This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use:

- This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated.
- A copy can be downloaded for personal non-commercial research or study, without prior permission or charge.
- This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author.
- The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author.
- When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given.
CLAIMING A WILDERNESS: ATLANTIC GAELS AND THE ISLAND NORSE

KRISTJÁN AHRONSON

PHD DEGREE
THE UNIVERSITY OF EDINBURGH
2005
ABSTRACT

This thesis reviews archaeological material, medieval literature, place-names and palaeoenvironmental data cited in explorations of the early Viking Age North Atlantic area, and proposes a reassessment of chronology for the earliest settlement of Iceland.

After analysing previous scholarship and discussing the problems inherent in study of early North Atlantic settlement, it is suggested that a multi-disciplinary approach is needed and can be articulated (by drawing upon Karl Popper's ideas) to foster a fruitful conversation between disciplines. This methodology for engaging with multi-disciplinary materials is then presented. Three sections follow, tackling in turn three areas of Viking Age scholarship that have caused difficulty and frustration in the past: the toponymy of Hebridean Pap-islands (Chapter Three); the chronology of cave construction, occupation and human-environmental interactions at Seljaland in southern Iceland (Chapters Four, Five, Six, and Seven); and the Írland et mikla tradition of medieval literature, including discussion of the views of the largely forgotten nineteenth-century scholar Eugène Beauvois (Chapter Eight). Couched in a Popperian methodology, the new archaeological and palaeoenvironmental research that forms the bulk of the thesis is integrated with small-scale studies of place-names and medieval literature. Tephrochronology plays a large part in the Seljaland section. Chapter Six, for instance, introduces the tephra contours technique for study of past environments.

The thesis concludes with a new proposal for the first settlement of Iceland and its connections to Atlantic Scotland, arrived at by considering the archaeological and tephra deposits at Seljaland, in conjunction with art-historical, toponymic and literary material. The thesis proposes that southern Iceland's Seljaland caves were built c. AD 800 – earlier than the traditional Norse foundation of settlement on the island – and that cross sculpture in these caves suggests a connection with Gaelic monasticism found across the Scottish islands in this period.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT AND DECLARATION</td>
<td>i-ii</td>
</tr>
<tr>
<td>DEDICATION AND ACKNOWLEDGEMENTMENTS</td>
<td>iv-vii</td>
</tr>
<tr>
<td>LIST OF ILLUSTRATIONS, TABLES AND ABBREVIATIONS</td>
<td>viii-xviii</td>
</tr>
<tr>
<td>CHAPTER ONE</td>
<td>1-6</td>
</tr>
<tr>
<td>Atlantic Gaels, the island Norse and the problem of papar</td>
<td></td>
</tr>
<tr>
<td>CHAPTER TWO</td>
<td>7-32</td>
</tr>
<tr>
<td>A conversation between disciplines</td>
<td></td>
</tr>
<tr>
<td>CHAPTER THREE</td>
<td>33-106</td>
</tr>
<tr>
<td>Who were papar? A case study of Hebridean* Pap-island place-names*</td>
<td></td>
</tr>
<tr>
<td>CHAPTER FOUR</td>
<td>107-46</td>
</tr>
<tr>
<td>Site selection and archaeological survey at Seljaland, Vestur-Eyjafjallahreppur, Iceland*</td>
<td></td>
</tr>
<tr>
<td>CHAPTER FIVE</td>
<td>147-82</td>
</tr>
<tr>
<td>Dating the cave</td>
<td></td>
</tr>
<tr>
<td>CHAPTER SIX</td>
<td>183-201</td>
</tr>
<tr>
<td>Tephra contours: a new method for studying past environments*</td>
<td></td>
</tr>
<tr>
<td>CHAPTER SEVEN</td>
<td>202-69</td>
</tr>
<tr>
<td>The crosses of a desert place?</td>
<td></td>
</tr>
<tr>
<td>CHAPTER EIGHT</td>
<td>270-313</td>
</tr>
<tr>
<td>Irland et mikla, Eugène Beauvois and the imagining of the St Lawrence Irish*</td>
<td></td>
</tr>
<tr>
<td>CHAPTER NINE</td>
<td>314-6</td>
</tr>
<tr>
<td>To conclude</td>
<td></td>
</tr>
<tr>
<td>REFERENCES</td>
<td></td>
</tr>
<tr>
<td>References (Included at the end of each chapter)*</td>
<td></td>
</tr>
<tr>
<td>APPENDIX</td>
<td></td>
</tr>
<tr>
<td>Published papers by the author</td>
<td></td>
</tr>
</tbody>
</table>
DEDICATION

À ma famille
a fy nghariad i Lowri Angharad
ACKNOWLEDGEMENTS

General
I give thanks to my supervisory team of Professor William Gillies, Dr Andy Dugmore and Dr Fraser Hunter for their advice, vision, criticisms and steadfast support - they have made the thesis possible. Additionally, I am grateful to Alex Woolf (now St Andrews) for his crucial early supervision and his later comments, which have improved the work. Numerous discussions with Professor Thomas Charles-Edwards during my time at Jesus College, Oxford, pointed me towards new avenues for research and refined my critical rigour. The National Museums of Scotland have provided an exceptionally supportive environment in which to complete this study – I am indebted here especially to Dr Fraser Hunter as well as to Dr David Clarke, as Keeper of that department. I am also grateful to Ian MacKenzie (Edinburgh) and Craig Angus (NMS) for assistance with illustrations – and generally to the staff and students in Celtic and Scottish Studies and the Department of Archaeology at the National Museums of Scotland. The tireless editing and support of Lowri Angharad Hughes sustained the thesis.

Non-specialist Proofreading
Ken Ahronson, Phil McLean, Deryck Aubrey, Andy Newsham, Tönno Jonuks and Sam Thompson very kindly commented on draft chapters and helped me to work towards my goal of accessible scholarship.

Chapter One
Dr Jonathan Henderson helpfully contributed his specialist knowledge of bird migrations to the ideas of this chapter.

Chapter Two
This chapter was written in response to a challenge from Professor Ian Simpson of the University of Stirling – I am indebted to him for this. The realisation of this 'conversation between disciplines' was possible only with the assistance of my supervisory team, practicing inter-disciplinary scholars that they are, in articulating the model of science to which this thesis aspires. Attila Tanyi of the Central European University in Budapest generously challenged and commented on my philosophy.

Chapter Three
The name inventory in this chapter was possible thanks to Dr Barbara Crawford and Professor Ian Simpson’s invitation to undertake this task as part of their Scottish Papar Project – I am grateful for this and especially to Dr Simon Taylor for his guidance. Peder Gammeltoft provided much specialist advice and has kindly commented on a draft. Exceptionally, he has recently turned his own pen to the subject and kept me abreast of this work. Rachel Craig helpfully translated Neil Morrison’s Gaelic poetry (included under Pabbay (HAR)) and I am happy to thank, for their advice and assistance, Dr Arne Kruse, Dr Ian Fraser, Ian Fisher of the RCAHMS, and Chris Fleet of the NLS Map Library.
Seljaland Section (Chapters Four to Seven)

Rory McTurk (Leeds) and Professor Gísli Pállsson (Iceland) were crucial in fostering my inter-disciplinary interest in the Icelandic past. Later, Mjöll Snæsdóttir, Guðrún Sveinbjarnardóttir and the Pjöðminjasafn Íslands (National Museum of Iceland) brought me into the island’s archaeological community. Crucially, fieldwork at Seljaland was only possible because of the steadfast encouragements of Hálfdán Ómar Hálfdanarson and Kristján Ólafsson of Seljaland. Additionally, Þórarinn Tómasson (i Skógarum) helpfully met with us at the Skógar Museum and shared some of his impressive knowledge of the area.

Preliminary 2001 fieldwork was assisted by Dr Andy Dugmore, Professor Tom McGovern and Dr Sophia Perdikaris — as well as their students from the City University of New York. This preliminary assessment was carried out in parallel with magnetic susceptibility research by Dr Martin Kirkbride and Donald Ashburn, both of the University of Dundee.

2001 Field Team: Guðmundur H Jónsson (co-director), Florian Huber (excavation and survey), Alan Macniven (assistance) and Raymond Meaney (assistance).

Post-excavation: Dr Kate T Smith (tephrochronological analysis).

Institutional support: Pjöðminjasafn Íslands (equipment), Geography at the University of Edinburgh (logistics).

2002 Field Team: Dr Jessica Bäcklund (co-director), Dr Kate T Smith (tephrochronology), Tómino Jónuks (tephra contour) and Kerry-Anne Mairs (field illustrations).

Post-excavation: Dr Jessica Bäcklund (sample column processing), Ian Scott (publication illustrations), Gardiner Molloy (advice on stone working) and Chris Doherty of the RLAHA at Oxford (geological analysis).

Institutional support: Páll Marvin Jónsson of Haskóli Íslands á Vestmannaeyjum (equipment, accommodation and facilities), National Museums of Scotland (equipment), Geography at the University of Edinburgh (equipment and logistics), Pjöðminjasafn Íslands (equipment), the people of Seljaland (accommodation) and Fornleifastofnun Íslands (logistics).

I am grateful to the sympathetic work of those responsible for both documentary films made in 2002: the Dutch team of Paul Klotz and Merel Brandon (premiered 1 May 2003), as well as Elín Hirst of Icelandic National Television (broadcast 1 September 2002).

Chapter Five

Additional thanks must go to Peter Hill and Anthony Newton for tephra advice — but most importantly to Guðrún Larsen for her comments and analysis.

Chapter Seven

The sculpture collection, presentation and analyses here are indebted to Ian Scott (methodological guidance and publication illustrations), Pauline Scott and to my 2001 and 2002 field teams, particularly to Kerry-Anne Mairs (field illustrations), Dr Jessica Bäcklund (co-director 2002) and Tómino Jónuks (assistance with photographic lighting). Kristján Ólafsson crucially loaned the electrical equipment necessary for our work and the Geography department of the University of Edinburgh provided the logistical
framework. Ian MacKenzie very helpfully assisted in scanning and editing digital images.

Professor Ann Dooley inspired the work in this chapter. Furthermore, conversations with Professor Thomas Charles-Edwards on the subject of cross sculpture provided important insight, while Ian Fisher’s support and guidance has been essential to the analyses presented here. Kristinn Schramm kindly proofed my translations.

Chapter Eight
I was fortunate to meet with Professor Emeritus Hermann Pálsson early in my Edinburgh studies – this chapter, an early form of which I was invited to present to the British Association for Canadian Studies (BACS), profited from discussion of my ideas with and, more importantly, from listening to Professor Pálsson. Importantly, Professor Richard Sharpe of Oxford later pointed me towards the otherwise unknown Beauvois, and Peter Allmond of the Bodleian Library kindly obtained those of Beauvois’ articles which had recently and mysteriously escaped the stacks – including his crucial 1875 paper. Thus introduced to Beauvois, Professor Andrew Wawn (of Leeds) and Professor Donald Meek independently sparked my efforts to contextualise the Chevalier-scholar amongst his contemporaries. BACS conferences provided a forum in which to work through these ideas. Lastly, Professor Carole Hillenbrand introduced me to Norman Sicily while Dr Jeremy Johns and Ben White supplied specialist knowledge on the medieval Arabic world.

Awards
The research undertaken in this thesis was supported by an Overseas Research Scholarship and a Special Faculty Group Studentship from Arts, Divinity & Music as well as a Blackie Research Award and two Canadian High Commission Edward Boyle-Alberta Research Awards – and also by a Sir John Rhys Studentship at Jesus College, Oxford. Additionally, the National Museums of Scotland and the department of Celtic and Scottish Studies have provided key support.

I apologise to those I have overlooked in this list.
LIST OF ILLUSTRATIONS, TABLES AND ABBREVIATIONS

Illustrations

Illustr 1.1 The travels of the Irish *peregrini* in the fifth to eighth centuries and the settlements and monasteries which they founded. Taken from Cunliffe (2001: 472).

Illustr 3.1 Distribution of *Pap*-names across Atlantic Scotland. Hebridean *Pap*-island names are indicated in red. Note the *pap*-element occurs both further south (e.g. Mull, Man) and north, in the Faroe Islands and Iceland. Adapted from map circulated at 15 March 2003 Scottish *Papar* Project meeting in St Andrews.

Illustr 3.2 Detail of Kinnaird's 1783 estate plan – the arrow locates *Papis Holm*.

Illustr 3.3 Pab(b)ay islands studied. Top: Pabbay (Harris). Middle left: Pabbay (Strath). Middle right: Pabay (South Uist). Bottom: Pabbay (Barra). Scale 1:50000. Taken from Ordnance Survey Landranger 18, 31 and 32. Crown copyright.

Illustr 4.1 ABOVE: The geology of Iceland. As presented in the inset, 'Holocene sediments' include soft sandstone (lithified sand dunes) while 'Late Quaternary bedrock' includes palagonite tuff. Taken from Landmælingar Íslands 1:50000 topographic sheet, fifth edition 1991. BELOW: Distribution of artificial caves across Iceland. Note how the extreme concentration of caves in southern Iceland is *not* limited by the geology of the island (i.e. the Holocene lithology of southeastern and northeastern Iceland are comparable to those of southern Iceland – yet a concentration of cave sites is absent from the Southeast and Northeast). Adapted from Hjartarson *et al* (1991: 12).

Illustr 4.2 The south coast of Iceland, looking NE from the Westmen Islands. The arrow locates Seljaland.

Illustr 4.3 Location of Seljaland in southern Iceland. Arrow indicates north. Blue indicates water, light brown indicates sandur plain and green indicates the land above the escarpment edge (visible above in illustr 4.2). Arrow indicates north. Adapted from Simpson *et al* (Simpson *et al.* 2001: 178).

Illustr 4.5 Study area. Scale 1:10000.

Illustr 4.6 Aerial photograph of study area with the following field boundaries located: SLJ 1, SLJ 7, SLJ 8, SLJ 9, SLJ 10, SLJ 11, SLJ 12, SLJ 13, SLJ 17, SLJ 20, SLJ 22, SLJ 33. Scale 1:10000.

Illustr 4.7 SLJ 1: Possible field boundary. This feature is visible as a slight ridge in the landscape. Scale 1:400.

Illustr 4.8 SLJ 1: Looking E. The figure (Guðmundur Helgi Jónsson, 1.96m) provides scale.

Illustr 4.9 SLJ 7: Turf field boundary. Boundary wall runs for approximately 77m, is between 1.5-2.0m wide and survives up to a height of c. 1m. No visible stones. Approximate location given on aerial photograph (4.14). Note that the north end of this boundary wall is 6m from the south side of structure SLJ 6. Scale 1:800.

Illustr 4.10 SLJ 7: Looking W. 1m scale (same scale throughout).

Illustr 4.11 SLJ 17: Stone field boundary. Barbed wire and fallen post indicates modern (re)use of this boundary. Looking NW.
Illustr 4.12 SLJ 20: Stone field boundary. 0.20-0.30m in height. Looking W.

Illustr 4.13 SLJ 22: Turf boundary wall. Similar in dimensions to SLJ 7 and SLJ 8. Looking S.

Illustr 4.14 SLJ 33: Turf field boundary. Looking N.

Illustr 4.15 SLJ 36: Redirected stream (?). Taken from GPS 47, looking S.

Illustr 4.16 Aerial photograph of study area, locating all surveyed features. Field boundaries (the subject of illustration 4.06) are unnumbered, while all other features are identified by their SLJ number. Scale 1:10000.

Illustr 4.17 SLJ 19: Cairn. 0.8m in height. Scale 1:80.

Illustr 4.18 SLJ 19: Looking N.

Illustr 4.19 SLJ 37: Cairn. Looking N.

Illustr 4.20 SLJ 38: Cairn. Looking N.

Illustr 4.21 SLJ 39: Cairn. Looking N.

Illustr 4.22 SLJ 2: Possible sheep house. Stone walls survive up to a height of 1.5m. Inside of structure filled with collapsed stone, wooden beams and occasionally corrugated iron, probably from roof. Scale 1:160.

Illustr 4.23 SLJ 2: Looking E.

Illustr 4.24 SLJ 2: Looking NE.

Illustr 4.25 SLJ 3: Stone structure. Walls survive up to a height of c.1m. Overgrown with a few visible stones. The area in front of the entrance is raised and contains some stones. Scale 1:160.

Illustr 4.26 SLJ 3: Looking SW.

Illustr 4.27 SLJ 4: Stone structure. Walls survive up to a height of 1m. Very overgrown. Because of collapsed stones, entrance unclear. Scale 1:160.

Illustr 4.28 SLJ 4: Looking W.

Illustr 4.29 SLJ 5: Stone structure. Walls survive up to a height of 0.30-0.40m. Visible stones are planned. Very overgrown and difficult to identify extent of inner walls (shown by dotted line). Scale 1:160.

Illustr 4.30 SLJ 5: Looking E.

Illustr 4.31 SLJ 6: Stone structure. Walls survive up to a height of c.1m. Overgrown with visible stone walls. Occasional corrugated iron. Southern half of structure contains possible collapse or some kind of division within the structure. Scale 1:160.

Illustr 4.32 SLJ 6: Looking NW.

Illustr 4.33 SLJ 6: Looking N.

Illustr 4.34 SLJ 14: Sheep house and hay cellar (fjarhus?). Walls survive up to a height of 3.3m. Area A deeper than the rest of the structure. Area B divided by a 0.50m high stone wall. Scale 1:200.
Illustr 4.35 SLJ 14: Looking S.

Illustr 4.36 SLJ 14: Looking SW.

Illustr 4.37 SLJ 14: Looking SE.

Illustr 4.38 SLJ 15: Sunken structure. Feature reaches a depth of 1m. Completely overgrown. No visible wall structure but 'wall mound' is in line with SLJ 14 and 16 (and lies directly to the NW of SLJ 14). Scale 1:160.

Illustr 4.39 SLJ 15: Looking W.

Illustr 4.41 SLJ 16: Looking W.

Illustr 4.42 SLJ 21: Small turf structure. Turf walls survive up to a height of c.0.45m. Scale 1:160.

Illustr 4.43 SLJ 21: Looking NE.

Illustr 4.45 SLJ 23: Looking W.

Illustr 4.46 SLJ 24: Large turf and stone structure. Walls surviving up to a height of 1.8m. Scale 1:200.

Illustr 4.47 SLJ 24: Looking S.

Illustr 4.48 SLJ 24: Looking S.

Illustr 4.49 SLJ 24: Looking S.

Illustr 4.50 SLJ 26: Sunken feature. Scale 1:80.

Illustr 4.51 SLJ 26: Looking NNW.

Illustr 4.52 SLJ 27: Three stone, turf and concrete structures. Walls survive up to a height of 1.8m. Scale 1:400.

Illustr 4.53 SLJ 27: Western structure, looking NE.

Illustr 4.54 SLJ 27: Middle structure, looking NE.

Illustr 4.55 SLJ 27: Eastern structure, looking NE.

Illustr 4.56 SLJ 28: Three related turf and stone structures. Walls survive up to a height of 1.5m. Scale 1:400.

Illustr 4.57 SLJ 28: Looking SW.

Illustr 4.58 SLJ 29: Turf and stone as well as turf structures (shieling?). Overgrown walls survive up to a height of 0.6m. Southern structure is of turf and stone, the northern three structures are of turf. Scale 1:400.
Illustr 4.59 SLJ 29: Southern group, looking E.

Illustr 4.60 SLJ 29: Northern group, looking E.

Illustr 4.61 SLJ 32: Stone structure. Stone walls survive up to a height of 0.7m. Large concrete block sitting in middle of the structure – probably not collapse. Scale 1:200.

Illustr 4.62 SLJ 32: Looking NW.

Illustr 4.63 SLJ 18: Subrectangular stone structure (Krosshóll 'chapel'). Stone walls surviving up to a height of 0.50-0.60m (1-2 rows of stones). Mostly collapsed. Some rocks, present before construction, may have been incorporated into the structure. Scale 1:160.

Illustr 4.64 SLJ 18: Looking E.

Illustr 4.66 SLJ 30: Looking N.

Illustr 4.67 SLJ 30: Looking N.

Illustr 4.68 SLJ 25 (Seljalandshellar) and SLJ 35 (Kverkarhellir) plans. The crosshair at the eastern wall of the Kverkarhellir cave mouth indicates the site of cross KV, and the numbers on the Seljalandshellar plan indicate crosses SLJ 1-19 as well as the four mid-sized crosses represented by X2. The cross sculpture is discussed in Chapter Seven. The ground surface inside Kverkarhellir has been cleaned, recorded and planned, while the Seljalandshellar plan is drawn from the published illustration in Hjartarson et al (1991: 246). Drawn by Ian Scott.

Illustr 4.69 SLJ 25: Three-chambered artificial cave (Seljalandshellar). Photograph looking N.

Illustr 4.70 SLJ 25: Looking NW.

Illustr 4.71 SLJ 35: Artificial cave (Kverkarhellir). Potentially two (or three) phases of construction, the oldest being a small chamber (height 2m, width 3m, depth 3m). In the foreground, a path runs from SLJ 30 (from which the photograph was taken) to the mouth of the cave, in shadow at the base of the left side of the rock outcrop. Note the steep descent from the cave mouth. Photograph looking SE.

Illustr 4.72 SLJ 34: Artificial cave (Prashellir). Entrance height 1m and width 1.5m, widening into a large low-roofed chamber. Sediments have accumulated to a substantial depth (perhaps 1+m). Photograph looking N.

Illustr 4.73 SLJ 31: Wood fragment nailed to rock-face, 0.15m in length. Nails are modern. Photograph looking E.

Illustr 4.74 With its small eroded structure, Krosshóll is the highest point in the photograph (though to the east of the study area, the land rises steeply and reaches greater elevation).

Illustr 4.75 Toolmarkings from the east wall in the oldest section of Kverkarhellir (SLJ 35).

Illustr 4.76 Toolmarkings from the east corner of the north wall of the Seljalandshellar (SLJ 25) middle chamber. Scale divided into 0.01m and 0.05m increments.

Illustr 5.1 Kverkarhellir cave mouth, looking S from site SLJ 30. Photograph by Tom McGovern.
Illustr 5.2 Midway into cave, looking towards rear. Photograph by Tom McGovern.

Illustr 5.3 Detail of E wall of cave mouth. Rock-cut cross is obscured by shadows in top of image.

Illustr 5.4 Structural features inside cave, looking towards rear.

Illustr 5.5 Kverkarhellir cave and proposed apron of waste. The debris in this model has been offset to avoid the pathways associated with Kverkarhellir (one running upslope to the SE, another to the nearby feature SLJ 30 to the W, and another downslope to the N). In this model, an average thickness of 0.6m was assumed, though one would expect thickening in the central area of deposit and thinning at the edges. Furthermore, this average thickness must be an underestimate as this waste material would be loose rather than compacted as solid rock. Additionally, the proposed subtriangular shape for the waste deposit is only one of the possible debris forms. As a simple calculation, the depositional model illustrated here nevertheless permits quantification of the sorts of results to be expected. Scale 1:400. Plan of Kverkarhellir drawn by Ian Scott.

Illustr 5.6 ABOVE: Location of trenches near Kverkarhellir.
BELOW: Sketch profile of northwest-facing section showing the mouth of Kverkarhellir and the steep descent (which leads to the sandur plain), as well as the predicted apron of waste and a generalised stratigraphic profile for tephra layers at Seljaland. The inset diagram is the expanded reference profile (note the different scale) for Seljaland area tephra layers (Dugmore 1987). Compare the idealised model illustrated here with the results presented in illustrations 5.11-3.

Illustr 5.7 On-site processing of sampled material. Photograph taken in August 2002.

Illustr 5.8 Detail of the north-facing section of trench D3. From top down, including tephrae produced by the following eruptions: K920 (black), V870 (upper grey is mixed and perhaps slopewash; lower grey is airfall), and a prehistoric Katla (?) deposit (thick black). Photograph taken in September 2001.

Illustr 5.9 North-facing section of trench D1. Taken in September 2001.

Illustr 5.10 Detail of layers D1E (Katla tephra) and D1G (V870?). Taken in September 2001.

Illustr 5.11 Stratigraphy of Kverkarhellir trenches D3 and D1, and a reference profile for Seljalandsheiði from Dugmore (1987). The tephra layers are labelled with a two-element system: volcanic system and date (H 1947 for Hekla AD 1947). Volcanic systems are abbreviated to K for Katla, H for Hekla, E for Eyjafjallajökull and V for Veïðivötn. The SILK prefix refers to a silicic tephra layer from Katla (Larsen et al. 2001). Tephra layers from historical time have calendar ages and prehistoric dates are stated in 14C years BP (bórarinsson 1954; 1975; 1967; Dugmore 1987; Grönvold et al. 1995).

Illustr 5.12 Trench D4 detail of K920/V870 couplet in the west-facing section. Photograph with overlay.

Illustr 5.13 Trench D4 west-facing section, including debris-type context N/O. Original photograph by Paul Klotz.

Illustr 5.14 Sketches of very angular very coarse pebble and small cobbles sharing comparable angular cavities from the debris-type context N/O, labelled a (top left), b (top right) and c (bottom). Scale 1:2. Drawn by Kerry-Anne Mairs.

Illustr 5.15 Chris Doherty's analysis of a ‘tool marked’ very angular small cobble. Scale 1:2.

Illustr 5.16 Context weights from trench D4 sample column (0.25m x 0.25m). Note how context N/O, the debris-type deposit, stands out as massive alongside other contexts from the sample column.
Illustr 5.17 ABOVE: Context D4N/O particle size distribution by percentage of total weight, sorted by 10cm spits and including context total as well as the N/O 'special' sample. Note the coherency of context N/O between sample column totals and the 'special' sample, especially in the values for particles ranging between 5mm and 19mm as well as, to a lesser degree, for particles greater than 19mm (see below for further illustration of the coherency of this fraction throughout context N/O).

BELOW: Context N/O particle size distribution of the 5-19mm fraction, sorted by 10cm spits and including context total as well as the N/O 'special' sample. Graphing this fraction is only made meaningful since the 5-19mm fraction from all these samples are of comparable proportions of each entire sample. This graph reinforces the conclusion of coherency for context N/O arrived at above.

Illustr 5.18 D5 north-facing section, including thick coarse black tephra layers deposited in the centuries preceding the landnám eruption of the Veilivötn system. 'Eroded' material, similar in character and age to samples #1 and #2, may be seen in the upper left corner of the image. Photograph taken in August 2002.

Illustr 5.19 Particle size distribution by percentage of total weight of erosion deposits from trench D5 and debris-type context N/O from trench D4. Key differences between eroded and debris-type samples may be seen in the values for particles ranging between 5mm and 19mm.

Illustr 6.1 Map locating Ashburn et al’s profiles 1-7. Adapted from Ashburn et al (Ashburn et al. 2003: 83). Those profiles within the 100-200m contour lines (i.e. 1-4) were found to have a distinctive lightening of colour in early ninth-century sediments – this colour change is widespread in post-landnám sediments and associated with human impacts upon the environment. Indicated in red, the tephra contours trenches A1 and A2 were sited adjacent to Ashburn et al’s profile 3.

Illustr 6.2 Martin Kirkbride (left) and Donald Ashburn (right) measuring the magnetic susceptibility of sedimentary layers along a section face at Seljaland (128 metres above mean sea level). This is the same site at which the tephra contours technique was first applied in 2001 and 2002.

Illustr 6.3 Modelled vegetation structure for lowland areas of Seljaland at the time of the deposition of the V870 and K920 tephras. Taken from Dugmore and Simpson’s composite presentation of historic vegetation models (Dugmore & Simpson in press: fig 6).

Illustr 6.4 K920 tephra surface (area A1). Looking north.

Illustr 6.5 V870 tephra surface (area A1). Looking north.

Illustr 6.6 Detail of a feature in the K1500 tephra layer (area A1) interpreted to be the trunk cast of a tree.

Illustr 6.7 Area A2 prior to excavation. Looking southeast.

Illustr 6.8 Area A2 under excavation. Looking east.

Illustr 6.9 LEFT: Surface of K920 tephra layer. ‘Holes’ in the tephra horizon are outlined – a groundlevel understorey of vegetation probably prevented the deposition of K920 tephra within these features. A single 5cm diameter tree cast is identified by asterix. Numbers indicate point elevations, given in centimetres, with the lowest points assigned a value of 0. Arrow indicates north.

RIGHT: K920 tephra layer (markers for elevation points are included without readings).

Illustr 6.10 LEFT: Surface of the V870 tephra layer. ‘Depressions’ in the tephra horizon are outlined and infilled – and were found to form linear patterns running across the excavation area. Since they are regularly spaced and arranged in linear patterns, these features may be proposed to preserve animal tracks. Numbers indicate point elevations, given in centimetres, with the lowest points assigned a value of 0 (elevations were also taken for the ‘depressions’ in the tephra horizon – these readings are indicated by overlap of elevation reading with the relevant feature).

RIGHT: V870 tephra layer (markers for elevation points are included without readings).
Illustr 6.11 Section and oblique views of the modern landsurface, K1500 tephra layer, and K920 tephra layer. Looking south.

Illustr 6.12 Oblique views of the K1500 tephra layer (1m x 3m) and K920 tephra layer (2m x 3m). Looking west.

Illustr 6.13 Oblique views of 1m x 3m areas of the K1500 tephra layer, K920 tephra layer and V870 tephra layer. Looking southwest.

Illustr 6.14 Detail of a feature in the K920 tephra layer interpreted to be the trunk cast of a tree. This tree cast is identified by a red asterisk in illustration 6.9.

Illustr 6.15 V870 tephra layer under excavation over a 1m x 3m area. Note the linear pattern of 'depressions' in the tephra layer. Looking west.

Illustr 6.16 V870 surface. Looking west.

Illustr 6.17 Detail of a linear pattern of 'depressions' in the V870 tephra. Looking west.

Illustr 6.18 Detail of 'depressions' in the V870 tephra. In the section, note how the K920 tephra layer is broken at this location (perhaps by post-depositional reworking of tephra into soils). Looking west.

Illustr 7.1 Cross-marked bales at Seljaland. Photo: Florian Huber.

Illustr 7.2 Illustration of cross VE1 (Papakross) from Hetta, Heimaklettur, Westmen Islands. Scale 1:10. Drawn by Ian Scott.

Illustr 7.3 Modern stave church on Heimaey.

Illustr 7.4 The Celtic Cross pub in Reykjavik.

Illustr 7.5 Distribution of early Christian sites with cross sculpture in the portion of Argyll bounded by the dotted line. Illustration taken from Campbell’s study of cross sculpture (Campbell 1987: 108).

Illustr 7.6 Distribution of incised crosses with expanded terminals, marked by black points (other variant terminals marked by open points and crosses). Illustration taken from Campbell’s study of cross sculpture (Campbell 1987: 109).

Illustr 7.7 Preliminary illustrations of cross sculpture form the Seljalandshellar caves. Taken from Hjartarson et al.’s catalogue (Hjartarson et al. 1991: 248).

Illustr 7.8 Rubbing of Seljalandshellar cross B13.

Illustr 7.10 & 7.11 Photographs of Seljalandshellar cross B13.

Illustr 7.12 ‘Action’ shot.

Illustr 7.14 Kverkarhellir and Seljalandshellar plans. The crosshair at the eastern wall of the Kverkarhellir cave mouth indicates the site of cross KV, at a height of 1.59 m above floor level. The numbers on the Seljalandshellar plan indicate crosses SLJ A1-C19 as well as the four mid-sized crosses represented by
AX2. The initial letter A, B, or C indicates within which chamber the cross is located – the southeastern cave chamber (the gapi) is indicated by ‘A’, the middle chamber ‘B’, and the northwestern chamber (the stuka) ‘C’. The height of each Seljalandsheiljar cross is given on table 7.1. Drawn by Ian Scott.

Illustr 7.17 Illustrations of crosses C17-C19 and KV. Scale 1:10. Drawn by Ian Scott.

Illustr 7.18 Cross A1.

Illustr 7.20 Cross A2.

Illustr 7.21 Cross A2.

Illustr 7.22 Cross A/B3 (on horizontal ledge between chambers A and B).

Illustr 7.23 Cross A/B3 (on horizontal ledge between chambers A and B).

Illustr 7.24 Cross B4.

Illustr 7.25 Cross B4.

Illustr 7.26 Cross B5.

Illustr 7.27 Cross B5.

Illustr 7.28 Cross B6.

Illustr 7.29 Cross B6.

Illustr 7.30 Cross B7.

Illustr 7.31 Cross B7.

Illustr 7.32 Cross B8.

Illustr 7.33 Cross B8.

Illustr 7.34 Cross B9.

Illustr 7.35 Cross B9.

Illustr 7.36 Cross B10.

Illustr 7.37 Cross B11.

Illustr 7.38 Cross B12.

Illustr 7.39 Cross B12.

Illustr 7.40 Cross B13.
Illustr 7.41 Cross B13.

Illustr 7.42 Cross B14.

Illustr 7.43 Cross B14.

Illustr 7.44 Cross B15.

Illustr 7.45 Cross B15.

Illustr 7.46 Cross B16.

Illustr 7.47 Cross B16.

Illustr 7.48 Cross C17.

Illustr 7.49 Cross C17.

Illustr 7.50 Cross C18.

Illustr 7.51 Cross C18.

Illustr 7.52 Cross C19.

Illustr 7.53 Cross C19.

Illustr 7.54 Crosses B9 (left) and B10 (right), with surrounding wall surfaces. Not to scale. Drawn by Ian Scott.

Illustr 7.55 Illustrations of crosses VE1 (Papakross), VE2, VE3, and SK1. Scale 1:10. Drawn by Ian Scott.

Illustr 7.56 The Hetta plan (above) locates the three Westmen Island crosses: VE1 (Papakross), VE2, and VE3. Scale 1:10000. The Skollhólahellir plan locates the largest cross found there, SK1. Scale 1:400. Both plans drawn by Ian Scott.

Illustr 7.57 Wall-markings in Skollhólahellir. Drawn by Árni Hjartarson in 1982. Taken from their study of Skollhólahellir cave (Hjartarson & Gisladóttir 1983: 130).

Illustr 7.58 Taken from Fisher’s catalogue (2001: 30). Note Fisher’s pagination when referring to illustrations from text (e.g. ‘Fisher 2001: 30B’ is located on this page (page 30) and labelled B).

Illustr 7.59 Taken from Fisher’s catalogue (2001: 31). Note Fisher’s pagination when referring to illustrations from text (e.g. ‘Fisher 2001: 31MM’ is located on this page (page 31) and labelled MM).

Illustr 7.60 Taken from Fisher’s catalogue (2001: 32). Note Fisher’s pagination when referring to illustrations from text (e.g. ‘Fisher 2001: 32R(2)’ is located on this page (page 32) and labelled R(2)).

Illustr 7.61 Taken from Fisher’s catalogue (2001: 33). Note Fisher’s pagination when referring to illustrations from text (e.g. ‘Fisher 2001: 33U(17)’ is located on this page (page 33) and labelled U(17)).

Illustr 7.62 North Rona (55) and St Molaise’s Cave (1) are located on this distribution map of early medieval sculpture in the west Highlands and Islands. Taken from Fisher’s study (Fisher 2001: x).

Illustr 7.63 St Molaise’s Cave, Arran. Taken from Fisher’s catalogue (Fisher 2001: 61).
Illustr 8.1 "Carte des découvertes Irlandaises et Islandaises selon Mr. E Beauvois". Taken from *Congrès international des Americanistes* (Beauvois 1875: 84). Lithography by J Royer.

Illustr 8.2 Folio from Cotton Tiberius B manuscript of the Old English *Orosius*. Taken from Janet Bately’s edition of the text (Bately 1980: 17).

Tables

Table 3.1 Listing of *Pap*-names from Iceland, the Faroe Islands, Scotland, NW England and the Isle of Man. Potentially recent names are represented by +, while ? notes an unclear derivation. This list draws substantially upon the work of Peder Gammeltoft and Aidan MacDonald (Gammeltoft 2004b: 36-7; MacDonald 2002: 26-9).

Table 3.2 Conjugation of Old Norse masculine singular noun *papi*.

Table 3.3 *Pap*-name forms. The ?> notation symbolises a problematic, though possible derivation. The forms *Paparey* and *Paparbyli* are theoretically possible, but only theoretically so: they have never been recorded in old sources. Furthermore, it is unclear to which extent indications of singular or plural are relevant, especially if these toponymic forms came to be used as a fixed phrase (i.e. outside the grammar of word composition).

Table 3.4 *Pab(b)ay* island names, not including surrounding area names. Names are classified as G (Gaelic), SSE (Scottish Standard English), N (Norse), [N] (Norse names incorporated into G or SSE construction), N? (probable Norse) and ? (uncertain).

Table 3.5 Preliminary survey of *Pab(b)ay* names derived from Norse. Numbers are approximate and exclude marine features. Note that names which derive directly from Norse (i.e. coined by Norse-speakers) are separated out from those younger names which contain Norse loan-words in Gaelic, and were therefore coined by Gaelic-speakers. This analysis was carried out by Simon Taylor.

Table 4.1 List of sites surveyed at Seljalend (SLJ).

Table 4.2 GPS points and coordinates for Seljalend survey sites.

Table 5.1 Contexts from trenches D1 and D3.

Table 5.2 Chemical analyses of layer E from section D1 (selection from 14 analyses) and layer F from D3 (selection from 12 analyses) from Kverkin, Seljalend. Total iron is expressed as FeO.

Table 5.3 Summary of published chemical analyses of basaltic tephrae from Katla: (1) Katla 920 analysis from Skóðabakkavatn, Landeyjar (selection from 13 analyses). Data from Duncan (Duncan 2001); (2) Katla 1625 (mean of 7 analyses). Data from Larsen (Larsen 2000: 7). Total iron is expressed as FeO.

Table 5.4 Chemical analyses of: (a) silicic part and (b) basaltic part of the D3G tephra layer from Kverkin, Seljalend (selection from 21 analyses). Three sporadic grains, which may be xeno-glasses (volcanic glass acquired from the walls of the eruption conduit) or contamination from surrounding tephra-rich soil, are shown at the base of the table. Total iron is expressed as FeO.

Table 5.5 Summary of published analyses of the V870 *landnám* tephra: (1a) silicic part of the *landnám* tephra from Skóðabakkavatn, Landeyjar (selection from 14 analyses); (1b) basaltic part of the *landnám* tephra from Skóðabakkavatn, Landeyjar (selection from 8 analyses). Data from Duncan (Duncan 2001). (2a) lower silicic part of the *landnám* tephra from Áfangagil (mean of 12 analyses); (2b) upper basaltic part of the *landnám* tephra from Áfangagil (mean of 6 analyses). Data from Larsen et al. (Larsen et al. 1999: 468). Total iron is expressed as FeO.
Table 5.6 Data from D4N/O samples. N/O is a combined context and was sampled in six spits, each roughly 10cm in depth. N/O 'special' was a sample taken from the section face photographed in illustration 5.13.

Table 5.7 Data from D5 erosion deposits 1 and 2.

Table 7.1 Height of each Seljalandshellar cross above ground level (measured in August 2002).

Table 8.1 Beauvois' publications in periodicals, sorted by decade and periodical.

Abbreviations

RCAHMS Royal Commission on the Ancient and Historical Monuments of Scotland

NLS National Library of Scotland

RLAHA Research Lab for Archaeology and the History of Art

NMS National Museums of Scotland
CHAPTER ONE
Atlantic Gaels, the island Norse and the problem of *papar*

"The following story, which was told me in Thorshavn [the main town of the Faroe Islands] by an old man, explained the Westman strain in the people of Suderoe [southernmost of the islands] to its narrator's complete satisfaction...

'A long time ago a small foreign vessel anchored off Suderoe. On board there was a woman, the captain's wife. Now the Faroemen were very rude in those days, and the chief man on the island, who lacked a wife at the time, went out to the ship with many boats full of his followers, seized the woman, and took her ashore. The crew of the ship was small, the islanders were many; and the captain was forced to leave his wife to her fate and to set sail with all speed. As he departed, his cry was heard on shore: 'Ma femme! Ma femme!' To this day there is a village on Suderoe called after her, Famøyen, for she was forthwith married to her captor, and the people thought that her name was Fam. And this proves that the people of Suderoe are Irish, for I have heard that *femme* is the Irish for wife!"¹

Nelson Annandale, *The Faroes and Iceland: Studies in Island Life*

"The alleged method of the professional scientist is: start from observations, observe, and go on observing. The alleged method of the professional historian is: start from documents, read documents, and go on reading documents.

These alleged methods are exactly analogous, and both are precepts which cannot be carried out: they are logically impossible. You cannot start from observation: you have to know first *what to observe*. That is, you have to start from a problem. Moreover, there is no such thing as an uninterpreted observation. All observations are interpreted in the light of theories. Exactly the same holds for documents. Is my train ticket to London a historical document? Yes and no. If I am accused of murder, the ticket may possibly serve to support an alibi, and so become an important historical document ... Nevertheless, I should not advise a historian to start his work by collecting used railway tickets.

A historical document, like a scientific observation, is a document only relating to a historical problem. And like an observation, it has to be **interpreted**. This is one of the reasons why people may be blind to the significance of a document, and destroy it."²

Karl R Popper, *The Myth of the Framework: In defence of science and rationality*

Introduction
Sculpted stones and carvings in caves and rock faces testify to an unexplored facet of early Christianity across a zone stretching from the Scottish coasts to Iceland. Though recent work paves the way for a more nuanced interpretation of this material, uncertainties regarding the nature and extent of early Christianity in this region pose significant hurdles for scholarship. Therefore by undertaking original research and revisiting the work of others, this thesis aims to cast new light on our understanding of the relationships between the peoples of this zone in the early medieval period. A wide range of scholarship has been involved in exploring aspects of this topic, including

¹ This story is taken from Annandale's 1905 study of the Faroe Islands and Iceland, published while he was Deputy Superintendent of the Indian Museum in Calcutta (Annandale 1905: 10-1).
² (Popper 1994: 145)
archaeological, medieval literature, place-name and palaeoenvironmental studies – yet applying the results of such diverse research to the present thesis foregrounds a fundamental challenge: how may one work between disciplines?

Problem and context

The North Atlantic islands have proven importance as an arena for investigating cultural diffusion, the movements of people and human-environmental interactions, with the chronology for Iceland’s settlement critical for these larger questions (on account of that island’s enviable sequence of dated volcanic airfall, or tephra). Specifically, scholarship has recently been excited afresh by the uncertainties surrounding Viking-Age Scandinavian and early Christian communities (called *papar* by later Norse literature) and I have myself been drawn to this field of research by its complex interplay between established ‘certainties’ and fundamental ambiguities. For example, a fluorescence of Gaelic monasticism is well-established for the early medieval period, with individuals and monastic foundations of the ‘Irish school’ penetrating large areas of Europe (illustration 1.1) and contemporary authors such as Dicuil (Tierney 1967) and Adomnán (Anderson & Anderson 1991; Sharpe 1995) providing descriptions of the North Atlantic arm of this expansion. Thus, journeys north from the Gaelic world probably did occur and, given the clearly documented impulse to seek a desert (or wilderness) in the Ocean (Charles-Edwards 1976; Wooding 2000), exploration of the northern seas may have been spurred by a variety of catalysts, perhaps including straightforward observation of migratory bird routes (Cunliffe 2002: 119). However, in spite of Dicuil’s and Adomnán’s accounts and the early (but problematic) proposals by scholars such as Eugène Beauvois (Beauvois 1875), the extent and character of these northern settlements is very poorly understood – as is their relationship to the Viking-Age Scandinavians who came to dominate this region by the ninth or early tenth-centuries.

3 For instance, see descriptive passages in *Íslendingabók*, *Landnámabók* and *Historia Norvegiae* (*Íslendingabók*: ch 1; *Landnámabók*: ch 1; Benediktsson 1968: 4-5, 31-2; Pálsson & Edwards 1972: 14; *Historia*: ch 6; Phelpstead 2001: ch 6; Ekrem & Mortensen 2003: 64-7).

4 Dicuil describes an early Christian community of Gaels in what appears to be the Faroe Islands (which he claims was settled c. AD 725) and a journey to Iceland by two clerics in AD 795 (Tierney 1967: 72-7).

5 Though the migratory routes of birds are subject to rapid evolutionary change (Weidensaul 1999: 48-50), modern-day examples which travel the airways between Iceland and Scotland include the Barnacle Goose (*Branta leucopsis*) and Pink-footed Goose (*Anser brachyrhynchus*) (Jonsson 1999: 78, 84).
Illustr 1.1 The travels of the Irish *peregrini* in the fifth to eighth centuries and the settlements and monasteries which they founded. Taken from Cunliffe (2001: 472).
CHAPTER ONE: Atlantic Gaels, the island Norse and the problem

Considering these fundamental ambiguities, we are fortunate that recent developments – in several fields – make a broad North Atlantic characterising of the early medieval materials for the present thesis possible and desirable. This new work includes for instance: linguistic and place-name research on Scandinavian-Gaelic contact (Gammeltoft 2004a); catalogues of both Iceland’s artificial caves (Hjartarson et al. 1991) and Scotland’s west-coast cross sculpture (Fisher 2001); and studies considering the role of early Christian communities in the agricultural development of Scotland’s Northern Isles (Simpson & Guttman 2002) as well as of the earliest cereal cultivation in the Faroe Islands (Edwards et al. submitted). In order to draw together strands of work on archaeological, Celtic and palaeoenvironmental materials, however, the problems inherent in integrating these materials must be dealt with. From the outset then, Chapter Two responds to these concerns by formulating a theoretically grounded method for fruitful conversation between disciplines by drawing upon ideas articulated in Karl Popper’s philosophy of science. Applying this method, I seek to reposition scholarship in three difficult (and inter-related) areas, each of which has frustrated researchers. Thus Chapter Three explores the toponymy of Pap-names (which have been associated with settlements of the aforementioned papar), with a case study of Hebridean Pap-islands. In turn, Chapters Four to Seven tackle the artificial caves of southern Iceland. An earlier generation of scholars tentatively related these sites to the first settlement of Iceland by monastic communities of Gaels and, though remaining enigmatic, these caves are the best preserved and most numerous medieval structures in Iceland. Therefore, this ‘section’ establishes a chronology of cave construction, occupation and human-environmental interactions at the Seljaland site in southern Iceland. Lastly, Chapter Eight provides the opportunity to revisit the ancestry of research on North Atlantic migrations by both reviewing the Írland et mikla (‘Greater Ireland’) tradition of medieval literature and assessing the contributions of antiquarian scholars, such as the otherwise forgotten Eugène Beauvois. This final study demonstrates how the interdisciplinary conclusions of the previous chapters not only refine our understanding of the past but also contextualise our interpretations of medieval literature. In the end, I hope the result justifies the means, and that the call to arms of the present thesis may be
read by and interact with archaeologists, Celticists, environmental scientists, place-name scholars and historians.

References

Íslendingabók. Edited by Benediktsson 1968.
Landnámabók. Edited by Benediktsson 1968.

CHAPTER TWO
A conversation between disciplines

"Although I am an admirer of tradition, and conscious of its importance, I am, at the same time, an almost orthodox adherent of unorthodoxy: I hold that orthodoxy is the death of knowledge, since the growth of knowledge depends entirely on the existence of disagreement. Admittedly, disagreement may lead to strife, and even to violence. And this, I think, is very bad indeed, for I abhor violence. Yet disagreement may also lead to discussion, to argument, and to mutual criticism. And these, I think, are of paramount importance."¹

"But is a fruitful discussion between different frameworks really possible? Let us take an extreme case. Herodotus, the father of historiography, tells an interesting though somewhat gruesome story of the Persian King, Darius the First, who wanted to teach a lesson to the Greeks living in his empire. It was the custom of the Greeks to burn their dead. Darius 'summoned', we read in Herodotus, 'the Greeks living in his land, and asked them for what payment they would consent to eat up their fathers when they died. They answered that nothing on earth would induce them to do so. Then Darius summoned the ... Callatians, who do eat their fathers, and he asked them in the presence of the Greeks, who had the help of an interpreter, for what payment they would consent to burn the bodies of their fathers when they died. And they cried aloud and implored him not to mention such an abomination.'

Darius, I suspect, wanted to demonstrate the truth of something like the myth of the framework. Indeed, we are given to understand that a discussion between the two parties would have been impossible even with the help of that interpreter. It was an extreme case of a 'confrontation' — to use a term much in vogue with believers in the myth of the framework, and a term which they like to use when they wish to draw our attention to the fact that a 'confrontation' rarely results in a fruitful discussion.

Let us assume that this confrontation staged by King Darius actually did take place as Herodotus narrates it. Was it really fruitless? I deny that it was. Admittedly, it does not seem that mutual understanding was achieved. And the story shows that we may be faced, in some rare cases, by an unbridgeable gulf. But even in this case, there can be little doubt that both parties were deeply shaken by the experience, and that they learned something new. I myself find the idea of cannibalism just as revolting as did the Greeks at the court of King Darius. And I suppose my readers will feel the same. But these feelings should make us all the more perceptive and the more appreciative of the admirable lesson which Herodotus wishes us to draw from the story. Alluding to Pindar's distinction between nature and convention, Herodotus suggests that we should look with tolerance and even respect upon customs or conventional laws that differ from our own. If this particular confrontation ever took place, some of the participants may well have reacted to it in the enlightened way in which Herodotus wishes us to react to his story.

This shows that there is, even without a discussion, a possibility of a fruitful confrontation among people deeply committed to different frameworks. But we must not expect too much: we must not expect that a confrontation, or even a prolonged discussion will end with the participants reaching agreement."²

Karl R Popper (fl. 1930 - 1994)

Introduction

Thinkers have been trying to establish theories and methods for science for well over two thousand years. In exploring recent theories, Karl Popper's ideas have held special appeal to me. Amongst the many eminent philosophers of science, only a relatively

¹ (Popper 1994: 34)
² (Popper 1994: 36-7)
small number have tried to integrate abstract scientific method (e.g. logic, mathematics) with the 'messy' data of the world. I have been particularly drawn to the conceptualisation of scientific method advocated by Karl Popper (and his adherents). This chapter outlines how Popper's conceptualisation may be brought to bear upon the limited and diverse scatter of materials available to the present study of the North Atlantic's early medieval past. As an exploration of problems related to the diffusion of culture, movements of people, development of societies and environmental change, this thesis depends upon the possibility of fruitful interplay between disciplines. Equally, I have found inspiration in Popper's inclusive concept of science as a critical process with a unity of method. In elaborating this conceptualisation, Popperian theory seeks to account for the progress of science as well as its fragile and uncertain existence – and commends the intelligent practice of 'self-aware' science, outlining how scholars should integrate research from many fields (because, in the absence of such a method, they already do this). In short, articulation of Popperian 'best practice' offers a framework in which my inter-disciplinary approach can receive an apt theoretical grounding. In studying the early settlement of the North Atlantic, this thesis revisits three difficult areas of Viking-Age scholarship, each of which has frustrated researchers: firstly, the toponymy of Hebridean Pap-islands; secondly, the chronology of cave construction, occupation, and human-environmental interactions in southern Iceland; and thirdly, the Irland et mikla tradition of medieval and antiquarian writers. The merits of my method will be demonstrated firstly through the success of its application to these problem areas, and secondly through its power to integrate them into an inter-disciplinary discussion.

A wide range of scholarship has been involved in exploring the relationships between early medieval Atlantic Scotland, Iceland and the Faroe Islands, including archaeological, medieval literature, place-name and palaeoenvironmental studies. Clearly, a multi-disciplinary approach is needed for fruitful integration of these diverse materials. It is, however, necessary first to propose an answer to the methodological questions that multi-disciplinary materials present. The framework I have chosen within which to confront these is both particular and coherent. As mentioned above, Popper advocates a common method for his conception of science: that being the critical discussion of testable ideas. By applying Popper's proposals, this chapter presents a
working solution to the problem of inter-disciplinary dialogue. Though he has critics, Popper provides an elegant system whose respectability is assured. Though this goes beyond the remit of the present work, it would be fruitful in further study to explore certain basic aspects of his method, and to consider how the application of Popperian thinking contained in these pages may, on the one hand, be integrated with discipline-specific theoretical approaches and, on the other hand, be used to develop Popper’s own ideas.

Problem and context
Disciplines do not exist in isolation – indeed some scholars argue “that most of the disciplinary boundaries that characterise the Western social sciences are arbitrary” (Trigger 1989: 373; Wolf 1982: 7-9), or that:

A so-called scientific subject is merely a conglomeration of problems and tentative solutions demarcated in an artificial way. What really exists are problems, and scientific traditions. (Popper 1992: 69)

Correspondingly, there is an urgency to enabling scholars legitimately to ‘import’ results from one discipline to another: because it will be done regardless. April and Robert McMahon articulate this urgency with reference to the importation of ideas regarding language relationships, from linguistics to archaeology and genetics:

...we must face the prospect that if linguists do not attempt to provide quantification in our own terms, archaeologists and geneticists will increasingly be forced to supply their own. If these do not correspond to linguists’ intuitions about degrees of relatedness among languages, we are condemned to fighting a perpetual rearguard action against these externally imposed figures; and if we still do not supply linguistically coherent alternatives, we are not likely to be taken seriously by scholars in other disciplines. (McMahon & McMahon 2003: 21)

McMahon and McMahon make a strong case for thinking about the inter-disciplinary application of results. Additionally, their arguments become ever more relevant when leading scholars such as Colin Renfrew write that there is a need “to work towards a unified reconstruction of the history of human populations ... because we certainly do

3 Furthermore, I am keen to set the ideas explored in these pages against John Hines’ very recently published study of archaeology and literature – this book emerged too late to be integrated into the present study (Hines 2004).
CHAPTER TWO: A conversation between disciplines

not have such a unified history at the moment” (Renfrew 1999: 1-2; McMahon & McMahon 2003: 19).

Pressures for framing inter-disciplinary discussion are most keenly felt in disciplines that operate in areas of convergence for separate theoretical traditions, such as Celtic studies or archaeology. Raimund Karl, for instance, has recently agitated for theoretical dialogue in that field on an inter-disciplinary level (Karl 2003). Karl’s arguments emerge from the establishment of a Celtic studies programme at the University of Vienna in 1999 – this foundation providing a forum for some theoretical discussion by a multi-disciplinary team. Karl summarises this thinking in his articulation of the ‘Viennese’ approach to Celtic cultural studies with fourteen key assumptions and methodological priorities upon which it is based (Karl 2003; 2002). A selection of these points is reproduced here, as they mandate the kind of theoretically-based methodology advocated in this chapter:

1. The term ‘Celt’ is, for the discipline of Celtic studies, a modern construct as defined by the discipline itself, which describes a certain field of research.
2. Sources and results from different sub-areas of Celtic studies are (usually) not directly comparable.
3. The value of sources or results of sub-areas of Celtic studies is dependent on context.
4. The field of research of Celtic studies is vastly divergent not only in its sources, but also in its contents.
5. There are recognisable similarities between the different groups of people we call Celts and the different areas that fall into the field of Celtic studies.
6. The theoretical foundations upon which research is based need to be stated explicitly in research and publication.
7. The viability of theoretical or methodological approaches cannot be determined before they have been applied to the material in question.
8. The parallel applications of different methodological and theoretical approaches onto any given material in question is possible and even recommendable, as long as the approaches are not mixed with each other.

If we turn to archaeological research, Bruce Trigger points to a good tradition of integrating physical science studies, while at the same time criticising how “there is little general awareness of the value of combining the study of archaeological data with that of historical linguistics, oral traditions, historical ethnography, and historical records, although it is clear that many archaeological problems can be resolved in this way”
CHAPTER TWO: A conversation between disciplines

(Trigger 1989: 356). Trigger identifies this reluctance to integrate research from other cultural fields with a “desire to push the interpretative potential of archaeology as far as possible without relying on other disciplines for information about the past ... partly justified by the fear that interdisciplinary approaches can degenerate into an exercise in dilettantism” (Trigger 1989: 356). He argues, however, that this fear does not “nullify the value of interdisciplinary research, provided that it is understood that such studies must exploit the historical potential of each discipline to the greatest extent possible, using its own data and methods before comparisons of findings are attempted” (Trigger 1989: 356). The model for ‘conversation between disciplines’ proposed in this chapter attempts to put ideas such as Trigger’s into practice: the hypothesis section outlines ideas for integrating multi-disciplinary specialist studies into an inter-disciplinary framework.

The materials of this thesis relate to the early medieval North Atlantic area. For studies of these materials, the urgency of defining a method for coordinating multi-disciplinary approaches has been realised for some time. For instance, in 1961 F T Wainwright published a fairly extended discussion of the admittedly simplistic and atheoretical method which guided his scholarship (Wainwright 1962: xi-xiii). Wainwright provided a pragmatic outline for coordinating historical, linguistic and archaeological lines of inquiry. Though it lacked a theoretical foundation, Frank M Stenton insisted “that the strongest argument in its favour [Wainwright’s method] is the large volume of firmly based research which it enabled him to carry through” (Wainwright 1962: ix). Wainwright saw two kinds of coordination. First is the simple specialist study for use in another discipline (a kind of coordination common especially in archaeology), such as a specialist toponymic study of an area under archaeological investigation. Second is the grander synthesis of data from many disciplines, a kind of coordination Wainwright saw as more difficult (Wainwright 1962: 89-97). It is this latter type of exercise that I pursue in this chapter.

An extension of Wainwright’s ‘specialist study from another discipline’ may be identified in Carole L Crumley’s historical ecology method (though she would perhaps claim to be trying to integrate data from many disciplines into a grander synthesis). In
formulating *historical ecology*, Crumley organised a team of anthropologists⁴ to consider how "to address the important work of environmental historians, anthropologists, geographers, and others who seek to combine evidence of the human past with evidence about the environment by studying the evolution of landscapes" (Crumley 1994: xiii). Crumley recognises the need for "a comprehensive, interdisciplinary framework reflecting the contributions of social, physical, and biological scientists and humanists" (Crumley 1994: 2). However, her proposal for responding to this need is to privilege one discipline (anthropology) and to outline a method for incorporating material from other disciplines into this discipline's framework:

Only a handful of disciplines bridge natural and social sciences, the humanities, and the professions; among the most comprehensive and theoretically sophisticated is anthropology.

The advantages of using an anthropological approach to explore the human role in environmental change are considerable. Anthropology, broadly understood, is integrative and comparative; inclusive of temporal, spatial, and cultural dimensions; and dynamic. The discipline's historic focus on the dynamics of change render an anthropological perspective particularly appropriate in unravelling complex chains of mutual causation in human-environment relations. (Crumley 1994: 2)

She goes further, specifically privileging archaeology, ethnohistory and ethnography (as sub-disciplines of anthropology) in her *historical ecology*. Outlining her reasoning for favouring an archaeological framework, she writes:

...archaeologists have long sought to understand changes through time in regional populations, their distribution, and their economies. Requisite data include evidence for changing human-environmental relationships in the form of remains of human manufacture and elements of the environment related to human activities. It seems evident that archaeology (*sensu lato*) is in an excellent position to render service to a number of fields by proposing a *rapprochement*. (Crumley 1994: 7)

This formulation of *historical ecology* has the potential to develop methods for using research from other disciplines to investigate anthropological questions, while at the

⁴ Crumley outlines her reasoning in selecting only anthropologists to formulate *historical ecology*:

Although the topic could prompt lively discussion among geographers, historians, natural scientists, and philosophers (to name a few), all the seminar participants are anthropologists. This choice was made so a common vocabulary would undergird the discussion of a difficult topic. (Crumley 1994: xiii)
same time informing these anthropological questions with a historical dimension of ecological analysis (Winterhalder 1994: 40). As Winterhalder correctly observes, "It will be a prime challenge of historical ecology to find or to generate concepts that will promote collaborative work among social and natural scientists..." (Winterhalder 1994: 40). One can easily imagine that the most important difficulty in formulating historical ecology will be convincing practitioners of other disciplines that archaeology, ethnohistory and ethnography should be flagged as having 'superior' methods. I find Crumley's arguments in this respect far from convincing, as it is unclear that, for instance, an archaeological methodology is inherently superior to a geological one. Certainly an archaeological methodology has advantages when used to answer archaeological questions — and historical ecology could provide one way to incorporate geological or other-disciplinary data into this process. However, to propose that the disciplinary approaches of archaeology are innately superior to those of geology (to continue the example), necessitates knowledge of some standard against which to assess the relative merits of each discipline — and runs counter to the more embracing models of science advocated by thinkers such as Popper. Instead, each discipline's methodology is unique and has been developed to answer the historically important kinds of questions that each discipline's data sets respond to (Wainwright 1962).

Nevertheless, Crumley's historical ecology does have merit as a movement within anthropology. Historical ecology holds out the possibility (if suitable methods are developed) to permit sophisticated inter-disciplinary work of Wainwright's first kind: the incorporation of specialist studies from other disciplines into an anthropological framework, in order to answer anthropological questions.

In discussing inter-disciplinary coordination, however, one crucial philosophical question emerges: Is conversation between disciplines, between intellectual frameworks, really possible? Popper provides the following useful formulation of a counter position to inter-disciplinary dialogue:

5 See especially his last treatment of these ideas (Popper 1994).
A rational and fruitful discussion is impossible unless the participants share a common framework of basic assumptions or, at least, they have agreed on such a framework for the purpose of the discussion. (Popper 1994: 34-5)

In other words (according to this view), intellectual frameworks (such as languages or disciplinary backgrounds) act as barriers to mutual intelligibility between those not sharing the same language or disciplinary background. The reason such frameworks operate as barriers, following this formulation, is that in order for participants to have a rational and fruitful discussion, they need first to agree on definitions of terms. Popper observes that behind this view "there is the tacit assumption that a rational discussion must have the character of a justification, or of a proof, or of a demonstration, or of a logical derivation from admitted premises" (Popper 1994: 60). In other words, this view assumes that each participant in a rational discussion is driven by the question of "How can we establish or justify our thesis or our theory?" (Popper 1994: 60).

The view that the ideal of a rational discussion is pursued by a participant justifying his/her own thesis or theory is a relativist perspective, which Popper rejects, calling it the 'Myth of the Framework'. His challenge to this formulation of a rational discussion appeals to the natural sciences:

... [where] critical discussion ... does not seek to prove or to justify or to establish a theory, least of all by deriving it from some higher premises, but ... tries to test the theory under discussion by finding out whether its logical consequences are all acceptable, or whether it has, perhaps, some undesirable consequences. (Popper 1994: 60)

In other words, a critical discussion in the natural sciences considers the following questions: "What are the consequences of our thesis or our theory? Are they all acceptable to us?" (Popper 1994: 60).

In the following passage, Popper applies this formulation of critical discussion to what he sees as the relativist problem; he advocates:

... comparing the consequences of different theories (or, if you like, of different frameworks) and trying to find out which of the competing theories or frameworks has consequences that seem preferable to us. [We are] ... thus conscious of the fallibility of all our methods, although [we] ... try to replace all our theories by better ones. This is, admittedly, a difficult task, but by no means an impossible one.
CHAPTER TWO: A conversation between disciplines

Of course, a proponent of the myth of the framework might criticise this idea. He might say, for example, that what I have called the correct method of criticism in no way allows us to get out of our framework – for, he might insist, the ‘consequences that seem preferable to us’ will themselves be part of the framework: that we have here a model for mere self-justification, rather than the critical transcendence of a framework.

But I think that this criticism is mistaken. While we may interpret our views in this way, we do not have to do so. We can choose to pursue an aim or goal – such as the aim of understanding better the universe in which we live, and ourselves as part of it – which is autonomous of the particular theories or frameworks that we construct to try to meet this aim. And we can choose to set ourselves standards of explanation, and methodological rules, which will help us to achieve our goal and which it is not easy for any theory or framework to satisfy. Of course, we may choose not to do this: we may decide to make our ideas self-reinforcing. We may set ourselves no task other than one we know our present ideas can fulfil. We certainly can choose to do this. But if we choose to do this, not only will we be turning our back on the possibility of learning that we are wrong, we will also be turning our backs upon that tradition of critical thought (stemming from the Greeks…) which has made us what we are… (Popper 1994: 60-1)

This last section is important, for it allows for the possibility of methodological innovation when a discussion from one framework, or discipline, is contrasted with another – this is a point I will return to later.

Ultimately, Popper’s response to the relativist view (that a rational and fruitful discussion is impossible between intellectual frameworks) brings us back to the quotation which prefaces this chapter, with its elaboration of Herodotus’ narrative of the Greek and Callatian encounter at Darius’ court. Popper argues that we must realise that a confrontation, or encounter, or discussion, may have fruitful results without achieving agreement. With reference to Herodotus’ narrative, Popper articulates this point:

This shows that there is, even without a discussion, a possibility of a fruitful confrontation among people deeply committed to different frameworks. But we must not expect too much: we must not expect that a confrontation, or even a prolonged discussion will end with the participants reaching agreement. (Popper 1994: 36-7)

Popper then, provides a philosophical foundation upon which a methodology for interdisciplinary coordination may be constructed, so long as the potential limitations of such coordination is realised, and that we are prepared not to expect too much.
Given that the overarching concern of this thesis is to tackle difficult key areas for study of the early medieval Atlantic region, encompassing Atlantic Scotland, the Faroe Islands and Iceland, we may now pose our problem in the form of a question: how may we formulate a method for exploring the multi-disciplinary materials of this thesis, and how may we integrate study of these disparate materials?

Hypothesis

This section strives to formulate a model for inter-disciplinary dialogue without privileging one discipline over another. The proposal to be elaborated here is this: if individual specialist studies are phrased accurately and accessibly, then they may be integrated with other similarly phrased studies into an inter-disciplinary discussion. Behind this proposal is the belief that if one writes clearly, then one’s ideas may be thoroughly understood and thus effectively criticised. By advocating an inclusive concept of science with a unity of method, Popper provides the theoretical basis for this hypothesis – and indeed points towards inter-disciplinary conversation as a natural goal.

Popper, however, makes an important assumption in his work: namely that the world is real (even though our perception of reality is imperfect). This realist assumption grounds Popper’s ideas and may be contrasted with idealism. In its most straightforward formulation, idealism proposes that “the world (which includes the present reader) is just my dream” (Miller 1983: 221). A number of workers in cultural fields have been influenced by idealism. Recent trends in archaeological research, for instance, have incorporated greater idealism than previously, and “express growing doubts that anything approaching an objective understanding of the past is possible” (Trigger 1989: 354). Trigger has linked this growth to the growing despair, felt by those desiring change, with corporate-led capitalist society (Trigger 1989: 354-5). Popper argues that idealism is irrefutable (and correspondingly that the same is true for realism):

Whatever you, the reader, may do to convince me of your reality – talking to me, or writing a letter, or perhaps kicking me – it cannot possibly assume the

6 The realist assumption may also be contrasted with non-cognitivism or error theory, for instance (Darwall et al. 1997; Craig 1998).

7 Strictly speaking, Trigger was here referring to American society in the 1980s; however, I suspect that his comments have some relevance for global society today.
force of a refutation; for I would continue to say that I am dreaming that you are talking to me, or that I received a letter, or felt a kick. (Miller 1983: 221)

Following this logic, *idealism* may be proposed but not refuted – and thus cannot be the refutation of *realism* it is sometimes claimed to be. Nonetheless, the challenge of accommodating *realist, idealist,* and other fundamental philosophical concerns leads one into a big unresolved area of debate. For the purpose of this thesis, however, I accept the *realist* assumption – though explicitly aware that it is an assumption (Miller 1983: 220-5; Popper 1972: ch 2).

Popper’s concept of science is crucial to the ‘conversation between disciplines’ advocated in this chapter. First of all, Popper challenges Bacon’s\(^8\) ideal of observation devoid of theory: he demonstrates that “a mind so purged [of theory] would not only be a pure mind: it would be an empty mind” (Popper 1994: 86). In other words, he argues that a theory-free observation is not possible. All observations are interpretations of data informed by theory of some form (Popper 1994: 86). Correspondingly, Popper denies both *repetitive induction* (“no amount of observation of white swans establishes that all swans are white” (Popper 1994: 104)) and *eliminative induction.* Advocates of *eliminative induction* believe that by refuting false theories, a ‘true’ theory may be proven. A fundamental problem with establishing a theory as ‘true’ is that the potential number of competing theories is infinite, whereas “as a rule at any particular moment only a finite number of theories” may be considered (Popper 1994: 105). Similarly, Popper’s method is against *positivism* (though he has been falsely criticised as a positivist in the past)\(^9\). In Popperian science, no theory may be proven to be ‘true’,

\(^8\) Popper sees Bacon as a “logically and rationally quite unimportant philosopher” (Popper 1994: 195). Nonetheless, his importance for science is unassailable and is itself a topic Popper explores (Popper 1994: 195-201).

\(^9\) Popper describes the process, in the 1960s, by which he came to be unfairly labelled a positivist:

> It was in this paper [by Jürgen Habermas], I think, that the term ‘positivism’ first turned up in this particular discussion: I was criticized as a *positivist.* This is an old misunderstanding created and perpetuated by people who know of my work only at second-hand. Owing to the tolerant attitude adopted by some members of the Vienna Circle, my book, *Logik der Forschung,* in which I criticized this positivist Circle from a realist and anti-positivist point of view, was published in a series edited by Moritz Schlick and Philipp Frank, two leading members of the Circle. And those who judge books by their covers (or by their editors) created the myth that I had been a member of the Vienna Circle and a positivist. Nobody who has read that book (or any other book of mine) would agree – unless indeed he believed in the myth to start with, in which case he may of course find evidence to support his belief. (Popper 1994: 67)
though testing a theory may show it to be 'untrue'. This idea of falsifiability is crucial to Popper's conception of science.

Popperian science may be expressed by the formulation of PROBLEM \rightarrow THEORIES \rightarrow CRITICISM (where criticism incorporates attempts at refuting the theories proposed) (Popper 1994: 101). The following seventeen theses define his method for science:

1. All scientific knowledge is hypothetical or conjectural.
2. The growth of knowledge, and especially of scientific knowledge, consists in learning from our mistakes.
3. What may be called the method of science consists in learning from our mistakes systematically: first, by taking risks, by daring to make mistakes – that is, by boldly proposing new theories; and secondly, by searching systematically for the mistakes we have made – that is, by the critical discussion and the critical examination of our theories.
4. Among the most important arguments which are used in this critical discussion are arguments from experimental tests.
5. Experiments are constantly guided by theory, by theoretical hunches of which the experimenter is often not conscious, by hypotheses concerning possible sources of experimental errors, and by hopes or conjectures about what will be a fruitful experiment. (By theoretical hunches I mean guesses that experiments of a certain kind will be theoretically fruitful.)
6. What is called scientific objectivity consists solely in the critical approach: in the fact that if you are biased in favour of your pet theory, some of your friends and colleagues (or failing these, some workers in the next generation) will be eager to criticise your work – that is to say, to refute your pet theories if they can.
7. This fact should encourage you to try to refute your own theories yourself – that is to say, it may impose some discipline upon you.
8. In spite of this, it would be a mistake to think that scientists are more 'objective' than other people. It is not the objectivity or detachment of the individual scientist but of science itself (what may be called 'the friendly-hostile cooperation of scientists' – that is, their readiness for mutual criticism) which makes for objectivity.
9. There is even something like a methodological justification for individual scientists to be dogmatic and biased. Since the method of science is that of critical discussion, it is of great importance that the theories criticised should be tenaciously defended. For only in this way can we learn their real power. And only if criticism meets resistance can we learn the full force of a critical argument.
10. The fundamental role played in science by theories or hypotheses or conjectures makes it important to distinguish between testable (or falsifiable) and non-testable (or non-falsifiable) theories.
11. Only a theory which asserts or implies that certain conceivable events will not, in fact, happen is testable. The test consists in trying to bring about, with all the means we can muster, precisely these events which the theory tells us cannot occur.

12. Thus, every testable theory may be said to forbid the occurrence of certain events. A theory speaks about empirical reality only in so far as it sets limits to it.

13. Every testable theory can thus be put into the form ‘such and such cannot happen’. For example, the second law of thermodynamics can be formulated as saying that a perpetual motion machine of the second kind cannot exist.

14. No theory can tell us anything about the empirical world unless it is in principle capable of clashing with the empirical world. And this means, precisely, that it must be refutable.

15. Testability has degrees: a theory which asserts more, and thus takes greater risks, is better testable than a theory which asserts very little.

16. Similarly, tests can be graded as being more or less severe. Qualitative tests, for example, are in general less severe than quantitative tests. And tests of more precise quantitative predictions are more severe than tests of less precise predictions.

17. Authoritarianism in science was linked with the idea of establishing, that is to say, of proving or verifying, its theories. The critical approach is linked with the idea of testing, that is to say, of trying to refute, or to falsify, its conjectures. (Popper 1994: 93-4)

Popper, then, outlines a method for science based upon the proposal of bold ideas, followed by systematic critical discussion and refutation of testable hypotheses — resulting in the continual identification of further problems. Following Popper one cannot prove a theory to be ‘true’, but instead one can prove a theory to be ‘untrue’. This critical discussion of testable hypotheses is the process that Popper defines as science — a conception of science that is open and independent of differences in materials (e.g. place-names versus tephrae), but dependent upon the critical approach of attempting to boldly propose and refute ideas about these materials.

