This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated.
A copy can be downloaded for personal non-commercial research or study, without prior permission or charge.
This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author.
The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author.
When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given.
The Predictive Capacity of a Cognitive Screen: Can the Addenbrooke’s Cognitive Examination - III Predict Early Relapse Following Inpatient Detoxification in Severe Alcohol Dependence?

Louise Young

Doctorate in Clinical Psychology

The University of Edinburgh

October 2014

Submitted in part fulfilment of the degree of doctorate in Clinical Psychology at the University of Edinburgh

Word Count: 14,514 (minus tables, figures, references and appendices)
D. Clin. Psychol. Declaration of own work

Name: Louise Young
Assessed work: Thesis
Title of work: The Predictive Capacity of a Cognitive Screen: Can the Addenbrooke’s Cognitive Examination – III Predict Early Relapse Following Inpatient Detoxification in Severe Alcohol Dependence?

I confirm that all this work is my own except where indicated, and that I have:

- Read and understood the Plagiarism Rules and Regulations ✓
- Composed and undertaken the work myself ✓
- Clearly referenced/listed all sources as appropriate ✓
- Referenced and put in inverted commas any quoted text of more than three words (from books, web, etc) ✓
- Given the sources of all pictures, data etc. that are not my own ✓
- Not made undue use of essay(s) of any other student(s) either past or present (or where used, this has been referenced appropriately) ✓
- Not sought or used the help of any external professional agencies for the work (or where used, this has been referenced appropriately) ✓
- Not submitted the work for any other degree or professional qualification except as specified ✓
- Acknowledged in appropriate places any help that I have received from others (e.g. fellow students, technicians, statisticians, external sources) ✓
- Complied with other plagiarism criteria specified in the Programme Handbook ✓
- I understand that any false claim for this work will be penalised in accordance with the University regulations ✓
- (For R2 &Thesis) Received ethical approval from the University of Edinburgh, School of Health ✓

Signature .. Date
ACKNOWLEDGEMENTS

Firstly, I would like to thank the staff and patients at the detox clinic. Without your input there would have been no information to present.

Many thanks also to my supervisors, Dr Hannah Worthington, Dr Emily Newman and Dr Suzanne O’Rourke for all of your invaluable feedback, guidance and support in the development and execution of this thesis (and throughout training).

Thank you to Dr Jenny Svanberg and Dr Fraser Morrison for your very helpful discussions and pointers in relation to navigating the neuropsychological aspects of my project; and to my brother, James, for his expertise in relation to Microsoft word!

I would like to extend a very warm thanks to all of my family and friends. The past few years have been tough but they would have been even more so without you all around me. I truly intend on investing in you as much time as I have given to my laptop over the past few years.

Finally, I would like to thank Richard, who has endured the last three years with enviable poise. Thanks for believing in me.
THESIS ABSTRACT

Background: Alcohol misuse and dependency are major health problems worldwide. Despite the availability of a number of evidence-based treatments for alcohol-dependency, a large proportion of people relapse following detoxification. The costs to society and the individual are vast, not only economically but in terms of social and interpersonal functioning also. There is a recognised need to understand the factors that contribute to poorer outcomes in this population. Cognitive impairment is one factor that has demonstrated considerable associations with poor outcomes in the wider substance-misuse population.

Aims: This thesis has two sections. The first comprises a systematic review which aimed to present the objective evidence for emotional decision-making deficits in the alcohol dependent population. The second is an empirical study which aimed to establish whether or not relapse can be predicted in a severely alcohol dependent population in the early stages following inpatient detoxification. In addition, a normative dataset for this clinical population using the ACE-III is presented.

Methods: For the systematic review, a structured search of the literature relating to emotional decision-making in alcohol dependent samples was conducted. Iterative application of pre-defined inclusion and exclusion criteria identified eighteen studies for critical review. Quality assessment of these studies was undertaken and validated by means of calculating inter-rater reliability. For the empirical study, two sub-samples of a cross-sectional group of patients being treated for severe alcohol-dependence were examined; one to collate normative data for the ACE-III (N=73) and one to investigate associations between the ACE-III and relapse (N=20), including covariates of age, mood, anxiety and motivation.
Results: The systematic review demonstrated substantial support for a deficit in emotional decision-making ability in alcohol-dependence. Methodological quality of the reviewed papers was moderate to high. Deficits in performance on a task of emotional decision-making compared to healthy controls indicated a reduced learning curve in alcohol dependent samples. Limitations of the studies included failure to report power analyses and effect sizes, insufficient detail regarding methodology and exclusion of common comorbidities in alcohol-dependence. The empirical study demonstrated clinically significant cognitive impairment in a sample of severely alcohol dependent individuals in the early stages following detoxification. In a smaller sample, cognitive functioning was not found to be predictive of relapse at one-month post-detoxification. Associations were identified between age and ACE-III score and between age and relapse status. Age was not predictive of outcome.

Conclusions: The available evidence points towards the existence of emotional decision-making deficits in alcohol dependent individuals. These are likely to impact on the ability of individuals make the health behaviour changes required to recover from alcohol dependence. Further research may be helpful in identifying factors associated with increased decision-making deficit in this specific population and investigating the processes underlying such difficulties. The clinical normative dataset presented in the empirical study points towards generalised cognitive impairment during the early stages of abstinence which may negatively impact on ability to engage meaningfully with psychosocial interventions. Performance on the ACE-III was not found to predict relapse in the current sample. Previous research would suggest that the links between cognitive functioning and relapse are less well defined in alcohol-misusing samples than in the wider substance-misuse population. Therefore future research may help to clarify this association in alcohol dependent samples. It is acknowledged that the ACE-III is yet to be validated for use in the
alcohol dependent population and is limited in its ability to assess executive functions. Given the high prevalence of executive functioning deficits in the alcohol dependent population, it seems of importance to use cognitive screening tools which place appropriate emphasis on these abilities. Service providers are encouraged to incorporate routine cognitive screening into clinical practice and consider the implications of cognitive impairment at both individual and service delivery levels.
CHAPTER 1 CONTENTS

<table>
<thead>
<tr>
<th>Chapter 1.</th>
<th>Systematic Literature Review</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>ABSTRACT</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Alcohol-Related Brain Damage</td>
<td>3</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Frontal lobes</td>
<td>4</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Executive functioning</td>
<td>5</td>
</tr>
<tr>
<td>1.2.4</td>
<td>Decision-Making Ability</td>
<td>6</td>
</tr>
<tr>
<td>1.2.5</td>
<td>The Iowa Gambling Task</td>
<td>6</td>
</tr>
<tr>
<td>1.2.6</td>
<td>Decision-Making Deficits in Alcohol Dependence</td>
<td>8</td>
</tr>
<tr>
<td>1.3</td>
<td>Method</td>
<td>11</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Literature search strategy</td>
<td>11</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Data collection and analysis</td>
<td>12</td>
</tr>
<tr>
<td>1.3.3</td>
<td>Assessment of Methodological Quality</td>
<td>13</td>
</tr>
<tr>
<td>1.4</td>
<td>Results</td>
<td>15</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Study Characteristics</td>
<td>15</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Methodological Review</td>
<td>15</td>
</tr>
<tr>
<td>1.4.3</td>
<td>Narrative Review</td>
<td>16</td>
</tr>
<tr>
<td>1.5</td>
<td>Discussion</td>
<td>27</td>
</tr>
<tr>
<td>1.5.1</td>
<td>Summary of Findings</td>
<td>27</td>
</tr>
<tr>
<td>1.5.2</td>
<td>Context of Findings: Methodological Limitations</td>
<td>28</td>
</tr>
<tr>
<td>1.5.3</td>
<td>Limitations of Review</td>
<td>31</td>
</tr>
<tr>
<td>1.5.4</td>
<td>Research Implications</td>
<td>33</td>
</tr>
<tr>
<td>1.5.5</td>
<td>Clinical Practice Implications</td>
<td>34</td>
</tr>
<tr>
<td>1.5.6</td>
<td>Conclusions</td>
<td>35</td>
</tr>
<tr>
<td>1.6</td>
<td>REFERENCES</td>
<td>37</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2</th>
<th>Empirical Paper</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Abstract</td>
<td>43</td>
</tr>
<tr>
<td>2.2</td>
<td>Introduction</td>
<td>44</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Aims of the Study</td>
<td>48</td>
</tr>
<tr>
<td>2.3</td>
<td>Method</td>
<td>48</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Participants</td>
<td>48</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Procedure</td>
<td>51</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Measures</td>
<td>52</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Statistical Analysis</td>
<td>55</td>
</tr>
<tr>
<td>2.4</td>
<td>Results</td>
<td>56</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Part I: Clinical Normative Data</td>
<td>56</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Part II: Predictors of Outcome</td>
<td>58</td>
</tr>
<tr>
<td>2.5</td>
<td>Discussion</td>
<td>60</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Summary of Findings</td>
<td>60</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Interpretation of Findings – Normative Data</td>
<td>61</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Interpretation of Findings – Predictors of Outcome</td>
<td>62</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Limitations</td>
<td>65</td>
</tr>
</tbody>
</table>
2.5.5 Implications for Research .. 66
2.5.6 Implications for Clinical Practice ... 66
2.5.7 Conclusions .. 67
2.6 References .. 69

References – Full Thesis .. 72

APPENDIX 1. Author Guidelines .. 79
APPENDIX 2. Measuring Outcomes in the Iowa Gambling Task (IGT) .. 98
APPENDIX 3. Table of excluded papers ... 100
APPENDIX 4. Quality Criteria Checklist ... 101
APPENDIX 5. Quality Ratings Table ... 102
APPENDIX 6. Caldicott Approval .. 103
APPENDIX 7. Ethical Approval Letter ... 104
Evidence for Impairment of Emotional Decision-Making Ability in Alcohol Dependence: A Systematic Review

(7367 words, excluding abstract and references)

Written in accordance with the author guidelines for submission to the journal Drug and Alcohol Dependence

(Author’s Guidelines – see Appendix 1)

Louise Young

University of Edinburgh, School of Health in Social Science, Medical School, Teviot Place, Edinburgh, EH8 9AG

Tel.: (+44)131 651 3972

Email: s0342913@sms.ed.ac.uk
1.1 ABSTRACT

Background: The evidence base for emotional decision-making deficits in alcohol dependency is well established. The aim of this review was to collate objective evidence from studies of decision-making using the Iowa Gambling Task (IGT) in alcohol dependent (AD) samples, to offer an indication of the methodological rigour of these studies, and to consider avenues for future research in this area.

Method: A comprehensive search strategy resulted in the systematic review of 18 studies investigating emotional decision-making ability in alcohol dependent populations. Quality ratings indicated the studies to be of moderate to high quality overall.

Results: Of 17 studies comparing AD samples to healthy controls, 12 reported poorer performance in the AD sample in overall IGT performance. Support was also found for a reduced level of improvement across the blocks of the task in AD participants. Evidence for factors influencing decision-making ability in this group was wide-ranging and demonstrated mixed results. History of conduct disorder and presence of antisocial personality traits may contribute to decision-making deficits in some AD individuals.

Conclusions: The available evidence points towards the existence of emotional decision-making deficits in AD individuals. The relevance of assessing this ability in alcohol dependence is discussed and the implications for clinical practice considered. Suggestions are made for future research.

Keywords: Alcohol Dependence, Emotional Decision-Making, Iowa Gambling Task
1.2 INTRODUCTION

Alcohol misuse and dependency are major health problems worldwide. It has been estimated that in 2004 3.8% of deaths were attributable to alcohol, with the highest proportion of these in the European region (Rehm et al. 2009). From an economic perspective, the costs to society in relation to loss of productivity, healthcare and law enforcement are vast (Rehm et al., 2009). The implications for an individual’s social and occupational functioning are striking, as the compulsion to obtain alcohol persists despite negative consequences for the individual and those around them. It is this repeated pattern of apparently poor decision-making that forms one of the so-called ‘hallmarks’ of addiction, including alcohol-dependency (American Psychiatric Association, 1994). In a review of the literature, Sher et al. (2005) outlined a number of factors potentially involved in the etiology of alcohol use disorders; including the areas of epidemiology, genetics, personality, neuropsychology, parenting and social factors. One particular alcohol-related condition that remains poorly conceptualised is alcohol-related brain damage (ARBD).

1.2.1 Alcohol-Related Brain Damage

ARBD is a term used to describe functional and structural changes to the brain as a result of long-term consumption of alcohol at harmful levels (Cox et al., 2004). These changes are thought to be the result of a combination of factors, including toxicity of alcohol on the brain, nutritional deficiency, cerebrovascular disturbances and head injury (Kopelman et al., 2009; Thomson et al., 2012). ARBD itself is not a formal diagnosis, but deficits of this nature are considered to be subsumed within two related diagnoses in the ICD-10: Amnesic Syndrome due to alcohol (f10.6) and Alcohol related dementia (f10.73) (Word Health Organisation, 1992). ARBD is a heterogeneous condition with a wide variety of presentations, however it is widely accepted that impairments in memory and executive
functioning are present in most people (Bates et al., 2002). Whilst alcohol has been demonstrated to affect numerous brain regions, and overall brain volume and integrity (for review see e.g. Rosenbloom & Pfefferbaum, 1995), one area that appears to be particularly vulnerable to the effects of alcohol is the frontal cortex (Ratti et al., 2002; Chanraud et al., 2007).

1.2.2 Frontal lobes

As a result of its complexity and links with almost all of the other components of the central nervous system (Moselhy et al., 2001), the frontal cortex is understood to serve as the neural substrate for a wide range of cognitive functions; often collectively termed as ‘executive functions’. Research evidence indicates that the brains of alcohol dependent individuals are smaller than those of healthy non-alcoholics. For the most part, this shrinkage is believed to be the result of reduced white matter volume as opposed to loss of grey matter, or cortical tissue (Harper et al., 1985 and de la Monte, 1998; both cited in Harper, 1998). The frontal lobes in particular suffer from greater volume loss in comparison to other brain regions. In a review of alcohol-related brain damage, Harper (1998) suggested that this may be the result of the higher proportion of white matter compared to grey matter in this region. However decreases in grey matter have also been identified in the frontal lobes of alcohol dependent individuals by use of MRI (Chanraud et al., 2007). A number of researchers have investigated the basis for reduced brain volume. From a neurobiological perspective, many of the effects of alcohol on the brain are thought to be resultant of the effects of alcohol on various neurotransmitter systems, such as glutamate, aspartate, GABA, noradrenaline, dopamine and serotonin (De Witte et al., 2003). With repeated exposure to alcohol, these systems adapt accordingly to account for the chemical changes within the brain environment. As a result, during any period of withdrawal, the
concentrations of some of these neurotransmitters within the brain can increase, leading to toxicity and, ultimately, cell death (Weiss & Porrino, 2002).

1.2.3 Executive functioning

In his model of frontal lobe functioning, Stuss (2011) asserted that executive functioning constitutes ‘higher order’ functioning which serves to control and oversee more automatic cognitive functions. It is these processes that afford humans the ability to plan, organise and problem solve. Thus, whilst an individual may be able to effectively compensate for a deficit in a primary cognitive function if frontal lobe functioning is intact, deficits in more fluid abilities, such as the executive functions, are likely to result in widespread difficulties in day-to-day life (Lezak, 2004). In a review of frontal lobe functions, Moselhy et al. (2001) reported that despite preserved general cognitive functioning, people who misuse alcohol often demonstrate deficits in executive functioning (cognitive flexibility, problem solving, abstract reasoning, visuo-motor coordination, learning, conditioning, and memory) (pp. 362-363). Research would also suggest that whilst functioning, on the whole, has been shown to improve with abstinence, executive dysfunction appears to remain (e.g. Chanraud et al., 2007; Nakamura et al., 2014). Executive functioning deficits have long been associated with difficulties maintaining sobriety from alcohol and also poorer outcomes following treatment for substance misuse (Goldstein & Volkow, 2002 and Moselhy, 2001; respectively). It is therefore unsurprising that much research has focused on understanding the role of executive functioning in the development and maintenance of substance addiction. One facet of such abilities that has been particularly researched has been decision-making.
1.2.4 Decision-Making Ability

As mentioned, substance dependency is a disorder characterised by compromised decision-making processes (Jeste & Saks, 2006). In his model of frontal lobe functioning, Stuss (2011) made a distinction between four conceptually distinct components: task setting, task monitoring (both thought to rely largely on the dorsolateral prefrontal cortex), emotionally driven behavioural control involved in the recognition of rewards (ventromedial prefrontal cortex; VMPFC), and metacognition including goal-directed behaviour and self-awareness (frontal poles). From this perspective, deficits in decision-making could conceivably result from a breakdown of any combination of these sub-systems of executive functioning. In the context of addictions, where individuals may repeatedly make decisions in favour of immediate reward despite negative future consequences, the role of emotionally driven behavioural control seems of particular relevance. Therefore, for the purposes of the current review, the focus of discussion will be on decision-making which implicates such processes.

1.2.5 The Iowa Gambling Task

The Iowa Gambling Task (IGT; Bechara et al., 1994) is a widely-used, computerised, behavioural paradigm designed to assess decision making abilities, developed for use with patients with VMPFC lesions. It is an implicit gambling task; that is, one in which the contingencies of each choice are unknown to the participant and therefore decisions must be made under conditions of uncertainty. Participants are instructed to gain as much imaginary money as possible by making 100 selections from four decks of cards (A, B, C, D). With each card choice, the participant either gains or loses money. Each deck differs in the size of reward and penalty, but also in frequency of punishment. Of the four decks, A and B
are considered ‘risky’ or disadvantageous decks (high immediate gain followed by high penalty), choices from which will eventually lead to a net loss. C and D are considered advantageous and lead to an overall net gain (low immediate gain followed by low penalty) (Bechara, Tranel & Damasio, 2000). This schedule of reward vs penalty is unknown to the participant.

A number of outcome measures may be calculated from the IGT, including number of choices from each deck, number of advantageous choices, number of disadvantageous choices and monetary outcome. Within the literature to date, the most commonly used outcome is the net score, which is the number of cards selected from advantageous decks minus those from disadvantageous ones. Another common outcome measure is to look at performance across different stages of the task. Use of the total net score alone may overlook relevant patterns in performance and learning effects that may be evident as the participant’s familiarity with the task increases. Given that alcohol use has been associated with neuropsychological deficits, including impairment of memory and aspects of new learning (Bates et al., 2002), this outcome measure is thought to be of particular relevance for the current review (see appendix 2 for further detail relating to measurement of outcome in the IGT). The IGT is thought to be ecologically valid and simulates real-life decision-making situations which typically involve elements of uncertainty, reward and punishment (Bechara et al., 1994; Bechara et al., 2000).

