wire locked in any size web with any sized mesh, and of any sized wire desired. WE MAKE IT TO ORDER.

Concrete Reinforcement SUPPLIED in 21 or 26 GAUGE.

Concrete Reinforcement is made of hard galvanized steel wire and is wire locked in any size web with any sized mesh, and of any sized wire desired. WE MAKE IT TO ORDER.

Concrete Reinforcement SUPPLIED in 21 or 26 GAUGE.

Concrete Reinforcement is made of hard galvanized steel wire and is wire locked in any size web with any sized mesh, and of any sized wire desired. WE MAKE IT TO ORDER.

Concrete Reinforcement SUPPLIED in 21 or 26 GAUGE.

Concrete Reinforcement is made of hard galvanized steel wire and is wire locked in any size web with any sized mesh, and of any sized wire desired. WE MAKE IT TO ORDER.

Concrete Reinforcement SUPPLIED in 21 or 26 GAUGE.

Concrete Reinforcement is made of hard galvanized steel wire and is wire locked in any size web with any sized mesh, and of any sized wire desired. WE MAKE IT TO ORDER.

Concrete Reinforcement SUPPLIED in 21 or 26 GAUGE.

Concrete Reinforcement is made of hard galvanized steel wire and is wire locked in any size web with any sized mesh, and of any sized wire desired. WE MAKE IT TO ORDER.

Concrete Reinforcement SUPPLIED in 21 or 26 GAUGE.

Concrete Reinforcement is made of hard galvanized steel wire and is wire locked in any size web with any sized mesh, and of any sized wire desired. WE MAKE IT TO ORDER.

Concrete Reinforcement SUPPLIED in 21 or 26 GAUGE.

Concrete Reinforcement is made of hard galvanized steel wire and is wire locked in any size web with any sized mesh, and of any sized wire desired. WE MAKE IT TO ORDER.

Concrete Reinforcement SUPPLIED in 21 or 26 GAUGE.

Concrete Reinforcement is made of hard galvanized steel wire and is wire locked in any size web with any sized mesh, and of any sized wire desired. WE MAKE IT TO ORDER.

Concrete Reinforcement SUPPLIED in 21 or 26 GAUGE.

Concrete Reinforcement is made of hard galvanized steel wire and is wire locked in any size web with any sized mesh, and of any sized wire desired. WE MAKE IT TO ORDER.

Concrete Reinforcement SUPPLIED in 21 or 26 GAUGE.

Concrete Reinforcement is made of hard galvanized steel wire and is wire locked in any size web with any sized mesh, and of any sized wire desired. WE MAKE IT TO ORDER.

Concrete Reinforcement SUPPLIED in 21 or 26 GAUGE.

Concrete Reinforcement is made of hard galvanized steel wire and is wire locked in any size web with any sized mesh, and of any sized wire desired. WE MAKE IT TO ORDER.

Concrete Reinforcement SUPPLIED in 21 or 26 GAUGE.

Concrete Reinforcement is made of hard galvanized steel wire and is wire locked in any size web with any sized mesh, and of any sized wire desired. WE MAKE IT TO ORDER.

Concrete Reinforcement SUPPLIED in 21 or 26 GAUGE.

Concrete Reinforcement is made of hard galvanized steel wire and is wire locked in any size web with any sized mesh, and of any sized wire desired. WE MAKE IT TO ORDER.

Concrete Reinforcement SUPPLIED in 21 or 26 GAUGE.

Concrete Reinforcement is made of hard galvanized steel wire and is wire locked in any size web with any sized mesh, and of any sized wire desired. WE MAKE IT TO ORDER.

Concrete Reinforcement SUPPLIED in 21 or 26 GAUGE.

Concrete Reinforcement is made of hard galvanized steel wire and is wire locked in any size web with any sized mesh, and of any sized wire desired. WE MAKE IT TO ORDER.

Concrete Reinforcement SUPPLIED in 21 or 26 GAUGE.

Concrete Reinforcement is made of hard galvanized steel wire and is wire locked in any size web with any sized mesh, and of any sized wire desired. WE MAKE IT TO ORDER.

Concrete Reinforcement SUPPLIED in 21 or 26 GAUGE.

Concrete Reinforcement is made of hard galvanized steel wire and is wire locked in any size web with any sized mesh, and of any sized wire desired. WE MAKE IT TO ORDER.

Concrete Reinforcement SUPPLIED in 21 or 26 GAUGE.

Concrete Reinforcement is made of hard galvanized steel wire and is wire locked in any size web with any sized mesh, and of any sized wire desired. WE MAKE IT TO ORDER.

Concrete Reinforcement SUPPLIED in 21 or 26 GAUGE.

Concrete Reinforcement is made of hard galvanized steel wire and is wire locked in any size web with any sized mesh, and of any sized wire desired. WE MAKE IT TO ORDER.

Concrete Reinforcement SUPPLIED in 21 or 26 GAUGE.
in a design for a chemical plant for the Wood Products Co., in Northern Ontario with industrial buildings constructed of a frame of reinforced concrete with brick infill and concrete slab floors and a reinforced concrete water tower modeled on European work of the period. This use of concrete for industrial purposes was characteristic, for while concrete was becoming widely used for engineering projects such as bridges, grain elevators and the like its use by architects was for the most part restricted to the internal structure or if exposed, to industrial building. In short, while Canadian engineers had taken a great interest in the use of reinforced concrete for constructive purposes, developing an expertise which was then used by architects, architects themselves had done little to explore the use of concrete as an architectural material in its own right. The situation was summed up by one Canadian engineer in 1913:

At the present time there is no class of architectural structure in which reinforced concrete is not used to more or less extent, but only in a few of them—factories, warehouses, exhibition halls and buildings of a similar type—does the reinforced concrete play any important part in the facades. In contradistinction to this the exterior treatment of reinforced concrete is of great significance in many engineering works, for example, bridges, water towers, silos, chimneys, retaining walls etc. Many structures reveal the fact that both architects and engineers are afraid to let the reinforced concrete appear visible without any foreign embellishment. There is, in fact, a tendency to cling to the old forms, though no reason can be deduced why it should be forced into an unnatural imitation of stone buildings erected of single cut pieces, or of the skeleton steel frame buildings covered with a material which has properties entirely different from those of steel.

76 Ibid., "Some Canadian Works Recently Erected in Reinforced Concrete," Concrete, 4 (1909) pp. 117-120.

77 "Planning Design in Reinforced Concrete," Construction, August, 1913, p. 315.
SOME CANADIAN WORKS
RECENTLY ERECTED IN
REINFORCED CONCRETE

The chemical works of the Wood Products Company at Donnell, Ontario, comprise four buildings, an oven-house, still-house, charcoal-house and distillery-house, also a 50,000-gallon concrete water tower and small concrete dam.

Sand from the site of the works was used in all of the concrete. The stone used was peculiar in its fracture, in that it was semi-splittered, with very little dust, and was more in the nature of a flat limestone than anything else. For foundations, etc., 22-in. mesh screen stone was used, while for the superstructures two grades of stone, one passing 3/4-in. or 1/2-in. screen and the other passing a 1/2-in. screen, were used. The combination of these two grades, in connection with the sand used, made an exceedingly dense concrete. The reinforcement for the beams throughout the entire works consisted of "Niagara" bars, which had sufficient elasticity in form and application to cover all of the requirements of reinforced concrete.

The ten house claims some interesting features in connection with the structural side of the works. The entire roof-work is carried by six reinforced concrete columns resting on arched or divided footings standing between the ovens. The still house, which contains the neutralizing room, tank room, main distilling room and refinery, presents some interesting points, too. It was necessary to provide an exceedingly strong floor system to carry four 10,000-gallon tanks for holding raw liquor, at an elevation of 14 ft. 6 in. above grade with an ample factor of safety. At the opposite end of the still house in the refinery openings 9 ft. 6 in. dia. were left in the floors for the alcohol still to pass through. These floors have been figured for a safe loading 450 lbs. per sq. ft. on the second and 350 lbs. per sq. ft. on the third and fourth floors respectively. In the centre or main room of the still house it was deemed necessary to carry the roof on some very high columns, 82 in. dia. and 25 ft. in height. These columns were poured in one operation from the top, a specially graded mixture of concrete enabling the base of the column to be poured without separation of the aggregate.

In the main part of the still house, as in the charcoal house, there is another roof carried on pillars of approximately 3 ft. span, with secondary beams connecting therewith, running longitudinally with the building carrying the monitor walls. Staircases throughout are constructed entirely of reinforced concrete with unsupported landings, and the windows and frames are of a special type of double rubbered factory.

Plate 38, Reinforced concrete water tower, chemical mills of the Wood Products Company, Donald, Ontario, (1908).
Pitt and Robinson, engineers; from Concrete and Constructional Engineering, 4 (1909) p. 117.
The Jacobs Building, St. Catherine and St. Alexander Streets, Montreal. Built of Reinforced Concrete with Terra Cotta Exterior Facing, and Notable as Largest Building of this Type of Construction In Canada. Mitchell and Creighton, Architects.

Pemberton Block, Vancouver, B.C. A Large Reinforced Building Which is Interesting as an Example In which the Floor System Extends to Form the Outer Wall Beams, and in this Manner is Incidentally Made to Serve as a Simple Decorative Feature for the Brickwork. G. C. Mesher & Company, Architects.

Plate 39, Two buildings with frames of reinforced concrete, c.1910.
Plate 40, The Hermant Building, Toronto, (1913), constructed with a frame of reinforced concrete, Bond and Smith, architects.
While in the end there were to be very few examples of exposed concrete architecture built in Canada before 1914 the idea that such an architecture would one day come into being was voiced as early as 1903 and repeated with considerable frequency thereafter, though as often as not engineers were as anxious for that great day as architects. Nonetheless W. A. Langton wrote just after the turn of the century that:

I think there is a general impression that architecture is dead; that we are only copyists and imitators, making play with old forms and conventions, according to fashion, without regard to reason; that, though we understand fully the logic of design as exhibited in the thirteenth and later centuries, we are barred from our material in the same manner on account of the very splendour of the past, which has formed our taste, and makes the thought of a genuine architecture in our slim materials impossible.

Since, however, steel must be protected, we are not required to hold the skeleton of our buildings up for admiration any more than the Creator has done this in the case of our skeletons and I think, if Viollet le Duo were alive to make an analysis of some of the recent steel frame buildings, he would find them to be gradually approaching the logical idea. We have at any rate, reached the point where it is not hard to see that there is a logical ideal.

But we are nearer the birth of a live architecture than that. We have at last got the new material that the world has been looking for to produce a new birth. Reinforced concrete is an architectonic material.

According to Langton design in concrete would have to be original without recourse to the past and he suggested that architects try to express the function of the material in the way that the gothic architects had done. In a similar way, the Royal Architect in an article on a "Possible New Style of Architecture" concluded that "any attempt to find the true expression of concrete must be

prepared for by the architect disembarassing his memory entirely of orthodox masonry detail, which is the expression of a material and a constructional method entirely different from reinforced concrete." Or again, Walter Francis hinted in 1911 that "the day is coming when everyone will know that that single limitation, adaptation of material, is the philosopher's stone for art."

It also seems to be the case, as was true with developments in the steel frame and the evolution of skyscraper design that Canadian architects kept well abreast of experiments in concrete construction carried out by architects around the world. For instance in 1903 W. A. Langton addressed the OAA on Anatole de Baudot's concrete church of St. Jean de Montmartre. Especially interesting are two apartment houses built in Montreal and whose form display a manner and technique similar to that of Auguste Perret and which seem to be unique to reinforced concrete construction in North America at this time. Rather less innovative is a design for a concrete shop which was constructed in Halifax in 1904. (see Plates 41-42)

It is indicative, however, that virtually nothing is known of the apartment houses constructed in Montreal, not even their date of construction, for while these and other early examples of reinforced concrete architecture in Canada existed, they remained experiments

81 Proceedings of the Ontario Association of Architects, p. 17.
Plate 41, Reinforced concrete apartment house, Rue St. Denis, Montreal. (architect and date unknown).
Plate 42, A. M. Bell & Co., Store, Halifax, Nova Scotia,
R. A. Johnson, architect.
outside the mainstream of Canadian architectural life.

For most Canadian architects exposed reinforced concrete construction raised in the words of H. B. Gordon "the tremendous problem of suitability of design for concrete buildings," and most would have agreed with Walter Francis who remarked in 1909 that "in the present state of the art, and for our climatic conditions, concrete is not recommended for exteriors". By and large, Canadian architects before 1914 were happy to keep reinforced concrete out of public view and if it was to be exposed, to resort to a hammer dressing, a covering of tile or a finish of stucco. All the same there would have been few who would, openly at least, have disagreed with the conclusions of the Royal Architect which commented in 1911 that "It would be foolish to prophesy, but it seems most probable that our architecture will be transformed in reinforced concrete in a way which no other material or method of construction has done since the Middle Ages and the days of Gothic."

Part III: Nationalism

Chapter 7: The National Idea
The last public act to be performed by Lord Dufferin before leaving his post as Governor General of Canada and sailing for England in 1878 was to lay the foundation stone of the Dufferin Terrace, a promenade to be built around the old ramparts of Quebec.\(^1\) It was fitting that Lord Dufferin should have given not only his hand but his name to the project for it was largely through his efforts that it had come about. In the early 1870s the municipal council of the city of Quebec had appointed a special committee to investigate changes that might be made to accommodate the growing trade and traffic of the city. In the course of their recommendations the committee had proposed the destruction of the ancient fortifications to facilitate communication between the old city and its new suburbs and this Lord Dufferin, who had taken a special interest in Quebec, had opposed.\(^2\)

In its place, Dufferin offered a set of proposals for Quebec which, as his wife Lady Dufferin had noted in her journal, were made "with a view to preserving its old walls and gates, its picturesque appearance, and its ancient character."\(^3\) Besides construction of the terrace, with its views out across the old town and the St. Lawrence, Lord Dufferin had called for the development of a park just beyond the city walls on the plains

\(^2\)Luc Noppen et al., *Quebec: Trois Siecles d'Architecture*, (Quebec: 1979) p. 82.

of Abraham where the famous battle for Quebec had been fought in 1759, the construction of a new chateau within the old citadel to replace an earlier one destroyed by fire in 1834, and finally the construction of new gates through the old city walls to provide necessary links with the expanding city beyond.