One important point in this approach to science is that all observations are theory-impregnated. Popper goes so far as to propose that “our very eyes and ears are the result of evolutionary adaptations — that is, of the method of trial and error corresponding to the method of conjectures and refutations” (Popper 1994: 58). Elaborating the visual example, Popper suggests that we have an absolute sense of up and down built into the ‘ordinary’ visual experience. For instance, a square balanced upon one of its corners (a
diamond shape) appears different to us than a square with its base flat (a 'normal' square). Nevertheless, these observations (theory-impregnated in the sense that we perceive the two squares to be different: diamond or square) may be overcome: these observations may be reinterpreted. Through the method of science (that is, critical discussion), we may learn that the diamond and 'normal' square are not different to each other – but are in fact the same square shape, in alternative positions (Popper 1994: 58).

Popperian science is not without its challengers: these include such prominent theorists as Thomas Kuhn or P K Feyerabend (Kuhn 1970 [1962]; Feyerabend 1975). In contrast to Popper's continually revolutionary science\(^\text{10}\), Kuhn proposes the concept of 'normal science' and 'extraordinary science'. As Kuhn sees it, 'normal science' consists of three directions for research:

These three classes of problems – determination of significant fact, matching of facts with theory, and articulation of theory – exhaust, I think, the literature of normal science, both empirical and theoretical. (Kuhn 1970 [1962]: 34; Bird 1975: 161)

These characteristics of 'normal research' may be understood as puzzle-solving. Indeed, Kuhn is struck by how these little 'normal research' problems “aim to produce novelties, conceptual or phenomenal” (Kuhn 1970 [1962]: 35). Kuhn also identifies something he calls 'extraordinary science' (or scientific revolution), and he sees this as emerging out of 'normal science' in times of deep crisis, being precipitated by an awareness of a number of unexpected results encountered during 'normal research' (Kuhn 1970 [1962]: 34; Stokes 1998: 33). Furthermore, Kuhn advocates hierarchy and a more authoritarian structure for science than Popper does, in order for 'extraordinary science', that is scientific revolutions, to take place (Ryan 1985: 100-1). Kuhn has influenced Popper:

\(^{10}\) The following two quotations from Popper illustrate his 'continually revolutionary science':

As I have suggested before, scientific progress is revolutionary. Indeed, its motto could be that of Karl Marx: 'Revolution in permanence'. However, scientific revolutions are rational in the sense that, in principle, it is rationally decidable whether or not a new theory is better than its predecessor. Of course, this does not mean that we cannot blunder. There are many ways in which we can make mistakes. (Popper 1994: 12)

...new ideas should be regarded as precious, and should be carefully nursed – especially if they seem to be a bit wild. I do not suggest that one should be eager to accept new ideas just for the sake of their newness. But we should be anxious not to suppress a new idea even if it does not appear to us to be very good. (Popper 1994: 14)
his identification of 'normal science' is seen by Popper as "a danger to science". Popper's emphasis in his later works upon the fragility of the scientific enterprise may be seen as inspired by Kuhn (Popper 1994: 57, 72).

Kuhn is a very important figure in the theory of science, as is Feyerabend, with his 'anarchist' epistemology 'against method' (Stokes 1998: 36; Feyerabend 1975). As a consequence, their work deserves fuller discussion. In particular, Kuhn's ideas may be significant to the questions raised by the present thesis: the appearance of data challenging conventional wisdom on the early settlement of Iceland can be seen as exactly the conditions for one of his 'revolutions'. Nonetheless, the purpose of this chapter is not to contrast Popperian science with the models advocated by Kuhn or Feyerabend. It is sufficient for present purposes to acknowledge the presence of alternative approaches to our problem, and possible directions for future research. We return, then, to the business of making explicit the methodology for 'conversation between disciplines' applied in this thesis.

As mentioned at the outset of this chapter, a number of scholars question the legitimacy of disciplinary boundaries (Trigger 1989: 373; Wolf 1982: 7-9; Popper 1992: 69). Popper, for instance, sees scientific subjects as "merely a conglomeration of problems and tentative solutions demarcated in an artificial way". In other words, he defines a scientific discipline as a grouping of historically important problems and traditional (scientific) solutions to these problems (Popper 1992: 69). For Popper, this view is possible because of his conception of the scientific enterprise as being driven by a unity of method. If one accepts Popper's model of science, then perceived differences between the natural and human sciences fade away (Popper 1992: 64-81; 1994: 130-53, 154-84). This is not to say that there are not differences between, for instance, the

11 Elaborating this point, Popper writes:

Kuhn has discovered something which I had failed to see, and I have derived considerable enlightenment from his discovery... Kuhn discovered what he has called 'normal science' and the 'normal scientist'. This name refers to a phenomenon which in his opinion, as the name indicates, is 'normal'. I admit to the existence of the phenomenon (which I had before overlooked or not seen in its full significance); but I do not admit the evaluation hinted at by the term 'normal': I do not only dislike the phenomenon, but I think that it has only recently become very important and, in my opinion, a danger to science. (Popper 1974: 1145; Bird 1975: 160, 163 n37)
natural and social sciences, but rather that the similarities are more significant than the differences (Stokes 1998: 75-6; Bird 1975: 158).

Nevertheless, the belief in a fundamental gulf between the natural and human sciences is widespread. Popper's counter position is this: those practitioners of the human sciences who insist on such a gulf "have a radically mistaken idea of the natural sciences" (Popper 1994: 139). In essence, scholars of the humanities and social sciences have sometimes understood scientific objectivity as something that is uniquely inherent in the data sets of the natural sciences. However, Popper stresses that what may be called scientific objectivity is not inherent in the kinds of data nor based upon the imagined impartiality of natural scientists, but instead on the "public and competitive character of the scientific enterprise and thus on certain social aspects of it" (Popper 1994: 69). In other words, scientific objectivity springs from "mutual rational criticism, upon the critical approach, the critical tradition" (Popper 1994: 70). This conception of objectivity is shared by all sciences, human and natural, and is dependent not on the materials but upon the particular rigour of the field's critical tradition and standards of clarity (Popper 1994: 70).

As alluded to earlier, Trigger shares this view, seeing the dichotomy of "science and history ... at best unconvincing" (Trigger 1989: 374). The corollary of such fundamental questioning of disciplinary legitimacy, of course, is to encourage inter-disciplinary work. Trigger, for instance, suggests that inter-disciplinary dialogue improves attempts to falsify solutions to archaeological problems (and thus the discipline's critical rigour):

...[It is reasonable] to use non-archaeological sources of data, such as oral traditions, historical linguistics, and comparative ethnography, in order to produce a more rounded picture of prehistoric cultures and to rule out alternative explanations that archaeological data alone might not be able to exclude. (Trigger 1989: 377)

If one is to carry through such a mandate as Trigger’s for inter-disciplinary ‘conversation’, then a standard of clarity is paramount. This point is vital and one which Popper has stressed at length, for instance in his essay ‘Against big words’ (Popper 1992: 82-95). The argument in a simple form is this:

12 For instance, Popper points to Windelband, Rickert, Dilthey, Collingwood, Trevor-Roper and Berlin (Popper 1994: 139).
One cannot tell truth from falsity, one cannot tell an adequate answer to a problem from an irrelevant one, one cannot tell good ideas from trite ones, and one cannot evaluate ideas critically – unless they are presented with sufficient clarity. (Popper 1994: 70-1)

This goal of clarity (and thus accessibility) is a crucial one. As an editor of the works of others, I stressed this ideal in the introduction to a recent collection of articles:

Atlantic Peoples outlines a fresh approach to first publication of research on the North Atlantic coasts and islands, here focusing on the Markarfljót and Eyjafjallasevit region of southern Iceland. The ideal expressed here is of accessibility. New research is framed to highlight the potential of interdisciplinary study, especially between the natural and cultural sciences. (Ahronson 2003: 50)

Standards of clarity allow for accessible scholarship across specialist fields (and thus dialogue and Popperian science). Implicit in the ideal of clarity is an attack upon the authority of ‘experts’ (and the corresponding imprisonment of ‘experts’ within their specialisation). ‘Expert authority’ should be attacked by a “frank acknowledgement of how little we know, and how much that little is due to people who have worked in many fields at the same time” (Popper 1994: x). The argument for clarity means that if one is able to effectively communicate a problem and tentative solution from a specialist field to a wider audience, then one has little recourse to ‘expert authority’. In other words, standards of clarity in scholarship foster academic modesty and the abandonment of authority, as thorough engagement with one’s ideas by others will (hopefully) lead to effective and open criticism by the community. In this way, a scholar’s well-communicated problem and solution should (without authority) engage with the audience. It may be considered convincing or unconvincing, and thus open to criticism from all courts: this is science.

In editing the *Atlantic Peoples* collection, I aimed to embody Popperian ideals of clarity and science:

Each article follows the same structure. An accessible abstract prefaces while the introduction and conclusion summarise the relevance of the study to a wider audience. Emphasis is placed upon language that allows conversation between disciplines. Every paper is the first publication of new research and the main text presents specialist data and discussion. (Ahronson 2003: 51)

The sampling of North Atlantic research in this collection expresses the ideal of publishing work-in-progress: new data and preliminary interpretations are
presented in order to encourage dialogue and inform discussion. (Ahronson 2003: 52)

In this thesis, I pursue the same aims, but on a larger scale and with a more explicitly theoretical basis.

The hypothesis to be tested here is this: if individual specialist studies are phrased accurately and accessibly, then they may be integrated with other similarly phrased studies into a fruitful inter-disciplinary discussion. This is coordination of Wainwright’s second kind: the synthesis of data from many disciplines (Wainwright 1962: 89-97). Following Popperian science makes inter-disciplinary conversation a natural goal – and does not favour any discipline over another. In order to achieve this dialogue, standards of clarity are vital. Correspondingly, to communicate a problem and tentative solution effectively, the problem and solution must be ‘packaged for export’ so that specialist disciplinary knowledge is made accessible without appealing to ‘expert authority’.

Wainwright gives a straightforward formulation of similar ideas (Wainwright 1962: 104-23), which may be integrated into a Popperian method as follows:

1. Tentatively accept realism.
2. Each discipline that studies the past approaches the past using its own methodologies and terms (e.g. an archaeological term is not the same as a historical term).
3. Similarly, each discipline is focused by its terminology on questions that its data sets can attempt to answer. For instance, a place-name study could consider the linguistic background of those that named a locality, but cannot consider questions which the data sets do not (usually) respond to, such as whether those that named a locality were tall.
4. Coordinating material from multiple disciplines may permit the refutation of ideas formulated within a discipline – and thus advance scientific dialogue.
5. By accessibly communicating studies (clearly defining a problem, solution, implicit assumptions, and limitations), that is, by packaging material for export to other disciplines, we allow for better science.

Furthermore, working towards a ‘conversation between disciplines’ in this way has the added benefit of fostering methodological innovation. By continually restating problem, solution, implicit assumptions and limitations, we allow for questioning of method as well as results. For example, the tephra contours technique discussed in Chapter Six asks just these sorts of questions. This point will be returned to shortly.
Method

Rather than attempting a synthesis of the topic, this thesis focuses on problem areas for several types of scholars of early medieval Scotland, the Faroe Islands and Iceland. Three key problems for a number of disciplines were selected. These relate to the diffusion of culture, movements of people, development of societies and environmental change: What can the toponymy of Hebridean Pap-islands tell us? How can southern Iceland’s artificial caves be integrated into the island’s settlement sequence – and correspondingly how does the area’s record of human-environmental interactions relate to this settlement sequence? And, How should the historical dimension of scholarship, as seen in the Írland et mikla tradition of medieval (and antiquarian) literature, be approached?

Mono-disciplinary solutions to multi-disciplinary problems such as these have the potential to falsify each other when integrated – thus fostering a more rigorous practice of science. That is not to say these toponymic, archaeological, environmental, philosophical, literary and historiographical problems have been integrated from the outset. I have respected the specific critical tradition of each field when elaborating tentative solutions to its problems. This is because each field’s data sets respond best to certain kinds of questions and these are not immediately comparable in an inter-disciplinary way. For instance, the place-name scholar is able to consider the linguistic background of the namers of a place, but is mostly unable to consider whether they were tall or short. Throughout this process, a long view is maintained: one problem study has the potential to falsify aspects of solutions to another, as long as care is taken to stress the appropriate limitations. The use of inter-disciplinary dialogue to falsify single-disciplinary ideas is discussed by Trigger in a passage quoted earlier, where he argues that archaeologists should use non-archaeological sources of data “...in order to produce a more rounded picture of prehistoric cultures and to rule out alternative explanations that archaeological data alone might not be able to exclude” (Trigger 1989: 377). The use of clear and accessible language is crucial in this process, as well as an awareness of the very tentative (i.e. falsifiable) nature of any ‘bold’ solutions proposed.
Though his is not the only theory of science which considers inter-disciplinary research, Popper's approach validates and even encourages inter-disciplinary work, such as that of Wainwright. In the same vein, Trigger explains how inter-disciplinary dialogue has more power than 'single-disciplinary' work to refute archaeological hypotheses. Consider the following simplified example. A preliminary archaeological survey may interpret a small number of visible structures on a hill as seventeenth-century 'farm buildings' (because today the area is surrounded by extensive open grassland suitable for cultivation). However, place-name study may suggest nineteenth-century environmental change, noting the open grassland as a previously-submerged landscape, with the hill carrying an island-name and the grassland a lake-name. On that evidence, the reasoning which identified these structures as 'farm buildings' is refuted. This example also highlights another important element of Popperian science, namely modesty: we know that our ideas are imperfect, but do not yet understand exactly how.

In order to reinforce the use of accessible language, a common structure frames each of the following chapters. A long quote points to the general problem area, followed by a short introduction that articulates the problem and solution. An elaboration of problem and context then explores the field, including previous attempts to solve related problems. Next, a hypothesis (or multiple hypotheses) is presented. A tentative solution to the problem is developed and assumptions inherent in the solution made explicit. A description of method then applies the hypothesis/hypotheses to the problem, defining the test to be made. Results and discussion follow, considering the outcome of the test and asking how the results of other studies may be incorporated (including results of other chapters). Important in this process is a constant awareness of inherent assumptions and limitations: inter-disciplinary dialogue has the potential to falsify aspects of certain solutions but we must not expect too much. Lastly, the entire process is summarised in the conclusions and further problems, where the wider relevance of the study is discussed. To allow greater access to references (and to accommodate the wide ranging approach of this thesis), these are included at the close of each chapter. Crucially, the conclusions restate inherent assumptions and limitations in simple language accessible to the scholar who is not a specialist in the discipline in question. This final section, most of all, is phrased to enable intelligent inter-disciplinary dialogue.
Invariably, further problems are raised in the course of the problem-solving process. The thesis consequently concludes with a brief section in which such fertile areas are flagged up for future research.

Results and discussion

While the final chapter is the most appropriate home for a consideration of several results, a point raised earlier deserves further attention at this point: namely the possibility for methodological innovation *within* a field as a result of inter-disciplinary dialogue.

This chapter stresses how a ‘conversation between disciplines’ is most effective when each study clearly communicates problem, solution (including methodology), assumptions and limitations. As clearly explained, this process has twofold advantages: the critical rigour of a study is increased, and methodological innovation may occur when a technique is adapted from one field to another. The *tephra contours* technique pioneered in Chapter Six of the thesis is just such a case.

Simply put, *tephra contours* are an application of an ‘archaeological’ method to solve environmental questions of landscape change. In archaeological fieldwork, an excavator often contours the surface of a deposit – and may become very skilled at exposing such surfaces. Volcanic airfall deposits in the Seljaland area of southern Iceland at times form visually distinctive centimetre-scale layers that may be exposed across a large area in order to study changes in surface vegetation over time. In essence, the *tephra contours* method provides a ‘photographic negative’ of surface vegetation at the moment the tephra was deposited. For instance, clearly defined circular ‘holes’ in the tephra cover may mark the site of tree trunks – and record the trunk diameter at ground level. In other words, *tephra contours* put into practice ideas such as those entertained by the palaeoecological and archaeological researcher Paul Buckland when he wrote, “the tephra horizons mean that extensive areas are sealed and it would theoretically be possible to excavate and reconstruct entire plant communities...” (Buckland 1981: 383). Furthermore, exposing a large contiguous tephra surface allows density of tree cover to be quantified.
Additionally, efforts at defining the representativeness of the tephra contours have asked fundamental questions of the commonly used technique of recording an exposed vertical profile, or section. A section is a freshly exposed (roughly) vertical face, which is sometimes stepped – to create a one- or two-dimensional log of such a vertical section is a basic technique employed by Quaternary researchers, including tephrochronological workers active in Iceland (Jones et al. 1999: 27-33). Instead of excavating and recording what is essentially a two-dimensional ‘snapshot’ of a layer, the tephra contours technique has the advantage of exposing the quantifiably representative three-dimensional surface of that layer. For instance, the Veioivotn AD 871±2 tephra may be exposed over a 3m x 2m surface within a 100m x 100m area in order to consider the landsurface across this area at that time (assuming similar elevation, microclimate, etc.). Crucially, the confidence with which results produced by contouring the small tephra surface may be related to the larger area is quantifiable. This means that the tephra contours technique is suitable for investigating questions of representativeness over a landscape. Additionally, applying tephra contours in this way has the potential to clarify the practice of two-dimensional vertical profile recording – suggesting, for instance, that the section is appropriate for investigating presence of features in deposits (such as tree trunks), but not questions of representativeness of these features over a landscape.

These points are elaborated in Chapter Six. For immediate purposes, it is the concept of methodological innovation that is important. The ‘archaeological’ technique of the tephra contours provides a new method to answer questions of landscape change – and as a ‘borrowed’ technique, it is itself the result of inter-disciplinary dialogue. Furthermore, applying the technique allows assessment of another technique, that of vertical profile logging – reminding us of the limitations inherent in that method.

Conclusions and further problems
As with the previous section, the effectiveness of my method is best considered at the end of the thesis. Nevertheless, a review of the contents of this chapter is worthwhile, leading to the presentation of some methodological questions that immediately emerge.

This chapter has explored Karl Popper’s conceptualisation of science as a critical process with a unity of method. Such a formulation is not limited to the ‘traditional’ (i.e.
natural) sciences, but instead defines science as the process of proposing conjectures and refutations. Thus science is an enterprise that proceeds by first formulating bold solutions to a problem, and then attempting to show these solutions to be false.

An explicitly defined inter-disciplinary method is needed when exploring problems that arise from fields operating in areas of convergence for separate theoretical traditions, such as Celtic studies or archaeology. Specifically, an inter-disciplinary method is crucial in studies such as the present one of the early medieval North Atlantic, where I deploy archaeological material, medieval literature, place-names and palaeoenvironmental data. F T Wainwright elaborated a pragmatic method for such coordination over forty years ago. He identified two kinds of inter-disciplinary study: the specialist study from one discipline to another (e.g. a study of local geology incorporated into an archaeological site report), and a grander synthesis of research from a number of fields.

High standards of clarity and accessibility are crucial to a Popperian practice of science: well-communicated scholarship fosters dialogue, increases the possibility to refute one’s ideas and encourages methodological innovation. This last point is important and highlighted by the tephra contours technique’s application of an ‘archaeological’ method to solve environmental problems of landscape change. The format of the thesis reflects the theories and methods discussed here.

This chapter has explored a fundamental theory of knowledge. A challenge for future work will be to integrate the thinking outlined in this chapter with fuller treatment of discipline-specific theoretical models. Additionally, two methodological questions immediately emerge from the chapter. In the statement of Popper’s key seventeen theses given in the hypothesis section, he proposes that “Qualitative tests, for example, are in general less severe than quantitative tests” (Popper 1994: 94). One potential problem is whether a distinction between quantitative and qualitative tests is necessary or valid when one is doing science as described above. To be more precise, if each test (or study) clearly and accessibly communicates its inherent assumptions and limitations, then such a rule-of-thumb distinction between quantitative and qualitative tests become obsolete (and a potential source for error). This problem may be worth pursuing further.
A second problem emerges out of Wainwright's two kinds of inter-disciplinary coordination. Wainwright distinguished between the integration of specialist study and a larger synthesis of research from many fields. Implicit in the Popperian method advocated in this chapter is an inclusive concept of science as a process – thus giving minimal relevance to disciplinary boundaries. Indeed, Popper stresses that "What really exists are problems, and scientific traditions" (Popper 1992: 69). Correspondingly no 'disciplinary' approach is privileged over another. Instead, the relative limitations of each study are articulated. One unresolved question then, is whether there is any distinction in Popperian science between Wainwright's two kinds of coordination. In other words, further investigation may articulate a common method for the 'specialist study' and 'larger synthesis'.

In conclusion, Popper proposes an inclusive concept of science with a unity of method that stresses communication with other researchers in other fields. In other words, Popperian science is a community enterprise. Writing from a literary perspective in the 2003 preface to his book Orientalism, Edward W Said provides a useful parallel:

My idea in Orientalism is to use humanistic critique to open up the fields of struggle, to introduce a longer sequence of thought and analysis to replace the short bursts of polemic, thought-stopping fury that so imprison us in labels and antagonistic debate whose goal is a belligerent collective identity rather than understanding and intellectual exchange. ...By humanism I mean ... to use one's mind historically and rationally for the purposes of reflective understanding and genuine disclosure. Moreover, humanism is sustained by a sense of community with other interpreters and other societies and periods: strictly speaking, therefore, there is no such thing as an isolated humanist. (Said 2003 [1978]: xvii)

Within his humanism Said embraces key Popperian ideas when he stresses willingness and ability to communicate effectively across 'frameworks' – for Popper argues that we may work between 'frameworks', be they intellectual perspectives or disciplinary traditions. This chapter provides a justification and outlines a method for putting my theory of inter-disciplinary conversation into practice. In order to better understand the diffusion of culture, movements of people, development of societies and environmental change across the early medieval North Atlantic, my thesis applies this method to integrate studies in key problem areas, from a number of disciplinary perspectives. Thus,
Chapter Three explores Pap-place-names through a study of the toponymy of Hebridean Pap-islands, and Chapters Four to Seven concentrate upon southern Iceland’s enigmatic artificial caves by integrating the Seljaland caves and that area’s record of human-environmental interactions into the island’s settlement sequence. As the final study, Chapter Eight tackles the historical dimension to this thesis, through its treatment of Irland et mikla (Greater Ireland) in medieval literature and nineteenth-century scholarship.

References

CHAPTER TWO: A conversation between disciplines

CHAPTER THREE
Who were papar? A case study of Hebridean Pap-island place-names

"Most importantly ... the rarely occurring OI [Old Irish] papa (or pupu) is used to describe persons in relation to their monastic or anchorite activities in the Scottish Isles. The word occurs e.g. in the Martyrology of Oengus the Culdee, apparently composed around 828-830, but only surviving in a number of 16th-century transcriptions. In one of these versions we learn that:

Nem mace hui Birn do Dail Birn i n-Osraige 7 comarba Enna Arné ocus is hé sin in papa atherar do bih i n-Arann

Nem moccu Birn of the Dál Birn of Ossory and successor of Enda of Aran; and he is that papa

who is said to be in Aran

If the dating of this document is correct, a Gaelic origin for ON papi, m., is very conceivable."

"Place-names are created by utilising the word material available at any given point in time ... by means of the standard utilisation of the syntax, grammar and vocabulary which exists as the source language at the time and place of naming. Therefore, it is possible, if enough is known about the language at the time of naming, to make an etymological analysis of the generic form of a place-name. The etymological analysis of place-names has traditionally been the main concern of all place-name researchers. However, it can be argued that this type of research deals not with place-names but with the components of place-names prior to place-name formation. [Nonetheless, subjecting place-names to an etymological analysis] ... is most helpful in trying to get to grips with how a name formation was applied, not only in its physical surroundings, but also by the society in which it was applied."

Peder Gammeltoft

Introduction

For well over a hundred years, Old Norse Pap-names and medieval papar/papae descriptions have been used to suggest early Christian migration(s) across the North Atlantic islands. Critical review, however, highlights still-unexplored avenues for toponymic study of Pap-names – and suggests more complex and nuanced interpretations of the material. A place-name denotes a location and, for the namer, articulates meaning given to that place. Pap-names, such as those derived from Old Norse (ON) *Papa(r)ey, are found across a northern region incorporating the Scottish islands, Faroe Islands and Iceland. Previously, the argument has appeared straightforward: Pap-names describe settlements of early Christian Gaels, called papar by the Norse. I suggest this argument is simplistic and lacks critical rigour.
Illustr 3.1 Distribution of Pap-names across Atlantic Scotland. Hebridean Pap-island names are indicated in red. Note the pap-element occurs both further south (e.g. Mull, Man) and north, in the Faroe Islands and Iceland. Adapted from map circulated at 15 March 2003 Scottish Papar Project meeting in St Andrews.
CHAPTER THREE: Who were papar? Hebridean Pap-island place-names

Pap-names are most common in Atlantic Scotland (see illustration 3.1), where pap-scholarship is dominated by studies of the Northern Isles. The Hebrides, notable as a core area for these names, represent a striking gap in scholarship: Pap-names there are little studied and have not been integrated with Northern Isles-driven work. If Pap-names are indeed related to early Christian Gaels, then this should be most clearly seen in these western islands, where sculpture, surviving structures, and contemporary literature identify early Christian communities. Original research was undertaken in order to rigorously assess such a relationship: this chapter highlights the little-studied Hebridean Pap-islands and presents a toponymic inventory3 to underpin my conclusions. While the work of collecting this data was designed as a preliminary to place-name study on a wider front, it also serves to illuminate our specific problem – the postulated relationship between Pap-names, communities of early Christian Gaels and Norse colonists.

Problem and context

WIDER PROBLEM: What does the distribution of Pap-names across the European North Atlantic reveal?

KEY QUESTION: What do Pap-names in the Hebrides reveal about early Christian communities and the Norse?

Pap-names are found in a number of places across the North Atlantic region and, as mentioned above, they are most common in Atlantic Scotland. Table 3.1 lists these sites by country and region while illustration 3.1 plots most Scottish names – including the new discovery of Papiess Holm (Duffus parish, Moray) (Simon Taylor, pers. comm.). This Papiess Holm could be significant, as its occurrence pushes the area of these names southwards into the Moray Firth. Such an extension is both plausible and exciting, as that region has an early Christian inheritance and the Norse period there is imperfectly

3 Simon Taylor guided much of the name collecting for this chapter, under the auspices of Barbara Crawford's and Ian Simpson's Scottish Papar Project. Correspondingly, a significant amount of the data was included in an unpublished project report (Ahronson 2002). That report was preliminary and I have since continued work on this data; thus the 'project material' incorporated into the present study has benefited from further analyses. (For instance, by incorporating final comments from Simon Taylor's unpublished accompanying report (Taylor 2002), as well as my own analysis and the new work of scholars such as Peder Gammeltoft (Gammeltoft 2001; 2003; 2004a; 2004b).)
grasped. Additionally, table 3.1 presents Kilphobull, a recently identified Pap-name from the parish of Kilninian and Kilmore on the Isle of Mull. Potentially derived from Gaelic cill ‘cell, church’ + ON *Papabyli, this name is a welcome addition to the Hebridean corpus (Gammeltoft 2001: 301).

The geographical distribution of Pap-names is notable: these names appear to be largely restricted to the Scottish littoral zones and archipelagos, and to the northern archipelagos of the Faroe Islands and Iceland. The Hebrides may be seen as a core area for these names albeit the least studied. The present chapter seeks to remedy this scholarly deficit by focusing primarily on these western islands.

At present, the name is not found in Ireland nor Scandinavia, though certain Scottish and Norwegian names, of another type, betray surface similarities to our group. This other type includes names such as the Paps of Jura (Jura, western Scotland) or Papper/på Papøy (Østfold, southeastern Norway), and have been set apart as they are pretty certainly different from ON papa(r) names. To elaborate, the Østfold Papper/på Papøy is usually understood in terms of the Norwegian word pappe ‘breast, teat’; and the island’s topography strongly suggests this meaning (Gammeltoft 2004b: 38 n1).

Discussing the possibility that the North Atlantic Pap-names do not contain ON papa(r), but share a common etymology with the Østfold name, Gammeltoft concludes that deriving these names from ON *pap ‘breast, teat’ is difficult to support:

Formally, there is no reason why this possibility should not lie behind some Pap-place-names in the North Atlantic either. I must, however, immediately concede that I have not been able to find any suitable breast-shaped formations on or near any of the localities, apart from possibly Papa Little in Shetland which has a tendency to a double-peaked profile⁴. So, although ON *pap- ‘breast, teat’ might be a formal possibility, the topography seems to speak against this in most cases. (Gammeltoft 2004b: 38 n1)

Topography then, may be used to distinguish ON *Papa(r)ey and *Papa(r)byli names from names containing the Old Norse (or (Northern) Old English) word for ‘breast, teat’.

⁴ This is not to say that ‘breast, teat’ names need refer to paired ‘paps’: consider Pap of Glencoe (one peak) or Paps of Jura (three peaks).
Table 3.1 Listing of Pap-names from Iceland, the Faroe Islands, Scotland, NW England and the Isle of Man. Potentially recent names are represented by +, while ? notes an unclear derivation. This list draws substantially upon the work of Peder Gammeltoft and Aidan MacDonald (Gammeltoft 2004b: 36-7; MacDonald 2002: 26-9).

<table>
<thead>
<tr>
<th>Country/Region</th>
<th>Pap-name(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iceland</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Papey (island, S-Múlasysla)</td>
</tr>
<tr>
<td></td>
<td>Papafiður (firth, A-Skaftfellssýsla)</td>
</tr>
<tr>
<td></td>
<td>Papósi/Papajágarós (confluence, A-Skaftfellssýsla)</td>
</tr>
<tr>
<td></td>
<td>Papűli (lost settlement)</td>
</tr>
<tr>
<td></td>
<td>Papi (pool in the river Laxá)</td>
</tr>
<tr>
<td></td>
<td>Papafell (mountain, Strandasysla)</td>
</tr>
<tr>
<td></td>
<td>+Papakross (cliff-face carving, Hetta, Vestmannseyjar)</td>
</tr>
<tr>
<td></td>
<td>+Papahellir (cave, A-Rangárvallasysla)</td>
</tr>
<tr>
<td>Faroe Islands</td>
<td>Paparókur (cliff-ledges, Vestmanna)</td>
</tr>
<tr>
<td></td>
<td>?Papurshálsur (cliff-ledge, Saksun)</td>
</tr>
<tr>
<td>Scotland 1: Shetland</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Papa Geo (creek, Aithsting)</td>
</tr>
<tr>
<td></td>
<td>Papa Little (island, Aithsting)</td>
</tr>
<tr>
<td></td>
<td>Papa Stour (island, Sandness)</td>
</tr>
<tr>
<td></td>
<td>Papa (island, Burra)</td>
</tr>
<tr>
<td></td>
<td>Papil Geo (creek, Noss)</td>
</tr>
<tr>
<td></td>
<td>Papil Water (loch, Fetlar)</td>
</tr>
<tr>
<td></td>
<td>Papil (settlement, Burra)</td>
</tr>
<tr>
<td></td>
<td>Papil (settlement, North Yell)</td>
</tr>
<tr>
<td></td>
<td>Papil (settlement, Unst)</td>
</tr>
<tr>
<td>Scotland 2: Orkney</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Papa Stronsay (island, Stronsay)</td>
</tr>
<tr>
<td></td>
<td>Papa Westray (island, Westray)</td>
</tr>
<tr>
<td></td>
<td>Papdale (settlement, Kirkwall and St Ola)</td>
</tr>
<tr>
<td></td>
<td>Papley (district and settlement, South Ronaldsay)</td>
</tr>
<tr>
<td></td>
<td>+Papleyhouse (settlement, Eday)</td>
</tr>
<tr>
<td></td>
<td>Ward of Papley (mound, Holm)</td>
</tr>
<tr>
<td></td>
<td>?Steenen o’Papy (sea rock, North Ronaldsay)</td>
</tr>
<tr>
<td>Scotland 3: Caithness</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Papel (tidal rock, Canisbay)</td>
</tr>
<tr>
<td></td>
<td>Papigoe (creek and district, Wick)</td>
</tr>
<tr>
<td>Scotland 4: Moray</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Papis Holm (settlement, Duffus parish)</td>
</tr>
<tr>
<td>Scotland 5: Hebrides</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bayble/Paibal (settlement, Stornoway, Lewis)</td>
</tr>
<tr>
<td></td>
<td>Pabanish (rocky hill, Uig, Lewis)</td>
</tr>
<tr>
<td></td>
<td>Pabay (island, Strath, Skye)</td>
</tr>
<tr>
<td></td>
<td>Pabay Beag (island, Uig, Lewis)</td>
</tr>
<tr>
<td></td>
<td>Pabay Mór (island, Uig, Lewis)</td>
</tr>
<tr>
<td></td>
<td>Pabbay (island, Barra)</td>
</tr>
<tr>
<td></td>
<td>Pabbay (island, Harris)</td>
</tr>
<tr>
<td></td>
<td>Pabay (two islands, South Uist)</td>
</tr>
<tr>
<td></td>
<td>Paible (chapel and settlement, North Uist)</td>
</tr>
<tr>
<td></td>
<td>Paible (chapel and settlement, Taransay)</td>
</tr>
<tr>
<td></td>
<td>Papadil (islets, Rhum)</td>
</tr>
<tr>
<td></td>
<td>Kilphobull (Kilninian and Kilmore parish, Mull)</td>
</tr>
<tr>
<td>Man</td>
<td></td>
</tr>
<tr>
<td></td>
<td>?Glenfaba (Peel)</td>
</tr>
<tr>
<td>Scotland/England: Dumfries and Galloway/Cumberland</td>
<td></td>
</tr>
<tr>
<td></td>
<td>?Papy Ha’ (Minnigaff, Kirkcudbright)</td>
</tr>
<tr>
<td></td>
<td>?Papcastle (settlement, Cumberland)</td>
</tr>
</tbody>
</table>

5 Christian Matras argued that the name Papurshálsur is derived from an original *Papylishálsur – and thus related to a now-lost Papýli-name in the Saksun area. He proposes first a loss of -i- from *Papylís-, resulting in *Papyls-. Next, the diphthong -ý- ‘uj’ becomes -u- ‘u’. The final change is that of -uls- to -urs-, thus *Papuls- > Papurs-, producing the recorded Papurshálsur (Matras 1934: 187).

6 Gammeltoft derives this name from Gaelic *cill ‘cell, church’ + ON *Papabylí (Gammeltoft 2001: 301). Alternatively, this name could relate to OI popul (itself derived from Latin populus) meaning ‘people, tribe’ or in modern Gaelic ‘congregation, especially Catholic’ (cf Caimpapple in Lanarkshire).
Illustr 3.2 Detail of Kinnaird’s 1783 estate plan – the arrow locates Papies Holm.

In its modern form, Papies Holm has a Scots English plural morpheme. The Scots English ending of Papies should not be seen as a difficulty for identifying Papies Holm as a North Atlantic Pap-name, however, as morphological morphemes are rather unstable and often ‘updated’ to new linguistic conditions, such as internal language-structural changes as well as language change (Sandnes 2003: 291-2).

The name is identified in illustration 3.2 on an eighteenth-century estate plan detail. Papies Holm (NJ203665) is one of several holm-names given to islets on the west shore of the Loch of Spynie (Simon Taylor, pers. comm.). A number of minor place-names from estates in Spynie, Drainie, St Andrews-Lhanbryde and Duffus are recorded on this 1783 map, titled “Map of the Loch of Spynie and adjacent Grounds. Surveyed by Authority of the Right Hon. The Lords of Council and Session. And agreeable to Instruction from Sir William Gordon of Gordonstown, Baronet, Alex. Brander of Kinnedder and John Brander of Pitgaveny Esq. by Hugh Kinnaird” (Keillar 1994: fig 5).

Ian Keillar gives the following discussion of the former extent of Loch Spynie (NJ235664):

Loch Spynie is miserably small compared to its conjectured dimensions about 1000 AD. Then there was open sea extending from west of Burghhead to east of Lossiemouth, and Burghhead and Kinneddar were part of an off shore island. Authorities for the above include; Peacock, Young, Mackintosh and Ross (Peacock 1968: 116; Young 1871: 5-36; Mackintosh 1928; Ross 1987: 19-24). The western end of this open seaway was closed by storm beaches circa 1100 and by the end of the 15th century, the Loch of Spynie was completely cut off from the sea. By the middle of the 18th century the only remaining evidence for the one time existence of a sea passage was the string of lochs and mosses as shown in … [Kinnaird’s map]. (Keillar 1994: 7)
CHAPTER THREE: Who were *papar*? Hebridean *Pap*-island place-names

It is important to emphasize that *Pap*-names are Old Norse constructions. As a consequence, our exploration of the Hebridean names demands some discussion of current thinking on Scandinavian language use in Atlantic Scotland. In the Viking Age, the area of Scandinavian influence in Scotland saw two power centres emerge: one in the Northern Isles and the other in the Hebrides and Isle of Man. From this time until the end of the twelfth century, a region incorporating Shetland, Orkney, Caithness, Sutherland, the Hebrides and the Isle of Man formed a common language area where Old Norse was spoken. In the Western Isles of Scotland, a form of Old Norse appears to have preceded the late medieval dominance of Gaelic there. Old Norse may have flourished in the west until the mid-thirteenth century, when the Scottish king secured authority in the Hebrides and Isle of Man (though Orkney and Shetland remained ‘Scandinavian’ until AD 1468-9). An unresolved question is the length of time before Gaelic completely replaced the Old Norse spoken in these western islands – the suggestion being that Hebridean Old Norse disappeared rapidly under Scottish influence. Caution to this scenario, however, are other examples of Scandinavian speech that survived changes in authority: in Orkney and Shetland the *Norn* language (derived from Old Norse) was used until the seventeenth and eighteenth centuries. The Hebridean case remains unresolved (Gammeltoft 2004a: 53-4; 2001: 23-30).

Gammeltoft has very recently published a study that investigates the transformation in the Western Isles from Old Norse to Gaelic speech. By studying Gaelic and Scandinavian phonetics, grammar, lexical loans and place-names, he is able to outline a scenario of late medieval language shift in the Hebrides. The distribution of a number of Gaelic phonetic features may result from this language shift. The devoicing in Manx and Scottish Gaelic of *b, d, g* to *b̃, d̃, g̃* (in contrast to Irish Gaelic); the initial stress on native words in Scottish Gaelic and in the Irish Gaelic dialects of Ulster and western Connaught; and the supradentalisation and retroflection of certain consonant clusters in

8 In the twelfth-century *Historia Norvegiae*, Scotland’s Atlantic islands are described thus:

Que quidem diversis incolis acculte nunc in duo regna sunt diuise: sunt enim Meridiane insule [Suoreyjar or Hebrides] regulus sublimate, Brumales uero comitum presidio decorate, qui utrique regibus Norwegie non modica persoluunt tribua.

They are populated by different peoples and now split into two domains; the southern isles [Suoreyjar or Hebrides] have been elevated by petty kings, the northern graced by the protection of earls, both of whom pay no mean tribute to the kings of Norway. (*Historia: ch 5; Ekrem & Mortensen 2003: 64-5; Phelpstead 2001*)
the Hebrides are proposed to result from Scandinavian interference on Gaelic (Gammeltoft 2004a: 55-9). Similarly, large-scale Old Norse to Gaelic language shift may be reflected by the AD 900-1200 grammatical simplification in Gaelic, which appears to have been greatest in Manx and Scottish Gaelic (Gammeltoft 2004a: 60).

Alongside the notable phonetic and grammatical interference, lexical loans into Gaelic are surprisingly slight (c. 200 words), though the combination of significant phonetic and grammatical interference with a small number of lexical loans fits well with models of language shift-induced interference (Gammeltoft 2004a: 61-7). The numerous Old Norse place-names found in the Hebrides are also consistent with the suggestion of large-scale language shift there:

That so many place-names of Scandinavian origin remain in existence and have not been replaced by new Gaelic place-names shows that the user-group of these place-names must have continued to live in the area. Had the Scandinavians been driven out in connection with the language change, the survival of anything but perhaps the most central names is hardly conceivable. Only continuity in the user-group could have facilitated the survival of place-names of Scandinavian origin in this number. At the same time, however, the high number of place-names also bear witness to longstanding contacts between Gaelic and Scandinavian speaking people in the area. Had Gaelic-speaking people not already accepted a great number of the place-names, the rate of survival would probably not have been as high as it is. (Gammeltoft 2004a: 71-2)

Thus the existence of such a number of Old Norse place-names suggests a continuity of user-group and longstanding contacts between Old Norse and Gaelic speakers. Additional support for this scenario is found in the limited interference of Gaelic upon the Scandinavian languages. The limited lexical loans from Gaelic (as the only type of Gaelic interference on the Scandinavian languages) suggest that interference in this direction was not intense and resulted from language contact through bilingualism. Furthermore, that c. 8% of these loan words serve a religious function may reflect the Christian influence of Gaelic speakers on Old Norse-speaking communities of the Atlantic area (Gammeltoft 2004a: 64, 67).

Cast against this background (or one like it), research into the Pap-names has fallen into three camps. Earlier scholarship has argued that these names testify to ‘Irish’ Christian settlements across Scotland, the Faroe Islands and Iceland predating the
CHAPTER THREE: Who were *papar*? Hebridean *Pap*-island place-names

Viking Age (Beauvois 1875: 69-72). In contrast, recent years have explored the idea of late Viking Age 'antiquarianism' among the Scandinavian communities of the North Atlantic – proposing that the late Norse coining of *Pap*-names asserts (or invents) continuity with a Christian past (MacDonald 2002; Lowe 2002: 94-5). Another idea is that, though *Pap*-names are potentially related to early Christian communities of the seventh and eighth centuries, these names were given by *Norse speakers* in the early Viking Age – and thus describe 'papar' *within* an early Norse context in the Scottish islands, Faroe Islands and Iceland (Gammeltoft 2004b: 36-41; Lamb 1995: 17-8).

Given the wide-ranging interpretations outlined above, understanding the *pap-* element is crucial to the problem of these names. As noted in Chapter One, the earliest literature to mention the *pap-* element describes *papar* or *papae* as early Christian 'Irish' in Iceland (or African Jews in Orkney) – in both cases these populations are portrayed to precede Norse settlement there and as having minimal contact with the colonists (*Íslendingabók*: ch 1; *Landnámabók*: ch 1; Benediktsson 1968: 4-5, 31-2; Pálsson & Edwards 1972: 14; *Historia*: ch 6; Ekrem & Mortensen 2003: 64-7). These twelfth- and thirteenth-century texts were written with purpose; and as I will argue in Chapter Eight, this purpose is especially evident in the case of *Historia Norvegiae*’s Africans ‘... *judaismo adhaerentes* / ... adhering to Judaism’ (*Historia*: ch 6; Storm 1880: 90; Anderson 1922: 331). As for medieval traditions of early Christian settlements encountered by Scandinavians (in contrast to the lone claim of the *Historia Norvegiae*), these persisted into the modern period. The following folktale from the Faroe Islands is one such example, published in the mid-nineteenth-century:

Quelque temps avant que les Norvégiens s’emparassent des Fâeurs, il s’y était établi des hommes que le narrateur considérait comme des saints, attendu qu’ils avaient la puissance de faire des signes et des miracles, de guérir les blessures et les maladies ... A l’arrivée des Norvégiens, qui étaient très-violents, quelques-uns de ces gens s’éloignèrent par mer; d’autres se réfugièrent dans des cavernes. (Beauvois 1875: 68 n1; Schrøeter 1849-51: 146-7)\(^9\)

\(^9\) Taken from Beauvois, though he himself extracts this folktale from Schrøeter.
A belief in early Christian (Irish) settlements across the early medieval north is thus of significant antiquity and longevity. *Pap*-names, understood to contain the Old Norse masculine noun *papi* (conjugated in table 3.2), are presumably related to descriptions of these early Christian (Irish) *papar*. In order to further understand these names, table 3.3 outlines proposed original forms, meaning and potential derivations for *Pap*-island and *Pap*-farm names.

<table>
<thead>
<tr>
<th>Case</th>
<th>Singular form</th>
<th>Plural form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominative</td>
<td>papi</td>
<td>papar</td>
</tr>
<tr>
<td>Accusative</td>
<td>papa</td>
<td>papar</td>
</tr>
<tr>
<td>Dative</td>
<td>papa</td>
<td>popum</td>
</tr>
<tr>
<td>Genitive</td>
<td>papa</td>
<td>papa</td>
</tr>
</tbody>
</table>

Table 3.2 Conjugation of Old Norse masculine singular noun *papi*.

<table>
<thead>
<tr>
<th>Proposed original forms</th>
<th>Meaning</th>
<th>Potential derivations</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Papaey</td>
<td>‘island of papi (s.)’</td>
<td>Papey/Papa/Pab(b)ay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OR Papey/Papa/Pab(b)ay</td>
</tr>
<tr>
<td>*Paparey</td>
<td>‘island of papar (pl.)’</td>
<td>*Paprey > Pabra11 ?> Pab(b)ay</td>
</tr>
<tr>
<td>*Papaey</td>
<td>‘island of papar (pl.)’</td>
<td>Papey/Papa/Pab(b)ay</td>
</tr>
<tr>
<td>*Papabyli</td>
<td>‘farm of papi (s.)’</td>
<td>Papýlí > Papil/Papley/Paible</td>
</tr>
<tr>
<td>*Paparbyli</td>
<td>‘farm of papar (pl.)’</td>
<td>*Papýlí > Papil/Papley/Paible</td>
</tr>
<tr>
<td>*Papabyli</td>
<td>‘farm of papar (pl.)’</td>
<td>Papýlí > Papil/Papley/Paible</td>
</tr>
</tbody>
</table>

Table 3.3 *Pap*-name forms. The ?> notation symbolises a problematic, though possible derivation. The forms *Paparey* and *Paparbyli* are theoretically possible, but only theoretically so: they have never been recorded in old sources. Furthermore, it is unclear to which extent indications of singular or plural are relevant, especially if these toponymic forms came to be used as a fixed phrase (i.e. outside the grammar of word composition).

These proposed original forms and derivations need elaboration. The case of *Papaey > Papey*/Papa/Pab(b)ay is simple: the medial vowel (*Papey*) is lost owing to

10 As mentioned above, I will later propose that the claim of Orkney's *papae* being "Africanus ... judaismo adhcerentes" was politically driven rather than 'historically legitimate' – thus I will set aside this problematic passage for the moment.

In 1995, Raymond Lamb proposed an identification for Orkney's *papar* as Roman Churchmen comparable to those of Frankish Gaul and Anglo-Saxon England (Lamb 1995: 26). However, the North Atlantic distribution of *Pap*-names, incorporating Scotland's Western Isles, instead suggests an association with the northwards-looking Church of the Scottish west.

11 Though the *Pabra* name-form is recorded in Forbes' *Place-Names of Skye and Adjacent Islands*. This name is puzzling: it could derive from *Paparey* but this possibility is problematic as this source is so late that to postulate the survival of a variant Old Norse form of *Pabra* would be dangerous (Forbes 1923: 272).
Old Norwegian syncope\(^\text{12}\), resulting in the \textit{Papey/Papa/Pab(b)ay} forms. The alternate derivation of *\textit{Paparey} > *\textit{Pabra} > \textit{Pab(b)ay} is problematic because, after syncope, the uncommon sound combination [-pr-] remains nonetheless possible in Old Norse – thus the loss of [-r-] in *\textit{Pabra} > \textit{Pab(b)ay} cannot be understood as a straightforward sound change. The *\textit{Paparey} > *\textit{Paprey} > *\textit{Pabra} > \textit{Pab(b)ay} derivation must therefore be considered unlikely, whereas the proposed *\textit{Papaey} > \textit{Papey/Papa/Pab(b)ay} is plausible.

On the other hand, the case of *\textit{Papa(r)byli} > *\textit{Papryli/Papyli} > \textit{Papill/Papley/Paible} is less clear. Again, the medial vowel (\textit{Papa(r)byli}) is lost owing to Old Norwegian syncope. The initial [b-] in \textit{byli} is also lost, here because of phonotaxis: a pronunciation of the [-pb-] in *\textit{Papbyli} is not permitted according to the set of allowed sequences of speech sounds in Old Norse. Similarly, the [-prb-] in *\textit{Paprbyli} is very problematic, so in this instance the [-rb-] would also be dropped. For the -\textit{byli} name then, either proposed original form of *\textit{Papabyli} or *\textit{Paparbyli} is possible, though *\textit{Papabyli} is preferable by analogy with *\textit{Papaey} (Gammeltoft, pers. comm.).

Thus *\textit{Papaey} and *\textit{Papabyli} are the preferred original forms, though *\textit{Paparbyli} is also possible. As may be seen in table 3.2, both singular \textit{papi} and plural \textit{papa} are identical in this conjugation; therefore the *\textit{Papaey} and *\textit{Papabyli} names may denote either ‘\textit{papi} island’ and ‘\textit{papi} farm’ or ‘\textit{papar} island’ and ‘\textit{papar} farm’ – or some combination of these.

In his 2002 study of \textit{papar} names, Aidan MacDonald noted that \textit{ON papi} is usually understood to be a borrowing from Old Irish (which itself draws upon a Latin original); he cites F W Wainwright, Hermann Pálsson, Paul Edwards and A O Anderson as supporting this Irish origin (MacDonald 2002: 15; Wainwright 1962: 100; Pálsson & Edwards 1972: 15 n3; Pálsson 1955: 120-2; Anderson 1922: 341 n2). However, MacDonald also suggests the possibility of a Germanic source (also derived from Latin \textit{papa}) for \textit{ON papi} (MacDonald 2002: 17). Accepting a Latin source, Gammeltoft has assessed potential Germanic and Old Irish origins for the Old Norse use of \textit{papi} in the

\(^{12}\) This syncope (or vowel resolution/vowel simplification) was also active in Old Icelandic, though to a lesser degree than in Old Norwegian. Gammeltoft discusses many of these linguistic points in relation to \textit{Pap} names (Gammeltoft 2004b: 41-2). This syncope may be chronologically constrained and the implications of this will be returned to later, in the results and discussion section.
sense of ‘cleric or Christian’. Gammeltoft proposes that a Germanic origin for the specifically North Atlantic meaning ‘cleric or Christian’ is highly problematic, since Old English pəpa, Old High German pabetes, and East Frisian pape, pəp were used solely for ‘Pope’, and that ‘Pope’ is the meaning of Old Danish papa or pave and Old Norwegian pafi or papi. It may be countered that Middle Low German pape did develop the meaning cleric, but that this is late13 and the first mainland Scandinavian use of the word to describe a ‘cleric’ is the fifteenth-century Swedish pape (Gammeltoft 2004b: 39-40).

Alternatively, the North Atlantic meaning of ‘cleric or Christian’ may be compared with the Old High German phafo ‘priest, especially lower clergy’, which C-E Thors derives from an ultimately Greek rather than Latin origin. Thors proposes that Old High German phafo is a loan from Gothic, where papan occurs in the Gothic calendar fragment14, and is itself ultimately drawn from Greek παπᾶς, which in the fourth century held the meaning ‘clericus minor’ and was easily distinguished from πάπας ‘Pope’. Thors suggests both the Greek παπᾶς and πάπας “egentigen tillhörte barnspråket / belonged to the sphere of children’s language” (Thors 1957: 37-8); he also derives Old Slavic popu from Greek παπᾶς. Thus it may be that Old High German phafo (attested in Middle High German phaffe Middle Low German pape, Old Frisian papa and Middle Dutch pape, all in the sense of ‘priest, spiritual’) has a Greek rather than Latin origin. However, the word is largely absent from the Nordic languages, occurring only once in the Old Swedish poem Tio Guds bud15, though this poem includes many “norvagismer / Norwagisms” and “germanismer / Germanisms” – Thors suspects the poem’s papa is just one of these. According to Thors then, Old High German phafo cannot be demonstrated to have entered the Scandinavian languages (Thors 1957: 37-8).

In contrast to the difficulties with a Germanic derivation, an Old Irish source is straightforward: Old Irish (OIr) popa/pobba/obba held the meaning ‘father’ and was used as a respectful address (following the form pobba + personal name), whereas the

13 Beauvois provides an example of this late medieval Germanic usage of the word:

\textit{C’est en effet dans le sens que le mot papa est employé dans la Poème Frison (Thet Freske Riim, vers 1476), chronique rimée en vieux frison, publié par la Société provinciale Frisonne (Workum 1835: 49, 81). (Beauvois 1875: 70 n3)}

14 “/got. kalenderfragment fines vid 29.10. bi Werekan papan. / In the Gothic calendar fragment the word is used for 29.10.: bi Werekan papan.” (Thors 1957: 37-8).

15 “Jak troer then mann vil illa rapa; Some y wil elska prest eller papa” (Thors 1957: 37-8).
rare OI *papa or *pupu described monastic or anchoritic individuals (MacDonald 2002: 15-7; Gammeltoft 2004b: 40-1). As noted in this chapter’s fronting quote, one transcription of the early ninth-century *Martyrology of Oengus the Culdee describes Enda of Aran as just such a *papa: “is hé sin in *papa atberar do bith i n-Arainn / he is that *papa who is said to be in Aran” (MacDonald 2002: 15; Gammeltoft 2004b: 41). Thus, rather than supporting an Old Germanic derivation, linguistic arguments suggest an Old Irish origin for the North Atlantic use of ON *papi as ‘cleric or Christian’ (Gammeltoft 2004b: 41). A third possibility, still largely unexplored, is a Pictish source for ON *papi. Such an origin is conceivable, considering that most *Pap-names are located in what may have been Pictish-speaking areas at the outset of the Viking Age (Kruse in press). Further research along these lines is called for.

Looking to the places that *Pap-names denote, and the way the element is used in name constructions, proves a further avenue for understanding the toponyms. Combining the *pap-element with ‘island’ or ‘settlement’ is comparable in practice to the naming of an island using a personal name specific, as in the Shetland examples of *Hildisay (< ON *Hildirsey ‘Hildir’s island’) and *Trondra (< ON *Prondarey ‘Prondr’s island’). Thus, for the namer, the *pap-, *Hild- and *Prond-element reflects the idea that *papi/*papar, *Hildir or *Prondr owned or were first to settle there. In other words, “a place-name with the element *papi, m., ‘a priest, Christian’ with *ey, f., ‘island’ or *byli, m., ‘settlement’, signals the association of a locality with the *Papar, be it their presence at, or ownership of, the locality” (Gammeltoft 2004b: 43).

Following this context of ownership or settlement makes the Orkney-led claim that *Pap-sites “are always the most fertile spots of a parish” intriguing (Fisher 2002: 45; Smith 1842: 226; Lamb 1995: 15-7). If these names are sited on the best land in a parish, does this signal a favourable role for *papar in the local hierarchy? Or, alternatively, could these soils have been improved by *papar through agricultural innovation? Work is ongoing to explore and refine these claims for fertile soils: initial efforts targeted the Northern Isles (Simpson & Guttman 2002), while more recent fieldwork looks to the Western Isles (Ian Simpson, pers. comm.).

A final area of research, only recently under scrutiny, is the dating of *Pap-names. In 2002, MacDonald and Lowe questioned the earlier assumption that the names were
coined upon the arrival of Old Norse-speaking colonists. MacDonald instead argued that the likely period for "the creation of all or most of these names is, broadly, the second half of the ninth century and the tenth, but with the overall chronological limits probably varying locally" (MacDonald 2002: 22). He posited Pap-names were inspired by oral and written traditions of contact-period Christian (Irish) communities – and thus coined and then applied to places in the landscape retrospectively (MacDonald 2002: 21, 24 n6). Lowe, on the other hand, suggested Pap-naming flourished as the twelfth-century fledgling Church "sought to attach itself to something that was much older" (Lowe 2002: 95). Gammeltoft challenges these proposals. On linguistic and toponymic grounds, he argues Pap-island and Pap-farm names were coined well before the twelfth century and, as island and generic settlement names, would typically be among the earliest Norse names in the North Atlantic area (Gammeltoft 2004b: 42-3).

In short then, Pap-names present a difficult area for scholars of both the early Christian Gaelic and Viking-Age Norse worlds. Correspondingly, when exploring the problem posed by their distribution across the European North Atlantic, the Hebrides form a natural focus. These islands were home to a number of early Christian communities and, as we have seen, strong Norse settlement. Therefore the way in which these names relate to early Christian Gaels and Norse colonists should be most clearly seen in the Hebrides – the islands where both groups are archaeologically and historically visible.

Hypotheses

The hypotheses assessed in this chapter respond to the key question outlined above: what do Pap-names in the Hebrides reveal about early Christian communities and the Norse? Three hypotheses explore this problem by testing ideas drawn from wider pap-scholarship against the Hebridean corpus of Pap-island names. Pap-islands are chosen because they represent comparable, clearly bounded areas suitable for detailed limited study. In future work, researchers may test ideas formulated by this study in other North Atlantic areas, or against other name types (e.g. Pap-farm names). As mentioned in the introduction, implicit in much earlier scholarship was the argument that Pap-names
describe settlements of early Christian Gaels, called papar by the Norse. An early advocate of this idea was the French scholar Eugène Beauvois (his scholarship will be explored at length in Chapter Eight). Writing in 1875, Beauvois suggested that Pap-names remembered early Christian Gaels in Scotland’s Northern Isles and Iceland. Of the Northern Isles, he writes:

Il n’y a, en effet, plus de restes de l’ancienne population celtique dans les Orcades; mais, bien que les Papas n’y aient pas laissé de descendants, leur nom n’a pas moins été conservé dans ceux des îles de Papa westra et Papa stronsa, et des localités de Paplay. Fordun, qui composa vers 1380 sa chronique d’Écosse parle d’une Papey tercia dont on ne connaît pas la position. De même dans les Shetlands, il y a trois îles qui rappellent les Papas: Papa stour (Papey stóra), Papa little (Papey lítla) et Papa, ainsi qu’un domaine de Papil (Beauvois 1875: 69-70)

The following hypothesis is drawn from Beauvois, but applied to the Hebridean case: the distribution of Pap-names reflects the settlement of early Christian Gaels before the Viking Age.

In concluding the previous section, MacDonald’s and Lowe’s arguments for dating Pap-names were touched upon. MacDonald posited that the name was coined retrospectively in the late ninth to tenth centuries, while Lowe suggested the twelfth. Their arguments propose the hypothesis that: the distribution of Pap-names reflects retrospective names given by Old Norse speakers in either the late ninth and tenth century or the twelfth century.

The final hypothesis emerges both from the realisation that Pap-names are Norse constructions, and from Gammeltoft’s linguistic and toponymic arguments for an early

16 That is not to say that all earlier scholarship shared these ideas. Indeed, in Iceland especially, there has been criticism of the idea that Pap-names remember early Christian papar, see for instance Sveinbjarnardóttir’s work (Sveinbjarnardóttir 1972; 2002: 101). Furthermore, other novel approaches to Pap-names have been proposed by Icelandic scholars. For example, Sturla Friðriksson suggested Pap-island names were given because of puffin colonies at these places – and that puffin colouring is reminiscent of priest’s robes: thus the proposed original meaning for Papey of ‘priest or puffin island’ (Friðriksson 1982). However, the necessary antiquity of papi as an alternate name for a puffin is not established, nor does this meaning account for Pap-farm names or the proximity of these names to early Christian sculpture sites (Fisher 2002).

17 One of the more recent writers to work with this idea was Gillian Fellows-Jensen, when she suggested Pap-names may have been applied, during Scandinavian colonisation, to sites recently abandoned by early Churchmen (Fellows-Jensen 1996: 116; Gammeltoft 2003: 44).
CHAPTER THREE: Who were papar? Hebridean Pap-island place-names
dating of the name forms. This last hypothesis proposes that: the distribution of Pap-names reflects the character of earliest Norse settlement.

Method
In testing the significance and character of the Pap-name distribution, a toponymic inventory of four Hebridean Pap-islands was undertaken. On the assumption that investigating minor names qualifies studies of large-scale distributions, all names from these islands were collected and the hypotheses considered against this newly-created body of data. As mentioned earlier, the Hebrides were selected as a target area because of the strong Norse presence there and also because, if Pap-names are indeed related to early Christian Gaels, then this should be most clearly seen in those western islands where sculpture, surviving structures and contemporary literature identify early Christian communities.

A name catalogue is a fresh contribution to knowledge and an important early stage of toponymic research. Specifically, the production and analysis of such an inventory, alongside linguistic and toponymic arguments, permits informed consideration of the proposed hypotheses. For instance, if the inventory were to reveal an absence of Norse minor names on Pab(b)ay islands, then one might suggest these places did not experience Scandinavian settlement (though it must be remembered that Old Norse place-names are lucky survivals). Conversely, if inventory revealed all minor names as Norse, then longlasting Scandinavian settlement would need to be proposed. Alternatively, if no name patterns were shared between Pab(b)ay islands, then the distribution of Pabbay names raises more complex questions.

Ordnance Survey Pathfinder, Landranger, and 6 inch first edition maps were searched alongside the historic map collection of the National Map Library of Scotland. Following the map searches, the Ordnance Survey Name Books housed in the Royal Commission for Ancient and Historic Monuments of Scotland were accessed and examined. A further stage of work involved locating and searching textual material, such as Donald MacKillop’s 1991 Sea-Names of Berneray Ainmean-Mhara Bhearnaraigh (for Harris). Finally, oral collections housed in the School of Scottish Studies were
Illustr 3.3 Pab(b)ay islands studied. Top: Pabbay (Harris). Middle left: Pabbay (Strath). Middle right: Pabay (South Uist). Bottom: Pabbay (Barra). Scale 1:50 000. Taken from Ordnance Survey Landranger 18, 31 and 32. Crown copyright.
explored. One such oral collection is the place-name list for Pabbay (Harris) recorded in 1985 (SSS PNS85/2).

Specifically, this inventory collects all place-names on four distinct Hebridean islands: Pabbay in the Sound of Harris (Harris parish), Pabbay of Loch Boisdale (two islands, South Uist parish), Pabay off Skye’s Broadford Bay (Strath parish), and Pabbay of the Barra group (Barra parish). To allow easy integration into further studies (which may require island-specific sorting), each island is presented as a discrete study, including its own guide to entries, abbreviations, parish information, name inventory and references. With the exception of Pabbay (Barra), place-name entries were standardised according to a form supplied by Simon Taylor for computerised entry into the Scottish Place-Name Database. Pabay (Barra) entries were sourced from Anke Beate Stahl’s doctoral study of the Barra islands, and thus follow her alternate format (also standardised for entry into the Scottish Place-Name Database) (Stahl 1999).

Results and discussion
Major and minor names were collected from Pab(b)ay islands in the Sound of Harris, Loch Boisdale, Broadford Bay and the Sound of Mingulay, as well as surrounding areas. This section catalogues these names by discrete island. Table 3.4 lists all island names (classified by language) and is followed by the inventory. Working from the premise that a toponymic inventory refines ideas drawn from large-scale distribution studies, multiple hypotheses were considered when interpreting the data:

- The distribution of Pap-names reflects the settlement of early Christian Gaels before the Viking Age.
- The distribution of Pap-names reflects retrospective names given by Old Norse speakers in either the late ninth and tenth century or the twelfth century.
- The distribution of Pap-names reflects the character of the earliest Norse settlement.

18 Anke Beate Stahl has produced a toponymic inventory, as yet unpublished, for Pabay Mór and Pabay Beag off Lewis (Uig parish), thus completing the Hebridean group of Pap-islands.
Table 3.4 Pab(b)ay island names, not including surrounding area names. Names are classified as G (Gaelic), SSE (Scottish Standard English), N (Norse), [N] (Norse names incorporated into G or SSE construction), N? (probable Norse) and ? (uncertain).
CHAPTER THREE: Who were *papar*? Hebridean *Pap*-island place-names

PABBAY (HARRIS) PLACE-NAME INVENTORY

Guide to Entries
Entries formatted for the Scottish Place-Name Database, with the consultation of Simon Taylor, in the following format:

PLACE-NAME *#--[TAB][PARISH] [SITE CLASSIFICATION] [NATIONAL GRID REFERENCE] [CERTAINTY LEVEL 1-5] [ALTITUDE] [ASPECT/DRAINAGE]**

Place-name date reference (i.e. Place-name 1865 Otter)

Explanation, derivation and related material\(^\text{19}\).

* = not listed on Ordnance Survey Pathfinder
= obsolete
~ = linear feature

[PARISH] = 3-letter abbreviation, e.g. HAR for Harris

Site Classification Codes:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Antiquity</td>
</tr>
<tr>
<td>Co</td>
<td>Coastal</td>
</tr>
<tr>
<td>E</td>
<td>Ecclesiastical</td>
</tr>
<tr>
<td>F</td>
<td>Field</td>
</tr>
<tr>
<td>I</td>
<td>Island</td>
</tr>
<tr>
<td>O</td>
<td>Other</td>
</tr>
<tr>
<td>R</td>
<td>Relief</td>
</tr>
<tr>
<td>S</td>
<td>Settlement</td>
</tr>
<tr>
<td>W</td>
<td>Water (not Coastal)</td>
</tr>
</tbody>
</table>

Certainty Level:

1 – certain
2 – assumed
3 – within 1km in each direction
4 – within 5km in each direction
5 – vague (whole island or parish)

Aspect/Drainage = South-West Facing (SWF), West Facing (WEF), ...

\(^{19}\) As outlined earlier, this inventory is primarily a collection of data (with an eye to the older material). Correspondingly, modern Gaelic names are generally not translated in this explanatory entry.
Abbreviations (in chronological order)

Lew Har = Anon. c1600-30. [Lewis and Harris]. Location: National Library of Ireland MS. 2656. no XXIII.

Tiddeman = Mark Tiddeman 1730. (A map of the West Coast and Western Isles). “To the Honorable Sir Charles Wager this draught of part of the Highlands of Scotland is humbleby presented by his most dutyfull and most obedient humble servant Mark Tiddeman 1730.” Location: NLS.

Keulen = Gerard van Keulen 1734? Nieuwe paskaart van de West Kust van Schotland, de Lewys Eylanden en de noord Kust van Yrland. In I van Keulen 1734, De Nieuwe Groote Ligtende Zee-Fakkel. Location: BM, Bod, NLS, RGS.

Heather/Hebrides = William Heather 1804. “A new and improved chart of the Hebrides or Lewis Islands and adjacent coast of Scotland from the Mull of Cantire to Cape Wrath”. Location: BM, NLS.

Bald/Harris = William Bald 1805. “Map of Harris”. Repr W Ballantine 1829, [Lithography], Edinburgh. Location: NLS.

Scot W = 1886. Scotland: West Coast. [Admiralty Chart no 2635]. Location: NLS.

Otter = H C Otter et al 1872. Hebrides or Western Isles from Barra Head to Scarpa Id. [Admiralty Chart no 2474]. Location: NLS.

SSS PNS85/2 = School of Scottish Studies PNS85/2. Recorded 8/1985. Informants: Bill Lawson, I.D.P. Stornoway, Kerry Campbell, farm manager for Pabbay, resident Leverburgh, Harris, Neil McDonald, now resident Bearsden, Glasgow, ex-Harris: his grandfather belonged to Pabbay. Accompanying map missing.

Parish information

Harris, of old named also the Ardmanach of Lewis, is the southern and more mountainous part of that island, rendered peninsular by Loch Resort on the west and Loch Seafirth on the east, and midway nearly subdivided into two by East and West Loch Tarbert. From its extreme south to the boundary of Lewis there runs an elevated ridge, varying from 2000 to 3000 feet above the sea. The coast is much indented, and around it lie the islands Scarp, Taransay, Pabay, Berneray, Ensay, Killigray, Scalpay, and many of smaller size.

Besides the churches of Saint Bride and Saint Clement there were in Harris and its islands many churches or chapels, the ruins of which existed in 1790. Of these ... in Pabbay the churches of Saint Mary and Saint Muluag...

In this parish there are numerous vestiges of its early possession by the Northmen, such as round forts, of which the most remarkable is the fort at Borve or Borough in Harris.” (Bannatyne Club, *Origines Parochiales Scotiae* 1854: 376-9)

Place-name inventory

PABBAY ~ HAR 1 NF894885 1 196m

Pabpa c.1620-30 Lew Har

Papa 1654 *Atlas Novus *Æbudæ Insulae, sive Hebrides/The Westerm Iles of Scotland

Papa 1654 *Atlas Novus Leogus et Harais/Lewis and Haray

Papa 1654 *Atlas Novus Uistus Insula

Pabay 1703 Martin/map

Papa 1734? Keulen

Pabbay I. 1794 Huddart [I. = Island]

Pabbay 1804 Heather/Hebrides

Pabbay 1805 Bald/Harris

Pabbay 1822 Thomson/Western Isles Mid

Pabbay 1865 Otter

Pabbay 1865x1886 Scot W

Pabbay 1881 OS 6 inch first edn.

Pabbay 1975 OS Pathf

Pabaigh 1996 OS Landranger

FORMERLY CALLED *Tarrensey I.* on 1730 Tiddeman (probable confusion of *Pabbay I.* for *Tarrensey I.*). Between NF869879 (W) and NF910876 (E) and NF891893 (N) and NF887864 (S).

“My first job after I left school was in Pabay with the bard Roderick MacDonald and his two brothers, both named Donald. I was there to help them look after the deer and the sheep. It was wartime [presumably WWII] and meat was valuable. Pabay isle was isolated and raiders could quite easily help themselves. We had rifles, guns and ammunition, but to my disappointment all we ever saw was the friendliest faces of fishermen from Berneray and the men with stores from Harris where the owner resided. My experience as a cast-away on this island, which was uninhabited, will have to wait
for another time, but it was the most interesting experience, and the most educational, of my whole life.” (MacKillop 1991: 43-4)

“Neil Morrison, the Pabay bard, born in Harris in 1816, was a shepherd ... he only lived a few years on the isle of Pabay which he found black and depressing. I personally spent a full term there from October to April [c. WWII] as a boy of 15 years. To me the experience was a very happy one, despite the shortage of company; the total population was only four people, two shepherds, their older brother and myself as assistant. Morrison was well aware of the wild conditions prevailing off the North Uist shore ...

The Song of Fear (Verse 8)

'si mi nach iarradh an sealladh,
A bhi 'g amhrac na ciosanaich, * (overpowering waves)\(^{21}\)
Stigh bho Haisgeir nan rón,
A mach bho shorn Rhu Ghriminnis,
'G éisdeachd fuaim Garrai Grànda,
'Nall ó Bhalai cha bhinn leam e,
'S gob Rhu Rhosagaidh 'm Pabbai,
Far nach stadadh an drilleachan.” (MacKillop 1991: 56)

English translation courtesy of Rachel Craig:

The Song of Fear (Verse 8)

It is I that would not want the view,
Seeing the overpowering waves,
Coming in from Haiskeir Island [NF61 82] of the seals,
Out from the point of Griminish Point [NF72 76],
Hearing the sound of Gearraidh Grànda [grim wall?],
Over from Vallay [NF78 76], that is not a sweet sound for me,
And the point of Rosikie Point [NF89 88] in Pabbay,
Where the oyster-catcher would not rest.

ALARIP BAY ~ HAR Co NF884891 1 0m NWF

Alarip Bay 1881 OS 6 inch first edn.
Alarip Bay 1975 OS Pathf
Bagh Alairip 1996 OS Landranger

FORMERLY CALLED Linen Cove. Reference point taken from middle of bay. ON áll + ON hóp ‘bay’, where áll, m, may carry the meaning ‘eel’ or alternatively ‘deep, narrow channel’ or possibly ‘deep valley’ (cf Álborg in Denmark).

LINEN COVE *#~ HAR Co NF88891 1 0m NWF

\(^{20}\) The purpose of this catalogue is to present all relevant data (preserving original form and content, i.e. neither spellings nor interpretations have been corrected - but have sometimes been commented upon). In cases where other work informs material thus presented, this too has been incorporated. The resulting collected materials thus form a resource for further scholarship beyond the scope of work undertaken here.

\(^{21}\) Perhaps this word is related to the Kishinish name (given below)?
CHAPTER THREE: Who were papar? Hebridean Pap-island place-names

Linen Cove 1805 Bald/Harris

NOW CALLED Alarip Bay.

SCARASDALE POINT HAR Co NF887893 1 8m NWF
 Ru Scarrisdale 1805 Bald/Harris
 Scarasdale Point 1881 OS 6 inch first edn.
 Scarasdale Point 1975 OS Pathf
 Rubha Scarasdaill 1996 OS Landranger

ON skarò, n, ‘score, notch, open space after something taken out, hole, opening’ or skør (see below). The -a- in Scarasdale is probably a later addition in Gaelic in order to avoid a lengthy consonant cluster. The following entry for Scurrival from Stahl’s Barra inventory may inform interpretation of the Scarasdale name:

 Scurrival hill of?
 Borgstrøm derives this name from the ON Skagag-rif-fjall (Borgstrøm, 1937: 292), ‘hill near the reef of the promontory’. According to him the name may have undergone strong contraction. A descriptive name for this important shipping mark appears logical. However, there is the ON name Skorri, which in its genitive case becomes Skorra resulting in the possible translation ‘Skorri’s hill’. A third interpretation hints at a link with ON skør, f, ‘cleft’, of which ON skora is the genitive pl., which would translate as ‘hill of the clefts’, which, too, would make sense in this context. (See Eysteinsson 1992: 14) (Stahl 1999: 255)

BREMISH POINT HAR Co NF902893 1 8m NOF
 Ru Branish 1865 Otter
 Bremish Point 1881 OS 6 inch first edn.
 Bremish Point 1975 OS Pathf
 Rubha Bhreinis 1996 OS Landranger

ON breið nis ‘broad ness’.

TARRENSEY I. *#~ HAR I NF8988 1
 Tarrensey I. 1730 Tiddeman [I. = Island]

NOW CALLED Pabbay. Probable confusion of Tarrensey I. for Pabbay I.