Findings from studies using the IGT in populations of people with VMPFC lesions highlighted a tendency for this group to persist in making disadvantageous choices, despite explicit feedback regarding the losses incurred (Bechara et al., 2000). This pattern of performance
has come to be termed ‘myopia for the future’ (Bechara et al., 2000, p298) and has also been demonstrated in studies of substance-misusing populations (e.g. Bechara & Damasio, 2002; Bechara et al., 2002). It has been suggested that this pattern of persistent disadvantageous decision-making in substance-dependent individuals (SDIs) is underpinned by deficits in emotional signalling systems in the brain. Originally described by Damasio (1994; cited in Verdejo-Garcia & Bechara, 2009), ‘somatic markers’ are an emotional mechanism associated with previous experience of situations that allow for anticipation of the outcome of a new, ambiguous situation. The somatic marker model of addiction proposes that, in SDIs, hyperactivity in the amygdala or ‘impulsive system’ may serve to increase the salience of immediate rewards; whilst underactivity in the prefrontal cortex or ‘reflective system’ reduces the ability to look forward to the future consequences of a given action (Verdejo-Garcia & Bechara, 2009). Therefore, in situations of ambiguity – as considered to be measured by the IGT – SDIs have reduced capacity to inhibit behaviours which will lead to immediate reward. As with other executive functions, evidence would suggest that impairment in decision-making ability may persist even following years of abstinence (e.g. Fein et al., 2004).

1.2.6 Decision-Making Deficits in Alcohol Dependence

The clinical relevance of characterising the nature of decision-making deficits in the alcohol dependent (AD) population is clear, considering that it may constitute a mechanism by which certain individuals are at increased risk of developing and maintaining substance use problems (Miranda et al., 2009). With a more sophisticated understanding of these deficits, policy, assessment and care planning for this group may be able to be tailored to their specific profile of strengths and weaknesses. Clinicians are often asked to comment on the capacity of patients with alcohol-use disorders to make reasoned judgements regarding
their welfare and finances (Hazelton et al., 2003). As has been highlighted, this is one particular area where this population may be at a distinct disadvantage; although preserved functioning in other cognitive domains (e.g. ‘functional reorganization’ hypothesis posited by Pfefferbaum et al., 2001), personality traits or coping styles (Ando et al., 2012) may serve to conceal or compensate for such difficulties. From a treatment perspective, evidence suggests a link between better decision-making ability and increased motivation to change drinking behaviour at treatment entry (Le Berre et al., 2012). In addition, concerns regarding response to treatment were highlighted by Tomassini et al. (2012), who further raised the possibility that decision-making deficits in this population may lead to increased interpersonal difficulties and risk of harm to self or others. With the potential for such wide-ranging implications, increased understanding of deficits in decision-making in alcohol-dependence is of great importance and may impact on the emphasis given to assessing ‘hot’ decision-making abilities (Brand et al., 2007), as are engaged in ambiguous situations.

Brevers et al. (2014) make reference to the relative wealth of research into poor decision-making under conditions of ambiguity in alcohol dependence as a rationale for expanding the evidence-base for the related concept of risky decision-making. It therefore seems prudent to assimilate the findings in relation to this particular area. Zorlu et al. (2013a) highlight a number of methodological challenges in interpreting the findings of such research owing to the high degree of poly-substance misuse and other comorbidities in the experimental samples. Arguably, inclusion of such groups is reflective of the presentations of most AD populations. However their inclusion leads to difficulties interpreting any findings. Furthermore, polysubstance abuse has been reported to result in poorer
performance on the IGT compared to abuse of any individual substance (Grant et al., 2000; Rotheram-Fuller, 2004). In relation to comorbidity, there is a large amount of research which points toward decision-making deficits across a number of psychiatric and medical conditions (for a summary, see Buelow & Suhr, 2009). Therefore, it seems of relevance to try to summarise the findings in relation to emotional decision-making ability in an AD population as possible to try to establish the relative contributions of this particular disorder – or pre-existing impairments in people who go on to develop alcohol-dependence – to the impairments described in the literature.

In a review of behavioural decision-making and neuroimaging studies, Dom et al. (2005) described consistent decision-making impairment in patients with substance-use disorders (SUDs) across eleven studies which focused on behavioural decision-making paradigms. Ten of these studies used the IGT. Whilst this review provided substantial evidence in support of impaired decision-making in SUDs, the findings must be interpreted in light of the following limitations. Firstly, the review included a wide variety of substance misuse samples (amphetamines, opiates, poly-drug misuse, alcohol, methadone, ‘substance use disorder’, and ‘substance dependency’) and one VMPFC lesion sample. The severity of dependency for most of these groups was not clear, nor was the presence of comorbid use of other substances in addition to the main substance of misuse. This variation in samples makes the assimilation of findings somewhat difficult, limiting the ability to generalise to any given substance-misuse population. Furthermore, the study characteristics would suggest that the samples varied in their duration of abstinence and ongoing use of prescribed maintenance substances, which may have influenced decision-making ability. Finally, the review only reported the findings from one study of AD participants. In light of
the range of evidence to suggest that AD individuals are impaired in tasks of emotional decision-making ability and to build on the findings from the aforementioned review, the aim of the current systematic review was to describe and evaluate the evidence for an objective deficit in emotional decision-making ability in adults with alcohol-dependency.

1.3 METHOD

1.3.1 Literature search strategy

The electronic literature search was conducted in June/July 2014. It was not feasible to translate texts from other languages, therefore searches were limited to studies published in English. Other limits included human-only studies and studies of adult participants (18+yrs). The Cochrane Database of Abstracts of Reviews of Effects (DARE) was consulted to ensure that a similar review had not recently been conducted.

Four electronic databases were searched, from the disciplines of health and psychology: PsycINFO (1987 to June week 4 2014), EMBASE (1980 to 2014 week 26), OvidMEDLINE(R) (1946 to June week 3 2013) and CINAHL Plus. Searches were performed using default ‘multi-purpose’ fields and included title, abstract, subject heading and keyword. For all databases, the following keyword search was employed: [alcoholi* OR alcohol* adj3 depend* OR alcohol* adj3 addict* OR alcohol* adj3 abus*] AND [decisi* adj mak* OR ventromedial prefrontal cortex OR gambl* adj3 task*].

Two journals which regularly publish on cognitive impairment in relation to substance misuse were hand-searched online for relevant papers since 2004: ‘Alcoholism: Clinical and
Experimental Research (Vol. 28, issue 1 to Vol. 38, issue 7)’ and ‘Alcohol and Alcoholism (Vol. 39, issue 1 to Vol. 49, issue 4)’. Reference lists of the studies included in the current review were also searched for relevant papers.

1.3.2 Data collection and analysis

References were selected by the main author using an iterative approach, involving a number of ‘screens’ of the data. With each screen, the inclusion and exclusion criteria were systematically applied and items removed according to these (as detailed in Table 1).

Following an initial removal of duplicates, articles were screened for suitability by title and abstract. The remaining 71 articles were reviewed in full, resulting in the exclusion of 53 studies (see Appendix 3 for details and reasons for exclusion). The remaining 18 studies were included in the current review. See Figure 1 for an outline of the search results and selection process.

Table 1 - Inclusion and Exclusion Criteria for studies

<table>
<thead>
<tr>
<th>Inclusion Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Primary empirical papers reporting on quantitative data</td>
</tr>
<tr>
<td>2. Studies that examined populations of adults aged 18-65yrs</td>
</tr>
<tr>
<td>3. Studies that examined participants meeting recognised criteria for alcohol dependence</td>
</tr>
<tr>
<td>4. Studies which used the Iowa Gambling Task (IGT) as a measure of emotional decision-making ability</td>
</tr>
<tr>
<td>5. Studies which measured decision-making in terms of risky performance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exclusion Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Studies not published in English</td>
</tr>
<tr>
<td>2. Case studies, unpublished dissertations, or review articles</td>
</tr>
<tr>
<td>3. Articles which were not peer reviewed</td>
</tr>
<tr>
<td>4. Studies which measured performance on the IGT in terms of reaction time or biological/physiological outcomes</td>
</tr>
<tr>
<td>5. Studies where participants are known have a significant history of or current dependence to other drugs (i.e. meet diagnostic criteria for two or more substances), or where this has not been explicitly reported</td>
</tr>
</tbody>
</table>
1.3.3 Assessment of Methodological Quality

A checklist was devised, informed by the aims of the review, to assess the methodological quality of each included study. The final checklist items were based on the SIGN (Scottish Intercollegiate Guidelines Network) 50 Methodology Checklist 4 for case control studies (SIGN, 2011; pp67-72) and CONSORT guidelines (2010). Using the checklist, each paper could score a maximum of 19 points (see Appendix 4). Each paper was rated initially by the lead author. The papers were then rated by a second author and Cohen’s kappa statistic indicated substantial agreement between the raters, Kappa=.806 (95% CI, .741 to .871). Discrepancies were resolved through discussion. Based on arbitrary cut-offs, studies were rated high, moderate or low quality (high – 80%+; moderate – 50-79%; low – <50%).
Flow diagram adapted from: Moher et al. (The PRISMA Group, 2009).
1.4 RESULTS

1.4.1 Study Characteristics

Study demographic information, quality ratings and key outcomes relating to the IGT are presented in Table 2. Studies differed by country of origin and therefore utilised various translations of the original IGT. Most articles reported modest sample sizes, with number of AD participants ranging from 17 (Zorlu et al., 2013b) to 58 (Fein et al., 2006). Most studies were mixed-gender, with 5 including only men. Duration of abstinence at the time of testing ranged from 0 days (active drinkers; Fein et al., 2006) to over six years (Ando et al., 2012; Fein et al., 2004). Seventeen of the reviewed articles adopted a case-control design, comparing AD samples to non-alcohol dependent healthy controls (HC). Ando et al. (2012) was the only study not to include a control group; instead comparing a sample of ADs in short-term abstinence (mean 12 weeks) to those in longer-term abstinence (mean 327 weeks).

1.4.2 Methodological Review

Only two studies achieved high quality assessment ratings (Cordovil et al., 2010 and Miranda et al., 2009), with the majority (n=15) rated moderate. Only one met less than 50% of the quality criteria assessed (Kim et al., 2006). A number of studies lost marks in relation to insufficient information to rate the item as positive; this was the case especially for items related to recruitment, exclusion criteria, comparability of control groups with experimental groups and description of methodology. It is therefore difficult to comment on a number of potential sources of bias in these areas. However, it is possible that these items are reflective of poor reporting quality rather than methodological weaknesses. Final quality ratings for each paper can be seen in Appendix 5.
1.4.3 Narrative Review

The following comprises a narrative review of findings derived from the search strategy outlined in Figure 1. Only findings related to the IGT are reported. The results will be presented in two sections. Firstly, findings in relation to IGT performance in alcohol dependent subjects compared to healthy controls will be described. Secondly, findings in relation to IGT performance between subgroups of AD samples will be presented. Any additional findings which have examined other variables in relation to IGT performance in alcohol dependent samples will be summarised in this section.

1.4.3.1 IGT Performance – Alcohol Dependent (AD) versus Healthy Controls (HC)

Of the 17 studies which included a control group, 12 (70.59%) reported significantly poorer overall IGT performance in the alcohol dependent sample compared to controls (Brevers et al., 2014; Cordovil et al., 2010; Fein et al., 2004; Goudriaan et al., 2005; Kim et al., 2006; Kim et al., 2011; Le Berre et al., 2014; Miranda et al., 2009; Noel et al., 2007; Noel et al., 2011; Salgado et al., 2009; Tomassini et al., 2012). Thirteen papers commented on performance by block or stage of the task, with 11 (84.61%) reporting poorer performance in AD samples compared to controls on one or more of the five blocks of the IGT (Brevers et al., 2014; Cordovil et al., 2010; Kim et al., 2006; Kim et al., 2011; Le Berre et al., 2014; Miranda et al., 2009; Noel et al., 2007; Noel et al., 2011; Salgado et al., 2009; Tomassini et al., 2012; Zorlu et al., 2013b). Two identified no group by block differences (Goudriaan et al., 2005; Loeber et al., 2009). Healthy controls were found to perform better than AD participants in block two in two studies (Salgado et al., 2009; Tomassini et al., 2012), block three in three studies (Kim et al., 2006; Kim et al., 2011; Miranda et al., 2009), block four in six studies (Cordovil et al., 2010; Kim et al., 2006; Kim et al., 2011; Salgado et al., 2009; Tomassini et al., 2012; Zorlu et al., 2013b) and block five in nine studies (Kim et al., 2006;
Table 2: Study Demographic Information, Quality Ratings and Key Outcomes

<table>
<thead>
<tr>
<th>Study, country and quality rating</th>
<th>Population and sample size (n =)</th>
<th>Groups matched for:</th>
<th>Average Abstinence Duration: mean(sd)</th>
<th>IGT Total/Overall Performance: difference observed? (yes/no)</th>
<th>IGT Performance by block Difference observed? (yes/no)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ando et al. (2012)</td>
<td>AD: Long-term abstinence (LTA) – 45</td>
<td>Gender, IQ, Years of education, AD severity, Nicotine dependence</td>
<td>LTA – 327.82weeks(165.57) STA – 12.70weeks(6.92)</td>
<td>No (STA vs LTA)</td>
<td>Yes (both STA and LTA)</td>
</tr>
<tr>
<td></td>
<td>Hungary</td>
<td>AD: 10/19</td>
<td></td>
<td>Both groups consistently performed at chance level. There was no significant difference between groups.</td>
<td>No learning effect observed for either group</td>
</tr>
<tr>
<td>Bowden-Jones et al. (2005)</td>
<td>AD – 21</td>
<td>Age, Years of education, Gender</td>
<td>21days (3.49)</td>
<td>Yes (AD vs HC)</td>
<td>AD showed no improvement across blocks whilst HC did</td>
</tr>
<tr>
<td></td>
<td>UK</td>
<td>HC – 20</td>
<td></td>
<td>AD made significantly more disadvantageous decisions overall</td>
<td>Significantly poorer choices on blocks 3, 4 and 5.</td>
</tr>
<tr>
<td>Brevers et al. (2014)</td>
<td>AD: 30</td>
<td>Age, Years of education, Gender</td>
<td>22.07days(3.49)</td>
<td>Yes (AD vs HC)</td>
<td>Yes (AD vs HC)</td>
</tr>
<tr>
<td></td>
<td>Belgium</td>
<td>HC: 30</td>
<td></td>
<td>AD made more disadvantageous choices:</td>
<td>Only significant difference between AD and controls at block 4 (controls scored higher):</td>
</tr>
<tr>
<td></td>
<td>12/19</td>
<td></td>
<td></td>
<td>- d (t1) vs HC = 0.71</td>
<td>- d (t1) vs HC = 0.71</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- d (t2) vs HC = 1.01</td>
<td>- d (t2) vs HC = 0.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AD made more disadvantageous choices:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- d (t1) vs HC = -0.69</td>
<td>- d (t1) vs HC = -0.69</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- d (t2) vs HC = -0.96</td>
<td>- d (t2) vs HC = -0.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No (recently abstinent AD vs longer abstinent AD)</td>
<td>No (AD t1 vs AD t2)</td>
</tr>
<tr>
<td>Cordovil et al. (2010)</td>
<td>AD – 35 (split into two for the analysis of IGT outcomes)</td>
<td>Age, Gender, Educational level</td>
<td>Time point 1 – 0-1days</td>
<td>Yes (AD vs HC)</td>
<td>Yes (AD vs HC)</td>
</tr>
<tr>
<td></td>
<td>Belgium</td>
<td>HC – 22</td>
<td>Time point 2 – 14-18days</td>
<td>AD made more disadvantageous choices:</td>
<td>Only significant difference between AD and controls at block 4 (controls scored higher):</td>
</tr>
<tr>
<td></td>
<td>16/19</td>
<td></td>
<td></td>
<td>- d (t1) vs HC = 0.71</td>
<td>- d (t1) vs HC = 0.71</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- d (t2) vs HC = 1.01</td>
<td>- d (t2) vs HC = 0.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AD made more disadvantageous choices:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- d (t1) vs HC = -0.69</td>
<td>- d (t1) vs HC = -0.69</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- d (t2) vs HC = -0.96</td>
<td>- d (t2) vs HC = -0.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No (recently abstinent AD vs longer abstinent AD)</td>
<td>No (AD t1 vs AD t2)</td>
</tr>
<tr>
<td>Fein et al. (2004)</td>
<td>AD – 43</td>
<td>Age, Years of education</td>
<td>6.79yrs</td>
<td>Yes (AD vs HC)</td>
<td>Not reported</td>
</tr>
<tr>
<td></td>
<td>USA</td>
<td>HC – 58</td>
<td>7.13yrs</td>
<td>AD group performed significantly worse compared to controls:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- d (t1) vs HC = -0.22</td>
<td>- d (t1) vs HC = -0.22</td>
</tr>
<tr>
<td>Study, country and quality rating</td>
<td>Population and sample Size ((n =))</td>
<td>Groups matched for:</td>
<td>Average Abstinence Duration: mean(sd)</td>
<td>IGT Total/Overall Performance: difference observed? ((\text{yes/no}))</td>
<td>IGT Performance by block (d) = Cohen’s (d) ((\text{where reported or able to be calculated}))</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---------------------------------</td>
<td>---------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>15/19</td>
<td>Fein et al. (2006) USA</td>
<td>AD (Treatment naïve) – 58 HC – 58</td>
<td>Age Gender Actively drinking</td>
<td>No (AD vs HC)</td>
<td>Fein et al., 2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(d) (AD vs HC) = -0.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No (Tx naïve AD vs abstinent AD)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(d) (TxN AD vs Abst) = 0.33</td>
<td></td>
</tr>
<tr>
<td>Goudriaan et al. (2005) The Netherlands 13/19</td>
<td>AD – 46 HC – 49 Gender IQ 3-12months</td>
<td>Yes (AD vs HC)</td>
<td>AD chose less cards from the advantageous decks compared to controls: (d = 0.67)</td>
<td>AD performance did improve across trials but AD selected 'good' decks less frequently than controls. No interaction between group and block was present between AD and HC.</td>
<td></td>
</tr>
<tr>
<td>Kim et al. (2006) South Korea 9/19</td>
<td>AD – 56 (28 with history of CD, 28 without) HC – 40 (10 with history of CD, 30 without) Age Gender (all male) Minimum 2 weeks Original IGT Yes (AD CD- and AD CD+ vs HC CD-) No (AD CD- and AD CD+ vs HC CD+)</td>
<td>Yes (AD CD+ and HC CD+ vs HC CD-) No (AD CD- vs HC CD-)</td>
<td>AD patients as a whole showed impaired DM compared to HC CD- but not compared to HC CD+ No (AD CD- vs AD CD+) No difference was observed between AD CD- and AD CD+. Variant IGT No (AD vs HC or AD CD+ vs AD CD-)</td>
<td>HC CD+ and AD CD+ (but not AD CD-) performed worse than HC CD- in block 3 Blocks 4 & 5 Yes (whole AD sample and HC CD+ vs HC CD-)</td>
<td>AD CD+ and AD CD+ performed worse than HC CD- in blocks 4 and 5 Variant IGT</td>
</tr>
<tr>
<td>Study, country and quality rating</td>
<td>Population and sample Size (n =)</td>
<td>Groups matched for: Average Abstinence Duration: mean(sd) IGT Total/Overall Performance: difference observed? (yes/no)</td>
<td>IGT Performance by block Difference observed? (yes/no)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>---</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kim et al. (2011) South Korea 14/19</td>
<td>AD – 23 HC – 21 Age Gender (all male) IQ 2 weeks</td>
<td>Yes (AD vs HC) AD patients performed poorly on IGT compared to HC: $d = 1.27$, d(deckA) = 0.74, d(deckB) = 0.93, d(deckC) = -0.73, d(deckD) = -0.94</td>
<td>No AD demonstrated impaired DM on the IGT compared to HC on blocks 3-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Le Berre et al. (2014) France 13/19</td>
<td>AD – 30 HC(DM) – 45 HC(imag) - 27 Age Level of education Gender Average – 12.63(7.08)days (range 7-40)</td>
<td>Yes (AD vs HC) ADs selected more high-risk cards than controls. d(total IGT) = 0.52, d(deckA) = -0.24, d(deckB) = 1.26, d(deckC) = -1.06, d(deckD) = 0.09</td>
<td>Yes (AD vs HC) AD made significantly poorer choices in block 5 compared to HC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loeber et al. (2009) Germany 12/19</td>
<td>AD – 48 (AD Lo Detox – 27; AD Hi Detox – 21) HC – 36 Age Gender Premorbid IQ Average – 15.65days(6.69); range – 4-37</td>
<td>No (AD vs HC) No difference was observed on overall IGT performance between whole AD sample and controls Yes (Hi Detox vs Lo Detox)</td>
<td>No (AD vs HC) Both groups (AD and HC) showed a similar degree of improvement across blocks Yes (Hi Detox vs Lo Detox)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study, country and quality rating</td>
<td>Population and sample size (n =)</td>
<td>Groups matched for:</td>
<td>Average Abstinence Duration: mean(sd)</td>
<td>IGT Total/Overall Performance: difference observed? (yes/no)</td>
<td>IGT Performance by block Difference observed? (yes/no)</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----------------------------------</td>
<td>--------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Miranda et al. (2009) USA</td>
<td>AD – 22 AD + ASPD – 17 HC – 21</td>
<td>AD – 13.64 months(21.34)</td>
<td></td>
<td>Hi Detox demonstrated poorer overall IGT performance compared to Lo Detox</td>
<td>Lo detox demonstrated a greater increase in advantageous choices across blocks compared to Hi Detox</td>
</tr>
<tr>
<td>Noel et al. (2007) Belgium</td>
<td>AD – 30 HC – 30</td>
<td>Age Gender Education level</td>
<td>AD – 19.3 days(2.5) (minimum 15 days) HC – 2.1(1.4)</td>
<td>Yes (AD and AD+ASPD vs HC) AD performed worse than controls by selecting more cards from disadvantageous decks.</td>
<td>Yes (AD vs HC) AD performed significantly worse in block 5 of the IGT</td>
</tr>
<tr>
<td>Noel et al. (2011) Belgium</td>
<td>AD – 30 HC – 30</td>
<td>Age Gender Education level</td>
<td>AD – 19.3(2.5) HC – 2.1(1.4)</td>
<td>Yes (AD vs HC) HC performed significantly better on the IGT at stage 5.</td>
<td>Yes [AD vs HC]</td>
</tr>
<tr>
<td>Salgado et al. (2009) Brazil</td>
<td>AD – 31 HC – 30</td>
<td>Age Gender Years of education IQ</td>
<td>15-120 days (split into short-term and long term abstinence for comparison; 15-30 days and 60-120 days, respectively)</td>
<td>Yes (AD vs HC) HC performed significantly better on the IGT at blocks 2, 4 and 5</td>
<td>Yes (AD vs HC)</td>
</tr>
</tbody>
</table>