In addition to this, Lord Dufferin engaged his Irish architect, William Lynn, to prepare designs for the new public works. In his instructions to Lynn, Lord Dufferin rejected outright the classicism which was the legacy of the British command established at Quebec following the defeat of the French, and told Lynn to employ instead a style more in keeping with that of Quebec and France under the ancien régime. This Lynn did, and although the new chateau was never built, two of the new gates were, and in their calculated historicism and French allusion they had a crucial effect on the future development of the city. As the Quebec historian Luc Noppen has suggested, it is Lord Dufferin's romantic vision of Quebec which still forms the basis of our own: "Mais au-delà des idées d'ensemble," he said, "c'est le type d'architecture proposé par Lynn et Dufferin qui marquera l'image de la ville, en transposant à Québec la vision d'un romantique inspiré par l'architecture médiévale européenne."

4 Luc Noppen et. al., Quebec: Trois Siecles d'Architecture, p. 82.
5 Ibid.
Plate 43, Design for the St. John Gate, Quebec, by W. H. Lynn, architect, signed September, 1878.
Plate 44. Design for the Kent Gate, Quebec, from the plans by W. H. Lynn, copied and signed as "True Copy," C. Baillarge, City Engineer, November, 1878.
Plate 45, Design for the St. Louis Gate, Quebec, from the plans by W. H. Lynn, copied and signed as "True Copy," C. Baillarge, Chevalier, City Engineer, November, 1878.
In his choice of architecture, Lord Dufferin had decided a play upon the historical associations and French character of Quebec, and it was an idea that proved exceptionally powerful. Beginning with Lynn's work at Quebec, the use of forms taken from late medieval and renaissance France was to become by way of work like Jerome and Taché's Drill Hall of 1884 and the Château Frontenac (Bruce Price, 1892) an architectural type in its own right. (Plate 46) And while it is true that similar elements can be found in the contemporary architecture of both the United States and Great Britain, in Quebec the employment of forms taken from old France had an unusual power and a distinctly nationalistic flavour.

The reason for this, is that aside from the picturesque charm of work like the St. Louis Gate, or the Château Frontenac, the adoption of Lord Dufferin's proposals for the improvement of Quebec along historical lines and the subsequent use of French inspired forms by other architects working in Quebec was simultaneous with a development of national feeling in Quebec society. In 1867 predominantly French-speaking Quebec had joined in a political confederation with English-speaking Ontario, Nova Scotia and New Brunswick. By 1875 these four founding

Plate 46, Drill Hall, Quebec, Jerome and Taché, architects.
provinces had been joined in turn by Prince Edward Island, Manitoba, and British Columbia, of which only Manitoba had a significant French speaking population, so that by the mid-1870s the French population of Quebec suddenly found itself severely outnumbered in Confederation by Canadians of Scottish, Irish or English descent.

From the 1870s onwards the political implications of this changing demographic balance was made all too clear as French Canadians saw the English majority exercise their power to block any attempt on the part of Quebec to establish French culture and traditions outside its own boundaries, particularly in the West which was then opening up for large scale settlement. The effect of this was to force French speaking Quebec back on itself and to adopt by way of defense a mood of self-conscious nationalism, expressed in political terms by the rise and election to power in 1886 of an openly nationalistic political party, the Parti National.7

In cultural terms French Canadians turned to a re-examination and glorification of their unique history and to a renewal of the ties between France and Quebec which had been broken after the fall of Quebec and the upheavals of the French Revolution. As the historian Mason Wade has pointed out,

It established transatlantic contacts with France; it travelled in France for pleasure, for tourist and commercial purposes; it sent its sons to study in France; it read French periodicals and books; the textbooks which it used were for

the most part published in France; it received French men as
visitors, lecturers, preachers, and consuls; its newspapers cited the French press copiously; it sought French honours.

It was in this context of rising nationalism that Lord
Dufferin had made his proposals, and while it would be too much
to say that they were in conception an expression of just this
Quebec nationalism, it was nonetheless the case that with his
desire to express through architecture ideas of history and race,
Lord Dufferin had drawn on a well of national sentiment that was
only then coming to the surface and which was destined to exert
an influence not only on architecture but on the cultural life of
the province as a whole. As Aline Gubbay has demonstrated, it was
precisely this nationalism which lay behind the construction
from 1881 onwards of a series of monumental sculpture in Quebec
and Montreal designed to celebrate the heroes of French Canadian
history.9

The idea that Canadian architecture should reflect the
conditions and history of Canada itself was not entirely new to
the country in 1875 or 1880, but from this time on the influence
of nationalism on Canadian architecture increased until after the
turn of the century it led to the development of a theory of
Canadian architecture based largely on national considerations,

8 Abbé A. Maheux, "Le Nationalisme canadien-francais à l'aurore
du XXe siècle, Report of the Canadian Historical Association, 1945,

9 Aline Gubbay, "Three Montreal Monuments: An Expression of
Nationalism," (unpublished dissertation, Concordia University, Montreal,
1978).
and in retrospect Lynn's work at Quebec, unwittingly or not, seems a first indication of these later developments. After 1900, as Harold Kalman has argued, the use of French motif developed into a full blown style, exploited not just in Quebec but across the country for its nationalistic connotation.

In English speaking Canada, the influence of national feeling on architecture followed a parallel if somewhat different path. Here, as in Quebec, the euphoric Canadianism which greeted Confederation in 1867 was soon followed by a disappointed reaction to the difficulties which brought the country close to collapse by the 1890s. As we have seen in Chapter one, tensions between French and English and sluggish economic growth were among the most important factors in this loss of national confidence and in response some English Canadians were moved to advocate closer ties between the United States and Canada, some suggesting outright annexation. There were others however, who continued to hope for the development of a truly Canadian nationality, while still others, in the face of what they perceived to be a double threat from rampant Republicanism on the one hand and French Catholicism on the other turned for their part to a glorification either of their own particular history, or the Imperial connection, or both.

10 For a discussion of this idea as it existed in Canada earlier in the 19th century see, Douglas Richardson, "Canadian Architecture in the Victorian Era," Canadian Collector 10 (September, 1965), pp. 20-29.
11 Kalman, pp. 5-37.
Despite these contrasting and at times conflicting tendencies it would be a mistake to see Canadian society at the time, at least insofar as it affected Canadian architects, as completely fragmented. It was for instance possible, as the novelist Sara Jeanette Duncan noted, to be simultaneously a Canadian nationalist and, in the heyday of Empire, an imperialist. Describing just such a man she wrote that he:

...was fond of explaining in connection with an offer once made to him to embark his capital in Chicago, that he preferred a fair living under his own flag to a fortune under the Stars and Stripes...His ideal was life in a practical, go-ahead, self-governing colony, far enough from England actually to be disabused from her inherited anachronisms and make your own tariff, near enough politically to keep your securities up by virtue of her protection. He was extremely satisfied with his own country; one saw in his talk the phenomenon of patriotism in double bloom, flower within flower.

By the early 1890s there is considerable evidence of an awakening among Canadian architects to the need for a national architecture, not least because of the challenge presented by American society and culture. Speaking to the Toronto Architectural Sketch Club on the occasion of their annual dinner in 1890, Samuel Jones claimed that "he was more than shocked at the civilization of the United States. They knew little of art," he said, "and their lives were spent in a fevered haste in trying to scrape into their pockets somebody else's dollars." At the same time he said, Canadian art was at so low an ebb there needed to be a new missionary crusade for its improvement.

13 Sara Jeanette Duncan, The Imperialist, reprint, (Toronto: 1971) p. 52

Along the same lines, S. C. Curry told the PQAA that same year that "We must try to develop a national spirit...for to develop national life, we should encourage art, for the love of the beautiful had much to do with the formation of character." A year later A. C. Hutchison argued that "The magnitude of examples of architecture should testify to the greatness of our country" and "the stamp of originality which we hope will be placed on our buildings may prove that Canada is a nation...a country of which we may all be proud."

Looking around them, many Canadian architects expressed the opinion that the profession had for the most part failed to produce work of a standard suitable for the country. "It is a melancholy fact," complained the Toronto architect, W. Siddall, "that much that has been produced here is either positively bad or absolutely uninteresting. The buildings that are offensively bad are so from sheer ignorance or contempt for the recognised rules of art, and those that are dull and stupid," he said, "often are so from the mere mechanical repetition of stock forms and stale ideas which do duty for thought and save trouble of invention." Another writer described one fast-growing Toronto street as "facades in which carved stone, pressed and moulded brick, galvanized iron corbels are arrayed in a manner which results in ugliness so obtrusive

15 CAB, December, 1890, p. 136.
as to make one wish the means were at hand for inflicting deserved punishment upon the author.

One often heard complaint was that Canadian architects were influenced by foreign work to such a degree that at times Canadian architecture seemed little more than a slavish imitation of what one might see in, for instance, Boston or New York. In 1888, the Hamilton architect James Balfour argued that "...if the architects in this country would begin to design (not copy) buildings, drawing no line that does not express a purpose, that a new and perfectly suitable style would soon beautify our cities and towns," and "if we make an effort we will succeed in producing a Canadian nineteenth century style." A more eloquent argument for the development of a Canadian architecture on true principles was made by W. A. Langton in 1892. Speaking to the Toronto Architectural Sketch Club he said, "We have no need to wait for the advent of a genius to create Canadian architecture, if only we have in common the idea of making our architecture true." But, he continued,

We still have amphitheatrical churches with a couple of storeys of society rooms and class rooms, all contained within an exterior which represents as faithfully as it can the medieval church with its single spacious hall. We are about to have a drill shed here which, inasmuch as it is government work and the result of tradition rather than individual intention, we need feel shy of criticizing. It is, of course, to be a castellated structure. In former days arms were kept in a castle. Must therefore the building that stores our arms nowadays represent a castle, however feebly? Are we to suppose that when Toronto is surrounded by the beleaguering host, our brave defenders

18CAB, July, 1891, p. 70.

will retire upon the impregnable drill shed and man the battlemented turrets and cornice?²⁰

Equally ridiculous to some architectural critics in the country was the fact that in their imitation of American and especially European architecture, Canadian architects tended to overlook the demands of the Canadian climate. In a paper titled "Climatic Influences on Architecture," the Ottawa architect G. F. Stalker wrote that "the artistic and scientific construction of a building are the chief characteristics which distinguish an architect from a builder—and just as we see the votaries of fashion dressed in a style which is only suitable in Paris or London, so we find the followers of fashion in art designing their buildings as if locality and climate were in these days reduced by artificial means to a universal dead level."²¹

In the view of Mr Stalker, whenever an architectural style had been developed it had been related closely to the realities of climate and in Canada, he said, "We certainly have not a Canadian style of architecture," and "one cannot fail to be struck with the want of consideration that has been shown to Dame climate." The chief thing, he went on to say, "the only thing for us to do in this matter is not to ignore our climate, although it can treat us with supreme contempt, but to give it in our architecture that consideration and study which is its due and which shall give a certain amount at least, of national character to our building."²²

²⁰CAB, May, 1892, p. 47.
²¹CAB, December, 1891, p. 105.
²²Ibid.
The fact of the matter, however, as Charles Baillarge' observed in 1893 was that, at least in the field of domestic design the introduction of new techniques had freed Canadian architects and Canadians with them from many of the restrictions with which they had had to deal in the past. Nowadays, Baillarge' wrote, "all the comforts of hot-water heating, electric lighting, and sanitary plumbing of handsome make, with the elegancies of hardwood finish, tiling, stained glass work, etc. are generally looked for. The effect of all this is that the old house of seventy or eighty years ago is looked upon with little favour."²³

 Nonetheless, as Baillarge noted, the Quebec architects of the past had built with an eye to climate and had succeeded in developing an architecture that was distinctive. The traditional Quebec house with its thick walls, small doors and windows, low ceilings and double windows set flush with the outer face was easily warmed and well insulated, he said. Besides this, the pitched roof and the absence of parapets and projecting cornices left the snow free to fall to the street. "The Quebec architect," Baillarge wrote, "should build not because this or that style is fashionable, but with proper regard for the requirements of climate and surrounding circumstances, to produce such a style of building as will without question assert itself to be of a type suitable to the climate and other conditions of the locality in which it stands." This, he said, "the old buildings of Quebec did; let us not despise them, but so improve and embellish them

and adapt them to modern notions, that in the new production we shall have, if not a national, at least a local style of architecture."

Although it was not until after the turn of the century that Canadian architects began to experiment with the traditional architecture of Quebec in the field of domestic design, Charles Baillarge's observations seem to have been part of a general awakening to the value of the old architecture of the province. In 1893 Louis Papineau wrote to the CAB criticizing proposals to pull down the old parish church near his family's country home and describing what he called the current mania to demolish the old churches, replacing them with constructions "neither gothic or classical" and which completely ignored the fact that the old builders had evolved what he called a "Canadian type of church."

That same year public monies were gathered to save the Château de Ramezay in Montreal from destruction while four years later in 1897 A. T. Taylor echoed Papineau's sentiments saying "Personally, I regret to see the disappearance of the simple rural church hallowed by many years of worship. We have few antiquities of any kind," he went on to say, "and what we have got it is our bounded duty to jealously guard and preserve."

24 Ibid.

26 For information on the purchase of the Château de Ramezay see CAB, October, 1893, p. 101 and CAB, November, 1893, p. 115; Province of Quebec Association of Architects, CAB, October, 1897, p. 193.
Again, despite these early signs of interest in the traditional architecture of Quebec, the scholarly study of the province's vernacular building was not to begin in earnest for another decade and a half. Nonetheless, the growing sensitivity of at least some architects towards the old architecture of the province was matched by an increasing awareness that foreign architectural idioms could not be reproduced in Canada without some accommodation to local conditions. As Saxon Snell, the English architect charged with the design of the Victoria Hospital in Montreal remarked, even though the hospital was a copy of Edinburgh's Royal Infirmary: "I have had more difficulty in designing the plan for this hospital than any other I have ever built. This is accounted for by the peculiarity of the Canadian climate, its intense heat and cold."

In 1893, another English architect practicing in Canada, R. W. Gambier-Bousfield told the OAA that to his mind English mouldings as they were commonly used in Gothic work in Canada were quite unsuitable to Canadian conditions. In his address, the CAB reported, "It was shown how unsuitable were such forms as the hollows of Early English moulds in which water will lie in the severe winters, and therefore what folly it is to introduce such forms simply because they are Early English."

As Canadian architects themselves noted, nowhere had the Canadian profession been as successful in producing designs

27 "The Victoria Hospital, Montreal," CAB, July, 1889, p. 52.
fitted to national conditions as in the field of domestic design. The reason for this seems to be, at least in part, that here Canadian architects had access, by way of British and American writers, to a theory of development which they could easily adapt to their own practice. An example of this sort of approach is provided by a lecture given by Edmund Burke to the Toronto Architectural Sketch Club in 1890.