KISHINISH HAR RCo NF876889 1 30m NWF
 Ru Histinish 1805 Bald/Harris
 Ru Kishinish 1865 Otter
 Kishinish 1881 OS 6 inch first edn.
 Kishinish 1975 OS Pathf
 Cisinis 1996 OS Landranger
ON? kjóss ‘small bay’ + ON nes. Stahl (1999: 214) derives Kisimul, in the Barra group, as ‘rock of the small bay’. If her derivation can be extended to Kishinish, then it would signify ‘peninsula of the small bay’. Stahl gives the following discussion of Kisimul:

The specific is unlikely to derive from the ON personal name Kisi which Lind (1915) classifies as a manipulated medieval name. Allan McDonald (1903) provides the essential clue by giving Ciasmul as an alternative spelling which leads to the derivation from ON kjóss, m, ‘small bay’ and ON múli, m, ‘headland’, here ‘sea-rock’. Kisimul provides an accurate geographic setting for this derivation. (Stahl 1999: 214)

A problem, however, with linking Kisimul to Kishinish is that the ‘s’ of the first element is not palatalised, whereas the ‘s’ of Kishinish clearly is.

Alternatively, Kishinish (or Kis(h)imul) could be related to the word ciosanaich, used in Neil Morrison’s The Song of Fear (under the PABBA Y name entry above).

MEAHALL ~ HAR R NF879882 1 76m
Meaulle 1805 Bald/Harris
Meahall 1881 OS 6 inch first edn.
Meahall 1975 OS Pathf
Meahall 1996 OS Landranger

The name of a hill. ON mjófjall ‘narrow hill’.

MOL A’ MHAIDE MHÓIR HAR Co NF874886 1 0m WEF
Mol a’ Mhaide Mhòir 1881 OS 6 inch first edn.
Mol a’ Mhaide Mhòir 1975 OS Pathf
Mol a’ Mhaide Mhòir 1996 OS Landranger

ROSIKIE POINT HAR Co NF871884 1 0m NWF
Rhu Rosi/de 1865 Otter
Rosikie Point 1881 OS 6 inch first edn.
Rosikie Point 1975 OS Pathf
Rubha Rosagaidh 1996 OS Landranger

May contain ON hross ‘horse’ or Gaelic/Pictish ros ‘promontory’. If this latter word is contained, then it must belong to an older stratum than many of the other Gaelic place-names on the island, since the explanatory element rubha ‘promontory, point’ has been added – resulting in the modern Rubha Rosagaidh. Compare to Rosinish, ‘horse-headland’, on the Pabbay near Barra:

A combination of ON hross, n, ‘horse’ and ON nes, n, ‘headland’. (Stahl 1999: 245-6)

MacKillop (1991: 56) supplies the earliest name form Rhu Rhosagaidh when he quotes Neil Morrison’s poem. Neil Morrison was born in 1816; thus we can imagine an early to mid nineteenth-century date for his poem. It is not known, however, if MacKillop modernised the spelling of place-names in this poem. From other forms he supplies, such as Rhu Ghriminnis, it appears he did not modernise the Gaelic. If this is the case, then Rhu Rhosagaidh is an important early form.
CHAPTER THREE: Who were papar? Hebridean Pap-island place-names

VOLRI GEO HAR RCo NF873883 1 8m NWF
Volri Geo 1881 OS 6 inch first edn.
Volri Geo 1975 OS Pathf

Probable Norse name.

GREANAN HAR R NF885887 1 114m WEF
Grinance 1805 Bald/Harris
Greanan 1881 OS 6 inch first edn.
Greanan 1975 OS Pathf
Greanan 1996 OS Landranger

West facing slope of hill. Compare to Grianan (Stahl 1999: 208) and Grean (Stahl 1999: 207), which, may be derived either from Gaelic grian, ‘sun’, meaning ‘sunny spot’, or from the ON adj. græn, ‘green’, meaning ‘green spot’. That the OS Landranger 18 (1996), which gaelicises all names, has Greanan, suggests that whoever was their local informant did not consider that this name had anything to do with Gaelic grian ‘sun’. This observation then points to an Old Norse derivation. The ending may, however, be Gaelic.

LOCH HEDDAL BEG HAR W NF884881 1 46m SWF
Loch Heddal Beg 1881 OS 6 inch first edn.
Loch Heddal Beg 1975 OS Pathf

Name contains Loch Heddal.

LOCH HEDDAL MORE HAR W NF883883 1 46m SOF
Loch Heddaule 1805 Bald/Harris
L. Hesiel 1865 Otter
Loch Heddal More 1881 OS 6 inch first edn.
Loch Heddal More 1975 OS Pathf
Loch Sheudail Mor 1996 OS Landranger

FORMERLY CALLED Lingay (probable misunderstanding of source for Lingay Burn). Name contains Loch Heddal.

LOCH HEDDAL HAR W NF88 88 1

Name is part of Loch Heddal More and Loch Heddal Beg, and contains Heddal (Sheudail), q.v.

HEDDAL HAR R NF88 88 2

This place-name survives only in the loch-names Loch Heddal More and Loch Heddal Beg. Its Gaelic form is given on OS Landranger 18 (1996) as Loch Sheudail (Mor). The
-dd- of *Loch Heddal* suggests a short preceding vowel, but the *Loch Sheudail* form gives a long e. It is probably an ON name containing *dalr* ‘valley’. The first element (the specific) may be ON *há* ‘high’, together giving ? *há(r) dal(r)* ‘high valley’. Another, perhaps more probable, proposal would derive the specific from ON *heitr* ‘moor, heath’ or *hey* ‘hay’ (cf *Heddle* in Firth in Orkney).

LINGAY *#* HAR W NF881881 1
Lingay 1822 Thomson/Western Isles Mid

NOW CALLED *Loch Heddal More* and *Loch Heddal Beg* (probable misunderstanding of the source for *Lingay Burn*). ON *ling* ‘heather’ + á ‘river, burn’.

BEINN A’ CHARNAIN HAR R NF894885 1 196m
Ben na Harnine 1805 Bald/Harris
Pk. of Pabbay 1865 Otter [Pk. = Peak]
Beinn a’ Chàrnain 1881 OS 6 inch first edn.
Beinn a’ Charnain 1975 OS Pathf
Beinn a’ Charnain 1996 OS Landranger

BAILE-FO-THUATH HAR S NF904882 1 53m EAF
Baile-fò-thuath 1881 OS 6 inch first edn.
Baile-fò-thuath 1975 OS Pathf

LOCH NA H-EASGAINN HAR W Co NF873874 1 0m
Loch na h-Easgainn 1881 OS 6 inch first edn.
Loch na h-Easgainn 1975 OS Pathf
Loch na h-Easgainn 1996 OS Landranger

‘Loch of the eel’ (Gaelic *easgann*, gen. *easgainne* f. ‘eel’).

OSE HAR F NF874876 1 8m WEF
Ose 1881 OS 6 inch first edn.
Ose 1975 OS Pathf
Os 1996 OS Landranger

ON óss ‘river- or burn-mouth’.

OSE POINT HAR Co NF870874 1 0m WEF
Ru Oze 1805 Bald/Harris
Ose Point 1881 OS 6 inch first edn.
Ose Point 1975 OS Pathf
Rubha Os 1996 OS Landranger

FORMERLY CALLED *Broad Rks*.

BROAD RKS *#* HAR Co NF870874 1 0m WEF
CHAPTER THREE: Who were *papar*? Hebridean *Pap*-island place-names

Broad Rks. 1865 Otter [*Rks.* = Rocks]

NOW CALLED *Ose Point*. This is possibly a description, rather than a name.

CREAG HURISTEN HAR R NF888876 1 61m
 Creag Huristen 1881 OS 6 inch first edn.
 Creag Huristen 1975 OS Pathf
 Creag Hurasden 1985 SSS PNS85/2
 Creag Thuristein 1996 OS Landranger

According to SSS PNS85/2, "with cave underneath". Perhaps a Gaelic name which contains a male personal name deriving from ON *Þorsteinn*. Thus ‘Thorstein’s Rock or Crag’ – perhaps related to lost folklore?

TEAMPULL BEAG HAR EA NF889872 1 23m SOF
 Teampull Beag 1881 OS 6 inch first edn.
 Teampull Beag 1975 OS Pathf

Gaelic ‘little church’.

TOTA REBEIN HAR R NF881872 1 30m
 Tota Rebein 1881 OS 6 inch first edn.
 Tota Rebein 1975 OS Pathf
 Tobhta Reabain 1996 OS Landranger

Containing the Norse loan-word *topt* ‘toft, homestead, site of a building’, which in Gaelic developed the secondary meaning ‘ruin’ (Gammeltoft 2001). *Rebein* may contain a Norse-derived personal name (or may derive from Biblical Reuben).

BAILE-LINGAY HAR S NF894875 1 40m SOF
 Lingay 1805 Bald/Harris
 Baile-lingay 1881 OS 6 inch first edn.
 Baile-lingay 1975 OS Pathf

Mid-point of settlement given; settlement stretches between NF894873 (S) and NF894877 (N). According to SSS PNS85/2 (1985), both the original farm of *Baile Lingay* and the larger crofts were cleared in 1842. This source also notes upper crofts belonging to *Baile Lingay* and the place-name *Tigh na Sgalagan*, where the farmhouses for the original farm of *Baile Lingay* lived.

NA MULLAICHEAN HAR R NF899879 1 99m SEF
 Na Mullaichean 1881 OS 6 inch first edn.
 Na Mullaichean 1975 OS Pathf
 Na Mullaichean 1996 OS Landranger
'The hills, tops', plural of Gaelic *mullach* (m). OS Object Name Books (Bk 5 R1 107 Pg 139) describes this as “a small ridge covered with good rough pasture”.

LINGAY BURN ~ HAR W NF898867 1 0m SEF

Lingay Burn 1881 OS 6 inch first edn.
Lingay Burn 1975 OS Pathf

ON *Lingá* (ON *ling* ‘heather’ + á ‘river, burn’) + Scots *burn*.

RUBH’ A’ BHAILE FO THUATH ~ HAR RCo NF908879 1 23m EAF

Rubh’ a’ Bhaile Fo Thuath 1881 OS 6 inch first edn.
Rubh’ a’ Bhaile Fo Thuath 1975 OS Pathf
Rubh’ a’ Bhaile Fo Thuath 1996 OS Landranger

FORMERLY CALLED *Reef* and *Ginnoch*.

REEF *# ~ HAR RCo NF908879 1 23m EAF

Reef Point 1794 Huddart
Reef Point 1804 Heather/Hebrides
Reef Point 1805 Bald/Harris
The Reef 1865 Otter

NOW CALLED *Rubh’ a’ Bhaile Fo Thuath*.

GINNOCH *# ~ HAR RCo NF908879 1 23m EAF

Ginnoch 1822 Thomson/Western Isles Mid

NOW CALLED *Rubh’ a’ Bhaile Fo Thuath*.

SEANA CHAISTEAL ~ HAR S NF902872 1 23m SEF

Duine 1805 Bald/Harris
[unreadable] 1865 Otter
Seana Chaisteal 1881 OS 6 inch first edn.
Seana Chaisteal 1975 OS Pathf
Seana Chaisteal 1996 OS Landranger

Gaelic sean + Gaelic caisteal, ‘old castle’. OS Object Name Books (Bk 5 R1 107 Pg 141) describes *Seana Chaisteal* and *Site of Dùn* as two separate places, noting the *Dùn* lies “17 chains west from the ruins of the ancient chapels on the island of Pabbay” (see Sheet 21 Trace 5), whereas *Seana Chaisteal* is situated “at the east side of the island of Pabbay” (Bk 5 R1 107 Pg 140).

TRÁIGH BAILE FOR THUATH ~ HAR Co NF906874 1 0m SEF

Tráigh Baile Fo Thuath 1881 OS 6 inch first edn.
Tráigh Baile Fo Thuath 1975 OS Pathf
Tráigh Baile Fo Thuath 1996 OS Landranger
Beach stretches between NF904870 (SW) and NF908876 (NE).

QUINISH HAR Co NF878863 1 0m SWF
 Ru Quinish 1805 Bald/Harris
 Ru Quinish 1881 OS 6 inch first edn.
 Quinish 1975 OS Pathf
 Cuidhnis 1996 OS Landranger

ON kvi ‘cattle or sheep fold’ + nes. Peninsula connected to Pabbay on 1881 OS 6 inch first edn. It now seems to refer to a group of small islands or rocks off the south-west coast of Pabbay. Note the addition of rubha in the earliest forms.

BAILENACILLE HAR S NF887867 1 15m SEF
 Balinkily 1794 Huddart
 Balinkily 1804 Heather/Hebrides
 Kirktown 1805 Bald/Harris
 Kirktown 1822 Thomson/Western Isles Mid
 Bailenacille 1881 OS 6 inch first edn.
 Bailenacille 1975 OS Pathf
 Bailenacille 1996 OS Landranger

G baile + G an + G cill. ‘Kirkton or farm or village of the church’. The church in question is Teampull Mhóire. According to SSS PNS85/2, part of the Baile na Cille was demolished for stones to build the Park Dyke; the whole of Baile na Cille was cleared in 1846.

HALTOSH POINT HAR Co NF887864 1 0m SOF
 Haltosh Point 1881 OS 6 inch first edn.
 Haltosh Point 1975 OS Pathf
 Rubha Thaltois 1996 OS Landranger

Probable Norse name with unclear generic.

TEAMPULL MHÓIRE HAR EA NF889869 1 8m SEF
 Ch. 1865 Otter
 Teampull Mhóire 1881 OS 6 inch first edn.
 Teampull Mhóire 1975 OS Pathf
 Teampall Mhóire 1996 Os Landranger

SAME AS Teampull an t-Sagairt. ‘Mary’s Church’. Accompanying Sheepfold and Graveyard listed on 1881 OS 6 inch first edn. Otter (1865) notes a Ch. [church] here.

TEAMPULL AN T-SAGAIRT * HAR EA NF889869 1 8m SEF
 Teampull an t-Sagairt 1985 SSS PNS85/2
SAME AS Teampull Mhòire.

AN CORRAN HAR Co NF896864 1 0m SEF
 Corran Point 1805 Bald/Harris
 Corran Pt. 1865 Otter [Pt. = Point]
 An Corran 1881 OS 6 inch first edn.
 An Corran 1975 OS Pathf
 An Corran 1996 OS Landranger

TRÁIGH AN T-SEANA-CHAISTEAL ~ HAR Co NF899867 1 0m SEF
 Tràigh an t-Seana-chaisteal 1881 OS 6 inch first edn.
 Tràigh an t-Seana-chaisteal 1975 OS Pathf
 Tràigh an t-Seana-chaisteal 1996 OS Landranger

RUBH' AN T-SEANA-CHAISTEIL ~ HAR Co NF904870 1 0m SEF
 Rudh' an t-Seana-chaisteil 1881 OS 6 inch first edn.
 Rubh' an t-Seana-chaisteil 1975 OS Pathf
 Rubh' an t-Seana-chaisteil 1996 OS Landranger

FORMERLY CALLED Ru Duine.

RU DUINE *#~ HAR Co NF904870 1 0m SEF
 Ru Duine 1805 Bald/Harris
 Ru Dune 1865 Otter

NOW CALLED Rubh' an t-Seana-Chaisteil.

AM POLL *# HAR Co NF889865 2 0m
 Am Poll OS Object Name Books (Bk 5 RI 107 Pg 135)

Noted as Landing Place on 1805 Bald/Harris, 1822 Thomson/Western Isles Mid, OS Object Name Books (Bk 5 RI 107 Pg 135), and 1881 OS 6 inch first edn.

LINGAY *#~ HAR S NF8988 3
 Lingay 1805 Bald/Harris

ON ling 'heather' + á 'river, burn'. On Bald's map of 1805, Pabbay divided into two parts: Lingay and Kirktown. Note that Lingay appears on Thomson/Western Isles Mid (1822) as a name for Loch Hedda! More and Loch Hedda! Beg (a probable misunderstanding of the source for Lingay Burn).

KIRKTOWN *#~ HAR S NF8887 3
 Kirktown 1805 Bald/Harris

On Bald's map of 1805, Pabbay divided into two parts: Lingay and Kirktown.
CHAPTER THREE: Who were papar? Hebridean Pap-island place-names

PARK DYKE * HAR O NF89 88 5
Park Dyke 1985 SSS PNS85/2

Built after the island was cleared.

TIGH PHLUNKAIT * HAR S NF89 88 5
Tigh Phlunkait 1985 SSS PNS85/2

After Mr Plunkett, current owner of Pabbay. Built circa May 1985, imported from Norway.

TIGH NAM BALACH BEAGA * HAR S NF89 88 5
Tigh nam Balach Beaga 1985 SSS PNS85/2

The only house left habitable after 1846.

THE ‘ATH’ * HAR S NF89 87 2
The ‘Ath’ 1985 SSS PNS85/2

The ‘Ath’ of Creag Huristen, cleared 1846.

TIGH NA SGALAGAN * HAR S NF89 87 5
Tigh na Sgalagan 1985 SSS PNS85/2

Where the farmworkers for the original farm of Baile Lingay lived.

BAILE MEADHONACH * HAR S NF89 87 5
Baile Meadhonach 1985 SSS PNS85/2

Covered by sand dunes.

OLD SHEEPWASH * HAR S NF89 87 5
Old Sheepwash 1985 SSS PNS85/2

Surrounding sea and island names
PABBAY I. *#~ HAR I NB0301 1
Pabbay I. 1730 Tiddeman

NOW CALLED Taransay. Probable confusion of Pabbay I. for Tarrensey I.

SHILLAY ~ HAR I NF878914 1 79m
Soa Moir 1654 Atlas Novus Leogus et Haraia/Lewis and Haray
Soa Moir 1654 Atlas Novus Uistus Insula
Shillay I. 1794 Huddart
Chapter Three: Who were papar? Hebridean Pap-island place-names

Shillay Isle 1804 Heather/Hebrides
Shillay Island 1805 Bald/Harris
Schillay I. 1822 Thomson/Western Isles Mid
Schillay 1865 Otter
Shillay 1865x1886 Scot W
Shillay 1881 OS 6 inch first edn.
Shillay 1975 OS Pathf
Siolaigh 1996 OS Landranger

MacKillop postulates that this name derives from ON selr ‘seal’:
People were never living on Shillay, but its name in O.N. means Seal Island.
There is a large healthy colony of seals on the island till this day and it must have survived from the time of the Vikings, who give it the name it still has today. (MacKillop 1991: 56)

However, the soa-element in the two oldest source forms of Soa Moir instead appear to derive from ON *Saudey ‘sheep island’. Though possible, two name forms for that island would be surprising.

Aird an Laoigh HAR Co NF877907 1 8m SOF
Ru Airdna Leugh 1805 Bald/Harris
Ard an Laoigh 1881 OS 6 inch edn.
Aird an Laoigh 1975 OS Pathf
Aird an Laoigh 1996 OS Landranger

Little Shillay HAR I NF874906 1 30m
Soa beg 1654 Atlas Novus Leogus et Haraia/Lewis and Haray
Soa beg 1654 Atlas Novus Uistus Insula
Little Shillay 1805 Bald/Harris
Little Shillay 1822 Thomson/Western Isles Mid
Little Shillay 1865 Otter
Little Shillay 1881 OS 6 inch first edn.
Little Shillay 1975 OS Pathf
Siolaigh Bheag 1996 OS Landranger

Sound of Spuir ~ HAR Co NF8685 1
Sound of Sporr 1865 Otter
Sound of Spoor 1881 OS 6 inch first edn.
Sound of Spuir 1975 OS Pathf
Caolas Spuir 1996 OS Landranger

Spuir NUS I NF853843 1 8m
Spor 1654 Atlas Novus Uistus Insulus
Spur 1805 Bald/Harris
Sporr 1865 Otter
Spoor 1865x1886 Scot W
Spoor 1881 OS 6 inch first edn.
CHAPTER THREE: Who were *papar*? Hebridean *Pap*-island place-names

Spur 1975 OS Pathf
Spur 1996 OS Landranger

FORMERLY CALLED *Fure Isle*. MacKillop proposes the following:

Spur – W. of Berneray, between the island of Boreray and the isle of Pabay. This is the name given to a tiny but fairly high island. Spuir or Spor is spur, claw or talon. Norse, spori, a spur. The name is likely to mean claw or talon. (MacKillop 1991: 37)

However, this name could formally be a Gaelic name, cf Gaelic *spuir* ‘spur, talon’. An alternative ON origin could be ON *spordr*, m, ‘spur, end, tail (on fish, snakes, etc)’.

FURE ISLE *# NUS I* NF853843 2
Fure Isle 1804 Heather/Hebrides

NOW CALLED *Spur*.

SKYR NARNON *# NUS I* NF8585 4
Skyr 1654 Atlas Novus Leogus et Haraia/Lewis and Haray
Skyr narnon 1654 Atlas Novus Uistus Insula

SPOR REEF *HAR Co* NF8685 3
Spor Reef 1865 Otter

NE of Spur.

SOUND OF PABBAY ~ *HAR Co* NF9084 1
Sound of Pabbay 1865 Otter
Sound of Pabbay 1881 OS 6 inch first edn.
Sound of Pabbay 1975 OS Pathf
Caolas Phabaigh 1996 OS Landranger

SOUND OF SHILLAY ~ *HAR Co* NF885898 1
Sound of Shillay 1865 Otter
Sound of Shillay 1865x1886 Scot W
Sound of Shillay 1881 OS 6 inch first edn.
Sound of Shillay 1975 OS Pathf
Caolas Siolaigh 1996 OS Landranger

OITIR AN T-SEANN CHAISTEIL * H*AR Co NF9286 4
Oitir an t-Seann Chaisteil 1991 MacKillop

“Oitir an t-Seann Chaisteil – Off the Pabay shore near a point where there was a castle at one time. Oitir, shoal; sean, old, and the last word is G. for castle. Translates to, Sand bank of the Old Castle. The MacLeods had a castle in Pabay isle at one time.”
(MacKillop 1991: 47)
CHAPTER THREE: Who were papar? Hebridean Pap-island place-names

BODHA ALAIG BHIG * HAR Co NF8890 3

Bodha Alaig Bhig 1991 MacKillop

The Scottish Gaelic (ScG) _bodha_ ‘hidden reef’ is itself a borrowing from ON _boði_. “Bodha Alaig Bhig – N. of Pabay, bet. it and the isle of Shillay. Alaig is for Alexander. Bhig is from G. _beag_, small. Searock of Alexander Beag. This was a MacDonald from Berneray. His progenitors came from Pabay. This was to differentiate from his brother, also named Alexander, but locally known as Big Alex. These brothers, along with a crewman, Norman Paterson, were lobster fishing near this rock when a large breaker smashed over the boat, sweeping away the mast and sail, and only the expert seamanship of the crew stopped the boat from being engulfed. They managed to hold on to the oars and rowed the boat to calmer waters on the south side of the island, where the Pabay shepherds, the MacDonald brothers, rendered assistance and helped them to retrieve the mast and sail which was washed ashore on the northern side of the island. Big Alexander’s grandsons are today following the same trade.” (MacKillop 1991: 47-8)

BODHA LEITHEACH CAOLAIS * HAR Co NF9085 3

Bodha Leitheach Caolais 1991 MacKillop

“Bodha Leitheach Caolais – Half-Way bet. An Corran of Pabay and Carragh Léithe, Berneray; given on charts as, _Bo Leac Caolas_. This is an absurdity. The Admiralty did indeed wonderful work in surveying the Hebrides, only to have it marred by very odd Gaelic spelling, considering the number of high ranking, Gaelic speaking officers in the Royal and Merchant Navy who were available to them. Leitheach is half-way. Caolais is from Caol, kyle. Half-way searock of the Kyle. The word _léithe_, is greyness, comp. of _liath_. The old people referred to this carragh or rock in the manner given.” (MacKillop 1991: 48)

FIREAN LEITHEACH CAOLAIS * HAR Co NF8885 3

Firean Leitheach Caolais 1991 MacKillop

“Firean Churabhrat – Rocks off the S. of Pabay isle. The meaning of this name is not clear, cf., _Na Fireanan_, also off Pabay, on the East side.” (MacKillop 1991: 48)

NA FIREANAN * HAR Co NF9287 3

Na Fireanan 1991 MacKillop

“Na Fireanan – These sea rocks are E. of the former township of Baile Fo Thuath, in the Isle of Pabay. Translated on charts as, Halo Rock. The relationship between the names is vague and should really read, The Truthful Ones. These rocks are visible from the little clachan of Brusda, in Berneray, the residents of which could foretell coming storms by turbulence in the sea causing foaming breakers to crash over the rocks and up into the air. Forecasting the weather by means of these rocks was so accurate that they have been known ever since as the truthful ones. Donald, son of John Morrison, when resident in Brudawas asked to judge the weather and he replied in his usual enigmatic matter, as follows, ‘the Truthful Ones are going up in the skies, but the Wicked One is not
moving.’ ‘Tha Na Fireanan a’ dol dhan athar ach chan eil an t-Aingidh a’ gluasad.’ …”
(MacKillop 1991: 24-5)

GRUAGACH * HAR Co NF9386 4
+A’ Gruagach 1991 MacKillop

Skerry.

“A’ Gruagach – This is a low-lying skerry in the triangle of the sea, formed between the
islands of Berneray, Pabay and Killigray. The Maiden, is a literal translation of the
name. This name can also mean in Gaelic, a brownie or a sprite; perhaps in this case a
sea-sprite. As far as I know, there is no extant tradition concerning this rock in the sea.”
(MacKillop 1991: 25)

BODHA NÈILL * HAR Co NF853845 2
+Bodha Nèill 1991 MacKillop

“Bodha Nèill – N. of Spuir, about two hundred yards or so from the islet. Bodha, a rock
over which the waves break; Nèill gen. case of Niall the G. for Neil. Believed to be Neil
MacKillop, a lobster fisherman, mentioned previously. This Neil was my grandfather.
Sea-rock of Neil.” (MacKillop 1991: 38)

BODHA SHEONAILDH CHOINNICH * HAR Co NF8784 3
+Bodha Sheonaidh Choinnich 1991 MacKillop

“Bodha Sheonaidh Choinnich – N.E. of Iver Rocks. In G. Seonaidh is John and
Coinneach is Kenneth (this was John MacAskill). Sea-rock of John son of Kenneth,
John was a lobster fisherman from Berneray. Both names (masc. nouns) are aspirated.”
(MacKillop 1991: 38)

SGEIREAN IOMHAIR *~ HAR Co NF870835 2
+Sgeirean Iomhair 1991 MacKillop

The ScG name Iomhair derives from On Ívarr.
“Sgeirean Iomhair – Eastward from the N. tip of Boreray Isle, a fair distance out on the
way to the isle of Pabay. Skerries of Ivor. Given on charts as McIver rocks. In former
days a trading smack from the isle of Lewis was sailing southwards with a cargo of salt
fish and apparently this Ivor McIver struck his boat on a skerry here. In this area a sure
way of having a skerry called after you. McIver’s destination was Liverpool, a long haul
in a small sailing craft. N.B. This McIver from Carloway in Lewis is said to be one of
the McIvers who set up the famous Cunard line.” (MacKillop 1991: 38)

BODHA MÓR CHNOC NAN CLAIGEANN * HAR Co NF9185 4
+Bodha Mor Chnoc nan Claigeann 1991 MacKillop
CHAPTER THREE: Who were papar? Hebridean Pap-island place-names

“Bodha Mór, Bodha Beag and Chnoc nan Claigeann – are further out in the sea between Berneray and Pabay isles. Cnoc is G. for a hillock, and nan Claigeann is Gen. case of Skulls, Knoll of Skulls. This first part of the name translates to the Large and the Small Sea rock. The full name translates to the Large and the Small Sea rock of the Knoll of the Skulls. The reason for this unusual name is because of a sea-bearing; keeping One Mile Skerry in line with The Knoll of Skulls guides a boat directly to these sea rocks which were popular for lobster fishing. ... Cnoc nan Claigeann is a knoll in the Siabaigh area of Berneray.” (MacKillop 1991: 39)

BODHA BEAG CHNOC NAN CLAIGEANN * HAR Co NF9185 4
Bodha Beag Chnoc nan Claigeann 1991 MacKillop

See Bodha Mor Chnoc nan Claigeann.

OITIR NAN CAPULL * HAR Co NF8984 4
Oitr nan Capull 1991 MacKillop

“Oitr nan Capull – N.E. of Searock Vessel, between Berneray and Pabay. Oitr is a ridge or bank in the sea. Capull is usually a name for a horse or mare and sometimes a bird or another animal. There may be a marine species, unidentified in this case. This sandbank used to be good for fishing flounders, etc. Sadly most of these banks today yield nothing.” (MacKillop 1991: 41)

Selected names from the region
SEÓLAID NAM PABACH *~ HAR Co NF978822-NF998795 2
Seolaid nam Pabach 1991 MacKillop

“Seolaid nam Pabach – E. from the Kylie group. Seolaid, fairway; nam Pabach, of the Pabay people. Fairway of the Pabay Men. This channel runs N.E. from Kylie past the long skerries consisting of Langa Sk., Thackdla Sk. and Hard Sk. Keeping the Hard Skerry to the S., this leads to the Isle of Grothaigh (Groay on charts) which belongs to Harris and where the Pabay men cut peats as the supply of their own island was exhausted. The following lines were given to me as a facetious example of Pabay English. The only thing it proves is that there was an Isabella residing in Pabay at one time:

You go to Groay to day, weather very good,
You go, I go, Iseabel mo phuithar go?

The name Groay is from O.N. groðhr: gróa, to grow; ay is island. Grow Island, or the Growing Island. Perhaps a good source of food, Kylie is from the word Skeiladh?” (MacKillop 1991: 49)

BORERAY ~ NUS I NF849817 1 56m
Boreray 1654 Atlas Novus Uistus Insula

For all Pab(b)ay islands, ‘selected’ names were included if they had ecclesiastical or Norse associations.
CHAPTER THREE: Who were *papar*? Hebridean *Pap*-island place-names

Boreray 1881 OS 6 inch first edn.
Boreray 1975 OS Pathf
Boraraigh 1996 OS Landranger

Derives from ON *borg*, f, ‘fortified place’ (Stahl 1999: 155).

BERNERAY ~ HAR I NF928834 1 93m
Berneray 1654 *Atlas Novus* Æbudæ Insulæ, sive Hebrides/The Westerne Iles of Scotland
Berneray 1881 OS 6 inch first edn.
Berneray 1975 OS Pathf
Bearnaraigh 1996 OS Landranger

Stahl writes of *Berneray*, near Barra:

Borgstrøm discusses this name in Campbell, 1936: 289. He suggests Bearnaraidh as G spelling and Bjarnarey as ON spelling. The specific is derived from ON *bjørn*, m, ‘bear’ or from the ON personal name Bjørn [biarnar / Biarnar, gen sg of björn ‘bear’ / Björn]. The generic is derived from ON *ey*, f, ‘island’. (Stahl 1999: 146)

KILLEGRAY ~ HAR I NF973840 1 38m
Killegray 1654 *Atlas Novus* Uistus Insula
Killegray 1881 OS 6 inch first edn.
Killegray 1975 OS Pathf
Ceileagraigh 1996 OS Landranger

MacKillop proposes the following:

Killigray – Kjallard is Norse, and gra, grey. Kjallard; burial place. Burial Place Island. With the Isle of Ensay, these are the largest islands in the sound of Harris, between Berneray and Leverburgh. Both very fertile. (MacKillop 1991: 26)

However, this is unlikely as ON *kjallard* does not exist, let alone mean ‘burial ground’. Instead ON *Kerlingarey* is possible, the specific being gen sg of kerling, f, ‘woman, hag’ (cf Kjeringøy < Kellingøy, *Norsk Stadnamnleksikon* 1997: 255).

ENSAY ~ HAR I NF978858 1 49m
Enisay 1654 *Atlas Novus* Uistus Insula
Ensay 1881 OS 6 inch first edn.
Ensay 1975 OS Pathf
Easaigh 1996 OS Landranger

MacKillop proposes the following:

However, this is unlikely. Instead, this name may derive from ON *Einarsey 'Einar's island' (cf Ensjø < Einarshaugi, Norsk Stadnamnsleksikon 1997: 136).

HAISKEIR EAGACH ~ NUS INF598810 1 28m
 Helskyr Egach 1654 Atlas Novus Æbudæ Insulaæ, sive Hebrides/The Westerne Iles of Scotland
 Helskyr Egach 1654 Atlas Novus Uistus Insula
 Haskeir Eagach 1878x1880 OS 6 inch first edn.
 Haskeir Eagach 1973 OS Pathf
 Hasgeir Eagach 1996 OS Landranger

See *Haiskeir Island*.

HAISKEIR ISLAND ~ NUS INF613821 1 39m
 Havelskyr na Meul 1654 Atlas Novus Æbudæ Insulaæ, sive Hebrides/The Westerne Iles of Scotland
 Havelskyr na Meul 1654 Atlas Novus Uistus Insula
 Haskeir Island 1878x1880 OS 6 inch first edn.
 Haiskeir Island 1973 OS Pathf
 Eilean Hasgeir 1996 OS Landranger

Haiskeir is probably derived from ON hella, f, 'flagstone', and ON sker, n, 'skerry'.

"I was once told a story about my own grandfather, Neil MacKillop, who decided to spend a week fishing at a rocky isle called Haisgeir. The nearest point of land to this isle is Griminis in North Dist. It lies about 8 miles out in the Atlantic ocean. On a Monday, accompanied by another boat, called the 'Sula' which was skippered by its owner, Donald, son of Calum MacLeod, they set off to Shillay Isle to uplift lobster pots. They lifted their pots and set sail for Haisgeir Isle. Unfortunately the wind dropped and a heavy mist came down on them and the two boats lost sight of each other. My grandfather consulted his 'Crown watch' and told his crew to commence rowing. In those days a crown watch was so called because it cost a crown coin, valued at five shillings. This was the only watch and navigational aid on board. The old man steered the boat till he heard, after a long time, the noise of a current, known as Bun an t-sruthain, off the Uist coast. He then altered course for Haisgeir Isles. After what seemed to be an interminable period of time the old man told my father to keep a look-out from the bows in case they would strike Haisgeir suddenly in the mist and damage the boat... [continues to page 10]" (MacKillop 1991: 3-10)

HEISKER ~ NUS INF616625 1 19m
 Helskyr na Monich 1654 Atlas Novus Æbudæ Insulaæ, sive Hebrides/The Westerne Iles of Scotland
 Helskyr na Monich 1654 Atlas Novus Uistus Insula
 Heisker 1973 OS Pathf
 Theisgeir 1996 OS Landranger

ALSO CALLED *Monach Islands*. See *Monach Islands*.
CHAPTER THREE: Who were *papar*? Hebridean *Pap*-island place-names

MONACH ISLANDS ~ NUS I NF616625 1 19m

Helskyr na Monich 1654 *Atlas Novus Æbudæ Insulæ, sive Hebrides/The Western Isles of Scotland*

Helskyr na Monich 1654 *Atlas Novus Uistus Insula*

Monach Islands 1878x1880 OS 6 inch first edn.

Monach Islands 1973 OS Pathf

Na h-Eileanan Monach 1996 OS Landranger

ALSO CALLED *Heisker. Heiskeir* is probably derived from ON *hella*, f, ‘flagstone’ and ON *sker*, n, ‘skerry’.

“These islands are also known as the Monach Isles, their real name in Gaelic being Eileanan Manach: Islands of the Monks. The Gaelic for monk is manach, derived from two words: math and neach, i.e., good and person (good person). Heisgeir, O.N. Bright Rock Skerry. High Skerry. Haisgeir, O.N. Heisgeir was probably known as the Monach Isles before the Vikings arrived. Haisgeir or Haesger, can also mean Wild Sea Rock. It is really a group of two main islands. They are very rocky, one is called Haisgeir Mhóir – Mhóir, asp. Gaelic word, mór; big. The other is Haisgeir Eagach – Eagach, Gaelic for notched. A very apt name as the outline of this island is very serrated.” (MacKillop 1991: 28)

PAIBLE ~ NUS F NF738678 1 7m

Paible 1878x1880 OS 6 inch first edn.

Paible 1973 OS Pathf

Paibleil 1996 OS Landranger

PAIBLESGARRY ~ NUS [S or F?] NF725684 1 7-15m WEF

Paiblesgarry 1878x1880 OS 6 inch first edn.

Paiblesgarry 1973 OS Pathf

Paiblesgearraidh 1996 OS Landranger

LOCH PAIBLE ~ NUS W NF720685 1 0m SWF

Loch Paible 1878x1880 OS 6 inch first edn.

Loch Paible 1973 OS Pathf

Loch Phaibleil 1996 OS Landranger

KYLES-PAIBLE ~ NUS S NF754673 1 0-8m EAF

Kyles-paible 1878x1880 OS 6 inch first edn.

Kyles-paible 1973 OS Pathf

Caolas Phaibleil 1996 OS Landranger

KIRKIBOST ISLAND ~ NUS I NF756645 1 8m

Il. Kirkabol 1654 *Atlas Novus Æbudæ Insulæ, sive Hebrides/The Western Isles of Scotland*

Yl Kirk Bol 1654 *Atlas Novus Uistus Insula*

Kirkibost Island 1878x1882 OS 6 inch first edn.
CHAPTER THREE: Who were *papar*? Hebridean *Pap*-island place-names

Kirkibost Island 1976 OS Pathf
Eilean Chirceboist 1996 OS Landranger

KIRKABOL *#~ NUS Co NF7765 3 0m
Kirkabol 1654 *Atlas Novus* Uistus Insula

Water/Sea behind and East of *Kirkibost Island*.

PAIBLE HAR S NG031992 0m
Paible 1881 OS 6 inch first edn.
Paible 1987 OS Pathf
Paibeil 1996 OS Landranger

On Taransay.

HERMETRAY ~ HAR I NF990746 1 35m
Hermodra 1654 *Atlas Novus* Uistus Insula
Hermetray 1881 OS 6 inch first edn.
Hermetray 1971 OS Pathf
Thermetraigh 1996 OS Landranger

Possible derivations from the ON personal name *Hermundr* (m, which in original form has -ar in the gen sg) or ultimately L *eremeticus*. Considering similar examples in the Sound of Harris, the ON personal name seems the most likely derivation.

"I now come to the Puritan Gale, which happened on March 16th, 1921. This was one of the worst gales that happened in an area notorious for storms. The ‘Puritan’, a three masted vessel of wooden construction, was on course to Scandinavia when she was driven on to the reef of Hermatray, an island on the edge of the Minch, roughly S.S.E. of Berneray. After the storm was over, Alexander MacDonald, known as Alex Beag, was lifting his lobster creels at Obsay and while tacking out to Groatay Isle he noticed two men waving weakly from the knoll, called Compass Knoll, on Hermatray. He made for this island and discovered the ‘Puritan’ wrecked and breaking upon the rocks. Only three of the crew were alive…” (MacKillop 1991: 11)

"There is a good landing place here on Groay for cattle. Tacksman Roderick Campbell and others throughout the years used to graze cattle here. Indeed all the islands in this area are good for grazing cattle and sheep. The Berneray crofters leave their sheep all winter on Hermatray Isle as the pasture is rich and the climate is temperate. There is a foundation of a house in Hermatray built to store salt, etc., for a fishing scheme proposed by King Charles I. Due to the civil war, this scheme miscarried.” (MacKillop 1991: 59)

CHEULES YRT *#~ NUS Co NF8083 4
Cheules Yrt 1654 *Atlas Novus* Æbudæ Insulæ, sive Hebridæ/The Western Isles of Scotland
Chevles Yrt 1654 *Atlas Novus* Uistus Insula
CHAPTER THREE: Who were papar? Hebridean Pap-island place-names

Between Pabbay and Griminish Point.

BODHA AN T-SAGAIRT * HAR Co NF880785 3

Bodha an t-Sagairt 1991 MacKillop

"Bodha an t-Sagairt – E. of the isle of Lingay, near the shore, Sea-rock of the Priest. It is alleged that all dignitaries (all dignitaries who died in the area north of Eigg) of the Old Celtic church were buried in the isle of Boreray which is west of this rock and this skerry is in the route taken, hence the name. Neil MacKillop, Borve, Berneray, 1838 to 1928, owned a boat called ‘Sagart’, and it is said that this rock was only known by this name after Neil struck it with his boat.” (MacKillop 1991: 37)

Note the following related passages from MacKillop:

Boreray Burial Ground - “Rubha an Teampuill – East side of Aird a’ Bhorainn. The point of land nearest Vallay Isle. The name of the area is Hamaran. Point of the Temple. Although some locals call is by this name it is really a ‘Caibeal’ and not a temple. The name is Caibeal Bhororaigh, Chapel of Boreray. Caibeal is a chapel or a family burial ground. The old burial-ground of the Mac Leans of Boreray is here, and the family sepulchre. The last of the MacLeans to be buried in this chapel is John MacLean, thirteenth of Boreray, who died at Drimnin, Morven, in 1821.” (MacKillop 1991: 57-8)

The following folk-etymology is also of interest - “Mo-Ruibhe Point is in G. Aird Mo-Ruibhe, said to be from St. Mulruba who was the abbot of Bangor before sailing to Scotland in 671 A.D. He or his disciples may have called here. Many places claim him as a visitor. My own opinion is that this name is from righe, the outstretched part or base of a hill or mountain, and this fits the nature of the terrain. Cf. Coire Mor Ruighe, on the mainland and other examples. Aird Mor Righe, point of the hill slope. This definition is feasible while I cannot disprove the other theory.” (MacKillop 1991: 59)

References

School of Scottish Studies, University of Edinburgh, PNS85/2. Recorded 8/1985. Informants: Bill Lawson, I.D.P. Stornoway, Kerry Campbell, farm manager for
Pabbay, resident Leverburgh, Harris, Neil McDonald, now resident Bearsden, Glasgow, ex-Harris: his grandfather belonged to Pabbay. Accompanying map missing.

PABAY (SKYE OR STRATH) PLACE-NAME INVENTORY

GUIDE TO ENTRIES
Entries formatted for the Scottish Place-Name Database, with the consultation of Simon Taylor, in the following format:

PLACE-NAME *#~[TAB][PARISH] [SITE CLASSIFICATION] [NATIONAL GRID REFERENCE] [CERTAINTY LEVEL 1-5] [ALTITUDE] [ASPECT/DRAINAGE]

Place-name date reference (i.e. Place-name 1804 Heather/Hebrides)

Explanation, derivation and related material.

* = not listed on Ordnance Survey Pathfinder
~ = linear feature
[PARISH] = 3-letter abbreviation, e.g. STH for Strath

Site Classification Codes:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Antiquity</td>
</tr>
<tr>
<td>Co</td>
<td>Coastal</td>
</tr>
<tr>
<td>E</td>
<td>Ecclesiastical</td>
</tr>
<tr>
<td>I</td>
<td>Island</td>
</tr>
<tr>
<td>V</td>
<td>Vegetation</td>
</tr>
<tr>
<td>W</td>
<td>Water (not Coastal)</td>
</tr>
</tbody>
</table>

Certainty Level:

1 – certain
2 – assumed
3 – within 1km in each direction
4 – within 5km in each direction
5 – vague (whole island or parish)

Aspect/Drainage = South-West Facing (SWF), West Facing (WEF), ...

As outlined earlier, this inventory is primarily a collection of data (with an eye to the older material). Correspondingly, modern Gaelic names are generally not translated in this explanatory entry.
Abbreviations (in chronological order)

Keulen = Gerard van Keulen 1734?. *Nieuwe paskaart van de West Kust van Schotland, de Lewys Eylanden en de noord Kust van Yrland*. In I van Keulen 1734, *De Nieuwe Groote Ligtinge Zee-Fakkel*. Location: BM, Bod, NLS, RGS.

Heather/Hebrides = William Heather 1804. "A new and improved chart of the Hebrides or Lewis Islands and adjacent coast of Scotland from the Mull of Cantire to Cape Wrath". Location: BM, NLS.

Scot W = 1886. *Scotland: West Coast*. [Admiralty Chart no 2635]. Location: NLS.

Parish information

"Strath, also known as Kilchrist in Strathsworsdale (OS Pathf. form Strath Suardal), the church was one of the 12 parish kirks of Skye (Monro, *Western Isles*, 37). The church appears as an independent parsonage in the early 15th c., but the appearance of the incumbent as a canon in 1450 would appear to indicate that the church had become a prebend of the Isles, following upon an attempt of 1433 to erect a chapter for that bishopric (*CPL* vii, 461; viii, 100; RS 289, 253; 444, 154). This attempt appears to have failed, however, and although presentations to the parsonage and vicarage continue in the 16th c., the parsonage appertained in 1561 to the abbot of Iona, while the bishop of the Isles had his customary third of the teinds (RSS i nos. 1115, 1719; *Coll. de Rebus Alban.*, 3)." (Cowan 1967: 190)

This parish includes the district of Skye known as Strathswordale or Strath Mhic Ionmuinn (MacKinnon's Strath), and the islands Scalpa, Longa, Pabba, and a few of smaller size. It is bounded on the west by the Coolin (or Cuillinn) hills, 3000 feet above sea level, and stretching from the head of Loch Scavaig on the south to the head of Loch Sligichan on the north. It has numerous lakes, and at its west end north from Loch Scavaig are the lake of Coiruisge (or Coriskin), studded with green islands and surrounded with steep ragged rocks, and the famous spar cave of strathaird.

...There are the remains of chapels ... on the island of Pabba." (Bannatyne Club, *Origines Parochiales Scotiae* 1854: 343-6)
"Strath. The low-lying level land between hills. A strath is larger in extent than a glen, a broad valley with a river running through it. This particular strath is one of the parishes of Skye ..."

The present parish of Strath was formerly known as 'Kilchrist', *Cille Chriosd*, Christ’s cell or church, the old church being formerly at Loch Chriosd, near the centre of the parish. In 1833 Strath had two other places of worship.

...Four chapels, or the ruins thereof, are here, viz., Aisk, Kilbride, Kilmori, and in the island of Pabba, in Scalpa, attached to this parish, other similar ruins may be seen. But of greater interest and antiquity there stands on the modern glebe, an immense mass of granite, finely poised on a smooth level rock; this is called generally ‘Clach na h-Anaid’, the store of the Annat, or ... the ‘Mother’ church ...

Many celebrated clerics and laymen were connected with Strath from the time of Abbot McKinnon, who succeeded Columba in Iona; this abbot was drowned; an account of his death is given in the ‘Queen’s Wake’, by Hogg.

Strath is well supplied with good stone, and is famed for marble of different hues; this marble has been in use for many centuries, and entered into the construction of many notable buildings at home and abroad; among the stones is limestone in considerable quantity, and that at Broadford, which includes an entire mountain, viz., Benn an Dubhaich, is generally called ‘the Strath marble’ or ‘Durness limestone’ ...

This district is familiarly spoken of as ‘Srath nam Bo’, strath of the kine, while Ossian called or named it ‘Srath of the Coolins’, and here, as tradition gives it, six thousand deer were slain by three thousand hounds. Another title is ‘srath nam Faochag’, strath of the whelks or buckies, which furnish the nick-name of the ‘The Whelks’ to its people. Strath share with Sleat in possessing a large number of rare ferns and other wild-growing plants, among which are the *Erinocaulon septangulare* and *Dryas octopetala*.

...The Mackinnons were also closely connected with the island of Mull, and it was to those resident there that the nickname of ‘Na Faochagan’ is applied ...” (Forbes 1923: 412-5)

Place-name inventory

PABAY ~ STH l NG672270 l 28m

Paba 1654 *Atlas Novus* Skia

Paba 1734? Keulen

Pabbay 1794 Huddart

Pabbay I. 1804 Heather/Hebrides [*I. = Island*]

Pabba 1824 Thomson/Skye

Paba 1886 Scot W

Pabay 1881 OS 6 inch first edn.

Pabay 1988 OS Pathf

Pabay 1997 OS Landranger

“Pabba, Pabbay, Papa, etc. Father (monk or priest) island; Norse *pap* and *ey* or *papar*, father, etc.; Gaelic celi De ceile; Latin servi Dei, both meaning servants of God; spelled also Pabra, which is given as near Beakish, Strath, and north of Kyleakin. Pabba forms a
breakwater to Broadford Bay, lies low, and is of a mossy green meadow nature. Dean Monro mentions it specially.

There are three Pabbas at least; this particular one is famed for petrified fish found on its shores, also for fossils and petrifications generally; it contains an ancient burying-ground and chapel, all in ruins.” (Forbes 1923: 272)

“Pabay. 109. At the shore of Sky forsaid, lyes ane Ile callit Pabay neyre ane myle in lenthe, full of woodes, guid for fishing and a maine shelter for thieves and cut-throats, it pertains to McKynnoun.” (Monro 1549: 283)

SHELL BEACH STH Co NG675278 1 0m NOF
Shell Beach 1988 OS Pathf
Shell Beach 1997 OS Landranger

FORD STH W NG675277 1 8m
Ford 1988 OS Pathf

LION ROCK STH Co NG679275 1 0m NEF
Lion Rock 1988 OS Pathf

CHAPEL (REMS OF) STH AE N674265 1 0m SOF
Chapel (Ruins of) 1882 OS 6 inch first edn.
Chapel (rems of) 1988 OS Pathf
Chapel 1997 OS Landranger

JETTY STH CoO NG671264 1 0m SOF
Jetty 1988 OS Pathf
Jetty 1997 OS Pathf

AN GOBHLACH STH Co NG668261 1 0m SWF
An Gobhlach 1882 OS 6 inch first edn.
An Gobhlach 1988 OS Pathf
An Gobhlach 1997 OS Landranger

Gaelic gòbhlach (Dwelly 1901) ‘forked, pronged’, thus ‘The Forked One’, probably referring to the promontory.

GRAVE YARD (DISUSED) * STH E NG673264 2 0m SEF
Grave Yard (Disused) 1876x1882 OS 6 inch first edn.

MOSS *~ STH V NG677269 10m
Moss 1882 OS 6 inch first edn.

Relates to SE quarter of Pabay.
Surrounding sea and island names

SGEIR GOBLACH 1NG667256 10m
Sgeir Ghobhlach 1876x1882 OS 6 inch first edn.
Sgeir Goblach 1988 OS Pathf
Sgeir Gobhlach 1997 OS Landranger

References

Dwelly, Edward 1901. The Illustrated Gaelic-English Dictionary.

Monro, Dean Donald 1549. A Description of the Westerne Iles of Scotland called Hybrides. Compiled by Mr Donald Monro Deane of the Iles. 1549. In Sir Arthur Mitchell and James Toshash Clark (eds), 1908, Geographical Collections Relating to Scotland made by Walter MacFarlane, 3 vols, Edinburgh.
CHAPTER THREE: Who were *papar*? Hebridean *Pap*-island place-names

PABBAY(S) (SOUTH UIST) PLACE-NAME INVENTORY

Guide to entries
Entries formatted for the Scottish Place-Name Database, with the consultation of Simon Taylor, in the following format:

PLACE-NAME *#-[TAB][PARISH] [SITE CLASSIFICATION] [NATIONAL GRID REFERENCE] [CERTAINTY LEVEL 1-5] [ALTITUDE] [ASPECT/DRAINAGE]
Place-name date reference (i.e. Place-name 1881 OS 6 inch first edn.)

Explanation, derivation and related material.

* = not listed on Ordnance Survey Pathfinder
～ = linear feature
[PARISH] = 3-letter abbreviation, e.g. SUS for South Uist

Site Classification Codes:

F Field
I Island
W Water (not Coastal)

Certainty Level:

1 – certain
2 – assumed
3 – within 1km in each direction
4 – within 5km in each direction
5 – vague (whole island or parish)

24 As outlined earlier, this inventory is primarily a collection of data (with an eye to the older material). Correspondingly, modern Gaelic names are generally not translated in this explanatory entry.
Abbreviations (in chronological order)

Keulen = Gerard van Keulen 1734. *Nieuwe paskaart van de West Kust van Schotland, de Lewys Eylanden en de noord Kust van Yrland*. In I van Keulen 1734, *De Nieuwe Groote Ligtende Zee-Fakkel*. Location: BM, Bod, NLS, RGS.

Heather/Hebrides = William Heather 1804. "A new and improved chart of the Hebrides or Lewis Islands and adjacent coast of Scotland from the Mull of Cantire to Cape Wrath". Location: BM, NLS.

Scot W = 1886. *Scotland: West Coast*. [Admiralty Chart no 2635]. Location: NLS.

Parish information

"Now in the parish of South Uist, Pabbay lay in the medieval parish of Kilpeder, known also as *Kilpedire Blisen* and *Kilpheder* in Uist, the church, which was one of the five parish kirks of Uist, was an independent parsonage in 1441 but by the Reformation had been annexed to Iona. As was customary one third of the teinds pertained to the bishops of the Isles. (Monro *W.I.* 48-9; *Coll. de Rebus Alban* 3)." (Cowan 1967: 109)

"Kilpeter. Parochia de Kilpedire Blisen – Peitter’s Paraochin – Keilpedder in Veist – Kilfadrik – Kilphedre. This parish, now part of the modern parish of South Uist (which includes also Howmore and Benbecula), seems to have consisted of the district known as Kandish or the South Head of Uist, the district of Boisdale (of old Baghastil), and the islands Eriskay, Lingay, and Oronsay, and a few smaller isles, thus extending from the extreme south of Eriskay to the neighbourhood of Loch Eynort on the east and of the promontory styled Ardmichael on the west. The west side of the parish is low, flat, and sandy, the east rocky, mountainous, and indented by Loch Boisdale [where the Pabbay(s) are found]. Fresh-water lakes are numerous.

...There were chapels at Kilbride in Boisdale, and at Kildonnan and apparently also at Clachan of Branagh, Clachan Cuay, and Kirkidale, in the other and larger portion of the parish." (Bannatyne Club, *Origines Parochiales Scotiae* 1854: 365-8)

Place-name inventory

PABBAY ~ SUS I NF778195 1 14m

Pabbay 1881 OS 6 inch first edn.
CHAPTER THREE: Who were papar? Hebridean Pap-island place-names

Pabbay 1976 OS Pathf
Pabaigh 1995 OS Landranger

Two islands joined by a tidal causeway at NF778196. On OS 6 inch first edn., both individually named *Pabbay*. On OS Pathf, both islands grouped as one and given the name *Pabbay*.

WELL

SUS W NF780197 2 0m

Well 1881 OS 6 inch first edn.

[FIELD DIVISION]

SUS F NF777198 – NF778197 1 0m

- 1881 OS 6 inch first edn.
- 1976 OS Pathf

[FIELD DIVISION]

SUS F NF778197 – NF779198 1 0m

- 1881 OS 6 inch first edn.
- 1976 OS Pathf

[FIELD DIVISION]

SUS F NF778197 – NF780198 1 0m

- 1881 OS 6 inch first edn.
- 1976 OS Pathf

[FIELD DIVISION]

SUS F NF778194 – NF779195 1 0-8m

- 1881 OS 6 inch first edn.
- 1976 OS Pathf

References

PABBAY (BARRA) PLACE-NAME INVENTORY

Summary of Pabbay (Barra) place-names as presented in:

Guide to entries

Entries formatted for the Scottish Place-Name Database, largely following the system used by Anke-Beate Stahl in her PhD thesis. The phonetic transcription of each Place-name has been omitted here but is provided by Stahl in her thesis.

<table>
<thead>
<tr>
<th>PLACE-NAME [TAB]</th>
<th>[NGR] [Site Classification] [Source]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1823 Place-name</td>
<td></td>
</tr>
</tbody>
</table>

Alias: The Cowshed

Explanation, derivation and related material – including commentary on Stahl's analysis. (Page number of this passage from Stahl)

Site Classification Codes:

A Antiquity
I Island
R Relief
S Settlement
T Tidal Island
U Underwater Features (Reef)
W Water
O Other (Quarry, Bridge)

Sources:

ML stands for MacLean's map of 1823, the first comprehensive map of both coastal and interior features of Barra and surrounding islands.

SH refers to estate plan by H Sharbau, 1901.

OR the place-name has been collected from an oral source and it has not survived in a written form. The spelling of the name conforms to current orthography.

OS place-name extracted from the OS Pathfinder map.

* indicates that older written forms of the name exist.

Sound Archive for Pabbay (Barra):

SA 1958/160 Mingulay, Pabbay, Sandray – Informant: J MacLeod (Fieldwk: J Ross)
SA 1960/96/A1 Pabbay – Informant: N MacKinnon (Fieldworker: L Sinclair)
SA 1976/9 Castle Bay, Vatersay, Sandray, Pabbay, Mingulay
 Informant: M MacAulay (Fieldworker: I A Fraser)
Abbreviations (in chronological order and including date)
1549 Sir Donald Munro (report)
1654 Joannis Blaeu (maps):
 Atlas Novus Æbudæ Insulæ, sive Hebrides / The Western Isles of Scotland
 Atlas Novus Uistus Insula
1695 Martin Martin (account):
1764 Dr John Walker (report):
 1980 *The Rev. Dr. John Walker’s Report on the Hebrides of 1764 and 1771*,
1794a Rev Edward MacQueen (1st Statistical Account):
1794b Joseph Huddart (chart):
 Joseph Huddart. A new chart of the West coast of Scotland from the point of
 Arnamurchan to Cape Wrath. In The North-about Navigator. London.
1805-1919 Craigston Register (register)
1823 MacLean (map):
 Map of Barra as part of John Thomson *Southern Part of the Western Isles*.
1824 MacCulloch (account):
1845 Rev Alexander Nicolson (2nd Statistical Account):
 198-217.
1854 J M Wilson (gazetteer):
 The Imperial Gazetteer of Scotland; or Dictionary of Scottish Topography.
 Edinburgh.
1865 Admiralty (Otter, Edye et al) (chart):
 Otter, Edye, et al. Admiralty Chart no. 2474 Hebrides or Western Isles from
 Barra to Scarpa Island. Corrections in 1872.
1876 OS, scale 6 inches, sheets 59, 60, 62-70
1901 H Sharbau (estate plan)
1945 Admiralty (chart):
 Admiralty Chart 2770 Sound of Barra.
1992 OS Pathfinder 260, (NL58/68), scale 1:25000, “Mingulay”
1997 OS Landranger 31, scale 1:50000, “Barra and South Uist”

Parish information

About the year 1734 Barray was disjoined from the parish of South Uist, to which it
appears to have been united after the Reformation.

The parish of Barra, now apparently of the same extent as of old, consists of the
island of Barray and upwards of twenty smaller isles, of which the chief are Bernera,
Mingulay, Pabbay, Sanderay, and Wattersay on the south of Barray, and Uidhay,
Flodday, Hellesay, Gighay, Fuday, and Fiaray, on the north. The whole parish is hilly,
and the west coast in general rocky, and in Bernera and Mingulay the rocks rise to the
height of 700 and 1400 feet. Beside Mingulay is a high rock (probably the Scarpa Vervecum of Buchanan) topped with luxuriant grass, to which the inhabitants of the island used to carry their sheep to feed. On the north coast of Baray is a tract of sand styled the Traymore or Great Sands of Baray.

...There was a chapel in each of the nine islands on the south of Baray, namely...Pabay...

In 1549 the isles lying south of Baray, of which the largest are those nine already enumerated as having chapels, were held by the bishop of the Isles (probably of Macneill of Baray). In 1561 the five isles of Barry (meaning probably Bernera, Mingulay, Pabbay, Sanderay, and Watersay, and including the smaller isles) were the property of the same bishop. They were styled the bishop's isles, and Bernera the most southerly seems still to be known as the bishop's isle.

...In the parish are the ruins or sites of eleven hill forts, five of which are in Baray, two in Watersay, and one in each of the isles Sanderay, Pabbay, Mingalay, and Bernera.

There are also several circles of stone, and near one of them a well styled tobar-nam-buadh (the well of virtues).” (Bannatyne Club, *Origines Parochiales Scotiae* 1854:362-5)

Place-name inventory

RUBHA GRETACH NL589871 R OS

Gravelly promontory

1901 Rubh' na Geod

The specific originates from ON *grjót*, n, 'gravel'. It appears we have a Gaelic adjective formed from the ON noun *grjót*, which has then been used to form this place-name. If that is the case it cannot be considered a Norse place-name. However, no such word appears in Dwelly (1901). (Stahl 1999: 250)

ALLANISH NL593879 R OS

Alias: Rubha Alainis [sic]

Fr. Allan McDonald lists *Eileir-nis* and *Eile-nais* as alternative spellings (McDonald 1958: 287). If a personal name, they are corresponding variations of the ON name *Ølvir* (Lind, 1915: 1247f.) such as *Eilir, Aelir* and *Eiler* (Stahl 1999: 106). However, in light of the possible eel-names on Pabbay (HAR), an alternate suggestion derives the name from ON állanes 'eels' ness'. As with the Pabbay (HAR) eel-names, Allanish also lies on the west side of the island. However, these names may instead contain *áll*, m, 'deep, narrow channel' or 'deep valley'.

RUBH' ALAINIS NL593881 R ML

Promontory of *A.*

1823 Rullanish, 1865 –

Alias: Allanish

The OS use the unexpanded form *Allanish*. See Allanish. (Stahl 1999: 247)

AN CEARCALL NL591873 R OR
CHAPTER THREE: Who were *papar*? Hebridean *Pap*-island place-names

the circle
1901 Cearcall
The OS location at NL593875 is wrong. (Stahl 1999: 116)

THE HOE NL594873 R OS
the hill
1823 Hoemore
Alias: An t-Aonach Pabach
From ON *haugr*, m, 'hill'. (Stahl 1999: 290)

AN T-AONACH PABACH NL594873 R OR
the Pabbay plateau
Alias: The Hoe
See Pabbay. (Stahl 1999: 128)

SLOC GLANSICH NL5923877 W OS
Alias: Sloc an Uisge
The OS Object Name Book mentions that a man called *Glensig* fell over the cliff and drowned at this point. The *Glensig* may be a nickname meaning 'the shiny one'. If so, this name is from Eng *glance* > ScG *gleans*, *gleansaich*. This name corresponds to the name *Sgeirean Sloc Ghleansaich* which was collected from an oral source. (Stahl 1999: 274)

SLOC AN UISGE NL592877 W ML
freshwater gully
1823 Slockanuish
Alias: Sloc Glansich
(Stahl 1999: 272)

SYMBOL STONE NL607876 A OS
(Stahl 1999: 287)

SUMULA NL607873 R OS*
pebbly beach
1823 Sumulum
Compare to *Humula*. (Stahl 1999: 287) *Humula* originates from ON *hæmull*, m, 'layer of pebbles' or 'beach stone'. The 'a' in the final position is of unclear origin. This derivation is possible; however, a difficulty is that ON *hæmull* is not recorded independently in ON. (Stahl 1999: 212)

BÀGH BÀN NL650922 W OS
white bay
(Stahl 1999: 135)

DÙNAN RUADH NL613876 A OS
red little fort
CHAPTER THREE: Who were papar? Hebridean Pap-island place-names

(Stahl 1999: 192)

ROSINISH NL615872 R OS*

headland of the horse

1823 Ruroshinish, 1846 Ruroshinish, 1997 Ròisinis
Alias: Rubha Phabach
A combination of ON hrosr, n, ‘horse’ and ON nes, n, ‘headland’. (Stahl 1999: 245-6)

STEIR NL614876 W OS

“This name is applied to the narrow neck which joins Rosinish to the mainland of the island. On the north-west of this neck is a good creek and easy landing-place.” OS Object Name Book, 1878 (Stahl 1999: 286)

LANDING PLACE NL610873 W ML

(Stahl 1999: 218)

CAIRNS NL618869 O OS

Scot Cairn, ‘stone mound’.

(Stahl 1999: 159)

SLOC GLAMARIGEO NL599869 W OS*

gully of?

1823 Slockghlamerika, 1997 Sloc Glamain Gèodha
This gully is situated at the particularly steep and indented southern coastline of Pabbay.

For possible derivations see Sloc Lamarigeo (Stahl 1999: 274):

Sloc Lamarigeo … The specific of this tautological name may be interpreted in two different ways. The second element may either be a combination of ON hlað, ‘layer’, ON hamarr, ‘steep hillside’, and ON gjá, ‘gully’, resulting in a possible translation ‘gully of the layered steep hillside’ and in its combination of ON hlað and hamarr be related to G làimhrig, ‘landing-place’. Located at the steep and indented western coast … this gully is imbedded in high cliffs but is almost certainly unsuitable for use as a landing-place. Alternatively the specific may derive from ON hrafn, m, ‘raven’ as in Eysteinsson’s Ramerigeo (see Eysteinsson 1992: 35). He traces ON hrafn back to hramn according to the morphological rule after which n becomes r after m. Eysteinsson mentions places in the Western and Northern Isles which are called ‘raven gully’ such as Ramnaigea (see MacAulay 1972: 333), Rannagio (see Jakob Jakobsen, ‘The Dialect and Place-Names of Shetland’, Two Popular Lectures, 1897, p.98.) and Hrafnagja which appears at least twice in Iceland (see Eysteinsson 1992: 36). The change from the initial sound /Ir/ to /Ir/ is common in certain parts of the Western Isles and would support the second derivation. (Stahl 1999: 275-6)

For a recent discussion of làimhrig (suggesting that it is a Pictish loan-word into Gaelic), see R A V Cox, 1997, ‘Modern Scottish Gaelic Reflexes of Two Pictish Words: *pett and *lannerc’, Nomina 20: 47-58.

RUBH’ A’ CHÀRNAIN NL606868 R OS*
promontory of the stony ground
1823 Rucharnan
(Stahl 1999: 246)

PABBAY NL602875 I OS* hermit’s island
1549 Pabay, 1695 Pabbay, 1764 Pabay, 1794b I. Pabba, 1807 Pabbay, 1824 Pabba, 1845 Pabbay, 1848 Pabbay I.
A combination of ON papi, m, ‘hermit’ and ON øy, f, ‘island’. (Stahl 1999: 238)
“Pabay. 134. Besydes the Isle of Megaly to the North northeist lyes ane Ile callit Pabay ane mile lange, manurit. In it is guid take of fisch, it pertaines to the Bishope of the Isles.” (Monro 1549: 286)

BÀGH NA H-AONAICH NL596868 W ML bay of the flat-topped height
1823 Beirranahina, 1846 Berranahind
See Am Bàgh. (Stahl 1999: 137):
Am Bàgh ... the bay G bàgh, m, from ON vágr, ‘bay’. (Stahl 1999: 108)

AN CNOC DUBH NL608878 R SH the black hill
This name mentioned on Sharbau’s estate plan as Cnoc Dhu. (Stahl 1999: 116)

BOGHA CHIGEIN AN EAR NL618873 U OR eastern scat reef
Alias: Bogha Chigein Beag
For the element bogha, see Bogh’ a’ Bhàig. (Stahl 1999: 150):
Bogh’ a’ Bhàig ... G bogha, m, a loan from ON boði, m, ‘reef’. (Stahl 1999: 148)

BOGHA CHIGEIN BEAG NL618873 U OR small scat reef
Alias: Bogha Chigein an Ear
For the element bogha, see Bogh’ a’ Bhàig. (Stahl 1999: 151):
Bogh’ a’ Bhàig ... G bogha, m, a loan from ON boði, m, ‘reef’. (Stahl 1999: 148)

BOGHA CHIGEIN A DEAS NL617866 U OR southern scat reef
Alias: Bogha Chigein Mór
Dwelly (1901). For the element bogha, see Bogh’ a’ Bhàig. (Stahl 1999: 150):
Bogh’ a’ Bhàig ... G bogha, m, a loan from ON boði, m, ‘reef’. (Stahl 1999: 148)

BOGHA CHIGEIN MÓR NL617866 U OR
CHAPTER THREE: Who were papar? Hebridean Pap-island place-names

large scat reef
Alias: Bogha Chigein a Deas
For the element bogha, see Bogh’ a’ Bhàig. (Stahl 1999: 151):
 Bogh’ a’ Bhàig ... G bogha, m, a loan from ON boði, m, ‘reef’. (Stahl 1999: 148)

BOGHA NÉILL AN TÀILLEIR NL590876 U OR
sunkent rock of Neil (son of) the tailor
Alias: Sgeir Néill an Tàilleir, Sgeirean Sloc Ghleansaich
For the element bogha, see Bogh’ a’ Bhàig. (Stahl 1999: 151):
 Bogh’ a’ Bhàig ... G bogha, m, a loan from ON boði, m, ‘reef’. (Stahl 1999: 148)
G tàilleir, m, a loan from Eng tailor. (Stahl 1999: 153)

SGEIR NÉILL AN TÀILLEIR NL590876 I OR
skerry of Neil (son of) the tailor
Alias: Bogha Néill an Tàilleir, Sgeirean Sloc Ghleansaich
G tàilleir, m, a loan from Eng tailor. (Stahl 1999: 264)

SGEIREAN SLOC GHLEANSAICH NL590876 I OR
skerries of S.
Alias: Sgeir Néill an Tàilleir, Bogha Néill an Tàilleir
See Sloc Glansich. (Stahl 1999: 265-6)

CNOCTUATH NL598877 R SH
north hill
(Stahl 1999: 176)

CREAG NL608880 R SH
rock
1910 Craig
(Stahl 1999: 178)

BISHOP’S ISLES NL560830 I OR*
1695 Bishop’s Isles, 1794b The Bishop’s Isles
There is some confusion as to what islands are included in this term. Berneray, Mingulay and Pabbay are always included in this group, sometimes Sandray too, and on inaccurate maps sometimes even Vatersay. (Stahl 1999: 147)

BOGHANNAN AN RUBHA PHABAICH NL617867 U OR
sunkent rocks of R.
This place consists of two reefs of which one is located at the NGR indicated. The second reef is marked at NL615871. For the element bogha, see Bogh’ a’ Bhàig. (Stahl 1999: 155):
 Bogh’ a’ Bhàig ... G bogha, m, a loan from ON boði, m, ‘reef’. (Stahl 1999: 148)
CHAPTER THREE: Who were papar? Hebridean Pap-island place-names

See also Rubha Phabach. (Stahl 1999: 155)

RUBHA PHABACH NL615872 R OR
Pabbay point
Alias: Rosinish
This place is located on Pabbay. See Pabbay. (Stahl 1999: 253)

GREOTAL NL591871 R OR
gravel mound
1823 Greotas
A variation of this name, Na Greetan, is given for NGR NL593869. It is likely to apply to the same place. ON grjót, n, ‘gravel’, is a popular element in Norwegian place-names. Greotal ... A combination of ON grjót, n, ‘gravel’, ‘stone’, and ON hóll, f, ‘mound’ ...
See also Stemshaug (1976: 133). (Stahl 1999: 208)

HOIGH BEAG NL598875 R SH
small hill
1901 Hoe Beg
See The Hoe. (Stahl 1999: 211):
From ON haugr, m, ‘hill’. (Stahl 1999: 290)

NA SLOCAN DUBHA NL599882 W OR
the black gullies
Malcolm MacAulay locates this place-name east of Sròn Lithinis. (Stahl 1999: 235)

SRÒN LITHINIS NL602884 R OR
promontory of L.
The first vowel in Lithinis is pronounced with a hiatus /ii/. See Leehinish. (Stahl 1999: 284):
... Leanish, ‘shelter headland’ ... The generic is ON nes, n, ‘headland’. A number of interpretation attempts have been made for the specific. The ON adj. Lang, ‘long’, appears unlikely as there are longer headlands in the area. Borgström suggests ON loegir, m, ‘the sea’, for ‘headland with an anchoring place’ (Campbell, 1936: 291). A geographically possible derivation is from ON hlið, f, ['hillside'] (Cox, 1987: 209) which is geographically correct and appears to be most likely. (Stahl 1999: 221)

SLOC PHABAIGH NL608872 W OR
gully of P.
See Pabbay. (Stahl 1999: 279)

SRÒN AN RUBHA NL618868 R OR
promontory of the point
(Stahl 1999: 283)

SRÒN BHEAG AN T-SRUTHA NL589871 R OR
CHAPTER THREE: Who were papar? Hebridean Pap-island place-names

little promontory of the current
(Stahl 1999: 283)

STILL NL592877 S OR
In G still means ‘spout of any liquid’, ‘cataract’ or ‘torrent’. The name designates an area in west Pabbay at the confluence of two streams which are likely to have inspired the namer. The remoteness of the valley and the availability of fresh water were ideal for the illegal production of whisky which is said to have taken place at this location and which is said to have never been discovered by officials. At this point in time it is impossible to say whether the location was named after G still for ‘torrents’ or after the Scots word ‘still’ (which is the origin of ScG stalla). (Stahl 1999: 286)

THE BANKS NL613873 U OR
The banks
(Stahl 1999: 290)

TRAIGH PHABAIHG NL609874 R OR
beach of P.
See Pabbay. (Stahl 1999: 299)

Surrounding sea and island names

LINGAY NL603897 I OS*
heather island
1549 Lingay, 1654 Linga, 1764 Lingay, 1794b Linga l., 1823 Lingay, 1824 Longa, 1846 Lingay, 1848 Linga, 1854 -, 1865 Lingay
A combination of ON lyng, n, ‘heather’ and ON øy, f, ‘island’. (Stahl 1999: 222)

GREANAMUL NL620898 I OS*
green island
1549 Gigarun?, 1654 Grialum, 1794b Creanmul, 1823 Grianimul, 1854 Grianimul, 1865 Grianameal, 1945 Greanamul
In this name the first element is likely to be derived from ON grænn, ‘green’. The generic originates in ON muali, m, ‘headland’, ‘large rock, surrounded by the sea’. (Stahl 1999: 207)

INNER HEISKER NL585867 I OS
inner flagstone skerry
1901 Inner Hesker
Alias: Na Dubh Sgeirean
Borgstrøm derives the name from ON hellu-sker, ‘flagstone skerry’ (Campbell 1936: 294). Sommerfelt finds this derivation improbable. Cox lists the name Theisker which he derives from ON heitö, f, ‘heath’ and sker, n, ‘skerry’. Arne Kruse emphasizes that skerries in the ON sense of the word do not show any signs of vegetation. The meaning ‘flagstone skerry’ appears to be the most likely choice. (Stahl 1999: 213)
NA DUBH SGEIREAN NL585867 I OR
the black skerries
Alias: Inner Heisker
G sgeir, f, a loan from ON sker, n, 'skerry'. (Stahl 1999: 232)

OUTER HEISKER NL573867 I OS
outer H.
1901 Outer Hesker
Alias: Heisker, Sgeir nan Rôn
See Inner Heisker. (Stahl 1999: 238)

HEISKER NL573867 I OS*
flagstone skerry
1654 Heyskyra, 1846 Heisker, 1865 Hesker
Alias: Outer Heisker, Sgeir nan Rôn
The name is probably derived from ON hella, f, 'flagstone' and ON sker, n, 'skerry'.
Cox's derivation of Theisger from ON heið (Cox 1987: 227) is not applicable, as this skerry has neither heather nor peat, nor any other obvious signs of vegetation. (Stahl 1999: 211)

SGEIR NAN RÔN NL573867 I OR
skerry of the seals
Alias: Outer Heisker, Heisker
(Stahl 1999: 264)

MINGULAY NL558831 I OS*
big island
1549 Megaly, 1654 Megala, 1695 Micklay, 1794 Mingula, 1794a Mingalay, 1794b Mingalla I., 1805 Mingalay, 1824 Mingala, 1845 Mingalay, 1846 Mingulay, 1848 Mingalay I. 1854 Mingala, 1865 Mingulay
Borgström suggests Mi'ulaidh for G spelling and Mikiley for ON. He translates the name as 'big isle' for ON mikil, 'big', which later was weakened to /g/. The /u/ sound cannot be accounted for so that the meaning is not entirely certain. However, the -ng- is crucial, because it leads to 'the -u-sound' developing, and also weakens to -gh- in Hebridean Gaelic: thus ON mikil 'big' is not possible. The generic originates from ON øy, f, 'island'. Mingulay is the largest and highest of the islands south of Barra. (Stahl 1999: 229)

BERNERAY NL556801 I OS*
Björn's island
1549 Berneray, 1654 Bernera, 1794a Berneray, 1794b Berneray, 1823 Bernera, 1840 Berneray, 1848 Bernera I., 1854 Bernera, 1865 –
Borgström discusses this name in Campbell (1936: 289). He suggests Bearnaraidh as G spelling and Bjarnarey as ON spelling. The specific is derived from ON björn, m, 'bear' or from the ON personal name Björn (ON biarnar / Biarnar, gen sg of björn / Björn). The generic is derived from ON øy, f, 'island'. (Stahl 1999: 146)
CHAPTER THREE: Who were *papar*? Hebridean *Pap*-island place-names

SOUND OF PABBAY
NL613888 W OS*

sound of P.