$d =$ Cohen’s d (where reported or able to be calculated)
<table>
<thead>
<tr>
<th>Study, country and quality rating</th>
<th>Population and sample Size (n =)</th>
<th>Groups matched for:</th>
<th>Average Abstinence Duration: mean(sd)</th>
<th>IGT Total/Overall Performance: difference observed? (yes/no)</th>
<th>IGT Performance by block Difference observed? (yes/no)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tomassini et al. (2012)</td>
<td>AD – 27 HC – 24</td>
<td>Age Gender</td>
<td>AD – 16.85months (13.21), minimum 6months</td>
<td>Yes (AD vs HC)</td>
<td>Yes (AD vs HC) HC performed significantly better in blocks 2, 4 and 5. Both groups demonstrated improvement over time, HC demonstrated more than AD.</td>
</tr>
<tr>
<td>Italy 11/19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zorlu et al. (2013a)</td>
<td>AD – 30 HC – 30</td>
<td>Age Gender Level of Education</td>
<td>AD were recruited between days 20-30 of inpatient treatment</td>
<td>No (AD vs HC)</td>
<td>Not reported</td>
</tr>
<tr>
<td>Turkey 13/19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zorlu et al. (2013b)</td>
<td>AD – 17 HC – 16</td>
<td>Age Years of education</td>
<td>AD – 17.1 +/- 1.8days</td>
<td>No (AD vs HC)</td>
<td>Yes (AD vs HC) HC shifted their choices from disadvantageous to advantageous, particularly over the last two blocks whilst AD did not. AD performance was significantly poorer than HC in block 5.</td>
</tr>
<tr>
<td>Turkey 14/19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Kim et al., 2011; Le Berre et al., 2014; Miranda et al., 2009; Noel et al., 2007; Noel et al., 2011; Salgado et al., 2009; Tomassini et al., 2012; Zorlu et al., 2013b).

As can be seen in Table 2, three of the studies which split their AD samples into subgroups analysed overall IGT performance in ADs without commenting on subgroup comparisons with controls (Bowden-Jones et al., 2005; Loeber et al., 2009; Salgado et al., 2009).

One study investigated the influence of a history of conduct disorder (CD) on IGT performance in a group of AD participants and controls both with and without a history of CD (Kim et al., 2006). Net scores on the original IGT were found to be significantly lower in both AD samples compared to healthy controls without conduct disorder but not those with. There were no group differences observed on the variant IGT. In the original IGT, significant differences in performance were identified in blocks three, four and five. In block three, healthy controls without a history of CD chose more advantageously than AD participants with a history of CD, but not ADs without. In blocks four and five, healthy controls without a history of CD chose more advantageously than all other groups. In the variant IGT, a significant effect of block was found across the whole sample. No effect of group or group by block interaction was found, indicating that all groups demonstrated a similar rate of improvement in performance.

In a study investigating the impact of antisocial personality disorder (ASPD) on decision-making, the DM ability of thirty nine male AD participants was compared to that of 21 male controls (Miranda et al., 2009). The AD group was split into those meeting diagnostic
criteria for antisocial personality disorder (ASPD) and those who did not. Both AD groups were found to independently perform significantly worse than controls in the IGT (sum of net scores across all five blocks). In block three, the AD group without ASPD performed significantly worse than the control group, with no other differences reported for this block. In block five, the AD+ASPD group performed significantly worse than controls. No such difference was identified between AD without ASPD and controls. No group differences were identified for any other blocks.

In addition to comparing performance on the IGT, two studies sought to assess participants’ explicit knowledge of which decks were risky and which were advantageous, demonstrating opposing findings. Goudriaan et al. (2005) assessed this at the end of the entire task and established that AD participants identified fewer decks correctly than controls. Miranda et al. (2009) assessed insight at the end of each of the five blocks and asserted that by the end of the task, there was no difference between AD participants and controls.

1.4.3.2 IGT Performance – AD Subgroup Comparisons and Other Associations

A number of studies compared subgroups of AD participants on their decision-making ability using the IGT, demonstrating a variety of findings. Attempts were also made to investigate relationships between other variables in AD samples and decision-making ability. The following sections will summarise findings in relation to these. In cases where it was not clear if the sample used in the analysis was just AD or included the whole sample, findings are not reported.
Duration of Abstinence

Nine studies (50%) investigated different stages of abstinence in relation to IGT performance. Four included abstinence duration as a comparison in their main analysis, three of which found no significant difference in IGT performance between groups (Ando et al., 2012; Cordovil et al., 2010; Fein et al., 2006). The groups compared in these studies were average 12 weeks abstinence versus approximately six years, 0-1 days versus 14-18 days, and 0 days versus average 6-7 years, respectively. In contrast with these findings, Loeber et al. (2009) compared performance in those who had maintained abstinence for less than 16 days with those who had remained abstinent for 16 or more and reported that recently abstinent patients accrued a significantly lower overall net outcome on the IGT compared to longer abstinent patients. Four studies investigated correlations between duration of abstinence and IGT performance (Fein et al., 2004; Le Berre et al., 2014; Salgado et al., 2009; Tomassini et al., 2012). None reported a significant association between these two variables. Bowden-Jones et al. (2005) retrospectively compared the IGT scores at 21 days abstinence of AD participants who went on to relapse at three months versus those who remained abstinent. It was found that those who relapsed performed significantly worse overall on the IGT at the start of treatment than those who had remained abstinent.

Other Alcohol use related variables

Nine of the reviewed studies (50%) assessed other alcohol use-related variables and their association with IGT performance. Only one of these studies reported a significant association: Fein et al. (2004) found significant negative correlations between decision-making ability and both duration of alcohol use and duration of peak use. However, only duration of peak use remained significant after controlling for the effects of age in the
sample. Duration of peak use was also examined in Fein et al. (2006), who found no association with IGT performance in their AD sample. Similar constructs were examined by Ando et al. (2012), Kim et al. (2006), Le Berre et al. (2014) and Zorlu et al. (2013a); all of whom reported no significant association with IGT performance. As can be seen in Table 2, a variety of other alcohol use-related variables were also considered in association with decision-making ability in the AD samples. None of these demonstrated significant associations.

Personality, Temperament and mood

Six studies explicitly reported associations between personality traits/temperament and IGT performance in AD participants. Correlations with scores on measures of socialisation and externalisation with IGT performance highlighted no significant association in one long-term abstinent AD sample (Fein et al., 2004). Another study reported a significant association between ASPD diagnostic status and performance on the last three blocks of the IGT (Miranda et al., 2009). Further investigation of the sub-facets of ASPD failed to reveal associations between decision-making and degree of psychopathic traits but identified a significant inverse relationship between degree of anti-social personality traits with blocks three, four and five of the IGT. In a combined predictive model, they found the latter to mediate the difference in IGT performance between AD with ASPD and those without. In a study comparing AD participants with and without a history of conduct disorder, no difference in net IGT (original version and variant) or score across the final two blocks was observed between AD groups (Kim et al., 2006). Novelty seeking and self-reported tendency toward impulsivity have been negatively correlated with IGT performance (Noel et al., 2011 and Tomassini et al., 2012 respectively). Non-planning
impulsivity (or acting without forethought) was found to be associated with overall IGT
performance and both non-planning and overall impulsivity (combining attentional, motor
and non-planning) associated with block four, specifically. No association was identified
between decision-making ability and depression (Loeber et al., 2009).

Neuropsychological and Executive Functioning

In relation to neuropsychological functioning, findings were mixed. Working memory was
found to be positively correlated to IGT performance in one study (Fein et al., 2006) but no
such association was found in another (Brevers et al., 2014). Similarly, set-shifting and
perseveration were not found to be correlated with IGT performance in one study (Salgado
et al., 2009) but Fein and colleagues (2006) identified a positive association between
cognitive flexibility and decision-making. No correlations with IGT performance were found
with dual tasking (Brevers et al., 2014) or motor impulsivity (Salgado et al., 2009). Number
of categories produced in the Wisconsin Card Sorting Test was positively associated
specifically with both block two and overall performance on the IGT in one study, whilst
total errors and perseverative errors in the same task was negatively correlated with block
two of the IGT (Kim et al., 2011). The same study identified a negative correlation between
risky decision-making on the Game of Dice Task (a measure of explicit decision-making) and
IGT block five. Response inhibition deficit was noted to predict impaired performance on
the second half of the IGT in AD participants who achieved a net score of less than ten on
the IGT (the best score of patients with VMPFC damage reported in Bechara et al., 2001) in
one study (Noel et al., 2007). Considering other aspects of neuropsychological functioning,
positive correlations were found between IGT performance and both delayed memory and
spatial processing (Fein et al., 2006).
Brain Functioning and Integrity

Grey matter shrinkage, particularly in areas associated with decision-making, was found to be associated with poorer performance in the IGT (Le Berre et al., 2014). White matter integrity in the corpus callosum and left posterior cingulum was positively correlated with IGT performance in block 5 in another study, whilst no correlations were found between overall IGT performance and white matter integrity in any region for AD participants, despite various associations across the whole sample (Zorlu et al., 2013b).

1.5 DISCUSSION

1.5.1 Summary of Findings

This systematic review investigated decision-making deficits in alcohol dependent individuals. Using a structured search strategy, 18 studies reporting decision-making ability using the IGT in an alcohol dependent population were identified. The majority of these (12 of 17 eligible papers) identified a significant deficit in emotional decision-making in AD compared to controls across the entirety of the task. A majority also noted increased impairment compared to healthy controls as the task progressed (block 2 in two studies; block 3 in three studies; block 4 in six studies; block 5 in nine studies).

Two studies compared subgroups of AD individuals to control participants in their main analysis; indicating that history of conduct disorder may adversely impact on decision-making ability in both AD participants and controls and that comorbid ASPD may affect alcohol dependent individuals’ decision-making in the late stages of the IGT. A variety of
other associations yielded mixed findings. Socialisation and externalisation revealed no
significant association with IGT performance whilst self-reported impulsivity and novelty
seeking were negatively correlated. One study revealed no association between depression
and IGT performance. Duration of abstinence was not generally found to be related to IGT
performance (seven of nine studies reported no significant findings), and findings were
similar for other alcohol use-related variables (one of nine studies found a significant
association – duration of peak alcohol use – however, another study found no such
association). Investigations of neuropsychological findings demonstrated conflicting
findings regarding associations between IGT performance and both working memory and
cognitive flexibility. No correlations were found for dual-tasking or motor impulsivity and
IGT performance. Some aspects of executive functioning (generation of categories,
perseveration, explicit decision-making ability and response inhibition deficit) have been
associated with poorer performance on the IGT as were delayed memory and spatial
processing.

1.5.2 Context of Findings: Methodological Limitations

A number of methodological factors may have influenced the results obtained in the
studies reviewed. No studies reported a priori sample size calculations or confidence
intervals for findings in relation to IGT performance. Whilst many reported statistically
significant results, without an indication of the power of the analysis it is possible that those
reporting non-significant findings were underpowered to detect any difference between
experimental groups. This seems particularly pertinent in the case of non-significant
findings between subgroups of AD participants where differences may be more subtle and
samples were often sub-groups of the larger group recruited. However, in the case of
overall IGT performance compared to HC, sample sizes were comparable in those studies
that identified significant differences and those that did not. Had studies reported confidence intervals, it may have been possible to discern the degree of precision of the non-significant findings. In such instances where differences fail to meet statistical significance, differences that may be of clinical importance may fall within the bounds of confidence estimated. In the case of the current review, the risks of inadvertently accepting the null hypothesis are unlikely to result in any immediate harm. However, missing potentially clinically relevant information would seem to undermine the vast amount of research that has gone into this area to date.

Another item that was poorly reported was effect size. It was however possible to calculate this in studies which provided sufficient information. Using Cohen’s conventional criteria for classifying size of effect (Cohen, 1992), the effect sizes obtained would suggest medium-high effect sizes in comparisons between AD groups and controls (see Table 2). Effect sizes for comparisons of AD subgroups tended to be smaller, supporting the hypothesis that differences between AD subgroups may be more subtle.

One area that seems of particular relevance when interpreting the current results is the degree of confound. In only 50% of papers was it deemed clear that exclusion criteria were the same for both cases and controls (with the obvious exception of the inclusion of alcohol-dependence/misuse for control groups). Alongside this, over a quarter of the papers provided insufficient detail to allow for a meaningful judgement of the comparability of the two groups. As can be seen in Table 2, controls were matched to AD groups on a number of variables; most commonly age (15 studies), education level (15 studies) and gender (14 studies). Only five however, reported matching groups on IQ level.
Although intuitively it seems reasonable to suggest that measures of IQ and measures of decision-making may be associated, a recent literature review indicated that variance in performance on the IGT was not, in fact, explained by performance in tasks of executive functioning and general cognitive ability (Toplak et al., 2010). The authors suggest that decision-making ability may therefore be conceptually separate to these other processes. Consistent with this review, findings in relation to cognitive functioning and decision-making in the current sample were variable, suggesting that these abilities may represent distinct processes in the alcohol dependent population also. Therefore failing to match groups on cognitive ability should not necessarily be viewed as a weakness.

Only half of the reviewed papers provided sufficient detail about the method to allow for replication. In particular, a number failed to comment on the order of test administration or randomisation procedures. It is acknowledged that the effects of fatigue can impact negatively on people’s performance on standardised cognitive assessments (Lezak, 2004). Therefore, methods to control for such effects would be advisable in any study involving assessment of cognitive functioning, including decision-making.