In his lecture, Edmund Burke began by saying that in his opinion, the Canadian house should be a result of the mixture of American and English practice; those traditions which he describes "as the most familiar and accessible to us." Having said this, he went on to point out that one of the great differences between conditions in Canada and Great Britain is that in contrast to Britain where the abundance of cheap labour "has contributed not a little to careless and diffuse planning, thereby increasing the work of the household, and necessitating a large staff of servants, "in Canada the difficulties of the domestic labour market as well as the relative lack of means had encouraged "more careful and scientific planning--to the elimination of all unnecessary passages, extensions and roundabout ways, and to the invention of many labour saving appliances which have been born of necessity."

In the course of his lecture, Burke drew heavily on standard works such as Robert Kerr's *The Gentleman's House* and

30 Ibid.
made much of the domestic work of Norman Shaw, providing copies of some of his house plans for analysis. The work of all these men, Burke observed, was marked by a special consideration of climate—the amount of rainfall, the movement of the sun and so on—and he advocated the same sort of careful planning in the design of Canadian houses. 31

In Canada, Burke said, the necessity of avoiding snow traps had had the effect of "clipping the wings of many a flight of fancy planning," but he offered his students some concrete suggestions. Ideally, he said, the most important rooms and the main entrance should face to the south "thus avoiding the coldest winds which are from the north and west. In our climate," he continued "the entrance should not be placed...where it will receive the full effect of a snow slide from the roof. If a hood or porch is impracticable, a broad dormer may be located directly above the door, or a gable worked in to obviate or divert that which is always a dangerous nuisance." Likewise, he argued, "In our climate the hall should never have direct connection with the entrance door—a vestibule should be imposed. If the vestibule door can be placed at a right angle to the entrance it will tend to prevent the sweeping of a sudden gust of wind through and chilling the house should both doors happen to be open at the same time." Finally, he said, "where a hall fireplace is introduced it should be in a cosy nook away from draughts, otherwise it would be as well to do without a fireplace in the hall altogether." 32

31 Ibid.
32 Ibid.
By the late 1890s and after 1900 especially, the ideas and example of British and American architects such as Norman Shaw, C. F. A. Voysey, M. H. Baillie Scott, McKim, Mead and White, Frank Lloyd Wright and the Greene brothers led Canadian architects to design houses which responded directly and harmoniously to local conditions. We have already mentioned the work of Eden Smith who must be included in this group, and there are numerous others, none of them more successful than Samuel Maclure, a Victoria born architect whose entire career was spent in practice on the West coast of British Columbia.

After a period of study at the Spring Garden Institute in Philadelphia in 1884-85, Samuel Maclure returned to British Columbia where he joined the office of a local architect in New Westminster before returning to Victoria in 1892 to open his own office. During the 1890s Maclure was to become increasingly well known for domestic work carried out in a mode that was clearly derivative and based on the Shingle Style and on the experimentations in that idiom then being carried out in California.

Under these influences, as well as those of Frank Lloyd Wright and the English Arts and Crafts Movement which became particularly important after the arrival to Maclure's office in 1903 of Cecil Fox, a pupil of C. F. A. Voysey, Maclure developed a domestic practice which was particularly notable for his use of local materials such as native fieldstone, cedar shingles and

rough-sawn fir left untreated to weather.34 In houses such as the J. J. Shallcross residence at Victoria Samuel Maclure produced designs which seem to us now the very embodiment of Edwardian Victoria; life on the West coast of North America tempered by the strong and persistent influence of England. (Plates 47-50) In the words of the \textit{Craftsman}, Maclure's houses were a demonstration of "English traditions blended with the frank expression of western life."35

In his desire to adapt the ideas and forms of foreign architects to Canadian conditions, Samuel Maclure was typical of many Canadian architects practicing in the years before 1914. Whether they saw the best way of adaptation to be through the use of materials or a sensitive relation to site or the self-conscious use of architectural types, all were influenced to some degree by the idea that Canadian architecture should be, if not distinctively Canadian, at least accountable to the realities of Canadian geography, climate and history. There were, indeed, many variations on this theme, including the work of men like George Reid to introduce in the decoration of public buildings, wall murals, often with historical subjects, or the proposal of William Thomson that Canadian architects develop a decorative vocabulary based on the Canadian flora and fauna. In a criticism of what he called the "stereotyped and meaningless pattern of design used as ornament on the Parliament Buildings" in

34\textit{The Factor of Environment in Domestic Design,} \textit{Construction,} October, 1912, p. 85.

35\textit{The Craftsman,} March, 1908, p. 675.
RESIDENCE OF J. J. SHALLCROSS, VICTORIA, B.C.

A Picturesque Pacific Coast Bungalow which Shows an Interesting Use of Materials, Intimately Relating the Structure to its Size.

S. Maclure, Architect.

Plate 47. J. J. Shallcross residence, Victoria, British Columbia, Samuel Maclure, architect.
Plate 48, J. J. Shallcross residence, Victoria, British Columbia, Samuel Maclure, architect, view from approaching drive and living room.
Plate 49, J. J. Shallcross residence, Victoria, British Columbia, Samuel Maclure, architect, house and grounds and living room, looking towards hall.
Plate 50, Richard Hall residence, Victoria, British Columbia, (1912), Samuel Maclure, architect.
Ottawa, Mr Thomson told the Toronto Art Student's League in 1891, "Instead of all this scroll ornament, why not use, invent or cause to be invented, some new conventionalised ornament of Canadian wild flowers or bas relief with historic and allegoric events in Canadian history." 36

During the 1890s and from 1900 to 1914 the development and expression of this national feeling in architecture was encouraged not only by the larger forces of nationalism and national reaction which we have already mentioned, but also by the development in Canada of an architectural theory which looked specifically for the development of Canadian architecture on national lines. But before turning to that it is worth remembering, that throughout this period Canadian architects continued to struggle, as they did during the late 1880s, with the direct influence of American architects practicing in Canada, and that the growing unity of the profession, despite the formation of the Eighteen Club in Ontario, kept apace and was given a great boost by the formation in 1907 of a country-wide association of architects, and by the establishment after 1905 of provincial associations in Manitoba, Saskatchewan, Alberta and British Columbia.

The idea of a national institute of architects seems to have been formally raised for the first time at the general meeting of the PQAA in October of 1896. According to Maurice Perrault, a national association would strengthen the interests of Canadian architects and serve to bring them together on a national rather than just a

provincial basis. At Perrault's request a committee was appointed to look into the issue, but despite a generally favourable report, the PQAA abandoned the idea following a lackluster response by the OAA.37

In the Spring of 1907 the idea was raised again, and under the direction of another Montreal architect, Alcide Chausse', a circular was sent to architects across the country "suggesting a general meeting for the purpose of organising and forming a national society of architects."38 Following this an organisational meeting was held in Montreal in April of 1907 and in August at a general meeting attended by architects from across the country the Architectural Institute of Canada was formed which became in 1909 the Royal Architectural Institute of Canada (RAIC).39

At the first tentative meeting in April, 1907, Alcide Chausse had proposed that the new national association might affiliate with the existing provincial societies, all of which would then act under the provisions and charter of the new national body. To this end a bill incorporating the Architectural Institute of Canada was drawn up which upon passage in the Federal parliament would have provided that,

On and after such date no person shall be entitled, within the Dominion of Canada, to use the title of Architect, or any abbreviation thereof, or any name, title, or description implying

37AN Quebec, PQAA minutes, 8 October, 1896; 22 December 1896, 11 May, 1897.

that he is a corporate member of the said Institute nor to act in practice as an architect within the meaning of this act.

The effect of such a bill however, would have been to introduce statutory registration of architects across the country and in so doing to supersede the authority of the provincial associations. On both these counts the proposed bill of charter for the national institute met with determined opposition so that in the end the bill was withdrawn and the national institute of architects, as it came into being, was simply a voluntary association with no legal powers whatsoever. Despite this, the RAIC soon played a leading role in the architectural life of the country, acting to bring architects from across Canada into greater contact with each other.

During the controversy which erupted over the proposal of the RAIC to introduce statutory registration under its own legislative authority, the Montreal born critic, F. W. Fitzpatrick, who was then living in the United States, wrote to Construction commenting that while in his opinion the formation of a Canadian institute of architects was generally a good thing, the particular bill which they had brought before parliament was simply an endeavour to organize a monopoly and was "a confession of cowardice" born of "a fear of American and foreign competition." As this

39Ibid.
41On the opposition to the bill see for instance, AN Quebec, PQAA yearbook, 1908, p. 19.
42Fitzpatrick, Construction, October, 1907, p. 45.
indicates, architects based in the United States continued to be conspicuously successful at winning Canadian commissions up to 1914, despite the advances in education, organization and professional skill that the Canadian profession had made since the 1890s. In the face of this, one of the strongest arguments Canadian architects had at their disposal was their belief in the necessity of a national architecture, and their ability to provide it. There can be no doubt that this continuing competition from the American profession was yet another factor encouraging the consideration of the national interest among Canadian architects. By 1908, Ivan Macdonald, the young editor of Construction was able to say to his readers:

It is true that we have not architects in Canada who have the international reputation of some of the American designers; they have not had the opportunity to establish their fame, but as far as capabilities are concerned, recent work of Canadian designers has established the fact that no country in the world possesses a more highly cultivated, capable class of architects, as a whole, than Canada. Buildings from the Atlantic to the Pacific, bear evidence of the careful, studious work of our designers. They stand as unmistakeable evidence of the fact that these sober, studious men have realized the importance of their duties and are carefully and intelligently dealing with each problem that presents itself and applying themselves assiduously to the task of giving Canada an architecture suited to her traditions, her climate, the habits, the tastes and the ideals of her people, and adapted to the use of the materials nature has given her. Contrast the work of Canadians influenced by their knowledge of all that is Canadian with that of the American designer, controlled by American influences, and the difference may be defined as that which exists between the characteristics and ideals of a Canadian and those of an American.​

Chapter Eight: Percy Nobbs and a National Theory
In his biographical note on the life of Gerald Baldwin Brown, the first Watson Gordon professor of fine art at the University of Edinburgh, D. Talbot Rice wrote that Baldwin Brown's historical writing was marked by a perspective where "art is considered as a manifestation of the life and culture of its age, and where great importance is always given to the connexion between art and its social background." While Baldwin Brown never taught in Canada, it is with him that we find the natural beginning to this chapter, for it was this idea—that all art is intimately connected with the society from which it sprung—which lay behind the development of Canadian architectural criticism from 1905 to 1914, and it was, indirectly at least, the teaching of Baldwin Brown which had brought this about.

In 1880 Edinburgh University appointed Baldwin Brown, who was then thirty-one and a graduate of Uppingham and Oriel College, Oxford, to fill the newly established Watson Gordon Chair. As the University Calendar made clear, the department of fine art had not been established to provide a technical education, but a theoretical one. "The Watson Gordon class-room is by no means to be employed as a technical school;" it stated, "But the object of the Chair will be to impart full knowledge, and correct ideas with regard to the history and theory of fine arts, including painting, sculpture, and architecture, and other branches of art therewith connected." Working with this in mind, Baldwin Brown quickly established

2 Edinburgh University Calendar, 1880-81, p. 64.
the reputation of the new department which, despite its theoretical orientation, was nonetheless open to the practical needs of students in painting and architecture. For instance in 1884 the department offered a course of forty lectures on architecture "especially designed for those who are pursuing architecture as a profession."\(^3\)

Through his writing and his teaching, Baldwin Brown was soon a leading figure in Scottish intellectual and academic life with a range of activities and honours to his credit, including in 1890 the presidency of the Edinburgh Architectural Association.\(^4\) Among his students at Edinburgh was S. Henbest Capper and there is little doubt that Capper was given the post at McGill University in 1896 on Baldwin Brown's recommendation. Scarcely a year before the establishment of a chair in architecture at McGill, in 1895, Sir William Dawson had retired from the principership of the university and the post had been offered to and accepted by another Scottish academic, William Peterson. Born in Edinburgh and educated at Oxford, William Peterson had been appointed to the Faculty of Edinburgh University in 1879 and in 1882 he had taken up a position as principle of University College, Dundee, where he remained until leaving for Montreal.\(^5\) While in Scotland, Peterson had become a good friend of Baldwin Brown and so when looking for a suitable man to fill the chair in architecture at McGill in 1896, he turned quite naturally to Brown for advice who in turn suggested Capper

\(^3\)Edinburgh University Calendar, 1884-85, p. 65.
\(^5\)Canadian Who was Who, (Toronto: 1938) pp. 342-347.
as the man for the job.

The significance of Capper's appointment at McGill was twofold. It set the stage for the future development of links between the Department of Fine Art at Edinburgh and the Faculty of Architecture at McGill—a correspondence that was to have important and long-lasting ramifications for Canadian architecture—and secondly it meant that under Capper's direction, the architecture course at McGill would from the very beginning have a strong theoretical and humanistic character.

In the course of his career at McGill, which lasted from his appointment in 1896 to his resignation in 1903, it was, as we have seen, Capper's aim to establish an architectural programme modeled on those of the United States including training in design and architectural science as well as the theory and history of architecture. But while Henbest Capper's efforts at McGill met with only limited success, in the more public world of the architectural profession as a whole, he played an important role as a member of the PQAA and as an architectural critic.

As one might expect of a man trained by Baldwin Brown, the idea that architecture was fundamentally the expression of the age which produced it was central to Capper's thinking. A consequence of this was an emphasis by Capper on the role of architectural history and in turn on the value to historical scholarship of architecture. In his

6See for example the Peterson-Brown correspondence in McGill University Archives, Peterson Papers, Department of Architecture File, Record Group 2P/644/14.
lectures he argued that it was possible to see in historical architecture living evidence of the past. "It is, perhaps," he said, through its buildings mainly that the past holds out in tangible form its living hand to the present." In addition, it was also Capper's belief that because the relationship between society and architecture could be observed in the architecture of the past, architects of the present day would do well to study past architecture and work from it. Indeed, he suggested that through the study of the past, architects would find their way to a new national architecture. "In a very special way, architecture is concerned in the ennobling legacy of the past," he said, and "only through the past can we builders learn thoroughly to grasp the present and work out strenuously the future of our craft."