1823 - , 1848 -
See Pabbay. (Stahl 1999: 282)

SOUND OF MINGULAY
NL583859 W OS*

sound of M.

1823 - , 1865 -
See Mingulay. (Stahl 1999: 282)

SGEIR AN T-SALAINN
NL601882 T ML

salt skerry

1823 Skerant, 1901 Sgeir Antallin

The 1823 entry shows only the first part of this place-name, the specific has been forgotten. (Stahl 1999: 258)

Selected names from the region

HECLA
NL558823 R OS*

high mountain

1823 Heclavore, 1865 Hecla

Stahl suggests this name was directly imported from Iceland where *Hecla* is the name of a famous (and active) volcano. It contains the ON adj. *hár*, ‘high’ and ON *klettr*, m, ‘mountain’. The MacLean map of 1823 indicates the existence of Heclavog and Heclavore. (Stahl 1999: 210) However, if *Hecla* is not a name-form found in Scandinavia itself, then the Icelandic *Hekla* may either have arisen alongside the Hebridean *Heclas* (on Barra and South Uist) or could have been imported to southern Iceland from the Hebrides.

CAVE
NL606895 R OS
(Stahl 1999: 168) [on Lingay]

CROIS AN T-SUIDHEACHAIN
NL566828 R OS6”

Crois of the seat

“This name applies to a small spot with some trace of what appears to have been a building and is traditionally believed to have been a place of worship erected by a disciple of St. Columba. A few stones only are remaining.” OS Object Name Book.
(Stahl 1999: 183) [on Mingulay]

ST. COLUMBA’S CHAPEL
NL566834 A OS*
Even in 1877 when the OS undertook their survey, the site of *St. Columba’s chapel* could no longer be clearly identified. (Stahl 1999: 285) [on Mingulay]

RUBHA PHABACH
NL640904 R OR

point of the Pabbay men(?)
CHAPTER THREE: Who were papar? Hebridean Pap-island place-names

1823 Ard Phabbach
Alias: Aird Pabbach
This place is located on Sandray facing Pabbay. It may have been the landing-place of the Pabbay men. See Pabbay. (Stahl 1999: 253)

AIRD PABBACH NL640904 R OS*
Pabbay headland
1823 Ard Phabbach
Alias: Rubha Pabach
This headland is located on Sandray facing Pabbay. See Pabbay. (Stahl 1999: 104)

References
Discussion of toponymic inventory

As stated earlier, study of the Pap-name distribution across the Western Isles suggests important conclusions. The Pab(b)ay names are Norse, and a form of Old Norse was spoken in those islands until, at least, the thirteenth century. Norse speakers must have given these names sometime during this period. As Norse names, Pab(b)ays and Paibles occur in a regular distribution across the Western Isles, respecting modern regional divisions: the Barra islands, South Uist, Harris/North Uist, the Uig area of Lewis, and the Skye area each have one Pab(b)ay. Furthermore, when the Paibles and other Pap-names are included, the population centres in the Stornoway area, Taransay and neighbouring Harris, southwest-facing Uist and Rum are each found to have a Pap-name. Most populated areas of the ‘Long Island’, Skye and Rum have a Pab(b)ay name – and if not, then probably a Paible or other Pap-name. This distribution of the name element suggests a consistent role for these Pap-places within the Norse-speaking regional structure or administration.

This chapter’s catalogue of mostly minor names provides new information with which to test and refine ideas drawn from the large-scale analysis discussed above. Expanding upon that discussion, preliminary survey suggests 20-30% of names from Pab(b)ay islands are Norse. Illustrated in table 3.5, the proportion of Norse names between these islands is remarkably similar (though the Pabay (STH) sample is very small).

<table>
<thead>
<tr>
<th>Island (PARISH)</th>
<th>Number of names</th>
<th>Percentage of names derived from Norse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pabbay (HAR)</td>
<td>40</td>
<td>30%</td>
</tr>
<tr>
<td>Pabay (STH)</td>
<td>5</td>
<td>20%</td>
</tr>
<tr>
<td>Pabbay (SUS)</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Pabay (BRR)</td>
<td>30</td>
<td>25%</td>
</tr>
</tbody>
</table>

Table 3.5 Preliminary survey of Pab(b)ay names derived from Norse. Numbers are approximate and exclude marine features. Note that names which derive directly from Norse (i.e. coined by Norse-speakers) are separated out from those younger names which contain Norse loan-words in Gaelic, and were therefore coined by Gaelic-speakers. This analysis was carried out by Simon Taylor.

Note, however, that the South Uist Pabbay is the name given to two islands.

The exception is the Loch Boisdale Pabbay. These islands have only one surviving name, which is Norse.
Initial analysis of the inventory material, carried out by Simon Taylor, explores primarily these Norse names from the island (Taylor 2002). Regarding the 25% Norse names from Pabbay (BRR), the following observations may be made:

- Names are almost exclusively topographical or relate to natural resources. The *Allanish* name (*'eels ness*) may imply that eels were potentially an important resource on the island’s northwest coast. (Alternatively – and more plausibly – *Allanish* may instead contain áll, meaning ‘deep, narrow channel’ or ‘deep valley’.)

- The only domesticated animal referred to is the horse (*Rosinish* < *hrossa nes* ‘horses’ nes’).

- Aside from the island’s *Pap*-name, none of the Norse names are ecclesiastical. (Nor indeed are the Gaelic names.)

In comparison, the following observations may be made from the 30% Norse names of Pabbay (HAR):

- Most of the names whose etymology is understood are topographical or relate to natural resources. Heather is noted by the name *Lingay* (ling ‘heather’ + á ‘river, burn’) whereas eels may be referred to in the name *Alarip Bay* (*’eel’ + hop ‘bay’), again on the island’s northwest coast. (As with *Allanish*, *Alarip Bay* may instead contain áll ‘deep, narrow channel’ or ‘deep valley’.) That eels were a longstanding resource may be suggested by the Gaelic name *Loch na h-Easgainn* ‘loch of the eel’ on the island’s west coast. (However, this name may instead be founded upon a specific event – otherwise we might expect the name form *Loch nan Easgann*, ‘loch of the eelg’.)

- *Rosikie* may contain ON hross ‘horse’ and thus be comparable to *Rosinish* above. Alternatively, this word could contain Gaelic (or Pictish) ros ‘peninsula’. If this is the case, then the addition of the explanatory rubha ‘promontory, point’ in the modern name *Rubha Rosagaidh* means this name is of an older stratum than the majority of Gaelic names on the island.

27 In his study of western Lewis names, Richard Cox discusses this older stratum of names (Cox 2002: 107, 114-8).
CHAPTER THREE: Who were papar? Hebridean Pap-island place-names

- One pastoral name survives, Quinish (kvi ‘cattle or sheep fold’ + nes). This area of the island may have experienced continuity of pastoral use until the modern period: a sheepfold was also noted near Teampull Mhóire in 1881.\(^{28}\)

- Aside from the island’s Pap-names, none of the Norse names are ecclesiastical.

Additionally, the island’s Pabbay name suggests that Teampull Mhóire’s alternate name Teampull an t-Sagairt ‘Church of the priest’ (from an oral collection recorded in 1985) deserves further investigation. Comparable analysis is not possible for the remaining Strath and South Uist islands: they have only one surviving Norse name, that of the island itself.

In short, the Pab(b)ay name inventory provides new data. One avenue for exploring this data (that taken here) was to concentrate upon the Norse name material. The first discovery was that Norse names are largely topographical or relate to natural resources – they do not contain habitative elements (e.g. the byli-element ‘farm, settlement’). In other words, these names do not explicitly refer to human habitation. Rather than suggesting Norse speakers did not settle on the island, however, the lack of habitative names may result from these islands having insufficient habitable area to permit secondary settlement (as secondary settlement names more often contain habitative elements). Secondly, the two potential Norse eel-names may relate to exploitation of this resource by Norse speakers – perhaps along the west coasts of the Hebridean ‘Long Island’. The later Gaelic eel-name on the west coast of Pabbay (HAR) may support the idea that this animal resource was longlasting. Though sult easgann ‘eel-fat’ was used in the islands, an unresolved question is whether eels were a resource or a problem for people trying to fish for other varieties of marine animals.\(^{29}\) (Another problem is that these Norse ‘eel-names’ may instead be topographical names.) Thirdly, domesticated animal-names are rare, with only two or three referring to horse and either cattle or sheep.

\(^{28}\) Cox describes how the Norse name material in the Carloway area of western Lewis “shows a settled population whose influence in land use, husbandry, fishing and other occupations is seen…” (Cox 2002: 109).

\(^{29}\) For lore and vocabulary on the conger eel (easgann mhara or ‘see-eel’) see A R Forbes’ treatment (Forbes 1923: 359).
CHAPTER THREE: Who were *papar*? Hebridean *Pap*-island place-names

— only the latter in the context of an animal-fold. Lastly, no Norse ecclesiastical names were to be found on the islands.

The Old Norse stratum of names is relatively easily dated to c. AD 800-1300(?), whereas a few Gaelic- or Pictish-origin names may be of this age or older (e.g. Rosikie) and the remaining Gaelic, Scots and English names are younger. Several topics for further research emerge. These include: the older stratum of Gaelic represented by the *Roskie* name; the uncertain antiquity of the ‘priest’ element in the *Teampull an t-Sagairt* name; and the potentially continuous practice, since the Norse period, of pastoralism in the *Quinish/Teampull Mhóire/Teampull an t-Sagairt* area — and therefore the area’s suitability for field investigation of soil use and of settlement history. This initial analysis of the name catalogue provides some background to assessing the role that these islands played within the Norse-speaking regional structure. The work presented here is a start: toponymic inventory of the Hebridean *Pab(b)ay* islands contributes new data which raises questions regarding these places — one may expect a larger study to contextualise some of these. One immediate question is whether these islands are different from the surrounding areas. A further question is how *Pap*-islands relate to nearby place-names with ecclesiastical associations, such as the *Monach Islands* or *Bodha an t-Sagairt*. One way of exploring these questions would be to inventory *entire* regions containing *Pap*-names (as Stahl has done for the Barra islands), and then to compare the name environments of *Pap*-places to that of their larger regions.

Pap-names reflect the settlement of early Christian Gaels before the Viking Age.

Fisher has recently pointed to the co-incidence of *Pap*-names with early Christian sculpture sites (Fisher 2002), and a number of the ‘surrounding’ and ‘selected’ names in the catalogue demonstrate the early Christian associations of these areas. However, the hypothesis outlined above requires one to deny the apparently firm datum that *Pap*-names are neither Gaelic nor Pictish names, but Norse: probably a loan word from Gaelic, but nevertheless a Norse word. Furthermore, the catalogue of minor names from these islands demonstrates that the vast majority of the smaller-scale names were given

30 See Pabbay (HAR).
31 See Pabbay (HAR).
by Norse-speakers, or by more recent Gaelic-, Scots- and English-speakers. In other words, these Norse-period (or younger) names cannot be older than the Viking Age, and thus cannot reasonably be used in locating earlier settlements of Christian communities. One attempt to surmount this difficulty proposes that early Scandinavian colonists applied Pap-names to recently abandoned sites formerly occupied by early Christian Gaels (Fellows-Jensen 1996: 116). The rebuttal of this idea has been set out as follows, with reference to Scotland’s Northern Isles:

Why should it be more relevant to name abandoned papar sites than abandoned pettar [Pictish or indigenous] sites, the latter often being more distinctive with their broch structures? (Gammeltoft 2003: 94)

In other words, if sites related to the indigenous population of the presumably Pictish-speaking Northern Isles are almost completely lacking Pettar-names, then it is difficult to support the proposal that numerous Pap-names identify abandoned (and perhaps unremarkable) sites related to potentially marginal communities of early Christian Gaels. Furthermore, Gammeltoft suggests that the evidence from the Northern Isles (presumably also applicable to the Western Isles32) encourages the idea that:

...papar lived alongside Scandinavians ... for a prolonged period. This fits well with the fact that a large number of papar sites are associated with post-Viking Age chapels or graveyards, which presupposes a prolonged period of Christian worship at these sites. Whether this means a continuous clerical presence from pre-Viking Age times or not is uncertain. However, if this is the case, then the presence of the Christian papar might well represent attempts at converting the heathen Scandinavians. Judging from the many Christian Scandinavians from Scotland, who, according to Landnámabók, settled in Iceland only a couple of generations after settlement of the Northern and Western Isles of Scotland, they seem to have been fairly successful. (Gammeltoft 2003: 94)

In support of Gammeltoft’s theory of prolonged coexistence, one may draw on the onomastic truism that place-names are often coined by neighbouring groups. England’s many Denbys are a clear example. For these names for isolated ‘Dane’s farms’ seem to have been given not by the farms’ Scandinavian residents but by their English-speaking neighbours (Gammeltoft 2004b: 44). However, even if this were the circumstance in

32 The spirit of this argument should also apply to the Western Isles, regardless of whether they were largely Pictish-speaking or, as Cox believes, Gaelic-speaking before Norse colonisation in that area (Cox 2002: 107, 114-8).
which Pap-names arose, the hypothesis under consideration would remain implausible. Certainly, it is possible that settlements of early Christian Gaels did continue into the Viking Age on Pab(b)ay islands. However it is also possible these names are related to an unconnected Viking Age religious movement or even a product of the contact situation itself – perhaps on an earlier Christian site, or perhaps not. In short, these names are indubitably Norse, and were applied by Norse-speakers in areas of Scandinavian colonisation. To propose that they reflect settlement of early Christian Gaels before the Viking Age would be to argue beyond the limits of the place-name material. The minor name patterns on these islands illustrate these limitations: the vast majority of names date to the Norse period or more recent centuries. Simply put, ON Pap-names need not be related to pre-Viking Age communities of early Christian Gaels.

EITHER: Pap-names are retrospective names given by Old Norse speakers in the late ninth/tenth century or the twelfth century.

OR: Pap-names reflect the character of the earliest Norse settlement.

Earlier in this chapter it was suggested that *Papaey- and *Papabýli-names had lost their medial vowel (in this case the middle ‘a’) through the Old Norwegian syncope, producing Papey and triggering the phonotaxis which produced Papýli. These changes must have occurred in a Norse-speaking environment and preceded later transformations of these names into Scots and Gaelic, which resulted in the modern Pab(b)ays, Papa(s), Paibles and Papils (Gammeltoft 2004b: 41). Gammeltoft provides a succinct description of the Old Norwegian syncope:

Syncope is popularly speaking a means of shortening multi-syllabic words and names by a syllable and it probably takes place owing to frequent use of the linguistic element in question. ...it is important to note that syncope does not take place in the coining process of a name but it is solely the result of frequent use of the coinage. (Gammeltoft 2004b: 42)

If Gammeltoft is right about this, the loss of the medial ‘a’ in Pap-names, was the product of frequent use of these names. Precise dating of the Old Norwegian syncope is difficult, though it may be demonstrated to have already taken place by the time of the earliest Old Norse manuscripts – i.e. before AD 1150. In other words, these Pap-names must, on linguistic grounds, have been coined well before AD 1150 at the latest – and
have been “well-established and often-used place-names prior to the time when the Old Norwegian syncope came into force” (Gammeltoft 2004b: 42).

From his work on *Papa Stronsay*, Lowe put forward the idea that the founding of twelfth-century ecclesiastical structures led to ‘retrospective’ naming of *Pap*-places (Lowe 2002: 95). However, the linguistic evidence outlined above argues against the suggestion that *Pap*-names are twelfth-century ‘retrospective’ coinages. Additionally, the absence of any Norse ecclesiastical names from the catalogued islands (aside from the *Pab(b)ay* name itself) is at odds with the ‘retrospective naming’ idea. Furthermore, if this ecclesiastical name form were late, then one might expect that *Pap*-names be concentrated in areas important for the Church in that later period, as Lowe proposed for Orkney. In the Icelandic case, this should suggest that *Pap*-names would occur in the surroundings of the bishop’s seats of Skálholt (in the south) or Hólar (in the north). However, the Icelandic examples of these names occur elsewhere on the island, clustered in the southeast. An equivalent Hebridean scenario would see important centres for late Viking Age Christianity, such as Iona, with a *Pap*-name. But if that was the case, it has not survived. Therefore both linguistic and historical arguments may be levelled against the proposal of twelfth-century ‘retrospective’ naming.

Another idea to be reckoned with is MacDonald’s suggestion of late ninth- and early tenth-century ‘retrospective’ coining of *Pap*-names. He argued that “the restricted range of forms common to all areas, the unspecified nature of the names as place-names, and also their numbers and distribution – make me think … they were coined and applied retrospectively [in the late ninth and tenth centuries]” (MacDonald 2002: 21). Though Viking Age ‘retrospective’ naming is a possibility, further analysis of the place-name material argues against this. To elaborate, the first names of Scandinavian origin in the North Atlantic area are thought to be major topographical names, containing coastal, headland and river names such as *-fjörður* ‘firth, bay’, *-ey* ‘island’ and *-nes* ‘ness, headland’, whereas generic settlement names, such as those containing *-byli*, are understood to be marginally later. Over twenty *Pap*-names contain elements denoting major topographical features and roughly a dozen names denote settlement (the *-byli* |33| Admittedly, *Pap*-names do appear in proximity to some cross sculpture sites – but this sculpture is mostly earlier (i.e. of early Christian date).
names), which suggests that Pap-names may be among the earliest Scandinavian names in the North Atlantic area. This apparently robust assumption refutes the idea that these names were “coined and applied retrospectively” (Gammeltoft 2004b: 43). Note that the catalogue also identifies most of the Norse minor names as topographical, which is consistent with the naming scenario outlined above.

The third hypothesis, that Pap-names reflect the character of earliest Norse settlement, is the best fit. Given that Pap-names are Norse names and were transformed by the Old Norwegian syncope sometime before AD 1150, it may be argued on linguistic grounds that these names were coined within the period c. AD 800-1100. Given that name elements denoting major topography and settlement are thought to be the first names of Scandinavian origin in the North Atlantic area, the predominance of major topography and settlement-denoting elements in Pap-names (and the catalogued Pap-island names) points to their origin in the earliest period of Scandinavian settlement. Taken together then, the linguistic and place-name evidence suggests strongly that Pap-names reflect earliest Norse settlement.

Conclusions and further problems

This chapter has proposed important refinements to our understanding of the use of pap-element place-names. Pap-names are Norse names and may be among the earliest Scandinavian-origin names in the North Atlantic area. As Norse names, they are not directly related to early Christian settlement before the Viking Age. However, an indirect relationship remains possible and may be suggested by potentially early ecclesiastical structure and cross sculpture at or near Pap-sites (Lowe 2002; Fisher 2002). Nevertheless, the contention made here is that, on their own, Pap-names should not be seen as remembering early Christian settlement before the Viking Age, but should be interpreted as reflecting the earliest Scandinavian colonisation of the North Atlantic area. This highlights the poorly understood, yet apparently real, relationship between the area's Norse-speakers and early Christian communities.

When cast against the backdrop of strong early Christian associations for the Hebrides, the name catalogue raises further questions of some importance. Two such problems may be mentioned: what is the reason for the absence of Norse ecclesiastical...
names amongst the catalogued material (except for the Pap-island names)? And, does the rarity of names older than the Norse stratum suggest a change in user group with the Norse period? One direction for future research on Hebridean Pap-islands would be to expand inventory coverage to regions larger than a single island in order, first of all, to compare that region’s names with the island’s names and, secondly, to compare name distributions between regions. Such a strategy for future work may help evaluate whether Pap-islands indeed played a common or established role in the Norse period.

Returning to the large-scale distribution, a final further problem to consider is why Pap-names are regularly distributed in the Scottish islands, but rare and clustered in the Faroe Islands and Iceland.

References
Ahronson, K. 2002. Unpublished Report: Pabbay Place-name Inventory: Including the Pab(b)ay Islands of Harris, Skye/Strath, South Uist, and Barra in the Western Isles of Scotland.
Beauvois, E. 1875. La découverte du Nouveau Monde par les Irlandais et les premières traces du Christianisme en Amérique avant l’an 1000. Congrès international des américanistes 1, 41-93.

—. 2004a. Scandinavian-Gaelic contacts. Can place-names and place-name elements be used as a source for contact-linguistic research? NOWELE 44 (March), 51-90.

—. 2004b. Among Dimons and Papeys: What kind of contact do the names really point to? Northern Studies 38, 31-49.

Íslendingabók. Edited by Benediktsson 1968.

Landnámabók. Edited by Benediktsson 1968.

Mackintosh, H.B. 1928. The Lossie and the Loch of Spynie.

CHAPTER THREE: Who were papar? Hebridean Pap-island place-names 106

Young, R. 1871. The Parish of Spynie. Elgin.
CHAPTER FOUR
Site selection and archaeological survey at Seljaland, Vestur-Eyjafjallahreppur, Iceland

"Mér liggur við að efast um, að hellarnir sér frá Íslands bygðar tíma. Mundi ekki hugsanlegt, að þeir geti verið eldri? Mér hefri dottíð í hug, að þeir kunni, ef til vill, að vera eftir papa, eða hina írsku menn, sem hér voru fyrri en vorir norrænu feður.

I have begun to doubt whether these caves are from Iceland’s [Norse] settlement period. Is it not conceivable that they could be older? It has occurred to me that they could have been made by papar, or the Irish men who were here before our Norse fathers." ¹

Brynjulfur Jónsson, Um hella undir Eyjafjöllum (1902)

"Haustið 1905, 6. okt., 3 árum eftir að grein Brynjúlf’s Jónassonar í Árbók Fornleifafél. Frá 1902 var komin út, kom í blaðinu ‘Fjallkonan’ fyrri hluti greinar eftir Einar Benediktsson, með yfirskriftinni Íra-býlin... Segir höfundurinn, að hann hafi ‘lengi haldió það vist, að áður en Nordmenn, feður vorir, fundu eyjuna, sem vár byggjum, hafi mannavíst og mannvirki fundist viðs vegar um Ísland, miklu meiri en sagnir eru enn orðnar líþar um’.

...Að því er snertir þennan heylí grói á Égisíóða ræður hann það, að hann sér eftir írska munka, sérstaklega af krossmórikum í honum, sem ‘ eru hóggvin á við og dreif um hvelfingu hellisins’, og ‘krossmarki allstóru’ á hellsagaflínunum innst, sem hann nefnir í því sambandi kórði..." ²

The autumn of 1905, October 6th, three years after Brynjúlf Jónsson’s article in Árbók hins Íslenzka Fornleifafélagsins (1902) appeared, Einar Benediktsson published the first half of an article in the newspaper Fjallkonan (The Mountain Woman) with the title “Irish-abodes”… The writer said that he had “long held it probable, that from before the Norse (our fathers) found the island that we settled, people’s dwellings and structures have been found far and wide in Iceland, more than has become clear in accounts”.

...He concludes, with regards to this hay-cave at Ægissiða, that it is the work of Irish monks, particularly cross-marks in the cave, that “are cut in many places on the cave vaults”, and “a rather large cross-mark” in the innermost corner, which he refers to as choir panelling…" ³

Matthias Þórðarson, quoting Einar Benediktsson (1931)

“Stór hellir er í kletti bak við gamla bæjarstaði á Seljalandi undir Eyjafjöllum. Hellirinn er í röð merkra ljóðminja, alsettur krossmórikum og ristum af ýmsum toga, allt aðan frá midöldum.

A large cave is in a crag at the back of the old farm-site at Seljaland under Eyjafjöll. The cave is in a row of national monuments, covered with cross-marks and various carvings, reaching as far back as the Middle Ages.” ³

Þórður Tómasson í Skógum, Setió við sagnabrún (1997)

Introduction
Since the outset of the twentieth century, some scholars have related artificial cave sites in southern Iceland to the earliest settlement of the island by monastic communities of

¹ (Jónsson 1902: 29; Friðrikksson 1994: 24)
² (Þórðarson 1931: 57)
³ (Tómasson í Skógum 1997: 148-9)
Gaels. These sites present an enigma: artificial caves are the best preserved and most numerous medieval structures to survive as visible monuments in Iceland – and yet have received the least attention. Given that the shelter provided by temporary and permanent constructions (such as pithouses, longhouses or caves) is key to the survival of human populations in the North Atlantic area, cave-buildings are long overdue for in-depth study.

Constructed by people and ranging from person-sized shelters to large two-storied chambers, Brynjúlfur Jónsson (and subsequently Einar Benediktsson) proposed that these caves housed Iceland’s early ‘Irish’ monastic communities. Writing a generation later, Matthías Póðarson took a more cautious approach, instead stressing the antiquity and uncertain origin of these medieval sites. Despite renewed attention over the last twenty years, these numerous caves, still thought to be early, have yet to be integrated into the island’s settlement sequence. As the relationship between these sites and early ‘Irish’ religious communities is unclear, Chapters Four to Seven seek to achieve some resolution for this question. Specifically, Chapters Four, Five and Seven focus on aspects of the built environment characteristic of human occupation whereas human-induced landscape changes are explored in Chapter Six. In short, the ‘Seljaland section’ of this thesis selects a cave group for study, and assesses the origins and role of these caves in their natural and cultural landscape.

Investigations of cave use elsewhere suggest that one might expect “the distribution of utilised caves… [to] broadly reflect the geology of the country” (Branigan & Dearne 1992: 38). Iceland’s geology makes possible the construction of cave sites in several regions (e.g. in the South, Southeast, and Northeast). However, there is no obvious physical or cultural reason for the extreme concentration of caves in southern Iceland (plotted in illustration 4.1). The challenge for the Seljaland section of this thesis is to put this cave group into context. This chapter reports the results of a field survey at Seljaland in the Eyjafjallsveit district of southern Iceland, selects the caves at Seljaland for detailed study and attempts to relate them to their archaeological and physical

4 I discuss the scholarship of Jónsson, Benediktsson, Póðarson and later writers at length in Chapter Seven (Jónsson 1900; 1902; 1906; Benediktsson 1905a; 1905b; Póðarson 1931).
ILLUSTR 4.1 ABOVE: The geology of Iceland. As presented in the inset, 'Holocene sediments' include soft sandstone (lithified sand dunes) while 'Late Quaternary bedrock' includes palagonite tuff. Taken from Landmælingar Íslands 1:500000 topographic sheet, fifth edition 1991.

BELOW: Distribution of artificial caves across Iceland. Note how the extreme concentration of caves in southern Iceland is not limited by the geology of the island (i.e. the Holocene lithology of southeastern and northeastern Iceland is comparable to that of southern Iceland — yet a concentration of cave sites is absent from the Southeast and Northeast). Adapted from Hjartarson et al. (1991: 12).
environments. In southern Iceland, nearly two hundred artificial caves have been cut into palagonite tuff or soft sandstone. An important question is when these caves date from. As the fronting quotes illustrate, earlier generations of scholarship have related some of these sites to settlements of *papar*, while more recent workers are cautious of such ideas, instead stressing how the caves are ripe for research. Given that Icelandic cave use is described in the early literature of medieval Scandinavia and that cave use formed an aspect of early Christian settlement in Scotland and Ireland, claims for the antiquity of these sites must be taken seriously. Furthermore, following upon the methodological ideas explored in Chapter Two, I contend that proposed early Christian associations for these caves must be addressed holistically — by which I mean in light not only of archaeological materials, but also place-names and literature. To elaborate, identifying *papar* or early Christian Gaels in Iceland has proven to be archaeologically problematic. However, the preceding chapter’s toponymic study suggests that the Icelandic occurrences of *Pap*-names result from the interactions of early Christian communities with Viking-Age Scandinavian-speaking colonists — a conclusion which may be set against early literature from the Gaelic world that describes journeys to the island by eighth-century clerics, as well as medieval Icelandic literature that identifies ‘Irish’ *papar* as Iceland’s first settlers. A danger with isolated consideration of the materials of a single field is that it may alternatively encourage the archaeologist to be sceptical of early Christian settlement, encourage the place-name scholar to elaborate a scenario of *papar* and Norse interaction in the early Viking Age, and encourage the literature.

5 For instance, consider Sveinbjarnardóttir’s 1972 observation that:

...litíð hefur verði gert til að varpa ljósí á hæ. Slóustu rannsdóknir á hheim voru gerðar í kringum 1930. (Sveinbjarnardóttir 1972: 17)

...little has been done to cast light upon them [the caves]. The latest research on them was carried out around 1930.

Holt and Guðmundsson as well as Hjartarson, Guðmundsson and Gísladóttir have since reinitiated study of these caves (Holt & Guðmundsson 1980; Hjartarson et al. 1991).

6 The eleventh-century author Adam of Bremen outlined that Icelanders live in caves (though his account is fantastic in parts):

...in subterraneis habitanti speluncis, communi tecto et strato gaudentibus cum pecoribus suis.

(Adam: bk 4, ch 36, skol 153; Schmeidler 1917: 272)

...they live in underground caves, glad to have roof and food and bed in common with their cattle. (Tschan 1959: 217)

7 Early Christian cave use in Scotland is a topic of current British Academy-funded research by William Gillies, Fraser Hunter and myself (Ahronson et al. in prep).

8 Though this point appears clearly established for the Hebrides, Iceland’s clustered distribution of these names (in contrast to Atlantic Scotland’s more regular distribution) hints at further complexities.
scholar to argue for two discrete settlements with minimal interaction: of early Christian Gaels throughout the eighth century and Norse beginning at the end of the ninth. Each of these interpretations is weakened by the others – integrative work is needed to accommodate the results of each field of research. To anticipate, I contend that relating these ideas to southern Iceland’s caves alongside the fresh research reported in the following pages promises some resolution to the wider problem of integrating the multidisciplinary perspectives outlined above. In other words, by assessing whether Iceland’s cave buildings could have originated with religious communities of Gaels, research at Seljaland contributes to the thrust of this thesis (i.e. whatever the results may be, the tackling of this question may be expected to inform our understanding of the early medieval relationships between Atlantic Scotland, the Faroe Islands and Iceland).

Settlement context
Modern Iceland is generally thought to inherit patterns of settlement and resource exploitation from Scandinavian groups, believed to have entered an ‘empty’ landscape of their own pioneering initiative in the late ninth century. The arrival and survival of people in a new environment such as southern Iceland may be identified both from preserved archaeological material and from impacts upon the landscape. Finds from Eyjafjallasveit suggest the region was settled by the Norse within the ‘landnám’ period (AD 870-930), though the wide date brackets for these artefact types are a problem.9 Landnáamabók, whose first recension is dated to the twelfth century, also points to Norse colonisation of the area at that time, with descriptions of eight early settlement farms (three of which may be located today10) and claims that this portion of the island was settled late in this landnám period11. Care must be taken when dealing with this source, however, as older data had been reworked with contemporary purpose. In other words, Landnáamabók locates Viking-Age settlements in order to legitimise major landholders in

9 This material is discussed in Macniven, Sveinbjarnardóttir, and Eldjárns and Friðriksson (Macniven 2003: 96; Sveinbjarnardóttir 1982; Eldjárns & Friðriksson 2000: 48, 393-5).
10 These three include Holt (Holtós), Prasastaðir (near Eystriskógur), and Steinfinnaðir (which has been equated with Kápa in Almenning). Macniven gives an overview of this discussion (Macniven 2003: 99-101).
11 Landnáamabók tells how the region “á millim Hornafjardar ok Reykjanes varð seinst albyggt / between Hornafjörður and Reykjanes was last to be completely settled” (Landnáamabók: H294; Benediktsson 1968: 337).
CHAPTER FOUR: Site selection and survey at Seljaland

the later medieval period. Intriguingly, the area’s place-names (as recorded in *Landnámabók*) include a notable concentration of Celtic-element names – more numerous in Eyjafjallasveit than in the rest of Rangárvallasýsla-district.

In her study of settlement in Eyjafjallasveit, Sveinbjarnardóttir identifies the first mention of Seljaland in a Church deed from 1332 and, unusually, understands that place-name as ‘shieling land’ (rather than ‘shielings land’). On these grounds, she proposes Seljaland to have been an early dependency of the nearby Dalur farm (Sveinbjarnardóttir 1991: 76). There is, however, an alternative interpretation because another translation is possible (and preferable) while Seljaland can be identified in older written materials (i.e. the attestation of the Seljaland name from the century before Dalur was first recorded presents a particular difficulty for Sveinbjarnardóttir’s idea). In other words, while Dalur first appears in a partial church list written soon after AD 1200, Seljaland is well-attested in literature from the previous century, where the Seljaland-element names *Seljulandsar* (‘Seljaland-river’) and *Seljalandsmúli* (‘Seljaland-promontory’) act as landmarks in the *Sturlubók*, *Hauksbók* and *Melabók* texts. Therefore, rather than suggesting Seljaland was a late dependency of Dalur, a reconsideration of the data instead suggests that the Seljaland name is the oldest attested farm-name in this section of Vestur-Eyjafjallahreppur – and among the oldest recorded farm-names in Iceland, dating from at least the twelfth century (and potentially earlier).

Projecting patterns of land use and land division described in late medieval literature backwards into the *landnám* period is one approach commonly used by Icelandic scholars, “on the basis that these late medieval patterns must ultimately derive from choices made at the beginning of the *landnám*” (Vésteinsson 1998: 6). Given this tradition, the use of Seljaland-element landmarks in *Landnámabók*’s account of earliest Norse settlement is suggestive, pointing to the place’s existence from the initial settlement period, at least as a ‘marked’ area. This would be consistent with the important ecological niches and resources (discussed later in this chapter) that converge at Seljaland and are presumed to have encouraged the site’s selection in the early

12 Cleasby, Vigfusson and Craigie define Icelandic sel as ‘a shed on a mountain pasture, but within the landmarks of each farm…’ (Cleasby et al. 1957: 521).
13 It is described as a church site in Páll Jónsson’s *Kirknatal* (Macniven 2003: 101; DI12 1923-32: 6).
14 (*Landnámabók*: S339, S341, M4, M6, H297, H299; Benediktsson 1968: 340-1, 343)
settlement process. The merits of this idea may be suggested by the area’s aboveground archaeological material, which certainly testifies to management strategies for these resources. Fortunately, assessing whether Seljaland was indeed a site of early settlement is made possible by the concentration of visible archaeological features there and the region’s enviable tephra sequence – thus corroborating the legacy of environmental and archaeological research which points to the area as an excellent arena for study of the island’s earliest archaeological past, and particularly of human-environmental interactions.

Environmental context

In comparison to the rest of Europe, Iceland was settled very late and human settlement triggered transformations of the environment, distinct from previous trajectories of natural change. The period of earliest settlement established patterns of social organisation, land use, and impacts upon the environment, setting in place historical legacies of landownership and environmental exploitation that are visible in both aboveground archaeological features and in the area’s sediments. The island was transformed over these centuries: birch woodland was cleared, domesticated animals and crops introduced, native mammal, bird and fish populations overexploited, natural vegetation cover stripped, and consequently the soils destabilised. These human impacts set in motion a process that has resulted in an environmental disaster: modern-day Iceland’s unstable soils and heavily eroded landscape.

Throughout this period, a dynamic natural environment has bounded the Markarfljót and Eyjafjallasveit area of Iceland (illustrations 4.2 and 4.3). Hekla lies to the north, while to the east the landscape is dominated by the glaciers Eyjafjallajökull and Mýrdalsjökull as well as the active volcano Katla. The escarpment that forms Seljaland is itself a landmark, looking west over the glacial river Markarfljót and the lowland coastal plain (*sandur*), as well as southwest to the nearby Westmen Islands. Today constrained to one powerful channel, the Markarfljót exemplifies environmental change over historical time, having flowed through winding and constantly migrating channels across a very large delta at the time of early settlement.
Illustr 4.2 The south coast of Iceland, looking NE from the Westmen Islands. The arrow locates Seljaland.

Illustr 4.3 Location of Seljaland in southern Iceland. Arrow indicates north. Blue indicates water, light brown indicates sandur plain and green indicates the land above the escarpment edge (visible above in illustr 4.2). Adapted from Simpson et al (Simpson et al. 2001: 178).
Fortunately, chronological precision is possible for many events (archaeological deposits as well as landscape and vegetation change) because of the technique of tephrochronology. Tephrochronology uses the layers of ash (tephrae15) deposited by volcanic eruptions for chronological precision. Discussed at length in Chapters Five and Six, study of volcanic airfall deposits is a powerful dating tool, particularly applicable to the excellent tephra sequence at Seljaland: within the historic period, tephra deposits there include a sequence of twelve layers from the Hekla AD 1947 eruption to the landnám tephra of AD 871±2 – all clearly separated by windblown sediments.

Problem and context

Chapters Four through Seven integrate aspects of archaeological and environmental research at Seljaland, a site which presents a well-constrained study area characterised by substantial aboveground survival of archaeological material16. Its physical and ecological position in the landscape is striking. Visible as an escarpment edge from many parts of southern Iceland, the study area is a prominent place where ecological niches and resources converge – namely areas of highland, lowland plain, cliff, river, marshland and nearby coast. Orri Vésteinsson stresses the importance of access to these environments for Iceland’s Viking-Age colonists: from an early period, human populations are thought to have consistently exploited the concentration of varied resources found in these habitats (Vésteinsson 1998: 6-12). Additionally, the Seljaland farm-name is mentioned indirectly in the medieval Landnámabók, suggesting its settlement from at least the time at which that text was written. Thus, in selecting Seljaland for detailed study, one expects the area to provide a rich archaeological sequence in which to situate the cave sites there.

Seen from the air in illustration 4.4, the Seljaland area forms part of the highland summer grazing grounds used by local farmers. The vegetation is characterised by low

15 In this thesis, I use the singular tephra and plural tephrae. Among tephrochronologists, the conjugation of the feminine noun tephra is a point of contention, with the alternative plural form tephraes (and sometimes tephra) often used. Following the normal ‘Latinising’ rules for borrowing a Greek word into English, I have chosen to use tephrae as I have found this usage enables me to express my meaning more clearly.

16 An earlier survey of Eyjafjallajökull, published in 2000 and of a different scale, provides a good introduction to the impressive survival of visible archaeological features in the area (Sveinbjarnardóttir & Gunnarsdóttir 2000: 187-97).
Illustr 4.4 Aerial photographs of Seljalands. Arrow indicates north. Scale 1:10000.
ABOVE: Seljaland Vegagerðin 1999 series.
BELOW: Taken from Landmælingar Íslands 1984 series.
shrubs and grassland and is, except for a sheltered kverk (small 'corrie'), without tree cover. (The kverk has been fenced off from livestock since 198117 and is now host to a number of well-established trees with thickly vegetated understorey.) A ridge runs across Seljaland, along which lie the cave sites Kverkarhellir and Seljalandshellar18, while the Seljalandsá (‘Seljalands-river’) runs east-west along the northern edge of the study area until it cascades off the escarpment onto the lowland sandur plain in a spectacular waterfall, Seljalandsfoss (‘Seljaland-waterfall’). The eastern boundary is marked by the Hofsa/Veystri-Hofsa, a north-south running river, beyond which the land ascends steeply to higher mountainous ground. The southern boundary is delimited by the escarpment or lowland boundary, the western edge forming a natural border of cliffs within which the Kverkarhellir cave site is located, overlooking the heavily sedimented sandur plain.

The problem for this chapter focuses upon the poorly understood origins of Iceland’s cross-marked19 caves. This rare situation in Atlantic archaeology, of investigating a well-represented site type yet to be integrated into the settlement sequence, spurred my field programme at Seljaland (Ahronson 2002: 111, 115; 2003: 56; 2004: 79).

Hypothesis

The artificial caves at Seljaland, with their enigmatic rock-cut sculpture, do not exist in isolation. Rather, these sites are situated in a human and physical landscape. Correspondingly, understanding the distribution and chronology of archaeological features at Seljaland enables consideration of whether caves represent a different type of settlement to more ‘traditional’ farm sites or, alternatively, a subset of settlement. The multiple hypotheses below consider this question:

- *The Seljaland caves are nested within the ‘traditional’ farm landscape.*
- *The Seljaland caves are at odds with (or independent of) the ‘traditional’ farm landscape.*

17 A memorial inscription at Kverkin describes the planting of woodland in 1981.

18 Intriguingly, Papahellir (‘Papar-cave’) is an alternate place-name for Seljalandshellar (‘Seljaland-caves’) (Hálfdán Ómar Hálfdanarson pers. comm.).

19 As mentioned earlier, the rock-cut cross sculpture at a number of these sites has attracted comparisons to the early Christian sculpture of Britain and Ireland – and shall be explored at length in Chapter Seven.
CHAPTER FOUR: Site selection and survey at Seljaland

Method
In order to situate the Seljaland caves within a landscape of settlement, visible archaeological features at Seljaland were surveyed from the 17th to 22nd of September 2001, in particularly wet conditions. Fieldworkers on this aspect of the Seljaland Project were Guðmundur Helgi Jónsson and Florian Huber. Shown in illustration 4.5, the boundaries of the study area were selected for a variety of reasons. The river Seljalandsá was chosen as a northern edge on the grounds that this landscape feature acted as a ‘landmark’ in the island’s oldest literature. The western and southern boundaries were delineated by the escarpment edge – this line represents the boundary between the sandur plain and the grassland of Seljaland. Notably, the area of modern farm buildings was not included (see illustration 4.4) because the migrating route of the Markarfljót – only artificially stabilised in recent centuries – is recorded to have flowed over this area, apparently taking it to the mouth of the Seljalandshellar caves in 1836 and probably destroying or burying older archaeological deposits (Hjartarson et al. 1991: 246).

Similarly, twentieth-century road construction involved the dynamiting of the Setberg farm site, at the extreme southwest of the study area (Hálfdan Ómar Hálfdanarson pers. comm.), thus providing grounds for choosing the road as a practical boundary. The eastern limits of the study area was chosen along a line defined by the Hofsfjörður with a north-south ridge of higher ground lying eastwards. An aerial photograph of Seljaland formed the basis for the survey, with the entire area being walked in strips 20-30 metres apart. To enable interpretation of each structure, all visible features were photographed, measured or sketched to scale and Global Positioning Satellite (GPS) points taken. In the following illustrations, the arrow indicates north. All photographs in the range 4.7-67 (except 4.16) and 4.72-3 were taken by Florian Huber.

Results and discussion
The merits of selecting the boundaries outlined above may be demonstrated by the distribution of archaeological sites: there is a thinning out of archaeological features in the northern, western and eastern sections of the study area (illustration 4.16). Furthermore, the survey identified the southern section of the area as a focus for activity (which includes the caves), with clusters of secondary sites located on the higher ground
Illustr 4.5 Study area. Scale 1:10000.
overlooking that ‘ridge’ of settlement. In the following pages, survey sites are summarised in table 4.1 as well as located by GPS in table 4.2 and by superimposition upon the aerial plan in illustrations 4.6 and 4.16. Photographs and scaled sketches are presented as illustrations 4.7-15 and 4.17-73.

<table>
<thead>
<tr>
<th>Site number</th>
<th>Site description</th>
<th>GPS points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Field boundary (?)</td>
<td>1, 2</td>
</tr>
<tr>
<td>2</td>
<td>Sheep house (?)</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Stone structure</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Stone structure</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Stone structure</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>Stone structure</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>Turf field boundary</td>
<td>9-11</td>
</tr>
<tr>
<td>8</td>
<td>Turf field boundary</td>
<td>12, 13</td>
</tr>
<tr>
<td>9</td>
<td>Turf field boundary</td>
<td>14, 15</td>
</tr>
<tr>
<td>10</td>
<td>Turf field boundary</td>
<td>16, 17</td>
</tr>
<tr>
<td>11</td>
<td>Turf field boundary</td>
<td>18-20</td>
</tr>
<tr>
<td>12</td>
<td>Turf field boundary</td>
<td>21, 22</td>
</tr>
<tr>
<td>13</td>
<td>Turf field boundary</td>
<td>23-6</td>
</tr>
<tr>
<td>14</td>
<td>Sheep house and hay cellar (fjdirhus)</td>
<td>27</td>
</tr>
<tr>
<td>15</td>
<td>Sunken structure</td>
<td>28</td>
</tr>
<tr>
<td>16</td>
<td>Sunken structure</td>
<td>29</td>
</tr>
<tr>
<td>17</td>
<td>Stone field boundary</td>
<td>30, 31</td>
</tr>
<tr>
<td>18</td>
<td>Subrectangular stone structure (Krosshóll 'chapel')</td>
<td>32</td>
</tr>
<tr>
<td>19</td>
<td>Cairn</td>
<td>33</td>
</tr>
<tr>
<td>20</td>
<td>Stone field boundary</td>
<td>34-5</td>
</tr>
<tr>
<td>21</td>
<td>Small turf structure</td>
<td>36</td>
</tr>
<tr>
<td>22</td>
<td>Turf field boundary</td>
<td>37, 38</td>
</tr>
<tr>
<td>23</td>
<td>Small turf and stone structure</td>
<td>40</td>
</tr>
<tr>
<td>24</td>
<td>Large turf and stone structure</td>
<td>41, 42</td>
</tr>
<tr>
<td>25</td>
<td>Three-chambered artificial cave (Seljalandsshellar)</td>
<td>39</td>
</tr>
<tr>
<td>26</td>
<td>Sunken feature (possible structure?)</td>
<td>43</td>
</tr>
<tr>
<td>27</td>
<td>Three stone, turf and concrete structures</td>
<td>44</td>
</tr>
<tr>
<td>28</td>
<td>Three related turf and stone structures</td>
<td>45</td>
</tr>
<tr>
<td>29</td>
<td>Turf and stone as well as turf structures (shieling)</td>
<td>46</td>
</tr>
<tr>
<td>30</td>
<td>Structural features</td>
<td>52</td>
</tr>
<tr>
<td>31</td>
<td>Wood fragment nailed to rock-face</td>
<td>53</td>
</tr>
<tr>
<td>32</td>
<td>Stone structure</td>
<td>54</td>
</tr>
<tr>
<td>33</td>
<td>Turf field boundary</td>
<td>55-6</td>
</tr>
<tr>
<td>34</td>
<td>Artificial cave (Prasahellir)</td>
<td>57</td>
</tr>
<tr>
<td>35</td>
<td>Artificial cave (Kverkarhellir)</td>
<td>61</td>
</tr>
<tr>
<td>36</td>
<td>Redirected (?) stream</td>
<td>47-51</td>
</tr>
<tr>
<td>37</td>
<td>Cairn</td>
<td>58</td>
</tr>
<tr>
<td>38</td>
<td>Cairn</td>
<td>59</td>
</tr>
<tr>
<td>39</td>
<td>Cairn</td>
<td>60</td>
</tr>
</tbody>
</table>

Table 4.1 List of sites surveyed at Seljaland (SLJ).
<table>
<thead>
<tr>
<th>GPS point</th>
<th>GPS reading</th>
<th>GPS point</th>
<th>GPS reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N 63 36 35.6" W 19 59 37.1"</td>
<td>32</td>
<td>N 63 36 45.6" W 19 59 05.4"</td>
</tr>
<tr>
<td>2</td>
<td>N 63 36 35.6" W 19 59 35.5"</td>
<td>33</td>
<td>N 63 36 45.6" W 19 59 05.2"</td>
</tr>
<tr>
<td>3</td>
<td>N 63 36 33.7" W 19 59 30.3"</td>
<td>34</td>
<td>N 63 36 43.6" W 19 59 10.1"</td>
</tr>
<tr>
<td>4</td>
<td>N 63 36 33.7" W 19 59 26.8"</td>
<td>35</td>
<td>N 63 36 43.8" W 19 59 09.2"</td>
</tr>
<tr>
<td>5</td>
<td>N 63 36 34.4" W 19 59 24.7"</td>
<td>36</td>
<td>N 63 36 31.4" W 19 59 17.4"</td>
</tr>
<tr>
<td>6</td>
<td>N 63 36 34.0" W 19 59 24.2"</td>
<td>37</td>
<td>N 63 36 31.7" W 19 59 20.7"</td>
</tr>
<tr>
<td>7</td>
<td>N 63 36 38.5" W 19 59 23.9"</td>
<td>38</td>
<td>N 63 36 33.6" W 19 59 20.2"</td>
</tr>
<tr>
<td>8</td>
<td>N 63 36 37.8" W 19 59 23.8"</td>
<td>39</td>
<td>N 63 36 30.5" W 19 59 17.7"</td>
</tr>
<tr>
<td>9</td>
<td>N 63 36 36.9" W 19 59 23.5"</td>
<td>40</td>
<td>N 63 36 30.3" W 19 59 17.8"</td>
</tr>
<tr>
<td>10</td>
<td>N 63 36 36.3" W 19 59 23.2"</td>
<td>41</td>
<td>N 63 36 30.6" W 19 59 18.3"</td>
</tr>
<tr>
<td>11</td>
<td>N 63 36 35.7" W 19 59 24.0"</td>
<td>42</td>
<td>N 63 36 30.8" W 19 59 18.7"</td>
</tr>
<tr>
<td>12</td>
<td>N 63 36 39.5" W 19 59 24.7"</td>
<td>43</td>
<td>N 63 36 33.6" W 19 59 22.0"</td>
</tr>
<tr>
<td>13</td>
<td>N 63 36 39.8" W 19 59 25.8"</td>
<td>44</td>
<td>N 63 36 30.3" W 19 59 08.0"</td>
</tr>
<tr>
<td>14</td>
<td>N 63 36 38.8" W 19 59 25.3"</td>
<td>45</td>
<td>N 63 36 29.6" W 19 59 58.7"</td>
</tr>
<tr>
<td>15</td>
<td>N 63 36 38.7" W 19 59 24.7"</td>
<td>46</td>
<td>N 63 36 46.7" W 19 59 38.7"</td>
</tr>
<tr>
<td>16</td>
<td>N 63 36 39.4" W 19 59 27.5"</td>
<td>47</td>
<td>N 63 36 34.3" W 19 59 13.4"</td>
</tr>
<tr>
<td>17</td>
<td>N 63 36 39.6" W 19 59 28.7"</td>
<td>48</td>
<td>N 63 36 33.8" W 19 59 16.1"</td>
</tr>
<tr>
<td>18</td>
<td>N 63 36 41.2" W 19 59 28.1"</td>
<td>49</td>
<td>N 63 36 32.6" W 19 59 18.0"</td>
</tr>
<tr>
<td>19</td>
<td>N 63 36 41.7" W 19 59 26.8"</td>
<td>50</td>
<td>N 63 36 31.6" W 19 59 18.3"</td>
</tr>
<tr>
<td>20</td>
<td>N 63 36 42.6" W 19 59 24.3"</td>
<td>51</td>
<td>N 63 36 31.2" W 19 59 18.7"</td>
</tr>
<tr>
<td>21</td>
<td>N 63 36 43.9" W 19 59 18.6"</td>
<td>52</td>
<td>N 63 36 36.7" W 19 59 40.2"</td>
</tr>
<tr>
<td>22</td>
<td>N 63 36 43.3" W 19 59 21.3"</td>
<td>53</td>
<td>N 63 36 34.9" W 19 59 42.4"</td>
</tr>
<tr>
<td>23</td>
<td>N 63 36 46.2" W 19 59 19.6"</td>
<td>54</td>
<td>N 63 36 33.8" W 19 59 43.5"</td>
</tr>
<tr>
<td>24</td>
<td>N 63 36 44.7" W 19 59 18.0"</td>
<td>55</td>
<td>N 63 36 35.0" W 19 59 43.1"</td>
</tr>
<tr>
<td>25</td>
<td>N 63 36 41.8" W 19 59 15.3"</td>
<td>56</td>
<td>N 63 36 32.1" W 19 59 40.7"</td>
</tr>
<tr>
<td>26</td>
<td>N 63 36 40.1" W 19 59 13.3"</td>
<td>57</td>
<td>N 63 36 30.4" W 19 59 11.6"</td>
</tr>
<tr>
<td>27</td>
<td>N 63 36 44.5" W 19 59 26.4"</td>
<td>58</td>
<td>N 63 36 48.2" W 19 59 21.2"</td>
</tr>
<tr>
<td>28</td>
<td>N 63 36 44.6" W 19 59 27.1"</td>
<td>59</td>
<td>N 63 36 48.5" W 19 59 22.1"</td>
</tr>
<tr>
<td>29</td>
<td>N 63 36 45.1" W 19 59 28.2"</td>
<td>60</td>
<td>N 63 36 48.5" W 19 59 22.6"</td>
</tr>
<tr>
<td>30</td>
<td>N 63 36 50.4" W 19 59 31.2"</td>
<td>61</td>
<td>N 63 36 40.4" W 19 59 49.4"</td>
</tr>
<tr>
<td>31</td>
<td>N 63 36 48.6" W 19 59 24.5"</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4.2 GPS points and coordinates for Seljaland survey sites.
Illustr 4.6 Aerial photograph of study area with the following field boundaries located: SLJ 1, SLJ 7, SLJ 8, SLJ 9, SLJ 10, SLJ 11, SLJ 12, SLJ 13, SLJ 17, SLJ 20, SLJ 22, SLJ 33. Scale 1:10000.

LEFT: **Illustr 4.7** SLJ 1: Possible field boundary. This feature is visible as a slight ridge in the landscape. Scale 1:400.

RIGHT: **Illustr 4.8** SLJ 1: Looking E. The figure (Guðmundur Helgi Jónsson, 1.96m) provides scale.
LEFT: Illustr 4.9 SLJ 7: Turf field boundary. Boundary wall runs for approximately 77m, is between 1.5-2.0m wide and survives up to a height of c. 1m. No visible stones. Approximate location given on aerial photograph (4.14). Note that the north end of this boundary wall is 6m from the south side of structure SLJ 6. Scale 1:800.

RIGHT: Illustr 4.10 SLJ 7: Looking W. 1m scale (same scale throughout).

LEFT: Illustr 4.11 SLJ 17: Stone field boundary. Barbed wire and fallen post indicates modern (re)use of this boundary. Looking NW.

RIGHT: Illustr 4.12 SLJ 20: Stone field boundary. 0.20-0.30m in height. Looking W.
LEFT: Illustr 4.13 SLJ 22: Turf boundary wall. Similar in dimensions to SLJ 7 and SLJ 8. Looking S.
RIGHT: Illustr 4.14 SLJ 33: Turf field boundary. Looking N.

Illustr 4.15 SLJ 36: Redirected stream (?). Taken from GPS 47, looking S.
Illustr 4.16 Aerial photograph of study area, locating all surveyed features. Field boundaries (the subject of illustration 4.06) are unnumbered, while all other features are identified by their SLJ number. Scale 1:10000.
LEFT: Illustr 4.17 SLJ 19: Cairn. 0.8m in height. Scale 1:80.
MIDDLE: Illustr 4.18 SLJ 19: Looking N.
RIGHT: Illustr 4.19 SLJ 37: Cairn. Looking N.

LEFT: Illustr 4.20 SLJ 38: Cairn. Looking N.
RIGHT: Illustr 4.21 SLJ 39: Cairn. Looking N.
LEFT: Illustr 4.22 SLJ 2: Possible sheep house. Stone walls survive up to a height of 1.5m. Inside of structure filled with collapsed stone, wooden beams and occasionally corrugated iron, probably from roof. Scale 1:160.

RIGHT: Illustr 4.23 SLJ 2: Looking E.

Illustr 4.24 SLJ 2: Looking NE.
LEFT: Illustr 4.25 SLJ 3: Stone structure. Walls survive up to a height of c.1m. Overgrown with a few visible stones. The area in front of the entrance is raised and contains some stones. Scale 1:160.

RIGHT: Illustr 4.26 SLJ 3: Looking SW.

RIGHT: Illustr 4.28 SLJ 4: Looking W.

LEFT: Illustr 4.29 SLJ 5: Stone structure. Walls survive up to a height of 0.30-0.40m. Visible stones are planned. Very overgrown and difficult to identify extent of inner walls (shown by dotted line). Scale 1:160.

RIGHT: Illustr 4.30 SLJ 5: Looking E.
LEFT: Illustr 4.31 SLJ 6: Stone structure. Walls survive up to a height of c.1m. Overgrown with visible stone walls. Occasional corrugated iron. Southern half of structure contains possible collapse or some kind of division within the structure. Scale 1:160.

RIGHT: Illustr 4.32 SLJ 6: Looking NW.

Illustr 4.33 SLJ 6: Looking N.
LEFT: Illustr 4.34 SLJ 14: Sheep house and hay cellar (fjárhús?). Walls survive up to a height of 3.3m. Area A deeper than the rest of the structure. Area B divided by a 0.50m high stone wall. Scale 1:200.

RIGHT: Illustr 4.35 SLJ 14: Looking S.

LEFT: Illustr 4.36 SLJ 14: Looking SW.

RIGHT: Illustr 4.37 SLJ 14: Looking SE.
LEFT: Illustr 4.38 SLJ 15: Sunken structure. Feature reaches a depth of 1m. Completely overgrown. No visible wall structure but ‘wall mound’ is in line with SLJ 14 and 16 (and lies directly to the NW of SLJ 14). Scale 1:160.

RIGHT: Illustr 4.39 SLJ 15: Looking W.

RIGHT: Illustr 4.41 SLJ 16: Looking W.
LEFT: Illustr 4.42 SLJ 21: Small turf structure. Turf walls survive up to a height of c.0.45m. Scale 1:160.
RIGHT: Illustr 4.43 SLJ 21: Looking NE.

LEFT: Illustr 4.44 SLJ 23: Small turf and stone structure. Wall constructed of stone with turf on outside. Collapsed entrance. Scale 1:160.
RIGHT: Illustr 4.45 SLJ 23: Looking W.
LEFT: **Illustr 4.46** SLJ 24: Large turf and stone structure. Walls surviving up to a height of 1.8m. Scale 1:200.

RIGHT: **Illustr 4.47** SLJ 24: Looking S.

LEFT: **Illustr 4.48** SLJ 24: Looking S.

RIGHT: **Illustr 4.49** SLJ 24: Looking S.

LEFT: **Illustr 4.50** SLJ 26: Sunken feature. Scale 1:80.

RIGHT: **Illustr 4.51** SLJ 26: Looking NNW.
LEFT: Illustr 4.52 SLJ 27: Three stone, turf and concrete structures. Walls survive up to a height of 1.8m. Scale 1:400.
RIGHT: Illustr 4.53 SLJ 27: Western structure, looking NE.

LEFT: Illustr 4.54 SLJ 27: Middle structure, looking NE.
RIGHT: Illustr 4.55 SLJ 27: Eastern structure, looking NE.

LEFT: Illustr 4.56 SLJ 28: Three related turf and stone structures. Walls survive up to a height of 1.5m. Scale 1:400.
RIGHT: Illustr 4.57 SLJ 28: Looking SW.
LEFT: Illustr 4.58 SLJ 29: Turf and stone as well as turf structures (shieling?). Overgrown walls survive up to a height of 0.6m. Southern structure is of turf and stone, the northern three structures are of turf. Scale 1:400.

MIDDLE: Illustr 4.59 SLJ 29: Southern group, looking E.

RIGHT: Illustr 4.60 SLJ 29: Northern group, looking E.

LEFT: Illustr 4.61 SLJ 32: Stone structure. Stone walls survive up to a height of 0.7m. Large concrete block sitting in middle of the structure – probably not collapse. Scale 1:200.

RIGHT: Illustr 4.62 SLJ 32: Looking NW.
LEFT: **Illustr 4.63** SLJ 18: Subrectangular stone structure (Kroshóll ‘chapel’). Stone walls surviving up to a height of 0.50-0.60m (1-2 rows of stones). Mostly collapsed. Some rocks, present before construction, may have been incorporated into the structure. Scale 1:160.

RIGHT: **Illustr 4.64** SLJ 18: Looking E.

LEFT: **Illustr 4.65** SLJ 30: Structural features. Located immediately outside Kverkarhellir cave. Difficult to interpret structural details. Possible steep worked pathway linking the structure with the plain below. Scale 1:200.

RIGHT: **Illustr 4.66** SLJ 30: Looking N.

Illustr 4.67 SLJ 30: Looking N.
Illustr 4.68 SLJ 25 (Seljalandsheflar) and SLJ 35 (Kverkarhellir) plans. The crosshair at the eastern wall of the Kverkarhellir cave mouth indicates the site of cross KV, and the numbers on the Seljalandsheflar plan indicate crosses SLJ 1-19 as well as the four mid-sized crosses represented by X2. The cross sculpture is discussed in Chapter Seven. The ground surface inside Kverkarhellir has been cleaned, recorded and planned, while the Seljalandsheflar plan is drawn from the published illustration in Hjartarson et al (1991: 246). Drawn by Ian Scott.

LEFT: Illustr 4.69 SLJ 25: Three-chambered artificial cave (Seljalandsheflar). Photograph looking N.
RIGHT: Illustr 4.70 SLJ 25: Looking NW.
4.71 SU 35: Artificial cave (Kverkarhellir). Potentially two (or three) phases of construction, the oldest being a small chamber (height 2m, width 3m, depth 3m). In the foreground, a path runs from SU 30 (from which the photograph was taken) to the mouth of the cave, in shadow at the base of the left side of the rock outcrop. Note the steep descent from the cave mouth. Photograph looking SE.

4.72 SU 34: Artificial cave (Prasahellir). Entrance height 1m and width 1.5m, widening into a large low-roofed chamber. Sediments have accumulated to a substantial depth (perhaps 1+ m). Photograph looking N.

4.73 SLJ 31: Wood fragment nailed to rock-face, 0.15m in length. Nails are modern. Photograph looking E.
At the edge of an escarpment overlooking the *sandur* plain, the Seljaland area is visually prominent in southern Iceland. The escarpment rises gently to its highest and most exposed point, Krossholl, where the remains of the eroded small structure SLJ 18 survive (illustration 4.74). Bounded by rivers, cliffs and escarpment edge, this naturally bordered unit has a high concentration of the classic Icelandic farming assemblage of archaeological features, in addition to a number of exceptional structures. The typical assemblage of visible features relating to farming practices includes many animal houses, such as a possible shieling site (SLJ 29), and a large L-shaped structure (SLJ 14), probably a nineteenth- or twentieth-century *fjárhús* ('sheep house') for hay storage and to house sheep during the winter. There is also a network of turf- and stone-walled field boundaries. These walls vary in size, style, material and most likely age as well. Re-use of older boundaries is a possibility while heavily-eroded examples point to abandonment. In contrast, other large distinct walls still stand as physical boundaries today. Though it would be unusual for prominent, good and accessible farmland to be subdivided to such an extreme, the concentration of animal houses and field boundaries could suggest shared use of Seljaland’s resources by the local community – and the Seljaland place-name, if indeed derived from ‘shielings land’, may support this interpretation. Certainly, Kverkarhellir cave was used for communal purpose between 1872 and 1895, when the site (otherwise a sheep house) served as *pingstaður*, housing local parliamentary meetings in the Spring, once the Winter’s accumulation of sheep manure had been removed (Tómasson í Skógum 1997: 151).

Exceptional sites include the caves Seljalandshellar/Papahellir (SLJ 25), Kverkarhellir (SLJ 35), and *Þrasi*/Prasahellir (SLJ 34). These caves were dug into palagonite tuff (toolmarkings on the Seljalandshellar and Kverkarhellir wall surfaces are illustrated in 4.75 and 4.76). The Seljalandshellar in particular are of interest, with its three distinct rooms, chimney and 105 cross carvings on the surviving walls. Some antiquity is claimed for Kverkarhellir: this cave features in Jón Árnarson’s collection of nineteenth-century folklore, where folk tradition describes human habitation there in the 1500s (Árnarson 1856 [1993]: 200-2). If occupied at the same time, the multiple chambers of the Seljalandshellar (one with two floors), with the prominent cross sculpture cut into the walls, would presumably have been a primary site and...
Illustr 4.74 With its small eroded structure, Krosshóll is the highest point in the photograph (though to the east of the study area, the land rises steeply and reaches greater elevation).
LEFT: Illustr 4.75 Toolmarkings from the east wall in the oldest section of Kverkarhellir (SLJ 35).
RIGHT: Illustr 4.76 Toolmarkings from the east corner of the north wall of the Seljalandshellar (SLJ 25) middle chamber. Scale divided into 0.01m and 0.05m increments.
Kverkarhellir secondary. Currently a low-roofed chamber, interpreting Þrasahellir is difficult as sediments have accumulated to substantial depth (perhaps 1m or more).

Another exceptional feature is the small west-oriented subrectangular stone structure (SLJ 18) at the prominent and exposed point known as Krosshóll (‘cross hill’). Its size, shape and west-orientation have some similarity to early Christian drystone cell architecture, such as that found on North Rona and Canna in the Hebrides (Fisher 2001: 101, 114-6), while the site has religious associations: folklore describes the eroded Krosshóll structure as a ‘Catholic’ chapel (Tómasson (i Skógum) 1997: 152). One possibility, difficult to assess given the thin soil cover, is that the structure indeed acted, at some period, as a cell or chapel. This is a priority for further excavation.

The hypotheses under consideration propose the Seljaland caves to be either coherent with or at odds with more ‘traditional’ farm sites. Survey focused attention upon a ‘ridge’ of features including all three cave areas, with the concentration of surveyed features found in the area of the Seljalandshellar, Þrasahellir and modern farm buildings (seen on the aerial photograph). Modern settlement may thus be noted as consonant with the Seljalandshellar and Þrasahellir, but not coherent with Kverkarhellir. If these cave sites are contemporary, it is possible there has been a shift of focus in settlement (i.e. from the ‘ridge’ including the three cave sites to the cluster focused on the modern farm buildings). As the presence of Kverkarhellir has been key in formulating this idea, excavation of that site would be a critical test of the proposal that there was a shift in focus. Aside from location, the cave sites themselves lend some support to the hypothesis that they were primary sites in themselves. In other words, though these caves have acted in the modern period as a subset of more ‘traditional’ farm settlement (i.e. as sites to shelter animals, store goods or for drying/smoking foods), they have been used for purposes outwith the ‘traditional’ farming landscape (i.e. to house an outlaw in the sixteenth century and for community government). Furthermore, the prominence of cross sculpture in these caves suggests these uses were made of already existing sites, and that they were originally constructed for other purposes. To be precise, the cross sculpture points to the significance of the Seljalandshellar caves as a Christian religious site – detailed study of this sculpture should enable assessment of cultural affinities for these rock-cut crosses. Therefore, in seeking to resolve the competing hypotheses
regarding the role of these cave sites, study of the cross sculpture is called for, while Kverkarhellir is of highest priority for excavation and may prove key in relating Seljaland’s caves to the classic farm features revealed by the survey. In particular, dating the site using the local tephra sequence will be an important first step in this process.

Conclusions and further problems

The Seljaland archaeological survey revealed a good representation of a typical assemblage of human and animal house-structures as well as field boundaries, many of which relate to farming practices. This ‘classic’ assemblage is made exceptional in that structure types (such as shieling, fjárhús, and field boundaries) are well-represented and survive well as visible features – and occur in an area provided with a powerful dating tool: an enviable tephrochronological sequence (see Chapter Five). This survey noted the special potential of the area to investigate human exploitation of the natural environment and continuity of land use. The unusual features such as the Krosshóll ‘chapel’ and the Seljaland caves (Kverkarhellir in particular) warrant further investigation in their own right, as they are difficult to relate to the ‘classic’ landscape of settlement revealed by the survey²⁰.

The subdivision of land at Seljaland and the possibility of community use may be significant, especially in light of the derivation of the place-name as ‘shielings land’. As noted in the problem and context section, given its prominence in the landscape, good land, access to various habitats, and attestation in the island’s earliest literature, one expects Seljaland to have been consistently exploited by human populations from an early period. If the Seljaland area was instead avoided in the initial process of Norse colonisation and therefore remaining outwith the Norse farming landscape, then one idea is that the area could later have been subdivided as shielings between competing land owners – with the place-name coined at this later point and subsequently incorporated into the medieval Landnámabók texts. One tantalising possibility, which the Seljalandsheilórs alternative (and potentially late) Papahellir name points to, is that the area may already have been occupied at the time of Norse land-taking. The

²⁰Vésteinsson refers to models of settlement, with particular emphasis upon medieval farms (Vésteinsson 1998).
archaeological invisibility of both Ari fróði’s *papar* and Dicuil’s eighth-century Gaelic clerics, however, mean that any thought of a community of early Christian Gaels at Seljaland can be only tantalising.

In summary then, archaeological survey of Seljaland has raised the possibility that the caves there were originally constructed as primary sites with a different focus of settlement to the more ‘traditional’ farming landscape revealed by survey. Excavation of Kverkarhellir was called for as a critical test of this idea. Fortunately, the local tephra sequence may help date that site and additionally provide palaeoenvironmental data with which to assess land use changes over time. Furthermore, study of the cross sculpture in the Seljalandsjéllarl and in Kverkarhellir should permit consideration of cultural affinities for these sites by comparison with the sculpture of Scandinavia as well as Britian and Ireland. Therefore, in order to better understand the Seljaland caves, these sites warrant further investigation by excavation (Chapter Five), study of human-environmental interactions (Chapter Six), and detailed examination of cross sculpture (Chapter Seven).

References

CHAPTER FOUR: Site selection and survey at Seljaland

—. 1905b. Íraby-lín II. In Fjallkonan. Reykjavík.
—. 1902. Rannsókn í Rangárþingi sumarið 1901. Árbók hins Íslenzka Forneiðafélags 1902, 1-32.
—. 1906. Rannsókn í Árnesþingi sumarið 1904. Árbók hins Íslenzka Forneiðafélags 1905, 52-5.
Landnámabók. Edited by Benediktsson 1968.
Þórðarson, M. 1931. Manngerðir hellar í Rangárvallasýslu og Árnessýslu. Árbök hins Íslenzka Fornleifafélags 1930-1, 1-76.

CHAPTER FIVE
Dating the cave

"The sedimentary pile at any one place ... is nothing more than a tiny and fragmentary record of vast periods of earth history."\(^1\)

Derek V Ager, The Nature of the Stratigraphical Record

"For the archaeologist, the location of discard within a settlement is of great importance."\(^2\)

Michael B Schiffer, Formation Processes of the Archaeological Record

Introduction

As discussed in the previous chapter, the Icelandic artificial cave sites are thought to be old (Holt & Guðmundsson 1980: 16-7), but their origins and history are enigmatic. As part of the Seljalands Project, test trenches at the mouth of Kverkarhellir cave identified debris from cave construction within a dated sequence of volcanic ash layers, or tephrae. Locating an episode of construction within the excellent chronological framework provided by these tephrae is an important step for understanding these caves.