A number of studies excluded participants on the basis of current or previous Axis I mental health disorders (15 studies), Axis II disorders (two studies), traumatic or organic brain injury (15 studies) and significant physical health problems (13 studies). Whilst such exclusionary criteria are likely to reduce confounding factors and aid in the attribution of any findings to alcohol-dependence, such comorbidities are common in alcohol dependent populations (e.g. Morgenstern et al., 1997 and Swendsen et al., 1998). Furthermore, it is noted from studies in the current review that have included comorbid populations (e.g. Kim
et al., 2006 and Miranda et al., 2009), that the decision-making deficits in the AD population may be mediated by comorbid mental health conditions. Therefore, to exclude participants on these grounds substantially reduces the generalisability of findings to the wider alcohol dependent population.

1.5.3 Limitations of Review

Owing to resource constraints, only papers published in English were included in this review. This limits the scope of research accessed and influences any findings in favour of Western societies. As the search was limited prior to reviewing, it is not possible to comment on how many non-English articles were excluded. As with any review, the selection process is likely to have incorporated a degree of selection bias. This may have been increased by the development of a unique quality rating measure. The degree of inter-rater reliability however was good, suggesting that at least in the interpretation of items assessed, variability was minimal. All of the studies in this review were of a case-control design. The observational nature of such designs relies on adequate control of confounding variables. As noted, it is difficult to know how well this was achieved in the reviewed studies. Such designs also lend themselves to potential spurious claims of causation. The IGT manual warns against inferring substance misuse-related frontal lobe damage when using the measure in substance-dependent populations (Bechara, 2007 cited in Buelow and Suhr, 2009). It is not possible from this type of study to tell the temporal sequence between, in this instance, alcohol-dependence and decision-making deficit.

Another potential limitation of this review was to restrict to studies of only the IGT. Unlike other implicit measures of decision-making (e.g. the Balloon Analogue Risk Task; Lejuez et
al., 2002) the IGT is considered to potentially measure two different types of decision-making: decision making under ambiguity and decision-making under risk. It was considered that this may allow for more sophisticated understanding of decision-making deficits as they present in this population. The incidence in some studies of reporting only overall or ‘net’ outcomes for the total IGT may reduce the construct validity of the measure (Buelow and Suhr, 2009). The studies reviewed here utilised this outcome measure either in isolation or alongside block or stage comparisons and therefore the findings using the former must be considered with this caveat.

Finally, it could be argued that a number of the items on this measure relate more to reporting quality than methodological quality (items 1, 3, 4, 9, 11, 14-19). Subsequently, some studies are likely to have been marked up or down for issues that do not necessarily reflect the ability of the study to address the review question. The rationale for including these items was largely owing to recognition that the reader can often only assess the methodological rigour of empirical studies based on the information provided in the article. Therefore, to effectively and critically appraise research articles, consistency and transparency of reporting is of great importance (see www.consort-statement.org). A published review of quality assessment systems echoed the importance of good reporting of evidence in empirical research and highlighted what the author deemed to be ‘critical’ items to be included in rating tools (Lohr, 2004). The ratings used in the current review reflect the relevant items in this publication. However, it is acknowledged that mere omission of information does not necessarily equate to methodological weakness. The items for the current checklist were collated using items from existing rating systems for quality of reporting (CONSORT, 2010) and methodological rigour (SIGN 50, 2011). Three
additional items (4, 6 and 16) were added by the author to reflect areas of importance to the studies included in the current review. By including only those items which relate to methodological quality (items 2, 5-8, 10, 12 and 13), the ratings of each of the papers included in the current review may more accurately reflect the ability of these to address the review question without the confound of reporting quality.

1.5.4 Research Implications

Overall, the findings suggest a consistent impairment in decision-making under ambiguity, using the IGT, in adults with alcohol-dependence. This was in keeping with findings from studies of other clinical populations who demonstrate similar real-life decision-making deficits; such as pathological gamblers, people with OCD, schizophrenia, ADHD, psychopathy, HIV, Huntington’s Disease, Parkinson’s Disease and eating disorders (Buelow and Suhr, 2009). This would suggest that the IGT is effective at detecting such impairments in an alcohol dependent population. However, the findings in relation to AD subgroups were less consistent. Therefore, it is recommended that further research into subgroups of alcohol dependent individuals be carried out with sufficient sample size to detect what may be subtle differences in performance and perhaps begin to uncover particular risk-factors for increased decision-making deficit in this heterogeneous population.

As aforementioned, the construct of decision-making as measured by the IGT may be better assessed by considering the early versus late stages of the task. Brand et al. (2007) referred to selections in the early phase of the IGT as decisions under ambiguity and those in the late phase as decisions under risk. In the earlier blocks, participants are unaware of the contingencies attached to each deck but, as the task progresses, they begin to learn these
and therefore to make decisions with more explicit understanding of the potential for loss. These processes have come to be known as ‘hot’ decision-making (under ambiguity and consistent with the somatic marker hypothesis) and ‘cold’ decision-making (under risk). Therefore, decisions at different stages of the task may be considered to be using different processes of decision-making. The findings of the current review would seem to support this conceptual split of the phases of the task as, overall, the deficit observed between AD groups and controls became greater as the task progressed. Therefore, it is possible that risky decisions made by AD individuals in the latter phase of the task indicate a more rational, ‘cold’ decision-making deficit. Therefore, research into the conceptual differences of the phases of the IGT in AD may be helpful in isolating the particular deficits in this population and informing more sophisticated approaches to care and treatment.

1.5.5 Clinical Practice Implications

Decision-making deficits are considered one of the hallmarks of addiction. Understanding of the processes underpinning these is essential in helping to break the destructive cycle of relapse. The findings would suggest benefit from providing support to AD individuals during any formal decision-making process, such as decisions related to welfare and finances. Given the possibility that AD individuals are less able to make use of ‘gut instinct’ or somatic markers, any process that serves to elucidate the options – and associated benefits or drawbacks of each – to the individual, may be of some assistance. Consistent with this idea, a systematic review of neuropsychological rehabilitation in ARBD suggests potential benefit of rule provision strategies in helping to provide structure during problem-solving situations (Svanberg & Evans, 2013). However, as discussed, even with explicit knowledge of potential loss and gain associated with decision-making situations, people with AD may
still struggle to make the advantageous choice. With regards to clinical or therapeutic input, a number of interventions related to relapse prevention involve elements of decision-making (e.g. decisional balance in Motivational Interviewing techniques, Miller and Rose, 2013). Patients must also make day-to-day decisions in relation to lifestyle choices and independent living which inevitably involve aspects of reward and consequence. It seems likely from the current review that people with AD may benefit from additional support in these tasks and perhaps assistance with planning for the future in a bid to overcome the temptation to resort to prepotent responses.

Furthermore, it may be of value for individuals with AD to acknowledge what may be considered to be a biologically-driven explanation for some of the difficulties they experience. The ‘disease model’ of addiction, for example, suggests that by seeing addiction as an illness the individual may learn to use the help available to them and to live in spite of their difficulties rather than strive to be rid of them (Cook, 1988). The findings of this review would suggest that decision-making deficits may be long-standing in this population and it is possible that they even pre-date problematic alcohol use. Therefore, for some, being able to identify with this may not only normalise their experience but also facilitate them in seeking support to manage their addiction.

1.5.6 Conclusions

This systematic review of decision-making deficit, as measured by the IGT, in an alcohol dependent population demonstrates that within the current literature there is considerable support for decision-making deficits in AD. Support was also found for a reduced level of improvement across the task in AD, which may be interpreted as a shift towards risky
decision-making. Evidence for factors influencing decision-making ability in this group was wide-ranging and demonstrated mixed results. History of conduct disorder and presence of antisocial personality traits may increase decision-making deficits in AD individuals.
1.6 REFERENCES

The Predictive Capacity of a Cognitive Screen: Can the Addenbrooke’s Cognitive Examination - III Predict Early Relapse Following Inpatient Detoxification in Severe Alcohol Dependence?

(6075 words, excluding abstract and references)

Written in accordance with the author guidelines for submission to the journal *Drug and Alcohol Dependence*

(Author’s Guidelines – see Appendix 1)

Louise Young

University of Edinburgh, School of Health in Social Science, Medical School, Teviot Place, Edinburgh, EH8 9AG

Tel.: (+44)131 651 3972

Email: s0342913@sms.ed.ac.uk
2.1 ABSTRACT

Background: Much research has evidenced the negative impact of cognitive impairment on outcomes following treatment for addictions. Research specifically into alcohol-misusing populations is less consistent. The aims of the current study are to compile a normative dataset for a clinical sample of severely alcohol dependent adults in the early stages of abstinence, using the ACE-III cognitive screen, and to investigate the ability of the ACE-III to predict risk of relapse following treatment for alcohol dependence.

Methods: The current clinical sample was compared to existing normative data for the ACE-III. Predictive models were developed using relevant covariates to investigate the contribution of cognitive status to relapse at one-month.

Results: The study identified substantial cognitive impairment in a severely alcohol dependent population in the early stages following inpatient detoxification. No association was found between gender and ACE-III performance. Negative correlations were found between age and total ACE-III, memory, verbal fluency and visuospatial domains. Performance on the ACE-III was not predictive of relapse at one-month post-discharge. Associations were found between age and ACE-III score and between age and relapse. Age did not predict relapse.

Conclusions: These findings suggest that, following one week of abstinence, alcohol dependent individuals may exhibit a substantial degree of global cognitive impairment. Impairment did however not predict relapse in the current sample at this time. It is suggested that the ACE-III may not be sensitive to the full profile of cognitive impairment often seen in alcohol dependence. Limitations of the current study, implications for research and clinical practice are discussed.

Keywords: alcohol dependence, cognitive impairment, outcomes, relapse
2.2 INTRODUCTION

Alcohol dependence has been described as a chronic and relapsing condition (e.g. Stockwell, 1999). Many patients with alcohol dependence will relapse within one year of treatment (65-70%), with most relapsing within three months (e.g. Miller & Hester, 1986; Miller, Walters & Bennett, 2001). Various factors affecting relapse have been identified including depressive symptoms (Suter et al., 2011); anxiety (Willinger et al., 2002); self-efficacy (Blomqvist et al., 2003); gender (Zwyiak et al., 2006) and cognitive functioning (Morrison, 2011). Conversely, engagement with addictions treatment has been consistently associated with a favourable treatment outcome in substance use disorders (SUDs) (Brorson et al., 2013). In their systematic review of studies looking at risk factors for drop-out from addictions treatment, Brorson and colleagues identified the most consistent risk factors as cognitive deficits, low treatment alliance, personality disorder and younger age.

With such a range of variables impacting on the outcome of treatment for alcohol dependency, it is of great importance for specialist services to consider their approach to assessing and treating this problem. National government guidelines for the treatment of alcohol dependency highlight the importance of a comprehensive assessment which includes – amongst other things – assessment of readiness and belief in the ability to change; cognitive functioning; degree of dependence and psychological problems (NICE, 2011). Many treatments for alcohol dependence endorse a focus on relapse prevention and this is reflected in the Scottish Intercollegiate Network Guidelines (p 16; SIGN 74, 2003), which state that access to established relapse prevention treatment should be facilitated for all patients dependent on alcohol. With drop-out from treatment having clear ramifications for alcohol dependent individuals (and their wider networks), including
contributing to relapse, consideration of factors which may contribute to continued
engagement with treatment services must also play a part in any process of assessment and
treatment.

Given the vast scope of potential contributors to outcome in this population, it is
unsurprising that a great deal of research has gone into identifying which of these factors is
most predictive of relapse and/or drop-out from treatment. With regards to drop-out in
particular, the recent review by Brorson et al. (2013) demonstrated that cognitive
impairment would appear to be the most consistently associated with poor outcome in the
field of substance misuse. A significant amount of research shows that harmful alcohol use
can lead to impairments in cognitive function (e.g. Tapert et al., 2001). Such impairment
can arise as a result of various factors, such as the direct result of the toxic effect of alcohol
on the brain’s neurophysiology (Oscar-Berman et al., 1997), injuries acquired as a result of
intoxication (e.g. head injury; Galbraith et al., 1976), and even from the toxic effects of
alcohol withdrawal (e.g. ‘excitotoxicity’, De Witte et al., 2003) and associated
complications, such as withdrawal seizures (Loeber et al., 2010). Morrison (2011) found
that specific cognitive impairments may also be seen as predictors of relapse, in particular,
executive functioning. This has clear implications for the process of recovery from alcohol
dependence and is further complicated by the fact that many of the interventions that are
suggested for the management of harmful alcohol dependence – such as psycho-education
and cognitive behavioural therapy (NICE, 2011) – require the development of skills which
rely heavily on cognitive processes (e.g. Weinstein & Shaffer, 1993).
As a result of the high prevalence of cognitive impairment in the alcohol-misusing population, the National Institute for Health and Clinical Excellence (2011) recommends that cognitive functioning be assessed as part of a comprehensive assessment when adults are referred to specialist alcohol services. This, however, presents a number of challenges to the care provider. Firstly, it is well established that cognitive functioning is often impaired on commencing detoxification due to the aforementioned toxic effects of alcohol and withdrawal on the neurophysiology of the brain. Therefore assessing someone in the early stages of detoxification is likely to give a misrepresentation of their baseline abilities. Cognitive functioning has been found to improve following a few weeks of abstinence (Bates et al., 2002), with the greatest return of functioning happening within the first week (Ryan & Butters, 1986 cited in Lezak, 2004). It is generally recommended that cognitive assessment take place after 3-6 weeks of abstinence (Lezak, 2004). From a practical perspective however, there are difficulties in achieving this degree of abstinence in many patients with alcohol dependence. Whilst cognitive assessment carried out in the initial stages of detoxification may not provide an accurate longer-term estimate of functioning, it may provide valuable information about the patient’s current level of functioning and subsequent ability to participate and engage in treatment. This may be one of the few opportunities available during which treatment may be offered. Furthermore, given time pressures on clinical staff, it is of relevance that any screening tool be time-efficient and suitable for use by a wide range of clinicians. There is evidence to suggest that cognitive impairment can affect both treatment outcomes (e.g. Fals-Stewart, 1993) and the ability to adhere to treatment programmes (Bates et al., 2006). Therefore, the impact of cognitive impairment, frequency with which it is observed in the alcohol dependent population and its potential role in contributing to poorer outcomes supports the consideration and assessment of cognitive functioning for patients entering treatment for their addiction.
Scottish Intercollegiate Guidelines Network (SIGN; 2003) guidelines highlight the need for simplified screening tools that help identify the issues that affect patients with alcohol dependence; however, there are very few brief, cognitive screening tools that have been validated for use with an alcohol dependent population. NICE (2011) suggest that the ACE-R (Addenbrooke’s Cognitive Examination – Revised; Mioshi et al., 2006) may be sensitive enough to identify mild cognitive impairments in people who misuse alcohol. The ACE-R has been validated in a wide variety of populations including individuals with brain injury (Gaber, 2008); fronto-temporal dementia, Alzheimer’s disease, mild cognitive impairment (Bak & Mioshi, 2007) and Parkinson’s disease (Reyes et al., 2009). Developed as an ‘extended MMSE’ (Mini Mental State Examination; Folstein et al., 1975 – also suggested by NICE for use in screening for cognitive impairment in alcohol misuse), the original ACE was developed to cover a wide spectrum of cognitive functioning: attention and orientation, memory, fluency, language, and visuospatial abilities (Mioshi et al., 2006). Despite the tool’s apparent sensitivity in detecting impairment in the above populations, there does not appear to have been any research carried out looking at the use of the ACE-R with an alcohol dependent population. The ACE-R has recently been updated to the ACE-III due to copyright issues related to the MMSE, which formed part of the ACE-R screening tool (Hsieh et al., 2013). The opportunity was also taken to modify some of the items which had presented relative weaknesses in the measure with a view to strengthening the tool’s sensitivity and validity. Similar to its predecessor, there does not appear to have been any research carried out looking at the use of the ACE-III with an alcohol dependent population.
2.2.1 Aims of the Study

There is clearly a role for the effective identification of cognitive impairment in patients entering treatment for alcohol dependence. There is also sufficient justification for investigating brief, cognitive screening tools to identify such impairment of functioning. In 2007, The Scottish Government published a strategy document for the provision of care and support for people with co-occurring substance misuse and mental health problems (‘Commitment 13’, The Scottish Government, 2007). This document highlights the potential value of cognitive screens in forming part of a comprehensive assessment of alcohol-related brain damage (ARBD). The ACE-R had no normative data for the substance-misusing population; this is currently also the case for the ACE-III. Given the use of the tool in this population and its endorsement in national guidelines, it seems pertinent to be able to compare an individual’s score to a more clinically-relevant data-set, allowing for potentially more meaningful comparisons to be made and to inform care planning. The aims of this study therefore are to present a normative dataset for the ACE-III in an alcohol dependent population (Part I) and to establish whether the ACE-III can identify those patients who are at most risk of drop-out from treatment and/or relapse (Part II). As a result of variations in data availability for each participant, Parts I and II of the current study involve different sub-sets of the overall sample (see section 2.3.1 for details of each).

2.3 METHOD

2.3.1 Participants

The present study was part of a larger service evaluation within the host site looking at the range of presentations and outcomes for those attending for inpatient detoxification from substance dependency. In the current study, only data from alcohol dependent (AD)
patients were used. Data were collected from November 2013 to August 2014. A total of 186 viable datasets were collected over this time period for people entering the clinic for alcohol detoxification. Of this number, 136 participants met inclusion criteria for the current study (see Table 1): 97 males (71.3%) and 39 females (28.7%). The average age was 47(±9.1) years for this particular cohort and average length of admission was 11.4 days (max. 30 days; 85% staying between 7 and 14 days). Participants who reported concurrent substance use in addition to alcohol were included in the analysis owing to the high degree of such substance use patterns in AD individuals (Staines et al., 2001). The inclusion criteria were designed to be as broad as possible to maximise the ecological validity of any findings.

Table 1 – Reasons for Exclusion

<table>
<thead>
<tr>
<th>Reason for Exclusion</th>
<th>Number of Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient admitted for any reason other than, or in addition to alcohol detoxification (e.g. opiate conversion/reduction or respite)</td>
<td>10</td>
</tr>
<tr>
<td>History of traumatic brain injury</td>
<td>2</td>
</tr>
<tr>
<td>Known or queried intellectual disability</td>
<td>1</td>
</tr>
<tr>
<td>Formal diagnosis of alcohol-related brain damage</td>
<td>2</td>
</tr>
<tr>
<td>Unstable opioid use</td>
<td>8</td>
</tr>
<tr>
<td>Inpatient stay of less than 7 days</td>
<td>21</td>
</tr>
<tr>
<td>Formal diagnosis of polysubstance abuse</td>
<td>3</td>
</tr>
<tr>
<td>Invalid datasets (issues relating to comprehension of items on measures)</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
</tr>
</tbody>
</table>

All participants met ICD-10 (World Health Organisation, 1992) classification for alcohol dependence and were deemed ‘severely’ dependent (as outlined in SIGN 74 guidelines,
SIGN, 2003) by virtue of their requirement for an inpatient detoxification, as opposed to community-based alternatives.