In his lectures and his writing, Capper pointed to the development of architecture along national and historical lines which was then such a marked feature of architectural life in Great Britain and throughout Northern Europe. Given what we have seen to be clear evidence of a desire among Canadian architects for just such a national architecture from the early 1890s onwards, it is curious that nothing of a similar nature was attempted in Canada until after 1900, but certainly one difficulty any movement of this sort would have had to overcome was the problem of Canadian history and nationality.

8Ibid., p. 181.
9For a brief discussion of national influences in European architecture at this time, see Peter Davey, Arts and Crafts Architecture, (London: 1980).
any nation with such a brief history and undefined nationality as Canada hope to find evidence of a national architecture in its own past, and without deep traditions of the kind found in Great Britain or continental Europe, on what foundation might a modern national architecture be based?

The man who attempted to solve these problems and in so doing provide Canadian architects with an architectural theory enabling them to explore their own architectural past and working from this to develop a national architecture suitable to modern conditions as had their European counterparts was not to be S. Henbest Capper himself, but Professor Capper's successor at McGill, Percy Nobbs. In 1903 Capper resigned his position at McGill in order to leave Montreal and take up a position at Victoria University, Manchester. Looking for a suitable replacement for Capper, William Peterson turned once again to Edinburgh University and offered the MacDonald professorship to another graduate of the Department of Fine Art, Percy Erskine Nobbs.

Born in Haddington, a small market town just outside Edinburgh, in 1875, Nobbs spent the early part of his life in St. Petersburg where his father had been posted as a representative of the Midland Bank. Upon returning to Edinburgh, Nobbs studied first at the Edinburgh Collegiate School and then at Edinburgh University where he took a Master of Arts degree in 1896. The same year he entered the Edinburgh College of Art and then worked first in the office of Robert Lorimer and then for the London County Council, winning

the Tite prize from the RIBA in 1900 and two years later the Owen Jones studentship for work in colour. 11

Certainly, as Nobbs himself was to recognize in later life, one of the formative influences on Nobbs' architectural thought was the academic training he received at the hands of Baldwin Brown. 12 But besides that it would be difficult to over-estimate the effect on Nobbs of the ideas of the Gothic Revival and the Arts and Crafts Movement and especially the exploration of those ideals in the practice of Robert Lorimer. Indeed, describing the Edinburgh childhood of his friend and contemporary, and later colleague at McGill, Ramsay Traquair, Nobbs wrote "It is worth remembering that in the artistic life of the Edinburgh in which Professor Traquair grew up, the Gothic Revival was still actively in force." Traquair, Nobbs continued "had an inevitable (remember the time and place of his upbringing) intimacy with the arts and crafts and all that pre-Raphaelites and William Morris stood for." 13

In 1877 William Morris, Philip Webb and others had founded the Society for the Protection of Ancient Buildings, partly as a reaction against the work of restorationists who during the middle years of the 19th century had altered a great many ancient buildings throughout the United Kingdom. However, as Robert Macleod has

11 Ibid.

12 On the publication of his book Design; A Treatise in the Discovery of Form, (London, New York and Toronto: 1937), Nobbs entered the following dedication: "To the memory of Professor Gerald Baldwin Brown and Sir Robert Stoddart Lorimer, two of my mentors."

pointed out, in the context of the Gothic Revival as a whole, the formation by Webb and Morris of the SPAB was also evidence of a shift in emphasis away from the dogmatism of the Ecclesiological Society towards a new consideration of architecture as a form of historical evidence. As Robert Macleod has observed, the central principle on which the Society's activities were based was "'to treat our ancient buildings as monuments of a bygone art, created by bygone manners, that modern art cannot meddle with without destroying.'" At the same time, in the view of Morris and Webb, history would be "the basis for the production of a genuine nineteenth-century architecture," and a reverence for traditional building technology "the basis for architectural development."

From the 1870s onwards Philip Webb and others such as W. R. Lethaby attempted to carry out these ideals in practice; designing buildings which took as their starting point the traditional architecture and building techniques of England. Inevitably these ideas found their way northwards to Scotland leading Rowand Anderson to establish the National Art Survey of Scotland in order to encourage and stimulate the study of Scotland's vernacular architecture. Nonetheless, as late as 1890, no one in Scotland had yet attempted to put Philip Webb's ideals in practice, that is develop in Scotland, as Webb had tried to do in England, a modern school of architecture based on the vernacular.

15 Ibid., pp. 44-53.
This was to be the accomplishment of Sir Robert Lorimer. Born in Edinburgh in 1864, the son of a Professor in Law, Robert Lorimer had entered the office of the Edinburgh architect Hew Wardrop in 1884 following an incomplete and rather unsuccessful career at Edinburgh University where he had read Humanities, Greek and Fine Art. Under Wardrop’s tutelage and that of his partners, George Washington Browne and especially Rowand Anderson, Lorimer completed his articles and then travelled south to work in the London office of the arts and crafts architect George Frederic Bodley. After rather less than a year in Bodley’s office, Lorimer moved to the office of the late Scots architect James Maclaren and then in 1893 returned to Edinburgh to set up his own office.16

Upon his return to Scotland, Lorimer, under the influence of the ideas of the Arts and Crafts Movement and out of a deep love of Scotland and its architecture, attempted to adapt the ideas of Webb to Scotland. In a series of houses modeled on the traditional Scottish architecture of the 17th and 18th centuries, he brought the arts and crafts idea to Scotland in a way that had not been done before, gaining the recognition of Herman Muthesius who noted in his famous survey of British housing, Das Englische Haus, that “Scotland will not achieve what England has already achieved—a completely national style of house building based on the old vernacular architecture—until if follows the lead given by Lorimer.”17

16 Peter Savage, Lorimer, pp. 1-8.

It was in the midst of this experimentation and development along Arts and Crafts lines that Nobbs, in Lorimer's office, received his training. For Nobbs, the heart of Lorimer's work and that branch of the Arts and Crafts movement of which he was a part was its nationalist impulse and the desire to draw upon the vernacular architecture of the past. Calling Lorimer "the last of the great romantics, with a name to put beside that of Philip Webb and Norman Shaw," Nobbs saw Lorimer as a man who had been able to express through architecture his country's spirit. "It was given him," Nobbs wrote, "to materialize in building the very essence of the Scottish spirit as it had not been done since the days of Mary Stuart, Queen of Scots. And this was all the more remarkable in that he came after a generation of archaeological barbarians had been making play with what they were pleased to call the Scots baronial style."18

More than this, for Nobbs, the nationalism implicit in Lorimer's work was characteristic of the Arts and Crafts as a whole and one of the lasting results of the Gothic Revival. Writing in 1907, Nobbs concluded that

The third and perhaps the most important influence of Gothicism on design in general was the Nationalistic tendency. William Morris had done much by his writings to stimulate the appreciation of the excellence of the vernacular English architecture, or rather, building, of the days before industrialism laid its sordid hands on English life, and a body of domestic architects devoted to beautiful old ways of doing things, sprang into existence. These men were keen to perceive the excellence of local styles, in which materials rather than exotic fashions dictated the treatment. It is to this school that the present

pre-eminence of English domestic architecture, both in planning and detail is due, and it is needless to say that most of them had been trained in the offices of the great Gothic Revivalists. And who were these men keen to perceive the excellence of local styles? Nobbs went on to ask, and answering "First among them I would name Philip Webb, and then W. E. Nesfield, whose lodge at Kew was the first graceful effort towards the revival of the Queen Anne style. Other masters of this unostentatious school" he said, "are the firm of Ernest George and Peto, Ernest Newton, E. S. Prior, E. Lutyens, J. Kinross and W. Brierley, R. W. Jackson and R. S. Lorimer." It was with this background in the Arts and Crafts, and these sympathies and above all with a belief in nationality as a source from which architectural development could proceed that Nobbs came to Canada in the summer of 1903. As Nobbs was soon to discover, however, for someone with his ideological integrity, the architectural situation in Canada was far from straightforward. There was as yet no scholarly understanding of traditional Canadian building on the one hand, and on the other the sheer power of American design could not but have an effect on Canadian work, making the development of an indigenous tradition all the more difficult.

When Nobbs arrived in Montreal the local firm of Brown and Miller had just completed construction of a new American inspired design for the Board of Trade, replacing the earlier one by Shepley,

20Ibid., p. 48.
Rutkan and Coolidge which had been destroyed by fire, and the Bank of Montreal addition by McKim, Mead and White was already visible off the Place d'Armes. Both of these made an impression on Nobbs:

On arriving at the Montreal docks, my cab passed the new Board of Trade building by Brown and Miller and I made a mental note that "There are people here who know how." I was soon to be shown over the Bank of Montreal, then under construction from the design of Mr Mead (McKim, Mead and White of New York) and made my evaluation of the Craig Street facade as the best thing of its kind in the city or anywhere else for that matter.\(^1\) (see Plates 21+22, pp. 168+169)

Despite his admiration for the work of McKim, Mead and White, Nobbs was quick to realise that the Beaux-Arts system either in its American form or as practiced by Canadians who had returned from study in Paris was a system not in sympathy with his own ideals. By its very nature, Nobbs was to argue, the methods of the Beaux-Arts precluded that responsiveness to local circumstance and culture which was essential to architectural art. In an article which appeared in Construction in 1908 Nobbs wrote:

> The weak point about the academic system of architecture is its elastic quality. Within the Union there is every conceivable climate, and the profusely illustrated American building papers show us the identical architectural formulae applied throughout the States. This is carrying the principle of national homogeneity in architectural expression to a reductio ad absurdum, but the point of interest to us is not that academic bondage prevails among the architects of the United States, but that we are of necessity, very liable to infection with those ideals...\(^2\)

In practice, Nobbs was far from dogmatic in his approach to the Beaux-Arts, finding much to admire in the work of Canadians such

\(^1\) Percy Nobbs, "Architecture in the Province of Quebec during the Early Years of the Twentieth Century," RAIC Journal, November, 1956, p. 418.

\(^2\) "State Aid to Art Education in Canada," Construction, April, 1908, p. 45.
as W. S. Maxwell who had studied in Paris, and indeed, in the system itself. Under certain conditions and especially when dealing with the problems of large scale planning he noted that the academic tradition offered solutions the English could well learn from.

"If the English exponents of architectural culture would realise that the grand manner as practised in Egypt and Babylon and the cities of Alexander's Empire and Imperial Rome and gay Versailles has that in it which would impart a discipline to their planning and a coherence to their composition," he said, "they, too would gain in power of expression."23 But although he was willing to acknowledge the merits of Beaux-Arts planning, and as we shall see he was to do this in a very concrete way in his role as a competitions assessor, upon arriving in Montreal and taking up his post at McGill Nobbs quickly emerged as a leading voice among those who sought to break the spreading influence of the Beaux-Arts and look instead for architectural inspiration to the ideas and traditions of Great Britain.

As an educationalist Nobbs soon found himself face to face with the realities of the Canadian situation and like J. C. B. Horwood before him he was not slow to perceive that the conditions of Canadian architecture were bound up with that of the country as a whole. The establishment in 1908 of Beaux-Arts ateliers in Montreal and Toronto seemed certain to have a considerable effect on architectural education in the country and in Nobbs' view this spread northward of the ideas and techniques of the Beaux-Arts Society was yet another manifestation of the Americanization of Canada. In his opinion,

it was essential that Canadian architecture and Canadian architectural education be based on traditions sympathetic to the country's history and culture. In a lengthy address to the OAA in 1908 Nobbs attacked the formation of the Beaux-Arts ateliers on these grounds. "We have," he said, "while on the most friendly terms with the organizers of the movements, strenuously opposed the spread of their influence in Canada, on the ground that our history and tradition is different from that of the United States, and should be expressed in our architecture which has no logical relation with the academic school of Paris."\(^{24}\)

He went on to say:

For this school repudiates medievalism, both French and English, as having no contribution of tradition to offer our modern architecture and particularly ignores the building achievement of England as a negligible quantity...a tremendous organisation exists in the Beaux-Arts Society which is ready and willing to affiliate Canadian architectural societies and schools, and it is likely to do so simply because there is no Canadian machinery of art education to take its place; and this is where the glorious traditions of English and French medieval and renaissance architecture are our natural and rightful heritage, just as truly as our traditions in the matter of literature and language!

The political aspect of the "Americanization" of our arts, where they might just as well be based on National and Imperial tradition is, we venture to think, one which need only to be pointed out to be appreciated by those at the helm of State.\(^{25}\)

By 1908 Nobbs had begun to argue for the development of a legitimately Canadian architecture and drawing upon his background in the arts and crafts it seemed natural to him that this new national architecture might be based on traditional forms combined with a sensitivity to geography and climate. The problem with this was that unlike the countries of Europe, Canada seemed to most Canadian architects

\(^{24}\)"State Aid to Art Education in Canada," *Construction*, April, 1908, p. 45.

\(^{25}\)Ibid.
to have no traditional architecture of its own upon which a new architecture might be based. As Nobbs noted in 1910, the Canadian profession remained unaware or uncertain about its own, legitimate traditions. "I think we all have a good deal to learn," he said, to the third assembly of the RAIC, "because we have not established the type of our cycle very clearly, and we are still at sixes and sevens with our traditions."26

Despite this, it was Nobbs' argument that Canadian architects could well work from the past provided they kept in mind the principle of development and did not resort to a slavish reproduction of old architecture. Above all, Nobbs held out the hope that the rigours of the Canadian climate would in time produce a Canadian architecture. "Ultimately," he said, "we might therefore expect in Canada as many architectures as climates, since architectural character is largely resultant from windows and roof forms."27

This interest in the correspondence of architecture, and especially vernacular architecture with climate, and his belief taken from the Arts and Crafts Movement that it was a principle upon which architecture ought to be based, led Nobbs to look at the traditional architecture of Quebec with a fresh eye. Shortly after arriving in Montreal Nobbs remarked in a series of articles published in the CAB that the traditional graystone houses of the city were marked by a character and suitability to local conditions not found in houses of more recent construction. To his mind, these houses and the traditional architecture

of Canada generally, suggested that the native architects of the past had found their way to an architecture suited to the country, but that over time this had been lost. In 1910 Nobbs told the RAIC,

Our predecessors in this country up to about 1825 were doing pretty well in this matter. The stone houses of Quebec and Nova Scotia and the clap-board houses of New England showed real evolution of style, and in them a good many of our problems were solved at an early date. The lamentable thing is that the secret has been lost, and we now have to substitute architectural education at universities and other temporary expedients till such time as it is regained. To think that neither for love nor money could such a thoroughly sound piece of work, sound in taste and sound in construction, be put up to-day in a town or village throughout this broad Dominion as can be found, once at least in five miles, on the shore all the way from Mulgrave Straits to Ottawa City and all dated before 1840.