Hjartarson and Gísladóttir describe the southern Iceland caves as including a number of ‘the oldest housebuildings in Iceland’ (Hjartarson & Gísladóttir 1983: 133). Many caves are listed in 1709 land registers, while a late twelfth-century description of Bishop Þórákrur’s miracles mentions the collapse of a cattle cave\(^3\). It is noteworthy that cave use is described at such an early date, for the twelfth century is the period of the oldest Icelandic writing. Still earlier and from a Continental perspective, Adam of Bremen provides the first known description of Icelandic cave use in his eleventh-century account (Adam: bk 4, ch 36, skol 153; Schmeidler 1917: 272; Tschan 1959: 217).

Distinctive to many of these caves, as well as some Westmen Island rock alcoves, are stylistically distinctive cross carvings that, taken together, form a coherent body of sculpture. These rock-cut crosses, discussed at length in Chapter Seven, have some similarities to early Christian sculpture from other Atlantic areas. Furthermore, as mentioned in Chapter Three (and again in Chapter Eight), modern ideas locating early Christian papar communities across the North Atlantic region are of significant antiquity

\(^1\) (Ager 1993: 53)
\(^2\) (Schiffer 1987: 58)
and longevity. In southern Iceland, certain artificial caves are the subject of *papar* folklore and *Pap*-names are sometimes associated with these places\(^4\). As mentioned in Chapters Three and Four, the Seljalandshellar are one example of this, holding early Christian associations for the local community\(^5\) and carrying the alternative name *Papahellir* (‘cave of *papar*’), used as a child’s name for that place (Hálfdan Ómar Hálfdanarson, *pers. comm.*). Though such associations certainly merit consideration, at present these caves remain a tantalising enigma.

As described in Chapter Four, investigations at Seljaland initially sought to contextualise the caves alongside the landscape of settlement there. Archaeological survey noted the possibility that the Seljaland caves were constructed as primary sites independent of the modern settlement pattern – and called for the critical test of targeted excavation at Kverkarhellir in order to constrain cave use chronologically. For establishing a chronological framework, tephrochronology is particularly suitable. This dating technique uses tephra layers within the sedimentary record as time-parallel marker horizons – in other words, as horizontally continuous units that represent an instance in time within the sedimentary record of a region. Tracing these tephra layers across an area, a regional chronology can be developed and independent ages obtained for these layers by using written materials, ice core data, and radiometric dating techniques. This stratified sequence of dated tephra layers can then provide a chronological framework within which to place events identified from the sedimentary record. As a chronological technique, tephrochronology produces remarkable results for southern Iceland generally, while a strong focus of research centres on Seljaland itself. Researchers have been drawn to the area because throughout the Holocene (approximately the last 10,000 years), a number of very active volcanic systems in close proximity to Seljaland have produced many visually and geochemically distinctive

\(^4\) In contrast with Atlantic Scotland, those Icelandic *Pap*-names not demonstrating archaic linguistic features – such as the syncope in *Papey* names discussed in Chapter Three – may formally be coined at any point since the island’s Norse settlement. The co-incidence of *papar* folklore with potentially modern *Pap*-names thus highlights the complex interplay between the folkloric and place-name material related to these caves.

\(^5\) One tradition regards the healing properties ascribed to the water from a basin, cut into the westernmost of the Seljalandshellar chambers. This basin has three holes drilled down into the wall fabric and water springs from these holes to collect in the basin. The wall fabric exposed by the basin is in similar condition to the surrounding wall, thus construction is unlikely to be recent. The date of the drilling is uncertain but is conceivably contemporary with basin construction.
CHAPTER FIVE: Dating the cave

tephra layers. As centimetre-scale deposits clearly separated by windblown (or aeolian) sediments, these layers are particularly suitable for stratigraphy-based tephrochronology. This is a key point for the use of tephra layers at Seljalands: high rates of aeolian sediment accumulation have produced a sequence of deposits where there is a real separation between tephra from AD 920 and 935 (or even 1500 and 1510). The local historical tephra sequence is well studied (Dugmore 1987), comprising fall-out from the following eruptions (accompanied by AD dates): Hekla 1947 (Þórarinsson 1954), Katla 1918 (Þórarinsson 1975), Eyjafjallajökull 1821 (Larsen 1979), Katla 1755 (Þórarinsson 1975), Katla 1721 (Þórarinsson 1975), Hekla 1597 (Þórarinsson 1967), Hekla 1510 (Þórarinsson 1967), Katla 1500 (Larsen 1984), Hekla 1341 (Þórarinsson 1967), Eldgjá 935 (Zielinski et al. 1995), Katla c. 920 (Haflidiarson et al. 1992), and Veidivötn 871±2 (the landnám tephra) (Grönvold et al. 1995). In short, the very detailed and well-constrained record of tephra layers developed for the region make the Seljalands area ideally suited for the application of tephrochronology (Dugmore 1987; Larsen et al. 2001).

Problem and context

Though suggested by medieval literature to be early, the period in which artificial caves were first constructed is uncertain, and dating of construction is thus crucial for understanding these sites. Limited excavation in 1975 by Anton Holt and Guðmundur J. Guðmundsson suggested that a cave at Kolsholtshelli could date to the earliest settlement period of the island — their work will be returned to in my articulation of hypothesis. This chapter applies new ideas to Holt and Guðmundsson’s approach and takes it further through rigorous application of tephrochronology to the question of cave construction at Seljalands. Survey of the Seljalands area identified three caves: Þrasahellir, the Seljalandsheiller, and Kverkarhellir. The preceding chapter called for excavation of Kverkarhellir as a critical test of the proposal that settlement at Seljalands has shifted from a ‘ridge’ including all three caves to the cluster defined by the modern buildings. As well as being an outlier to this modern settlement cluster, Kverkarhellir is also the most practical of the cave sites at Seljalands to excavate. Both Þrasahellir and the Seljalandsheiller, for instance, pose special challenges for targeted excavation of early
Prasahellir, accessible through the partly infilled entrance, has experienced substantial accumulation of sediments and the depth of this material presents practical difficulties for an exploratory programme of excavation. Additionally, the proximity of modern farm buildings suggests that Prasahellir and the Seljalandshellar have experienced serious disturbance both inside and in the immediate vicinity of the caves. The three chambers of the Seljalandshellar, for example, have until recently been used as outbuildings shared between the nearby farms (Tómasson (i Skógum) 1997: 148-9). A further challenge for excavating the Seljalandshellar is posed by the wetness of the immediate area – though these water-logged soils also promise special possibilities for preservation. Kverkarhellir, on the other hand, is situated some distance from the modern settlement cluster and, despite the cave interior having use recorded since the early modern period7, high sediment accumulation rates on the well-drained slope outside the cave suggest that early historic sediments may lie beneath disturbed upper sediments. As mentioned in Chapter Four, the reworking of surface material is described in the period spanning from 1872 to 1895, when Kverkarhellir served alternatively as seasonal sheep house and local parliament site, or Þingstaður, for the district. During this time, each Winter’s accumulated sheep dung was removed in preparation for the local parliamentary meeting (Tómasson (i Skógum) 1997: 151). This shovelling probably removed some depth of underlying cave deposits, and, in addition to depositing material, these events may have reworked surface sediments on the exterior slope. Perhaps more important, however, was the landscaping in the 1980s of Kverkin (the corrie in which Kverkarhellir lies) and the unfortunate ‘clearing out’ of surface material from Kverkarhellir in the late 1990s. This work included significant disturbance of the upper sediments in the vicinity of the cave for the laying of stone pathways and extensive tree planting (Hálfdanarson, pers. comm.). In spite of these difficulties, Kverkarhellir nevertheless presents the most straightforward site for a programme of excavation targeting the deeper early historic deposits (presumably those associated with earliest cave use).

6 Early historic is used here to refer to the first centuries of medieval settlement in Iceland.
7 Folk tradition describes the use of Kverkarhellir for human habitation in the 1500s (Arnarson 1856 [1993]: 200-2).
Illustr 5.1 Kverkarhellir cave mouth, looking S from site SLJ 30. Photograph by Tom McGovern.

Illustr 5.2 Midway into cave, looking towards rear. Photograph by Tom McGovern.

Illustr 5.3 Detail of E wall of cave mouth. Rock-cut cross is obscured by shadows in top of image.

Illustr 5.4 Structural features inside cave, looking towards rear.

Illustr 5.5 Kverkarhellir cave and proposed apron of waste. The debris in this model has been offset to avoid the pathways associated with Kverkarhellir (one running upslope to the SE, another to the nearby feature SLJ 30 to the W, and another downslope to the N). In this model, an average thickness of 0.6m was assumed, though one would expect thickening in the central area of deposit and thinning at the edges. Furthermore, this average thickness must be an underestimate as this waste material would be loose rather than compacted as solid rock. Additionally, the proposed subtriangular shape for the waste deposit is only one of the possible debris forms. As a simple calculation, the depositional model illustrated here nevertheless permits quantification of the sorts of results to be expected. Scale 1:400. Plan of Kverkarhellir drawn by Ian Scott.
Kverkarhellir is presented in illustrations 5.1-4. As I have noted elsewhere, two phases of construction may be suggested by floor heights (Ahronson 2002: 114). To elaborate, the floor surface of the two metres nearest the cave mouth appears to be set lower than the floor surface of the rest of the cave, with sediments accumulated on this lower surface to the level of the rest of the cave. The idea I have proposed is that the lower stone floor defines the original construction phase of the cave and that this younger ‘extension’ was dug out after a period in which sediments had accumulated to a certain depth – keeping level with the sediments in the older phase. Excavation of the cave floors is necessary to assess the merits of this idea.

The cave fabric is a palagonite tuff and would have been dug out by iron-headed tools. The earliest phase may have expanded upon a relict sea-cut alcove, and involved the digging of an area with approximate dimensions of 2m (height) x 2m (length) x 3m (width) – and producing at least 12m3 of debris. It is possible that a rock-cut cross on the eastern wall is associated with this phase of construction. Assessing the necessary time and potential methods for the digging out of the cave would be a fruitful avenue for experimental research. In anticipation of such work, Edinburgh stonemason Gardiner Molloy and Chris Doherty of the Research Lab for Archaeology and the History of Art (Oxford) suggest that the construction of Kverkarhellir may be expected to have produced palagonite debris consisting largely of angular medium pebbles to small cobbles (roughly 10-120mm), accompanied by substantial amounts of finer pebbles (2-10mm) and later infilled with aeolian material (Molloy, pers. comm.; Doherty, pers. comm.)8. Debris could include artefacts associated with construction such as damaged iron tools; however, considering the importance of recycling iron and the general rarity of artefacts from archaeological investigations in Iceland, the recovery of such material is unlikely. As a rule, the expected lithic debris (especially that produced by construction on this scale) should be dumped nearby, but avoid access routes and activity areas (Schiffer 1987: 58-64). In the case of Kverkarhellir, topography presents limited possibilities, suggesting an apron of waste would have been deposited on the slope outside the cave mouth. This depositional model is sketched in illustration 5.5.

8 Size range terminology is drawn from recently published guidelines for Quaternary researchers (Jones et al. 1999: 43).
CHAPTER FIVE: Dating the cave

seeking to locate this construction debris, the problem this chapter tackles is this: *when was Kverkarhellir's earliest phase of construction?*

Hypothesis

As mentioned earlier, Holt and Guðmundsson undertook limited excavation in 1975. Having surveyed eighteen artificial caves and completed a preliminary study of rock-cut crosses found at these sites, they selected the land of Kolsholtshelli, in the Villingaholtshreppur district of Árnessýsla, for field excavation. Instead of excavating the cave interior, their approach was to test trench a “allstór öskuhaugur / fairly large ashheap” related to the cave. Their work recovered artefactual material from a stratified deposit including a tephra layer suggested to be Katla 1500. They also identified a small oval-shaped lens of the *landnám* tephra (Veidivötn 871±2) near the base of the deposit — and used this to imply cave use began at this site sometime before c. AD 870 (Holt & Guðmundsson 1980: 19-25).

These 1975 investigations highlighted the uncertain chronology for artificial caves and attempted to tackle this question. Their application of tephrochronology, however, is problematic by modern standards. Specifically, their identification of the Katla 1500 tephra appears guesswork, while they appeal to expert authority for the *landnám* tephra without explaining the grounds for making this identification. If this isolated deposit is indeed *landnám* tephra, a further complication lies in the potentially complex provenance for a single lens: possible sources include not only airfall deposition, but also reworking of older material – even preservation within a later turf cutting. In short, Holt and Guðmundsson’s limited excavation produced preliminary but problematic results. Nonetheless, this small-scale research holds significance: firstly because they identified artificial cave sites as suitable for excavation, and secondly because they called attention to material located outside of a cave structure, but associated with cave use. Most important, however, was how this early study triggered later work, including the substantial inventory which Guðmundsson undertook with Hjartarson and Gisladóttir.

Building upon Holt and Guðmundsson’s small-scale field study, my Seljaland investigations have been the first to apply a robust methodology to constrain cave use
chronologically in southern Iceland. In 2001 and 2002, I undertook assessment excavation alongside rigorous application of tephrochronology (Ahronson 2002; 2003; Smith & Ahronson 2003). Selecting Kverkarhellir for targeted study, my goal was to locate debris produced by cave construction within a well-stratified sequence of tephra deposits. Illustration 5.5 (above) outlines a depositional model for the estimated 12m3 of primary construction debris. Previous work on sediment accumulation rates at Seljalands suggests such material should be stratified within an aggrading sequence of deep sediments (Dugmore & Erskine 1994).

The hypothesis under consideration is that:

- if a well-stratified sequence of sediments exists in the vicinity of Kverkarhellir, and includes prehistoric and historic tephrae (which may be identified through stratigraphic and geochemical analyses),
- then locating a dump of debris-type material within this sequence and in areas generally predicted by our depositional model will date an episode of construction at Kverkarhellir.

In other words, a deposit identified as construction debris should be in both the right sort of location (i.e. the area loosely predicted by the apron model) and be of the predicted character (i.e. a thick deposit of predominantly pebbles and small cobbles infilled with aeolian material). As mentioned earlier, debris could incorporate artefacts associated with construction, but this should be considered unlikely. In considering potential construction debris, an important concern is establishing that natural processes were not responsible. Overlooking the Markarfljót floodplain at 32m above sea level, Kverkarhellir's situation midway up an escarpment precludes a flood event there. Eroded material from the escarpment face, however, must be considered a possibility. Correspondingly, in considering the hypothesis above, our method must assess whether a deposit of palagonite 'debris' could have been produced by a natural erosion episode.

Method

Tephrochronology is a stratigraphy-based technique which sometimes uses geochemical analysis in order to resolve ambiguities in field identifications. It must be stressed, however, that geochemical analysis alone is insufficient for application of this technique:
the stratigraphic sequence of tephrae in a section is the basis for interpretations. The first concern was whether a well-stratified sequence of tephra deposits, intercalated with aggrading sediments, could be identified near Kverkarhellir. In order to resolve this question, trench D3 was excavated to reveal a sedimentary profile – from which tephra samples were taken in September 2001 and geochemically analysed over the following months. This trench is located east of Kverkarhellir in illustration 5.6. Tephra layers were logged and a north-facing profile (or section), 1m in width, was recorded to a depth of 2.2m. Layers, or contexts, were identified according to a system combining trench number (e.g. D3) and context (e.g. A, B...): thus D3G expresses trench D3 context G. For this section, the sequence of sedimentary layers was recorded by scale diagram, based on measurements and observations of grain size, colour, layer thickness, continuity of units and layer composition. Context descriptions are presented and a scale diagram summarises a sedimentary log for comparison with reference profiles recorded at Seljaland (Dugmore 1987). This reference profile is a complete sequence of undisturbed tephra layers consistent with wider records in the Markarfljót, Seljaland and Sólheimar areas. Geochemical analyses of samples from tephra layers D3F and D3G were carried out by electron microprobe analysis using a Microscan V instrument, following procedures summarised by Dugmore, Larsen, Newton and Sugden (Dugmore et al. 1992).

Having established the local stratigraphy, the second concern was to locate a deposit of debris-type material – anticipated to contain angular palagonite pebbles and small cobbles. Trench D1 was opened in pursuit of this concern.

Located in illustration 5.6, trench D1 was excavated in September 2001 and August 2002 and sited within the predicted apron of waste, immediately in front of Kverkarhellir. West- and north-facing sections (2m and 1m in width respectively) were recorded to a maximum depth of 2m. In order to relate the tephra stratigraphy of this trench to that of D3, it was logged in the same manner as D3 and geochemical analyses undertaken of tephra layers D1E and D1G.

As the analysis described above called for further work, another trench (D4) was opened. Located in illustration 5.6, trench D4 was sited east of Kverkarhellir within the predicted apron of waste. Excavated in August 2002, west-facing and north-facing
ILLUSTR 5.6 ABOVE: Location of trenches near Kverkarhellir.
BELOW: Sketch profile of northwest-facing section showing the mouth of Kverkarhellir and the steep descent (which leads to the sandur plain), as well as the predicted apron of waste and a generalised stratigraphic profile for tephra layers at Seljalands. The inset diagram is the expanded reference profile (note the different scale) for Seljalands area tephra layers (Dugmore 1987). Compare the idealised model illustrated here with the results presented in illustrations 5.11-3.
sections were recorded as above, 1.5m in width and to a maximum depth of 2m.
Crucially, a thick context of angular palagonite pebbles and cobbles lay below tephrae produced by the eruptions H1597, K920 and V870 (these last two were identified through comparison to the geochemically-confirmed D3 sequence). Following guidelines outlined for Quaternary researchers (Jones et al. 1999: 30; Russell & Marren 1999: 191-5), the stratigraphic sequence relating this debris-type context to the K920 and V870 tephrae is presented through annotated photographic overlays to the west-facing section. Angular cavities were noted on a number of pebbles and cobbles from the debris-type deposit and specialist morphological analysis of a very angular palagonite small cobble was undertaken by Chris Doherty at the Research Lab for Archaeology and the History of Art (Oxford) – this study is presented in full below. Additionally, samples were taken of the potential debris deposit (context N/O) and particle size distribution quantified. Excavation of trench D4 included the removal of a 0.25m x 0.25m sample column and data from context N/O was obtained as part of this exercise. Jones et al observe that “sieving is the most commonly used method in the laboratory for sorting sediment into grain-size classes and determining grain-size distribution” (Jones et al. 1999: 13). This method was followed in the work outlined here. In processing the sample column, each context and spit was weighed before and after dry sieving through a 5mm mesh (shown in illustration 5.7). At this point, the weight of cobbles with one dimension greater than 100mm was recorded, in order to account for potential error in sampling smaller portions of this material. 100g of each dry-sieved sample younger than the landnám tephra (deposited AD 871±2), and the entire sample of older deposits (including a further 10L sample from the context of angular palagonite pebbles and small cobbles), was then removed to the University of Iceland Research Centre in the Westmen Islands for further study. Sampled material was there wet sieved through a 5mm mesh, air dried, and dry sieved through 19.00mm, 12.50mm, 9.50mm and 5.00mm meshes (with bronze frame and stainless steel mesh). Each fraction was examined and weighed using a Metler PE 3600 electronic scale, distinguishing between cobbles with one dimension over 100mm and coarse pebbles and

9 The stratigraphy of the younger sediments contains apparent complexities which neither add nor detract from the matter at hand – correspondingly discussion of this is left for detailed treatment elsewhere.
small cobbles ranging between 19.00 and 100mm. Data collected from the debris-type context N/O is presented in tabular form and analysed graphically because of the nature of the difference between samples.

Investigating whether a potential construction deposit might have been produced by a natural erosion episode is vital. As outlined in the hypothesis section, eroded material from the escarpment face would be expected to deposit palagonite debris along the cliff base, including in the immediate area of Kverkarhellir. Correspondingly, trench D5 was sited along the cliff base, upslope from Kverkarhellir, and is located in illustration 5.6. Excavated in August 2002, 1.5m-wide east- and north-facing sections were logged to a depth of 1.5m, and correlated with the geochemically-confirmed D3 tephra stratigraphy. Deposits of cobbles and smaller pebbles were revealed and interpreted to result from prehistoric first millennium AD erosion events. The stratigraphic interpretation of this material is presented in text and two 5-10L samples were taken. These samples were studied in their entirety following the method described above. The resulting data was tabulated, analysed graphically, and compared to the ‘debris-type’ context N/O from trench D4. Trench D5 was sited below a similar part of the cliff face as trench D4, and the samples studied from both trenches are close in age. In other words, trenches D4 and D5 are located beneath the same geological formation and material produced by erosion events should be comparable between these trenches, because of the expected continuity of erosion processes acting upon this cliff face throughout the first millennium AD.

Results and discussion
Tephra stratigraphy and geochemical analyses
Illustrations 5.8-11 show Kverkarhellir trenches D3 and D1 as well as Seljalandsheiði tephra stratigraphies. The Seljalandsheiði profile shows that in this area very few black Katla tephra layers have been recorded in the soils during historic time. The distinctive

10 A comparable sample column was excavated in trench D1; however, considering the uncertainties regarding the tephra identifications for that trench, this data was deemed immaterial to the present argument. Similarly, the trench D4 sample column produced data clearly of much value, though the bulk of this lacks relevance to the current question – and will be pursued in another context.
On-site processing of sampled material. Photograph taken in August 2002.
key historical layers are predominantly from Hekla: H194711 (coarse grey-brown pumice), H1510 (coarse grey-brown pumice) and H1341 (fine blue-grey tephra). K1500 is a relatively coarse black tephra layer from Katla. A pair of distinctive tephra layers is found near to the time of Norse settlement of the island (\textit{landnám}): these are V870 and K920. The V870 tephra layer (or \textit{landnám} ash) is from the Veíðivötn system and is generally understood to seal the prehistoric sequence from the Norse settlement period (Vésteinsson 1998: 3-4). This greenish brown tephra with a small pale silica-rich component has been dated to AD 871±2 (Grönvold et al. 1995). Approximately 50 years later (c. AD 920), Katla erupted producing the black Katla R12 tephra. Thick (often greater than 10cm) coarse black tephra layers from the Katla volcano dominate the prehistoric sequence, clearly distinguishable from the series of tephra deposits postdating \textit{landnám}.

Initial field interpretation identified a distinctive pair of tephra layers as the K920 / V870 couplet: in trench D3, this stratigraphic interpretation was convincing, whereas in D1, the stratigraphic data was only suggestive (certain problems with this layer, such as compaction and potential reworking, called for geochemical analysis to evaluate a V870 identification). All contexts are described in table 5.1. Contexts D3F and D1E are composed of fine black tephræ, while D3G is a grey-brown unit with pale grains and D1G may be comparable to this. Below this pair of tephra layers in D3, there are a number of thick coarse black tephræ likely to have been deposited prior to c. AD 870, based on comparisons with Dugmore’s Seljaland profile (Dugmore 1987). This interpretation of the Kverkarhellir stratigraphy depends upon removal of the upper part of the profile, that above K1500. As a consequence of the rich record of earth working at the site, removal or disturbance of the upper soil and tephra deposits above K1500 is easily envisaged. In trench D1, a deposit characterised by angular palagonite pebbles was identified 10cm below the potential \textit{landnám} tephra – one possibility is that this material was debris from initial construction of Kverkarhellir.

11 Tephra layers discussed are referred to using a two-element system. The first element abbreviates the source volcanic system to one letter (H for Hekla, K for Katla, V for Veíðivötn), while the second element expresses the AD date (H1947 for Hekla AD 1947).

12 The black Katla R (Reykjavik) tephra of c. AD 920 is thus named because ash from the eruption was blown towards Reykjavik (Hafliðarson et al. 1992).
Illustr 5.8 Detail of the north-facing section of trench D3. From top down, including tephrae produced by the following eruptions: K920 (black), V870 (upper grey is mixed and perhaps slopewash; lower grey is airfall), and a prehistoric Katla (?) deposit (thick black). Photograph taken in September 2001.

LEFT: Illustr 5.9 North-facing section of trench D1. Taken in September 2001.

RIGHT: Illustr 5.10 Detail of layers D1E (Katla tephra) and D1G (V870?). Taken in September 2001.
Illustr 5.11 Stratigraphy of Kverkarhellir trenches D3 and D1, and a reference profile for Seljalandsheiði from Dugmore (1987). The tephra layers are labelled with a two-element system: volcanic system and date (H1947 for Hekla AD 1947). Volcanic systems are abbreviated to K for Katla, H for Hekla, E for Eyjafjallajökull and V for Veðmúlvötn. The SILK prefix refers to a silicic tephra layer from Katla (Larsen et al. 2001). Tephra layers from historical time have calendar ages and prehistoric dates are stated in 14C years BP (Bórarinsson 1954; 1975; 1967; Dugmore 1987; Grönvold et al. 1995).
<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
<th>Layer</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1 A</td>
<td>very dark brown clay with sand and angular palagonite pebbles</td>
<td>D3 S</td>
<td>black coarse sand tephra</td>
</tr>
<tr>
<td>D1 M</td>
<td>black coarse sand tephra</td>
<td>D3 C</td>
<td>dark brown silt with little sand</td>
</tr>
<tr>
<td>D1 B</td>
<td>dark brown clayey silt with sand and angular pebbles</td>
<td>D3 A</td>
<td>grey coarse silty sand tephra (?)</td>
</tr>
<tr>
<td>D1</td>
<td></td>
<td>D3 D</td>
<td>brown clayey silt with some sand</td>
</tr>
<tr>
<td>D1 C</td>
<td>intermittent grey silty sand</td>
<td>D3 B</td>
<td>intermittent grey silty sand tephra</td>
</tr>
<tr>
<td>D1 D</td>
<td>brown silty clay with sand and angular palagonite pebbles</td>
<td>D3 E</td>
<td>brown silt</td>
</tr>
<tr>
<td>D1 E</td>
<td>black fine sand tephra (Katla tephra – potentially K920?)</td>
<td>D3 F</td>
<td>black fine sand tephra (K920) (possible tree casts)</td>
</tr>
<tr>
<td>D1 F</td>
<td>light grey-brown very silty clay with sand and angular palagonite pebbles</td>
<td>D3 I</td>
<td>Light brown silt</td>
</tr>
<tr>
<td>D1 G</td>
<td>grey fine sandy silt tephra (V870?)</td>
<td>D3 G</td>
<td>grey fine silty sand tephra (V870)</td>
</tr>
<tr>
<td>D1 H</td>
<td>grey-brown silty sand with angular palagonite pebbles</td>
<td>D3 K</td>
<td>red brown silt</td>
</tr>
<tr>
<td>D1 I</td>
<td>grey pumaceous tephra (or pumice)</td>
<td>D3 L1</td>
<td>intermittent black fine sand tephra</td>
</tr>
<tr>
<td>D1 J</td>
<td>light brown clay with sand and pebbles (occasionally angular)</td>
<td>D3 J</td>
<td>black fine sand tephra</td>
</tr>
<tr>
<td>D1 K</td>
<td>grey coarse pumice (?)</td>
<td>D3 N1</td>
<td>brown silt</td>
</tr>
<tr>
<td>D1 L</td>
<td>very compact brown to grey sandy pebbles</td>
<td>D3 L2</td>
<td>intermittent black fine sand tephra</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D3 O</td>
<td>light brown silt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D3 P</td>
<td>intermittent black fine silt tephra</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D3 N2</td>
<td>brown silt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D3 M</td>
<td>black fine silty sand tephra</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D3 Q</td>
<td>brown sandy silt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D3 T</td>
<td>black fine silty sand tephra</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D3 R</td>
<td>brown silty clay</td>
</tr>
</tbody>
</table>

Table 5.1 Contexts from trenches D1 and D3
Our stratigraphic interpretation correlates these Kverkarhellir layers with the K920 and V870couplet, and was tested by analysing the geochemistry of samples from both trenches (tables 5.2 and 5.4). Geochemical analyses of material from trench D3 support our identification of the c. AD 920 Katla R and c. AD 870 landnám tephrae there, while trench D1 is less straightforward, pointing to D1E as a Katla tephra and calling for further work on D1G.

The tephra layers D3F and D1E are attributed to an eruption within the caldera of the volcano Katla. This is based on stratigraphy-based field identification, supported by comparisons of the Kverkarhellir geochemical data presented here (table 5.2) with analyses of Katla c. AD 920 from the nearby coastal plain of Landeyjar (Duncan 2001), and a typical basaltic Katla tephra discussed by Larsen (Larsen 2000) (see table 5.3). However, the basaltic tephrae produced during intra-caldera eruptions of Katla are difficult to differentiate through analysis of major element chemistry (Larsen 2000). Katla has erupted approximately every 47 years during the historic period. This underscores the general point that the identification of tephrae from geochemical analyses alone (in this case a basaltic Katla tephra), cannot allow us to allocate a date to these layers. In the present example, identifying which Katla eruption produced these tephrae necessitates the stratigraphic relation of these layers to a visually or chemically distinctive layer (or sequence of layers), such as the landnám tephra.
Table 5.2

Chemical analyses of layer E from section D1 (selection from 14 analyses) and layer F from D3 (selection from 12 analyses) from Kverkin, Seljaland. Total iron is expressed as FeO.

<table>
<thead>
<tr>
<th></th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>FeO</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D1)</td>
<td>47.73</td>
<td>4.76</td>
<td>12.59</td>
<td>14.27</td>
<td>0.24</td>
<td>4.79</td>
<td>9.61</td>
<td>3.16</td>
<td>0.77</td>
<td>97.91</td>
</tr>
<tr>
<td></td>
<td>47.68</td>
<td>4.66</td>
<td>12.66</td>
<td>14.77</td>
<td>0.22</td>
<td>4.73</td>
<td>9.56</td>
<td>3.06</td>
<td>0.80</td>
<td>98.15</td>
</tr>
<tr>
<td></td>
<td>47.54</td>
<td>4.77</td>
<td>12.66</td>
<td>14.78</td>
<td>0.23</td>
<td>4.86</td>
<td>9.60</td>
<td>3.09</td>
<td>0.82</td>
<td>98.35</td>
</tr>
<tr>
<td></td>
<td>47.38</td>
<td>4.35</td>
<td>12.60</td>
<td>14.73</td>
<td>0.28</td>
<td>4.83</td>
<td>9.33</td>
<td>3.17</td>
<td>0.80</td>
<td>98.47</td>
</tr>
<tr>
<td></td>
<td>47.30</td>
<td>4.80</td>
<td>12.63</td>
<td>14.63</td>
<td>0.29</td>
<td>4.86</td>
<td>9.61</td>
<td>3.22</td>
<td>0.80</td>
<td>98.14</td>
</tr>
<tr>
<td></td>
<td>47.30</td>
<td>4.61</td>
<td>12.62</td>
<td>14.50</td>
<td>0.25</td>
<td>4.85</td>
<td>9.52</td>
<td>3.31</td>
<td>0.89</td>
<td>97.85</td>
</tr>
<tr>
<td></td>
<td>47.29</td>
<td>4.85</td>
<td>12.63</td>
<td>14.46</td>
<td>0.25</td>
<td>4.82</td>
<td>9.44</td>
<td>3.21</td>
<td>0.87</td>
<td>97.83</td>
</tr>
<tr>
<td></td>
<td>47.20</td>
<td>4.68</td>
<td>12.59</td>
<td>14.25</td>
<td>0.26</td>
<td>4.84</td>
<td>9.43</td>
<td>3.25</td>
<td>0.75</td>
<td>97.21</td>
</tr>
<tr>
<td></td>
<td>47.16</td>
<td>4.57</td>
<td>12.53</td>
<td>14.42</td>
<td>0.26</td>
<td>4.93</td>
<td>9.43</td>
<td>3.10</td>
<td>0.80</td>
<td>97.02</td>
</tr>
<tr>
<td></td>
<td>47.15</td>
<td>4.73</td>
<td>12.66</td>
<td>13.96</td>
<td>0.28</td>
<td>4.96</td>
<td>9.22</td>
<td>3.18</td>
<td>0.74</td>
<td>97.28</td>
</tr>
<tr>
<td></td>
<td>47.09</td>
<td>4.70</td>
<td>12.57</td>
<td>14.59</td>
<td>0.22</td>
<td>4.89</td>
<td>9.66</td>
<td>3.13</td>
<td>0.79</td>
<td>97.78</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>47.31</td>
<td>4.69</td>
<td>12.62</td>
<td>14.50</td>
<td>0.25</td>
<td>4.84</td>
<td>9.47</td>
<td>3.18</td>
<td>0.81</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>FeO</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D3)</td>
<td>47.53</td>
<td>4.64</td>
<td>12.57</td>
<td>14.50</td>
<td>0.21</td>
<td>4.77</td>
<td>9.34</td>
<td>3.20</td>
<td>0.75</td>
<td>97.50</td>
</tr>
<tr>
<td></td>
<td>47.31</td>
<td>4.72</td>
<td>12.50</td>
<td>14.40</td>
<td>0.23</td>
<td>4.81</td>
<td>9.38</td>
<td>3.15</td>
<td>0.81</td>
<td>97.29</td>
</tr>
<tr>
<td></td>
<td>47.28</td>
<td>4.63</td>
<td>12.46</td>
<td>14.37</td>
<td>0.22</td>
<td>4.75</td>
<td>9.35</td>
<td>3.21</td>
<td>0.83</td>
<td>97.11</td>
</tr>
<tr>
<td></td>
<td>47.24</td>
<td>4.59</td>
<td>12.46</td>
<td>14.55</td>
<td>0.27</td>
<td>4.82</td>
<td>9.26</td>
<td>3.25</td>
<td>0.78</td>
<td>97.22</td>
</tr>
<tr>
<td></td>
<td>47.20</td>
<td>4.60</td>
<td>12.52</td>
<td>14.31</td>
<td>0.30</td>
<td>4.75</td>
<td>9.36</td>
<td>3.10</td>
<td>0.84</td>
<td>96.98</td>
</tr>
<tr>
<td></td>
<td>47.19</td>
<td>4.51</td>
<td>12.40</td>
<td>14.54</td>
<td>0.27</td>
<td>4.78</td>
<td>9.45</td>
<td>3.20</td>
<td>0.82</td>
<td>97.16</td>
</tr>
<tr>
<td></td>
<td>47.17</td>
<td>4.49</td>
<td>12.47</td>
<td>14.28</td>
<td>0.26</td>
<td>4.66</td>
<td>9.41</td>
<td>3.13</td>
<td>0.77</td>
<td>96.64</td>
</tr>
<tr>
<td></td>
<td>47.09</td>
<td>4.65</td>
<td>12.62</td>
<td>14.61</td>
<td>0.23</td>
<td>4.83</td>
<td>9.31</td>
<td>3.29</td>
<td>0.81</td>
<td>97.44</td>
</tr>
<tr>
<td></td>
<td>47.08</td>
<td>4.53</td>
<td>12.33</td>
<td>14.32</td>
<td>0.22</td>
<td>4.71</td>
<td>9.36</td>
<td>3.22</td>
<td>0.79</td>
<td>96.57</td>
</tr>
<tr>
<td></td>
<td>46.96</td>
<td>4.58</td>
<td>12.47</td>
<td>14.49</td>
<td>0.27</td>
<td>4.65</td>
<td>9.13</td>
<td>3.16</td>
<td>0.81</td>
<td>96.52</td>
</tr>
<tr>
<td>Mean</td>
<td>Mean</td>
<td>47.21</td>
<td>4.59</td>
<td>12.48</td>
<td>14.44</td>
<td>0.25</td>
<td>4.75</td>
<td>9.34</td>
<td>3.19</td>
<td>0.80</td>
</tr>
</tbody>
</table>

Table 5.3

Summary of published chemical analyses of basaltic tephrae from Katla: (1) Katla 920 analysis from Skíobbakkavatn, Landeyjar (selection from 13 analyses). Data from Duncan (Duncan 2001); (2) Katla 1625 (mean of 7 analyses). Data from Larsen (Larsen 2000: 7). Total iron is expressed as FeO.

<table>
<thead>
<tr>
<th></th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>FeO</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>47.70</td>
<td>4.58</td>
<td>12.41</td>
<td>14.82</td>
<td>0.21</td>
<td>4.68</td>
<td>9.36</td>
<td>3.10</td>
<td>0.89</td>
<td>97.75</td>
</tr>
<tr>
<td></td>
<td>47.30</td>
<td>4.56</td>
<td>12.48</td>
<td>14.73</td>
<td>0.26</td>
<td>4.77</td>
<td>9.51</td>
<td>2.98</td>
<td>0.82</td>
<td>97.41</td>
</tr>
<tr>
<td></td>
<td>47.23</td>
<td>4.70</td>
<td>12.59</td>
<td>14.49</td>
<td>0.22</td>
<td>4.75</td>
<td>9.41</td>
<td>3.16</td>
<td>0.78</td>
<td>97.33</td>
</tr>
<tr>
<td></td>
<td>47.15</td>
<td>4.39</td>
<td>12.50</td>
<td>13.92</td>
<td>0.22</td>
<td>4.78</td>
<td>9.46</td>
<td>3.04</td>
<td>0.80</td>
<td>96.26</td>
</tr>
<tr>
<td></td>
<td>47.12</td>
<td>4.72</td>
<td>12.39</td>
<td>13.43</td>
<td>0.24</td>
<td>4.84</td>
<td>9.35</td>
<td>3.21</td>
<td>0.74</td>
<td>96.04</td>
</tr>
<tr>
<td></td>
<td>47.01</td>
<td>4.48</td>
<td>12.52</td>
<td>14.57</td>
<td>0.21</td>
<td>4.90</td>
<td>9.26</td>
<td>3.25</td>
<td>0.79</td>
<td>96.99</td>
</tr>
<tr>
<td></td>
<td>46.81</td>
<td>4.52</td>
<td>12.61</td>
<td>14.31</td>
<td>0.19</td>
<td>4.78</td>
<td>9.63</td>
<td>3.21</td>
<td>0.84</td>
<td>96.90</td>
</tr>
<tr>
<td></td>
<td>46.77</td>
<td>4.63</td>
<td>12.70</td>
<td>14.50</td>
<td>0.23</td>
<td>4.81</td>
<td>9.22</td>
<td>3.17</td>
<td>0.82</td>
<td>96.85</td>
</tr>
<tr>
<td></td>
<td>46.75</td>
<td>4.55</td>
<td>12.15</td>
<td>14.32</td>
<td>0.17</td>
<td>4.98</td>
<td>9.51</td>
<td>3.12</td>
<td>0.79</td>
<td>96.34</td>
</tr>
<tr>
<td></td>
<td>46.75</td>
<td>4.66</td>
<td>12.53</td>
<td>14.13</td>
<td>0.18</td>
<td>4.79</td>
<td>9.42</td>
<td>3.14</td>
<td>0.79</td>
<td>96.39</td>
</tr>
<tr>
<td></td>
<td>46.74</td>
<td>4.62</td>
<td>12.66</td>
<td>14.43</td>
<td>0.21</td>
<td>4.77</td>
<td>9.47</td>
<td>3.16</td>
<td>0.89</td>
<td>96.95</td>
</tr>
<tr>
<td>Mean</td>
<td>Mean</td>
<td>47.03</td>
<td>4.58</td>
<td>12.50</td>
<td>14.33</td>
<td>0.21</td>
<td>4.80</td>
<td>9.42</td>
<td>3.14</td>
<td>0.81</td>
</tr>
</tbody>
</table>

(2)

<table>
<thead>
<tr>
<th></th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>FeO</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>Mean</td>
<td>46.28</td>
<td>4.56</td>
<td>12.62</td>
<td>14.75</td>
<td>0.23</td>
<td>4.89</td>
<td>9.97</td>
<td>2.72</td>
<td>0.71</td>
</tr>
</tbody>
</table>
Layer G from trench D3 (table 5.4) has strong geochemical similarities to *landnám* tephra analyses from Landeyjar (Duncan 2001) and those published in Larsen *et al* (Larsen et al. 1999) (see table 5.5). Initial analysis of layer G from D1, however, was problematic and called for more work. The *landnám* tephra has two components, one basaltic and the other silicic. Basalt, with SiO₂ content around 49% and low K₂O levels around 0.2%, is the main component of the *landnám* tephra layer in Eyjafjöll and the sole component farther east (Guðrún Larsen, *pers. comm.*). The silicic component is characterised by high levels of K₂O, typically greater than 4% where SiO₂ content is greater than 70% (Larsen et al. 1999). These traits make the *landnám* tephra chemically distinctive. D3G, although difficult to analyse with few silicic grains in the sample, shows similar chemical characteristics to this pattern. The analyses in table 5.4 show a distinct basalt component, similar to the published data, and a number of silicic grains with SiO₂ above 70% and K₂O around or above 4%. It should be noted that the FeO content of the silicic component appears somewhat higher than in previously published data, particularly that of Larsen *et al* (Larsen et al. 1999). However, the similarities between this analysis of D3G and the data from Duncan and Larsen *et al* confirm the stratigraphy-based field interpretation that this layer is likely to be the *landnám* tephra (Larsen, *pers. comm.*).
Table 5.4 Chemical analyses of: (a) silicic part and (b) basaltic part of the D3G tephra layer from Kverkin, Seljaland (selection from 21 analyses). Three sporadic grains, which may be xeno-glasses (volcanic glass acquired from the walls of the eruption conduit) or contamination from surrounding tephra-rich soil, are shown at the base of the table. Total iron is expressed as FeO.
Integrating geochemical analyses of the paired layers F and G from trench D3 with the observed tephra stratigraphy presents a good case for identification of a Katla tephra and the landnám tephra, confirming the initial field interpretation that these layers correlate with the K920 and V870 couplet. Thick, coarse black tephra layers below this pair of tephræ and the lack of such layers above this couplet also support this proposal. Geochemical analyses on material from trench D1, however, are inconclusive and call for further excavation: the composition of layer D1E is comparable to Katla tephræ, but layer D1G, the deposit noted by initial field interpretation as potentially landnám tephra, remains problematic.
Sample column analyses

Though lacking the predicted thickness, a deposit of debris-type material was identified in trench D1. The difficulties outlined above, however, called for the siting of another trench within the predicted apron of waste – in the hopes of constraining deposits within a robust tephra sequence. Trench D4 was therefore opened, and found to realise these hopes: stratified tephrae were identified through comparison with the geochemically-confirmed D3 sequence, including H1597, K920 and V870. Identifications were based upon grain size, colour, layer thickness, continuity of units, layer composition and stratigraphic position. In illustrations 5.12 and 5.13, a 50-75cm thick deposit of angular pebbles and small cobbles (context N/O) is demonstrated to lie up to 25cm beneath the K920 and landnám couplet, the K920/V870 tephrae run intermittently across the trench and were interpreted to be in situ airfall deposits. Context N/O thus comfortably predates the landnám tephra. Uncertainties remain, however, on just how long before c. AD 870 this debris-type material was deposited as the tephra stratigraphy in this trench did not include older layers: very local factors, including those linked to human agency, may have affected sediment accumulation rates for this trench and pose a challenge to precise dating. Certainly, the 25cm of aeolian sediments sealed by the landnám tephra suggest a date well before AD871±2: probably several decades earlier, if not a century or more. As an estimate then, context N/O should be not much younger than c. AD 800 – and is potentially of greater antiquity.

Upon field examination, material from N/O was found to be of comparable fabric to the cave interior. Two samples of this context were taken and analysed: one from the sample column described in the method section, and a further 10L sample (labelled D4 N/O ‘special’) from the section face photographed in illustration 5.13. In excavating and sampling context N/O, 32 very angular very coarse pebbles and small cobbles were found to share a common morphology of angular cavities, possibly produced by an iron digging tool. In order to assess whether an iron digging tool was indeed responsible for these features, the ‘best’ example (the small cobble labelled 5.14a), was examined by Molloy and later subjected to morphological analysis by Doherty.

\[13\] This interpretation is based upon Dugmore’s and Erskine’s estimates for sediment accumulation rates at Seljaland (Dugmore & Erskine 1994).
TOP: Illustr 5.12 Trench D4 detail of K920/V870 couplet in the west-facing section. Photograph with overlay.

BOTTOM: Illustr 5.13 Trench D4 west-facing section, including debris-type context N/O. Original photograph by Paul Klotz.
Illustr 5.14 Sketches of very angular very coarse pebble and small cobbles sharing comparable angular cavities from the debris-type context N/O, labelled a (top left), b (top right) and c (bottom). Scale 1:2. Drawn by Kerry-Anne Mairs.
I - Concave plane which is not planar in direction of long axis (i.e. into artefact/geofact) but has irregular bulge at midpoint - no striations (tooling) or chip marks, nor metal staining.

2 - Concave plane, tapering but maintaining some curvature - no evidence of re-tooling, no striations, no metal staining (minor Fe-Mn deposition in cavity but at apex only - this type of deposit seen elsewhere on artefact, e.g. at F and H.)

3 - Slightly convex surface delimited by major fracture B traceable to a large clast on reverse.

F - Localised Fe-Mn staining - this appears to run back into the artefact on an irregular plane - i.e. not a surface deposit.

G - Convex plane - no striations (tooling marks) no metal staining; smooth surface, no reworking or multiphase working.

j - Large basalt clast to which fracture A and B run - note angular shape of basalt clasts (typical glacial) and angular morphology of main cavity.

Illustr 5.15 Chris Doherty's analysis of a 'tool marked' very angular small cobble. Scale 1:2.
Doherty's analysis cannot establish exact origin, but did suggest that the angular cavity on that cobble was not directly created by tooling or hammering – and that it appears to match angular basalt clasts found within the palagonite fabric. In other words, the cavity in 5.14a appears to have been formed around a now-absent basalt clast. Several lines of investigation suggest that this angular cavity (and potentially the comparable cavities in all 32 examples from context N/O) is from such a clast:

- Firstly, this cavity has an improbable geometry for a tool or nail (given concave and convex planes of cavity), but is an exact match for the angular frost-shattered basalt clasts.

- Secondly, the cavity is bounded by extensive fractures that run (in some cases) to other clasts. These fractures are annealed and are not planes of weakness (as expected if derived from tooling or hammering). Additionally, the concave form of fractures, such as A, is in agreement with a slumped sub-glacial or non-sedimentary origin.

- Thirdly, there is an absence of striations (or tooling marks) along the cavity walls. (Though these are not universally visible on stone-working debris.)

- Finally, there is a lack of metal staining along cavity walls. (Though metal staining is present as iron-manganese at the apex of the cavity, this is natural and occurs elsewhere on this object.) (Though again we need not expect metal staining on stone-working debris.)

The conclusions of Doherty's study are clear: cavities such as that in this small cobble are not 'tooling marks'. An unresolved question, however, is why these cavities are present in such numbers in context N/O and yet largely absent from other sample column contexts. If context N/O was indeed construction debris, one possibility suggested by Molloy is that the act of digging out a cave from this palagonite fabric caused fragments to loosen from the walls along fault lines defined by basalt clasts – thus producing the notable number of pebbles and cobbles with these angular cavities (Molloy, pers. comm.). This idea may have some merit, but until further work tests this, these 'tool markings' must be set aside as inconclusive on their own.

As outlined in the hypothesis section, the digging out of Kverkarhelir may be expected to have produced palagonite debris characterised by large amounts of angular
medium pebbles to **small cobbles** (roughly 10-120mm), accompanied by substantial quantities of **finer pebbles** (2-10mm) and infilled with later aeolian material.

Additionally, the construction debris model predicts a thick deposit of material within an ‘apron of waste’ area – perhaps between 0.5m and 1m in thickness. Excavation of context N/O, itself 0.50-0.75m in thickness, revealed a deposit of angular palagonite within the predicted area which matched these expectations. As noted earlier, a sample column was excavated in trench D4. Illustration 5.16 compares the raw context weights from this column and complements the recorded thickness of 0.50-0.75m by demonstrating just how massive N/O is alongside other contexts. Additionally, sampling this context permitted precise quantification of particle size distributions. Table 5.6 and illustration 5.17 define a deposit with the expected substantial quantities of **finer pebbles** and aeolian material (the <5mm and 5-9.5mm fractions) and large quantities of **medium pebbles** to **small cobbles** (the 9.5-12.5mm, 12.5-19mm, 19-100mm and >100mm fractions). This is a good case for the application of the principle of Ockham’s razor:

thus identifying this context as having the expected debris-type character, thickness and location, presents a strong case for interpreting context N/O as debris from a construction episode of Kverkarhellir. One final concern, however, is whether this debris-type material could have been deposited by an event of natural erosion from the escarpment face overlooking the study area.
Illustr 5.16 Context weights from trench D4 sample column (0.25m x 0.25m). Note how context N/O, the debris-type deposit, stands out as massive alongside other contexts from the sample column.

Illustr 5.17 ABOVE: Context D4N/O particle size distribution by percentage of total weight, sorted by 10cm spits and including context total as well as the N/O ‘special’ sample. Note the coherency of context N/O between sample column totals and the ‘special’ sample, especially in the values for particles ranging between 5mm and 19mm as well as, to a lesser degree, for particles greater than 19mm (see below for further illustration of the coherency of this fraction throughout context N/O).

BELOW: Context N/O particle size distribution of the 5-19mm fraction, sorted by 10cm spits and including context total as well as the N/O ‘special’ sample. Graphing this fraction is only made meaningful since the 5-19mm fraction from all these samples are of comparable proportions of each entire sample. This graph reinforces the conclusion of coherency for context N/O arrived at above.
In order to assess the character of natural erosion deposits, trench D5 was sited upslope from Kverkarhellir, along the escarpment base. This trench included deposits of palagonite cobbles and smaller pebbles within a matrix of aeolian material interpreted to be eroded from the cliff face. Thick coarse black tephra layers provided a chronological framework for these natural erosion deposits. As noted earlier and illustrated in 5.11, thick (often greater than 10cm) coarse black tephra layers from the Katla volcano dominate the prehistoric sequence preceding the landnám ash. The trench D5 tephrae are comparable to those at the base of the D3 sequence and were thus interpreted on these stratigraphic grounds as prehistoric erosion events – probably dating to the middle centuries of the first millennium AD. This interpretation depends upon the removal of the upper portions of the profile, those younger than c. AD 870. Considering the record of human disturbance in this area – the steep slope upon which this trench was sited – erosion is easily envisioned to account for the absence of sediments younger than c. AD 870 (including the V870 tephra). From the east-facing section, two samples were taken of naturally-eroded deposits within this sequence and particle size distribution quantified in table 5.7 and illustration 5.19. Both samples (#1, from 1m below groundsurface, and #2, from 1.4m below groundsurface) are dominated by coarse pebbles to large cobbles (the 19-100mm fraction) as well as fine pebbles and aeolian material (the <5mm fraction). Notably, only a small proportion of these samples included pebbles ranging between 5mm and 19mm. Crucially, this eroded material (such as that photographed in illustration 5.18) was perceived upon excavation to be of radically different character to context N/O (photographed in illustration 5.13) – the results of particle size analyses quantify some of these differences below. Illustration 5.19 demonstrates key differences in the values for particles ranging between 5mm and 19mm: these are only a small proportion (5-6%) of the naturally-eroded samples, but a large proportion of the N/O samples (15%). Thus we may conclude that this debris-type deposit was not produced by a natural erosion episode from the escarpment face.
Illustr 5.18 D5 north-facing section, including thick coarse black tephra layers deposited in the centuries preceding the landnám eruption of the Veidivötn system. 'Eroded' material, similar in character and age to samples #1 and #2, may be seen in the upper left corner of the image. Photograph taken in August 2002.

** Particle size distribution of erosion deposits from trench D5 and debris-type context **

D4N/O

<table>
<thead>
<tr>
<th>Percentage of total weight</th>
<th>1=DS5#1, 2=DS5#2, 3=D4 N/O special, 4=D4 N/O total</th>
</tr>
</thead>
<tbody>
<tr>
<td><5mm</td>
<td>100%</td>
</tr>
<tr>
<td>>100mm</td>
<td>80%</td>
</tr>
<tr>
<td>18-100mm</td>
<td>60%</td>
</tr>
<tr>
<td>12.5-19mm</td>
<td>40%</td>
</tr>
<tr>
<td>9.5-12.5mm</td>
<td>20%</td>
</tr>
<tr>
<td>5-9.5mm</td>
<td>0%</td>
</tr>
</tbody>
</table>

Illustr 5.19 Particle size distribution by percentage of total weight of erosion deposits from trench D5 and debris-type context N/O from trench D4. Key differences between eroded and debris-type samples may be seen in the values for particles ranging between 5mm and 19mm.
Conclusions and further problems

In exploring the problem of Kverkarhellir’s earliest phase of construction, this chapter articulated the hypothesis that:

- if a well-stratified sequence of sediments exists in the vicinity of Kverkarhellir, and includes prehistoric and historic tephrae (which may be identified through stratigraphic and geochemical analyses),

- then locating a dump of debris-type material within this sequence and in areas generally predicted by our depositional model will date an episode of construction at Kverkarhellir.

This proposal was tested by excavating a number of trenches and by assessing particle size distribution for individual contexts. The tephra sequence in the immediate area of Kverkarhellir was found to include key historical tephrae, such as the landnám and K920 couplet, and a number of thick prehistoric tephrae. Dated by this sequence to c. AD 800 (or earlier), a deposit of debris-type thickness and character was identified within the predicted ‘apron of waste’ for the early digging out of Kverkarhellir. This thick debris-type context appears to be part of a dump of construction debris because comparable material was not found elsewhere (except in trench D1, which may include a thinner deposit of similar material). Given the scale of work outlined here, the case for this thick debris-type deposit being part of a construction dump is a good one. Though satisfying expectations of location, thickness and particle size distribution, a continuing concern was that this deposit could have been produced by a natural erosion episode from the escarpment face. Correspondingly, excavation revealed the local character of erosion deposits, and samples were processed to provide particle size distributions (apparently of limited range). Crucially, the debris-type context was unlike erosion-
origin material— and was thus interpreted as construction debris from the digging out of Kverkarhellir.

The outlined hypothesis has so far withstood testing and the resulting date for construction at Kverkarhellir raises important questions. As noted earlier, the Norse settlement period of Iceland is generally understood to postdate the landnám ash of c. AD 870. Though suggestions for early cave use in southern Iceland have been previously made, this chapter contains the most comprehensive investigation yet undertaken. A strength of this work was the robust tephrochronological techniques used to date Kverkarhellir. Care must be taken with these results, however, as they identify what may be the earliest human presence on the island c. AD 800 (or earlier). Though the Seljaland investigations are thus far the clearest indicator for people in Iceland at such an early period, problematic or tentative work in the Westmen Islands and Reykjavík suggests complementary dates. Perhaps more relevant, however, is the local palaeoenvironmental change identified c. AD 800 at Seljaland and potentially related to human activity in the landscape (Dugmore & Erskine 1994: 69-73; Ashburn et al. 2003: 88). In exploring these early environmental changes at Seljaland, Chapter Six develops and applies a new technique, the tephra contours, to questions of ninth- and tenth-century deforestation. If Kverkarhellir was indeed constructed in the eighth century, immediate questions arise as to by whom? In light of the place-name and folklore associating the Seljaland caves with early Christian Gaels or papar, one bold idea is that these cave sites were built by early Christian communities as a disart, or ‘desert place in the Ocean’— potentially comparable to settlements on North Rona and elsewhere in Atlantic Scotland and Ireland. Recent work, for instance, considers similarly early dates for cereal pollen along these lines, suggesting early Christian monastic settlement and farming in the Faroe Islands (Jóhansen 1985; Hannon & Bradshaw 2000; Edwards et al. submitted). One avenue for assessing cultural affinities is to study the rock-cut cross sculpture in southern Iceland’s caves and alcoves. Such an approach would be well-timed, considering that the sculpture and cave use related to early medieval Christianity

15 Unresolved controversy surrounds suggestions made for the Westmen Islands (Hermanns-Auðardóttir 1989; 1991; Hermanns-Auðardóttir 1992; Vilhjálmsdottir 1992: 167-81), while recent fieldwork in Reykjavík identified a field boundary sealed by an ash layer suggested to be in situ landnám tephra—and thus interpreted to date this feature to, perhaps, c. AD 850 (Roberts et al. 2002: 35-9).
in Atlantic Scotland has profited from recent attention (Fisher 2001; 2002; forthcoming; Tolan-Smith 2001; Ahronson et al. in prep). Correspondingly, in order to elaborate and test ideas of cultural affinity and identity, Chapter Seven looks to the rock-cut crosses of the Seljaland caves.

References
CHAPTER FIVE: Dating the cave

CHAPTER FIVE: Dating the cave

CHAPTER SIX
Tephra contours: A new method for studying past environments

“A considerable problem in sedimentological descriptions is that recognition of most sedimentary structures occurs in two dimensional sections, but almost all sedimentary structures are three dimensional.”

Alison P Jones, *The Description & Analysis of Quaternary Stratigraphic Field Sections*

“Whilst the tephra horizons mean that extensive areas are sealed and it would theoretically be possible to excavate and reconstruct entire plant communities, an effective sampling strategy ... would not only need skills more appropriate to the archaeologist but also require an investment of time...”

Paul C Buckland, *Tephrochronology and Palaeoecology: The Value of Isochrones*

Introduction

The present chapter explores vegetation changes in the centuries surrounding Norse settlement in order to better contextualise human activity in that landscape. As mentioned in the previous chapters, the island was transformed over these centuries: human populations appeared, birch woodland was cleared, domesticated animals and crops were introduced, native mammal, bird and fish populations over-exploited, natural vegetation cover was stripped, and consequently the soils destabilised.

At Seljaland, the earliest of these palaeoenvironmental changes has been detected in the early ninth century and has been claimed to be related to human activity in the landscape (i.e. the introduction of domesticates and woodland clearance). In order to assess ideas regarding ninth- and tenth-century deforestation at Seljaland, the present chapter introduces tephra contours as a new technique for investigating the tephra record of past land surfaces. As a new method for environmental studies, tephra contours provide unexpected results, suggesting structural changes in vegetation cover both before AD 871 and again in the decades leading up to c. AD 920.

1 (Jones et al. 1999: 17)
2 (Buckland 1981: 383)
Problem and context

In studying stratigraphical sections across the Markarfljót sandur area, Hreinn Haraldsson observed sedimentological changes beginning by the time the landnám tephra was deposited (AD 871±2) (Haraldsson 1981). Applying the local tephra stratigraphy from a series of profiles at Seljaland to build upon Haraldsson’s wider observations, Andrew J Dugmore and Camilla C Erskine argue that “the stratigraphically sharp and geographically extensive nature of this change indicates an abrupt and major regional change in geomorphological process ... [which] points to a large scale mobilisation of aeolian sediment” (Dugmore & Erskine 1994: 73-4). At Seljaland, this geomorphological change is revealed by a distinctive lightening of colour in the post-landnám sediments, while earlier occurrences of this change have been identified by Dugmore and Erskine as well as Donald Ashburn et al in early ninth-century sediments at sites situated between 100 and 200 metres above mean sea level (illustration 6.1) (Dugmore & Erskine 1994: 72; Ashburn et al. 2003: 83; Jones et al. 1999: 17).

Furthermore, Ashburn et al studied the magnetic susceptibility of the lighter deposits characteristic of this new geomorphological process (illustration 6.2); they favour the idea that the consistently low susceptibility values obtained result from human impacts upon these soils, namely from “the addition of organic matter from both animal waste and decaying vegetation after initial disturbance by non-indigenous herbivores” (Ashburn et al. 2003: 92).

Regionally, two ecological zones are understood to have characterised the landscape around Seljaland prior to human settlement: one zone of raised woodland dominated by birch (betula) and willow (salix), and another zone of vegetation without raised woodland, which Dugmore et al subdivide into lowland coastal plain and upland components (Dugmore et al. 2000: 29). Amanda Thomson elaborates the expected distribution and vegetative character cover for the lowland sandur component and raised woodland zones in the centuries preceding the human colonisation of Eyjafjallajökull:

The sandur plain between the coast and the uplands at the time of landnám is thought to have been covered by marshy grassland, with scattered patches of

3 Ian A Simpson et al discuss in detail the method and data sets used in formulating this palaeoecological reconstruction (Simpson et al. 2001: 182-4).
4 Heavily sedimented lowland coastal plain.
LEFT: **Illustr 6.1** Map locating Ashburn *et al*'s profiles 1-7. Adapted from Ashburn *et al* (Ashburn *et al*. 2003: 83). Those profiles within the 100-200m contour lines (i.e. 1-4) were found to have a distinctive lightening of colour in early ninth-century sediments – this colour change is widespread in post-*landnám* sediments and associated with human impacts upon the environment. Indicated in red, the *tephra contours* trenches A1 and A2 were sited adjacent to Ashburn *et al*'s profile 3.

RIGHT: **Illustr 6.2** Martin Kirkbride (left) and Donald Ashburn measuring the magnetic susceptibility of sedimentary layers along a section face at Seljaland (128 metres above mean sea level). This is the same site at which the *tephra contours* technique was first applied in 2001 and 2002.

Illustr 6.3 Modelled vegetation structure for lowland areas of Seljaland at the time of the deposition of the V870 and K920 tephras. Taken from Dugmore and Simpson’s composite presentation of historic vegetation models (Dugmore & Simpson in press: fig 6).
birch woodland on raised areas, as indicated by peat deposits and macro-fossils found throughout the region. Above the marshland, up to 300 m, birch woodland predominated, with a lush understorey composed of grasses and herbs. (Thomson in prep)

Situated on well-drained slopes between 10 and 300 metres above sea level, this latter area of woodland may be quantified as covering roughly 300 hectares – an area effectively the same area as that surveyed in Chapter Four (Amanda Thomson, pers. comm.)\(^5\). This scenario of a ‘pre-settlement’ landscape dominated by woodlands is supported by the island’s earliest literature, which claims Norse settlers encountered “vaxit á miðli fjalls ok fjøru / woods between mountains and shore” (Íslendingabók: ch 1; Benediktsson 1968: 5). It is presumed that this woodland was quickly reduced by human populations, in some cases to create arable land, as attested to in the later Grágás legal code (Finsen 1852 [1974]: 448). Illustration 6.3 models vegetation cover for those landscapes sealed by the K920 and V870 tephra layers.

Careful examination of the character of local tephra horizons supports this idea of a wooded landscape. Northeast of Seljaland, ‘holes’ in the landnám and older prehistoric tephra layers have been suggested as tree casts, and thus evidence for forest cover (Mairs 2003). Additionally, undulating and discontinuous soil-tephra contact surfaces have also been noted for the landnám and prehistoric layers, and would be expected for tephra deposited in birch woodland with lush understorey. A reminder that this area of Iceland is capable of sustaining woodland is provided by Kverkin: in the last twenty years, this ‘corrie’ has been sealed off from grazing animals and subsequently tree populations and undergrowth are flourishing. A problem for the idea of extensive late ninth-century woodland areas at Seljaland, however, is the early ninth-century geomorphological change discussed earlier – and most visible in the postulated heart of this birch woodland (i.e. between 100 and 200 metres above sea level). This record of geomorphological change suggests structural changes in vegetation cover and an influx of aeolian sediment which has not been sufficiently incorporated into models of past landscapes, perhaps because the precise nature and timing of this “geomorphological change in process” is

\(^5\) This estimate of 300 hectares of woodland was prepared by Amanda Thomson through application of her model for surface vegetation in Eyjafjallajökull to an area bounded by the Seljalandsá (to the north), the 10m contour line (to the west and south), the 300m contour line (to the east) and Seljalandskóli (to the south east).
poorly known. Thus, in order to better understand early human-environmental interactions at Seljaland (and to contextualise the cave use results obtained in the preceding chapter), this chapter grapples with the following problem: *When was tree cover reduced (or lost) from forested areas at Seljaland, and was this reduction related to human activity in the landscape (such as that implied by the episode of cave construction discussed in Chapter Five).*

Hypotheses

In response to this problem, hypotheses were formulated that relate the structure of vegetation cover at Seljaland to human impacts upon the landscape. A prior assumption for these proposals is the association of tree cover with people – this point will be returned to below. That said, the following alternative hypotheses are proposed:

- *If tree cover was reduced between AD 870-920, then intensive human use of Seljaland was underway by then.*
- *If tree cover was reduced later, then intensive human use was underway by that time.*
- *If tree cover was reduced earlier, then intensive human use was underway by that time.*

A potential problem for these hypotheses is the implicit assumption that reduction of woodland in the ninth and early tenth centuries would have been determined predominantly by people. However, considering the relative stability of North Atlantic climate throughout the ninth, tenth and eleventh centuries (Ogilvie et al. 2000), this assumption has gained widespread support among palaeoecology researchers in southern Iceland. Haraldsson, for instance, concludes that birch woodland on raised areas of the Landeyjar coastal plain experienced steady growth in extent and trunk diameter between AD 800 and 900, with reduction and extinction of that woodland by AD 950 – a period co-incident with Norse settlement there (Haraldsson 1981: 41-2). Thus the background trend of steady growth in woodland areas which Haraldsson identifies throughout the ninth century for the coastal plain (which Seljaland overlooks) points to the robustness of this assumption that people were instrumental in the destruction of forest environments. In other words, since a natural trajectory of woodland growth is
widespread prior to human colonisation, then the reduction of woodland at the same time people arrive in that landscape suggests people to be a major cause of woodland loss. Another possibility, more difficult to assess, however, is that forest cover might also be fostered by human land management strategies: in other words, that a stand of woodland could be maintained or fostered as a result of human use, rather than despite human use. A key way to accommodate this latter concern is to relate models of forest loss to complementary studies, such as the magnetic susceptibility studies of Ashburn et al, in order to achieve a more holistic (and thus more secure) grasp of human-environmental interactions and subsequent landscape change.

Method
The merits of using tephra to study human-induced deforestation have come to be widely appreciated in recent years, not only by Icelandic researchers but also by teams investigating the earliest horizon of human impact on the vegetation of northern New Zealand (Newnham et al. 1998). In the majority of this work, however, tephra layers have been used indirectly, in order to chronologically constrain sedimentary records, such as deposits of pollen. I propose that this indirect use of tephra layers may be complemented by the realisation that tephra layer morphology may also provide direct fossil records of vegetated landscapes. A classic example of this possibility is the tephra deposited by Vesuvius in AD 79 on Herculaneum and Pompeii: this tephra preserved not only “casts of men and other vertebrates ... in the deposit but also insects, and plants ...” (Buckland 1981: 382).

At Seljaland, the models of landscape change discussed earlier in this chapter suggest we should anticipate key differences between ninth- and tenth-century tephra layers. In other words, we expect variation in vegetation cover to be reflected by the morphology of tephra horizons. Thus a heavily wooded environment with lush understorey (such as that predicted for AD 870 by the landscape model in illustration 6.3) should produce an undulating and discontinuous tephra layer with ‘holes’ where tree trunks stood at the time of the ash fall. Open grassland, on the other hand, should produce an evenly distributed and well-defined tephra layer. I suggest that by studying

\[^{6}\text{i.e. the form of an ash layer.}\]
CHAPTER SIX: Tephra contours

the morphology of both the V870 and K920 tephra layers at Seljaland, we might perceive the clearance of woodland areas and consequently growth of open grassland (which could in turn support populations of grazing animals).

One way to study the form of tephra layers is to contour its three-dimensional surface. Three-dimensional contouring of open areas is common in archaeological research (where it is a fundamental technique), but rare in palaeoenvironmental studies (cf the present chapter’s fronting quotes by Jones and Buckland). At Seljaland, the sedimentary sequence of centimetre-scale tephra airfalls intercalated with aggrading aeolian sediments is well-suited to three-dimensional contouring, with these tephrae forming discrete layered ‘photographic negatives’ of successive landsurfaces. This chapter explores the question of woodland cover at Seljaland; and I propose that excavating contours of K920 and V870 tephrae will expose ‘photographic negatives’ of landsurfaces from c. AD 920 and AD 871±2, thus allowing woodland cover and change in vegetation structure between these times to be quantified. In other words, I contend that by recording the surface of these tephrae over a given area, one can quantify the density and trunk thickness of tree cover over that area by looking to the ‘holes’ in the tephra where groundlevel vegetation, such as tree trunks, prevented deposition.

Furthermore, the excavation of a small number of such open areas should permit the statistical significance of such studies to be assessed in relation to a larger area, such as the 300 hectares of woodland cover proposed by Thomson to lie between the 10 metre and 300 metre contour lines at Seljaland\(^7\). Thus, since other techniques such as section profiling and pollen sampling are not able to quantify woodland directly, the tephra contours technique may be anticipated to provide a unique contribution to studies of landscape change in southern Iceland (and also for other places with comparable tephra and sediment sequences, such as New Zealand).

The viability of applying tephra contours was first assessed in July 2001 and preliminary results published elsewhere (Ahronson 2003: 63-7). This test involved the excavation of a rectangular 1.5m x 1.5m area (trench A1) at the site of Ashburn et al’s profile 3 (at an elevation of 128m above mean sea level; in illustration 6.1). The surfaces

\(^7\) Statistically quantifying the confidence of conclusions drawn from tephra contours is a goal for future work at Seljaland.
of three stratigraphically identified volcanic airfall layers were contoured and recorded by photograph and scale diagram (illustrations 6.4-5), noting clearly defined circular 'holes' in the deposits as probable tree casts (illustration 6.6). These contoured tephrae were correlated with a number of previously studied stratigraphies, and thus identified as *in situ* tephrae from the eruptions of Katla AD 1500, Katla c. AD 920, and Veðivötn AD 871±2 (Dugmore, *pers. comm.*). Two circular 9cm diameter features were interpreted as tree casts, one in the K1500 tephra layer (illustration 6.6) and another in the K920 tephra layer. This early trial established the feasibility of contouring the surfaces of the K1500, K920 and V870 tephra layers, and demonstrated that the presence of groundlevel vegetation may be identified by the morphology of these tephra layers.

Therefore in August 2002 a rectangular 3m x 2-3m area (trench A2) was excavated immediately northwest of trench A1 (i.e. the southeast corner of trench A2 was identical with the northwest corner of trench A1) (illustration 6.7-8). The groundsurface and the surfaces of the K1500, K920 and V870 tephra horizons were contoured, recorded by photograph and scale diagram, and elevation recorded to the centimetre by theodolite. Application of the *tephra contours* technique raised many topics for discussion. However, as the present chapter concentrates on ninth- and tenth-century vegetation structures, treatment of those points outside the remit of this thesis (e.g. the morphology of the K1500 tephra) will be undertaken elsewhere. Thus only data for the surfaces of the K920 and V870 tephra horizons is presented in the next section.

Results and discussion

The technique worked: contours were obtained for tephra layers identified as *in situ* airfall deposits from eruptions of Katla in AD 1500 and c. AD 920, as well as Veðivötn in AD 871±2 – discussion here will concentrate on these last two layers, as outlined in the preceding section. As stressed earlier in the chapter, the small scale of the *tephra contours* area excavated at Seljaland presents clear statistical limitations to wider interpretations. Nevertheless, our results were clear and may be summarised simply
Illustr 6.4 K920 tephra surface (area A1). Looking north.

Illustr 6.5 V870 tephra surface (area A1). Looking north.

Illustr 6.6 Detail of a feature in the K1500 tephra layer (area A1) interpreted to be the trunk cast of a tree.
Illustr 6.7 Area A2 prior to excavation. Looking southeast.

Illustr 6.8 Area A2 under excavation. Looking east.
(and presented visually in illustrations 6.9-13). In the K920 tephra layer, two 5-9 cm circular 'holes' were interpreted to be trunk casts of thin trees while, considering Thomson's suggestion that vegetated understorey should have flourished in this area (and which can be seen flourishing in Kverkin today), a number of medium-sized irregularly shaped gaps in the tephra layer were interpreted to be the result of a lush understorey of vegetation, which prevented deposition of tephra within these features (illustrations 6.9 and 6.14). Additionally, Ashburn et al.'s work at this location identified a spike in the magnetic susceptibility of sediments c. AD 920: they suggest this spike may have resulted from the burning of woodland at that time (Ashburn et al. 2003: 92-3). Furthermore, since tephra contours for the K920 layer have 'photographed' what appears to be a small area of young woodland with lush understorey, consideration of Ashburn et al.'s results lead to the suggestion that it was this woodland that later burned.

In contrast with K920, the contoured surface of the V870 tephra layer suggests a different vegetative structure for that landscape. Contouring this landnám layer, deposited AD 871±2, revealed a continuous and well-defined surface without 'holes' or irregular gaps in the tephra layer (illustration 6.10). Interpretation of this data suggests an open grassland environment – without tree cover. As these results run counter to the vegetation cover predicted by Thomson in the preceding sections (and apparently well-established for this area of southern Iceland), two main possibilities present themselves: first, that we have contoured a natural clearing in woodland cover; and second, that this 3m x 2m area was cleared of birch trees by people before the landnám tephra was deposited – this second possibility could also help explain the change in sedimentation processes identified at this site by Ashburn et al., in sediments dated to c. AD 800, and proposed to reflect the impact of people on the local environment and the introduction of non-indigenous herbivores into the landscape (Ashburn et al. 2003). If this latter possibility were the case, such clearance would probably have occurred several decades before AD 870 in order to produce such an open and well-defined tephra layer.

Additionally, unexpected linear 'depression' features were found in this tephra layer –

8 This 9cm 'hole' in the K920 tephra layer was discovered in 2001 during the preliminary development of this technique in a section of area A1 which bordered area A2 and is therefore included in discussion (but not illustration) of the results of the A2 trench dealt with in the present chapter (Ahronson 2003: 63-7).
Illustr 6.9 LEFT: Surface of K920 tephra layer. 'Holes' in the tephra horizon are outlined - a groundlevel understorey of vegetation probably prevented the deposition of K920 tephra within these features. A single 5cm diameter tree cast is identified by asterisk. Numbers indicate point elevations, given in centimetres, with the lowest points assigned a value of 0. Scale 1:40. Arrow indicates north.
RIGHT: K920 tephra layer (markers for elevation points are included without readings).