Two sub-samples were used for the separate parts of this study; N=73 for Part I and N=20 for Part II (see Table 2). All patients received treatment as usual: a reducing regime of benzodiazepine therapy to manage their withdrawal symptoms in combination with vitamin B therapy and a menu of psychosocial interventions including an inpatient group programme and access to a multi-disciplinary team. Dosage and duration of medications was varied depending on individual needs. Patients typically stay between seven and ten days for an alcohol detoxification.

Table 2 – Demographic and Patient Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Sample for Part I (N=73)</th>
<th>Sample for Part II (N=20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age – mean(SD)</td>
<td>46.83(9.25)</td>
<td>44.15(7.78)</td>
</tr>
<tr>
<td>Gender - % Female</td>
<td>34.2%</td>
<td>40%</td>
</tr>
<tr>
<td>Length of Admission</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Range(days)</td>
<td>7-27</td>
<td>9-24</td>
</tr>
<tr>
<td>- Mean(SD)</td>
<td>11.96(3.85)</td>
<td>12.45(3.47)</td>
</tr>
<tr>
<td>Opioid Dependence</td>
<td>4.1%</td>
<td>5%</td>
</tr>
<tr>
<td>Benzodiazepine Dependence</td>
<td>9.6%</td>
<td>15%</td>
</tr>
<tr>
<td>Mood Problems</td>
<td>56.2%</td>
<td>65%</td>
</tr>
<tr>
<td>Anxiety Problems</td>
<td>21.9%</td>
<td>15%</td>
</tr>
<tr>
<td>Day ACE-III Administered (time from admission)</td>
<td>7-13</td>
<td>8-10</td>
</tr>
<tr>
<td>- Range(days)</td>
<td>8.52(1.03)</td>
<td>8.60(0.82)</td>
</tr>
<tr>
<td>- Mean(SD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concurrent Illicit Drug Use</td>
<td>23.3%</td>
<td>20%</td>
</tr>
</tbody>
</table>

Sample comprised those datasets which included complete ACE-III data.

Sample comprised those datasets which included data for all predictor and outcome variables.

Explicit consent was not sought from participants in relation to the current study since patients consent to the use of their clinical data in relation to audit and service evaluation.
at the point of admission. This was carried out in line with local policy and procedure and approval was granted for such use of data by the local Caldicott Guardian (see Appendix 6). Ethical approval was granted by the Ethics Committee at the School of Health in Social Science, University of Edinburgh (see Appendix 7). Informal advice was sought from a representative of the South East Scotland Research Ethics Service, who confirmed that the project constituted a service evaluation and therefore did not require NHS ethical review.

2.3.2 Procedure

As part of routine clinical practice, all patients were assessed by ward staff on admission to the clinic. Because previous research has identified a relationship between age, mood and anxiety with treatment outcomes, these formed the predictor variables in the current study. Alongside these variables, the importance of assessing readiness to change has been highlighted and was therefore included in the analysis. It is acknowledged that other variables have the potential to influence outcomes following treatment for alcohol-dependence (see Adamson et al., 2009 and Brorson et al., 2013 for systematic reviews).

Owing to practical constraints on the current project – specifically, that data were collected in line with routine clinical practice – it was not feasible to include other potential confounders. Given the exploratory nature of the study however, this was deemed satisfactory.

Information regarding patient age, mood, anxiety and motivation was routinely collected as part of a clinical interview at the time of admission. At a minimum of seven days following admission, and therefore seven days of abstinence, all patients attending for alcohol detoxification were invited to take part in an ACE-III assessment by a member of the ward
staff. It was not possible or clinically appropriate to assess all patients at precisely seven days following admission owing to variations in individual needs and clinical practicality. It was decided, in keeping with recommendations from clinical neuropsychological literature, that data would be viable for the current project so long as the ACE-III took place at a minimum of seven days abstinence from alcohol (that is, seven days from the point of admission).

All routinely collected data were entered into an excel database. Only the information relevant to the current study was extracted to conduct relevant analyses. Follow-up data were obtained via email to patient keyworkers sent by the lead clinician for the clinic.

2.3.3 Measures

2.3.3.1 Mood and Anxiety

The presence of a comorbid mood or anxiety disorder was assessed via three sources: clinical interview on admission (nursing and medical review), clinical assessment during inpatient stay, and whether or not the patient was using anti-depressant medication at the time of admission. It is widely acknowledged that alcohol misuse has a depressant effect and therefore it is impossible at this early stage of treatment to know whether mood disorder – separate to that caused by alcohol use – is, in fact, present (Davidson, 1995). Furthermore, research would suggest that most anxiety and depression resolves with standard treatment for alcohol problems (see SIGN 74, 2003). In light of this, it was not deemed viable to introduce formal mood or anxiety measures into routine practice. Therefore, the proxy measures noted above were adopted for the current study. If an
individual met any one of the three above-noted criteria, mood or anxiety disorder was coded as present.

2.3.3.2 **Motivation**

The Revised Readiness to Change [Treatment Version] Questionnaire (RCQ[TV]) is a twelve-item, self-report measure of motivation to change drinking behaviour (Heather & Hönekopp, 2008). Based on the transtheoretical model of health behaviour change (Prochaska *et al.*, 1992), the items in the questionnaire are designed to assess which stage of change the client is at, at the point of administration: pre-contemplation, contemplation or action. Each item features a statement related to the client’s beliefs about their drinking behaviour. They respond using a five-point Likert scale, ranging from ‘strongly disagree’ to ‘strongly agree’, with scores for each item ranging from -2 to +2. Four items relate to each of the stages of change and therefore a total score for each stage may be calculated; with the highest score denoting the stage of change the client is thought to be at (quick scoring method; Heather *et al.*, 1999). Although this measure is self-report, assessing clinicians assisted clients in its administration to ensure completeness and help reduce issues related to literacy and comprehension.

The RCQ[TV] has demonstrated good internal consistency across the three subscales and good construct validity, as established by strong correlations with measures of alcohol use and alcohol-related problems (Heather & Hönekopp 2008) and between RCQ[TV] subscales and a measure of negative outcome expectancies for alcohol treatment. The authors also reported significant relationships between stage of change as measured by the RCQ[TV] and treatment outcome at three and 12 months, suggesting the predictive validity of the
tool. The internal consistency of the subscales in the current study were assessed for the sample used in Part II, demonstrating reasonable reliability (pre-contemplation: N=4, \(\alpha = .794 \); contemplation: N=4, \(\alpha = .714 \); action: N=4, \(\alpha = .723 \)).

2.3.3.3 Cognitive Functioning

The Addenbrooke’s Cognitive Examination III (ACE-III; Hsieh et al., 2013) is a revised and updated version of the widely-utilised Addenbrooke’s Cognitive Examination Revised (ACE-R) (Mioshi et al., 2006). The tool assesses five cognitive domains: attention, memory, language, fluency and visuospatial abilities. The tool is scored out of 100, with higher scores denoting better cognitive functioning. Domain-specific scores may also be calculated and compared with published norms for a healthy older adult population (n=25; Hsieh et al., 2013). Hsieh and colleagues demonstrated a strong correlation (\(r = 0.99 \)) between the ACE-III and its predecessor. They also reported that the domain scores achieved medium to high correlations with neuropsychological tools commonly used in the assessment of dementia, suggesting good construct validity. The sensitivity and specificity of the tool in relation to dementia remain high relative to the cut-off scores suggested by the original authors (88/100 and 82/100, respectively), with its internal reliability proving robust (Cronbach’s alpha coefficient = 0.88).

2.3.3.4 Relapse

In line with other research looking at outcomes following treatment for substance misuse, it was originally planned that drinking outcomes would be measured in three ways: cumulative days of abstinence, time to first drink and number of days drinking. However, it was not possible to obtain this information at four-week follow-up and therefore the
dichotomous variable of ‘relapsed’ versus ‘abstinent’ was utilised instead. The operational
definition of relapse in this instance would include any return to alcohol, as reported by the
participant’s keyworker. Where participants failed to engage with treatment – and also in
line with other research (e.g. Schneekloth, 2012) – they were presumed relapsed.

2.3.3.5 Engagement

Following discharge from the clinic, patients are allocated a keyworker. The outcome
measure for engagement was originally planned to be a proportion of appointments
attended compared to those offered, calculated as a percentage. However, due to limited
information and variability in follow-up data returned, it was decided that a dichotomous
variable of less than 50% versus 50% or more would be adopted. Following an investigation
of the descriptive characteristics of this sample, it was identified that this variable had no
variability, with all 20 participants attending 50% or more appointments offered. It was
therefore removed from further analysis.

2.3.4 Statistical Analysis

Statistical analyses were performed using the IBM Statistical Package for Social Sciences
(SPSS), Version 22 (IBM SPSS, 2013). For Part I of this study, mean scores and standard
deviations were calculated for the total ACE-III score and its subdomains. Shapiro-Wilk test
of normality indicated non-normal distributions, therefore Mann Whitney U tests were
used to compare ACE-III scores between males and females and Spearman’s Rho
correlations were used to examine associations between age and ACE-III. For Part II,
descriptive statistics (means, standard deviations and frequencies) were used to describe
the characteristics of the smaller sample. Tests of normality indicated that age and ACE-III
total score distributions did not deviate significantly from a normal distribution so
independent samples t tests were used to examine differences in age and ACE-III score
between those who relapsed at four weeks post-discharge and those who had not. Chi
square analysis was used to investigate differences between the categorical predictor
variables (mood, anxiety, motivation) in relation to relapse status. Logistic regression was
used to examine the relative contribution of the predictor variables to relapse status. Using
the conventional method for sample-size calculation in regression analysis (reported in
Green, 1991): $N \geq 50 + 8m$; it is estimated that a sample size of greater than 90 participants
would be required to meet statistical power in the current analysis.

2.4 RESULTS

2.4.1 Part I: Clinical Normative Data

The cohort used to compile the normative dataset consisted of 73 alcohol dependent
individuals aged between 23 and 72 years. Of these participants, 48 were male. With
regards to other substance use, 3 individuals were known to be opioid dependent but
stable in their opioid use and 7 were benzodiazepine dependent. Fifty-two reported no
concurrent use of other substances at the time of their assessment. The remainder
reported varying types and degrees of substance use.

The alpha coefficient of the ACE-III in this study was 0.82, which is comparable to the values
found for the original ACE-R (0.80; Mioshi et al., 2006) and the ACE-III (0.88; Hsieh et al.,
2013) and considered acceptable (Field, 2005). Table 3 presents domain and total ACE-III
scores for the current sample alongside the normative data published using a sample of 25
healthy older adults with an average age of 66.1 (SD=7.4; Hsieh et al., 2013). The table also
includes the ‘lower limit of normal’, calculated as described in the study of the earlier ACE-R (Mioshi et al., 2006), which was taken to be the total score minus two standard deviations.

Table 3 – ACE-III Total and Domain Scores: Mean(SD)

<table>
<thead>
<tr>
<th>Study</th>
<th>Attention/Orientation</th>
<th>Memory</th>
<th>Verbal Fluency</th>
<th>Language</th>
<th>Visuo-spatial</th>
<th>ACE-III Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hsieh et al. (2013)</td>
<td>17.4(1.2)</td>
<td>24.3(1.7)</td>
<td>12.5(1.4)</td>
<td>25.6(0.6)</td>
<td>15.6(0.6)</td>
<td>95.4(3.3)</td>
</tr>
<tr>
<td>N=25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower limit of normal</td>
<td>15</td>
<td>20.9</td>
<td>9.7</td>
<td>24.4</td>
<td>14.4</td>
<td>88.8</td>
</tr>
<tr>
<td>Current study – Whole Sample (N=73)</td>
<td>16.3(1.8)</td>
<td>20.0(4.4)</td>
<td>9.6(2.7)</td>
<td>23.5(2.3)</td>
<td>13.8(2.2)</td>
<td>83.2(10.1)</td>
</tr>
<tr>
<td>Current study – Females (N=25)</td>
<td>15.9(1.8)</td>
<td>20.3(4.8)</td>
<td>9.1(2.7)</td>
<td>23.1(2.3)</td>
<td>13.4(2.3)</td>
<td>81.8(11.1)</td>
</tr>
<tr>
<td>Current study – Males (N=48)</td>
<td>16.5(1.7)</td>
<td>19.9(4.2)</td>
<td>9.9(2.7)</td>
<td>23.7(2.3)</td>
<td>14.0(2.1)</td>
<td>83.8(9.6)</td>
</tr>
</tbody>
</table>

As can be seen, the AD sample in the current study scored more than two standard deviations below the healthy normal sample on all domains except attention/orientation (<1SD below normative mean). For the memory and fluency domains, the clinical sample fell less than three standard deviations below the healthy control mean. For the visuospatial domain, scores fell exactly three standard deviations below the control mean and, for language, greater than three standard deviations. The largest deficit was observed for the overall score, where the clinical sample score fell 3.7 standard deviations below the healthy control mean.
2.4.1.1 Gender Differences on ACE-III Scores

Mann Whitney U tests indicated no significant differences between males and females on ACE-III Total score (U=541.00, ns, r=-.08), Attention/Orientation (U=482.00, ns, r=-.17), Memory (U=567.50, ns, r=.04), Verbal Fluency (U=467.00, ns, r=-.18), Language (U=495.50, ns, r=-.14) or Visuospatial domains (U=510.50, ns, r=-.12).

2.4.1.2 Correlations between Age and ACE-III Scores

There was a negative relationship between the age of participants and ACE-III Total score, \(r_s = -.368, p = .001 \). A negative relationship was also found between age and scores for Memory \((r_s = -.384, p = .001) \), Verbal Fluency \((r_s = -.447, p < .001) \) and Visuospatial domains \((r_s = -.268, p = .0023) \). No relationship was identified between age and scores on Attention/Orientation or Language (both \(p > .05 \)).

2.4.2 Part II: Predictors of Outcome

The sample used for Part II of this study comprised 20 alcohol dependent individuals aged between 23 and 56 years (average 44.2, SD=7.8). Twelve participants were male. One participant was opioid dependent and three were dependent on benzodiazepines. Four reported illicit drug use in addition to alcohol use.

2.4.2.1 Associations between Predictor Variables and Relapse

The difference between continuous predictor variables in relation to relapse status (relapse having two levels: 0=relapsed, N=7; 1=abstinent, N=13) was assessed using independent
samples t-tests. Relapsed individuals were significantly older (49.14±4.71 years) than those who remained abstinent at four weeks post-discharge (41.46±7.90 years), t(18)=2.341, p=.031. There was no significant difference in ACE-III score between those who relapsed (85.29±8.64) and those who remained abstinent (88.46±9.09), t(18)=-.758, p=.458. Differences in domain scores between those who relapsed and those who remained abstinent were also non-significant (attention: U=49.00, ns, r=-.06, memory: U=62.00, ns, r=-.30, fluency: t(18)=.223, p=.826, language: U=61.50, ns, r=-.29, visuospatial: U=42.00, ns, r=-.06).

The difference between categorical predictor variables in relation to relapse status was assessed using Pearson’s chi-square test. No group differences were identified between mood and relapse, $\chi^2=2.32$, p=.128; anxiety and relapse, $\chi^2=.00$, p=.948; or motivation and relapse, $\chi^2=.85$, p=.357.

2.4.2.2 Predictors of Relapse

For exploratory purposes, despite low sample size, a logistic regression analysis was undertaken to predict relapse in this sample using age, mood, anxiety, motivation and ACE-III score as predictors. A test of the full model against a constant-only model demonstrated statistical significance, indicating that the predictors – as a set – reliably distinguished between those who relapsed and those who remained abstinent (chi square = 17.963, p<.01, df=5). The model explained 81.6% (Nagelkerke’s R square) of variance in relapse and correctly classified 95% of cases. The Wald criterion demonstrated that no individual predictor variable contributed significantly to the model (all p>.05).
Because age was found to be associated with relapse, a separate logistic regression was undertaken to predict relapse using age as the only predictor variable. A test of the full model against a constant-only model demonstrated statistical significance of the model (chi square = 6.293, p<.05, df=1) which explained 37.2% (Nagelkerke’s R square) of variance in relapse and correctly classified 70% of cases. The Wald criterion demonstrated that age did not contribute significantly to the model (p>.05).

2.5 DISCUSSION

2.5.1 Summary of Findings
The first aim of this study was to compile a normative dataset for an alcohol dependent population, using the ACE-III, following one week of abstinence. The clinical sample scored 3.7 standard deviations below published norms on the ACE-III overall. Sub-domain scores also indicated reduced functioning compared to norms for all domains except attention/orientation, where the score fell within the normal range. Negative correlations were found between age and scores on overall ACE-III, memory, verbal fluency and visuospatial domains.

The second aim of the study was to investigate the predictive capacity of the ACE-III in relation to engagement with treatment and relapse following inpatient detoxification. ACE-III scores were not significantly different in those who relapsed compared to those who did not. Those who relapsed were older than those who did not. No associations were found between mood, anxiety, motivation (RCQ[TV]) and relapse. Logistic regression revealed no relationships between any of the predictors and relapse.
2.5.2 Interpretation of Findings – Normative Data

The finding that the current clinical sample performed below a healthy control sample on the ACE-III cognitive screen is unsurprising. What makes this more striking is that the comparison group were, on average, twenty years older than the clinical sample presented here. A strong body of research would suggest that AD individuals consistently exhibit cognitive impairment compared to their peers on a wide variety of neuropsychological functions (Parsons, 1998). These deficits tend to be most apparent in the areas of memory and visuospatial functioning, which is consistent with the current findings. However, language abilities tend to be relatively well preserved in alcohol-dependence (Hartman, 1995; cited in Hazelton, 2003) and, in this sample, language performance fell significantly below what might be expected. Despite its ability to briefly measure a wide variety of domains of cognitive functioning, the ACE-III is heavily weighted towards tasks of language ability (Hsieh et al., 2013). Therefore, it is surprising that the current sample exhibited marked impairment in this area.