As we have seen, sentiments along these lines had been heard from time to time beginning in the 1890s, but Nobbs was the first to suggest that this old architecture might form the basis for a new national architecture. In the years just before the outbreak of war in 1914, Nobbs began to incorporate many of the traditional features of Quebec building into his own houses, giving rise to a school of domestic design founded on the Quebec vernacular. (see Plates 51-53)

For buildings other than domestic, and to meet the needs of an expanding continental nation other sources of development and inspiration would be needed however, and here, Nobbs suggested that Canadian architects turn not to the conventions of the Beaux-Arts but to the medieval and renaissance architecture of France and that of Great Britain up to and including the reign of the Georges. This architecture he argued, was the natural heritage of Canadians even as Canadians built their literature and political system on

Plate 51, The Scott House, Dorval, Quebec, (1924),
Percy Nobbs, architect.
Plate 52, The Scott House, Dorval, Quebec, (1924),
ground floor plan, Percy Nobbs, architect.
Plate 53, The Scott House, Dorval, Quebec, (1924), side elevations, Percy Nobbs, architect.
European antecedents. "We cannot borrow a tradition ready-made from Europe or anywhere else," he cautioned, but Canadian architects he thought would be best to take European forms and adapt them in the spirit of the old architects. While the task would not be easy he saw reason for hope:

But we should in establishing our type derive great benefit from the fact that we have to invent our own solutions for the roof problem and not accept our great grandfather's, and as to the window question, there is no really satisfactory solution in sight yet that I am aware of. If we remember that it is the roof and the window that makes the architecture, we see then we have our work before us. The feature of the English architecture—chimneys, parapets, bays, ranges of lights, rain heads and all the rest of it—are absolutely inappropriate for our use. But the simple inventive spirit in which these things were evolved and welded together in vernacular use, and the reserved but kindly sentiment which these things evinced, we can surely take to heart and apply now.

From 1904 onwards Nobbs began to experiment along these lines, but before turning to a discussion of his work it is worth pointing out that at the root of Nobbs' architectural theory was an aesthetic system founded on the idea that the true purpose of all art, of which architecture was but a part, was not the production of beauty but rather that of expression. "Art" he declared in 1910, "is a simple and natural human activity, not an inexplicable quintessential mystery," and moreover "that its purpose is always expression, that the subject matter of this mode of expression is that whole range and gamut of emotion and sentiment, and that the means employed—the raw material of this expression—is sensuous pleasure."

29Ibid.
30Ibid., p. 56.
According to Nobbs it was nonetheless the case that architecture had a function different from that of the sister arts of painting and sculpture. While these arts were the means for the personal expression of the artist, the function of architecture was a larger, greater one, the expression of society as a whole: "Architecture and design differ from the sister arts chiefly in this," he said, "that their province is personal and more general. The phenomena of architectural evolution ("The Styles," as the popular phrase expresses it) can best be explained by the ethnographic theory which regards architecture as history writ large; as the expression of the age in which it was generated...national expression...is the function of design." 31 It was the inter-relationship of the individual with society which generated architectural style; "When men have had great feeling to express and great power of expressing them, happily joined with great opportunities," Nobbs told the RAIC in 1910, "styles have been developed and evolved and brought to perfection, and from these we can deduce something of the everlasting laws and principles of our art in the light of which to model all sorts and conditions of designs." 32

A second feature of Nobbs' thinking was his use of what Peter Collins has called the linguistic analogy; the idea that architecture is a sort of language in which one's power of expression depended on the skillful employment of a basic grammar of elements, which, together with allusion, metaphor and imagery could be used to call up shared experience. Just how characteristic this idea was of Nobbs' thought

31 "State Aid to Art Education in Canada," Construction, April, 1908, p. 44.
and writing was pointed out by his friend and colleague at McGill, Sir Andrew MacPhail, who noted in his review of Nobbs' treatise on design that:

The analogy between the methods of literary expression and those for the discovery of form is pressed throughout the book. Pure form is regarded as clear statement. Modification by scale, by proportion, and by refinement is regarded as elaboration of a thesis; the orders as metrical formulae, functional ornament as syntax, decoration as rhetoric and allusion. From this it is inferred that clarity of design like clarity in the written word is a virtue, and over-elaboration in form as in speech defeats its own purpose. In the case of major works of design this analogy is very clear. The plan is the plot; its structural development may create dramatic situations. The building may smile or frown or rest serene; its structural elements may chatter or chant, do their work with drilled precision or with playful exuberance. The artist in design controls all this behaviour. At his will there is a discreet mystery or expansive frivolity or seriousness. It is not alone in the plot but in the telling of the story that art is manifest; a like mood is engendered in the hearer of the tale and in the spectator of the building.33

For Nobbs, the linguistic analogy was particularly helpful in understanding the use and power of traditional architectural forms. Speaking to the OAA in 1907 he argued that architects might well turn to the past, for

Traditional forms in architecture are as potent as in poetry to imbue the educated mind with a host of associations whereby to unravel the meaning of the "work of art," and a self-sufficiency though it may lead to originality will seldom lead to the deepest of beauties. Just as surely as the literature of this country must be founded on the literature which is our inheritance, so surely must its architecture depend upon the understanding of the architecture that has gone before.34

Both these ideas, the linguistic analogy and the related idea that all art, like language, is a form of expression seem to have

34 "Gothic Revivals of the Nineteenth Century," (Toronto:1907) p. 51.
had their basis in Nobbs’ theory if not by way at least in full view of the writing of Benedetto Croce. We know this by Nobbs’ own admission and it is interesting because it reminds us of his early training in fine art.\(^{35}\) It also enables us to place Nobbs solidly within the aesthetic tradition of the twentieth century, for as Peter Collins has observed,

> For ever since Benedetto Croce rehabilitated the philosophy of the mid-eighteenth century historian Giambattista Vico by asserting that all art is a type of language, it has been customary for writers on aesthetics, such as R. G. Collingwood, to regard all arts as essentially something to do with ‘expression’. Hence art has come to be regarded as a kind of eloquence, whereby its virtue is not in the form produced so much as in the emotion which produces; not in the object created but in the intensity and sincerity by which expression is achieved.\(^{36}\)

While many of Nobbs’ ideas can be seen quite clearly to have had their origin in the Arts and Crafts, Croce’s theory provided Nobbs with a way to incorporate them into a larger, general aesthetic system. The significance of this is that by 1908 Nobbs had come to see architecture in its highest form as a fine art demonstrating that power of expression integral to art in general. It is this idea which caused him to write in 1910, in terms which are precisely those which Collins sees as typical of Collingwood and others who have accepted Croce’s system, that the litmus test of architecture was not so much the form, as the emotion and sentiment which lay behind, and the degree to which that sentiment had been caught in the creative

\(^{35}\) In 1937 Nobbs wrote in Design, "With two reservations, the reader is asked to accept the position of Benedetto Croce as set forth in his Aesthetic as General Linguistic in 1907...to fill out the arguments here only epitomized." Design, p. 15.

act: "It is the sentiment of thing that really matters most," Nobbs wrote, "and the one criterion by which to judge the excellence of a work is its potency to infect the emotions of the public it is made for." 37

While Percy Nobbs was destined to influence the course of Canadian architecture more through his work as a teacher and critic than as a practicing architect, he continued to practice throughout his life and in 1911 resigned from the MacDonald professorship so that he might continue to teach design and open an office with George Hyde. He attempted in his work to carry out those principles which he thought might lead eventually to a Canadian architecture, and a good illustration of this can be seen in three buildings which he designed at McGill University between 1904 and 1923: the McGill Union (1904), the MacDonald Engineering Building (1907) and the Pathological Institute (1923).

The Pathological Institute was built nine years after the outbreak of war in 1914 and so is, strictly speaking, outside the scope of our study, but it has been included here because it is a particularly good example of Nobbs' sensitivity to site, to his belief in the value of historical allusion, and to his idea of development along historical lines. The programme was for a new building to house the needs of the department of pathology of the McGill Faculty of Medicine, including space for a lecture room, library, exhibition room, laboratories, a museum, workshops, and a range of smaller offices, service rooms and accommodation for

the animals needed in research.

The site for the new institute was a piece of sloping land on the edge of Mount Royal and directly across University Street from the Royal Victoria Hospital. This was to be of some consequence, for the Royal Victoria Hospital, built in the late 1880s to designs by Saxon Snell, had been closely modeled on David Bryce's Edinburgh Royal Infirmary (1870) and to quote Ramsay Traquair "shows in its external appearance the very Scottish sentiment of the Medical Faculty of that time." 38 (see Plate 54) Under these circumstances it is not surprising that Nobbs as well turned to Scottish models.

With this in mind, Nobbs designed a building that proved to be an effective foil to the older hospital and which, in plan and elevation demonstrated great skill and sensitivity. (see Plates 56-59) The plan is ordered yet assymmetric in a way that enabled him to take advantage of the sloping and irregular site; for instance the great bank of laboratories and offices is placed at the deep end of the site with its four stories of glass facing the courtyard. Not only does this bathe the research studios in a soft northern light, but taken with a high pitched roof on the street elevation and the natural rise of the street, the four stories blend simply and easily into the lower two stories of the theatre wing on the main front. (see Plate 58) Again, to isolate the animals and keeper from the main building, Nobbs constructed a small gate house just to the northeast, linked by a covered arch which in turn gave access to the court.

Plate 54, The Royal Victoria Hospital, Montreal, H. Saxon and Son, architects.
Plate 55, A view of the Pathological Institute, Montreal, under construction, with University Street and a wing of the Royal Victoria Hospital visible on the left.
Plate 56. The Pathological Institute, McGill University, Montreal, shown in a perspective drawing by Percy Nobbs (1922).
Plate 57, The Pathological Institute, elevation to Pine Avenue, with block plan and sections (1923).
Plate 58, The Pathological Institute, elevations to University Street and to the Courtyard (1923).
Plate 59, The Pathological Institute, ground, first and second floor plans (1923).
The elevation and detail of the hospital, with its ashlar masonry and its use of medieval and particularly Scottish forms such as crow-stepped gables, corner turrets and a candle snuff roof, is an example of that thesis of development from traditional forms which Nobbs had taken from the Arts and Crafts. Here the open use of Scottish detail is a reference at once to the British foundations of Canadian culture and to the earlier historicism of the Royal Victoria Hospital. But while one sees a similar interest in picturesque massing, in comparison to Snell’s hospital, the Pathological Institute is a building more closely rooted to its site, and Nobbs’ use of historical forms is stronger and more inventive with a directness, which particularly on the courtyard elevation with its organization of solids and voids, verticals and horizontals, borders on the abstract.

As a note to Nobbs’ work on the Pathological Institute, one cannot help but be reminded of the relationship of the work of Sir Robert Lorimer to those men, like David Bryce, who had proceeded him. Here, on the slopes of Mount Royal, the contrast of the Royal Victoria Hospital to Nobbs’ Pathological Institute parallels to an uncanny degree the shift in sensibility which had taken place in Scottish architecture thirty years before. The Royal Victoria Hospital is quite literally David Bryce in the New World, while of Nobbs’ work perhaps the best description is just Nobbs’ of Lorimer "at the full height of original achievement in composition of counterposed masses, contrasted ridges, broad surfaces, varied gablets, bleak walls and intimate irregularities." 39

Not all of Nobbs' work was so clearly and directly referential. Both the McGill University Union and the Macdonald Engineering building are examples of the idea of development explored in a more abstract way. Of the two, the McGill Union, which Nobbs designed shortly after his arrival in Montreal, is the building closest to what Nobbs himself called "that debonair serenity which is so typical of the best English work," but both are characterised by a free organisation of more or less historical elements. The Macdonald Engineering building was constructed to replace an earlier building by Sir A. T. Taylor which had been destroyed by fire and it is the one most obviously based on precedent. In a way that owes a great deal to Norman Shaw, Nobbs took such standard elements as steep gables, segmental arches, rustication, banded stonework and diminutive dormers and bringing them together produced a unified design carried out not in the red-brick and buff-coloured stone typical of English work, but in the solid, sombre graystone characteristic of Montreal and McGill. (see Plate 60)

The McGill Union is something quite different. The massing is straightforward and classical in inspiration, a debt underlined by the broad and simple cornice which runs across the top of the street elevation. (see Plate 61) But despite its formality, it is a work of some originality. The plan is ordered yet responsive and skillful while the main elevation exhibits a real vitality in the use of a very small vocabulary of elements; a simple string course, a central door with modeled architrave and five bays of windows on a flat graystone surface. (see Plates 62+63) Through the simple

40 "Gothic Revivals of the Nineteenth Century," p. 49.
Plate 60, Macdonald Engineering Building, McGill University, Montreal, Percy Nobbs, architect, (1907).
Plate 62, McGill University Union, Montreal, Ground Floor Plan, Percy Nobbs, architect, (1904).
Plate 63, McGill University Union, Montreal, First Floor Plan, Percy Nobbs, architect, (1904).
and incidental adjustment of proportions, the simple square windows of the ground floor give way in the storey above to lighter and more deeply moulded lights broken by three mullions, and these in turn to a bank of windows, which in their verticality, single mullion and lightly carved drip moulds exhibit a considerable elegance. Apart from this, the polished handling of the two oriel windows which break through the string course and the rhythmic humour of the top mouldings are reminiscent of the Arts and Crafts spirit at its most inventive and sophisticated best.

Nobbs' work at McGill, based as it was on a freely used British precedent, represented a turn away from the American inspired Romanesque which had dominated the architecture of the university during the 1880s and 90s. This was a trend that had begun with the Royal Victoria College by Bruce Price (1899) and it was an example of that shift in perspective which Nobbs advocated for Canadian architecture as a whole. As Ramsay Traquair, Nobbs' successor as Macdonald professor commented in 1925, "from Mr Price's Royal Victoria College in 1899 the architecture of McGill has shown a very definite trend towards national and English tradition, adapted to Canadian conditions. We may regard this as a return from the American influences, shown in the Library and the Physics building to the Georgian type of the first buildings."