Illustr 6.10 LEFT: Surface of the V870 tephra layer. 'Depressions' in the tephra horizon are outlined and infilled - and were found to form linear patterns running across the excavation area. Since they are regularly spaced and arranged in linear patterns, these features may be proposed to preserve animal tracks. Numbers indicate point elevations, given in centimetres, with the lowest points assigned a value of 0 (elevations were also taken for the 'depressions' in the tephra horizon - these readings are indicated by overlap of elevation reading with the relevant feature). Scale 1:40. Arrow indicates north.
RIGHT: V870 tephra layer (markers for elevation points are included without readings).
Illustr 6.11 Section and oblique views of the modern landsurface, K1500 tephra layer, and K920 tephra layer. Looking south.

LEFT: Illustr 6.12 Oblique views of the K1500 tephra layer (1m x 3m) and K920 tephra layer (2m x 3m). Looking west.

RIGHT: Illustr 6.13 Oblique views of 1m x 3m areas of the K1500 tephra layer, K920 tephra layer and V870 tephra layer. Looking southwest.
Illustr 6.14 Detail of a feature in the K920 tephra layer interpreted to be the trunk cast of a tree. This tree cast is identified by a red asterisk in illustration 6.9.
their size, shape and distribution hold out the possibility that these were created by medium-sized herbivores, such as sheep or small- to medium-sized cow, treading upon the freshly deposited tephra (illustrations 6.10 and 6.15-9). Though land mammals of this size are not native to Iceland, this idea of early ‘herbivore tracks’ in the landnám tephra is made plausible by the recent discovery of a field boundary (indicative of farm animals) in Reykjavík dated to c. AD 850 (Roberts et al. 2002: 35-9). Furthermore, this interpretation of these features might in turn strengthen the second possibility (i.e. that we have excavated a landscape cleared of tree cover by people rather than a natural open area in woodland). These ideas would profit from further excavation of tephra contours trenches at Seljaland and the statistical quantification of our results. Correspondingly, in assessing our three hypotheses, the data provided by our trial of the tephra contours technique support the third hypothesis: that tree cover at Seljaland was reduced before AD 870-920 and that intensive use of the landscape was underway by that time. Intriguingly, the growth of a young woodland with lush understorey by c. AD 920 may suggest abandonment of Seljaland in the AD 870-920 period, or alternatively a change in land management at that time. Crucially, however, the area excavated was small and further work is needed to develop these initial interpretations.

Conclusions and further problems
This chapter explored vegetation changes in the centuries surrounding Norse settlement in order to contextualise human activity in the landscape. In order to assess ninth- and tenth-century deforestation, tephra contours were introduced as a new technique for investigating the tephra record of past land surfaces. Results from application of tephra contours suggest early- to mid-ninth-century clearing of woodland at Seljaland to create an open grassland environment (suitable for grazing) and potentially identified the presence of non-indigenous herbivores by AD 871±2. Unexpectedly, land use at Seljaland appears to have changed by c. AD 920, with the growth of a young woodland with lush understorey – if sustained by later work, this change might relate to the area’s abandonment during the Norse landnám period or to a change in land management strategies at that time. Importantly, however, the small scale of our excavated area limits the initial results from the tephra contours technique and further work is called for.
LEFT: Illustr 6.15 V870 tephra layer under excavation over a 1m x 3m area. Note the linear pattern of ‘depressions’ in the tephra layer. Looking west.
RIGHT: Illustr 6.16 V870 surface. Looking west.

RIGHT: Illustr 6.18 Detail of ‘depressions’ in the V870 tephra. In the section, note how the K920 tephra layer is broken at this location (perhaps by post-depositional reworking of tephra into soils). Looking west.
References

Íslendingabók. Edited by Benediktsson 1968.

Thomson, A. in prep. The agricultural potential of West Eyjafjallavéit at the time of Norse Settlement (Landnám).
CHAPTER SEVEN
The crosses of a desert place?

"Cros Christ tarsin ngúisse, tarsin gclúais fon cóirse. Cros Christ tarsin súilse. Cros Christ tarsin srónise. Christ’s cross over this face, and thus over my ear. Christ’s cross over this eye. Christ’s cross over this nose.

Cros Christ tarsin mbélisa. Cros Christ tarsin cráessa. Cros Christ tarsin cálisa. Cros Christ tarsin taebsa. Christ’s cross over this mouth. Christ’s cross over this throat. Christ’s cross over the back of this head. Christ’s cross over this side.

Cros Christ tarsin mbroinsse (is amlaid as chuimse). Cros Christ tarsin tairrse. Cros Christ tarsin ndruimse. Christ’s cross over this belly (so is it fitting). Christ’s cross over this lower belly. Christ’s cross over this back.

Cros Christ tar mo lama óm gúaíllib com basa. Cros Christ tar mo lesa. Cros Christ tar mo chasa. Christ’s cross over my arms from my shoulders to my hands. Christ’s cross over my thighs. Christ’s cross over my legs.

Cros Christ lem ar m’agaid. Cros Christ lem im deghaid. Cros Christ fri each ndoraid eitir fán is telaig. Christ’s cross to accompany me before me. Christ’s cross to accompany me behind me. Christ’s cross to meet every difficulty both on hollow and hill.

Cros Crist sair frim einech Cros Christ siar fri fiúned. Tes, túaid cen nach n-anad. cros Christ cen nach fiúrech. Christ’s cross eastwards facing me. Christ’s cross back towards the sunset. In the north, in the south unceasingly may Christ’s cross straightway be.

Cros Christ tar mo déta nám-tháir bét ná bine. Cros Christ tar mo gaile. Cros Christ tar mo chríde. Christ’s cross over my teeth lest injury or harm come to me. Christ’s cross over my stomach. Christ’s cross over my heart.

Cros Christ siáis fri fithnim. Cros Christ sis fri talmain. Ní thí oile na urbaid dom chorp ná dom anmain. Christ’s cross up to broad (?) Heaven. Christ’s cross down to earth. Let no evil or hurt come to my body or my soul.

Cros Christ tar mo shuíde. Cros Christ tar mo lige. Cros Christ mo brig uile co roisem Rig nime. Christ’s cross over me as I sit. Christ’s cross over me as I lie. Christ’s cross be all my strength till we reach the King of Heaven.

Cros Christ tar mo muinitr. Cros Christ tar mo thempal. Cros Christ isin altar. Cros Christ isin chentar. Christ’s cross over my community. Christ’s cross over my church. Christ’s cross in the next world; Christ’s cross in this.

O mullach mo baistse co ingin mo chois, a Christ, ar each ngábad for snádád do chroise. From the top of my head to the nail of my foot, O Christ, against every danger I trust in the protection of thy cross.

Co laithe mo básse, ría ndol isin n-úirse, cen aíns do-bérsa crois Crist tarsin ngúisse. Till the day of my death, before going into this clay, I shall draw without ... Christ’s cross over this face."

Mugrón [comarba Coluim Chille AD 965-81]

Gerard Murphy edits and translates this poem, citing Mugrón, abbot of Iona and Kells, as author of this Middle Irish lórica, though one manuscript attributes this crosradhach to Columba (Murphy 1998 [1956]: 32-5; Fisher 2001: 1, 156 n1).
CHAPTER SEVEN: The crosses of a desert place?

Introduction

Simple crosses cut into artificial caves and alcoves in southern Iceland form a coherent and largely unrecorded sculptural tradition. This chapter studies the rock-cut crosses at Seljaland and, as one way to explore the diffusion of culture and movements of people, endeavours to contextualise these cross-forms through comparison with sculpture from other Atlantic areas, especially that from early medieval western Scotland.

Problem and context

Where are the Seljaland rock-cut crosses best paralleled?

A feature of numerous southern Iceland caves as well as some Vestmannaeyjar (Westmen Islands) exposed alcoves are rock-cut crosses that, taken together, form a coherent sculptural tradition. Though significant in number and in spite of this tradition’s clear productive influence on modern-day Iceland, these rock-cut crosses have yet to achieve widespread recognition as what must surely be an art-historical movement. At Seljaland, for instance, innovative local custom prompts the marking of crosses upon plastic-wrapped hay (to ward off ravens). The form of Iceland’s rock-cut crosses includes characteristic features, a number of which are recognisable by Icelanders today: some crosses are named and their cross-forms replicated as meaningful symbols. For example, the Heimaey ‘stave church’ in the Westmen Islands is decorated with a cross-form taken from the nearby Papakross — and the Pentecostal Church in Iceland has adopted this cross-form as their own (Torfason 2000: 7-8). Furthermore, the Krossabrenning Blindrafélags (tripartite cross of the Society for the Blind) is derived from the tripartite krossabrenningar at Efri-Gegnishölar (Hjartarson et al. 1991: 30). In popular imagination, a Celtic identity is ascribed to these crosses and fascination with this ‘Celtic inheritance’ may have inspired Reykjavík’s recently founded Scottish/Irish-themed pub, “The Celtic Cross”.

Despite the evident popular interest in cross-forms from these sites, however, rock-cut crosses have only recently featured in academic studies and fundamental questions have yet to be posed. Thus, in recognising cave and ‘exposed alcove’ cross sculpture as a coherent tradition, the problem this chapter confronts may be expressed as follows: what are the origins of and cultural affinities for these crosses?
Illustr 7.1 Cross-marked bales at Seljaland. Photo: Florian Huber.

Illustr 7.2 Illustration of cross VE1 (Papakross) from Hetta, Heimaklettur, Westmen Islands. Scale 1:10. Drawn by Ian Scott.

Illustr 7.3 Modern stave church on Heimaey.

Illustr 7.4 The Celtic Cross pub in Reykjavík.
When situating Iceland’s cave crosses within a wider context, it is crucial to recognise this question is related to (but distinct from) the dating of cave construction discussed in Chapter Five. In other words, if a date of c. AD 800 is maintained for human settlement at Seljaland, this early date does not necessarily carry through to the sculpture. A cross may be cut at any time in a cave’s lifespan – and possibly on several independent occasions. This point is illustrated by St Molaise’s Cave on Holy Island off the coast of Arran (North Ayrshire, western Scotland). This cave’s cross sculpture may be divided into two phases: an initial phase of large simple crosses accompanied by small graffito crosses associated with early Christian religious use, and a later phase of thirteenth-century Norse runic inscriptions and graffito crosses (Fisher 2001: 61-5).

Analysis of rock-cut sculpture from artificial caves, then, should be careful to allow for multiple episodes of carving at any time after these caves were constructed.

Chapter Four mentioned the long history of southern Iceland’s artificial cave sites in the textual tradition, the earliest reference being Adam of Bremen’s eleventh-century description of the inhabitants of Thule (his usage signifying Iceland):

...in subterraneis habitant speluncis, communi tecto et strato gaudentes cum pecoribus suis. (Adam bk 4, ch 36, skol 153; Schmeidler 1917: 272)
...they live in underground caves, glad to have roof and food and bed in common with their cattle. (Tschan 1959: 217)

Though occasional, reference to cave use continues throughout the medieval and later periods. Only relatively recently, however, have writers turned their attentions to markings cut into cave walls – and then focusing largely upon runic and modern lettering rather than rock-cut crosses. The reason for this approach to cave study may be straightforward: without regional catalogues and modern typologies for the Atlantic area, such as that produced by Ian Fisher for Scotland’s west Highlands and Islands, the task of contextualising southern Iceland’s simple cross sculpture encounters substantial

2 These particular inscriptions and graffito crosses are associated with Vigleikr prestsson and other members of Hákon Hákonarson’s fleet during their AD 1263 visit to Melasey (Molaise’s island or Eilean Molaise) (Fisher 2001: 61-5).

3 Matthias Þórðarson exemplifies this approach in his 76-page study of artificial caves in Rangárárvallasýsla and Árnessýsla. His study explored these caves’ inscriptions and þúmörk (ownership marks) rather than cross sculpture (Þórðarson 1993; Friðriksson 1994: 24-5). For discussion of the inscriptions, Þórgrímur Tómasson (i Skógum) has published on þúmörk (Tómasson (i Skógum) 1976), while Þorgunnur Snædal...
difficulties. One author articulates these difficulties with the caution that “crosses are probably the most common symbol to have survived through the perpetual changes in the history of thought in Europe” (Frioriksson 1994: 26). Advances are being made, however, and in their survey of cave sites, Hjartarson et al incorporate the most substantial catalogue of Icelandic rock-cut crosses to date. The following excerpt from a recent emergency archaeological assessment demonstrates the impact of Hjartarson et al’s catalogue:

Seljalandsheilar – 3 hellar hlið við hlið. Mikd af ristum í veggjum, þmt. krossmörk sem eru gómul.
Seljalandsheilar – 3 caves side by side. Many carvings in the walls, including cross-marks that are old.

In this brief passage, the author shies away from discussing the character and historical place of the sculpture, but this author (unlike earlier scholars) includes the cross-marks in the inventory.

As mentioned in Chapter Four, Brynjúlfur Jónsson was the first to introduce southern Iceland’s cave sites into modern scholarship (Jónsson 1900; 1902; 1906; Friðriksson 1994: 24). Jónsson, however, ignored the cave sculpture – as did Matthias Póðarson in his 1931 study. In fact, the minimal attention Póðarson gives to rock-cut crosses is largely in reference to the writings of Einar Benediktsson, poet and businessman:

Haustið 1905, 6. okt., 3 árum eftir að grein Brynjúlfsf Jónassonar í Árbók Forneleifafél. Frá 1902 var komin út, kom i blaðin心跳 Fjallkonan心跳 fyrr hjluti greinar eftir Einar Benediktsson, með yfirksriftinni Íra-býlin; síðari hlutinn kom í næsta töluðlaði, 13. s. m. Segir höfundurinn, að hann hafi心跳 lengi haldid það vist, að döur en Nordmenn, fédur vorir, fundu eyjuna, sem vör byggjum, hafi mannavist og mannvirki fundizt viðs vegar um Island, miklu meiri en sagnir eru enn orðnar ljósar um心跳 ...Að því er snertir þennan heyhelli á Ægissiðu ræður hann það, að hann sé eftir írska munka, sérstaklega af krossmörkum í honum, sem心跳 eru höggvin á

collects much of the work on runic inscriptions in her recently-published register of 96 carvings with “55 on (grave)stones or in caves” (Snædal 2003: 67).

Ami Hjartarson and Hallgerður Gisladóttir credit Einar Benediktsson with the first effort at cataloguing artificial cave sites including rock-cut crosses (Hjartarson & Gisladóttir 1993).

Bóðarson very briefly refers to and discounts the cross sculpture (Bóðarson 1931: 28, 50, 57, 62).
við og dreif um hvelfingu hellisins << og >> krossmarki allstóru << á hellisgaflinum innst, sem hann nefnir i því sambandi körpil... (Þórdarson 1931: 57)

The autumn of 1905, October 6th, three years after Brynjulfur Jáoonssón’s article in Árbók hins Íslenska Fornleifafélagsins (1902) appeared, Einar Benediktsson published the first half of an article in the newspaper Fjallkonan (The Mountain Woman) with the title “Irish-abodes”; the second half appeared in the next edition on the 13th of the same month. The writer said that he had “long held it probable, that from before the Norse (our fathers) found the island that we settled, people’s dwellings and structures have been found far and wide in Iceland, more than has become clear in accounts”.

...He concludes, with regards to this hay-cave at Ægissíða, that it is the work of Irish monks, particularly cross-marks in the cave, that “are cut in many places on the cave vaults”, and “a rather large cross-mark” in the innermost corner, which he refers to as choir panelling...

Though Þórdarson was doubtful of Benediktsson’s interpretations, Benediktsson was nevertheless the first in print to struggle with cross sculpture (Benediktsson 1905a; 1905b). He mounted the first expedition to map artificial caves in 1915 (Hjartarson & Gísladóttir 1993), published Thules beboere (Benediktsson 1918), and wrote a series of newspaper articles in 19297. His interest was taken up by a friend, the famed painter Jóhannes S Kjarval, who c. 1920 illustrated a number of cave features (Hjartarson & Gísladóttir 1983; 1985). It may be that Þórdarson’s own substantial cave study was a reaction to Benediktsson’s work. If so, Benediktsson occupies a crucial role in Icelandic cave scholarship.

Rock-cut crosses next receive attention in the 1945 edition of Skírnir8, where Einar Ól. Sveinsson mentions southern Iceland’s artificial caves and cites the scholarship of Jónsson, Benediktsson and Þórdarson (Sveinsson 1945: 200 n1). A further brief reference is made by T C Lethbridge, where he records and illustrates a cross cut into a small exposed alcove on Heimaklettur in the Westmen Islands (Lethbridge 1950: 83-5). Lethbridge’s arguments are at times overly ambitious – what is crucial, however, is that he introduced a comparative methodology by illustrating the Heimaklettur cross alongside Shetland, Hebridean and Argyll crosses.

7 These articles appearing in Morgunblaðið on 1.12.1929 and 12.12.1929 as well as in the Christmas supplement Lesbið Morgunblaðaðsins (1929: 397-8).
8 A similar text appearing later (Sveinsson 1948).
Guðrún Sveinbjarnardóttir published her 1972 University of Iceland BA thesis on *Papar*. In this review of multi-disciplinary materials associated with *papar*, she touches upon southern Iceland’s artificial caves, mentioning Benediktsson’s work on the crosses as well as Þóðarson’s catalogue (Sveinbjarnardóttir 1972: 17). Sveinbjarnardóttir concludes her section by noting the lack of current research into the caves:

> En það er með fjyrnæfnda hella, sem fleira hér, að litið hefur verið gert til að varpa ljósi á þá. Síðustu rannsóknir á þeim voru gerðar í kringum 1930. (Sveinbjarnardóttir 1972: 17)

But (it can be said) that the said caves, as with other things here, that little has been done to cast light upon them. The latest research on them was carried out around 1930.

Anton Holt and Guðmundur J Guðmundsson elaborate Lethbridge’s comparative method in a discussion “*Um krossana í hellum* / About the crosses in the caves”, and class open-air rock-cut crosses at Dyrhólaey and Heimaklettur alongside sculpture from artificial caves (Holt & Guðmundsson 1980: 16-8, 23). Holt and Guðmundsson tentatively date the large tripartite Efri-Gegnishólur cross (mentioned earlier) to AD 500-1000 and see parallels in sculpture from Birtley (Northumberland), Whithorn (Galloway), Inishmurray (Co Sligo) and Aird a’Mhòrain (North Uist, Outer Hebrides).9

The 1980s and early 1990s saw a flourishing of publication on cave sculpture in the work of the trio Árni Hjartarson, Hallgerður Gísladóttir and Guðmundur J Guðmundsson. Hjartarson and Gísladóttir progress from the preliminary comparative approach outlined above. Firstly, they introduce an archaeological inventory methodology with their article on Skollhólahellir cave (Hjartarson & Gísladóttir 1983)10, and secondly, they explore the historiography of cave research through their rediscovery of Kjarval’s early illustrations and their discussion of Benediktsson’s 1915 expedition (Hjartarson & Gísladóttir 1993; Hjartarson & Gísladóttir 1985). Most significant, however, was the trio’s inventory of artificial caves, *Manngerðir Hellar á Íslandi* (Hjartarson et al. 1991). In *Manngerðir Hellar*, they provide a lengthy historical discussion of cave research in Iceland, catalogue all artificial cave sites (illustrated with

9 Illustrated in Collingwood’s *Northumbrian Crosses of the Pre-Norman Age* (1927: 3, 13), the *Proceedings of the Royal Irish Academy* (1961: 101-5), and in Lethbridge (1950: 84).

10 Þóður Tómason later published on another cave site. This cave, Hruðshellir, has been subject of much antiquarian and later interest (Tómason (i Skógum) 1986).
simple sketches), and use this robust material to further refine application of the comparative method – here applied to contextualise both artificial cave sites and cross sculpture. Their work has been a crucial resource for detailed research at Seljaland. Because of Hjartarson, Gísladóttir and Guðmundsson’s success in promoting Icelandic cave sites, these caves have begun to be integrated into wider scholarship outside Iceland

Research published throughout the 1980s and early 1990s was thus pivotal in bringing attention to rock-cut crosses. Recent cave discussions now include cross sculpture. Þórdur Tómasson, for instance, incorporates cross sculpture into his 1997 description of the Seljalandsheilir caves:

Stór hellir er í klettí bak við gamla bæjarstæði á Seljalandi undir Eyjafjöllum. Hellirinn er í röð merkra þjóðminja, alsættur krossmörkum og ristum af ymum toga, allt aftan frá miðöldum.

...Austurhellarinn (gapinn) fyldi vesturbænum, stúkan austurbænum. Meginhellinum var skipt milli bylanna. Vesturbærin hafói innri hlutinn. Þar voru höggvin spor í berginu, beggja vegna, ætolu ýfir planka sem var í marki. Krossmark er þar beint uppi ýfir, vestanmegin. Þarna innan til í hellinum eru fleiri bitaför frá þeim tíma er fiskur var þurkkaður á slám í hellinum. (Tómasson (i Skógum) 1997: 148-9)

A large cave is in a crag at the back of the old farm-site at Seljaland under Eyjafjöll. The cave is in a row of national monuments, covered with cross-marks and various carvings, reaching as far back as the Middle Ages.

...The eastern cave (the gapi) belonged to the western farm, and the compartment-cave (the stúka) to the eastern farm. The main cave was divided between the farms. The western farm has the inner part. There were recesses cut into the rock surface, on both sides, meant for beams that were in position. A cross-mark is there directly over on the west side. There inside the cave are many beam cuts from the time when fish was dried on racks in the cave.

Similarly Ólafur H Torfason, in his 2000 publication Nokkrir Íslandskrossar (a few Icelandic crosses), supports a suggestion first made by Lethbridge to group both cave crosses and the Westmen Islands Papakross as a single class of monument:

Fyrstu kristnu krossarnir sem litu dagsins ljós á Íslandi hafta trúlega verið krossar papanna, keltneskr munna sem Ari fróði segir að hafi bút hér við

11 Cave sites are recognised, for instance, in a recent survey of Icelandic archaeology (Friðriksson 1994: 24-6).

12 The expression sem var í marki incorporates the archaic term marki which I tentatively translate as “that were in position”.

13 Torfason uses the variant form Keltakross, though it is possible he coins the name.
The first Christian crosses that saw the light of day in Iceland were probably the crosses of *papar*, Celtic monks that Ari fröði said lived here at the time of Norse settlement, and perhaps other Celtic inhabitants. Cross-marks on cave walls in southern Iceland may be explained, some believe, by the residence of *papar* or other Celts. No one has resolved the matter.

The cross-mark named “Keltakross” was cut into tuff (palagonite) between Neðri- and Efri-Kleifar on Heimaklettur in the Westmen Islands, there located where people go past to make use of the islands and full reason to wish after protection or perhaps remember accidents. Prayer areas are in many places in the Westmen Islands and elsewhere. The age of the cross is not known but it is of Celtic manufacture. The Pentecostal following in the Westmen Islands made the cross their symbol and later so too the Pentecostal movement in Iceland. A few of the crosses that are cut into artificial cave walls in southern Iceland are rather similar in form to the Keltakross in Heimaey.

Torfason entertains anchoring the medieval tradition of *papar* to the rock-cut crosses, an association first articulated by Benediktsson and tentatively considered by Lethbridge, Sveinbjarnardóttir, Hjartarson, Gisladóttir, Guðmundsson, Holt and Friðriksson. In seeking to identify the artists behind rock-cut crosses, Torfason demonstrates what I suggest is a widespread willingness to engage with the cross sculpture – a willingness frustrated by an undated and anonymous artistic tradition provided only with a preliminary catalogue.

14 Hjartarson et al undertook a mammoth task in *Manngerðir Hellar á Íslandi*. Their work is excellent and of broad remit: cross sculpture is included but illustrations are not the focus of their catalogue and necessarily simple.
CHAPTER SEVEN: The crosses of a desert place?

Turning to a general discussion of the cross itself, this symbol of Christianity came to peninsular and insular northwest Europe\(^ {15}\) from a number of overlapping directions. Christianity came to the region's Roman parts early – first as a secret and persecuted mystery cult\(^ {16}\). Following official patronage in the fourth century, the Chi-rho, cross and marigold were widely taken up across the Christian world to symbolise the Resurrection and continuing presence of Christ. With an eye to the relevance of typologies for Scotland, Fisher surveys use of the cross in this early period:

Notable examples survive in the murals of Egyptian church apses and in the mosaics of their Italian counterparts, often bedecked with wreaths or jewels or accompanied by birds. Stone sculpture was particularly favoured for funerary monuments, and the cross appeared on inscribed gravestones from Egypt and Gaul, and on Italian and Gaulish sarcophagi. Free-standing crosses marked places of particular sanctity, and the pilgrim Arculf described to Adomnán the silver-plated wooden cross which stood at Golgotha, on the site of one erected by Constantine in the early fourth century. This cross and others were represented on small flasks in which pilgrims carried oil from the Holy Places, and on Byzantine coins and medallions. Wood covered with metal plates was favoured for altar or processional crosses and ivory plaques for book-bindings, while small metal or jewelled crosses were used for personal devotion or as votive offerings. In manuscript painting, an interlaced cross appeared in a Coptic psalter attributed to the early fifth century, and similar initial crosses in

15 Northwest Europe is used in its loosest sense for the region encompassing the peninsulas of Brittany and Normandy, the British and Irish islands, the North Atlantic archipelagos and the Scandinavian peninsulas and islands.

16 Mystery cults allowed more personal and intimate interaction with the deity. The most successful of the oriental mystery cults was the religion of Christ. A branch of Judaism, the earliest Christianity was characterised by belief in an afterlife and congregational worship at a ritual building. A font was often located outside to allow ritual baptism before entry to a temple. The cult was secretive but of open membership and excluded, in theory but not early practice, joint belief in other gods. The secrecy called for because of intermittent persecution made early evidence for the cult ambiguous and uncertain, and the true extent of Christian practice within the early Empire is problematic. For two views of the extent of Christianity in Roman Britain, see Salway and Arnold (Salway 1993: 519-29; Arnold 1984: 142-56).

The finding of lead fonts with inscribed Christian symbols has allowed the identification of some ritual buildings. However, assemblies in cities often gathered not in temple or church but in a "...series of rooms set aside for the various liturgical purposes within the bishop's house ... it is hardly distinguishable from the private house, except by some lucky find of furnishings or decoration" (Salway 1993: 519). Such appears to be the case at Lullingstone, for instance, where Christian wall painting is found in a domestic context (Meates 1979; Mawer 1995; Thomas 1981: 181). Even then, however, Christian symbolism may be problematic.

To illustrate the difficulties, consider the Christian symbols found in Roman Britain's mosaic tiles. Were they displayed as an act of faith? A complication for interpretation arises if "...the owner of the building commissioned the particular designs because of the stock-in-trade of the mosaicist" (Arnold 1984: 145). The answer changes the nature and meaning of the symbols for, as Salway notes, "...the iconography of one religion was often adapted and given a new meaning by another..." (Salway 1993: 496).
CHAPTER SEVEN: The crosses of a desert place?

Italian works of the late sixth century, while cruciform designs dominate the ‘carpet pages’ of the great Insular\footnote{Though this term has sometimes been used to describe only Ireland and the Celtic areas of Britain, I use it in its most inclusive sense: as an adjective signifying Britain and Ireland and their islands.} manuscripts. (Fisher 2001: 8)

Fisher continues to contemplate the range of Mediterranean and Gaulish models behind the earliest cross sculpture of Britain and Ireland. Noting poor survival of imported models, he calls attention to cross-forms from western Britain stamped into sixth-century North African or eastern Mediterranean pottery (Fisher 2001: 8). Charles Thomas suggests that “little double-outline expanded-arm crosses” stamped into pottery bases at Tintagel (Cornwall) inspired early stone work at the same site (Thomas 1971: 116-7). Jeremy Knight sees Gaulish prototypes for cross-forms cut into stone slabs in western Britain and Ireland in this period (Knight 1999: 176-7), whereas Lloyd and Jennifer Laing\footnote{Ann Hamlin outlines ideas which Laing and Laing follow here (Hamlin 1972: 24).} note parallel Chi-rho forms in Spain as well (Laing & Laing 1990: 175). Fisher contextualises the influence of Mediterranean and Gaulish models:

Bede records the embellishment of Northumbrian churches in the seventh century with painted panels and manuscripts from Rome and Gaul, and Irish travellers were also familiar with these areas. The Gaulish pilgrim Arculf, who came to Iona about 690, described not only the large crosses erected at pilgrimage sites in the Holy Land but also the elaborate Holy Week ceremonial for the Veneration of the Cross at the Byzantine court. (Fisher 2001: 8)

Particularly, however, cross sculpture shared many features across the Breton and Insular areas in this period (Davies et al. 2000: 3). The cross was a powerful symbol for early Christian monastic communities, eloquently expressed by Mugrón’s \textit{crossradhach} (quoted in full at the beginning of this chapter). Though largely a feature of ecclesiastical sites, certain crosses in western Scotland “offered protection and invited prayer at boat-landings or beside tracks, or marked holy wells” (Fisher 2001: 9). Knight proposes relating the prominence of the cross at this time with monasticism in late sixth- and seventh-century Britain and Ireland (Knight 1999: 179).

The spread of Christianity to Scandinavia was later, incorporating influences from both the Insular and Frankish worlds. The earliest missionaries appear in trading towns such as Birka (Lake Mälar, Sweden) perhaps as early as the eighth century. Ansgar led
missions from Saxony to Birka twice in the ninth century (AD 829-31 and AD 852-5) (Trillmich 1961). Florian Huber relates this period’s pagan ‘hammer’ and cross amulets to the historical context (Huber 2000; 2002):

Several hammer rings have been identified … and we may speculate that these hammer rings represent a manifestation of pagan religion when the local population was confronted with a new Christian ritual and belief – perhaps carried by Ansgar’s mission (Staecker 1999a; 1999b). In essence, the argument notes the coincidence of both Thor’s hammer rings and the early documented Christian missions to Sweden … hammer rings occur largely in the ninth and tenth centuries with a clustering around the trading centre of Birka, the site of Ansgar’s early ninth-century mission. If such a straightforward scenario is to be imagined, however, one must account for the first appearance of the Thor’s hammer rings in eighth-century Sweden prior to Ansgar’s mission.19 (Huber 2002)

The coincidence of ninth- and tenth-century hammer rings in the area of Ansgar’s mission could suggest a connection between the hammer rings and early Christianity in the Mälar area (though the identification of these amulets with Þórr’s hammer remains hypothetical). The existence of eighth-century hammer rings, however, is problematic for Staecker’s suggestion of these rings as a reaction to a new Christian ritual and belief – unless one accepts the idea of eighth-century Christian missions to Sweden.

For eighth-century Scandinavia, Staecker points to Willibrord’s visit c. AD 700 to the Danish King Ongendus and Alcuin’s discussion with Willehad (bishop of Bremen) in AD 789 on the subject of converting the Danes (Staecker 1999b). Noting the prominence in the region of historical figures from the Insular tradition, Staecker proposes unremembered monastic missions to Scandinavia by communities educated in the Gaelic schools and active across Europe at this time (Huber 2002). Miriam Zeiten notes similar suggestions in Mackeprang and Olsen (Zeiten 1997: 26; Mackeprang 1938: 179-80; Olsen 1966: 119), though she follows Schwarz-Mackensen (1978: 85) and Ström (1984: 140) to challenge a Christian inspiration for Þórr-dedicated amulets (Schwarz-Mackensen 1978: 85; Ström 1984: 140).

19 If the hammer rings are accepted as a reaction to Christian cross amulets, care must be taken not to overstress the point. For instance, Gabriel Turville-Petre saw objects such as the pewter cross from Foss (Arnarssýsla, Iceland) as “a compound of a hammer and a cross, even the work of a man of mixed religion” (Turville-Petre 1964: 83). My own work, however, challenges the hammer-like character of the
Both scenarios are plausible. To the south and southwest of Scandinavia, great changes were taking place in these centuries: the Frisians were Christian by c. AD 800 and the Old Saxons were violently drawn into the Carolingian empire. Across the empire, conversion and the monastic impulse was strong: foundations were established in newly-incorporated Frisia and Saxony at Ramelsloh, Bremen, Bassum, Büken, Hamburg and Welenac.20

Archaeologically, the first appearance of the cross symbol occurs in areas of ninth-century Christian mission: a cross amulet from Hedeby is Denmark's oldest. In Denmark, a handful of such amulets may be dated to the ninth and tenth centuries, though the majority of cross amulets appear in eleventh-century contexts (Zeiten 1997: 29-30).

Cross-forms are also found alongside runic inscriptions cut into stones in the Mälar region of Sweden (Lager 2000: 131). Indeed, crosses may be identified on roughly half of Scandinavia's surviving rune-stones, with three quarters of Sweden's stones incorporating Christian symbolism or prayers (Lager 2000: 120-1). Birgit Sawyer sees that “these monuments reflect the transition from pagan to Christian burial customs” (Sawyer 2000: 17). The earliest stones are dated to c. AD 975-105021 and incorporate a simple cross and restrained runic band – both cross and band being elaborated throughout the runic period (c. AD 970-1130). Late Viking Age decoration becomes very elaborate: a stone from Uppland in Sweden (U735), for example, demonstrates a complex cross-form and intricate runic band (illustrated in Lager 2000: 122).

Christian influence from Britain was substantial in Sweden during the conversion period – especially so in the Mälar region (Lager 2000: 130). Lager identifies an Insular character in the Scandinavian stones:

There are considerable similarities between the cruciforms on these runestones, and Viking Age coins and erected stone-crosses from the British Isles. There are also considerable English linguistic influences on these runestones as well as in other early written Swedish sources. Since the erection of runestones in the Mälar region continued for such a long period of time in the

20 Mentioned in Vita Anskarii chapters 13-4 (Waitz 1884), and identified as near Itzehoe in Holsten (Nyberg 2000: 24; Freytag 1977: 147).
21 Lager uses Anne-Sofia Gräslund’s chronological system (Gräslund 1994).
presence of British-influenced Christians (whether ‘missionaries’ or not), runestones were probably considered an appropriate expression of Christian faith, perhaps even encouraged by the clerics. (Lager 2000: 130)

Lager outlines a scenario where the Frankish church, dominant in Denmark and southern Sweden, may not have tolerated the rune-stone as a productive tradition – certainly the erection of these stones ended in Denmark and southern Sweden earlier than elsewhere in Scandinavia (Lager 2000: 130). Sawyer, however, cautions against a straightforward association of Christianity with rune-stone production:

Even if the erection of rune-stones answered religious and social needs in a period of transition, the change of faith and the abandonment of traditional burial customs, however, cannot alone explain the origins, distribution, and uniformity of the fashion. (Sawyer 2000: 19)

In Norway, the first bishopric was established at Selja c. AD 1070 for Bjarnharðr hinn saxlenzki (Bernhard the Saxon) after his work and travels in Iceland, Rome and Saxony. Selja, on the extreme northwestern tip of the Norwegian coast, was already host to a Christian community (Nyberg 2000: 69). The tradition of the ‘Holy men of Selja’ tells of an Irish monastic settlement on the island, taking refuge in a cave that divine intervention sealed with a landslide – leaving them to die as martyrs. Adam of Bremen may refer to Selja in his skolion (nos 129 and 145), where he writes of the septem dormientum slumbering in a cave in the far North, awaiting the end of the world to rise and preach. Adam has Olaf (whether Tryggvason, Haraldsson, or Kyrre) building a church at this site (Nyberg 2000: 69-73; Hommedal 1996).

Fridtjof Birkeli has studied the roughly sixty standing stone crosses of Norway, though his work may need reassessment in light of clear advances in the study of the Insular corpus (Fisher forthcoming; Birkeli 1973). Standing crosses from the Stavanger area may be related to a neglected cross type common on the northeastern Shetland islands of Yell and Unst in the eleventh centuries. Furthermore, this cross-form is found elsewhere in the Atlantic area. Recently discovered near-perfect parallels of the Yell and Unst type may also be identified in three locally-made standing crosses from the grounds.

22 The Selja cave is also mentioned in the c. AD 1380 manuscript Flateyjarbók.
CHAPTER SEVEN: The crosses of a desert place?

In the Faroe Islands, \textit{encircled linear, shallow sunken}, and \textit{outline} cross-marked stones have been recovered from Skúvoy while a lost stone from Svinøy was illustrated in 1828 and an unprovenanced (but Faroese) stone is held in the National Museum of Denmark’s collection. Many of these stones’ cross-forms probably demonstrate a connection to the Gaelic Christian sculptural traditions: their similarity in technique and close concentration at the island’s earliest \textit{Norse} Christian site suggest they may remember “a Hebridean contribution to the Norse conversion of the islands” (Fisher forthcoming).

In the above discussion of the Stavanger, Shetland, eastern Icelandic and Faroese sculpture, Fisher compares cross-forms across the North Atlantic area and provides the sculpture with a historical context. His approach is valid. Careful application of typologies developed for simple cross-forms demonstrates the potential strengths of sophisticated comparative studies. Ewan Campbell’s work on the expanded terminal form in Argyll illustrates the point. It has long been recognised that expanded terminal crosses, incised into stone, were characteristic of the early Church in western Scotland and Ireland (Fisher 2001: 12-3). In 1987, Campbell set about a detailed and comprehensive examination of Argyll crosses. This investigation enabled him to identify the expanded terminal cross-form as a coherent group, a group he linked with areas in which the monastic community of St Columba, based in Iona, was active (Campbell 1987: 111). This is consistent with Charles Thomas’ view of simple incised crosses:

\ldots that, in regions of Britain and Ireland where the tradition of the inscribed memorial tombstone was absent, physical commemoration of the Christian dead in stone begins only at the end of the sixth century. \ldots The ‘primary’ stones, which are for the most part pre-Norse, are small and plain \ldots this is essentially a western and north-western facet of post-Roman Britain, the source being apparently Ireland, and the spread a reflection of the work of Irish monastic missions. The crosses themselves are of a limited range of linear forms, and are usually incised with a knife or point. (Thomas 1973: 28)

23 A late tenth-century cross-arm was discovered at Støng in southern Iceland’s Þjórsárdalur and an undated fragment from the monastic ruins on Viðey, near Reykjavik (Kristjánsson 2003: 124; Vilhjálmssson 1996: 133).
CHAPTER SEVEN: The crosses of a desert place?

The expanded terminal cross-form central to discussion here belongs to what Campbell describes as a "larger group of simple incised crosses which are commonly found on recumbent slabs, upright pillars, boulders and rock faces throughout the Celtic west" (Campbell 1987: 106). Thomas describes this larger group as primary cross-marked stones (Thomas 1971: 112-4), while Isabel Henderson prefers Class IV Early Christian Monuments (Henderson 1987: 46). Though probably the earliest form of stone crosses, scholars agree this group has often been ignored because of its simplicity. It nonetheless appears such simple crosses form a distinctive stage in the development of Early Christian decoration in northern Britain and Ireland.

Thomas understands primitive cross-marked stones as emerging in late sixth- and seventh-century Britain from ultimately Mediterranean models of the fifth and sixth centuries (Thomas 1971: 112-6; Campbell 1987: 107). Looking to Pictland, Henderson has previously suggested simple cross-markings as seventh-century phenomena logically preceding the eighth-century relief cross-slabs (Henderson 1987: 48). In fact, Henderson posited that seventh-century Columban activity is responsible for simple cross-forms in Pictish areas of eastern Scotland

Campbell operates from the following basic premise:

While it is possible that the very simplest of these crosses, consisting of plain vertical and horizontal lines, are not amenable to any analysis, the slightly more complex forms may reflect changing fashions in particular regions. (Campbell 1987: 107)

Originally suggested by Hamlin, this premise has proven a valid one for a pattern does emerge in Argyll (Hamlin 1982: 290).

Argyll, because of its excellent and comprehensive inventory of early Christian monuments, provides a good geographic distribution from which significant archaeological information can be recovered (Campbell 1987: 107). Campbell maps the roughly 50 sites from which 150 cross-marked stones have been identified and a discrete clustering of expanded terminal crosses is revealed (Campbell 1987: 108). This clustering of crosses is significant and reinforced by a strong similarity of form and

Simon Taylor surveys the substantial number of Columban dedications in eastern Scotland and suggests these names reflect similarly early Columban activity (Taylor 2000).
LEFT: Illustr 7.5 Distribution of early Christian sites with cross sculpture in the portion of Argyll bounded by the dotted line. Illustration taken from Campbell’s study of cross sculpture (Campbell 1987: 108).

RIGHT: Illustr 7.6 Distribution of incised crosses with expanded terminals, marked by black points (other variant terminals marked by open points and crosses). Illustration taken from Campbell’s study of cross sculpture (Campbell 1987: 109).
dimension among the expanded terminal group members. The clustering is important for two reasons. Firstly, these crosses can now be associated in time and space with areas in which the Columban familia was active. Secondly, the cross-form is shown not to be persistent or recurring, at least not in early Christian Argyll. In other words, if the expanded terminal form were long-lived, then a wide distribution would be expected (Campbell 1987: 107-8). The seventeen expanded terminal crosses in Campbell’s study were recorded from seven sites: Hynish on Tiree, Iona, Nun’s Cave and Scoor Cave on the Ross of Mull, Eileach an Naoimh in the Garvellachs, Barnakill near Dunadd and at Dunadd itself. Campbell characterises the collection thus:

These sites lie in an east-west group running from Tiree to Dunadd. There is a concentration of the crosses on Iona which has one of the largest collections of early Christian monuments in Britain and Ireland with over 100 stones recorded. The Iona collection includes six crosses with expanded terminals and 11 with other forms of elaboration. The other five sites, except Dunadd, would also appear to be religious rather than secular in nature. The two caves on the Ross of Mull have many religious carvings and could be interpreted as retreats or deserta for anchorites or penitents. The stone from Hynish, Tiree was found in the make-up of a barn floor, but could possibly have come from the daughter house of Iona, campus Lunge, which existed on Tiree. However, there were several other monasteries on Tiree at this time and campus Lunge is not securely identified. The group of crosses on the Garvellachs at Eileach an Naoimh is associated with the well-known monastic site traditionally founded by St Brendan. In the past, this has been identified with the Iona daughter house on Hinba, but the RCAHMS reject this identification. The cross at Barnakill was found only two kilometres from Dunadd. …The –kil place-name may signify the former presence of a religious site. (Campbell 1987: 108-9)

The Columban association with the expanded terminal cross-form is reinforced by an analysis of Adomnán’s Life of St Columba. Textual study reveals that, aside from locations along the sea route to Ireland and those associated with Columba’s travels in Pictland or Skye, all identified places lie in Tiree, Mull, Morven, Ardnamurchan and Lorne. This is the same portion of northern Argyll in which the expanded terminal crosses were found (Campbell 1987: 110).

The dating evidence for each carving elaborates the discussion. Individually, the 17 expanded terminal crosses of Argyll offer dates between the late sixth and early ninth centuries: Thomas dated the Barnakill stone to the seventh century by inscription, the Dunadd quern falls in the main occupation period from the late sixth to early ninth
centuries, and from Iona the vast majority of crosses probably predate the Viking Age25 (Thomas 1971: 112; Campbell 1987: 112; Fisher 2001: 10-1). Noting the restricted range of the cross-form, mentioned above, Campbell suggests the expanded terminal cross finds its home at the earlier end of the period. This dating is consistent with Thomas’ general simple cross-form dates for northern Britain and Henderson’s Class IV Monument dates for Pictland, both mentioned above. On geographic and temporal grounds then, the Argyll occurrences of this cross-form may be linked with the Columban familia of monastic houses of the seventh and eighth centuries.

As for the general distribution of the form, it appears largely exclusive to Ireland (probably the coastal west)26, western Scotland and both the Western and Northern Isles (Hamlin 1982: 289-93; Campbell 1987: 111; Fisher 2001: 29-32). This dating is consistent with a barred terminal cross found on St Ninian’s Isle, Shetland, and tentatively dated to c. AD 700, as well as an expanded terminal cross from Papil, Shetland, which Thomas ascribed to the mid-eighth century (Thomas 1973: 28-9).

Campbell’s typological analyses of Argyll material illustrate the potential of sophisticated comparative work on simple cross-forms. Furthermore, Fisher’s work on the Stavanger, Shetland, eastern Icelandic and Faroese sculpture (mentioned earlier)

25 However, Iona remained occupied until the twelfth century, with the “continuing use of the monastery and burial-ground after the disruptive attacks of the ninth-century … marked by St Matthew’s Cross .. and other fragmentary crosses” (Fisher 2001: 11).

26 Hamlin characterises the Irish distribution of simple cross-forms thus:

It seems at present, in the absence of a full corpus, that the distribution of these stones is very heavily western and coastal, concentrated in the seaboard counties and islands from Cork and Kerry to Donegal. This western area is poorly covered by written sources and the stones often occur at sites whose history is shadowy or quite unknown. These stones thus assume a historical importance beyond their undoubted aesthetic value.

…Carved stones of the kind under review are not common in the east, at known early episcopal centres. Could these pillar stones with their western distribution, their early, exotic, borrowed elements, be pointers to a very early stratum of monasticism in western Ireland, introduced in the sixth and seventh centuries when the diocesan church elsewhere was still strong? The regional variety already touched on, together with the markedly western and coastal distribution, would suggest varied maritime contacts, still to be worked out in detail. This leads to another speculation. The quite extraordinary concentrations of ecclesiastical sites in some western areas, like the Dingle and Iveragh peninsulas, have never been fully explained. These are areas of great natural beauty, rugged and inhospitable, not obviously attractive for settlement, but if these coastal regions were indeed the earliest centres of Irish monasticism they could have attracted ecclesiastical settlers over many centuries, producing the wealth of material remains which impress but puzzle us today. (Hamlin 1982: 289-93)
CHAPTER SEVEN: The crosses of a desert place?

demonstrates that useful interpretations may be drawn from careful consideration of typological parallels across the North Atlantic area.

Hypotheses

This chapter seeks to identify parallels for the Seljaland rock-cut crosses in order to contextualise southern Iceland's cross sculpture from artificial caves and alcoves. Three alternative hypotheses are proposed:

that the cross sculpture is contemporary with seventeenth and eighteenth-century inscriptions;

that the crosses are similar to the Norse and Hiberno-Norse Christian sculpture of Britain, Ireland and Scandinavia;
or

that the crosses are similar to the sculpture of early Christian Britain and Ireland.

On a number of cave walls, Matthías Þórdarson identified ownership marks (búmörk) and inscriptions from the seventeenth to twentieth centuries (Þórdarson 1931: 58; Friðriksson 1994: 25). Þórdarson proposed that cross-marks cut into cave walls (which he largely omitted from his catalogue of cave sites) were of similar antiquity. He writes:

Einar Benediktsson virðist hafa lagt mikið upp úr því, að krossmörk væru í fjóshellinum á Ægissiðu, sem sönnunargagni fyrir aldri hans og að hann væri gerður af írskum múnkum lónghu fyrir landnámstíð. Nú er það svo, að krossmörk hafa menn krotað og gert með ýmsu móti fyr og síðarr; virðist ekkert það við krossmarkið á hellyggatinni og því síður við hin, sem bendir til að þau séu gerð lónghu fyrir landnámstíð. Þau virðast eins vel geta verið frá síðustu öldum, enda eru þau það að likindum, og ósannanlegt, að þau séu eldri. (Þórdarson 1931: 62)

Einar Benediktsson seemed to have made much of the fact, that cross-marks were in the cowshed-cave at Ægissiðu, as a piece of evidence for the age of the cave and that the cave was made by Irish monks long before the time of [Norse] Settlement. It is in fact the case, that people have scrawled cross-marks and in various fashions, through time; nothing about the cross-marks on the cave wall, and even less about the others, seems to suggest that they were made long before the time of Settlement. They seem just as well to be from the last centuries, and that is what they probably are, and unprovable, that they are older.

Þórdarson interprets the cross sculpture from caves as an innovative and late Icelandic practice. The first hypothesis to consider then is this: The Icelandic tradition of rock-cut simple crosses (represented by the examples from
CHAPTER SEVEN: The crosses of a desert place?

Skollhólahellir cave and the Seljaland caves is contemporary with seventeenth- and eighteenth-century inscriptions on cave walls.

The first hypothesis is tested in a simple way: by considering whether seventeenth- and eighteenth-century inscriptions in these caves respect or are respected by the cross sculpture – thus suggesting whether the inscriptions are predated by or predate the crosses.

Christianity was practiced extensively (and intensively in places) in Viking Age Britain and Ireland – this was also true, to some extent, of the areas of Scandinavian settlement there. As noted earlier, Frisia and Saxony were incorporated into the Christian Frankish kingdom in the early Viking Age and Christian missions to Scandinavia were established.

Later sources such as the Icelandic Landnámabók assign Insular and sometimes Christian origins to many early Norse settlers, with a special prominence given to the cult of Kolumkille (Landnámabók: ch 15; Benediktsson 1968: 53-5; Smyth 1984: 163, 171-2; Anderson 1922: 340 n1, 343 n1). A Christian-influenced Hebridean or Innse Gall origin for some Norse Landnámsmenn would be consistent with Viking Age archaeological material from Iceland, such as the Foss cross mentioned earlier (Ahronson 2001). Thus, the second hypothesis to consider is this: The Icelandic tradition of rock-cut simple crosses (represented by the examples from the Seljaland caves) is similar to the earliest stratum of Norse and Hiberno-Norse Christianity in Britain, Ireland and Scandinavia.

A legacy of sculpted stones and carvings survives in the caves and rock faces of Atlantic Europe’s isolated coasts and islands – identifying sixth- to ninth-century AD monastic communities across Argyll, the Hebridean islands, Orkney and Shetland. How far into the Ocean did these groups venture? As we have seen in previous chapters, first settlement of Iceland by Viking Age Scandinavians is thought to have begun c. AD 870 – and may have been preceded by monastic settlement from the Scottish islands. The early Christian sculpture of western Scotland has been studied in great detail and Fisher has brought this work together in his 2001 inventory. Thus, the crosses from western
Scotland present a strong corpus with which to contrast the Icelandic sculpture. The third hypothesis to consider then is this: *The Icelandic tradition of rock-cut simple crosses (represented by the examples from the Seljaland caves) is similar to the cross sculpture of early Christian Britain and Ireland (represented by the corpus from Scotland's western Highlands and Islands).*

The second and third hypotheses are tested by initially classifying the Seljaland sculpture into the RCAHMS' broad cross-form categories (*incised linear, sunken linear*), followed by further categorisation by presence of characteristics recognised in art-historical literature (e.g. *Latin, rounded terminals*, etc.) (Fisher 2001: 11-12). Once this categorisation is completed, consideration is given to the similarities between the Seljaland sculpture and the sculpture from Britain, Ireland and Scandinavia.

The art-historical terminology used for classification articulates variables privileged by scholars of simple cross sculpture. For instance, whether a cross is cut into rock in such a way as to create a *sunken* (or *incised* or *outline*) cross-shape has been interpreted as a 'meaningful' characteristic for classification (Fisher 2001; 2002; forthcoming). That *sunken* (or *incised* or *outline*) cross-forms should be privileged over other variables (such as *shaft width*) is supported by its continuing survival in academic discourse. The presumption is that the exercise of scholarly discourse has discarded 'unmeaningful' variables and identified potentially 'meaningful' (or significant) ones. These privileged variables are likely to be eventually superceded by more refined terminology, but for the purposes of this chapter, they satisfy the questions being asked of the data.

Some ambiguities are inherent in this terminology – for instance, when does a Latin cross become a Greek cross? Where there is such uncertainty in classification, I mention this. Fisher's catalogue for the west Highlands and Islands is a model for cross sculpture study in the Atlantic area, his categorisations, with some modification, are applied to the Seljaland data. A benefit of using Fisher's categorisations is that they are recognised divisions introduced by the RCAHMS in their inventory work for Iona. Using these categories has the additional benefit of allowing easy assessment of similarities between the Seljaland sculpture and the crosses in Fisher's catalogue. Comparisons are made along typological and contextual lines – in other words, of size and style as well as where a cross is found, along with any relevant material.
CHAPTER SEVEN: The crosses of a desert place?

Method

Numerous caves in southern Iceland are artificial and have cross-markings. Hjartarson et al have done much for southern Iceland's cross sculpture, yet their preliminary illustrations of the Seljalands material (illustration 7.7) are insufficient for detailed analysis. In order to test the multiple hypotheses outlined above, the following method was adopted. Investigations at Seljalands in August 2002 undertook detailed recording of 19 large and four mid-sized crosses cut into the walls of the Seljalandsheilar cave group. A further cross, from the entrance to Kverkarhellir cave, was similarly recorded. At this stage of research, simple graffito crosses in the Seljalandsheilar caves (counted in September 2001 at 83) were not recorded in this way, as these simplest of cross-marks are the least amenable to typological analysis. In order to demonstrate the strength of recording the rock-cut crosses in this way, the format of illustration outlined for the Seljalands corpus was then applied to a further four crosses: three from alcoves in the Heimaklettur cliff-face (on the Westmen Islands) and one from Skollhólahellir cave at Ás farm in Rangárvallasýsla. The largest Heimaklettur cross was mentioned earlier in this chapter, known locally as the Papakross and identified with early Irish settlers in the islands’ oral traditions. The two other alcove crosses were previously unrecorded and may not be known locally.

In recording the Seljalands crosses, emphasis was placed upon producing a drawing. In the field, high quality black and white photographs, scale drawings and wax rubbings recorded this sculpture. Publication illustrations were prepared by Ian Scott (formerly Chief Illustrator of the RCAHMS), and examined by Ian Fisher.

The Seljalands inventory of cross sculpture provides a model for recording and illustrating the southern Iceland corpus of rock-cut cross sculpture. This method is illustrated for Seljalandsheilar cross B13 (see illustrations 7.8-13 for scaled rubbing, photographs, field illustration, and final drawing).

The method described above is modelled upon that practiced by the RCAHMS. Rubbings and photographs of the Seljalands cross sculpture were taken, with the ultimate aim of producing a final ink drawing. In producing these drawings, the rubbing was used

27 Two photographs (with different lighting) for each cross.
Illustr 7.7 Preliminary illustrations of cross sculpture form the Seljalandshellar caves. Taken from Hjartarson et al.'s catalogue (Hjartarson et al. 1991: 248).
Illustr 7.8 Rubbing of Seljalandsheall cross B13.

Illustr 7.10 & 7.11 Photographs of Seljalandsheall cross B13.

for outline and size, while details were drawn in from photographs; field drawings were used to overcome ambiguities in the rubbings and photographs. The final illustrations were then rigorously examined (by Ian Scott and myself), in order to resolve potential difficulties and highlight real (rather than imagined) problem areas inherent in the sculpture.

As mentioned above, emphasis was placed upon producing a drawing. An alternate approach would give prominence to creating a photographic record. Photography, however, can be deceptive – casting detail into shadow and obscuring depth of features. Leslie Alcock, for instance, does not accept the "common belief that a photograph is ... totally objective. ... looking at stones in the field and in museums reveals the large part which lighting plays in determining what may (or may not) be seen and therefore photographed" (Alcock 1998: 533).

Scott, on the other hand, challenges the excessive detail inherent in the technique, leading him to question "the value of presenting a photograph in demonstration of an argument" (Scott 1997: 129). To elaborate the point, a drawing is an argument – and a good drawing conveys both confidence and uncertainty in aspects of the sculpture that it illustrates. Scott writes that "Objectivity and accuracy are admirable goals but only subjective, selective interpretation will clear away from this basic record some of the intrusive and confusing elements, and allow reconstructions to be suggested" (Scott 1996: 4). Such a subjective and selective interpretation may also convey difficulties. Scott stresses this:

A considered, studied drawing will present ambiguities, but these can be assumed to be intentional ... drawings can, and should, stimulate ... questioning and not simply be an inert record of the bits and pieces: they should provide the means for a paper reconstruction and analysis. (Scott 1997: 129-32)

In illustrating cross sculpture then, the aim is not to produce an objective record (if this is even achievable), but rather to selectively and convincingly convey an argument for what is observed.

Taking up Scott's mandate to illustrate, an immediate concern is which method to adopt. Graham Ritchie provides a history of illustration for Meigle 10, a now-lost
Perthshire carved stone slab. Surveying drawings from 1726 to 1903, the range of technique and ability become clear – and the modern RCAHMS policy of stipple drawing accompanied by photograph demonstrates clear advantages (Ritchie 1997). Stipple drawing is not the only method used today, however, for two techniques dominate: line and stipple.

Line drawings are often presented by default in simple illustration – this may be because the technique is used for archaeological field plans and thus applied automatically rather than as a deliberate choice. Intelligent use of line drawing has its advocates. Alcock, for instance, favours the use of line drawings, suggesting that line is less subjective than stipple (Alcock 1998: 533-4). Scott challenges the point with the counter that “line is surely the uncompromising statement of belief, ignoring the third dimension and sharpening the perception” (Scott in press).

Scott is a proponent of the stipple technique. He cites the technique’s “comparative lack of an individual ‘handwriting’ character (usually detectable in other styles of drawing)” (Scott 1997: 131) and thus how stipple allows a uniform repetition of style by others. He also notes how the technique conveys “the third dimension without giving it an affected texture when you are obliged to use only black ink for the sake of clarity in reproduction and longevity in the archive” (Scott 1997: 131). Furthermore, Scott adds that stipple, unlike other techniques, is amenable to additions and corrections – and drawings may always be improved (Scott 1996: 10; 1997: 131).

In illustrating the Seljalands cross sculpture, the stipple drawing technique was adopted. The results presented in this chapter encourage using stipple to illustrate Iceland’s corpus of cross sculpture.

Illustrations of in situ sculpture, however, need to be physically located, both in order to clearly identify which sculpture is under discussion, and to study spatial relationships (e.g. to floor level(s)). Each individual Seljalands cross was identified on

28 I have used the technique myself in a preliminary discussion of southern Iceland cross sculpture (Ahronson 2000).
cave plans for Kverkarhellir cave and the Seljalandshellar cave group and height above ground level of the cross-base was tabulated.

Practical limitations at times became manifest. Seljalandshellar crosses B10 and B11 were photographed only once – their height above ground level (2.70+ m) meant that ground-level lighting could not be varied effectively. B11 was problematic – this cross was clearly perceived upon the cave wall but ambiguous in detail. Thus light stipple outlines the cross-form, conveying the difficulties inherent in this sculpture.

Two crosses were illustrated a second time using an alternate methodology. Additional drawings of Seljalandshellar crosses B9 and B10 (illustration 7.54) were made from photograph (therefore not to scale) in order to contextualise the sculpture in relation to the surrounding wall surface.

As mentioned earlier, the methods advocated for the Seljaland cross sculpture may be applied to other rock-cut crosses. Preliminary illustrations were presented elsewhere for crosses from Heimaklettur in the Westmen Islands and Skollhólahellir on Ás farm in Rangárvallasýsla (Ahronson 2000; Hjartarson & Gísladóttir 1983). The illustration 7.55 drawings were made from photograph only and demonstrate how the Seljaland methodology may be applied retrospectively. These illustrations are acceptable as work-in-progress but, before full incorporation into the corpus alongside the Seljaland sculpture, they will need re-examination of details and a similar standard of accompanying photographs.

The detailed recording and illustration of Seljaland cross sculpture is central to all three hypotheses proposed. The next section presents these illustrations and explores parallels for the sculpture.

Results and discussion
Cross sculpture in the Seljaland caves is found at two sites: the Seljalandshellar cave group and Kverkarhellir cave. This section illustrates 23 rock-cut crosses (19 large and four mid-sized) from the Seljalandshellar cave group as well as a single cross from Kverkarhellir cave. Photographs of each illustrated cross (except AX2) accompany the

The Kverkarhellir plan was drawn from 2001 survey, whereas the Seljalandshellar plan is drawn from a simple scaled drawing in Manngerðir Hellar (Hjartarson et al. 1991: 246).
stipple drawings and include a 0.20 m scale. A further four crosses are illustrated, three from Hetta, on Heimaklettur in the Westmen Islands, and one from Skollihólahellir cave, on Ás farm in Rangárvallasýsla. As noted earlier, three hypotheses are considered when interpreting the data:

- The Icelandic tradition of rock-cut simple crosses (represented by examples from the Seljaland caves) is contemporary with seventeenth- and eighteenth-century inscriptions on cave walls.

- The Icelandic tradition of rock-cut simple crosses (represented by the examples from the Seljaland caves) is similar to the earliest stratum of Norse and Hiberno-Norse Christian sculpture in Britain, Ireland and Scandinavia.

- The Icelandic tradition of rock-cut simple crosses (represented by the examples from the Seljaland caves) is similar to the cross sculpture of early Christian Britain and Ireland (represented by the corpus from Scotland’s western Highlands and Islands).

<table>
<thead>
<tr>
<th>Cross</th>
<th>Height (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1.40</td>
</tr>
<tr>
<td>A2</td>
<td>1.25</td>
</tr>
<tr>
<td>A/B3</td>
<td>2.18 (on horizontal ledge)</td>
</tr>
<tr>
<td>AX2 (4 crosses)</td>
<td>1.40</td>
</tr>
<tr>
<td>B4</td>
<td>1.35</td>
</tr>
<tr>
<td>B5</td>
<td>1.43</td>
</tr>
<tr>
<td>B6</td>
<td>1.15</td>
</tr>
<tr>
<td>B7</td>
<td>1.07</td>
</tr>
<tr>
<td>B8</td>
<td>0.87</td>
</tr>
<tr>
<td>B9</td>
<td>1.18</td>
</tr>
<tr>
<td>B10</td>
<td>2.70</td>
</tr>
<tr>
<td>B11</td>
<td>2.90</td>
</tr>
<tr>
<td>B12</td>
<td>1.33</td>
</tr>
<tr>
<td>B13</td>
<td>1.52</td>
</tr>
<tr>
<td>B14</td>
<td>1.02</td>
</tr>
<tr>
<td>B15</td>
<td>1.30</td>
</tr>
<tr>
<td>B16</td>
<td>0.84</td>
</tr>
<tr>
<td>C17</td>
<td>0.94</td>
</tr>
<tr>
<td>C18</td>
<td>0.70</td>
</tr>
<tr>
<td>C19</td>
<td>0.79</td>
</tr>
</tbody>
</table>

Table 7.1 Height of each Seljalandsshellar cross above ground level (measured in August 2002).
Illustr 7.14 Kverkarhellir and SeljalandsHELLAR plans. The crosshair at the eastern wall of the Kverkarhellir cave mouth indicates the site of cross KV, at a height of 1.59 m above floor level. The numbers on the SeljalandsHELLAR plan indicate crosses SLJ A1-C19 as well as the four mid-sized crosses represented by AX2. The initial letter A, B, or C indicates within which chamber the cross is located – the southeastern cave chamber (the gapi) is indicated by ‘A’, the middle chamber ‘B’, and the northwestern chamber (the stüka) ‘C’. The height of each SeljalandsHELLAR cross is given on table 7.1. Drawn by Ian Scott.

Illustr 7.17 Illustrations of crosses C17-C19 and KV. Scale 1:10. Drawn by Ian Scott.
Illustr 7.22 Cross A/B3 (on horizontal ledge between chambers A and B).

Illustr 7.23 Cross A/B3 (on horizontal ledge between chambers A and B).

Illustr 7.24 Cross B4.

Illustr 7.25 Cross B4.
Illustr 7.42 Cross B14.

Illustr 7.43 Cross B14.

Illustr 7.44 Cross B15.

Illustr 7.45 Cross B15.
Illustr 7.54 Crosses B9 (left) and B10 (right), with surrounding wall surfaces. Not to scale. Drawn by Ian Scott.

Illustr 7.55 Illustrations of crosses VE1 (Papakross), VE2, VE3, and SK1. Scale 1:10. Drawn by Ian Scott.
Illustr 7.56 The Hetta plan (above) locates the three Westmen Island crosses: VE1 (Papakross), VE2, and VE3. Scale 1:10000. The Skollholahellir plan locates the largest cross found there, SK1. Scale 1:400. Both plans drawn by Ian Scott.
The RCAHMS introduced a composite system of classification in their *Inventory of Iona* and Fisher classifies his material according to their system. For simple cross sculpture, carving technique (e.g. *incised*, *sunken*, *relief*) and cross-form (e.g. *linear*, *outline*) are combined (Fisher 2001: 11-12). The Seljaland and additional southern Iceland material (illustrated above) has been similarly classified into *incised linear* and *sunken linear*, with brackets indicating uncertainty and square brackets separating out the additional Vestmannaeyjar [VE] and Skollhólahellir [SK] sculpture:

- **Incised linear** AX2, A/B3, (B4), B5, B7, B9, B12, B15, B16, C17, C18, C19, KV, [VE3], [SK1]
- **Sunken linear** A1, A2, B6, B8, B10, B11, B13, (B14), [VE1], [VE2]

In order to further develop interpretation, the Seljaland corpus (with the additional contextual detail of the Hetta and Skollhólahellir crosses) may be additionally classified into *overlapping* categories as follows:

- **Latin cross** AX2, A/B3, B4, B5, B6, B7, (B8), B9, B10, B11, B12, B13, (B14), B15, B16, (C17), C18, C19, KV, [VE1], [VE2], [VE3], [SK1]
- **Double armed** A1, A2
- **Bold v-cut** (B4), B9, B12, B15, [SK1]
- **Expanded terminal (incised)** AX2(4), (A/B3), B4, B7, [VE3], [SK1]
- **Expanded terminal (sunken)** B6, B10, B13, [VE1], ([VE2])
- **Pitted terminals** AX2(1), AX2(2), (A/B3), B5
- **Sinkings associated with cross A/B3**
- **Pointed base** AX2(3), B7, B9, B12, B15, KV
- **Socket base** B10, C18, C19
- **Foot base** A1, A2
- **Oval head** KV

Parallels for the Seljaland, Westmen Island and Skollhólahellir sculpture may be identified in other Icelandic rock-cut crosses. The simple *Latin* cross-form dominates. The unusual pairing of opposite 'footed' crosses at Seljalandsheilar (A1 and A2) may be compared to what appears to be two similarly paired 'footed' cross-forms from Berustaðahellir, Rangárvallasýsla (Hjartarson et al. 1991: 120). Furthermore, the *sunken* cross-form (so common at Seljaland), may also be identified in two Hetta crosses (VE1 and VE2), as well as two *krossaphreningar* from Efri-Gegnishólar and Árbæjarhelli (Hjartarson et al. 1991: 30, 87, 195; Holt & Guðmundsson 1980: 9). Lastly, the *bold v-"
CHAPTER SEVEN: The crosses of a desert place?

cut of several Seljalandshellar crosses may be identified in other Icelandic cave sculpture, such as that illustrated from Skollhólahellir (SK1). The Seljaland material then, is comparable with sculpture from other sites in southern Iceland.

Seventeenth- and eighteenth-century sculpture?

Whether seventeenth- and eighteenth-century inscriptions respect or are respected by cross sculpture may suggest that these inscriptions are predated by or predate the crosses. This first hypothesis draws upon Matthías Þórarson’s bold argument that southern Iceland’s cave crosses are contemporary with these modern inscriptions.

A close relationship between inscriptions and cross sculpture is difficult to establish, however, in order to illustrate his ideas, Þórarson described inscriptions in Skollhólahellir cave. These Skollhólahellir examples were used in formulating Þórarson’s arguments, thus exploring them is a most appropriate test of the hypothesis. Þórarson writes:

Í suðvesturhlutanum er á norðurveggnunum, rétt fyrir innan aðfellinn, ýmislegt krot, upphafsstafir og ártöld: A 1780, 1794, 1801, 1802 o.fl. (Þórarson 1931: 36)

In the southwestern part, on the north wall, right next to the entrance, are various scrawls, capital letters and dates: A 1780, 1794, 1801, 1802 etc.

These markings are located on a smoothed area beneath two incised expanded terminal crosses30. Only with difficulty can the two crosses be seen to respect the inscriptions. More probable is the suggestion that the inscriptions respect the sculpture, with the cross-bases effectively limiting the smoothed area of inscription. These crosses and inscriptions are illustrated below.

Whatever the case may be, it must be said that this first hypothesis, of seventeenth- and eighteenth-century cross sculpture in caves, does not have particularly strong data to support it. Certainly, this scenario may be imagined, but unless a convincing data set is brought to bear, special pleading must be adopted to explain the sculptural coherency between supposedly modern crosses from a number of sites in southern Iceland (e.g. Seljalang, Skollhólahellir, the Westmen Islands, etc.). Furthermore, in formulating the

30 The larger one illustrated here as SK1 while the smaller has been illustrated elsewhere (Hjartarson & Gísladóttir 1983: 130; Ahronson 2000: 119).
Illustr 7.57 Wall-markings in Skollhólahellir. Drawn by Árni Hjartarson in 1982. Taken from their study of Skollhólahellir cave (Hjartarson & Gisladóttir 1983: 130).
ideas behind the hypothesis tested here, Þórdarson (the professional archaeologist) appears particularly hostile to Einar Benediktsson (the poet and businessman) and Benediktsson’s suggestions of early Irish hands responsible for the cross sculpture from caves. Þórdarson’s language is dismissive of Benediktsson’s ideas, both in vocabulary (fjóshellinum / cowshed-cave) and in tone (Þórdarson 1931: 62). Thus Þórdarson’s own support for an otherwise weak argument may be characterised as a reaction against Benediktsson’s interpretive excesses – and Benediktsson did go too far. For instance, he writes of “>>krossmarki allstóru<< á hellsgaflinum innst, sem hann [Benediktsson] nefnir i því sambandi kórðil... / ‘a rather large cross-mark’ in the innermost corner, which he [Benediktsson] refers to as choir panelling [...]” (Þórdarson 1931: 57)). In short then, this simple test of the first hypothesis demonstrates a lack of support for the idea of cross sculpture as being contemporary with seventeenth- and eighteenth-century inscriptions.

Norse and Hiberno-Norse similarities?
A comparative methodology is used to assess whether the Seljaland corpus of cross sculpture is similar to the earliest stratum of Norse and Hiberno-Norse Christian sculpture in Britain, Ireland and Scandinavia. In other words, typological features and context are compared between the Seljaland crosses and other sculpture from the Norse and Hiberno-Norse worlds.

Iceland
The Seljaland corpus exhibits a number of similarities with rock-cut cross sculpture from other cave and alcove contexts in Iceland (discussed above). The similarities between ‘footed’, sunken and bold v-cut types suggest that the cave and alcove rock-cut crosses form a coherent (yet undated) tradition.

As mentioned earlier, recent investigations have unearthed three standing stones from Þórarinnstaður (eastern Iceland) with an eleventh-century association. These crosses may be paralleled with a late tenth-century cross-arm from Stöng (southern Iceland) and undated fragment from Viðey (southwest Iceland) (Kristjánsdóttir 2003: 123-4). Furthermore, Fisher identifies near-perfect parallels to this type from the
Shetland islands of Yell and Unst as well as from the Stavanger area of Norway (Fisher forthcoming; 2002: 55-6). This cross-form is characterised by “a wedge-shaped top arm and short straight side-arms” (Fisher forthcoming) and in some cases “their top arms are asymmetrical. This feature, which at first seems accidental, is repeated in other stones along with expanded shafts, and two have central crosslets” (Fisher forthcoming). The rock-cut Seljaland corpus does not share features with this standing stone type from Þórarinnstaður/Unst and Yell/Stavanger, though the simple incised pitted terminal cross-form of some Seljaland Latin crosses (e.g. B5, A/B3) may have similarities with the central Greek crosslets just mentioned (Birkeli 1973: 151-6; Fisher 2001: 30A, B; 2002: 57). Care must be taken, however, when comparing these simplest of incised crosses – especially when the contexts are not similar (i.e. cave walls rather than as decoration to standing crosses).

Faroe Islands

Fisher has studied the Faroese corpus of cross-marked stones and has suggested that the Seljaland sunken cross-form seen in B10 and B13 may be compared to the Skúvøy group of shallow sunken crosses (with slight curving out at the ends of the arms). However, Fisher also notes that this comparison is far from satisfactory, as the Skúvøy examples are very shallow indeed and an unusual variant of the sunken form (Fisher, pers. comm.). Fisher describes the Skúvøy shallow sunken type:

This group comprises three basalt slabs or boulders bearing very shallow sunken Latin crosses … The technique [by which they were sculpted], adapted to a coarse material full of gas-bubbles, began with an incised outline whose centre was then channelled with a rounded object, perhaps a pebble. The carving was defined by differences of colour and texture due to the polishing of the resultant round-bottomed grooves, rather than by light and shade. (Fisher forthcoming)

This Faroese type, then, makes an unconvincing comparison to the Seljaland material.

Scandinavia

Crosses may be identified on approximately half of the surviving corpus of Scandinavian rune-stones – stones that are understood to reflect the change from pagan to Christian
burial habits. The earliest of these stones are dated to c. AD 975-1050 and incorporate a simple cross and restrained runic band – both elaborated in later stones ((Lager 2000; Sawyer 2000). The association of runic band with cross is not paralleled in the Seljaland corpus, nor do cross-forms appear to be comparable. For instance, Swedish Småländ stone Sm69 seems to illustrate an equal-armed Greek sunken or outline form (the illustration is unclear which) (Lager 2000: 121). Further study of the rune-stone corpus would be necessary to sustain the initial analysis that the rune-stone cross-forms are not comparable to the Seljaland crosses. However, Norwegian cross-slabs with runic bands are illustrated in Birkeli’s study (Birkeli 1973). Three of these cross-forms, with slight curving out of the arms (one with pointed base) show a slight but unconvincing similarity in type, and they are of outline (e.g. illustration 7.61) rather than incised (e.g. illustrations 7.58-9) or sunken form (e.g. illustration 7.60).