It is possible that the early stage of assessment in this study uncovered a profile of difficulties that are present in the earlier stages of abstinence and differ from that in longer-term abstinence. The ACE-III was administered between seven and eleven days in the current study, falling far short of the recommended three-week minimum. Therefore it is likely that the assessment picked up a degree of residual impairment owing to prior intoxication and the detoxification process itself. The reducing regime of benzodiazepine therapy during detoxification is adjusted according to the needs of the individual and therefore, at the time of the cognitive screen, it is possible that participants were at varying degrees of abstinence from prescribed medication. Benzodiazepines are known, in
particular, to reduce memory and learning ability (Stewart, 2005) alongside having the
effect of sedation. It is possible that this and concurrent drug use in a proportion of the
sample contributed to the profile of impairment observed.

Whilst no formal measure of dependence severity was used, it is likely that the majority of
participants in this study would fall within the severe range. Furthermore, since no measure
of premorbid functioning was used, it is possible that overall intellectual ability was lower in
this sample. Illiteracy levels tend to be higher within substance-using populations than in
the general population and this may go some way to explaining the reduced performance in
tasks of language functioning. The purpose of presenting a normative dataset was to allow
for clinical comparisons of ACE-III performance in a severely alcohol dependent population
in the early stages following detoxification. Whilst limited in their generalisability beyond
this population, it is hoped that the presented data allow for more meaningful comparisons
in this particular client group.

2.5.3 Interpretation of Findings – Predictors of Outcome

The findings from the current study do not support the idea that ACE-III scores predict
relapse. However, it is important to bear in mind the low sample size and consequent low
power achieved in the statistical analyses involved in this part of the study (see section
2.5.4 below for discussion of implications). This is surprising in the context of a large body
of research supporting a relationship between cognitive functioning and treatment
outcomes in addictions. One possible reason for this discrepancy is the choice of measure
of cognitive functioning. Whilst the ACE-III has been recommended for use in the alcohol
dependent population, its suitability for assessing alcohol-related cognitive impairment has
not been investigated. Alcohol dependent populations tend to show marked impairment on tests of executive functioning, even in the absence of other neuropsychological and functional impairment (Moselhy et al., 2001). This was reflected in the current sample by scores averaging more than two standard deviations below the normative mean for the verbal fluency domain. This domain however, is the only one in the ACE-III thought to rely substantially on executive functioning and its relative contribution to the overall score is small (14 of 100 possible points). Given the prevalence of executive dysfunction in this population and the likely impact of this on ability to engage in psychosocial interventions, it would be of relevance to consider cognitive screening tools which place more emphasis on this particular area of functioning. Furthermore, executive functions are believed to serve the role of overseeing and controlling the primary cognitive functions (Stuss, 2011). From this perspective, it is possible that some degree of impairment across tasks of other domains of functioning may result from executive functioning deficits rather than domain-specific deficits. A study of neuropsychological functioning and relapse in a similar population to the current study identified that executive dysfunction during detoxification successfully predicted number of days drinking at three months post-discharge (Morrison, 2011). A systematic review of risk factors for drop-out from treatment in addictions also highlighted that executive functioning deficits were often what distinguished those who engaged with treatment from those who did not (Brorson et al., 2013). These findings highlight the need to include a measure sensitive to such functioning in any assessment of alcohol-related cognitive impairment.

Another aspect of the current study which may have resulted in finding no relationship between ACE-III score and outcome was the method of recording follow up. Owing to
limited information available, the outcome variable of relapse was dichotomised to allow for retention of data. The normative data presented for this clinical sample demonstrated a greater degree of variance in ACE-III scores compared to the healthy comparison group, highlighting heterogeneity amongst substance-misusing populations. Miller et al. (2001) caution against dichotomising relapse data, as it does not take into account the degree of improvement often seen in a proportion of people who do not maintain abstinence but also do not return to drinking at their previous level. By reducing the outcome measure in this way, any relationship between cognitive functioning and outcome may have been obscured.

Finally, the current study examined the relationship between cognitive functioning and outcome in only severely alcohol dependent individuals. Whilst helping to create a ‘purer’ sample which, it was hoped, could be more comparable to similar clinical populations, it is acknowledged that such sampling may have limited the applicability of the research into outcomes which informed the current study. Of the 11 studies reviewed in relation to cognitive functioning and drop-out, Brorson et al. (2013) reported significant relationships in all of them. However, none of these reported on an alcohol dependent sample – five reported on mixed substance-use disorders, one on marijuana, four on cocaine and one on heroin and crack cocaine. Adamson et al. (2009) systematically reviewed the literature for predictors of alcohol treatment outcome and found neuropsychological functioning to be a moderate predictor, however they stated that the neuropsychological variables varied too much to draw any meaningful summary. These findings would suggest that the predictive capacity of cognitive functioning in ‘pure’ alcohol-dependence is not as clearly defined as in
wider substance-using populations. Furthermore, means of successfully capturing this impairment have not been clearly defined.

2.5.4 Limitations

One of the key limitations was sample size, particularly in relation to part II. Although it is tempting to suggest that a larger sample size may unearth a significant finding, none of the predictor variables in the analyses were even approaching significance. However, it is possible that reduced statistical power has prevented observation of trends toward significance which might otherwise have been apparent with a larger dataset. At the very least, with increased power it would have been possible to have greater confidence in the accuracy of the outcomes obtained in the current study. In addition, methods for collecting some of the information have added a considerable degree of confound to the data; for example, broad inclusion criteria and relying on key worker feedback to assess for relapse. Nonetheless, the large proportion of missing data in the current service evaluation serves to highlight the need for good quality recording of clinical information.

Whilst keyworkers supplied a reasonable degree of information, a high volume of missing data resulted in the loss of datasets and the eventual digression towards a dichotomous variable. This was particularly evident in relation to information on engagement with treatment. It may be that by including more assertive follow-up techniques, such as those suggested by the developers of the Addiction Severity Index (‘Addiction Severity Index Manual and Question by Question Guide’, The University of Pennsylvania, n.d.), and acknowledging the follow-up input of a wider range of supports and services, more sophisticated and reliable outcome data could be achieved.
2.5.5 Implications for Research

With the advent of the notion of ‘recovery capital’ – the sum of internal and external resources that can be drawn on by the individual to initiate and sustain recovery –, the potential value of social and mutual aid supports has become apparent in the field of addictions research (Best & Laudet, n.d.). Future research may benefit from including such variables and considering wider factors in addition to patient-specific variables, as suggested by Brorson et al. (2013). The current study included five predictor variables; however it is important to note that other variables have been demonstrated to contribute to treatment outcomes. These include – but are not restricted to – dependence severity, psychopathology, alcohol-related self-efficacy and treatment goal (Adamson et al., 2009); treatment alliance and personality (Brorson et al., 2013). It seems relevant to suggest that efforts go into separating those factors which are specific to alcohol dependent populations and working towards conceptual clarity and consistency of measurement and reporting of variables. In a population such as alcohol-dependency, which is so heterogeneous in nature, such methodological aspects become ever-more important to allow for meaningful interpretation of findings.

2.5.6 Implications for Clinical Practice

The findings highlight the need for a comprehensive assessment of cognitive functioning to inform treatment planning, with adequate emphasis placed on assessment of executive functions. It is clear from the normative data that in the early stages following detoxification, severely alcohol dependent individuals are likely to exhibit a substantial degree of cognitive impairment. The implications in terms of engaging with psychosocial
Interventions are clear and it is important that treatment providers consider this in the planning and delivery of services for this population.

A recent systematic review by Svanberg and Evans (2013) outlined the evidence-base for the rehabilitation of alcohol-related brain damage, including executive dysfunction. If alcohol dependent individuals are to engage with and benefit from evidence-based psychosocial interventions, it is suggested that treatment programmes for such populations incorporate strategies for cognitive rehabilitation. This should also take into account adequate modification of patient environments to account for some of the difficulties this population face, such as clear signage to assist with orientating to a new environment. It is also suggested that if clinical populations such as the one accessed for the current study are to benefit from treatment, perhaps longer periods in contact with services with more intensive support will be required. Alcohol-related brain damage is sometimes referred to as ‘alcoholic dementia’ (see Moriyama et al., 2006). Older adult services in the UK often adopt a tiered service model, including day services for people with dementia. Perhaps then, given the degree of overlap in presentations between older adult dementia populations and alcohol dependent individuals, such models could afford a degree of insight into ways of working to enhance adherence to and efficacy of treatment for alcohol-dependence.

2.5.7 Conclusions

The current study identified a substantial degree of global cognitive impairment in a severely alcohol dependent population in the early stages following inpatient detoxification though this impairment was not found to be predictive of relapse at one-month following
discharge. Methods for recording outcome variables may have reduced the quality of this study. It is also noted that the ACE-III may not be sensitive to profile of impairment in this population. It is suggested that future research focus on identifying the factors specific to alcohol dependent individuals in relation to relapse, taking into account factors in addition to patient-related variables. Furthermore treatment providers should consider routinely assessing cognitive impairment in this population and tailor their input accordingly, both at a service and individual level.
REFERENCES

REFERENCES – FULL THESIS

APPENDIX 1. AUTHOR GUIDELINES

DRUG AND ALCOHOL DEPENDENCE
An International Journal on Biomedical and Psychosocial Approaches

AUTHOR INFORMATION PACK

TABLE OF CONTENTS
• Description
• Audience
• Impact Factor
• Abstracting and Indexing
• Editorial Board
• Guide for Authors

DESCRIPTION

Drug and Alcohol Dependence is an international journal devoted to publishing original research, scholarly reviews, commentaries, and policy analyses in the area of drug, alcohol and tobacco use and dependence. Articles range from studies of the chemistry of substances of abuse, their actions at molecular and cellular sites, *in vitro* and *in vivo* investigations of their biochemical, pharmacological and behavioural actions, laboratory-based and clinical research in humans, substance abuse treatment and prevention research, and studies employing methods from epidemiology, sociology, and economics.

The rationale for this extensive coverage is the conviction that drug, alcohol and tobacco use/dependence cannot be understood in their entirety from a single perspective and that without an understanding of other areas of research, studies by individual investigators may be limited. The goal of the journal is to provide researchers, clinicians, and policy makers access to material from all perspectives in a single journal in a format that is understandable and which has received rigorous editorial review. The hope of its editors is to promote mutual understanding of the many facets of drug abuse to the benefit of all investigators involved in drug and alcohol research, and to facilitate the transfer of scientific findings to successful treatment and prevention practices.

The accepted abbreviation for *Drug and Alcohol Dependence* for bibliographic citation is *Drug Alcohol Depend.*

Drug and Alcohol Dependence is currently being distributed to all the members of the College on Problems of Drug Dependence (CPDD), the oldest scientific organization in the United States concerned with research on problems of drug dependence. Members of the CPDD are provided with both the print version as well as access to the full text of the
current issue and back issues dating back to Vol. 46, Issue no. 1 of the online version as a benefit of membership.

AUDIENCE
Workers in the fields of biomedical as well as clinical, epidemiological, psychosocial, sociocultural, educational and medico-legal research.

IMPACT FACTOR 2013: 3.278

ABSTRACTING AND INDEXING
Addiction Abstracts
BIOSIS
Bibliographie Internationale/PASCAL
Elsevier BIOBASE
Chemical Abstracts
Cumulative Index to Nursing and Allied Health Literature
Current Contents/Current Contents Search
Clinical Medicine Citation Index
MEDLINE®
Life Science Collection
EMBASE
ETOH
HealthSTAR
PsycINFO Psychological Abstracts
Research Alert
Science Citation Index
Sociological Abstracts
Toxline
Scopus

EDITORIAL BOARD
Editor-in-Chief
Eric C. Strain, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA

Editorial Office Manager
Andraya Dolbee, Johns Hopkins Centre for Substance Abuse Treatment and Research, Johns Hopkins Bayview Campus, Behavioral Pharmacology Research Unit, 5510 Nathan Shock Drive, Baltimore, MD 21224, USA, Fax: +1 410 550-0030

Associate Editors

Behavioral Pharmacology

Craig R. Rush, University of Kentucky College of Medicine, Lexington, KY, USA

Human Psychopharmacology and Genetics

Eske Derks, Academic Medical Centre (AMC), Amsterdam, Netherlands

Neuropsychopharmacology and Treatment

Lin Lu, Peking University, Beijing, China

Preclinical and Clinical Neurosciences

Linda Porrino, Wake Forest University, Bowman Gray School of Medicine, Winston-Salem, North Carolina, USA

Services and Prevention, Technology Transfer, and Treatment

Jan Copeland, University of New South Wales, Randwick, New South Wales, Australia

Treatment and Services

Kyle Kampman, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA

Etiology, Epidemiology, Prevention and Policy

Steffanie A. Strathdee, University of California at San Diego (UCSD), La Jolla, California, USA

Comorbidity, Psychiatric Epidemiology, Etiology, Nosophy and Genetics

Deborah S. Hasin, Columbia University, New York, New York, USA

Editorial Board

R. Ali, Adelaide, South Australia, Australia

F.J. Alvarez, Valladolid, Spain

J.C. Anthony, East Lansing, Michigan, USA

M. Auriacombe, Bordeaux, France

R.L. Balster, Richmond, Virginia, USA

F.I.P.M. Bastos, Rio de Janeiro, Brazil

W.K. Bickel, Roanoke, Virginia, USA

K.T. Brady, Charleston, South Carolina, USA

J.F. Cubells, Atlanta, Georgia, USA

S. Darke, Randwick, New South Wales, Australia

L.C. Dierker, Middletown, Connecticut, USA

M.E. Ensminger, Baltimore, Maryland, USA

M. Farré, Barcelona, Spain

M. Field, Liverpool, UK

P.M. Flynn, Fort Worth, Texas, USA

I.H.A. Franken, Rotterdam, The Netherlands

B.F. Grant, Bethesda, Maryland, USA

O. Gureje, Ibadan, Nigeria

H. Hagan, New York, New York, USA

D.K. Hatsukami, Minneapolis, Minnesota, USA

S.E. Hemby, Winston-Salem, North Carolina, USA
GUIDE FOR AUTHORS

INTRODUCTION

Drug and Alcohol Dependence is an international journal devoted to publishing original research, scholarly reviews, commentaries, and policy analyses in the area of drug, alcohol and tobacco use and dependence. It is sponsored by the College on Problems of Drug Dependence (CPDD), the oldest scientific organization in the United States concerned with research on addiction. The goal of its editors is to promote mutual understanding of the many facets of drug abuse to the benefit of all investigators involved in drug and alcohol research, and to facilitate the transfer of scientific findings to successful treatment and prevention practices. *Drug and Alcohol Dependence* is currently being distributed to all the members of CPDD.

Types of paper

1) **Full-length Reports** reporting original results of research within the field of drug, alcohol and tobacco use and dependence. A Full-length Report typically should not exceed 4000 words (for the introduction, methods, results and discussion).
2) **Review Articles** of specialized topics within the scope of the journal. Typically, these are critical reviews of a field of research. A Review Article typically should not exceed 6000 words for the main body of the paper (i.e., excluding references, tables and figures). Review Articles that will be substantially longer than 6000 words should be discussed with the Editor-in-Chief prior to submission.

3) **Short Communications** reporting on research that has progressed to the stage where a preliminary publication is appropriate. The maximum length is 2000 words plus references and illustrations. There should be not more than 2 illustrations (figure or tables).

4) **Commentaries** express points of view on scientific matters or published papers. Typically, commentaries are solicited by the editors, but authors who wish to submit commentaries should contact the Editor-in-Chief to discuss the suitability of the proposed paper. A Commentary typically should not exceed 2000 words.

5) **Registered Reports** (click here for more details). These submissions undergo a two-phase review process in which study rationale and methodology are considered prior to the research being undertaken.

6) **Other forms of papers.** The journal does not publish letters to the editor, individual case studies or book reviews.

BEFORE YOU BEGIN

Ethics in publishing

For information on Ethics in publishing and Ethical guidelines for journal publication see http://www.elsevier.com/publishingethics and http://www.elsevier.com/journal-authors/ethics.

Human and animal rights

If the work involves the use of animal or human subjects, the author should ensure that the work described has been carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans http://www.wma.net/en/30publications/10policies/b3/index.html; EU Directive 2010/63/EU for animal experiments http://ec.europa.eu/environment/chemicals/lab_animals/legislation_en.htm; Uniform Requirements for manuscripts submitted to Biomedical journals http://www.icmje.org. Authors should include a statement in the manuscript that informed consent was obtained for experimentation with human subjects. The privacy rights of human subjects must always be observed.

Conflict of interest
All authors must disclose any financial and personal relationships with other people or organizations that could inappropriately influence (bias) their work. Examples of potential conflicts of interest include employment, consultancies, stock ownership, honoraria, paid expert testimony, patent applications/ registrations, and grants or other funding. See also http://www.elsevier.com/conflictsofinterest. Further information and an example of a Conflict of Interest form can be found at: http://help.elsevier.com/app/answers/detail/a_id/286/p/7923.

Submission declaration
Submission of an article implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis or as an electronic preprint, see http://www.elsevier.com/postingpolicy), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere including electronically in the same form, in English or in any other language, without the written consent of the copyright-holder.

Contributors
Each author is required to declare his or her individual contribution to the article: all authors must have materially participated in the research and/or article preparation, so roles for all authors should be described. The statement that all authors have approved the final article should be true and included in the disclosure.

Changes to authorship
This policy concerns the addition, deletion, or rearrangement of author names in the authorship of accepted manuscripts:

Before the accepted manuscript is published in an online issue: Requests to add or remove an author, or to rearrange the author names, must be sent to the Journal Manager from the corresponding author of the accepted manuscript and must include: (a) the reason the name should be added or removed, or the author names rearranged and (b) written confirmation (e-mail, fax, letter) from all authors that they agree with the addition, removal or rearrangement. In the case of addition or removal of authors, this includes confirmation from the author being added or removed. Requests that are not sent by the corresponding author will be forwarded by the Journal Manager to the corresponding author, who must follow the procedure as described above. Note that: (1) Journal Managers will inform the Journal Editors of any such requests and (2) publication of the accepted manuscript in an online issue is suspended until authorship has been agreed.

After the accepted manuscript is published in an online issue: Any requests to add, delete, or rearrange author names in an article published in an online issue will follow the same policies as noted above and result in a corrigendum.

Reporting clinical trials
Randomized controlled trials should be presented according to the CONSORT guidelines. At manuscript submission, authors must provide the CONSORT checklist accompanied by a flow diagram that illustrates the progress of patients through the trial, including recruitment, enrollment, randomization, withdrawal and completion, and a detailed description of the randomization procedure. The CONSORT checklist and template flow diagram can be found on http://www.consort-statement.org.