Nobbs' work at McGill also gives evidence of a strong predilection for the work of Shaw, and especially that of Shaw in later life as he moved towards a new Classicism. Indeed, as Nobbs made clear

in a lecture to the OAA in 1906, for him the work of Norman Shaw, especially as he turned towards Classicism later in life, represented the continuation of the spirit of the Gothic Revival in the modern world. It seemed to Nobbs that in the face of the failure of gothic to meet modern requirements—other than ecclesiastical—Shaw, and other leaders of the new Classicism, such as John Brydon, H. T. Hare, and Lanchester and Rickards, had, from the study of Wren and Georgian work, evolved a style that in its freedom and nationalism was the true inheritor of the Gothic spirit. Describing the work of Shaw Nobbs wrote:

The free Anglo-Classic of this, the greatest perhaps of 19th century English architects, is based upon the style of the times of Queen Anne. No reliance is placed upon huge porticos or domes to give distinction to Shaw's buildings, and the orders are sparingly used, and mostly for internal effects. Trained in the Gothic school, and familiar in his earlier years with the seductive charms of French Renaissance work, this master more than anyone else has looked the modern problem boldly in the face and without allowing himself to be led away by the cult of "originality at all costs," which is responsible for so much hysterical building, has yet given us a distinctive note after a century of bewilderment—the note of natural evolution along the lines set by our forefathers—the truest note that can be struck in building art. Shaw's work is nothing if not English—severe, masculine, refined, relying in the main on the most abstract of architectural accomplishments—proportion—but not ignoring the most material considerations of pleasant trademanship. His great brick walls and clean cut stone dressings speak to us of all the qualities of national character to which our glorious, though little comprehended architectural past has been witness down through the years.

The willingness of Nobbs to accept the resurgent Classicism and Grand Manner of English architecture as a type in keeping with his own ideals and as a model suitable for development in Canada was the final link in a chain of influences and ideas which Nobbs

42 "Gothic Revivals of the Nineteenth Century," p. 48.
developed in his writing and which he set forth as a course for the development of Canadian architecture. Beginning with an aesthetic theory which saw the expression of national character as architecture's natural goal, Nobbs took the cause of Canadian architecture as his own, and in opposition to the techniques and forms of the Beaux Arts suggested that Canadian architects turn for inspiration to their own soil and to the traditions of France and Great Britain. Although only twenty-eight when coming to Canada, Nobbs within three years found himself at the very centre of the Canadian profession; it is to this and to its effect on Canadian architecture that we now turn.
Chapter Nine: Towards a National Architecture, The Ottawa and Saskatchewan Competitions.
In his articulation of a theory which would lay the basis for a national architecture, Percy Nobbs seemed to sum up the feelings of Canadian architects and to define the parameters in which development could take place. His ideas and words were taken up by architects of all camps. In 1908 W. S. Maxwell wrote

...of late years there has been a distinct advance made in McGill University, under the able direction of Professor Nobbs, a comprehensive course is given which, while making use of some of the principles in vogue in France, aims distinctly to foster in the students an appreciation of the fact that our architecture should have its roots in the English school, and yet frankly be more expressive of Canadian life and climatic limitations.

Even more familiar is Maxwell's statement of what he considered the goal of Canadian architecture to be: "It should be our aim," he said, "to develop our architecture along lines which recognize our country and its traditions and associations. We can well in our designing seek to assimilate that which is good and suitable in Great Britain and at the same time leave ourselves open to the many excellent influences which emanate from France and other countries. In the province of Quebec," he concluded, "the best old work suggests a satisfactory solution of the climatic problems and a starting point which should supply us with inspiration."

Two years later, the Winnipeg architect S. Frank Peters expressed similar sentiments in the course of a paper on the architecture of western Canada which he delivered to the RAIC. "I cannot help expressing the hope," he said, "that the RAIC will be recognised

2 Ibid.
as the parent organisation so to speak, and that we should continue to work together to serve the ends in which we are all so much interested viz, the establishment of a national style of architecture which while necessarily varied according to the different sections, will all maintain the elements of good design and national characteristics."

The development of national feeling among Canadian architects took place after 1900 against a background of increasing prosperity, and after 1905 especially, Canadian architects were given the opportunity to develop their ideas in a concrete way. The rapid growth of cities, the settlement of vast areas of western farming land and the development of industry and commerce led to a building boom of some proportions and in the architecture of the period it is possible to see the articulation of many of those ideas which we have seen expressed in the writing of architects of the time. Nowhere can this be seen so clearly as in the great public competitions of the day, in particular that for new Departmental buildings at Ottawa and the competitions and circumstances surrounding the construction of parliament houses for the two prairie provinces of Alberta and Saskatchewan.

Of these, the first was the Ottawa competition. In the summer of 1906 the Federal Government of Canada, faced with a growing bureaucracy and a lack of office space, announced its intention to construct a new Departmental Building as well as a new Justice Building to house the Federal courts. Under pressure from the organized architects, and in the hope of securing the best possible

3."Architecture of the West," Construction, October, 1910, p. 79.
design, the Government decided to sponsor a competition which would be open to all Canadian architects, but Canadian architects only, that is architects who had been resident in Canada for a year or more. With this in mind, the Honourable Charles Smith Hyman, Minister of the Department of Public Works (DPW), appointed a Board of Assessors consisting of Edmund Burke, president of the OAA, Alcide Chausse', president of the PQAA, and David Ewart, Chief Architect of the DPW. After preliminary interviews with the Minister in July and August of 1906, the Assessors met to draw up the competition programme, and in December of the same year copies of the conditions were mailed to every known architect in the country.

According to the conditions as published, the intention of the Government was to erect the two new buildings on grounds that lay just to the east of parliament Hill. The buildings were to be composed of two groups, "one for the Department of Justice, the other for Departmental purposes," linked to Parliament Hill by a "foot bridge of monumental design." The Assessors allowed that the buildings might well be in any style of architecture, but suggested that "some phase of Gothic would better harmonize with existing structures." Upon examination, the drawings would be listed by merit, and architects of the first four designs would receive prizes of eight thousand, four thousand, two thousand and one thousand dollars respectively.

5 Ibid.
6 Ibid.
In the past, the usual practice of the Canadian Government had been to carry out all public works to designs prepared by the office of the Chief Architect. Consequently, the decision of the Government to give this project over to public competition was received with great interest and some expectation by Canadian architects. W. S. Maxwell noted that "The fact that the Government of Canada has held a competition for an important group of buildings indicates that we are accomplishing something in educating those who have but an indirect interest in the profession." He urged his fellows to "continue advocating the principle of competitions for public buildings. If representative architecture is to be produced," he said, "political patronage must be abolished and every encouragement given to the profession at large."7

Despite the general satisfaction among architects over the establishment of the competition, the publication of the rules of the competition met with some misgivings on the part of the architects who observed that no guarantee had been made by the Government that the successful architect would be entrusted with the preparation of the working drawings and the execution of the work. At the request of the OAA and PQAA a special delegation including Percy Nobbs and Frank Darling was sent to Ottawa in January of 1907 to press upon the Government the need for it to clarify its position, but while the acting Minister refused to draught a guarantee in respect of the rights of the winning architect, he was able to assure the architect's delegation that justice would be done to the extent that

they agreed to support the competition, and indeed Frank Darling entered the competition himself.

In total, twenty-nine designs were received by the secretary of the DPW by the competition closing date of July 1, 1907. Upon receipt of the entries, the Board of Assessors met in the Railway Committee Room of the Parliament buildings in Ottawa where, through the month of July, they examined the designs. In an effort to arrive at as impartial a judgement as possible, all entries were listed under a pseudonym and all were judged according to a system of points where the plan of the building was worth a possible thirty points, the design and economy of construction twenty-five each, and the design of the foot bridge and "compliance with the conditions generally" a further twenty.

When the outcome of the competition was announced it came as a surprise, but it was an outcome which seems in retrospect a manifestation of the changing nature of architectural practice in the country. Third and fourth place were given to the two Montreal firms of Saxe and Archibald and Brown and Vallence, but the source of amazement was not this, but the fact that E. and W. S. Maxwell had won first prize over the favoured firm of Darling and Pearson who emerged only as a close second.

Not surprisingly, all four winners had carried out their designs in a Gothic idiom. This had been suggested by the Board of Assessors

9Ibid.
in respect of the existing Parliament Buildings, and it was an idea that was to prove both persistent and influential; as late as 1927 the DPW recommended that in construction of public buildings on Parliament Hill "Gothic should be adopted to harmonize with the Parliament Buildings, being the type of architecture most suitable to our Northern climate." It meant however, that Darling and Pearson had a decided advantage over the Maxwell's, for while both Edward and W. S. Maxwell had been trained in the manner of the Beaux-Arts, Frank Darling was by education and inclination a Goth. Before setting up practice in Toronto, Darling had studied with Henry Langley, who had himself studied with William Hay, and then had worked for a time in the London office of Street. It had been Darling's Gothic design for the Ontario Legislature competition which had made his name, and this had been followed by much Gothic work, of which his additions to and then reconstruction of Trinity College, Toronto, are among the best known.

As expected, Darling and Pearson's design for the Justice and Departmental Buildings demonstrated a skill in the use of Gothic that was superior to that of the Maxwells. (see Plates 64+65) In a way that was reminiscent of the nineteenth century Parliament House and East Block on Parliament Hill, Darling decided to link the Justice and Departmental Buildings with a screen so that together they might form a varied, irregular and picturesque group in the

10 From a "Report to Council" in the DPW works records, Ottawa, 27 April, 1927 and as quoted in Kalman, The Railway Hotels, p. 24.

Plate 64, Perspective view of the proposed Departmental and Justice Buildings, taken from a point near the East Block on Parliament Hill, Ottawa, Darling and Pearson, architects. (1907)
Plate 65, Perspective view of the south end of the proposed Justice Building, Ottawa, Darling and Pearson, architects. (1907)
true manner of Gothic. In comparison to this, the Maxwell's design could hardly be considered Gothic at all.

While it was true that the Maxwell's had described their elevations in a free Gothic, the formality of those elevations and especially the formality of the plan betrayed their background in the Beaux-Arts. In contrast to the free yet carefully balanced massing of Frank Darling's work, the Maxwell design, both in plan and elevation, was rigidly organised along a series of axes. (Plates 66-70) In part this was the expression of a desire on the part of the architects to take advantage of what they saw to be "a rare opportunity for a really monumental composition," but in a larger sense it was part of an extended scheme designed to organise not just the Justice and Departmental Buildings along axial lines, but the Parliament Buildings as well so that the entire group of governmental buildings might be perceived as a unified whole.\(^{12}\)

The CAB in an article on the competition reported that it had been the architects aim "to produce a group of buildings that shall supplement and still be a part of the noble group on Parliament Hill, connected to them in a formal and serviceable manner, the old and new forming as it were one grand connected design that might have been planned at one time by a master mind."\(^{13}\)

An example of this was the situation by the Maxwells of the Justice Building on the axis of the pavilion of the Parliament Buildings, but

\(^{12}\)"Prize Designs, Proposed Departmental and Justice Buildings at Ottawa," Construction, October, 1907, pp. 48-49.

\(^{13}\)"Our Illustrations," CAB, September, 1907, p. 183.
Plate 66, Perspective drawing of proposed Justice Building, park elevation, Ottawa, E. and W. S. Maxwell, architects, (1907).
Plate 69, Design for proposed Justice Building, Ottawa, E. and W. S. Maxwell, architects, (1907), first floor plan.
Plate 70, Proposed Departmental Building, street elevation, Ottawa, E. and W. S. Maxwell, architects, (1907).
within this larger scheme, the Maxwells "sought to produce, first and foremost, buildings that would fulfill their practical requirements in the best possible manner." In no case, they said "had convenience and light been sacrificed to secure an artificial architectural effect."14 With a thoroughness that was dazzling, they pressed Gothic into the service of utility so it seemed as if no detail had been left to chance.

In part, the rigour of the Maxwell design was founded on the lessons of the École des Beaux-Arts. Citing Julien Guadet's Elements et Théorie de l'Architecture, the Maxwells chose to light the library and high courts of the Justice Building from both sides so that with a flat ceiling and a judicious balance of high and low lights they might guarantee an even, natural light in the courtroom.15 Besides this, the Maxwells decided to face head-on the common criticism of Gothic as a style unsuited to modern conditions by treating the new buildings, and the Departmental Building especially, as if they were modern commercial buildings. In a review of the competition Construction noted "The Departmental Building it is felt, needs but a short description, as the drawings clearly indicate it as a practical example of the monumental office building, employing all the features that would enter into the best type of a modern commercial structure of this type."16 It was to accomplish precisely this, the architects said, that they had chosen a "free Gothic", avoiding the Perpendicular

14 Ibid.
and Decorated styles as not suitable for the lighting of rooms and offices "in a manner equal to the best tradition of practical architecture." With an eye to climate, they gave the new buildings flat roofs, drained in the center as the best solution in a country with a heavy snowfall.

Although the Maxwell design was criticised for its use of courts on an open site which offered both park and city views, the assessors themselves found that the architects had addressed themselves directly to the need at hand. They had convincingly solved the most pressing problem—that of providing adequate light for the offices of a modern bureaucracy within the restrictions of the Gothic style—all the while demonstrating a real skill in large scale organisation and planning; the judges found the plans compact and well adapted to the purpose, praising the architects for "the precision with which every detail had been thought out."

As the comments of the judges suggest, the success of the Maxwells in the Justice and Departmental competition was based on the power of their planning, which seemed especially suitable for government buildings of this sort, and on their willingness to adapt the innovations of commercial architecture to public building. Underneath the Gothic skin of the Departmental and Justice Buildings was to be a modern building of the most advanced type, employing sophisticated systems of construction, ventilation and the like. This was a reflection not only of the rapidity with which Canadian

17 Ibid.
19 "Prize Designs," Construction, October, 1907, pp. 48+49.
architects like the Maxwells were taking the lessons of skyscraper construction to use on all manner of building, but also a measure of the success which modern forms of construction had had since their introduction a little over a decade before. Indeed, this sort of building had been the intention of the government all along; the Minister of Public Works had announced in connection with the proposed buildings as early as July, 1905, that "If I have the carrying out of the work I intend to erect a modern building with modern offices and not, as in the present buildings, where clerks have small rooms. I think we should adopt the most modern methods in the erection of the new buildings."20

It is also worth remembering that in their formality and in the self-conscious use of the Gothic style, the Justice and Departmental Buildings were intended by the Maxwells to take their place alongside the buildings of Parliament Hill as symbols of the nation and of governmental power. It was this as much as anything else which had led to such interest in the competition, for it had seemed to Canadian architects that the competition offered the profession an opportunity to create a public architecture suitable to the growing wealth and power of the country.