Britain and Ireland

Identifying Norse and Hiberno-Norse parallels from Britain and Ireland is problematic: incised and sunken crosses are an early Christian tradition that endures into the Viking Age, though becoming generally more elaborate in this later period. In other words, the dating of simple rock-cut crosses is flexible – the majority of sculpture probably originates in the early Christian period, though individual crosses may date from the Viking Age.

With reference to the corpus from western Scotland, Fisher summarises current thinking:

> The chronology of early sculpture in Britain and Ireland is still controversial, despite much recent research, and there are few fixed points. This is true even of Anglo-Saxon England, Wales and Ireland, where there are much larger groups of ornamented sculpture to facilitate art-historical comparisons, and some inscriptions naming identifiable persons.

> …In western Scotland, the few surviving inscriptions lack the genealogical content required to identify individuals, and epigraphic dating can only be approximate. Historical context may help to date some of the more distinctive monuments, and although the Viking raids of about 800 are no longer thought to have brought an end to monastic life at Iona, the major crosses there are so exceptional that an earlier origin seems probable. The main tool for dating remains comparative study of other areas where similar monuments occur in a comparable historical setting… (Fisher 2001: 12)
The Seljaland corpus may be divided into two general categories: incised linear crosses and sunken linear crosses. Fisher provides useful summaries of each of these cross-forms within an Insular context, again with reference to the western Scotland sculpture:

Linear incised crosses. [Illustrations 7.58-9] These simple crosses are widely distributed, occurring on about a quarter of the carved stones in the area [western Scotland], sometimes in combination with other cross-types, and on the walls of caves. They are also numerous in western Iceland and the Isle of Man, and in Wales where Nash-Williams suggested a 7th- to 9th-century date-bracket. Epigraphic evidence is one of the main supports for the proposed dating, and they were often used in Ireland and Wales as initial crosses on inscriptions, but the Mail-Phatraic stone from Iona is one of only two Scottish examples of this practice. ...[This form is] found both with plain terminals, usually rounded, and with expanded or otherwise elaborated ones.

...Bases are rare, although in crosses with elaborated terminals the foot of the shaft is often left plain or tapered. The small cross-bar at the foot of the shaft on the Soroby slab, which may represent the foot-rest of Christ’s cross, is also found on two stones in Knapdale (Achadh na Cille; Ellary). The slab on Eithne’s Grave on Eileach an Naoimh has a narrow spike below the lower terminal... (Fisher 2001: 12)

Sunken crosses. [Illustration 7.60] About twenty carved stones in the area [western Scotland] bear crosses defined by straight-sided grooves of rectangular section, characteristic examples being on Iona and Tiree. Both equal-armed and Latin crosses are found, and the terminals are not normally elaborated, although the arms are sometimes expanded. Most of these carvings are of modest scale, comparable with many linear crosses, but large sunken crosses are carved on pillars on Jura and at Kilfinan.

...This type of technique does not appear to be usual in Ireland, although an example with barred terminals is found in Donegal and has parallels in eastern Scotland. A small slab closely paralleling the Iona stones comes from the 7th-century monastic site on Coquet Island (Northumberland) (Fisher 2001: 13)

The incised linear and sunken linear forms may therefore be characterised as representing an early Christian style of sculpture, productive in Britain and Ireland in the seventh and eighth centuries but continuing into the early Viking Age (ninth century). The question of Norse and Hiberno-Norse parallels from the Insular world thus becomes difficult to assess, as the sculpture chronologies generally lack the resolution to separate out the ninth century. The extracts from Fisher demonstrate, however, that these two cross-form types should be understood as primarily early Christian styles – and that the bulk of the sculpture dates to this period while isolated examples are thought to continue later.
For this reason, the Seljaland corpus will be compared in detail with the early Christian sculpture from Britain and Ireland in assessing the third hypothesis — and both the second and third hypotheses set against each other. Should only isolated parallels be identified with the Seljaland sculpture, then this would be most similar to the Norse and Hiberno-Norse phase of early Christian sculpture — especially if features from elsewhere in the Norse world may be identified.

Early Christian similarities?
As with the second hypothesis, a comparative methodology is used to assess whether the Seljaland corpus of cross sculpture is similar to the cross sculpture of early Christian Britain and Ireland (represented by the corpus from Scotland’s western Highlands and Islands). Fisher’s inventory of sculpture from the western Highlands and Islands is used in testing this hypothesis because it is the most detailed corpus available. Recent work in Brittany and western Ireland has produced promising early results (Davies et al. 2000; Herity et al. 1997), though the kind of comprehensive discussion which Fisher provides has yet to be realised. The formulation of our test, then, is indeed influenced by the strength of previous research in the field.

Generalised similarities may be noted between the expanded terminal type (both incised and sunken) from southern Iceland and Campbell’s expanded terminal type from Argyll (discussed earlier). Previous study has highlighted three such crosses (VE1, VE2 and VE3) from sheltered alcoves of the exposed cliff Heimaklettur on the Westmen Islands. The largest cross, carved into its own alcove, is found alongside hand- and footholds cut into soft tuff, or palagonite. The Westmen Islands lie off the southern Iceland coast, opposite the region in which the artificial caves are found. A further two crosses are cut into a soft sandstone wall of Skollhólahellir cave in mainland southern Iceland (one of these is illustrated as SK1). Simple incised crosses also decorate the walls of Skollhólahellir and two are illustrated elsewhere (Ahronson 2000: 121).

On typological and contextual grounds, specific comparisons have been drawn between the Icelandic expanded terminal crosses and the Argyll expanded terminal type (Ahronson 2000), a style linked to the Columban familia of monastic houses of the seventh and eighth centuries (Campbell 1987: 112; Ahronson 2000: 119). Several of
Scotland’s rock-cut early Christian crosses, including a number of the Agyll expanded terminal crosses, are found in caves, sites which Campbell suggests as “retreats or deserta for anchorites or penitents” (Campbell 1987: 108-9). A monastic association for Scotland’s cross-marked cave sites is not new. In 1859, James Young Simpson commented on the ‘habit’ of early Christian ascetics, such as the late ninth-century “Caencombrae of the Caves of Inis-bo-fine (AFM c. AD 898)”, to “[betake] themselves to caves, natural or artificial, using them for their houses and oratories” (Simpson 1859: 522).

However, though the comparable cave locations and expanded terminal similarities just discussed may be intriguing, interpretations must be preliminary when discussion is based upon only five crosses from two sites (Ahronson 2000). The Seljaland corpus, in contrast to these isolated examples, is robust and illustrated in the present chapter in sufficient detail to permit sustained assessment of similarities to the western Scotland crosses. 24 crosses from Seljaland are illustrated in this chapter and they are contextualised with other Icelandic sites. Furthermore, Ian Fisher has examined the Seljaland sculpture and pointed to a number of similarities with the western Scotland crosses (Fisher, pers. comm.). The following paragraphs discuss these similarities, largely with reference to comparative illustrations from Fisher’s *Early Medieval Sculpture*, which are reproduced as illustrations 7.58-60.

Firstly, the expanded terminal style identified at the Hetta and Skollhólahellir sites is also seen at Seljaland, in both incised and sunken variants. More significant, however, are the host of additional features that the Seljaland crosses share with the western Scotland corpus. For instance, the bold v-cut and pointed base of a number of Seljaland examples are similar to a cross cut into the King’s Cave on Arran (Fisher 2001: 31MM); the bold v-cut is also seen in other carvings, such as the rock-cut Aird a’Mhòrain cross.
ILLUS 7.58 Taken from Fisher’s catalogue (2001: 30). Note Fisher’s pagination when referring to illustrations from text (e.g. ‘Fisher 2001: 30B’ is located on this page (page 30) and labelled B).

5 LINEAR CROSSES (3) (scale 1:20); see also fig. 94 C
A. J. Elieach an Naolomh (A5, 354); B. C. St Columba’s Cave (A7, 94);
D. Dunadd (A7, 281); E. Blagh na b-Uamha, Rum (W26);
F. A’ Chill, Canna (W28); G. Barnakill (A7, 14); H. K. P. S. Iona (A4);
J. Barnakill (A7, 13); L. Holy Stone, Gigha (A1, 306). M. Kildonnan, Iglig (W25);
N. EE. Great Cumbrae (W5); R. Kilmichael (W11);
T. Cladh Beag, Hyndsh, Tiree (A3, 276); U. Ardnadam (A7, 5); V. Boroy (W50);
W. GG. Cladh a’ Bhile (A7, 20); X. St Kilda (W54);
Y. ZZ. Pabbay, Barra (W40); A.t. Taynish Island (A7, 31);
EE. Eilean Mòr (A7, 33); CC. Inverness House (A7, 44);
DD. Inchmarnock (WT); HH. Lochead (A7, 85)

Illustr 7.58 Taken from Fisher’s catalogue (2001: 30). Note Fisher’s pagination when referring to illustrations from text (e.g. ‘Fisher 2001: 30B’ is located on this page (page 30) and labelled B).
Illustr 7.59 Taken from Fisher’s catalogue (2001: 31). Note Fisher’s pagination when referring to illustrations from text (e.g. ‘Fisher 2001: 31MM’ is located on this page (page 31) and labelled MM).
Illustr 7.60 Taken from Fisher's catalogue (2001: 32). Note Fisher's pagination when referring to illustrations from text (e.g. 'Fisher 2001: 32R(2)' is located on this page (page 32) and labelled R(2)).
Illustr 7.61 Taken from Fisher’s catalogue (2001: 33). Note Fisher’s pagination when referring to illustrations from text (e.g. ‘Fisher 2001: 33U(17)’ is located on this page (page 33) and labelled U(17)).
CHAPTER SEVEN: The crosses of a desert place? 258

from North Uist, marking a well and landing place (Fisher 2001: 31N)³¹. Furthermore, the pointed base form is repeated on a stone from Cladh a'Bhile, Ellary, though this comparison is problematic as the Cladh a'Bhile carving is an outline cross (Fisher 2001: 33U(17))³². A more convincing comparison is with the pointed base on one face of another stone from Cladh a'Bhile (Fisher 2001: 31E(13)b).

Pitted terminals, seen on a handful of Seljaland crosses may also be identified on ‘Eithne’s Grave’ from Eileach an Naoimh (Fisher 2001: 30A) as well as on two crosses from St Columba’s Cave (Ellary) (Fisher 2001: 30B, C; Tolan-Smith 2001: 28). Furthermore, the armpit sinkings associated with one of the St Columba’s Cave crosses may be compared to the Seljaland cross with pitted terminals and associated sinkings.

The spiked socket base of three Seljaland crosses is an unusual feature, conceivably inspired by a metalwork exemplar or processional crosses such as the Rupertus Cross (Webster & Backhouse 1991: 170-3; Fisher 2001: 172). Alternatively, Fisher has noted a small cross-bar at the foot of the cross-shaft at Cladh a'Bhile (Fisher 2001: 31Ec) and Achadh na Cille (Fisher 2001: 31JJ) as potentially representing the foot-rest of Christ’s cross (Fisher 2001: 12). The Seljaland spiked socket bases may be related to either of these suggestions.

Another unusual feature is the oval-headed Kverkarhellir cross. The cross-head has some similarity to a small outline oval head cross from St Molaise’s Table on Holy Island (Arran) (Fisher 2001: 63B), though this should not be overly stressed.

Turning to the sunken cross-form, a number of similar examples may be identified for this predominantly western Scotland type. For instance, a cross from the isolated monastic site on North Rona ³³ (Fisher 2001: 32R(2)) is of sunken form and convincingly

³¹ A deep cut may also be seen in carvings from Kilmun (Fisher 2001: 31M), Kirkapoll (Tiree) (Fisher 2001: 31N), and Kilfinan (Cowal) (Fisher 2001: 32V(1)), though this last is more sunken.

³² This carving may predate the eighth century (Fisher, pers. comm.).

³³ See illustration 7.62 for the location of North Rona. Fisher provides a good commentary on the island: ‘Rona of the ocean’, as it was designated in the 16th century, lies 72km NNE of the Butt of Lewis and about the same distance NW of Cape Wrath, and 17km E of the rock of Sula Sgeir. The main part measures 1.6km from E to W by 0.8km, with a low promontory extending almost 1km to the N.

...Monro noted the existence of ‘St Ronan’s chapell’, which in 1549 was being used for burials, and later writers recounted the legend, current in Lewis tradition, of Ronan’s departure from that island to live as a hermit on Rona. Although the island probably takes its name from the Norse Hraun-ey (‘rough island’) rather than from the saint, there are important remains of Early Christian occupation. (Fisher 2001: 114)
Illustr 7.62 North Rona (55) and St Molaise’s Cave (1) are located on this distribution map of early medieval sculpture in the west Highlands and Islands. Taken from Fisher’s study (Fisher 2001: x).
Holy Island, Arran (No.1)
St Molaise's Cave
(scale 1:150, details 1:15)

Illustr 7.63 St Molaise's Cave, Arran. Taken from Fisher's catalogue (Fisher 2001: 61).
similar to B6. Furthermore, the Seljaland examples of this type see generalised comparison to the *sunken* crosses from St Molaise's Cave on Holy Island (Arran) (Fisher 2001: 32AA). Additionally, the high central position of the *sunken* B10 cross in Seljalandshellar cave B is paralleled by the high central position of a *sunken* cross in St Molaise’s Cave (Fisher 2001: 61B). Further afield, *sunken* forms with *socket* (or metalwork-type) bases from the Breton collection of early Christian sculpture share some affinities with the Seljaland cross B10. Specifically, the seventh- to tenth-century *Rimoette* cross may be a good comparison (though fuller illustration of the cross is necessary to establish its *sunken* character) (Davies et al. 2000: 244), while the similarly dated *croux Prost* 'sunken' form also features a *socket base* (Davies et al. 2000: 224).

The two *double armed* and 'footed' *base* crosses from Seljaland appear unique, though (as noted earlier) some comparison may be made with what appears to be similarly paired 'footed' cross-forms from Berustaðahellir cave. Limited comparison of *double armed* examples may be made to two *incised* crosses from Cladh a'Bhile and Lochead (Fisher 2001: 30GG(12)b, HH(1)), though this is far from convincing. Comparison may also be made to the Breton *Langombrac'h* cross, with its *sunken* form and *double arms* (Davies et al. 2000: 202). This Breton cross, however, is defined by arcs whereas the Seljaland examples are not – thus limiting the value of this comparison. Another Breton *sunken* cross, that which fronts the *Crac'h* stone, is a stronger comparison with its multiple arms and *footed base* (Davies et al. 2000: 174). Returning to the western Scotland corpus, the *sunken* 'footed' form may also be identified at St Molaise's Cave – though not the *double arms* (Fisher 2001: 61C).

In assessing the two final hypotheses then, a host of parallels for the Seljaland sculpture are identifiable from across the Insular world (if Brittany may be included as such). Of the Insular sculpture, that from western Scotland has been the focus for comparison and the analysis in this chapter points to particular similarities between the Seljaland and western Scotland material. For instance, Insular crosses of *sunken* form are concentrated in Scotland, with roughly twenty examples illustrated in Fisher’s corpus, while seven clear examples of the type survive at Seljaland. Prominence of the *sunken* form in both western Scotland and the Seljaland corpus is suggestive of particular
connections between the cross sculpture of southern Iceland and western Scotland, as are the numerous shared features discussed above (e.g. expanded terminals, bold v-cuts, sinkings, etc). Investigating whether the western Scotland corpus (rather than Irish, Anglo-Saxon, etc.) is indeed the best match to the Seljaland sculpture would be a useful future study.

Are the Seljaland crosses most similar to the Norse and Hiberno-Norse crosses of Britain and Ireland, or to the early Christian sculpture? At present, chronological resolution makes this question difficult to resolve, though the lack of clear Scandinavian or Faroese features in the Seljaland corpus favours the early Christian hypothesis: the bulk of early Christian sculpture from western Scotland is understood to predate the Viking Age, and the Seljaland corpus finds numerous convincing similarities throughout this Scottish material. Correspondingly, the third hypothesis of early Christian Insular similarities for the Seljaland corpus is favoured, though the second hypothesis of Insular Norse and Hiberno-Norse affinities may also be supported to a lesser degree. In other words, the simplest and most convincing hypothesis is that the cross sculpture from Seljaland is similar to the early Christian sculpture of western Scotland.

Conclusions and further problems
This chapter has identified Iceland’s cave and alcove crosses as forming a coherent art-historical tradition. In order to contextualise this tradition, the writings of some of Iceland’s prominent archaeological workers were reviewed and the spread of Christian sculptural forms to northern and Insular Europe charted in order to allow assessment of historically plausible routes for the appearance of these forms in Iceland. The study of Seljaland sculpture offered the opportunity to outline a methodology for recording and illustrating this largely overlooked body of monuments, based upon the methods developed by the Royal Commission on the Ancient and Historical Monuments of

34 Conceivably influenced by the patriarchal crosses of Byzantine art?
35 For instance, there is no significant correspondence between the Seljaland sculpture and the outline crosses included in Birkeli’s Norwegian corpus.
36 The Faroese technique of shallow pecking, for instance, is absent in the Seljaland examples.
CHAPTER SEVEN: The crosses of a desert place?

Scotland. It is hoped that this methodology, or one like it, will be applied to record the other in situ sculpture collections from southern Iceland.

Three hypotheses were assessed in order to explore where the Seljalands rock-cut crosses are paralleled. A seventeenth- or eighteenth-century origin for the sculpture (suggested by Þórðarson) must remain a case unproven: where it could be tested, it appeared unlikely. Comparison of the Seljalands material to the earliest Christian sculpture of Viking Age Scandinavia also did not identify convincing examples of shared features, though the hypothesis of similarities to Norse and Hiberno-Norse period crosses from Britain and Ireland finds some support. The favoured hypothesis, however, points to parallels for the Seljalands sculpture in the early Christian crosses of Britain and Ireland – a host of convincing similarities were identified in the recently published corpus from western Scotland.

The limitations of these conclusions lie in the comparative methodology used. Date brackets were obtained for the Scottish sculpture in many cases through comparison to cross-forms from Ireland and Wales, which have been dated in those places by epigraphic arguments. For instance, the incised linear cross-form has in this way been given a seventh- to ninth-century date-bracket. Some support in this chapter is therefore given to the hypothesis of Viking Age Insular similarities, as studies of crosses from western Scotland inherently lack the resolution to separate out the early Christian sculpture of the seventh and eighth centuries from that which continued into the Viking Age, though most (but not all) early Christian sculpture from Scotland probably predates the Viking Age. The Ionan example illustrates this last point, where monastic life and sculptural traditions continued in some form into the Viking Age – but certainly not on the scale of previous centuries. Thus, in assessing the different hypotheses, isolated similarities in the Seljalands corpus would have strengthened the Viking Age hypothesis (especially if Scandinavian features were also identified), whereas numerous sustained similarities between the Seljalands corpus and the crosses of western Scotland would have favoured the hypothesis that predates the Viking Age. In studying the Seljalands crosses, such numerous sustained typological and contextual similarities were identified, thus supporting the idea of seventh- and eighth-century affinities.
CHAPTER SEVEN: The crosses of a desert place?

Having established these early Christian similarities, how should they be explained (i.e. by which mechanism could they have been brought about)? One way to understand these sculptural affinities is to propose a direct connection between the early Christian sculpture of western Scotland and the Seljaland corpus. Chapter Five presented the arguments for a c. AD 800 construction phase at Kverkarhellir cave, while Chapter Six described a contemporary environmental impact preserved in the sedimentary deposits at Seljaland. This c. AD 800 date is earlier than current thinking would place the Scandinavian-led settlement of Iceland, while early medieval monastic settlements are known to have been established on isolated Atlantic islands, such as North Rona. These early dates from Seljaland could be integrated with contemporary textual accounts from the Gaelic world of journeys north into the Ocean\(^{37}\) and it is possible to imagine the c. AD 800 dates from Seljaland relate to an early Christian settlement of Atlantic Gaels. Similarly, it is possible to propose that the Seljaland sculpture was produced as part of this early Christian continuum of desert places in the Ocean. Indeed, if one desired to see the Seljaland crosses as the work of early Christian communities of the Gaelic tradition, then the conclusions of this chapter’s comparative study certainly suggest the scenario plausible.

However, though the idea of Seljaland as a desert place may be the simplest proposal, an alternate possibility may also be imagined. For instance, late medieval Icelandic texts describe a significant proportion of that island’s settlers having an origin in what W F H Nicolaisen calls ‘Scandinavian Scotland’\(^{38}\) (Nicolaisen 1980: 219-20; Gammeltoft 2001: 21 n9; Crawford 1987). According to Landnámabók, a Bishop Patrick of the Hebridean Church (after whom Patreksfjörður in the Westfjords is said to be named) gave the late ninth-century Norse settler Örlygur directions to Esja, near Reykjavík. Upon arrival, Örlygur kept a promise to Bishop Patrick and erected a church to Kolumkilli (Columba) (Landnámabók: ch 15; Benediktsson 1968: 53-5; Smyth 1984: 163, 171-2; Anderson 1922: 340 n1, 343-4 n1). Another more complex scenario then, is that Scandinavian-led settlement by individuals such as Örlygur provided an opportunity

\(^{37}\) A tradition of such journeys is evident in Dicuil’s Liber de mensura orbis terrae (Tierney 1967), Adomnan’s Life of Columba (Anderson & Anderson 1991; Sharpe 1995), as well as in Irish voyage literature generally.

\(^{38}\) Nicolaisen’s term was coined in Latin as Scotia Scandinavica.
for conservative sculptural forms, drawn from the Insular tradition, to flourish at artificial cave sites, such as the Seljaland caves. An absence of Scandinavian-style detail on these crosses makes this idea less likely.

In conclusion then, though further work on the sculpture may help resolve some ambiguities, the simplest and most robust case is for the Seljaland corpus to be of Insular early Christian type, with particularly convincing similarities to the pre-Viking Age sculpture of western Scotland. An important caution, however, is that the present chapter is the first comprehensive inventory and discussion of cross sculpture from one of Iceland's artificial cave sites. The next step is to assess how sculpture from other sites relates to the Seljaland collection, and to the western Scotland corpus. This chapter provides the start – it is hoped that further work will develop the typological analyses advanced here.

References

—. 1905b. Íra-býlin II. In *Fjallkonan.* Reykjavík.

—. 1902. Rannsókn í Rangárþingi sumarið 1901. Árbók hins Íslenzka Fornleifafélags 1902, 1-32.
—. 1906. Rannsókn í Árnesþingi sumarið 1904. Árbók hins Íslenzka Fornleifafélags 1905, 52-5.

Landnamabók. Edited by Benediktsson 1968.

Þórðarson, M. 1931. Manngerðir hellar í Rangárvallasýslu og Árnessýslu. Árbók hins Íslenska Fornleifafélags 1930-1, 1-76.

CHAPTER SEVEN: The crosses of a desert place?

CHAPTER EIGHT
Irland et mikla, Eugène Beauvois and the imagining of the St Lawrence Irish

"By the 1880s growing social and economic problems in Western Europe were encouraging a new emphasis on conservatism and the rigidity of human nature, and hence on ethnicity... The problems of the Industrial Revolution were becoming increasingly evident, especially in Britain where it had been going on the longest, in the form of slums, economic crises, and growing foreign competition. At the same time, the political supremacy of the middle classes was being challenged by the first labour movements. As a result of these developments, the younger generation of intellectuals turned against the idea of progress.

...The efforts that were made to externalise conflicts encouraged a growing emphasis on racial doctrines. It was argued that French, Germans, and English were biologically different from one another and that their behaviour was determined not by economic and political factors, but by essentially immutable racial differences...

Disillusionment with progress, together with the belief that human behaviour was biologically determined, promoted growing scepticism about human creativity. Writers and social analysts maintained that people were not inherently inventive and that change was contrary to human nature and potentially harmful to people. It was argued that a static condition was most congenial to human beings, who were naturally predisposed to resist alterations in their styles of life. This led to declining credence in independent development, a belief that particular inventions were unlikely to be made more than once in human history, and hence a growing reliance on diffusion and migration to explain cultural change. It also encouraged an increasing interest in the idiosyncratic features associated with particular ethnic groups rather than with the general characteristics of successive stages of cultural development.

...Increasing reliance on diffusion and migration, as well as the concept of cultures as ways of life related to specific ethnic groups, were soon evident in the work of German ethnologists such as Friedrich Ratzel (1844-1901) and Franz Boas (1858-1942). Ratzel, a geographer and ethnologist... argued that, because the world was small, ethnologists must beware of thinking that even the simplest inventions were likely to have been made more than once, let alone repeatedly. Both invention and diffusion were described as capricious processes; hence it became impossible to predict whether a particular group will borrow even a useful invention from its neighbours. Ratzel argued that because of this it was necessary to rule out the possibility of diffusion in order to prove that the same type of artifact had been invented more than once."

Bruce Trigger, A History of Archaeological Thought

"Dans un precedent memoire, j'ai expose et cherché à expliquer ce que les Islandais nous apprennent de la Grande Irlande.... Ces circonstances nous empêchent de la chercher autre part que dans la péninsule comprise entre la baie de Fundy et le golfe et l'estuaire du Saint-Laurent; elle correspondait donc au Nouveau-Brunswick et à la Gaspésie."²

"Le récollet Christian Le Clerq, qui avait habité douze ans la Gaspésie, sur la rive droite du Saint-Laurent, y retrouvait au XVIIe siècle, de nombreux restes du christianisme, notamment le culte de la croix et des reminiscences du pater; et le jésuite, Joseph-François Laflèche, assure que le christianisme était, chez les sauvages du Canada, une réminiscence plutôt qu'une nouvelle croyance, et qu'ils regardaient la croix comme le symbole de la religion autrefois enseignée à leurs ancêtres. A ces traces de la propagation du christianisme dans le bassin du fleuve et du golfe Saint-Laurent, avant les voyages de Jaques Cartier et de Champlain, il faut ajouter les ruines d'édifices qui ne peuvent avoir été élevés par des sauvages. Les Anglais ont trouvé dans l'île de Terre-Neuve des restes de murs en pierre..."³

Eugène Beauvois, Chevalier (1835 – after 1907)

¹ (Trigger 1989: 150-1; Trigger 1998: 86-7, 97-8)
² (Beauvois 1883b: 75)
³ (Beauvois 1875: 86-7)
CHAPTER EIGHT: Írland et mikla, Beauvois and the imagining

Introduction

One last study remains before producing final conclusions, that being a consideration of the historical dimension to this thesis. Specifically, there is an ancestry to the previous chapter’s suggested connections between Atlantic Scotland and southern Iceland in the early medieval period, with research exploring the early relationships between these places stretching back to nineteenth-century scholarship. This was a period when the fast-paced discoveries of medieval literature held special appeal for inter-disciplinary efforts, with medieval accounts such as those of Vinland sparking a search which eventually led to Helge and Anne-Stine Ingstad’s spectacular discovery of the L’Anse-aux-Meadows site in Newfoundland – and the vindication of what were initially speculative ideas. For a number of nineteenth-century scholars, engaging with medieval literature and inter-disciplinary problems led to the bold proposal of ideas, at times very ambitious and short-lived. I contend that these scholars explored medieval texts with a particular and theory-impregnated combination of imagination and insight. Therefore, the question this chapter grapples with is how the present thesis may benefit from the work of these earlier (and often wild) scholars – and thus how to approach their work and the medieval literature they deploy.

As mentioned above, there is some antiquity to suggestions of Gaelic settlement in Iceland by early Christian communities. For instance, Chapter One mentioned how Dicuil as well as Ari fróði and the other writers of the medieval Íslendingabók and Landnámabók claimed such a settlement to have occurred – and how Adomnán’s writings (alongside Irish voyage literature) provide a context for northern journeys into the Ocean (Íslendingabók: ch 1; Landnámabók: ch 1; Benediksson 1968: 4-5, 31-2; Pálsson & Edwards 1972: 14; Tierney 1967: 72-7; Anderson & Anderson 1991; Sharpe 1995). In short, the idea of early Christian settlement across the North Atlantic islands was sparked long ago by study of medieval texts such as those authored by Adomnán, Dicuil and Ari fróði – and was fuelled by complementary material from other fields, such as the distribution of pap-element place-names across the region. Norse and Celtic scholarship have approached this material differently. A Celtic literature perspective identifies early Christian writers such as Dicuil to be operating within a coherent tradition. For instance, Jonathan Wooding provides a recent survey of the “historical
context of voyaging by monastic *peregrini* in the Atlantic between c.560 and 800 AD” (Wooding 2000: 227), while Thomas O’Loughlin investigates what stories of such journeys may have symbolised for their intended audiences (O’Loughlin 1999). Importantly, what Dicuil describes as contemporary journeys into the Ocean are consistent with Thomas Charles-Edwards’ investigation of the attested historical phenomenon of the *peregrinatio* drive within Irish society, in some cases to find a *desert place* in the Ocean (Charles-Edwards 1976). The situation is different with late medieval Norse literature, where unusual descriptions of *papar / papaer* (an Old Norse word) may be gathered together and contrasted with the early Christian literature of Dicuil and Adomnán. From a Norse perspective, then, the *papar* passages are exotic and lack the three-dimensionality of the Celtic literature on this topic.

Modern investigations of this area gained momentum in the nineteenth century when scholars such as Eugène Beauvois deployed medieval literature (some only recently discovered, such as the *Historia Norvegiae*), place-names, folklore and archaeological material to investigate the relationship between Atlantic Gaels and the island Norse at the end of the first millennium AD. Enigmatic medieval descriptions of a *Greater Ireland* (*Irland et mikla*), somewhere in the Ocean, proved fertile ground for the imaginations of early researchers such as Beauvois. This earlier generation of scholarship may today seem ‘outdated’ to some; however I maintain that contextualising their work within the academic and social *milieu* in which these writers operated may enable a more sensitive realisation of their continuing contribution to scholarship – and holds out the possibility for modern-day investigators, with an effort, to work towards moving beyond their own social framework. Bruce Trigger makes a similar claim at the outset of his *History of Archaeological Thought* (and touches upon a counter-position):

In recent years a growing number of archaeologists have come to agree with the philosopher and archaeologist R G Collingwood that ‘no historical problem should be studied without studying … the history of historical thought about it’ (Dunnell 1984: 490; Collingwood 1939: 132). Historical investigations of archaeological interpretation have multiplied and more sophisticated methodologies have been adopted (Trigger 1985). This approach is not, however, without its critics. Michael Schiffer has asserted that graduate courses should cease to be ‘histories of thought’ and instead should systematically

4 For instance, see Barbara Crawford’s *The Papar in the North Atlantic* (Crawford 2002).
expound and articulate current theories (Schiffer 1976: 193). His position embodies the view that the truth or falseness of theoretical formulations is independent of social influences and hence of history but can be determined by applying scientifically valid procedures of evaluation to adequate bodies of data. Taken to an extreme, this view implies that the history and philosophy of archaeology are totally unrelated to each other. (Trigger 1989: 1-2)

Counter to Schiffer, I suggest that formulating an effective new solution, as I do in this thesis, demands familiarity with the historical dimension of a problem. This is consistent with the view outlined in Chapter Two that science is the social process of proposing (and refuting) testable solutions to a problem, and that familiarity with earlier formulations of a problem (and corresponding solutions) increases the robustness of a study by enabling a researcher to enter that debate confidently and intelligently—because he or she knows the history of a debate.

Thus this chapter explores the history of Írland et mikla scholarship, a survey of which demonstrates continuity of argument between present-day scholarship and the antiquarian past. There are three reasons why I focus (as an area within the larger field of Norse-Gaelic research) upon studies of Írland et mikla descriptions in medieval Icelandic literature: firstly, scholars investigating Írland et mikla often deployed multidisciplinary materials relevant to this thesis; secondly, Írland et mikla research is in need of a dedicated treatment; and thirdly, substantial exploration of Írland et mikla scholarship is achievable in a small-scale study.

Problem and context

In his essay on studying Celtic literature, Matthew Arnold articulates tendencies in late nineteenth-century scholarship. His comments are of general relevance for the period's scholarship:

> We want to know what all this mass of documents really tells us about the Celts. But the mode of dealing with these documents, and with the whole question of Celtic antiquity, has hitherto been most unsatisfactory. Those who have dealt with them, have gone to work, in general, either as warm Celt-lovers or as warm Celt-haters, and not as disinterested students of an important matter of science. One party seems to set out with the determination to find everything in Celtism and its remains; the other, with the determination to find nothing in them. A simple seeker for truth has a hard time between the two. (Arnold 1962 [1867]: 307)
Modern-day discussions of medieval texts describing \textit{Irland et mikla} are part of a continuum of scholarship stretching back to the nineteenth century. In the passage above, Arnold points to an important obstacle to realising the historical dimension of research: namely that many of the earlier writers were operating with explicit aims and theoretical frameworks which we do not share. (For Arnold, these are warm ‘Celt-lovers’ and warm ‘Celt-haters’.) Thus the problem that this chapter investigates is this: \textit{How to approach scholars such as Beauvois and the medieval literature they deploy?}

All discussions of \textit{Greater Ireland} spring from descriptions of the place (or what appear to be descriptions of the place) in three Icelandic texts, dated from the late eleventh to thirteenth centuries. In \textit{Landnámabók}, Ari fróði describes how his great-grandfather "varð sæhafi til Hvítramannalands; þat kalla sumir Írland et mikla / drifted to 'men of white'-land, that some call Greater Ireland" (\textit{Landnámabók}: S122; Benediktsson 1968: 162), and that this lies west in the Ocean, near Vinland the good. The \textit{Landnámabók} passage relates \textit{Irland et mikla} to another name, that of Hvitramannaland. In \textit{Eiríks saga rauða}, the author describes a place “það ætla menn Hvitramannaland / that people believed was ‘men of white’-land” (\textit{Eiríks}: ch 12; Halldórsson 1985: 432) where “gengu menn þar í hvítum klæðum ok ðeðu hátt ok báru stangir ok förú með flíkr / go men there in white clothing and yell loudly and bear poles and wave pieces of cloth” (\textit{Eiríks}: ch 12; Halldórsson 1985: 432). The third passage, from \textit{Eyrbyggja saga}, does not specifically mention \textit{Irland et mikla} or Hvitramannaland, but does have elements in common with the \textit{Landnámabók} and \textit{Eiríks saga rauða} passages: namely describing a place west of Ireland where “helzt þótti þeim, sem þeir mælti írsku / they thought that they spoke Irish” (\textit{Eyrbyggja}: ch 64; Sveinsson & Póðarson 1935: 176-7).

Alongside Pap-names, these \textit{Irland et mikla} accounts have long frustrated analysis—and encouraged nineteenth-century diffusionist-led researchers such as Eugène Beauvois to propose wild ideas, such as settlements of early Christian Gaels in Canada (Beauvois 1875). Engaging with this largely forgotten scholarship demands understanding. Some
of this earlier work was exceptional – but also incorporated what we might today dismiss as wild or racially-driven ideas.

This chapter focuses on the Grande-Irlande tradition in the late nineteenth-century scholarship of Beauvois – what follows is the result of a comprehensive survey of his published work and focused study of one key text. When exploring writers such as Beauvois, a crucial question is how to separate out strong scholarship, relevant to modern-day research, from the antiquated elements. The approach taken here has been to contextualise Beauvois’ Irland et mikla research alongside nineteenth-century concepts of diffusionism and racial determinism (racial ideas which in turn became associated with national identities\(^5\)). Importantly, investigating these earlier ‘outdated’ authors reminds us that our own theoretical frameworks will in time become distasteful to future researchers. This realisation of the mortality of our ideas cautions us to be wary of placing too much confidence in theory-led conclusions inspired by isolated material unsupported by coherent bodies of data. This caution is related to Popper’s idea, mentioned in Chapter Two, that “tests can be graded as more or less severe” (Popper 1994: 94), with coherent bodies of data enabling a more severe test than scattered ‘incoherent’ data.

In 1875, Beauvois published La découverte du Nouveau Monde par les Irlandais et les premières traces du Christianisme en Amérique avant l’an 1000. In this long contribution to the first Congrès international des américanistes, Beauvois argued that a medieval migration of early Christian Gaels across the Scottish and North Atlantic islands led to the founding of a Grande-Irlande along the St Lawrence. Though largely forgotten today, Beauvois was a prolific scholar and involved in some of the great debates of his day, such as Eben Norton Horsford’s Norumbega claims (Beauvois

\(^5\) Anthony D Smith has observed that before the second World War, there was a “popular equation of ‘race’ with ‘nation’, where the term ‘race’ often signified the separate culture of a descent group…” (Smith 2001: 49). Furthermore, he adds that:

...[We should not] overlook the great advances made in national historiography and archaeology, disciplines that, if they were fed by nationalist conceptions, also encouraged and bolstered those conceptions with apparently ‘hard data’ and the tangible remains of distant material cultures. (Smith 2001: 49)

Expressions of the recent burgeoning of interest in the connections between nationalism and archaeology, and the political context of archaeology, include Kohl and Fawcett, Diaz-Andreu and Champion, and Diaz-Andreu and A D Smith. (Smith 2001: 151 n8; Kohl & Fawcett 1995; Diaz-Andreu & Champion 1996; Diaz-Andreu & Smith 2001)
1879a; Wawn 2001: 198–200; 2003: 151; Barnes 2001: 62–70) – a preliminary bibliography of his periodical publications demonstrates this (Beauvois 1859; 1875; 1877a; 1877b; 1879a; 1879b; 1881; 1883a; 1883b; 1883–4; 1884a; 1884b; 1885; 1886; 1887; 1888; 1889b; 1889a; 1891; 1892; 1893; 1895; 1896; 1898; 1902; 1903; 1904; 1907). This initial assessment of his output is tabulated below by decade and by journal:

<table>
<thead>
<tr>
<th>Decade</th>
<th>Number of publications</th>
<th>Periodical and volume/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1850s</td>
<td>1</td>
<td>Revue orientale et américaine 1859</td>
</tr>
<tr>
<td>1860s</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1870s</td>
<td>5</td>
<td>Congrès international des américanistes 1, 2, 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annales de philosophie chrétienne 1877</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Revue orientale et américaine 1879</td>
</tr>
<tr>
<td>1880s</td>
<td>12</td>
<td>Congrès international des américanistes 4, 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le Muséon: Revue internationale. Études de linguistiques, d'histoire et de philosophie 2, 3, 5, 6, 7, 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Revue de l'histoire des religions 6, 7, 10, 18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Revue des questions historiques 1885</td>
</tr>
<tr>
<td>1890s</td>
<td>6</td>
<td>Congrès international des américanistes 1892</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Revue des questions scientifiques 2</td>
</tr>
<tr>
<td>1900s</td>
<td>4</td>
<td>Journal de la société des américanistes de Paris 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le Muséon 1904, 1907</td>
</tr>
</tbody>
</table>

Table 8.1 Beauvois’ publications in periodicals, sorted by decade and periodical.

That he was well received (at least by conference delegates) is suggested by comments introducing his papers, such as:

M. Beauvois, après s'être excuse de demander la parole, alors que les conclusions de son mémoire n'ont été contestées par aucun des honorables préopinants … (Beauvois 1877a: 59)

Or, as Lucien Adam writes in the proceedings of the fifth Congrès international des américanistes:

M. Beauvois vient de nous faire connaître loyalement quel a été son plan de campagne. De session en session, il a successivement occupé, sans rencontrer de contradicteurs, des positions grâce auxquelles il a pu cheminer depuis l'extrémité septentrionale du Canada jusqu'au centre du Mexique. (Beauvois 1883b: 97)

Beauvois, however, was part of a continuum of scholarship investigating Írland et mikla. A survey of selected research demonstrates that Hvítaramannaland Óthat kalla
sumir Írland et mikla / that some call Greater Ireland\(^6\) has fired academic imaginations, with scholars attempting to locate the place in either physical or literary space. Described as somewhere in the west, near Vinland\(^7\), Hvitramannaland or Írland et mikla remains problematic after more than a hundred years of scholarship.

Approaches to the topic follow two main directions (at times explored by the same authors): one either accepts a ‘realistic’ inspiration (which can be located on a conventional map), or one imagines an origin in Irish myth. A number of scholars (including Beauvais) apply the textual descriptions to identify an Atlantic coast or island. A variant of this approach has been to set aside the Írland et mikla descriptions and to concentrate instead on analysis of the two place-names, again with the goal of identifying which real place was being named (e.g. Iceland, the Gaspe, etc). A fundamentally different view equates Hvitramannaland with an Otherworld from Irish myth.

Though medieval references are limited, the two place-names Hvitramannaland and Írland et mikla have been studied by a number of scholars since the nineteenth century (Sorenson & Raish 1996). The following selected review, concentrating largely upon dedicated discussions of the medieval Icelandic texts, reveals some of the main trends in scholarship. As mentioned above, one approach taken throughout the nineteenth and twentieth centuries sought to locate these names on modern-day maps, with varying levels of precision. In 1842, Karl Wilhelmi identified Hvitramannaland and Írland et mikla in today’s eastern United States (Wilhelmi 1967 [1842]). The suggestion of Hvitramannaland as a place somewhere in this area persisted, for instance in Rudolf Cronau (Cronau 1892). Writing later that century Beauvais disagreed with “les savants, passablement nombreux, qui ont publié, traduit ou commenté les documents relatifs à la Grande Irlande ou Hvitramannaland” (Beauvais 1875: 41), arguing instead for his

\(^6\) Hvitramannaland is normally translated as ‘White Men’s Land’ but I prefer ‘men of white’-land, as this expresses the uncertainty inherent in the Hvitramanna- / men of white phrase and also has the benefit of avoiding potentially inappropriate conceptualisations of race. Írland et mikla is usually translated as ‘Greater Ireland’.

\(^7\) “pat liggr vestr í haf nær Vinlandi enu góða / it lies west in the Ocean near Vinland the good” (Landnámabók: M35; Benediktsson 1968: 162).
CHAPTER EIGHT: *Irland et mikla*, Beauvois and the imagining

Grande-Irlande on the southern shore of the St Lawrence seaway (Beauvois 1875). Beauvois' ideas were discussed by Emile Schmidt and later Peter de Roo (Schmidt 1879; de Roo 1900), and took on a life of their own; a generation later William H Babcock revisited suggestions of early Irish journeys to North America in Beauvois' old forum, the *Congrès international des américanistes* series of proceedings (Babcock 1915).

Contemporary with Beauvois, Gustav Storm saw Iceland as a more likely prospect (Storm 1888 [1887]: 65, 68 [361]; Nansen 1911: 43 n1; Young 1937: 122). L D Scisco, followed by Halvdan Koht, made a fresh proposal in the early years of the twentieth century, suggesting the place-names described Western Ireland (Scisco 1908: 379, 515; Koht 1909: 133; Nansen 1911: 43 n1; Young 1937: 122-3). The twentieth century was to see a number of innovative ideas forwarded. Jean Young, in 1937, contemplated a dual physical origin for the medieval traditions, both off the coast and on the coast of Western Ireland (Young 1937). Four years later, Halldór Hermannsson proposed that the names remember a Western Irish baptismal place (Hermannsson 1966 [1944]). In 1962, Geoffrey Ashe held that Greenland, possibly Nova Scotia or the Eastern United States was meant by *Hvitramannaland* (Ashe 1962: 144-56). A generalised view of *Irland et mikla* and *Hvitramannaland* gained prominence in this period. The following year, Tryggvi Oleson understood the place-names as Greenland or the New World generally or possibly the eastern Canadian Arctic (Oleson 1963: 97-9). Most recently, Kirsten Seaver argued these place-names and traditions demonstrate a medieval Icelandic knowledge of lands in eastern Canada (Seaver 1999: 526).

Beginning in the twentieth century, a rival perspective (mentioned earlier) has challenged this approach. Taking inspiration from ideas of a Celtic Otherworld, an approach was formulated which instead proposed *Hvitramannaland* and *Irland et mikla*

8 Among these "savants, passablement nombreux", Beauvois cites Caroli C Rafn, Finn Magnusen, P A Munch, Torfæus, Finnus Johannæus, P E Müller, Karl Vilhelmi (or Wilhelmi) and Wormskjold (Rafn 1837; Rafn & Magnusen 1838; Munch 1852-3; Torfæus 1705; Johannæus 1772; Munch 1852; 1857; Müller 1817-20; Vilhelmi 1839; Wormskjold 1814).

9 This field has remained productive (though now largely the work of popular writers). For instance, Hrafn E Jónsson has recently published his ideas that the Saguenay and Lac St-Jean areas of Québec were home to "landi hvitra manna" at the time of Jacques Cartier's sixteenth-century journeys. However, Jónsson does not discuss the medieval descriptions of *Irland et mikla* or *Hvitramannaland*; thus his arguments are tangential to the topic at hand (Jónsson 1999).
Illustr 8.1 “Carte des découvertes Irlandaises et Islandaises selon Mr. E Beauvois”. Taken from Congrès international des Américanistes (Beauvois 1875: 84). Lithography by J Royer.
as learned constructs rather than real places (for instance, comparable to an Irish *Tir na Fer Finn*). For instance, Edmund Hogan included the following passage in his *Onomasticon Goedelicum Locorum et Tribuum Hiberniae et Scotiae* (where he refers to Wilhelmi’s ideas (Wilhelmi 1967 [1842]: 75-81)):

Tir na Fer Fionn; in romantic tales ... this may be “Hvitra Manna Land” (Land of the White Men), also called “Irland et Mikla” (Great Ireland), the name given by the Danes to the E. Coast of the United States of America, nr Florida, when Ari, K. of Lein., was wrecked in the year 983. (Hogan 1910: 638)

A problem with the *Tir na Fer Finn* comparison, however, is its unique and late occurrence in the Stonyhurst larger Irish volume dated c. 1700 (St B 718) (Hogan 1910)\(^\text{10}\). Continuing from *Tir na Fer Finn* parallels, Fridtjof Nansen’s *In Northern Mists* compared *Hvitrarnannaland* to the Irish *Navigatio Sancti Brendani Abbatis* (Nansen 1911: 43-50). However, it would be for later scholars to build upon Hogan’s equation of *Tir na Fer Finn* and *Hvitrarnannaland*. A generation (or two) later, Jean Young, Halldór Hermannsson, and Gabriel Turville-Petre all suggested that the Icelandic texts describe a mythical land (Young 1937: 124-5; Hermannsson 1966 [1944]; Turville-Petre 1953: 48). Similar ideas continued in Hermann Pálsson, Tryggvi Oleson, Magnús Magnússon and Pálsson, Pálsson and Paul Edwards, and Ólafur Halldórsson (Pálsson 1960; Oleson 1963: 101-2; Magnússon & Pálsson 1965: 102-3 n1; Pálsson & Edwards 1972: 61 n48; Halldórsson 1985: 364-6). In 1996 and 2000, Hermann Pálsson once again expressed variations of this view, as did Helgi Guðmundsson in 1997 (Pálsson 1996: 224-6; 2000: 29; Guðmundsson 1997: 67-8 n47).

A difficulty with the ‘learned construct’ argument is its reliance upon a Celtic Otherworld overseas. Whether or not one accepts a Celtic Otherworld across the seas, James Carney and John Carey challenge its antiquity (Carney 1963: 40-1, 40 n9; Carey 1983: 36-43), while David Dumville stresses the fantastic nature of journeys into the supernatural worlds of the *echtra* and *immrama* tale types (Dumville 1976: 82-3)\(^\text{11}\). On the other hand, Seamus Mac Mathúna identifies Irish literary motifs from the *Navigatio Brendani* in the *Hvitrarnannaland* and *Irland et mikla* passages (Mac Mathúna 1999:

\(^{10}\) Fridtjof Nansen adds that “[in 1910-1] Professor Moltke Moe has found a ‘Tir na Fer Finn’ or White Men’s Land, mentioned in Irish sagas of the thirteenth and fourteenth centuries” (Nansen 111: 44 n1).

\(^{11}\) In contrast, Oskamp believed that an Otherworld “in the Ocean is undoubtedly pre-Christian in origin as it is inherent in the religious system of an island society” (Oskamp 1970: 85).
186-7), but the aforementioned difficulty remains: the otherworldly supernatural elements we would prefer, in order to bolster an interpretation of Hvitramannaland as Irish-inspired literary invention, are absent. Instead, our texts - even if fictional - describe events set in a ‘real’ world familiar to the authors12. For instance, Gustav Storm compared the phrase Írland et mikla, or Greater Ireland, to places such as Magna Graecia, the Greek colony in Italy, and Sviðjóð it mikla (Greater Sweden), the Scandinavian settlement or Rus’ of Russia and the Ukraine (Storm 1888 [1887]: 65; Nansen 1911: 48). Storm’s interpretation of the phrase (as describing an Irish colony or Gaelic place outside Ireland) has been explored by Geoffrey Ashe, Hermann Pálsson and Helgi Guðmundsson (Ashe 1962: 151; Pálsson 1960: 52; Guðmundsson 1997: 67-8 n47).

Hermann Pálsson presented a view that mediates between the literary and physical worlds. He has been followed or considered by Jakob Benediktsson, Helgi Guðmundsson, and Mac Mathúna (Benediktsson 1968: 162 n2; Guðmundsson 1997: 68 n47; Mac Mathúna 1999: 187). Pálsson proposed Hvitramannaland as a learned secret name for Alba through conflation with the latin albus (white) (Pálsson 1960: 52). Thus, he interpreted Hvitramannaland as a learned Icelandic rendering of ‘land of the men of Alba’. Alternatively, Nansen understood the hvitra- (white) element in Hvitramannaland as related to the Scandinavian concept of the holy (or Christian) (Nansen 1911: 44).

In summary then, a survey of Hvitramannaland and Írland et mikla scholarship points to a field with a number of ideas, often neither fully supported nor refuted, and frequently propounded as points of faith (or fashion) in learned footnotes and brief discussions. Longer studies are rare, with Beauvois publishing the most extensively on the topic, whereas late twentieth-century investigations were dominated by Pálsson and,

12 Gisli Sigurðsson cites T J Westropp in making a similar point comparing the Vinland sagas to immrama-type tales (Sigurðsson 1988: 61-2; Westropp 1913: 235-6). Furthermore, this concept of ‘perceived reality’ is articulated in a recent study by Michael Livingston, though his goal is to suggest the survival of a Vinland concept in late medieval English literature and cartography:

Along the outer rim of the map - the location for those places thought to be at the very borders of the world - we find the now-expected sequence of northwestern European locations including Denmark, Thule, Vinland, Iceland and Norway.

... the places on these maps were places that one would have little trouble - if one had the time, the money, and the inclination - getting to via land or sea; all that was needed was a good set of directions. There is no Avalon, Atlantis, or other legendary location on the maps. (Livingston 2004: 41)
CHAPTER EIGHT: Irland et mikla, Beauvois and the imagining

Later, Mac Mathúna. Most important, however, is the discovery that critical dialogue with Beauvois' work by later scholars in the field is minimal. For instance, Pálsson and Mac Mathúna have raised the level of the debate with fresh rigour and a historical awareness, though they both appear unaware of Beauvois' contributions to the field. Mac Mathúna and Pálsson are not alone in this. Beauvois' ideas continued in popular literature, but scholars such as Nansen, Young, Hermannsson, Turville-Petre, Benediktsson (and so on) do not engage with his substantial body of work – though they and later writers explore comparable ideas and materials (see for instance, the collected articles in Crawford’s The Papar in the North Atlantic (Crawford 2002)).

If science is a public community enterprise, where ideas are proposed and subjected to mutual criticism, then the fostering of rigorous scientific research in this field mandates the study of earlier (as yet unrefuted) ideas such as Beauvois’, and their consequent integration into discussion.

Hypothesis

With a fascinating combination of imagination and insight, late nineteenth-century scholars such as Beauvois engaged with historical materials still prominent today. In particular, Beauvois was exceedingly well read, prolific and had an impressive command of contemporary literature. The problem this chapter tackles is this: How to approach scholars such as Beauvais and the medieval literature they deploy?

In his History of Archaeological Thought and Sociocultural Evolution, Bruce Trigger provides a contextual model with which to explore Beauvois' claims for his Grande-Irlande. In short, Trigger suggests nineteenth-century scholars operated within a theoretical framework that accepted diffusionist and racial ideas. I propose that by remembering this theoretical framework, the contribution of Beauvois and other scholars may be realised and more fully integrated with modern-day research.

In particular, trends in nineteenth-century folktale theory elaborate Trigger's ideas regarding diffusionism. In his chapter 'Theories of the Folktale', Stith Thompson sums up why the field proved particularly fertile for such ideas:

13 I am also guilty of missing Beauvois' work in my own article in Crawford's collection (Ahronson 2002) – I had been unaware of his contribution to scholarship.
A study of tale collections shows clearly that many tales are widely distributed over the globe. What is the nature of this distribution, how did it occur, and why? (Thompson 1946: 368)

Writing in 1819, the Grimm brothers were the earliest scholars to grapple with these questions. In contrast with later workers, Wilhelm Grimm felt that straightforward diffusion did not explain the wide distributions mentioned above. Grimm did not "deny the possibility, nor in particular instances the probability, of a story's passing over from one people to another, and then firmly rooting itself on the foreign soil" (Grimm 1856: 427ff; 1884: 575ff; Thompson 1946: 369), but he felt this was exceptional. Instead, he appealed to Indo-European theory to explain similarities between tales (Thompson 1946: 370). In the mid-nineteenth-century, a diffusionist school of thought emerged — first tentatively by Loiseleur Deslongchamps and then as dogma in Theodor Benfey's work (Deslongchamps 1838; Benfey 1859; Thompson 1946: 376). Benfey championed the mechanism of diffusion to explain similarities between tales across the world. Benfey imagined an ultimate Indian origin for most folktales and charted the routes of their diffusion to Europe, though later scholars influenced by Benfey, such as Reinhold Köhler and Emmanuel Cosquin, suggested non-Indian origins for some folktales (Thompson 1946: 376-9). Andrew Lang, however, challenged outright these Indianist and Indo-European mythological theories, instead proposing a mild form of 'polygenesis'. Polygenesis theory understands that "resemblances in stories are due to an independent invention in many places, since they are made up of beliefs, customs, etc. which are common to peoples of the same stages of culture" (Thompson 1946: 380; Lang 1893).

By the second half of the nineteenth century, Trigger perceives that "most Western historians and social scientists" held diffusionist ideas (Trigger 1998: 96). Trigger defines and points to the prevalence of diffusionism (and the related concept of 'migrationism') in this period:

They [most Western historians and social scientists] rejected the claim that change came about as a result of the same innovation being made independently in different places as they were needed. Instead they relied on migration and diffusion to explain the changes observed in the historical and archaeological

14 In the second edition of their Kinder- und Hausmärchen (Grimm 1856; 1884; Thompson 1946: 368).
Migrationary explanations tended to be more pessimistic about human creativity than were diffusionist ones. Diffusionists assumed that humans were better able to copy other people’s ideas than to innovate. Migrationists believed that people were unable or unwilling to change their ways and therefore all cultural change had to come about as the result of immigrants with their distinctive cultures replacing or blending with established groups. (Trigger 1998: 96)

As John Francis Campbell’s *Popular Tales of the West Highlands* (first edition 1858-60) demonstrates, however, Trigger may be overstating the case. For instance, Campbell writes in his second edition that:

There are, of course, two ways of accounting for ... [resemblances between medieval romances]. Those who believe in creations of the human brain will look on the traditions as fragments of a ruined romance. Those who think that *creations* of the brain are very rare, will look on traditions as the quarry whence materials have been taken by a succession of romancers, who said nothing about their mine of wealth. (Campbell 1893: 246)

Furthermore, Campbell himself does not (in the end) follow diffusionist thinking. He sees similarities in tales between different peoples as arguing *not* for diffusion, but instead for a common origin (i.e. the diffusion of *people*, with a continuity of ideas):

The only possible deduction from these facts seems to be, that these are traces of a mythology once common to Celts, Scandinavians, Italians, Germans, and mayhap ancient Greeks, Romans, Egyptians, and Aryans. (Campbell 1893: 262)

To support his point, he gives the example of stories of ‘mysterious western lands’:

In a note, I find that Cardigan Bay was once the site of a submerged country; the same, no doubt, which can be traced in Breton, in Irish, in Manks, and Gaelic; in Norse, and in Italian, a country submerged for wickedness, and whose houses can be seen under water, and occasionally rise to the surface; a tradition common to many nations which bears upon that of the mysterious western land hidden in the mist, which once was the Isle of Man, and is now to the westward of Man. (Campbell 1893: 273)

Campbell was a part of the world in which Beauvois operated. Nonetheless, in the period Beauvois was writing, these writers agree that diffusionist (and the related migrationist) ideas were theoretically credible.

Similarly, racial ideas emerged out of the first half of the nineteenth century to gain prominence in the 1850s. The French scholar Joseph-Arthur, Comte de Gobineau, was a
key figure in the articulation and dissemination of racial ideas: by 1855, he had published his four-volume *Essai sur l'inégalité des races humaines* (Gobineau 1853-55). Trigger contextualises Gobineau:

A member of an aristocratic and royalist French family, Gobineau exalted the Frankish nobility as the true creators of Western civilization (Bowler 1989: 109). He believed that the fate of civilizations was determined by their racial composition and that the more a successful civilization's racial character became diluted through intermarriage with other groups, the more likely it was to sink into stagnation and decay. Gobineau's writings were to influence European racists from the nineteenth-century composer Richard Wagner to Adolf Hitler. Yet he was not alone ... In both Europe and America novelists, popular writers, and reputable scholars were invoking racial factors as well as environmental ones to explain variations in the degree to which different groups had evolved in the course of human history. (Trigger 1998: 49-50)

The currency of the concept of race in the late nineteenth century had special relevance for archaeological and historical investigations. In this period, "race replaced language as the main criterion that was used to trace the history of ethnic groups" (Trigger 1998: 50).

Separately, it was claimed that only migrations of people (and thus invasion and conquest) could bring 'superior culture' to an area (Trigger 1998: 50). A key consequence of these ideas for study of archaeological and historical problems was that:

As cultures came to be viewed as biologically inherent in different populations, change was devalued and old customs were treated as more authentic reflections of a people and their culture than were recent innovations or borrowings. The development of racism provided an explanation for cultural variation that had great appeal to romantics because it identified the culturally specific and the exotic as the most essential reflections of human nature and offered reassurance that these aspects of human behaviour and identity were relatively resistant to change. (Trigger 1998: 50)

Following this theoretical conception, the 'culturally specific', the odd and the exotic were given special importance in research. In other words, the isolated unusual artefacts or practices of a society were seen as the most essential diagnostic criteria for that society. Furthermore, the application of diffusionism to these exotic and culturally specific traits fostered the proposal of wild ideas: an example to be considered later is how 'exotica', such as contact-period stories of the cult of the cross among the First Nations of southern Québec, led Beauvois to propose an early Christian Irish settlement
there. Of course, that is not to say that all scholarship from this period was bound up with these ideas. For instance, in 1858 Thomas Stephens objected to suggestions of a 30,000 strong medieval Welsh migration to North America. Of these claims, Stephens wrote: “Let us put the legend in its proper place in the list of our ‘Mabinogion’. Let us show that we are not incapable either of self-analysis or of historical criticism” (Williams 1987: 200-1). Stephens, however, was exceptional: Gwyn A Williams described him as “one of the sharpest intelligences Wales has produced” (Williams 1987: 200). In contrast, the fronting quotes to this chapter articulate Trigger’s ideas regarding the racial determinism and diffusionism so pervasive in nineteenth-century scholarship – and juxtaposes these ideas with a passage from Beauvois. Trigger sees diffusionism and migration as well as racial ideas prominent precisely in Beauvois’ period. The hypothesis to be tested in this chapter then, may be expressed as follows:

Nineteenth-century scholars such as Eugène Beauvois operated within a theoretical framework that accepted diffusionist and racial ideas. By allowing for this theoretical framework, the historical dimension that Beauvois and others contribute to scholarship may be realised – and more fully integrated with modern-day research.

Method

Beauvois imagined early Christian Irish settlement in the North Atlantic islands and, later, eastern Canada. Previous thesis chapters enable intelligent assessment of Beauvois’ ideas regarding Faroese and Icelandic settlement, whereas the prehistory of eastern Canada has (quite naturally) not been explored. Correspondingly, the next section begins with a survey of research into First Nations prehistory in the ‘medieval’ period, as well as presentation of the principal textual materials describing Írland et mikla and Hvítramannaland.

Much of Beauvois’ prolific output expands ideas he first articulated in his 1875 paper, *La découverte du Nouveau Monde par les Irlandais et les premières traces du Christianisme en Amérique avant l’an 1000*. In testing the hypothesis outlined above, the present study concentrates on this 1875 paper. Trigger suggested that diffusionism and racism were widespread among late nineteenth-century scholars. After surveying the
1875 article, the proposal that Beauvois held diffusionist and racial ideas is tested. To be precise, his 1875 paper is examined in order to identify examples of diffusionist or racist thinking.

In light of the results of this test, the character of Beauvois’ scholarship is assessed through his treatment of *Greater Ireland* literature. Thus Beauvois’ ideas are characterised by their integration with new research in this field. In this way, the historical dimension that Beauvois contributes to scholarship is explored.

Results and discussion

In his arguments, Beauvois explores medieval Atlantic migrations and earlier chapters have discussed the northeast Atlantic area at this time. In order to explore Beauvois’ ideas intelligently, this section begins with an introduction to the northwest Atlantic area in the ‘medieval’ period.

On the eve of European contact, the aboriginal cultures of eastern Canada were characterised by expansion and abandonment of frontiers of settlement, complex inter-relationships (including extensive trade networks), and major population migrations or cultural expansions. The fluidity of frontiers may be illustrated by the Palaeo-Inuit *Late Dorset* culture: southwest Greenland was settled and abandoned by *Late Dorset* from the eastern Canadian Arctic in the period from AD 700 to AD 900 (Damas 1996: 329; McAleese 2004: 358-9). These are the centuries immediately preceding the appearance of what Peter Pope describes as Norse “kin groups, moving for a year or two at a time, as part of normal resource foraging, which sometimes resulted in migration” (Pope 2004: 350). At this time, the wider region of Greenland and eastern Canada was inhabited by a number of peoples in complex inter-relationships:

... the Dorset people of the eastern Canadian Arctic and northern Greenland, the ancestors of the Labrador Innu, the Newfoundland Beothuk, and the Maliseet and Micmac [Mi’kmaq] of the southern Gulf of Saint Lawrence and Nova Scotia ... had divided this territory into a multicultural region of discrete homelands ... (Odess et al. 2000: 193)

That extensive trade networks existed is clear: deposits of meteoric iron from northwest Greenland were traded throughout the eastern Canadian Arctic (Sutherland 2000: 242; Schledermann 2000: 248-50, 254). Major migrations or cultural expansion also
occurred: the *Thule* culture (ancestors of the modern Inuit) expanded eastwards from the western Arctic roughly a thousand years ago, completely replacing the *Late Dorset* culture over the following centuries (McAleese 2004: 359-61; Odess et al. 2000: 198-200; Sutherland 2000).

Further south, in the region that Beauvois imagined as *Grande-Irlande*, archaeological investigation and ethnographic analogy enable study of first millennium AD populations inhabiting southern Québec. These people subsisted by hunting and fishing, alongside the gathering of fruits, nuts and other foods. Hunters favoured whitetailed deer, but other species were pursued, including moose and bear as well as small game species such as beaver and muskrat. The meat of these animals was consumed and the hides used for clothing, containers and other purposes. Bones could be crushed for their marrow or worked to fashion tools such as fishhooks, harpoons and needles. Fish were important: Spring spawning runs and Summer populations were particularly exploited. Several hundred individuals congregated in macro-bands for the Spring and Summer, along lake- and river-shores near fishing sites. At this time of the year, varied and easily accessible resources were plentiful and encouraged socialising and feasting within and between macro-bands. For most of the Autumn, efforts were made to build up a winter food supply. Fishing and communal white-tailed deer hunting dominated, while wild rice, nuts and other plant resources were gathered. By the end of the Autumn, camp was abandoned and the macro-band splintered: individual micro-bands moved to interior wintering grounds. Winter sustenance depended upon food supplies accumulated during the Autumn, supplemented by the occasional hunted white-tailed deer and small game. These *Middle Woodland* populations occupied a given territory and buried dead in mounds near the macro-band camps. There, they interred individuals who died during the warm season, as well as disarticulated skeletons, incomplete and often burned, of those who had died in the Winter camps. The Winter dead were probably buried or kept until the following Spring (or perhaps even several years later), when a burial festival was held and the dead interred near the macro-camp (Laliberté 1999: 74-6; McAleese 2004: 356-7).

The summary of eastern Canadian prehistory given above permits informed assessment of Beauvois' ideas and the literature he deploys. Turning to this literature,
Beauvois begins his 1875 study with the mandate that “Nous avons d’abord à traduire aussi littéralement que possible trois documents islandais, où il est parlé de la Grande-Irlande…” (Beauvois 1875: 42). Dating from the late eleventh to thirteenth centuries, three principal textual materials are associated with Irland et mikla and Hvitramannaland. These Icelandic texts include Landnámabók, Eiriks saga rauða and Eyrbyggja saga.

The earliest recension of Landnámabók is thought to originate in the late eleventh and early twelfth centuries, but the text is not fixed until c. AD 1300 (Ó Corrán 1998: 440). The author of the earliest recension, Ari fróði, gives the following account of his great-grandfather:

... Peira son var Ari. Hann varó sæhafi til Hvitramannalandis; þat kalla sumir Írland et mikla; þat liggir vestr i haf nær Vinlandi enu góða; þat kallat sex doegra sigling vestr frá Írlandi. Þaðan náði Ari eigi á brutt at fara ok var þar skírðr. Þessa sögu sagó fyrst Hrafni Hlymreksfari, er lengi hafði verit i Hlymreki á Írlandi. Svá kvað Porkell Gellisson segja islenska menn, þá er heyrð höfðu frá segja Þorfinn [jarl] í Orkneyjum, at Ari hefði kenndr verit á Hvitramannandi ok náði eigi brutt at fara, en var þar vel vírðr.

(Landnámabók: S122; Benediktsson 1968: 162)

Their son was Ari who drifted to White Men’s Land [‘men of white’-land], which some people call Greater Ireland. It lies in the ocean to westward, near Vinland the Good, said to be a six day sail west from Ireland. Ari couldn’t get away, and was baptized there. This story was first told by Hrafn Limerick-Farer who spent a long time at Limerick in Ireland. Thorkel Gellisson quoted some Icelanders who had heard Earl Thorfinn of Orkney say that Ari had been recognized in White Men’s Land, and couldn’t get away from there, but was thought very highly of. (Pálsson & Edwards 1972: 61)

Dated to the mid-thirteenth century (Magnússon & Pálsson 1965: 34), the Eiriks saga rauða passage below may derive elements from the earlier Landnámabók account:

Höfðu þeir sunnanveðr ok hittu Markland ok fundu Skraelinga fimm; var einn skeggjaðr ok tvær konur, börn tvau. Tóku þeir Karlsefní til sveinanna, en

15 In her MPhil research, Laura Taylor undertook the most recent study of Landnámabók (Taylor 2003).
16 Beauvois gives his own translation, working from the editions of his day:
... leurs fils était Aré, qui fut poussé par une tempête dans le Hvitramannaland que quelques-uns appellent Irland it mikla (Grande-Irlande). Ce pays est situé à l’ouest, dans la mer, près du Vinland it góða (le bon pays du vin) et, dit-on, à six jours de navigation de l’Irlande. Ce récit a été fait d’abord par Hrafna Hlymreksfaré (le voyageur à Limerick), qui avait longtemps habité Hlymrek, en Irlande. Thorkel Gellisson rapporta aussi que des Islandais disaient avoir appris de Thorfinn jarl (duc) des Orkneys (Orcaides), que Aré avait été reconnu dans le Hvitramannaland et qu’il ne pouvait en sortir, mais qu’il y était traité avec honneur. (Beauvois 1875: 43-4)
They had southerly winds and reached Markland, where they met five natives. One was bearded, two were women and two of them children. Karlsefni and his men caught the boys but the others escaped and disappeared into the earth. They took the boys with them and taught them their language and had them baptised. They called their mother Vethild and their father Ovaegi. They said that kings ruled the land of the natives; one of them was called Avaldamon and the other Valdidida. No houses were there, they said, but people slept in caves or holes. They spoke of another land, across from their own. There people dressed in white clothing, shouted loudly and bore poles and waved banners. This people assumed to be the land of the white men ['men of white'-land].

Eyrbyggja saga also appears to originate in the mid-thirteenth century (Pálsson & Edwards 1973: 12). Though not actually naming Írland et mikla or Hvítramannaland, the following text is associated with the Landnámabók and Eiriks saga rauða passages (the relevant section is long — the first part of Eyrbyggja chapter 64 is given below):

\[
\begin{align*}
\text{Påt var ofarliga á dögum Ólafs ins helga, at Guólfr hafði kaupverð vestr til Dyfthinnar; en er hann siglði vestan, ætladi hann til Íslands; hann siglði fyrir vestan Írland ok fekk austanvöðr ok landnýrðinga, ok rak þá langt vestr í haf ok i útsvör, svá at þeir vissu ekki til landa; en þá var mjök á ljótt sumar, ok héti þeir mórgu, at þá bæri ór hafinu. Ók þá kom þar, at þeir urðu við land varir; þat var mikít land, en eigi vissu þeir, hvert land þat var. Pat ráðó þoku þeir Guólfr, at þeir sigldu at landinu, því at þeim þótti illt at eiga lengr við hafsmegnit. Þeir fengu þar höfn göða; ok er þeir höfðu þar litla sund við land}
\end{align*}
\]
verit, þá koma menn til fundar við þá; þeir kenndu þar engan mann, en helzt þótt þeim, sem þeir fætti irska; brátt kom til þeira svá mikti fólmenni, at þat skipti morgum hundrudum. Þessir menn veittu þeim atgöngu ok tóka þá höndum alla ok bundu ok ráku þá síðan á land upp. (Eyrbyggja: ch 64; Sveinsson & Þórðarson 1935: 176-7).18

18 In his 1875 article, Beauvois gives a translation of the entire chapter, as well a related section from chapter 47:

ch 47: ... Il partit avec un vent du nord-est, qui soufflait presque continuellement cet automne et de longtemps on n’entendit parler de ce navire.

ch 64: Gudhleif, fils de Gudhlaug-le-Riche, du Straumfjörd, et frère de Thorfinn, l’ancêtre des Sturlungs, était un grand armateur. Il possédait un grand navire et Thórólfr, fils d’Eyralopt, en avait un autre; de concert, ils livrèrent bataille au fils de Sigvaldé jarl, à Gyrdh, qui perdit un œil. Vers la fin du règne de Saint-Ólaf, Gudhleif, ayant fait un voyage à Dublin, naviguait vers l’ouest pour retourner en Islande, et il se trouvait à l’ouest de l’Irlande, lorsqu’un grand vent du nord-est le poussa si loin en mer, vers l’ouest et le sud-ouest, qu’il ne savait plus où se trouvait la terre. Comme l’été était avancé, ils firent de nombreux vœux pour être préservés d’un naufrage, et il arriva qu’ils aperçurent la terre. C’était une grande contrée qu’ils ne connaissaient pas. Gudhleif et les siens prirent la résolution d’y débarquer, parce qu’ils étaient fatigués d’avoir été longtemps ballottés sur mer. Ils trouvèrent un bon port et ils étaient à terre depuis peu de temps, lorsqu’il arriva des gens dont pas un ne leur était connu, mais il leur semblait fort que ceux-ci parlaient l’irlandais. Bientôt cette multitude s’étant accrue au nombre de plusieurs centaines, assaillit les navigateurs, s’empara d’eux tous, les chargea de liens et les emmena vers le haut pays. Conduits à une assemblée pour y être jugés, ils comprirent que les uns voulaient les massacer de suite; les autres, les partager entre eux et les réduire à l’esclavage. Pendant les délibérations ils vinrent approcher une troupe de cavaliers avec un étendard, d’où ils conclurent qu’il devait y avoir un chef dans cette troupe. Lorsque celle-ci fut arrivée, ils vinrent chevaucher sous l’étendard un homme grand et vigoureux, déjà très-âgé et à cheveux blancs. Tous les assistants s’inclinèrent devant ce personnage et l’accueillirent de leur mieux, c’est à lui que fut laissée la décision de l’affaire. Le vieillard envoya chercher Gudhleif et ses gens, leur adressa la parole en langue norraine et leur demanda de quel pays ils étaient. Ils répondirent qu’ils étaient Islandais pour la plupart. <<Et quels sont les Islandais parmi vous?>> Gudhleif dit qu’il en était un et salua le vieillard qui lui fit bon accueil et lui demanda de quel contrée de l’Islande il était. Gudhleif dit qu’il était du canton de Borgarfjörd. <<Et de quel endroit?>> Renseigné sur ce point par Gudhleif, il l’interrogea sur presque tous les personnages considérables du Borgarfjörd. Et dans ces entretiens, il s’informa exactement à tous égards, d’abord de Snorré Godhé et de sa sœur Thuride de Fröðhá, et surtout de Kjartan, fils de cette dernière, lequel était alors maître de Fröðhá. Les indigènes de leur côté craignaient qu’il fallait prendre une résolution quelconque relativement à l’équipage du navire. Alors le chef se mit à l’écart et choisit douze de ses hommes, avec lesquels il délibéra longtemps. Ensuite ils revinrent vers la foule et le chef dit à Gudhleif et aux siens: Nous avons délibéré à votre égard avec les gens du pays, et ils s’en sont remis à ma décision: je vous laisse libres d’aller où vous plaira, mais alors même que l’été vous semblerait bien avancé, je vous conseille de vous éloigner promptement, car il ne faut pas se fier aux indigènes, et il ne fait pas bon avoir affaire à eux; ils croient d’ailleurs que la loi a été violée à leur préjudice.>> <<Mais, dit Gudhleif, s’il nous est donné de revoir notre patrie, comment nommerons-nous celui qui nous a sauvés?>> <<Je ne puis vous le dire, répondit-il, car je ne veux pas que mes parents ou mes frères d’armes fassent un voyage comme celui que vous auriez fait si je n’eusse été présent pour vous protéger. Maintenant je suis arrivé à un âge où je puis m’attendre, à chaque instant, à succomber de vieillesse. Mais quand même je vivrais encore quelque temps, il y a dans le pays des chefs plus puissants que moi; ils ne sont pas actuellement dans la contrée où vous avez abordé; mais s’ils viennent, ils auront peu de ménagement pour les étrangers.>> Ensuite il fit apparaître leur navire et resta là jusqu’à ce qu’il s’élevât un vent favorable pour partir. Mais avant de les quitter, il tira de son doigt un anneau et le confia à Gudhleif, ainsi qu’une bonne épée, en lui disant: <<Sil t’est donné de retourner en Islande, tu
Towards the end of St Olaf's reign Gudleif set out west to Dublin on a trading voyage, intending to sail on from there to Iceland, but west of Ireland he ran into easterly and then north-easterly gales, and the ship was driven out to sea first west and then south-west, well out of sight of land. This was late in the summer, and they kept making vows to do all sorts of things if they could get back to land. At last, land came into view. It seemed very large, but they'd no idea what country it could be. Gudleif and his crew decided to put in, not wanting to struggle against the sea any longer. They found a safe harbour, and after a little while some people came down to meet them. They didn't know who the inhabitants were, but they seemed to be talking Irish. Soon a great crowd gathered there, hundreds of them. They attacked the crew, took them all prisoner, shackled them, and marched them some distance inland, where they were taken to a court to be tried and sentenced. (Pálsson & Edwards 1973: 193-4)

The three late medieval Icelandic passages describe a realistic (fictional it may be, but not fantastic)¹⁹, significant place located somewhere in the North Atlantic (in some proximity to Earl Þórfinn's Orkney, according to Landnámabók), connected with Gaels or Gaelic Christianity and sometimes skraelings, set in the past, and at times named Írland et mikla or Hvítrømännaland. It is worth remembering that these texts were composed when the Greenland settlements were thriving and the Norse adventures in eastern Canada were a recent memory. Surviving literature and archaeological material point to interaction between the Norse and the aboriginal peoples of the northwest Atlantic, collectively named skraelings by them (Sutherland 2000). Thus, certain elements of these passages could derive from contemporary stories of westwards journeys and settlements.