Registration of clinical trials

Registration in a public trials registry is a condition for publication of clinical trials in this journal in accordance with International Committee of Medical Journal Editors (ICMJE, http://www.icmje.org) recommendations. Trials must register at or before the onset of patient enrolment. The clinical trial registration number should be included at the end of the abstract of the article. A clinical trial is defined as any research study that prospectively assigns human participants or groups of humans to one or more health-related interventions to evaluate the effects of health outcomes. Health-related interventions include any intervention used to modify a biomedical or health-related outcome (for example drugs, surgical procedures, devices, behavioural treatments, dietary interventions, and process-of-care changes). Health outcomes include any biomedical or health-related measures obtained in patients or participants, including pharmacokinetic measures and adverse events. Purely observational studies (those in which the assignment of the medical intervention is not at the discretion of the investigator) will not require registration.

Author Disclosures

As is widely acknowledged within medical publishing, the integrity of articles published in Drug and Alcohol Dependence depends in part on how well the Journal handles author disclosure. As described in detail below, authors are requested to provide three mandatory and one optional author disclosure sections; please do not include them in the manuscripts. The author disclosures will be automatically incorporated in the PDF builder of the online submission system. These statements will appear in the journal article if the paper is accepted. It is highly recommended that authors prepare these author disclosures prior to going online to submit the paper. The sequence for the Author Disclosures section should be Role of Funding Source (required; default text "Nothing declared"), Contributors (should always state something when more than one author), Conflict of Interest (required; default text "No conflict declared") and Acknowledgements (optional).

The four statements should not be numbered

Headings should be in bold
No white space between the heading and the text
Same font size as the references
Copyright
This journal offers authors a choice in publishing their research: Open access and Subscription.

For subscription articles
Upon acceptance of an article, authors will be asked to complete a 'Journal Publishing Agreement' (for more information on this and copyright, see http://www.elsevier.com/copyright). An e-mail will be sent to the corresponding author confirming receipt of the manuscript together with a 'Journal Publishing Agreement' form or a link to the online version of this agreement. Subscribers may reproduce tables of contents or prepare lists of articles including abstracts for internal circulation within their institutions. Permission of the Publisher is required for resale or distribution outside the institution and for all other derivative works, including compilations and translations (please consult http://www.elsevier.com/permissions). If excerpts from other copyrighted works are included, the author(s) must obtain written permission from the copyright owners and credit the source(s) in the article. Elsevier has preprinted forms for use by authors in these cases: please consult http://www.elsevier.com/permissions.

For open access articles
Upon acceptance of an article, authors will be asked to complete an 'Exclusive License Agreement' (for more information see http://www.elsevier.com/OAauthoragreement). Permitted reuse of open access articles is determined by the author's choice of user license (see http://www.elsevier.com/openaccesslicenses).

Retained author rights
As an author you (or your employer or institution) retain certain rights. For more information on author rights for:
Subscription articles please see http://www.elsevier.com/journal-authors/author-rights-and-responsibilities.
Open access articles please see http://www.elsevier.com/OAauthoragreement.

Role of the funding source
You are requested to identify who provided financial support for the conduct of the research and/or preparation of the article and to briefly describe the role of the sponsor(s), if any, in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication. If the funding source(s) had no such involvement then this should be stated.

Funding body agreements and policies
Elsevier has established agreements and developed policies to allow authors whose articles appear in journals published by Elsevier, to comply with potential manuscript archiving
requirements as specified as conditions of their grant awards. To learn more about existing agreements and policies please visit http://www.elsevier.com/fundingbodies.

Open access
This journal offers authors a choice in publishing their research:

Open access
• Articles are freely available to both subscribers and the wider public with permitted reuse
• An open access publication fee is payable by authors or their research funder

Subscription
• Articles are made available to subscribers as well as developing countries and patient groups through our access programs (http://www.elsevier.com/access)

• No open access publication fee

All articles published open access will be immediately and permanently free for everyone to read and download. Permitted reuse is defined by your choice of one of the following Creative Commons user licenses:

Creative Commons Attribution-NonCommercial-ShareAlike (CC BY-NC-SA): for non-commercial purposes, lets others distribute and copy the article, to create extracts, abstracts and other revised versions, adaptations or derivative works of or from an article (such as a translation), to include in a collective work (such as an anthology), to text and data mine the article, as long as they credit the author(s), do not represent the author as endorsing their adaptation of the article, do not modify the article in such a way as to damage the author’s honor or reputation, and license their new adaptations or creations under identical terms (CC BY-NC-SA).

Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND): for non-commercial purposes, lets others distribute and copy the article, and to include in a collective work (such as an anthology), as long as they credit the author(s) and provided they do not alter or modify the article.

Elsevier has established agreements with funding bodies, http://www.elsevier.com/fundingbodies. This ensures authors can comply with funding body open access requirements, including specific user licenses, such as CC BY. Some authors may also be reimbursed for associated publication fees. If you need to comply with your funding body policy, you can apply for the CC BY license after your manuscript is accepted for publication.
To provide open access, this journal has a publication fee which needs to be met by the authors or their research funders for each article published open access.

Your publication choice will have no effect on the peer review process or acceptance of submitted articles.

The open access publication fee for this journal is $2500, excluding taxes. Learn more about Elsevier’s pricing policy: http://www.elsevier.com/openaccesspricing.

Language (usage and editing services)

Please write your text in good English (American or British usage is accepted, but not a mixture of these). Authors who feel their English language manuscript may require editing to eliminate possible grammatical or spelling errors and to conform to correct scientific English may wish to use the English Language Editing service available from Elsevier’s WebShop (http://webshop.elsevier.com/languag-editing/) or visit our customer support site (http://support.elsevier.com) for more information.

Submission

Submission to this journal proceeds totally online and you will be guided stepwise through the creation and uploading of your files. The system automatically converts source files to a single PDF file of the article, which is used in the peer-review process. Please note that even though manuscript source files are converted to PDF files at submission for the review process, these source files are needed for further processing after acceptance. All correspondence, including notification of the Editor’s decision and requests for revision, takes place by e-mail removing the need for a paper trail.

Submit your article

Please submit your article via http://ees.elsevier.com/dad/.

Referees

Please submit, with the manuscript, the names, addresses and e-mail addresses of a minimum of three potential referees. Note that the editor retains the sole right to decide whether or not the suggested reviewers are used.

PREPARATION

Use of word processing software

It is important that the file be saved in the native format of the word processor used. The text should be in single-column format. Keep the layout of the text as simple as possible. Most formatting codes will be removed and replaced on processing the article. In particular, do not use the word processor’s options to justify text or to hyphenate words. However, do use bold face, italics, subscripts,
superscripts etc. When preparing tables, if you are using a table grid, use only one grid for each individual table and not a grid for each row. If no grid is used, use tabs, not spaces, to align columns. The electronic text should be prepared in a way very similar to that of conventional manuscripts (see also the Guide to Publishing with Elsevier: http://www.elsevier.com/guidepublication). Note that source files of figures, tables and text graphics will be required whether or not you embed your figures in the text. See also the section on Electronic artwork.

To avoid unnecessary errors you are strongly advised to use the 'spell-check' and 'grammar-check' functions of your word processor.

Article structure
Subdivision - numbered sections

Divide your article into clearly defined and numbered sections. Subsections should be numbered 1.1 (then 1.1.1, 1.1.2, ...), 1.2, etc. (the abstract is not included in section numbering). Use this numbering also for internal cross-referencing: do not just refer to 'the text'. Any subsection may be given a brief heading. Each heading should appear on its own separate line.

Introduction
State the objectives of the work and provide an adequate background, avoiding a detailed literature survey or a summary of the results.

Material and methods
Provide sufficient detail to allow the work to be reproduced. Methods already published should be indicated by a reference: only relevant modifications should be described.

Results
Results should be clear and concise.

Discussion
This should explore the significance of the results of the work, not repeat them. A combined Results and Discussion section is often appropriate. Avoid extensive citations and discussion of published literature.

Conclusions
The main conclusions of the study may be presented in a short Conclusions section, which may stand alone or form a subsection of a Discussion or Results and Discussion section.

Essential title page information
- **Title.** Concise and informative. Titles are often used in information-retrieval systems. Avoid abbreviations and formulae where possible.

- **Author names and affiliations.** Where the family name may be ambiguous (e.g., a double name), please indicate this clearly. Present the authors' affiliation addresses (where the actual work was done) below the names. Indicate all affiliations with a lower-case superscript letter immediately after the author’s name and in front of the appropriate address. Provide the full postal address of each affiliation, including the country name and, if available, the e-mail address of each author.

- **Corresponding author.** Clearly indicate who will handle correspondence at all stages of refereeing and publication, also post-publication. Ensure that phone numbers (with country and area code) are provided in addition to the e-mail address and the complete postal address. Contact details must be kept up to date by the corresponding author.

- **Present/permanent address.** If an author has moved since the work described in the article was done, or was visiting at the time, a 'Present address' (or 'Permanent address') may be indicated as a footnote to that author's name. The address at which the author actually did the work must be retained as the main, affiliation address. Superscript Arabic numerals are used for such footnotes.

Structured abstract

A structured abstract, by means of appropriate headings, should provide the context or background for the research and should state its purpose, basic procedures (selection of study subjects or laboratory animals, observational and analytical methods), main findings (giving specific effect sizes and their statistical significance, if possible), and principal conclusions. It should emphasize new and important aspects of the study or observations. Abstracts should be structured with specific sections describing the background, methods, results and conclusions with a maximum of 250 words.

Graphical abstract

A Graphical abstract is optional and should summarize the contents of the article in a concise, pictorial form designed to capture the attention of a wide readership online. Authors must provide images that clearly represent the work described in the article. Graphical abstracts should be submitted as a AUTHOR INFORMATION PACK 30 Aug 2014 www.elsevier.com/locate/drugalcddep 9 separate file in the online submission system. Image size: Please provide an image with a minimum of 531 × 1328 pixels (h × w) or proportionally more. The image should be readable at a size of 5 × 13 cm using a regular screen resolution of 96 dpi. Preferred file types: TIFF, EPS, PDF or MS Office files. See http://www.elsevier.com/graphicalabstracts for examples. Authors can make use of Elsevier's Illustration and Enhancement service to ensure the best presentation of their images also in accordance with all technical requirements: Illustration Service.

Keywords

Immediately after the abstract, provide a maximum of 6 keywords, using American spelling and avoiding general and plural terms and multiple concepts (avoid, for example, 'and',
Be sparing with abbreviations: only abbreviations firmly established in the field may be eligible. These keywords will be used for indexing purposes.

Abbreviations

Define abbreviations that are not standard in this field at their first mention in the text. Ensure consistency of abbreviations throughout the article.

Units

Follow internationally accepted rules and conventions: use the international system of units (SI). If other units are mentioned, please give their equivalent in SI.

Footnotes

Footnotes should be used sparingly. Number them consecutively throughout the article, using superscript Arabic numbers. Many wordprocessors build footnotes into the text, and this feature may be used. Should this not be the case, indicate the position of footnotes in the text and present the footnotes themselves separately at the end of the article. Do not include footnotes in the Reference list.

Table footnotes

Indicate each footnote in a table with a superscript lowercase letter.

Artwork

Electronic artwork

General points

- Make sure you use uniform lettering and sizing of your original artwork.
- Embed the used fonts if the application provides that option.
- Aim to use the following fonts in your illustrations: Arial, Courier, Times New Roman, Symbol, or use fonts that look similar.
- Number the illustrations according to their sequence in the text.
- Use a logical naming convention for your artwork files.
- Provide captions to illustrations separately.
- Size the illustrations close to the desired dimensions of the printed version.
- Submit each illustration as a separate file.

A detailed guide on electronic artwork is available on our website: http://www.elsevier.com/artworkinstructions

You are urged to visit this site; some excerpts from the detailed information are given here.
Formats

If your electronic artwork is created in a Microsoft Office application (Word, PowerPoint, Excel) then please supply 'as is' in the native document format.

Regardless of the application used other than Microsoft Office, when your electronic artwork is finalized, please 'Save as' or convert the images to one of the following formats (note the resolution requirements for line drawings, halftones, and line/halftone combinations given below): EPS (or PDF): Vector drawings, embed all used fonts. TIFF (or JPEG): Color or grayscale photographs (halftones), keep to a minimum of 300 dpi. TIFF (or JPEG): Bitmapped (pure black & white pixels) line drawings, keep to a minimum of 1000 dpi. TIFF (or JPEG): Combinations bitmapped line/half-tone (color or grayscale), keep to a minimum of 500 dpi.

Please do not:

• Supply files that are optimized for screen use (e.g., GIF, BMP, PICT, WPG); these typically have a low number of pixels and limited set of colors;
• Supply files that are too low in resolution;
• Submit graphics that are disproportionately large for the content.

AUTHOR INFORMATION PACK 30 Aug 2014 www.elsevier.com/locate/drugalcdep 10

Color artwork

Please make sure that artwork files are in an acceptable format (TIFF (or JPEG), EPS (or PDF), or MS Office files) and with the correct resolution. If, together with your accepted article, you submit usable color figures then Elsevier will ensure, at no additional charge, that these figures will appear in color on the Web (e.g., ScienceDirect and other sites) regardless of whether or not these illustrations are reproduced in color in the printed version. For color reproduction in print, you will receive information regarding the costs from Elsevier after receipt of your accepted article. Please indicate your preference for color: in print or on the Web only. For further information on the preparation of electronic artwork, please see http://www.elsevier.com/artworkinstructions. Please note: Because of technical complications that can arise by converting color figures to 'grayscale' (for the printed version should you not opt for color in print) please submit in addition usable black and white versions of all the color illustrations.

Illustration services

Elsevier's WebShop (http://webshop.elsevier.com/illustrationservices) offers Illustration Services to authors preparing to submit a manuscript but concerned about the quality of the images accompanying their article. Elsevier’s expert illustrators can produce scientific, technical and medical-style images, as well as a full range of charts, tables and graphs. Image 'polishing' is also available,

where our illustrators take your image(s) and improve them to a professional standard. Please visit the website to find out more.
Figure captions

Ensure that each illustration has a caption. Supply captions separately, not attached to the figure. A caption should comprise a brief title (not on the figure itself) and a description of the illustration. Keep text in the illustrations themselves to a minimum but explain all symbols and abbreviations used.

Tables

Number tables consecutively in accordance with their appearance in the text. Place footnotes to tables below the table body and indicate them with superscript lowercase letters. Avoid vertical rules. Be sparing in the use of tables and ensure that the data presented in tables do not duplicate results described elsewhere in the article.

References

Citation in text

Please ensure that every reference cited in the text is also present in the reference list (and vice versa). Any references cited in the abstract must be given in full. Unpublished results and personal communications are not recommended in the reference list, but may be mentioned in the text. If these references are included in the reference list they should follow the standard reference style of the journal and should include a substitution of the publication date with either 'Unpublished results' or 'Personal communication'. Citation of a reference as 'in press' implies that the item has been accepted for publication.

Reference links

Increased discoverability of research and high quality peer review are ensured by online links to the sources cited. In order to allow us to create links to abstracting and indexing services, such as Scopus, CrossRef and PubMed, please ensure that data provided in the references are correct. Please note that incorrect surnames, journal/book titles, publication year and pagination may prevent link creation. When copying references, please be careful as they may already contain errors. Use of the DOI is encouraged.

Web references

As a minimum, the full URL should be given and the date when the reference was last accessed. Any further information, if known (DOI, author names, dates, reference to a source publication, etc.), should also be given. Web references can be listed separately (e.g., after the reference list) under a different heading if desired, or can be included in the reference list.

References in a special issue

Please ensure that the words 'this issue' are added to any references in the list (and any citations in the text) to other articles in the same Special Issue.
Reference style

Text: All citations in the text should refer to:

1. Single author: the author’s name (without initials, unless there is ambiguity) and the year of publication;

2. Two authors: both authors’ names and the year of publication;

3. Three or more authors: first author’s name followed by ‘et al.’ and the year of publication. Citations may be made directly (or parenthetically). Groups of references should be listed first alphabetically, then chronologically.

Examples: ‘as demonstrated (Allan, 2000a, 2000b, 1999; Allan and Jones, 1999). Kramer et al. (2010) have recently shown’

List: References should be arranged first alphabetically and then further sorted chronologically if necessary. Abbreviated words in journal titles should be followed by a full stop. More than one reference from the same author(s) in the same year must be identified by the letters ’a’, ’b’, ’c’, etc., placed after the year of publication.

Examples:

Reference to a journal publication:

Reference to a book:

Reference to a chapter in an edited book:

Journal Abbreviations Source

Abbreviations of journal titles should conform to those used by Index Medicus (http://www.nlm.nih.gov/tsd/serials/lji.html).

Video data

Elsevier accepts video material and animation sequences to support and enhance your scientific research. Authors who have video or animation files that they wish to submit with their article are strongly encouraged to include links to these within the body of the article. This can be done in the same way as a figure or table by referring to the video or animation content and noting in the body text where it should be placed. All submitted files should be properly labeled so that they directly relate to the video file's content. In order to ensure that your video or animation material is directly usable, please provide the files in one of our recommended file formats with a preferred maximum size of 50 MB. Video and animation files supplied will be published online in the electronic version of your article in Elsevier Web products, including ScienceDirect: http://www.sciencedirect.com. Please supply 'stills' with your files: you can choose any frame from the video or animation or
make a separate image. These will be used instead of standard icons and will personalize the link to your video data. For more detailed instructions please visit our video instruction pages at http://www.elsevier.com/artworkinstructions. Note: since video and animation cannot be embedded in the print version of the journal, please provide text for both the electronic and the print version for the portions of the article that refer to this content.

AudioSlides

The journal encourages authors to create an AudioSlides presentation with their published article. AudioSlides are brief, webinar-style presentations that are shown next to the online article on ScienceDirect. This gives authors the opportunity to summarize their research in their own words and to help readers understand what the paper is about. More information and examples are available at http://www.elsevier.com/audioslides. Authors of this journal will automatically receive an invitation e-mail to create an AudioSlides presentation after acceptance of their paper.