Given this, it is no surprise that when the government two years later announced that it had decided to forego the Maxwell's winning design in favour of a rather perfunctory and much cheaper office building designed by the office of the Chief Architect, the Canadian profession reacted strongly to what they saw as duplicity

on the part of the government and a serious blow to their efforts
to create a national architecture. As part of a statement of protest
delivered to the Minister of Public Works by the country’s architects,
the Manitoba Association of Architects wrote:

In our opinion the architectural style characteristic of
a country can only be developed when encouraged by the Government
and fostered by the nation, and that as it is to the Government
that most large undertakings of a monumental nature may be
looked for, it can be well understood that without the Government’s
aid in the most liberal spirit, the growth of the national
architecture must be materially retarded. In our opinion
therefore a great work may be consummated by the Government in
placing commissions for its more important work directly in the
hands of individual practising architects, who may from time
to time show their ability for handling such work, and in whom
full responsibility should be vested, and confidence developed
thereby. It has been observed that the feeling of such
responsibility frequently enables the artist to rise above the
level of mediocrity, and even at times to attain greatness.\(^{21}\)

In the two years between the Ottawa competition and the decision
of the DPW to abandon the Maxwell plan, the Canadian profession had
seen an architectural competition equal in size and importance to that
in Ottawa brought to a successful conclusion and it had served to
vindicate many of the claims that had been made about the abilities
of Canadian architects and about the value of competitions in general.
The competition had been for the design of a parliament to house the
government of the new province of Saskatchewan, and for a number
of reasons it had quickly taken on a special significance.

There were several reasons for this. The first was the nature of
the project. As we have pointed out elsewhere, the years from about
1900 onwards were in Canada years of unprecedented economic expansion
and optimism. Although there were many factors contributing to this,

\(^{21}\) Ibid.
at root, this new prosperity was a consequence of the development of a wheat-based economy on the Canadian prairies and the influx into the region of vast numbers of people from the more settled parts of North America and the far corners of Europe. Almost overnight new towns and cities such as Edmonton, Calgary, Regina and Saskatoon came into being, while others, notably Winnipeg and Vancouver, developed the character and manners of a metropolis.22

Within that part of Canada which lay west of Winnipeg, the greatest development occurred in the broad and fertile lands drained by the Saskatchewan River and in 1905 the Federal Government recognised the importance of the region by creating two new provinces out of land which until then had been administered by the Crown and which had been known simply as the Northwest Territories. That province which lay directly west of Manitoba and which included the best and greatest amount of farming land was Saskatchewan; the new province further west and bordered by the range of the Rocky Mountains was named Alberta.

In a very concrete way, the creation of Alberta and Saskatchewan marked the development of the West and the beginning of a new era in the country's history. It was not only to provide a seat of government that Saskatchewan’s premier Walter Scott decided to hold a competition for the parliament house to be constructed at Regina, but to produce a piece of architecture which might symbolise the achievements of the province as it then was and as it seemed destined to be.

22See R. Craig Brown, and G. R. Cook, Canada 1896-1921; A Nation Transformed, (Toronto: 1974).
The second reason why the Saskatchewan competition proved to be particularly influential is that from the outset its administration was placed by Walter Scott into the hands of Percy Nobbs, thus providing Nobbs at one stroke with an opportunity to effect the development of Canadian architecture in a very significant way. There is some evidence that during the summer of 1906 Premier Scott had considered handing over the design of the parliament or legislative building to an architect of his choice; this was intimated in a letter written by the Toronto architect Eustace Bird in which he refers to his own chances of winning the commission and it is also the case that Scott offered John Lyle the post of Chief Provincial Architect in June of that year, an offer he subsequently refused.\(^{23}\)

Whatever the significance of this correspondence, by the end of October, 1906, Walter Scott had written to Nobbs in Montreal inviting him to take charge of the competition. Nobbs, who had just adjudicated a competition held in Halifax for the construction there of a new Anglican cathedral, accepted on the condition that the competition follow the guidelines for competitions which had been laid down by the RIBA.

With this agreed, Nobbs in close correspondence with Scott set about organising the competition. One of the first decisions taken by Scott and Nobbs, in accordance with the RIBA recommendations was

\(^{23}\)Saskatchewan Archives Board, Regina, Legislative Building Competition File, R 195-118, E. Bird to S. H. O'Brien, 13 July, 1906, and J. Lyle to F. J. Robinson, 4 July, 1906; This file also contains a letter from Premier Scott to F. M. Rattenbury, architect of the British Columbia Legislative Building stating that his preference was to have selected an architect but he had decided on a competition on political grounds to avoid criticism. Ibid., August, 1907.
to limit the competition to a number of selected architects, with each firm receiving an honorarium of fifteen hundred dollars irrespective of their final standing. Because of Scott's illness during the winter of 1906-07 a final decision on the architects to be invited to enter the competition was delayed until the summer of 1907. Nonetheless, in an effort to keep costs to a reasonable level Scott decided that the number of architects would be restricted to seven, including one firm from the United States, one from Great Britain, one from Saskatchewan and four others from across the country.24

As Scott was later to point out, the choice of an American architect presented little difficulty and it was quite naturally Cass Gilbert, architect of the Minnesota State Capitol. (Plate 71) This was certainly Scott's own choice, for Scott was an open admirer of the Minnesota Capitol Building and had written to the Board of the State Capitol Commissioner in St. Paul on his own account for information on the Minnesota competition in 1906. Scott in fact described the Minnesota Capitol as "one of the really successful buildings on this continent."25

The choice of a representative architect from Great Britain was left to Nobbs, and after conferring with Sir Aston Webb who suggested either Lanchester and Rickards or Mitchell and Raine Nobbs invited the latter.26 The selection of Canadian architects was rather more difficult and seems to have been the result of

25 Ibid; and Frank Hanson to Walter Scott, 7 September, 1906.
Minnesota Capitol, by Cass Gilbert, begun in 1895, as it appeared in 1905 before installation of most of the exterior sculpture.
collaboration between Nobbs and Scott. It was Scott's opinion that the British Columbia architect Frank Rattenbury should be invited to compete on the basis of his work on the British Columbia Legislature, a commission he had won by competition in 1893. The Regina architectural firm of Storey and Van Egmond was selected to represent the home province and Nobbs recommended that the final three firms consist of Darling and Pearson, E. and W. S. Maxwell, and Marchand and Haskell of Montreal.

In the meantime, Nobbs had draughted the competition programme, and it is here that we see the influence of his ideas most clearly. The programme itself was an interesting one not only because of the scale involved, but because the legislature or parliament building was to be the centrepiece of a vast scheme of parkland and lake drawn from the prairie by the Montreal landscape architect Frederick Todd. According to the scheme, the parliament building was to be situated south of the centre of the capital, Regina, and separated from it by a lake created by damming a local stream. Because of the distance of the building from the city, Nobbs suggested that "some outstanding feature such as a dome or tower" would be suitable, noting that "The character of the country will render this a valuable landmark."

Besides this, the competition programme included standard information about format, conditions of entry and so on, but in

27 Ibid., W. Scott to Reverend D. Oliver, 17 September, 1907;
29 Ibid., "Conditions of Competition."
view of his own writing, Nobbs' recommendation that the building be of red brick with buff stone dressings and his remarks about style are particularly interesting. While noting that "the style of the building is left to the discretion of the competitors," Nobbs concluded that "They are reminded, however, that the Province is politically within the British Empire, and that this fact should be expressed in its Public Buildings. The climatic and labour conditions and materials are such as to largely dictate the type of building selected by the assessors."30

It was just at this time, while draughting the competition programme, that Nobbs by virtue of his work at McGill and that on the competition for the Government of Saskatchewan, was invited to Edmonton by the Government of Alberta to review their own plans for a provincial legislative building. Because the character of the work there was so similar to that at Saskatchewan and because a copy of Nobbs' remarks to the Alberta Government have survived it is worth interrupting our account of the Saskatchewan competition to look briefly at events in Alberta.

Unlike the Government of Saskatchewan which had decided to call a competition for a design for its new parliament house, the Alberta Government had decided simply to hand the project over to its Provincial Architect, A. M. Jeffers. Born in Pawtucket, Rhode Island and educated at the Rhode Island School of Design and then in the office of G. W. Cady of Providence, Jeffers seems to have been appointed Chief Architect immediately upon the

30 Ibid.
establishment of an architectural office within the provincial Department of Public Works in the spring of 1907. 31

By August of 1907 Jeffers had completed his designs for the new parliament house for the Province and it was these which Nobbs was asked to review. As planned and as built, Jeffers' overall scheme was similar to Gilbert's Minnesota Capitol Building and to a host of other State Capitols built across the United States during the early years of this century: a central block with dome flanked by extended wings and end pavilions. (see Plate 72)

In his review of Jeffers' design, Nobbs, with a few reservations, praised Jeffers' plan as sound and well-considered, but as regards the proposed building's form and elevation he was less enthusiastic. The design, he said "is an excellently worked out example of the "Academic Style" of work so popular just now in the United States."

He went on to say,

It is a style carried to its perfection in France and it has two drawbacks to lay against its stately grandeur. (1) It is thoroughly non-British in feeling, the English tradition of classical architecture being far more sincere, freer and bolder and consequently more elastic in treatment. The design prepared is precisely the class of work to be found in every state in the Union and every Republic in South America and experiences [sic] truely cosmopolitanism and the Latin civilization. (2) The French Academic style is essentially an expensive one in which to design the relation between actual utility space as against passages, halls, stairs, walls etc., being rarely better than two to one.

The modern Free Classic evolved for English Public Buildings and sometimes called the Anglo-Classical or Imperial Style has this to recommend it that it has distinctive national character while the planning can be far freer and closer than in Academic work, the proportion of used to non-used space being rarely less than three to one, a very decided advantage where economy is to be considered. I would suggest that your architects devote some

Plate 72, Alberta Legislative Building, Edmonton, A. M. Jeffers, architect, (1907).
attention to English models of public buildings with which they are I believe quite unfamiliar. 32

In response to Nobbs' report, Jeffers made some changes to his design. These included a simplification of the facade and the removal of lanterns over the east and west pavilions which Nobbs had described as redundant on the grounds that since there was no large hall or courtroom underneath them they were not really required and "expressed something that was not there." 33 But despite these changes the general effect of the Alberta Legislature Building as constructed, and especially that of the monumental dome remained Continental and American.

In terms of the Saskatchewan competition however, Nobbs' report to the Alberta Government is interesting because it reminds us how committed he was, in the summer of 1907, to the use of what he called the Anglo-Classic style for public building in Canada, and in this it is helpful in understanding its outcome. Upon his return to Montreal from Edmonton and Regina in August, 1907 it only remained for Nobbs and Scott to settle the matter of the assessors for the competition. Originally it had been proposed that there be three assessors including Nobbs, Scott himself and one other person to be recommended by Nobbs. Under this agreement Nobbs invited Bertram Goodhue, a man whose work Nobbs admired and to whom he had recently awarded first prize in the Halifax Cathedral competition, to assist in the judgement of the competition. In the meantime, Premier Scott

32 SAB, Legislative Competition File, R 195-118, P. E. Nobbs to John Stocks, 12 August, 1907.

33 Ibid.
had decided to withdraw from his role as assessor and in his place and after some consultation it was decided to invite Frank Miles Day, president of the American Institute of Architects.34

As was the case with the Ottawa competition, when the result of the Saskatchewan competition was announced it was the occasion for some surprise, not least because the winners were once again E and W. S. Maxwell. It was also true, as the editor of Construction pointed out that the style chosen by the Maxwells for the Saskatchewan legislature was unusual. They had chosen to design their building in what they called the English Renaissance or precisely that Anglo-Classic style which Nobbs had suggested would be suitable for Canada even though as Construction said, while the English Renaissance style was not unknown in Canada, government buildings in the country were traditionally in the Gothic style. Nonetheless as Construction went on to say, the English Renaissance style was "from the historical point of view just as suited to Canada, and more readily adaptable to modern conditions."35

While it is difficult to measure the effect of Nobbs' views on the competitors in the Saskatchewan competition, the fact is that six out of the seven designs employed elements taken from English architecture of the seventeenth and eighteenth centuries, even though the general spirit of the designs varied considerably and some of the efforts to draw on English precedent, notably that of Marchand and Haskell strike one as somewhat strained. (Plates 73-93) The sole

34 Ibid., P. E. Nobbs to W. S. Scott, 23 October, 1907.
Plate 73, Winning design for the Saskatchewan Parliament Building, front elevation, E. and W. S. Maxwell, architects, (1907).
Plate 74, Block plan of site for proposed Parliament Buildings, Regina, Saskatchewan, E. and W. S. Maxwell, architects, (1907).
Plate 75, Winning design for the Saskatchewan Parliament Building, end elevation, E. and W. S. Maxwell, architects, (1907).
Plate 76. Winning design for the Saskatchewan Parliament
Building, ground floor plan, E. and W. S. Maxwell,
architects, (1907).
Plate 78, Design for proposed Parliament Building, Regina, Saskatchewan, elevation of front and detail, Storey and Van Egmond, architects, (1907).
Plate 79, Design for proposed Parliament Building, Regina, Saskatchewan, main floor plan, Storey and Van Egmond, architects, (1907).
Plate 80, Design for proposed Parliament Building, Regina, Saskatchewan, front elevation, Marchand and Haskell, architects, (1907).
Plate 81, Design for proposed Parliament Building, Regina, Saskatchewan, side elevation, Marchand and Haskell, architects, (1907).
Plate 82, Design for proposed Parliament Building, Regina, Saskatchewan, main floor plan, Marchand and Haskell, architects, (1907).
Plate 83, Design for Parliament Building at Regina, Saskatchewan, front elevation, Darling and Pearson, architects, (1907).
Plate 84, Design for Parliament Building at Regina, Saskatchewan, west elevation, Darling and Pearson architects, (1907).
Plate 85, Design for proposed Parliament Building at Regina, Saskatchewan, first floor plan, Darling and Pearson, architects, (1907).
Plate 86, Design for proposed Legislative Building, Regina, Saskatchewan, main elevation, Mitchell and Raine, architects, (1907).
Plate 87, Design for proposed Legislative Building, Regina, Saskatchewan, side elevation, Mitchell and Raine, architects, (1907).
Plate 88, Design for proposed Legislative Building, Regina, Saskatchewan, first floor plan, Mitchell and Raine, architects, (1907).
Plate 89, Design for proposed Parliament Building, Regina, Saskatchewan, front elevation, Frank Rattenbury, architect, (1907).
Plate 90, Design for proposed Parliament Building, Regina, Saskatchewan, side elevation, Frank Rattenbury, architect, (1907).
Plate 91. Design for proposed Parliament Building, Regina, Saskatchewan, first floor plan, Frank Rattenbury, architect, (1907).
Plate 92, Design for proposed Parliament Building, Regina, Saskatchewan, front elevation and section, Cass Gilbert, architect, (1907).
Plate 93. Design for proposed Parliament Building, Regina, Saskatchewan, detail of front elevation, Cass Gilbert, architect, (1907).
exception to this was the design by Cass Gilbert which was Gothic. (Plates 92+93, pp. 357+358)

The choice of the Maxwell design for the Saskatchewan legislature proved to be a popular one. The fact that the Maxwells had been able to win in the face of competition as formidable as that of Cass Gilbert seemed a sign that the Canadian profession had come of age. Moreover the Maxwells, in the way that they had taken the American State Capitol type and given it a character that was quite clearly British, seemed to capture the nature of the new western provinces; essentially British societies on the plains of North America.