Supplementary data

Elsevier accepts electronic supplementary material to support and enhance your scientific research. Supplementary files offer the author additional possibilities to publish supporting applications, high-resolution images, background datasets, sound clips and more. Supplementary files supplied will be published online alongside the electronic version of your article in Elsevier Web products, including ScienceDirect: http://www.sciencedirect.com. In order to ensure that your submitted material is directly usable, please provide the data in one of our recommended file formats. Authors should submit the material in electronic format together with the article and supply a concise and descriptive caption for each file. For more detailed instructions please visit our artwork instruction pages at http://www.elsevier.com/artworkinstructions.

Submission checklist

The following list will be useful during the final checking of an article prior to sending it to the journal for review. Please consult this Guide for Authors for further details of any item.

Ensure that the following items are present:

One author has been designated as the corresponding author with contact details:

- E-mail address
- Full postal address
- Phone numbers

All necessary files have been uploaded, and contain:

- Keywords
- All figure captions
- All tables (including title, description, footnotes)
Further considerations

- Manuscript has been 'spell-checked' and 'grammar-checked'
- References are in the correct format for this journal
- All references mentioned in the Reference list are cited in the text, and vice versa
- Permission has been obtained for use of copyrighted material from other sources (including the Web)
- Color figures are clearly marked as being intended for color reproduction on the Web (free of charge) and in print, or to be reproduced in color on the Web (free of charge) and in black-and-white in print
- If only color on the Web is required, black-and-white versions of the figures are also supplied for printing purposes

For any further information please visit our customer support site at http://support.elsevier.com.

AFTER ACCEPTANCE

Use of the Digital Object Identifier

The Digital Object Identifier (DOI) may be used to cite and link to electronic documents. The DOI consists of a unique alpha-numeric character string which is assigned to a document by the publisher upon the initial electronic publication. The assigned DOI never changes. Therefore, it is an ideal medium for citing a document, particularly 'Articles in press' because they have not yet received their full bibliographic information. Example of a correctly given DOI (in URL format; here an article in the journal Physics Letters B):
http://dx.doi.org/10.1016/j.physletb.2010.09.059
When you use a DOI to create links to documents on the web, the DOIs are guaranteed never to change.

Online proof correction

Corresponding authors will receive an e-mail with a link to our online proofing system, allowing annotation and correction of proofs online. The environment is similar to MS Word: in addition to editing text, you can also comment on figures/tables and answer questions from the Copy Editor. Web-based proofing provides a faster and less error-prone process by allowing you to directly type your corrections, eliminating the potential introduction of errors. If preferred, you can still choose to annotate and upload your edits on the PDF version. All instructions for proofing will be given in the e-mail we send to authors, including alternative methods to the online version and PDF. We will do everything possible to get your article published quickly and accurately - please upload all of your corrections within 48 hours. It is important to ensure that all corrections are sent back to us in one communication. Please check carefully before replying, as inclusion of any subsequent corrections cannot be guaranteed. Proofreading is solely your responsibility. Note that Elsevier may proceed with the publication of your article if no response is received.

Offprints
The corresponding author, at no cost, will be provided with a personalized link providing 50 days free access to the final published version of the article on ScienceDirect. This link can also be used for sharing via email and social networks. For an extra charge, paper offprints can be ordered via the offprint order form which is sent once the article is accepted for publication. Both corresponding and co-authors may order offprints at any time via Elsevier’s WebShop (http://webshop.elsevier.com/myarticleservices/offprints). Authors requiring printed copies of multiple articles may use Elsevier WebShop’s ‘Create Your Own Book’ service to collate multiple articles within a single cover (http://webshop.elsevier.com/myarticleservices/booklets).

AUTHOR INQUIRIES

You can track your submitted article at http://help.elsevier.com/app/answers/detail/a_id/89/p/8045/.

You can track your accepted article at http://www.elsevier.com/trackarticle. You are also welcome to contact Customer Support via http://support.elsevier.com.

© Copyright 2014 Elsevier | http://www.elsevier.com
APPENDIX 2. MEASURING OUTCOMES IN THE IOWA GAMBLING TASK (IGT)

The Iowa Gambling task offers the researcher or clinician a variety of options for measuring outcome. Perhaps the most commonly cited in the research literature is net outcome for the total task (either monetary amount at end of task, number of cards picked from advantageous decks, or number of cards picked from advantageous decks minus those from disadvantageous ones). This measure allows for an overall estimation of the participant’s decision-making ability taking the task as a whole (e.g. across the full 100 card selections). The benefits of this approach include that it allows for a simple judgement of an individual’s ability and easy comparison of outcomes between groups of participants (see reviewed articles for examples). One clear disadvantage of this outcome measure however, is the lack of detail regarding choice behaviour over time.

Another common outcome measure derived from the IGT is to consider participants’ performance at different temporal stages of the task (e.g. across each of the five blocks of 20 card selections or comparing early versus late stages). Similar to the net outcome approach, this can take the form of number of choices from advantageous minus disadvantageous decks within any given block. This particular method has been adopted widely in the literature examining IGT performance and yields some clear benefits over the total net score alone. Firstly, it allows the examiner to observe any patterns in performance across the task. Bechara, Tranel and Damasio (2000) describe the implicit learning evident in healthy ‘normal’ individuals as demonstrated by an eventual shift towards so-called advantageous decks. By examining different stages of the task, the researcher may begin to see patterns of responding that give clues to the decision-making behaviour of the participant over time. Subsequently, this allows for consideration of the constituent processes at play throughout the different stages of the task. Given the known impact of alcohol-dependence on memory and aspects of learning, this would be of particular relevance to studies of any such populations and therefore has been included in the current review where this information was available.

In addition to the above outcome measures, many investigators have attempted to assess implicit ‘learning’ in the IGT. Dunn et al. (2006) provide a critical evaluation of so-called ‘somatic markers’ where performance on the IGT is linked to autonomic physiological responses (skin conductance), which are thought to indicate the anticipation of failure or punishment on the task and tend to be absent in people with damage to the ventromedial prefrontal cortex. It is commonly accepted that, as the IGT progresses, participants gain more explicit or conceptual knowledge of the reward schedules of each deck (see Brand et al., 2007). Continuing to make disadvantageous decisions in the latter stages of the IGT is

often considered ‘risky’ decision-making, owing to the assumed knowledge of the risks related to such choice behaviour. However, much debate exists in the research literature regarding the underlying processes of such behaviour owing to the low specificity of the IGT in this regard (Brand et al., 2007). Aspects of implicit learning were not directly related to the objectives of the current review and therefore have not been discussed.
APPENDIX 3. **TABLE OF EXCLUDED PAPERS**

<table>
<thead>
<tr>
<th>Study</th>
<th>Reason(s) for exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfonso et al. (2011)</td>
<td>Mixed substance-use disorder (SUD) group (alcohol, cocaine, cannabis)</td>
</tr>
<tr>
<td>Andrade & Petry (2012)</td>
<td>Mixed SUD group and <100% of those using alcohol met criteria for alcohol-dependence (AD)</td>
</tr>
<tr>
<td>Ashenhurst, Jentsch & Ray (2011)</td>
<td>Alcohol Use Disorder (AUD) group mixed AD (72.3%) and 'problematic drinkers'</td>
</tr>
<tr>
<td>Bechara et al. (2001)</td>
<td>Mixed SUD group</td>
</tr>
<tr>
<td>Bishara et al. (2009)</td>
<td>No alcohol group</td>
</tr>
<tr>
<td>Bjork et al. (2008)</td>
<td>Alcohol patients co-dependent on/using 1 or more other substances</td>
</tr>
<tr>
<td>Bjork, Smith & Hommer (2008)</td>
<td>Alcohol patients co-dependent on/using 1 or more other substances</td>
</tr>
<tr>
<td>Boettiger et al. (2007)</td>
<td>Explicit decision-making (DM) measure used</td>
</tr>
<tr>
<td>Brand et al. (2005)</td>
<td>Explicit DM measure used</td>
</tr>
<tr>
<td>Brand et al. (2009)</td>
<td>Explicit DM measure used</td>
</tr>
<tr>
<td>Campbell, Samartgis & Crowe (2013)</td>
<td>SUD status (other than alcohol) not reported/excluded</td>
</tr>
<tr>
<td>Chanraud et al. (2007)</td>
<td>No DM measure</td>
</tr>
<tr>
<td>Claus & Hutchison (2012)</td>
<td>Only 74% of AUD group met criteria for AD</td>
</tr>
<tr>
<td>Corbin & Cronce (2007)</td>
<td>Alcohol sample not assessed to have AD</td>
</tr>
<tr>
<td>Courtney et al. (2012)</td>
<td>Only 71.9% of AUD group met criteria for AD</td>
</tr>
<tr>
<td>Dao-Castellana et al. (1998)</td>
<td>No DM measure</td>
</tr>
<tr>
<td>Demir et al. (2002)</td>
<td>No DM measure</td>
</tr>
<tr>
<td>De Wilde et al. (2013a)</td>
<td>AUD group polysubstance-dependent on at least three other substances</td>
</tr>
<tr>
<td>Dem et al. (2006a)</td>
<td>History of polysubstance use/dependence in AUD sample</td>
</tr>
<tr>
<td>Dem et al. (2006b)</td>
<td>History of polysubstance use/dependence in AUD sample</td>
</tr>
<tr>
<td>Dom et al. (2007)</td>
<td>History of polysubstance use/dependence in AUD sample</td>
</tr>
<tr>
<td>Durazzo et al. (2006)</td>
<td>No DM measure</td>
</tr>
<tr>
<td>Fernandez-Serrano et al. (2010)</td>
<td>Mixed SUD group</td>
</tr>
<tr>
<td>Fishbein et al. (2007)</td>
<td>Explicit DM measure used</td>
</tr>
<tr>
<td>Flannery et al. (2007)</td>
<td>Explicit DM measure used</td>
</tr>
<tr>
<td>Fridberg, Gerst & Finn (2013)</td>
<td>Mixed SUD group</td>
</tr>
<tr>
<td>Fukunara et al. (2013)</td>
<td>Mixed SUD group</td>
</tr>
<tr>
<td>Gansler et al. (2000)</td>
<td>No DM measure</td>
</tr>
<tr>
<td>Georgemiller et al. (2013)</td>
<td>Proportion of AD subjects exhibited polysubstance dependence</td>
</tr>
<tr>
<td>Gonzalez, Bechara & Martin (2007)</td>
<td>History of polysubstance use/dependence in AUD sample</td>
</tr>
<tr>
<td>Gullo & Stieger (2011)</td>
<td>AUD group not dependent</td>
</tr>
<tr>
<td>Harvanko et al. (2012)</td>
<td>Alcohol abuse and AD combined into one category</td>
</tr>
<tr>
<td>Hildebrandt et al. (2006)</td>
<td>Substance-use status of AD group not explicitly addressed</td>
</tr>
<tr>
<td>Jokisch et al. (2014)</td>
<td>No explicit exclusion of polysubstance use/dependence</td>
</tr>
<tr>
<td>Jollant et al. (2007)</td>
<td>High psychiatric comorbidity in sample</td>
</tr>
<tr>
<td>Kamarajan et al. (2012)</td>
<td>Mixed SUD</td>
</tr>
<tr>
<td>Lee et al. (2013)</td>
<td>AD sample known to include participants with comorbid drug abuse</td>
</tr>
<tr>
<td>Lawrence et al. (2009)</td>
<td>Explicit DM measure used</td>
</tr>
<tr>
<td>Luhar et al. (2013)</td>
<td>DM measured in terms of reaction time rather than risky performance</td>
</tr>
<tr>
<td>Mazas, Finn & Steinmetz (2000)</td>
<td>History of substance-use other than alcohol in AD group</td>
</tr>
<tr>
<td>Mitchell et al. (2005)</td>
<td>Explicit DM measure used</td>
</tr>
<tr>
<td>Mitchell et al. (2007)</td>
<td>Explicit DM measure used</td>
</tr>
<tr>
<td>Rustemeier et al. (2014)</td>
<td>Explicit DM measure used</td>
</tr>
<tr>
<td>Stout et al. (2014)</td>
<td>Explicit DM measure used</td>
</tr>
<tr>
<td>Stout et al. (2005)</td>
<td>Mixed SUD group</td>
</tr>
<tr>
<td>Tanabe et al. (2013)</td>
<td>Mixed SUD group</td>
</tr>
<tr>
<td>Van der Plas et al. (2009)</td>
<td>Occasional other substance use in proportion of AD group</td>
</tr>
<tr>
<td>Vanes et al. (2014)</td>
<td>Explicit DM measure used</td>
</tr>
<tr>
<td>Yechiam et al. (2008)</td>
<td>No alcohol group</td>
</tr>
</tbody>
</table>
APPENDIX 4. QUALITY CRITERIA CHECKLIST

<table>
<thead>
<tr>
<th>Methodology Checklist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s):</td>
</tr>
<tr>
<td>Date:</td>
</tr>
<tr>
<td>Title:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scoring criteria:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes = 1 point, No/Unclear = 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The study context and rationale is clear</td>
<td></td>
</tr>
<tr>
<td>2. The aims of the study are specific and appropriate</td>
<td></td>
</tr>
<tr>
<td>Participants</td>
<td></td>
</tr>
<tr>
<td>3. Recruitment strategy is clearly defined</td>
<td></td>
</tr>
<tr>
<td>4. Ethical considerations are described (including informed consent)</td>
<td></td>
</tr>
<tr>
<td>5. ‘Caseness’ of participants is clearly defined</td>
<td></td>
</tr>
<tr>
<td>6. Control group included</td>
<td></td>
</tr>
<tr>
<td>7. Exclusion criteria are clear and applied to both cases and controls, where applicable</td>
<td></td>
</tr>
<tr>
<td>8. Cases and controls are selected from comparable populations, where applicable</td>
<td></td>
</tr>
<tr>
<td>Assessment</td>
<td></td>
</tr>
<tr>
<td>9. Methods clearly described to allow for replication</td>
<td></td>
</tr>
<tr>
<td>10. Potential confounding factors are acknowledged and adequately controlled for in the design and analysis</td>
<td></td>
</tr>
<tr>
<td>Analysis and Results</td>
<td></td>
</tr>
<tr>
<td>11. Descriptive statistics are presented</td>
<td></td>
</tr>
<tr>
<td>12. A priori sample size calculation described</td>
<td></td>
</tr>
<tr>
<td>13. Analysis is appropriate to the research aims</td>
<td></td>
</tr>
<tr>
<td>14. Effect sizes are reported for measures of decision-making</td>
<td></td>
</tr>
<tr>
<td>15. Confidence intervals are stated for outcomes related to decision-making</td>
<td></td>
</tr>
<tr>
<td>Conclusions</td>
<td></td>
</tr>
<tr>
<td>16. Results are clearly summarised in relation to the original aims/hypotheses</td>
<td></td>
</tr>
<tr>
<td>17. Any conclusions are consistent with the results of the study and substantiated with relevant evidence</td>
<td></td>
</tr>
<tr>
<td>18. Issues of generalisability and implications of the research are discussed</td>
<td></td>
</tr>
<tr>
<td>19. Limitations are acknowledged</td>
<td></td>
</tr>
</tbody>
</table>

Quality index (total score)
APPENDIX 5. QUALITY RATINGS TABLE

| Study | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | Total score |
|-------------------------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|---------------|
| Ando et al. (2012) | + | ? | ? | + | + | - | + | + | + | + | + | + | + | + | + | + | 10 |
| Cordovil De Sousa Uva et al. | + | + | + | + | + | + | ? | + | + | + | - | + | - | + | + | + | + | + | 16 |
| Fein, Klein Finn (2004) | + | + | + | + | + | + | + | + | + | - | - | - | + | + | + | + | + | 15 |
| Kim, Sohn & Jeong (2011) | + | + | ? | + | + | + | + | + | + | + | - | + | + | + | + | + | + | + | 14 |
| Loeber et al. (2009) | + | + | ? | + | + | + | + | + | ? | - | + | - | - | + | - | - | + | - | + | 12 |
| Miranda et al. (2009) | + | + | + | + | + | + | + | + | + | ? | + | + | - | + | - | + | + | + | 16 |
| Noel et al. (2007) | + | + | ? | + | + | + | + | + | ? | + | + | + | + | - | + | - | + | - | + | 12 |
| Noel et al. (2011) | + | + | ? | + | + | + | + | + | ? | + | + | + | + | + | - | - | + | + | + | 12 |
| Salgado et al. (2009) | + | + | ? | + | + | + | + | + | + | + | - | - | - | + | + | + | + | + | 15 |
| Zorlu et al (2013b) | + | + | ? | + | + | + | + | + | ? | + | + | + | + | - | - | - | + | + | + | 14 |

Items 1-19 correspond with Figure X (Quality Criteria Checklist) – Yes = +, No = -, Unclear = ?
APPENDIX 6. CALDICOTT APPROVAL

Lothian NHS Board

Ms Louise Young
Trainee Clinical Psychologist
Lothian Substance Misuse Directorate
North East Recovery Hub
Turning Point Leith
5 Links Place
Edinburgh, EH6 7EZ

Dear Ms Young

CALDICOTT APPLICATION 1401

Thank you for the information supplied

<table>
<thead>
<tr>
<th>Request received from</th>
<th>Ms Louise Young</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary of proposal</td>
<td>The predictive capacity of the ACE-III. Can a cognitive screen help identify those at greater risk of relapse and drop out from treatment for alcohol dependency</td>
</tr>
<tr>
<td>Patient identifiable information requested</td>
<td>Age, Date of Birth, Gender. Other information on treatment outcomes, treatment variables (inc substance use status, socio-economic status)</td>
</tr>
<tr>
<td>Approved</td>
<td>YES</td>
</tr>
<tr>
<td>Advice</td>
<td>Only approved if data is completely anonymised and tabulated. To be transferred to SPSS within the NHS and then directly to a restricted access file on an encrypted University of Edinburgh laptop on an NHS site under appropriate supervision.</td>
</tr>
</tbody>
</table>

Yours sincerely

Professor Alison McCallum
Director of Public Health & Health Policy
APPENDIX 7. ETHICAL APPROVAL LETTER

Louise Young
Trainee Clinical Psychologist

Dear Louise,

Application for Level 1 Approval

Re: The predictive capacity of the ACE-III: Can a cognitive screen predict treatment engagement and relapse following inpatient detoxification for alcohol dependency?

Thank you for submitting the above research project for review by the Section of Clinical Psychology Ethics Research Panel. I can confirm that the submission has been independently reviewed and was approved on the 25th September 2014.

Should there be any change to the research protocol it is important that you alert us to this as this may necessitate further review.

Yours sincerely,

[Signature]

Kirsty Gardner
Secretary
Clinical Psychology