Within the context of the development of Canadian architecture as a whole since the 1890s, the Maxwell design is interesting because in its creation E. and W. S. Maxwell seemed to draw upon the lessons and techniques of the immediate past to such a degree that the building as completed seems a summing up of the progress that had been made since the difficult days before the turn of the century. We have already seen for instance that it reflected the nationalism of the period. "In designing the exterior of the building," the architects wrote, "a free adaptation of English Renaissance work has been employed as being best suited to the requirements, and offering a logical, sensible and architecturally interesting solution of the problem that marks it unmistakably as representative of the British sovereignty under which the Province is governed."

It was also from the technical point of view a modern building, designed with a sensitivity to climate and intended to be as efficient

36 SAB, Legislative Competition File, R 195-118, letter to Walter Scott accompanying the submission of the design for the competition.
as possible. Although the original proposal called for a building of red brick and buff stone, as constructed the Saskatchewan Legislative building boasted a facade of cream coloured Manitoba limestone hung on a frame of reinforced concrete. To aid circulation and to render the heating of the building as easy as possible the plan was reduced to that of an oblong with a short central crossing which housed the legislative chamber. On the main floor of the building the offices were set southwards with the library and reading rooms to the north so that during the winter the soft, northern light would fall on the reading rooms and readers would be spared the glare of sunlight reflected off the snow. (Plates 76+77, pp. 341+342)

Besides all of this, the Saskatchewan Parliament House, with its American architectural antecedents, with its situation in a landscaped garden and in view of the skill with which the Maxwells ordered space and volume to serve the needs of imperial grandeur, is one of the achievements of the American and French-inspired Beaux Arts manner in Canada. Beginning with a view of the dome rising from across the lake, one’s movement towards the centre of power was carefully arranged; first across the lake by bridge, then west along the lakeshore and then up and along the main axis through park to a broad flight of stairs, under the main portico and into the entrance hall. From here, one crossed a hall to meet a staircase of honour which led in turn to an ante room placed just outside the legislative chamber and exactly at the meeting of the major and minor axes of the plan, so that standing at centre one was faced with simultaneous vertical and horizontal views into the dome and along what were literally the corridors of power. Within this schema the entire building was organised hierarchically, in order of
function and proximity to vice-regal authority, a relationship expressed through the manipulation of space and decoration so that for instance the apartments of the Lieutenant-Governor and Premier were found at the centre of the building with all other functions and functionaries distributed respectively in order of importance.

With their success in the Saskatchewan Legislative competition following so closely upon their win in the Justice and Departmental competition at Ottawa, E and W. S. Maxwell—who was still only thirty-three years of age—found themselves at the pinnacle of the architectural profession in Canada. The Saskatchewan competition also did a great deal to further the ideas and career of Percy Nobbs. After the successful use of the English Baroque at Regina by the Maxwells, Canadian architects began to use English Baroque and Classical forms with increasing regularity, especially in the design of public buildings such as Darling and Pearson's Bank of Nova Scotia at Winnipeg (1908) and Blackader and Webster's Bank of British North America at Montreal (1914). (see Plates 94+95)

On another level, the competitions at Ottawa and Saskatchewan served to bring into focus many of the ideas that had been circulating among Canadian architects since the 1890s. These included the value of architectural professionalism, the power of Beaux-Arts theory and planning, and the possibilities of new building technology, but above all the competitions encouraged the spread of a nationalist sensibility among Canadian architects; that is the idea that now, at the beginning of what Prime Minister Wilfred Laurier called Canada's century, Canadian architects were being called upon to design a national architecture for a new nation and a new nationality.

The willingness on the part of both the public and the architectural profession to see in the architecture of the period tangible expression
Plate 94, The Bank of Nova Scotia, Winnipeg, Darling and Pearson, architects, (1908), and Bank of British North America, Montreal, Barott, Blackader and Webster, architects, (1914).
Plate 95, Bank of British North America, Montreal,
Barott, Blackader and Webster, architects, (1914).
of the more fundamental development of the country as a modern, continental nation is so marked a theme of Canadian architecture in the years leading up to 1914 that it has been noticed by modern and historical writers alike. In a consideration of public building in Alberta before 1914 Edward Mills, including a quotation from the September, 1908 issue of Construction, wrote in 1977:

Alberta's population climbed from 185,000 to over 375,000 in the six years following the achievement of provincial status. Construction of public buildings became a major priority of the Provincial Administration during this period of rapid settlement. The numerous schools, institutions, telephone exchanges, court houses, and Legislative Assembly which were accordingly built came to be perceived as tangible yardsticks for measuring Alberta's progress in comparison to American states to the south, symbols of the rapid strides by which Western Canada had been transformed "from a primeval wilderness into a civilized territory" within a few short years. Thus a contemporary writer was moved to remark: ...it is in completed and prospetive structures of a governmental type that Western Canada as a new country is distinctly transcendent in the building line. No other country so youthful has ever seen work of this carried on in such a thorough manner...There is absolutely no comparison between these buildings and the early public buildings of the western section of the United States. The public buildings of the Canadian West are planned along far more substantial lines, and are more monumental in design and better adapted to the purpose for which they are intended.

Whether Canadian architects were able to find their way to a national architecture before 1914 is of course a different question altogether and Percy Nobbs for one, told the RIBA in 1924 that he thought they had not. But leaving that question aside there are two final points which must be made. The first is that in pursuit of that illusive goal of a national architecture, and founded on the ideas, reforms and innovations of the previous fifteen years, Canadian architects after 1905 created lasting symbols of the nation,

the great railway hotels which were built across the country and the Saskatchewan Parliament House are two examples, and they produced buildings of a standard equal to any in the world. The achievements made by the Canadian profession since its organization in the early 1890s were recognised by the RIBA in the award of its gold medal to Frank Darling in 1915, and similarly in the award of the Gold Medal of the American Institute of Architects to the Toronto firm of Sproatt and Rolph for their design of Hart House at the University of Toronto.

The second point is this. While the outbreak of war in Europe in 1914 and the subsequent entry into the conflict by Canada brought to an end much of the construction which had marked the years of economic expansion after 1900, many of the ideas which had been a product of architectural life in the country before 1914 found their true flowering after the armistice, during the twenties and in some instances on into the thirties. After 1918 the ideas of the Beaux Arts tightened their grip on the country's architectural schools for example while Canadian architects, like their counterparts throughout the Western world, turned to the techniques of architectural science to a greater and greater degree. But perhaps the most interesting development from a purely national point of view, was the crystalization and exploration of the national idea, leading in turn to the development of a domestic architecture based on the Quebec vernacular, to the articulation of a Canadian architectural vocabulary, and, under the direction of Ramsay Traquair and Gérard Morrisset, to the beginning of true scholarship in the study of Canada's historic architecture.
Unpublished Sources, Special Collections, Proceedings of Learned Societies, Government Records

Avery Library, Columbia University, New York, Obituary Index of Architects and Artists.

Architectural Institute of British Columbia, Biographical File.

British Columbia, Province of, Journals of the Legislative Assembly, Vol. 22, 56 Victoria, 1893.

Burns, William G. Journal 1889-1893. (In the hands of the family)

Canada, Debates of the House of Commons.

Canadian Society of Civil Engineers, Proceedings and Transactions, 1890-1914.

Manitoba Association of Architects, Winnipeg, Minutes and Proceedings, 1907-1914.

McGill University Archives, Peterson Papers, Department of Architecture File, Record Group 2F/644/14.

McGill University, Nobbs Collection.
Ontario Archives, Eustace Bird Diaries, 1892-1894.

_____. John M. Lyle Collection.

_____. Ontario Association of Architects correspondence, including the School of Practical Science, RG 2, series P2., Temporary Box 13/ 1897-1899/30.

Ontario, Art Gallery, Biographical File.

_____. George Reid File and papers.

Ontario Association of Architects, proceedings 1889-1914.

Ontario, Province of, Journals of the Legislative Assembly, 31 January, 1890 to 7 April, 1890, Vol. 23, 53 Victoria, 1890.

Quebec, Archives National, Proceedings and Minutes of the Province of Quebec Association of Architects 1890-1914, (Montreal).

Royal Institute of British Architects, Biographical File.

Saskatchewan Archives Board, Scott Papers, Legislative Building File 1906-1916; Legislative Competition File, R 195.

Toronto Chapter of Architects, minutes.

Toronto, University of, Archives, 1906 University Commission, Box 1, "School of Practical Science."

Journals, Periodicals and Magazines

Academy Architecture (London) 1889-1914
American Architecture and Building News (Boston) 1885-1914
Architectural Annual (Philadelphia) 1900-1901; 1906-1908
Architectural Record (New York) 1892-1915
Architectural Review (London) 1896-1914
The Builder (London) 1885-1914
Canadian Architect (Toronto) 1955-1980
Canadian Architect and Builder (Toronto) 1888-1908
Canadian Collector (Toronto) 1967-1981
Canadian Geographical Journal (Toronto) 1930-1982
Canadian Illustrated News (Montreal) 1875-1883
Canadian Magazine (Toronto) 1893-1914
Concrete and Constructional Engineering (London) 1906-1914
Construction (Toronto) 1907-1930
Contract Record (Toronto) 1890-1914
Craftsman 1903-1909
Dominion (Winnipeg) 1910-1913
Inland Architect and News Record (Chicago)
Journal of Canadian Art History
Journal of the Royal Architectural Institute of Canada 1924-1960
Journal of the Royal Institute of British Architects 1890-1914
Lamps (Toronto) 1911-1913
Monetary Times (Toronto) 1890-1914
Royal Architect (Montreal) 1909-1912
Studio 1895-1914
Select Bibliography of Published Sources

Ames, Herbert Brown, The City Below The Hill, Montreal, 1897.

Arts and Letters Club of Toronto, Yearbook of Canadian Art, Toronto, 1913.

Atherton, William, Montreal 1534-1914, 3 vols, Montreal, 1914.

Barber, C. A. and E. W. Barber, editors, Winnipeg Architecture, Winnipeg, 1883.

Bedard, Hélène, Maisons et églises du Québec: XVIIe, XVIIIe, XIXe siècles, Québec, 1971.

British Columbia Institute of Architects, Declaration of Establishment and Bye-Laws, Victoria, 1892.

Brosseau, Mathilde, Gothic Revival in Canadian Architecture, Ottawa, 1980.

Brown, R. Craig and G. R. Cook, Canada 1896-1921; A Nation Transformed, Toronto, 1974.

Cameron, Christina, and Janet Wright, Second Empire Style in Canada, Ottawa, 1980.

Chauvin, Jean, Ateliers, Montreal, 1928.

Clubb, Sally, Saskatoon's Historic Buildings and Sites, Saskatoon, 1973.

Cooper, John, Montreal A Brief History, Montreal, 1969.

Corporation de l'école à l'occasion du soixante-quinzième anniversaire de fondation, École Polytechnique de Montréal 1873-1948, Album Souvenir, Montreal, 1948.

Dick, D. B., Is There a Possibility of a New Style of Architecture, Toronto, 1897.

Gauthier, Raymonde, Les Manoirs du Quebec, Quebec, 1976.

Architecture: Nineteenth and Twentieth Centuries, Hammondsworth, 1963.

Jones, Hugh G. and Edmund Dyonnet, History of the Royal Canadian Academy of Arts, Montreal, 1934.

Kaufmann, Edgar, Frank Lloyd Wright, the Early Work, New York, 1968.

Lacey, Benedict, editor, American Competitions, vol 2, Philadelphia, 1908.

Leslie, Thomas, The Legislative Building of Manitoba, Winnipeg, 1925.

Lessard, Michel, and Huguette Marquis, Encyclopédie de la maison québécoise, Montreal, 1972.

Manson, Grant, *Frank Lloyd Wright to 1910, the First Golden Age*, New York, 1958.

Montreal Presbytery College Annual Calendar, Montreal, 1875, 1887, 1889, 1899.

Mont St. Louis: Un Demi-siècle au Mont-St.-Louis, Montreal, 1939.

Moreau, Luc d'Iberville, Lost Montreal, Toronto, 1975.

Naylor, Gillian, The Arts and Crafts Movement; A Study of its Sources, Ideals and Influence on Design Theory, London, 1971

"Architecture in the Province of Quebec during the Early Years of the Twentieth Century," RAIC Journal, 33, (November 1956), 418-419.

Noppen, Luc, Claude Paulette, and Michel Tremblay, Quebec: trois siecles d'architecture, Quebec, 1979.

Ontario Minister of Education, Report, Toronto, 1888, 1889, 1890, 1891, 1892.

Peel, Bruce, A Bibliography of the Prairie Provinces to 1953, Toronto, 1973.

Reeves, Ewanne, A Personal History of St. Thomas', Toronto, n.d.

Rensselaer, M. G. van, Henry Hobson Richardson his Works, New York, 1888.

Ross, Sir George William, The Universities of Canada; Their History and Organisation, with an Outline of British and American University Systems, Toronto, 1896.

Schull, Joseph, One Hundred Years of Banking: A History of the Toronto-Dominion Bank, Toronto, 1958.

Smith, Goldwin, Canada and the Canadian Question, London, 1891.

Société d'Architecture de Montréal, Découvrir Montréal, Montreal, 1975.

Tokler, Franklin, The Church of Notre Dame in Montreal, Montreal, 1970.

Toronto Architectural Eighteen Club, Exhibition Catalogue, Toronto, 1901, 1902, 1903, 1905.

Toronto Society of Architects, Exhibition Catalogue, Toronto, 1909, 1912.

Waite, P. B., Canada, 1874-1896; Arduous Destiny, Toronto, 1971.

Wallace, W. Stewart, A History of the University of Toronto 1827-1927, Toronto, 1924.

Waite, P. B., Canada, 1874-1896; Arduous Destiny, Toronto, 1971.