¹⁹ It is true that the Eiriks saga rauoa passage includes description of how the two Skæling children “sukku i jorð niðr / sink deep into the earth”, however, this may be understood in a mundane way. For instance, Beauvois glosses the phrase by suggesting the children fled “probablement dans une des cavernes qui leur servaient de demeure”.

remettras cette épée à Kjartan, le maître de Frødáh, et cet anneau à Thuridhe, sa mère.>>
<<Mais, demanda Gudhleif, de qui dirai-je que viennent ces présents?>> <<Dis comme c'est la vérité, qu'ils sont envoyés par une personne qui était en meilleurs termes avec la dame de Frødáh qu'avec son frère le Godhé de Helgafell. Mais si quelqu'un croit savoir à qui ont appartenu ces objets, dis-leur de ma part que je défends à moins qu'ils ne soient dans les mêmes circonstances que vous.>>
Après quoi Gudhleif et les siens se mirent en mer et arrivèrent en Irlande à une époque avancée de l'automne. Ils passèrent l'hiver à Dýflinn (Dublin) et, l'été suivant, ils firent voile pour l'Islande, où ils remirent les présents aux destinataires. Des personnes tiennent pour certain que le chef indigène était Bjarn Breidhvingakappé, mais il n'y a pas d'autres notions certaines à cet égard que celles que l'on a rapportées.>>

remettras cette épée à Kjartan, le maître de Frødáh, et cet anneau à Thuridhe, sa mère.>>
<<Mais, demanda Gudhleif, de qui dirai-je que viennent ces présents?>> <<Dis comme c'est la vérité, qu'ils sont envoyés par une personne qui était en meilleurs termes avec la dame de Frødáh qu'avec son frère le Godhé de Helgafell. Mais si quelqu'un croit savoir à qui ont appartenu ces objets, dis-leur de ma part que je défends à moins qu'ils ne soient dans les mêmes circonstances que vous.>>
Après quoi Gudhleif et les siens se mirent en mer et arrivèrent en Irlande à une époque avancée de l'automne. Ils passèrent l'hiver à Dýflinn (Dublin) et, l'été suivant, ils firent voile pour l'Islande, où ils remirent les présents aux destinataires. Des personnes tiennent pour certain que le chef indigène était Bjarn Breidhvingakappé, mais il n'y a pas d'autres notions certaines à cet égard que celles que l'on a rapportées.>>

remettras cette épée à Kjartan, le maître de Fródáh, et cet anneau à Thuridhe, sa mère.>>
<<Mais, demanda Gudhleif, de qui dirai-je que viennent ces présents?>> <<Dis comme c'est la vérité, qu'ils sont envoyés par une personne qui était en meilleurs termes avec la dame de Fródáh qu'avec son frère le Godhé de Helgafell. Mais si quelqu'un croit savoir à qui ont appartenu ces objets, dis-leur de ma part que je défends à moins qu'ils ne soient dans les mêmes circonstances que vous.>>
Après quoi Gudhleif et les siens se mirent en mer et arrivèrent en Irlande à une époque avancée de l'automne. Ils passèrent l'hiver à Dýflinn (Dublin) et, l'été suivant, ils firent voile pour l'Islande, où ils remirent les présents aux destinataires. Des personnes tiennent pour certain que le chef indigène était Bjarn Breidhvingakappé, mais il n'y a pas d'autres notions certaines à cet égard que celles que l'on a rapportées.>>

remettras cette épée à Kjartan, le maître de Fródáh, et cet anneau à Thuridhe, sa mère.>>
<<Mais, demanda Gudhleif, de qui dirai-je que viennent ces présents?>> <<Dis comme c'est la vérité, qu'ils sont envoyés par une personne qui était en meilleurs termes avec la dame de Fródáh qu'avec son frère le Godhé de Helgafell. Mais si quelqu'un croit savoir à qui ont appartenu ces objets, dis-leur de ma part que je défends à moins qu'ils ne soient dans les mêmes circonstances que vous.>>
Après quoi Gudhleif et les siens se mirent en mer et arrivèrent en Irlande à une époque avancée de l'automne. Ils passèrent l'hiver à Dýflinn (Dublin) et, l'été suivant, ils firent voile pour l'Islande, où ils remirent les présents aux destinataires. Des personnes tiennent pour certain que le chef indigène était Bjarn Breidhvingakappé, mais il n'y a pas d'autres notions certaines à cet égard que celles que l'on a rapportées.>>

remettras cette épée à Kjartan, le maître de Fródáh, et cet anneau à Thuridhe, sa mère.>>
<<Mais, demanda Gudhleif, de qui dirai-je que viennent ces présents?>> <<Dis comme c'est la vérité, qu'ils sont envoyés par une personne qui était en meilleurs termes avec la dame de Fródáh qu'avec son frère le Godhé de Helgafell. Mais si quelqu'un croit savoir à qui ont appartenu ces objets, dis-leur de ma part que je défends à moins qu'ils ne soient dans les mêmes circonstances que vous.>>
Après quoi Gudhleif et les siens se mirent en mer et arrivèrent en Irlande à une époque avancée de l'automne. Ils passèrent l'hiver à Dýflinn (Dublin) et, l'été suivant, ils firent voile pour l'Islande, où ils remirent les présents aux destinataires. Des personnes tiennent pour certain que le chef indigène était Bjarn Breidhvingakappé, mais il n'y a pas d'autres notions certaines à cet égard que celles que l'on a rapportées.>>

remettras cette épée à Kjartan, le maître de Fródáh, et cet anneau à Thuridhe, sa mère.>>
<<Mais, demanda Gudhleif, de qui dirai-je que viennent ces présents?>> <<Dis comme c'est la vérité, qu'ils sont envoyés par une personne qui était en meilleurs termes avec la dame de Fródáh qu'avec son frère le Godhé de Helgafell. Mais si quelqu'un croit savoir à qui ont appartenu ces objets, dis-leur de ma part que je défends à moins qu'ils ne soient dans les mêmes circonstances que vous.>>
Après quoi Gudhleif et les siens se mirent en mer et arrivèrent en Irlande à une époque avancée de l'automne. Ils passèrent l'hiver à Dýflinn (Dublin) et, l'été suivant, ils firent voile pour l'Islande, où ils remirent les présents aux destinataires. Des personnes tiennent pour certain que le chef indigène était Bjarn Breidhvingakappé, mais il n'y a pas d'autres notions certaines à cet égard que celles que l'on a rapportées.>>
In his 1875 article, Beauvois used the medieval Icelandic texts presented above. Initially, his argument concentrated on the eastern North Atlantic. He identified a number of enigmatic medieval descriptions of early Christian monastic migration to Iceland by Gaels — and integrated these with pap-element place-names found in the Scottish islands, Faroe Islands and Iceland. Beauvois looked to the early ninth-century geography that included an account of the most northerly islands of the world, written in Frankia by the Gaelic cleric Dicuil. Beauvois understood Dicuil’s descriptions to identify a Faroese monastic community harried by “Nortmannorum / Northmen”, as well as an Icelandic settlement. These interpretations of Dicuil’s account are geographically plausible. Furthermore, Beauvois contextualised Dicuil’s accounts within the early Christian tradition of seeking desert places in the Ocean, a tradition clearly described in early monastic literature from Iona. Beauvois married this robust monastic literature to enigmatic late medieval writings from the Scandinavian world which described Gaelic communities of ‘white-clothed’ papae or papar in the Scottish islands and Iceland.

20 Here Beauvois refers to the following passage from the Historia Norvegiae, which Munch discovered in 1849 and published the following year:

Papæ vero propter albas vestes, quibus ut clerici induebantur vocati sunt, unde in teutonicā lingū omnes clericī: papæ dicuntur; adhuc quèdam insula Papey ab illis denominatur / Les Papas sont ainsi nommés à cause des habits blancs dont ils se vêtaient comme les clercs; car, en langue teutonique, tous les clercs sont appelés papas; aujourd'hui encore une île de Papey rappelle leur nom. (Beauvois 1875: 70, 70 n4)(This passage still troubles scholars (see for instance commentary in Phelpstead as well as Elcrem & Mortensen (Phelpstead 2001: 85; Ekrem & Mortensen 2003: 126)). As I hope to show in detail elsewhere, it may be that the Historia Norvegiae author is making a politically-motivated reinterpretation of the early Christian past of the ‘Orchades’ (a region which the Historia seems to define as Shetland, Orkney and the Hebrides (Historia: ch 5; Phelpstead 2001: 83; Ekrem & Mortensen 2003: 125). The Historia Norvegiae text is clear in denying Orchades links to the Scottish mainland. Orchades is described with two ancient races, both now disappeared, without connection to contemporary Scottish populations: the peti (picts) are “paruo superantes pigmeos structuris orbium uespere et mane mira operantes, meredie uero cunctis uiribus prosus destituti in subterraneis domunculis pre timore latuerunt I only a little taller than pygmies, [and] accomplished miraculous achievements by building towns, morning and evening, but at midday every ounce of strength deserted them and they hid for fear in underground chambers” (Historia: ch 5); while the papæ are Africans practising Judaism. Thus I suggest the Historia author is deliberately making claims for Norway’s sovereignty over the Orchades in such a way as to counter potentially competing claims from Scotland. For instance, the peti in Orchades are not related to Scottish populations but instead the claim is made that “Qui populus unde illuc aduentasset penitus ignoramus / We do not now at all where these people came from” (Historia: ch 6). Futhermore,
CHAPTER EIGHT: Írland et mikla, Beauvois and the imagining

previous to the Viking Age Scandinavian domination of this region. In short, Beauvois’ 1875 paper begins by arguing for settlement in Iceland by early Christian Gaels.

In making this argument, Beauvois demonstrated an impressive awareness of the most current (and often difficult to access) materials of his day. Furthermore, he applied a critical approach to dismiss both Wilhelmi’s ideas (which located Hvítramannaland in Florida) as well as suggestions of a medieval Welsh migration to North America (Beauvois 1875: 71 n2, 78, 85-6). His work is an early articulation of literature- and toponym-based arguments still current today. As an optimistic construction (and this is what he initially claimed to be making), his ideas regarding Iceland were critical and emerged from a familiarity with medieval Insular and Scandinavian literature – though twentieth-century archaeologists rightly criticised the lack of associated archaeological material for this hypothesis. He went too far, however, when he loosed his imagination remembering that the Orchades in the Historia included the Hebrides, then it is remarkable that the papa (a ‘race’ presumably inspired by the region’s early Christian past) be identified not with Gaels but instead with “Affricani fuerent iudaismo adherentes” (Historia: ch 6). In making this last identification, the Historia author may be engaging with a floating ‘lost people’ legend potentially current in the Norman and Scandinavian worlds.

I will briefly elaborate. First, it appears that eleventh- and twelfth-century authors used ‘African’ in the sense of ‘North African’ (i.e. from the old Roman province) rather than our modern definition (Metcalfe 2003: 56). Second, large communities of Jews existed in medieval North Africa (Goitein 1967-93), and there was also an apparently baseless belief that the Berbers were Jews (Hirschberg 1963). Significant Arabic-speaking Jewish communities were also to be found in Norman Sicily (Metcalfe 2003: 68). Third, there was a Judeo-Christian legend that the Girgashites (one of the peoples the Israelites dispossessed from Canaan) migrated en masse to North Africa: “The Girgashites evacuated, believed in the Holy One, praised be He, and went to Africa (the Roman province of Africa on the southern shore of the Mediterranean)” (Talmud: Tractate Kilaim, Shevi’it ch 6; Guggenheimer 2001: 501). This legend appears not only in the Palestinian Talmud but also in the Midrashim (Midrashim: Leviticus xvii.6, Deuteronomy v.14; Israelstam & Slotki 1939: 220-1; Rabbinowitz 1939: 116) and in early Christian texts (Hirschberg 1974: 23, 45-7; Monceaux 1902: 2-3). Fourth, contacts existed between Britain and Sicily in the Norman period (Johns 2002: 4; Haskins 1911). This was true also of Scandinavian Britain and thus “the presence in southern Italy and Sicily of more than a handful of Normans who still bore Norse personal names” (Johns 2002: 4). Furthermore, direct connections between Scandinavia and Sicily is testified to by medieval Icelandic reports of Norwegian crusaders spending a “comfortable and lengthy stay in Sicily in the splendour of Count Roger II’s court” (Doxey 1996: 149).

The idea of a ‘lost people’ of North African Jews was current among Jewish populations in tenth-century Sicily, but its spread to Latin-speaking peoples on the island after the Norman conquest is uncertain (Jeremy Johns, pers. comm.). However, if one were to imagine the legend’s currency in Norman Sicily, then the connections between that island and northwest Europe outlined above allow us to propose that this ‘lost people’ legend may have been one of the Historia author’s materials.

21 As mentioned earlier, ideas of ‘Welsh-speaking Indians’ were attacked by Thomas Stephens in 1858.
upon the west, after losing ‘traces’ of early Christian Gaels in Iceland. As he himself admits:

Là, nous perdons leurs traces, mais, une fois lancés sur la piste, nous ne pouvons plus nous arrêter; nous franchissons d’un bond la distance qui sépare l’Irlande de l’Amérique... (Beauvais 1875: 65)

Beauvais imagined early Scandinavian ‘pirates’ forcing early Christian communities from the Northern Isles of Scotland and the Faroe Islands to flee north to Iceland and west from there: “... enfin, ils allèrent les relancer jusqu’en Islande et ... [les contrainirent] à émigrer de nouveau ... se rejeter vers l’ouest ...” (Beauvais 1875: 77).

Ultimately, Beauvais based his westwards speculations upon the three medieval Icelandic texts given above – and to these he introduced the twelfth-century (that is, roughly contemporary) Arabic Book of Roger by Idrisi. Beauvais believed these texts described a Grande-Irlande in the Atlantic. His underlying assumption was that Grande-Irlande had a reality beyond the potentially related Icelandic texts. From this material then, Beauvais imagined a settlement of Gaels (still Christian but no longer a monastic community) in the Gaspé and southern Québec. Two seventeenth- and eighteenth-century authors point Beauvais to Québec: Christian Le Clerq and Joseph-François Lafitau. Specifically, Beauvais cited Le Clerq’s Recollet accounts from the Gaspé of “nombreux restes du Christianisme, notamment le culte de la croix et des réminiscences du pater ...” (Beauvais 1875: 86; Le Clerq 1691), and the Jesuit Lafitau’s belief that the cross was an old religious symbol for eastern Canada’s First Nations (Beauvais 1875: 83-6; Lafitau 1723).

In proposing early Irish communities in Québec, Beauvais demonstrated the peculiar consequences of integrating diffusionist and racial ideas in late nineteenth-century scholarship. Earlier in the chapter, we visited Trigger’s suggestion that the combination of racism and diffusionism appealed to romantics “because it identified the culturally specific and the exotic as the most essential reflections of human nature and offered reassurance that these aspects of human behaviour and identity were relatively resistant to change” (Trigger 1998: 50). Beauvais acted in just this way when he wrote that:

Ces faits remarquables sont aujourd'hui bien connus, même en dehors des pays scandinaves; mais les savants, passablement nombreux, qui ont publié, traduit ou commenté les documents relatifs à la Grande Irlande ou Hvítramannaland (Pays des hommes blancs), ont négligé de mettre en relief et en regard, pour les comparer entre eux, une foule de petits détails qui s'éclairent mutuellement et confirment la véridicité des sagas scandinaves. (Beauvois 1875: 41)

Here Beauvois stresses the "foule de petits détails", in other words the odd and the exotic, as holding the key to his field of research. Beauvois accepted diffusionist ideas – he worked from Le Clerq and Lafitau's cross descriptions to imagine mechanisms for the cross symbol to spread from the Old to New World. Correspondingly, he embraced racial doctrines and the rigidity of human nature, not only for Gaels but also for the First Nations peoples. Beauvois understood Gaels as going bravely into the unknown Ocean because that is what Gaels do – it is in their nature. For instance, Beauvois claimed that “...les traditions de leur race les portaient à sonder l’inconnu … d’arracher à la mer le secret de son immensité” (Beauvois 1875: 77). He also followed biological determinist thinking when he saw the First Nations peoples as racially incapable of constructing stone structures he had read of in Newfoundland. He wrote that “les ruines d’édifices … ne peuvent avoir été élevés par des sauvages” (Beauvois 1875: 86).

Thus, Beauvois' arguments were coloured by the theories he accepted. (Though, of course, a mass of historical research has been needed to give us the vantage points we now enjoy.) Additionally, Beauvois (like many of his contemporaries) placed too much confidence in the straightforward accuracy of medieval literature, not paying sufficient attention to the social role of these texts for the communities that created and preserved them. For instance, recent commentators (in contrast to earlier scholars) explore how the Landnámabók text was written as a work which “focuses on a nation’s appropriation of space” (Taylor 2003). Nevertheless, Beauvois’ treatment of the Grande-Irlande passages reveals thoroughness in his methods and an impressive command of contemporary scholarly literature. Furthermore, he added fresh data to the debate which has not been appreciated by subsequent scholarship. Firstly, in exploring the idea of early Christian settlement of the Faroe Islands, he presented a folk tradition collected by the pastor J H Schroeter on the island of Suðuroy:
Quelque temps avant que les Norvégiens s’emparaient des Fâreys, il s’y était établi des hommes que le narrateur considérait comme des saints, attendu qu’ils avaient la puissance de faire des signes et des miracles, de guérir les blessures et les maladies, aussi bien des hommes que des animaux; ils savaient prédire si l’année, la pêche ou l’état sanitaire, seraient favorables. Ils ne vivaient pas comme les autres hommes; car leur nourriture se composait de lait, d’œufs, de racines et d’algues: ils avaient des chèvres domestiques qu’ils traayaient; mais ils ne tuaient aucune créature et ne versaient pas le sang. Les seuls objets qu’ils acceptassent comme presents ou en rénumération de leurs services, étaient le pain azyme, le poisson séché, et le vadmel (bure) pour se vêtir. On montre plusieurs localités où ces gens auraient habité; par exemple, un endroit situé en dehors de Kvalboy, où l’on peut voir que le sol a été nivelé pour être converti en pâturage; de même, près du village, nommê i Hovi, etc., ainsi que dans quelques-unes des autres îles. A l’arrivée des Norvégiens, qui étaient très-violents, quelques-uns de ces gens s’éloignèrent par mer; d’autres se réfugièrent dans des cavernes. Les derniers que l’on dit s’être conservés, demeuraient dans une caveme de l’île de Nâlsoy; on doit y avoir vu des cendres, loin à l’intérieur, vers la fin du siècle précédent. (Beauvois 1875: 68 n1; Schrêter 1849-51: 146-7)

As with all folk traditions, the passage above is a complex material: because of questions of transmission and the teller’s concerns regarding style, the story should not be taken as a straightforward and honest account of a distant past. However, it is of interest that later scholars seem unaware of the tradition. Secondly, and of special relevance as an additional example of the Grande-Irlande name, he introduced a medieval Arabic description of a place “Irlandah-al-Kabirah / Irlande-la-Grande” (Beauvois 1875: 81; Idrïsî: VII, 2; Jaubert 1836; Bresc & Nef 1999: 461). The name appears in the Chevalier P Amédée Jaubert’s early nineteenth-century translation of Idrisi’s Book of Roger23. Writing in Norman Sicily, al-Idrïsî completed his Book of Roger c. AD 1154 and the work is important for our purposes because of its detailed geography of western Europe (Bresc & Nef 1999; Oman 1971; Perkins 1993; Dunlop 1957; Wittek 1955). As mentioned in note 20, Sicily in the Norman period experienced close connections to northwest Europe. In researching his book, Idrisi and his informants took advantage of these connections, collecting detailed information on these regions: for instance, even the inland settlement of Oxford may be identified in his geography (Beeston 1950: 275; Wittek 1951: 1045).

23 Titled “Kitâb Nuzhat al-mushtâq fi-khtirâq al-afâq / L’Agrément de celui qui est passioné pour la pèlerinage à travers le monde” or “Kitâb Rujâr / Livre de Roger” (Bresc & Nef 1999: 13).
For Beauvois to propose that Idrisi’s geography should include a description of what the Icelandic texts name Írland et mikla was plausible, given Jaubert’s translation below:

Entre l’extrémité de l’Écosse, île déserte, et l’extrémité de la Hirlande (de l’Irlande), on compte 2 journées de navigation, en se dirigeant vers l’occident.
L’Irlande est une île très-considérable. Entre son extrémité supérieure et la Bretagne on compte 3 journées et demi de navigation.
De l’extrémité de l’Angleterre à l’île de Danes, 1 journée.
De l’extrémité septentrionale de l’Écosse à l’île de Reslanda (l’Islande), 3 journées.
De l’extrémité de l’Islande à celle de l’Irlande la Grande, 1 journée.
De l’extrémité de l’Islande, en se dirigeant vers l’orient, à l’île de Norbagha (Norwège), 12 milles.
L’Islande s’étend sur un espace de 400 milles de long sur 150 milles de large. (Idrīsī: VII, 2; Jaubert 1836)²⁴

Beauvois connects the “Irlande la Grande” in this passage with the roughly contemporary Icelandic Írland et mikla descriptions and suggests Idrisi received his information “Peut-être dans un de ses voyages sur les côtes de l’Angleterre, ou plutôt encore à la cour de Roger II, roi de Sicile, pour lequel il composa son ouvrage” (Beauvois 1875: 81). He supports this proposal by elaborating that Roger was grandson of “Tancrède de Hauteville, dans le Cotentin, et par consequent originaire de la Normandie où certaines familles avaient conservé des relations avec la Norvège, patrie de leurs ancêtres” (Beauvois 1875: 81-2). Beauvois’ suggestion of Scandinavian information being integrated into the Book of Roger is plausible because of the key role that Palermo (and Sicily generally) seems to have played in the diffusion of scholarship

²⁴ Dunlop reproduces maps which accompany this text and appear in Book of Roger manuscripts (Dunlop 1947). The most recent edition of the passage (which builds upon Jaubert’s translation) reads:

Entre l’extrémité de l’Écosse, île déserte, et l’extrémité de l’île d’Irlande, on compte deux jours de navigation vers l’occident.
L’Irlande est une île très considérable. Entre son extrémité supérieure et la Bretagne, on compte trois jours et demi de navigation. Et l’auteur du Livre des merveilles affirme que l’on y trouve trois villes. Il affirme aussi qu’un people y vit et que les bateaux avaient l’habitude d’y passer, de s’y arrêter et d’y acheter de l’ambre et des pierres colorées, mais que des affrontements éclatèrent entre les habitants. Certains cherchèrent alors à prendre le pouvoir sur les autres et les combattirent avec leur famille. L’animosité s’installa entre les habitants pour cette raison. Ils s’anéantirent réciproquement, certains d’entre eux allèrent s’installer sur la côte du continent, leurs villes furent détruites, et aucun d’eux ne demeura en Irlande.
between the Arabic and Latin worlds (Jehel & Racinet 2000: 195). As mentioned earlier, there was much contact between Sicily and northwest Europe in the twelfth century: court members were Anglo-Norman, distinguished Scandinavians visited the court, and Scandinavian mercenaries operated on the island (Doxey 1996; Haskins 1911). Nevertheless, the information in the Book of Roger on Scandinavia is poor, while details on Anglo-Norman Britain appear to be transmitted to Idrisi from French to Greek and then to Arabic (Johns 2001; Haskins 1911). Thus it may be that the informant(s) for these areas was a French-speaking Anglo-Norman rather than Scandinavian.

Furthermore, deeper investigation of this Idrisi passage favours an alternate reading. Working from an Arabic edition of this section, published by A F L Beeston in 1950 (Beeston 1950: 270, 280), the following is a literal translation of the sentence in question: “And between the extremity of the island of (Ruslanda) and the extremity of [the] island of (Burlanda) the large [is] a day of navigation” (Jeremy Johns, pers. comm.; Ben White, pers. comm.). The “island of Ruslanda” has been variously interpreted as part of Scotland, the Faroe Islands or Iceland (Dunlop 1947: 117; Stevenson 1948; Beeston 1950: 277-8), while the Iceland identification is supported by the most recent editors (Idrīsī: III, 2; Bresc & Nef 1999: 461). Turning to “Burlanda”, Beeston studied five of the six extant Book of Roger manuscripts and noted they mostly agree in giving the form b.rlānda (one manuscript reads g.rlānda). Beeston suggested that b.rlānda represents a scribal miscopying of an original lrlānda, from the French l’Irlande. This compares with the form lanqualtara (l’Angleterre) given by Idrisi elsewhere in the Book of Roger and would be consistent with the idea of a French-speaking Anglo-Norman informant (Beeston 1950: 273). Paul Wittek, however, has argued that b.rlānda may equally be a miscopying of irlanda while the g.rlānda variant may be explained as incorporating an initial glottal stop in order to make irlanda more emphatic (Wittek 1951)25.

Importantly, Beeston’s rendering of the phrase as “the extremity of [the] island of Ireland the large” questions Jaubert’s (and Nefs) translation of “Irlande la Grande”. We are dealing with the genitive case here, which means that the definite article drops out

25 Thus Wittek’s reinterpretation cautions against using b.rlānda as evidence for this section of the Book of Roger being drawn ultimately from a French-speaking informant.
(thus the translation’s square bracketed [the]), while the feminine singular adjective \textit{kabīrah} / ‘the large’ could relate to either of the feminine nouns ‘island’ or ‘Ireland’ – though relating \textit{kabīrah} to ‘island’ would be more normal (Johns, \textit{pers. comm.}; White, \textit{pers. comm.}). Thus Beeston translates the phrase as “the extremity of the large island of Ireland” (Beeston 1950: 280). This grammatical approach to the Idrisi passage poses serious problems for Beauvois’ suggestion that what Icelandic texts called \textit{Irland et mikla} was also included in the \textit{Book of Roger}. Beeston, however, did not consult all six manuscripts and Jaubert and Nef’s translation remains a possibility – it may be that we are dealing with variation between manuscripts here. Because of this question regarding Jaubert’s translation and the way in which Idrisi’s passage \textit{may} be read to locate a place called \textit{Irlande la Grande} in the North Atlantic, Beauvois’ suggestion that Idrisi’s \textit{Irlanda al-kabīrah} is the same as his \textit{Grande-Irlande} needs further investigation before it can be refuted. Specifically, it would be useful to understand the reasons for Jaubert and Nef to translate as they did.

In fairness to Beauvois, Idrisi (if this is what he intended) may not be alone in giving a North Atlantic location for \textit{Irlande (la Grande)}. For instance, the name \textit{Irland(e)} appears to describe a northern place in an Old English passage attributed to Ohthere, a chieftain from the north of Norway. The Old English \textit{Orosius} was compiled at King Alfred’s court sometime between AD 871 and 900 and incorporates travel information provided by Ohthere (Page 1995: 45-8). The Ohthere passage follows:

\textit{Ohthere sæde þæt sio scir hatte Halgoland þe he on bude. He cwæd þæt nan man ne bude be norðan him. Þonne is an port on sudeweardum þæm lande þonne man hæt sciringesheal. Þyðor he cwæd þæt man ne mihte geseglian on anum monðe, gyf man on niht wicode & ælce dage hæfde ambyrne windæ & ealle ða hwile sceal seglian be landæ & on þæt steorbord him bið ærest Iraland, & þonne ða igland þe synd betux Iralande & þissum lande; þonne is þis land ðð he cymód to sciringesheal, & ealne weg on þæt baecbord Norðweg. (Orosius: I.; Lund et al. 1984: 21-2; Bately 1980: 16, 17)}

Ohthere said that the district where he lived is called \textit{Halgoland}. He said no-one lived to the north of him. In the south part of Norway there is a trading-town which is called \textit{Sciringes heal}. He said that a man could scarcely sail there in a month, assuming he made camp at night, and each day had a favourable wind. He would sail by the coast the whole way. To starboard is first of all \textit{Iraland} and then those islands which are between \textit{Iraland} and this land, and then this land until he comes to \textit{Sciringes heal}, and Norway is on the port side the whole way. (Lund et al. 1984: 21-2)
Illustr 8.2 Folio from Cotton Tiberius B manuscript of the Old English Orosius. Taken from Janet Bately’s edition of the text (Bately 1980: 17).
The text given above appears to locate *Irland(e)* in the North Atlantic. This is one of the earliest uses of the place-name *Irland*, an Old Norse name which seems to originate with Ohthere, as *Hybernia* is used for Ireland in the rest of the *Orosius* text. The locating of Ohthere’s *Irland* has been a matter of debate for some time. In 1855, J Bosworth discarded the argument that modern-day Scotland inspired Ohthere’s *Irland* (Batley 1980: 193-4; Bosworth 1855: 46 n54). In the early twentieth century, D F Emerson (and later K Malone) posited that the passage preserved medieval views on the position of Ireland, while W A Craigie followed J Ingram and Bosworth in emending the text to *Isaland* and identified the place as Iceland (Batley 1980: 193-4; Emerson 1916: 458; Malone 1930: 143; Malone 1933: 78; Craigie 1917: 200-1; Bosworth 1855: 46 n54; Ingram 1807: 63, 78-80q, 110.33m). In 1957, W C Stokoe proposed that Ohthere was referring to (from northern Norway) the first sea route to Ireland (Batley 1980: 193-4; Stokoe 1957: 304). More recently, Niels Lund proposed that one of Alfred’s scholars may have introduced the references to Ireland, the Orkney Islands, Hebrides and Britain in order to aid the English reader in understanding the text (Lund et al. 1984: 11-2). Lund also explored the counter-position that geography suggests emending Ireland to Iceland – this is a point which Christine Fell supported (Lund et al. 1984: 12; Fell 1984: 63). In advocating that *Íslend* was misunderstood in the text as *Irland*, Fell (like many before her) accepted that the island referred to by the name *Irland* was in fact the island known today as Iceland (Fell 1984: 63). An important difficulty for efforts to emend *Irland(e)* to *Íslend* is that it is unclear that this northern island was known by that name in the late ninth-century period of Norse settlement there. For instance, later Icelandic tradition gives *Snæland / Snjóland* as the name for Iceland used by the earliest Norse land-claimers (*Landnámabók*: H2, S5, H5; Benediktsson 1968: 33, 37). Furthermore, the use of *Irland(e)* in the Ohthere passage is one of the earliest surviving occurrences of this name. Thus perhaps we should hesitate in emending the *Orosius* text to the potentially problematic *Íslend*, and (bearing the difficulties outlined above) also consider that the *Irland* name need not necessarily refer to modern-day Ireland. To elaborate another of Fell’s points, it is certainly possible to imagine Ohthere gave the wrong directions, and that Ohthere and/or the *Orosius* writer may have been mistaken (Fell
1984: 63). Strictly speaking, however, the text of the late ninth-century Oththere passage appears to locate its Írland(e) in the North Atlantic. If Idrisi’s twelfth-century Irlanda al-kabîrah is also to be located in the North Atlantic (as argued above, this has yet to be established), then these two descriptions could potentially be related to each other or, along with the Írland et mikla passages, draw upon a common medieval tradition of an Irlande (la Grande) in the North Atlantic. Though Beauvois seems to have been unaware of Oththere’s Irland(e), the multiple occurrences of Greater Ireland in Icelandic and Arabic texts drove his diffusionist- and racial determinist-coloured arguments. In order to refute the idea that these texts may be related to each other, it is necessary to first refute Jaubert’s (and Nef’s) translation of Irlanda al-kabîrah as Irlande la Grande. Next, integration of the Old English Orosius’ Irland(e) with the Icelandic Írland et mikla passages may help achieve a better understanding of the problems they pose. Furthermore, the way in which the Írland et mikla descriptions incorporate ideas of an early Christian settlement of Gaels on an Atlantic island may be profitably investigated alongside Insular early Christian literature – and alongside the work outlined elsewhere in this thesis, which posits early cave settlement at Seljaland with sculptural affinities in the Insular early Christian worlds.

Conclusions and further problems

Science is a social process. Many of the areas of research we explore today originated with nineteenth-century scholarship and the historical dimension of the practice of science is important because it fosters critical rigour and an awareness of the mortality of our ideas. The problem this chapter grappled with was: how to approach late nineteenth-century scholars and, specifically, the medieval literature they deployed?

The solution presented in this chapter has been drawn from study of Eugène Beauvois’ prolific output on the subject of Írland et mikla (Greater Ireland). Beauvois’ ideas on the topic were articulated in his 1875 paper, La découverte du Nouveau Monde par les Irlandais et les premières traces du Christianisme en Amérique avant l’an 1000, where he explored the relationship between the early medieval Insular and North Atlantic islands. His work is relevant to the rest of this thesis in light of how the preceding chapters suggest connections between Atlantic Scotland and southern Iceland.
in the early medieval period: Beauvois made a literature- and toponym-based argument for early Christian settlement of Iceland by Gaels.

Therefore, this chapter assessed the historical dimension Beauvois' work provides. In order to study Beauvois' scholarship in detail, this chapter first related his work to the theoretical ideas of diffusionism and racial determinism current in his day. Armed with materials with which to contextualise Beauvois, the critical rigour of his arguments was examined (as demonstrated in his 1875 paper). Thus assessed, his ideas were integrated with new research on the topic. The study undertaken in these pages has reintegrated otherwise 'forgotten' materials which Beauvois contributed to the debate: Schröter's example of Faroese folklore and Idrisi's Ilranda al-kabfrah were part of his arguments, but these complex yet intriguing materials have since been overlooked.

Most importantly, revisiting Beauvois' 1875 study demonstrates how appreciation of the historical dimension may be a spur to future research. At the heart of his arguments, Beauvois found that a handful of medieval Icelandic and Arabic references suggested to him the existence of an Atlantic place called Grande-Irlande, peopled by early Christian Gaels. Understanding the diffusionist and racial determinist thinking with which he operated allows us to be sceptical of his suggestions of an early medieval Irish settlement in Québec, while still appreciating the problem with which he engaged. For instance, it is true that medieval Icelandic, potentially Old English, and (less probably) Arabic literature describes a (Greater) Ireland in the North Atlantic, which in the Icelandic tradition is associated with Gaels and early Christianity (among other things). Revisiting Beauvois' scholarship has demonstrated that one should be wary of placing too much confidence in theory-led conclusions inspired by isolated material unsupported by coherent bodies of data; however, the contextualising efforts of this chapter have also shown that – if intelligently done – medieval Ilranda et mikla traditions may be profitably investigated alongside other roughly contemporary literature from the Norse and Celtic worlds – especially in light of the conclusions given in Chapter Seven, which support early Christian connections between Atlantic Scotland and southern Iceland.
CHAPTER EIGHT: Írland et mikla, Beauvois and the imagining

References

—. 1875. La découverte du Nouveau Monde par les Irlandais et les premières traces du Christianisme en Amérique avant l'an 1000. Congrès international des américanistes 1, 41-93.

—. 1879a. La Norambègue. Découverte d'une quatrième colonie précolombienne dans le Nouveau Monde avec des preuves de son origine scandinave. Congrès international des américanistes 3.

—. 1881. La grande terre de l'Ouest dans les documents celtiques du moyen âge. Congrès international des américanistes 4, 45-74.

—. 1883a. L'autre vie dans la mythologie scandinave. Le Muséon: Revue internationale. Études de linguistiques, d'histoire et de philosophie 2, 189-209.

1887. La légende de Saint Columba chez les Mexicains du Moyen Age. *Le Muséon: Revue internationale. Études de linguistiques, d'histoire et de philosophie* 6, 156-72, 298-310.

CHAPTER EIGHT: Írland et mikla, Beauvois and the imagining

Craige, W.A. 1917. 'Írland' in King Alfred's 'Orosius'. Modern Languages Review xii (1917).

De Roo, P. 1900. History of America before Columbus according to Documents and approved Authors. Philadelphia: J B Lippincott.

CHAPTER EIGHT: Irland et mikla, Beauvois and the imagining

—. 1957. The British Isles according to medieval Arabic authors. *Islamic Quarterly: A Review of Islamic Culture* 4, 11-28.

Eyrbyggja. Edited by Sveinsson and Póðarson.

Idrisi. From editions and translations by Jaubert 1836 and Besc & Nef 1999.

Ingram, J. 1807. *An Inaugural Lecture on the Utility of Anglo-Saxon Literature; to which is added the Geography of Europe by King Alfred*. London.
CHAPTER EIGHT: Írland et mikla, Beauvois and the imagining

Íslendingabók. Edited by Benediktsson 1968.

Landnámabók. Edited by Benediktsson 1968.

Scisco, L.D. 1908. *American Historical Magazine* III.

—. 1888 [1887]. *Studier over Vinlandsreiserne, Vinlands Geografi og Ethnografi [Reprinted from Aarbøger for nordisk Oldkyndighed].* Copenhagen.

CHAPTER NINE
To conclude

“We should not consider Iceland as any more Scandinavian than Ireland is Celtic.”

Rory McTurk, Reader in Icelandic

“I may be wrong and you may be right, and by an effort, we may get nearer to the truth.”

Karl R Popper (fl. 1930 - 1994)

“<I believe that the advantage is always on the side of true culture,> observed Karenin, raising his eyebrows slightly.

<But what are the signs of this true culture?> Pestsov asked.

<I should have thought such signs were generally well known,> said Karenin.

<But are they fully known?> put in Kozynshev with a subtle smile. <It is the accepted view at the present time that real culture depends on a purely classical education; but we hear violent arguments on both sides, and there is no denying that the opposite camp has some strong points in its favour.>

<You are a classical scholar, Sergei Ivanich! Will you take red wine?> said Oblonsky.

<I am not speaking of my personal opinions,> replied Kozynshev with a condescending smile, as though to a child, and holding out his glass. <All I say is that there are strong arguments on both sides,> he went on, addressing himself to Karenin. <I had a classical education, but personally can find no place in the controversy. I see no clear reason why the classics should be preferred to a modern education.>

<The natural sciences have just as great an educational value,> Pestsov joined in. <Take astronomy, take botany, or zoology with its system of general principles.>

<I cannot quite agree with you there,> answered Karenin. <It seems to me that one must admit that the very process of studying the forms of a language has a peculiarly beneficial effect on intellectual development. Moreover, it cannot be denied that the influence of the classical authors is in the highest degree a moral one, whereas, unfortunately, with the study of the natural sciences are associated the false and noxious doctrines which are the curse of our times.>

Kozynshev was about to say something when Pestsov’s deep bass interrupted him. He began warmly contesting the justice of such a view. Kozynshev quietly waited to put in a word, evidently ready with some crushing retort.

<But,> said Kozynshev with his subtle smile, addressing Karenin, <one cannot help allowing that to weigh all the pros and cons of classical and scientific studies is a difficult task, and the question, which form of education is to be preferred, would not have been so quickly and conclusively decided had not classical education had on its side the advantage, as you expressed it just now, of its moral – disons le mot – anti-nihilist influence.>

<Exactly.>

<Were it not for the advantage of this anti-nihilist influence on the side of classical education, we should have given longer consideration to the question, and weighed the arguments on both sides.> said Kozynshev, subtly smiling. <We should have given elbow-room to both systems. But as it is we know that these little pills of classical learning possess the medicinal property of anti-nihilism, and we boldly prescribe them to our patients. …But what if they had no such medicinal property?> he concluded, adding the grain of Attic salt.

At Kozynshev’s little pills, everyone laughed, and Turovtsyn in particular roared loudly and jovially, having at last heard something funny, all he ever looked for in listening to conversation.”

Leo Nikolayevich Tolstoy, written 1874-6

1 Quoted out of context, with permission.
2 (Popper 1994: xii)
3 (Tolstoy 1954: pt 4 ch 10, 411-2)
Conclusions and further problems

Study of the early medieval past, across a zone stretching from the Scottish coasts to Iceland, may be defined by complex interplay between established 'certainties' and fundamental ambiguities. For instance, the existence of early Christian settlements within the Gaelic-speaking world is assured, while their nature and extent beyond that is unclear; similarly, the Norse are known to have come to dominate this region by the late Viking Age, but the exact chronology and character of their earliest colonisation of this zone is difficult to perceive. Thus, as we have seen in Chapters Four and Eight, the desire to resolve some of these 'unknowns' has encouraged the proposal of bold ideas (i.e. the presence of early Christian communities of Gaels across the Scottish islands and beyond has long been mooted, and Iceland's artificial caves (and cross sculpture) have likewise provoked speculation). Notable for both its excellent tephrochronological sequence and literary inheritance, Iceland – a true 'wilderness' at the outset of the medieval period – has proven critical to exploring these uncertainties, with Scandinavian groups believed to have entered an 'empty' landscape of their own pioneering initiative in the late ninth century.

In focusing on relationships between the early medieval parts of this coastal and insular zone, the present thesis has produced multi-disciplinary results that are concrete and gain strength from the avowedly inter-disciplinary methodology outlined in Chapter Two. In other words, the philosophical discussion of that chapter articulated a method for bringing together and developing the work of the archaeologist, Celticist, environmental scientist, place-name scholar and historian, thus enabling a synthesis of research which fostered critical rigour. Having arrived at this method, the first study looked to the Pap-names often associated with communities of early Christian Gaels throughout our zone. An important refinement of Chapter Three was to stress how Pap-names are Old Norse (not Old Irish) names, and that Hebridean Pab(b)ay islands underscore the ill-defined – but real – relationship between the area's Norse-speakers and early Christian communities.

The second group of studies turned to consider specifically Icelandic material: the enigmatic artificial caves whose distinctive rock-cut sculpture has encouraged long-mooted claims of early Christian 'Irish' use. Awareness of these ideas and the
fundamental uncertainties surrounding these sites spurred the ‘Seljaland section’ (Chapters Four to Seven), where tephrochronology was applied to establish cave construction at Seljaland c. AD 800, a date significantly earlier than the traditional chronology for Iceland’s Norse settlement. Additionally, in seeking to situate these caves within their wider landscape, the palaeoenvironmental technique of *tephra contours* was developed to assess medieval human-environmental interactions (i.e. woodland clearance and the introduction of domesticates). By exposing discrete past land surfaces and vegetation cover, this new technique provided ‘photographs’ of Iceland’s first human centuries. Importantly, these palaeoenvironmental studies suggested a localised and early ninth-century impact upon the Seljaland landscape – which may contextualise the early date obtained for cave construction and indicate that affinities between cross sculpture in the Seljaland caves and the early Christian sculpture of western Scotland are plausible. It is worthwhile to stress this last point: cross sculpture in the Seljaland caves suggests a connection with Gaelic monasticism in the Scottish littoral.

From these conclusions then, two main ideas emerge: first, that the Norse did not enter an ‘empty’ landscape in Iceland; and second, that early in the period of Norse domination, there was an ill-defined – but real – relationship between early Christian communities and the Norse, most clearly suggested in the Scottish islands. Thus, in future work we may test our ideas and further refine them (and there is inevitably much that was not touched upon here), but for the moment we can say that, by integrating the materials of different disciplines, we have arrived at a more complex and rounded picture of a phase of the past in a zone stretching from Scotland to Iceland.

References
APPENDIX

Published papers by the author

The articles below are reprinted with each publisher’s permission

Further Evidence for a Columban Iceland: Preliminary Results of Recent Work

Kristján Ahronson

Department of Celtic, University of Edinburgh, Edinburgh, Scotland

Over 10 years ago, a study was completed which established a link between a tradition of simple incised crosses (with expanded terminals) and the important Early Christian monastic familia of St Columba, based in and around the small Scottish island of Iona. Intriguingly, this Columban expanded terminal cross-form bears a remarkable resemblance to a poorly understood body of cross-carvings in Southern Iceland. A connection between the two traditions would be especially interesting because the Scottish cross-form was short-lived, disappearing before the Viking Age. In other words, before the generally accepted dating of the Norse settlement of Iceland.

In 1987, Ewan Campbell completed a study of Argyll simple crosses cut into stone. Notably, he identified an expanded terminal cross-form and related it to the Columban familia of monastic houses of the late 6th to early 9th centuries (Campbell 1987). This paper brings attention to the striking similarity between Campbell’s expanded terminal cross-form and several crosses forming a coherent — but as yet ill-defined — tradition in South Iceland. In Iceland, these stylistically consistent cross-carvings are found in both man-made caves and sheltered alcoves of exposed rock faces. Similarly, a portion of Campbell’s Scottish expanded terminal crosses are found in caves, caves he suggests as ‘... retreats or deserta for anchorites or penitents’ (1987:108–109).

Significantly, a survey of the archaeological, historical and place-name evidence reveals that Columban monks could have been in Iceland before the Norse settlement of the Viking Age. Thus, if one accepts the Icelandic crosses as the product of the Early Christian Celtic West, then the preliminary results outlined here suggest that the pre-Norse Irish hermits of early Icelandic writings, the papar, were quite possibly Scottish/Irish monks of St Columba. If this possibility proves true, then new light is cast upon not only the mechanics and nature of early Norse settlement in Iceland but also in the North Atlantic islands of Faeroe, Shetland and Orkney.

It has long been recognized that expanded terminal crosses, incised into stone, were characteristic of the early Church in Western Scotland and Ireland. But in 1987, Ewan Campbell made a significant advance on this observation. What Campbell did was to set about a detailed and comprehensive examination of Argyll crosses. This investigation enabled him to identify the expanded terminal cross-form as a coherent group, a group he linked with areas in which the monks of St Columba, based in Iona, were active.
in the seventh century" (Campbell 1987:107).

The basic premise of Campbell's study is that, 'While it is possible that the very simplest of these crosses, consisting of plain vertical and horizontal lines, are not amenable to any analysis, the slightly more complex forms may reflect changing fashions in particular regions' (ibid.). Originally suggested by Hamlin (1982:209), this premise has proven a valid one, since a pattern does emerge in Argyll.

Argyll, because of its excellent and comprehensive inventory of Early Christian monuments, provides a good geographic distribution from which significant archaeological information can be recovered (Campbell 1987:107). Campbell (1987:108) maps the roughly 50 sites from which 150 cross-marked stones have been identified and a discrete clustering of expanded terminal crosses is revealed. This clustering of crosses is extremely significant and reinforced by a strong similarity of form and disposition among the expanded terminal group members. The clustering is important because these crosses can now be associated in time and space with areas in which we know the Columban familia to have been active (Campbell 1987:107-108).

The Columban association with the expanded terminal cross-form is reinforced by an analysis of Adomnan's Life of St Columba. Study reveals that, aside from locations along the sea route to Ireland and those associated with Columba's travels in Pictland or Skye, all identified places lie in Tiree, Mull, Morven, Armamurchan and Lorne. This is the same part of northern Argyll in which the expanded terminal crosses were found (Campbell 1987:110).

The dating evidence for each carving also supports our conclusions. Individually, the 17 expanded terminal crosses of Argyll yield dates between the late 6th and early 9th centuries. Noting the restricted range of the cross-form, discussed above, Campbell (1987:112) suggests the expanded terminal cross finds its home at the earlier end of the period. This dating is consistent with Thomas's general simple cross-form dates for North Britain and Henderson's Class IV Monument dates for Pictland, both mentioned earlier. It is then reasonable, on geographic and temporal grounds, to link this cross-form with the Columban familia of monastic houses specifically of the 7th and 8th centuries.

As for the crosses themselves, the five I have examined are suggestive because, like Campbell's Scottish examples, the Icelandic crosses form a consistent body, a consistent body of expanded terminal crosses. These crosses, shown in Fig. 2, fall within a defined range of size and style and seem to resemble the Argyll expanded terminal cross-form. The most uniform set of Argyll crosses of this type, those from Iona itself, resemble the Argyll expanded terminal crosses, shown in Fig. 2, fall within a consistent body of expanded terminal crosses. These crosses form a consistent body, a consistent body of expanded terminal crosses. These crosses, shown in Fig. 2, fall within a more uniform range of size and style and seem to resemble the Argyll expanded terminal cross-form. The most uniform set of Argyll crosses of this type, those from Iona itself, have been reproduced in Fig. 1 for comparison. Here we see the emergence of exciting and suggestive links between pre-Norse Western Scotland, Shetland and Iceland.

But before addressing the contexts of the 5 Icelandic crosses, let us first return to Campbell and the provenance of his 17 Argyll crosses:
Crosses with expanded terminals are found on seven sites: Hynish on Tiree; Iona; Nun's Cave, Bamakill near Dunadd; and on the quern from Tiree to Dunadd. There is a collection of the largest collections of Early Christian monuments in Britain and Ireland with over 100 other forms of elaboration. The other five sites, except Dunadd, would also appear to be secular in nature. The two caves on the Ross of Mull have many religious carvings of anchorites or penitents. The stone from Hynish, and could be a house of Iona, Tiree. However, there were several other sites associated with the well-known monastic site. The Garvellochs at Elieach an Naoimh is traditionally founded by St Brendan. In the past this has been identified with the Iona daughter house on Hinta, but the RCAMS reject this identification. The cross at Barnakill was found only two kilometres from Dunadd. The site place-name may signify the former presence of a religious site. (1987:108–109)

In Fig. 2, the three crosses on the left were found in sheltered alcoves of the exposed cliff Heimaklettur, Vestmannaejar (Westmen Islands). The largest cross, drawn within its alcove in Fig. 3, is found alongside hand- and foot-holds cut into the soft rock. The Westmen Islands lie off the South Iceland coast, opposite the region in which the man-made caves are found. The two crosses on the right of Fig. 2 are cut into a soft sandstone wall of Skollhólahellir (The Cave of the Foxy Hills) in mainland South Iceland. The cave is interesting and discussed by Arní Hjartarson and Hallgerður Gisladóttir (1983:130). What is particularly interesting about this cave — and of special relevance for our purposes here — is that, aside from the expanded terminal crosses similar to those of Columban Gyll, I discovered additional cross-markings on a cave wall. Illustrated in Fig. 4, these crosses are of the simple cross-form discussed by Thomas (1971:112–116), Hender- son (1987:46–48) and Campbell (1987:106–107) and form an identifiable stage in the development of Early Christian decoration in North Britain and Ireland. In other words, if found in Britain or Ireland, these simple crosses would not be diagnostic of a specific religious tradition (like the Columban familia) but would be associated with Early Insular Christianity of the late 6th and 7th centuries.

Taking the South Iceland man-made caves as a whole, they number among them some of the oldest housebuilding in Iceland (Hjartarson & Gisladóttir 1983:133). Many caves find mention in 1709 Land Registers (ibid), while the earliest known Icelandic reference to the caves is the late 12th-century book of Bishop Thorlakur’s miracles. In the account, the collapse of a cattle cave is mentioned. This reference should not, however, be seen as the earliest chronological limit for the construction of these caves because, as Adolf Fröðriksson points out, ‘... there are no Icelandic writings earlier than the 12th century’ (1994:25). Indeed it is worth remembering Adam of Bremen’s 11th-century account that the people of Thule/Iceland ‘... dwell in underground caves, glad to have roof and food and bed in common with their cattle’ (Tschand & Francis 1959:217). Our evidence, then, does not exclude the possibility that some of these caves were constructed in the 8th century by papar.

As mentioned earlier, additional crosses are found upon several other cave walls. Three of these, at Efri-Gegnshólar, led Anton Holt and Guðmundur Guðmundsson to cautiously date the cross-forms from the sixth to 10th centuries (Fröðriksson 1994, 25). The expanded terminal crosses from Iceland could be what has been perceived as the missing archaeological evidence for a small, short-lived, and perhaps only seasonal pre-Viking Age monastic occupation of Iceland. The idea of a Monastic Age for the northernmost North Atlantic is not new and has been advanced in the adventurous writings of Lethbridge (1948:85–88, 1950:79–85). An Ionan identification for these North Atlantic monks has also been previously forwarded in the arguments of Alfred P. Smyth (1984:166–174).

This is not the place for a proper survey of the impressive historical, place-name and suggestive archaeological evidence for the papar, Iceland’s ‘Christian era’ of the North Atlantic islands (Benediktsson 1968:5). Nonetheless, I will attempt a brief discussion.

Here I will follow Kristján Eldjárn in seeing the Gaelic and Norse sources as ‘... “indispensable historical evidence” for Irish people in Iceland in the ninth century ...’ (cited in Fröðriksson 1994:30) and find it reasonable to adopt Hans Jacob Debes’ and Alfred P. Smyth’s outspoken faith in Fröðriksson’s de mensura orbis terrae (Tirney 1967:11–17, 72–77, Debes 1995:459, Smyth 1984:167–169). Fröðriksson’s work is perhaps the most prominent Gaelic historical source for clerics in the Faeroe Islands and Iceland — and for our purposes here — is consistent with a Columban tradition of exploration and interest in the Northern Isles from the late 9th century to the 11th century (Bourke 1983:466, Anderson & Anderson 1991), a work probably written around AD 700 (Pickard 1984:60).

This interest is supported by the discovery of iron hand-bells in Orkney, iron bells Cormac Bourke suggests reflect the 8th- and 9th-century influence of the Columban familia (1983:464–468, 1997:163–165). In addition, the late 9th-century Life of St Findan implies the existence of a bishop’s seat or civitas on Papa Westray, in the Northern Isles of Orkney (Morris 1991:65). Thus, if we can link the Life of St Findan with Bourke’s hand-bells and the Columban interest in the North Atlantic islands, then perhaps Papa Westray, or Papay, could have been a significant centre in Orkney for religious men connected to St Columba.
Certainly, the site testifies to something of Cē's Church sits atop an extensive broch site of importance on this small island (Lamb 1995, 6). Low-lying coasts of North Ronaldsay and Sanday were avoided and landing eventually made in one of the sheltered voes of the west coast, north of Fife. It is in this area that we find early ecclesiastical centres, with important groups of 9th-century sculptures, at St Ninian's Isle and the Burra Papil. (1995, 265-266)

In conclusion, then, this brief survey suggests it is sensible to follow the stylistic examples. It is reasonable to perceive these pre-Norse as 'Christian men' related to the Columban family. Realizing this, perhaps we should begin to reconsider the mechanics of the Norse settlement of Iceland, Faeroe, Shetland and Orkney in terms of some real contact with these Norse. Consider the example of Bishop Patrick of the Viking Age, the Archbishops of Hamburg-Bremen. According to László márók, this bishop, in whose honour the Parakksfljórhí in the Icelandic west fjords is named, gave the late 9th-century Norse settler to Reykjavík. Upon arrival, Örlygur kept a promise to Bishop Patrick and erected a church to Kolumkíi (Columba) (Benediktsson 1968: 53-535, Smyth 1984:163, 171-172, Anderson 1995:340, 91, 343-344, 91). In light of our discussion, this is an interesting account, to say the least. Perhaps the ideas discussed here, coupled with future work, will put this said Patrick into a context that we can comfortably understand.

Saying all this, however, I must stress that what I present is an avowedly preliminary — though evocative — study. More work needs to be done in the coming years in order either to sustain or to refute the hypotheses presented here: that clerics in some way associated with the Columban family of monasteries, based in Iona, were active as far north as Iceland.

ACKNOWLEDGEMENTS

I thank Professor Ann Dooley (Toronto), Professor Gísli Pálsin (University of Iceland), the Icelandic National League of Canada and the University Research Centre in the Westman Islands for their assistance and help in preparing this paper. I also acknowledge with gratitude the financial support given by the Icelandic Ministry of Culture and Education, for research and study in Iceland.

REFERENCES

Royal Commission on the Ancient and Historic Monuments of Scotland 1980. Argyll: An
Archaeological theory has been a subject of extended open debate for more than three decades. Although the field has been largely ploughed by anglophone authors, many of the fruits and crops harvested were enjoyed also within other traditions of archaeology. Curiously, until three years ago, there was not a single textbook introducing the main trends and threads of theoretical archaeology. Now there are at least four such books, of which Johnson's *Archaeological Theory* is the latest one to appear in print and the only one in the English language. Its companions are Bjørn Olsen's *Fra ting til tekst* (1997, in Norwegian), Reinhard Bernbeck's *Theorien in der Archäologie* (1997, in German), and Ola Jensen & Håkan Karlsson's *Åtttondel samhällsteori och arkeologi* (1998, in Swedish). There is good reason to celebrate that all these books now exist (see also Holtorf 1998). From now on, students will find it much easier to find their way through what must at first seem like a maze of archaeological theory. Comparing the four books, it is striking that all of them seem to have been written at the same time, with the authors apparently being unaware of each other's projects (with the exception of Jensen and Karlsson, who acknowledge Olsen's book). Such coincidences can happen, of course, but it is odd when Johnson writes in his (otherwise excellent) "Further Reading" section that he knows of no other good general introductory surveys of theory, although both Olsen's and Bernbeck's books had been published some two years previously, and Johnson lists several other titles published in the same year and even some from 1998 and 1999.

What all four volumes have in common is that they mainly focus on the developments of archaeological theory in the anglophone literature, underlining to what extent the field has been dominated by British and American archaeologists such as Lewis Binford, David Clarke, Kent Flannery, Colin Renfrew, Michael Schiffer, Ali Jon Wylie, Bruce Trigger, Ian Hodder, Margaret Conkey, Michael Shanks and Christopher Tilley. The main difference between the four books is that three of them make efforts to incorporate theoretical discussions in languages other than English into their accounts, thus giving a somewhat fuller and richer picture. Only Matthew Johnson states clearly at the beginning that "major traditions of archaeological thought in Latin America, Asia, Africa and continental Europe are not addressed" (p. xiii). This decision may have been motivated by the commercial considerations of Blackwell Publishers or by the language skills of Johnson, or by both, but from the subject matter it is ultimately indefensible. It shows that anglophone archaeologists are still very much concerned with themselves, and not ready yet to embrace the work of their colleagues elsewhere. At the risk of sounding niggling, I feel it a duty to point out in this context that those foreign names which do crop up in *Archaeological Theory* tend to be embarrassingly misspelled, too (e.g. four of the seven editors' names in Anderson et al. 1997 are wrong. Härke appears as Harke, Sörensen appears as Sorensen, Engelstad appears as Englestad, even Nietzsche appears as Nietszche). The bibliography contains a fair number of other mistakes, e.g. wrong authors, editors, years, titles, and order of appearance, most of which cannot be blamed on either copy-editor or typesetter, and these, too, are annoying oversights that seem to result from the sheer carelessness of the author.

Having said this, Matthew Johnson's volume is an excellent introductory textbook for students, especially at undergraduate level. It will also be of great benefit to graduate students and professional archaeologists who feel a need or desire to brush up their 'theory'. Johnson, who has been a major contributor to contemporary archaeological
Krisjan Ahronsön
Hamarinn frá Fossi

ÁRÐÓN HÍNS EKLENSKA FORNLIÉFABÁSÍS 1999
SERPENT
KRISTJÁN AHRONSON

„HAMARINN“ FRÁ FOSSI
KRISTI N NORRÆNN KROSS
MED KELTNE SKUM SVIP

„Víða á Norðurlöndum hafa fundist litir málhlutir í hamarsmynd, ætladir til að bera þá um hálóinn. Þessir smáhlutir eru ýmist úr jarni eða sifri, sumir einfalldir að gerð, aðrir mjógu vandaðir og stundum með vira-vírki. Þessir hlutir eru kallaðir borrshamrar á máli foraleifsfæðinga, og það er full ástæða til að halda að það sé réttnefni, þetta sú í raun og veru verndargripir manna sem trúðu á gúðinn þór og helgðu sig honum með hamarstúkni. ...sílfurkross...fannst á Fossi í Hrunamannahreppi (bjms. 6077). Á lengstu álmu hans er fagurlega skapað dýrshöfuð og gat í gegn innan tanna þess, en hinar álumnar þjár enda allar á samuskona kringlóttum húnúm. Ekki er ástæða til að amast við þeirri skýringu að þessi einstaði gripur sé heillatán. Heldur vírðist þó langsótt að telja hann með börshönum, eins og hefur verið gert, því að hann er að morgu leyti mjógu frábrúðinn þeim verndargripum sem svo kallast og ádur var lyst. Sílfurhluturinn frá Fossi er mjógu ákvæðið krosslaga og sýni-lega ætladur til að vera borinn í festi um hálóinn. Nærtak skýring vírðist vera að hann kunni einfalllega að vera hin kristni kross, borinn til verndar eiganda sinum eins og börshamrarinn að sínú leyti."

Í þessari grein ætlar eðg leiða frekari rök að skoðun Kristjáns Eldjárns á „Fosshamrinum“. Árið 1910 fannst „i moldaflagi skammt frá Fossi í Hrunamh.: þar hafði að sögnum fundist öksi ádur."

Ef krossinn er frá núndu öld, eins og Gabriel Turville-Petre og Matthías Pórdarson hélud, eða bara frá vikingaöld, kann það að varpa þóti á kristin keltnesk áhrif á menningu Íslands á söguöld, áhrif sem trúlega má rekja til þeirra mjógu landnámsmaða sem voru af blöndudu þjóðerni, keltnesknorrænin eða engilsaxnesk-norrænin frá Bretlandi, Írlandi og eyjunum.
nordan Skotlanda. Dessa bróum á skoðun Kristjáns Eldjárns er andstæð þeirri venjulegu skoðun að Fosshluturinn liti út eins og blanda milli hamars og kross, kannski smíðurum af manni sem var þeirri kristinn og heitið.\(^6\)

Ef Fosshöfðið er ljónshöfðið, verðum við að muna að ljón var ekki aðeins skreyting, heldur táknaði það líka guðspjallamanninn Markús eða upprisu Krista – einum í keltneski kristinni lístefði. Þetta táknaði að uppruna sinn í Ezekiél (I, 5-21) og Ópinberunarbókinni (IV, 6-9). Ljónið táknaði fyrst guðspjallamanninn Markús en frá núfundi öld einnig upprisu Krista.\(^6\)

Ef við gerum ráð fyrir því að Fosshluturinn sé frá vikingaál og stil hans svipi til keltneska, breyrka og írskra kristinn listaverka frá sama tíma vírðist það vera nært skýring að Fosshluturinn sé kross helgaður Markúsi og eða upprisu Krista. Þessi skoðun er studd af því að Fosshluturinn líttur alls ekki út eins og hamar, þvert á móti líttur þann út eins og kross með dýrshöfðið.

Ef þessi tenging milli dýrshöfðus og kristinn krossa er dregin í efa þarf einnings að lita til krossins frá Cong sem er mikilvægi írskri gripurinn í Úrnesstíll. Þessi helgigöngukross úr bronsi, frá ca. 1125 e. K., er þýddur „ðóggvekjaði dýri... er gripur um megintarm krossins með vigalegum kjöllum sínnum“\(^7\). Þott að dýrið frá Cong snúi að krossinum frekar en frá honum er hér komi sterk tenging milli ljóns/dreka-höfðuós og hinnar kristnu heitið sem ríkt í skreytingu latneska krossa.

Pannig er övist að hluturinn frá Fossi hafi neitt með hamar þórs að gera. Þess í stað er rétt að líta á Fosshluturinn sem kristinn norrænn kross sem ber merki um aðfrum frá keltneska þýndum og á ef til vill að minna á guðspjallamanninn Markús eða upprisu Krista. Þessi tölkuð þarf ekki að drauga úr mikilvægi þessu líta hlutar. Þeirri á móti tel ég að þessi tölkuð akti mikilvægi hans til skilnings á sögu norrænnar kristni á Íslandi á fyrstu öldum Islandbyggðar.
I wish to thank the Ministry of Culture and Education for their support.

Acknowledgements:
I wish to thank the Ministry of Culture and Education for their support. As well, I would like to thank Lena Reinert, Arnari Snorrsynni, Guðmundur H. Jónsson, and Maria Garðarsdóttur for their generous help in putting together this article.

Turilsnið
1 Kristján Eldjarn 1983:67-68.
2 Matthias Pórdarson 1911:87.
4 Turville-Petre 1964:83.
5 Franoise Henry 1967:177.

Haimildir

Summary
In this short note, I seek to expand upon Kristján Eldjarn’s view of the “hammer”. This little silver object was found in 1910 on the surface of an eroding bank near Foss in Hrunamannahreppur, Ísafjörður, apparently preceded by the earlier discovery of a miniature silver axe at the same spot. If this cross is accepted as dating to the tenth century as Gabriel Turville-Petre and Matthias Pórdarson believed, or even to the Viking Age in general, then I suggest it betrays Insular Celtic Christian influence within the culture of early Iceland, an influence likely
The Papar in the North Atlantic Environment and History

The Proceedings of a Day Conference held on 24th February 2001

Edited by
Barbara E. Crawford

THE 'PAPAR' PROJECT
VOLUME 1

ST ANDREWS
St John's House Papers No 10
2002
CONTENTS

Preface
Barbara Crawford
page 7

Chapter 1
The *papar* and some Problems; a brief Review
Aldon MacDonald
page 13

Appendix – *papar* names in the British Isles
page 26

Chapter 2
St. Boniface and the Mission to the Northern Isles. A view from Papa Westray
douglas Randal
page 31

Chapter 3
Crosses in the Ocean: some *papar* sites and their sculpture
Ian Storey
page 39

Chapter 4
Transitions in early arable land management in the Northern Isles
– the *papar* as agricultural innovators?
Ian Simpson
page 59

Chapter 5
Brei Holm, Papa Stour; in the footsteps of the *papar*?
Kevin Brady
page 69

Chapter 6
The *papar* and Papa Stronsay: 8th-century Reality or 12th-century Myth?
Christopher Lowe
page 83

Chapter 7
The Question of *papar* in Iceland
Gudrun Ósvinsdóttir
page 97

Testing the evidence for northern N. Atlantic *papar*: A cave site in southern Iceland
Kristjan Árnason
page 107

Appendix – Field work update to ‘The Seljaland Project’
page 119

Chapter 9
The North Atlantic Monastic Thalassocracy:
Sailing to the Desert in early medieval Insular Spirituality
David Dumville
page 121

Consolidated Bibliography
page 133
above and below the ash layer. This activity is, however, probably too close to the
layer to prove that there was pre-Norse activity on the island.

The investigations on Papey certainly showed that there was early settlement on
the island, probably as early as the ninth century, but the archaeological evidence
for pre-Norse activity remains inconclusive.

Conclusion.
The precise dating now available of the landnám- tephra layer to 871 ± 2 years
makes detailed studies of deposits found just below and above that layer a priority
in any attempt to shed new light on the possibility of pre-Norse activity in Iceland.
These have been reports in the past of the discovery of cultural deposits just below
the landnám layer, but so far none of this represents reliable evidence for pre-Norse
human occupation in Iceland, leaving the question of papar in Iceland as elusive as
ever. In view of the new and more precise date of the landnám layer which falls so
close to the date of the settlement of Iceland reported in the written sources, it is
essential that the nature of these deposits is reconsidered and that new sites are
studied.

National Museum of Iceland
Reykjavík

Abbreviations
CEF - Glæserkus Forrit
DI - Diplomatarium Islandicum

Notes
1. See for example Figs. 4 and 5 in Árm Hjartarson et al., 1983
2. The investigators believed (Anton Holt pers.comm.) that the fleck of ash might have
landed in the midden after it was formed and that it does not represent an intact layer as
suggested by Adolf Friðriksson in his 2001 edited version of Kristín Eldjárn's Kuml og
haugur (p. 35) where the evidence produced in the report is interpreted in such a way
that the landnám layer was found underneath the midden showing that it post-dated
871-2, and that the occupation of the cave does therefore not pre-date the Norse
settlement of Iceland.
3. See Kristín Ahronson's contribution in this volume (Chapter 8).
4. An example is the huts at the monastery at Skellig Michael, which have a rectangular
groundplan, although with beehive roofs.

The Papar in
the North Atlantic

106

Testing the Evidence for Northern
North Atlantic Papar:
a Cave Site in Southern Iceland

Kristín Ahronson

Comparative Cross-forms in Iceland and Scotland

It has long been recognised that expanded terminal crosses, incised into stone, were
characteristic of the early Church in Western Scotland and Ireland. But in 1987,
Ewan Campbell made a significant advance upon this observation. What Campbell
did was set about a detailed and comprehensive examination of Argyll crosses.
Notably, he identified an expanded terminal cross-form and related it to the
Columban families of monastic houses of the late sixth to early ninth centuries
(Campbell 1987). There is a striking similarity between Campbell's expanded
terminal cross-form and several crosses forming a coherent - but as yet ill-defined -
tradition in south Iceland. In Iceland, these stylistically consistent cross-carvings are
found both in man-made caves and sheltered alcoves of exposed rock faces.
Similarly, some of Campbell's Scottish expanded terminal crosses are found in
caves, caves he suggests as '.... retreats or deserta for anchorites or penitents'

Significantly, a survey of the archaeological, historical and place-name evidence
reveals that Columban communities could have been in Iceland before the Norse
settlement of the Viking Age. Thus, if one accepts the Icelandic crosses as the
product of the Early Christian Celtic West, then the preliminary results summarised
in this paper suggest that the pre-Norse Irish hermits of early Icelandic writings, the
papar, were quite possibly Scottish communities related in some way to St
Columba. If this is a real possibility, then new light is cast upon not only the
mechanics and nature of early Norse settlement in Iceland but also in the North
Atlantic islands of Faroe, Shetland and Orkney.

The basic premise of Campbell's study was that, 'While it is possible that the
very simplest of these crosses, consisting of plain vertical and horizontal lines, are
not amenable to any analysis, the slightly more complex forms may reflect changing
fashions in particular regions' (ibid). Originally suggested by Hamlin (1982, 290),
this premise has proven a valid one for a pattern does emerge in Argyll. Campbell
was able to identify the expanded terminal cross-form as a coherent group, a group
he was then able to associate with communities linked to Columba and based in
Iona (Campbell 1987, 107-11).
The expanded terminal cross-form belongs to what Campbell describes as a '... larger group of simple incised crosses which are commonly found on recumbent slabs, upright pillars, boulders and rock faces throughout the Celtic west' (1987, 106). Though likely the earliest form of stone crosses, scholars agree this group has often been ignored because of its simplicity (Thomas 1971, 112-4; Henderson 1987, 46). It does nevertheless appear such simple carvings form an identifiable stage in the development of Early Christian decoration in North Britain and Ireland.

In Iceland, specifically southern Iceland, there is a significant body of simple incised crosses. Most of them survive to the present day in man-made caves carved out of the soft sandstone of eastern Amarsysýsla, Rangárvalsásýsla and in Mýrdalur (Hjartarson & Gísladóttir 1983, 133; Hjartarson, Gísladóttir & Guðmundsson 1991). These caves are very interesting because our sources indicate some of them date from at least the eleventh century.

As for the crosses themselves, the five I will discuss here are suggestive because, like Campbell's Scottish examples, the Icelandic ones form a consistent body of expanded terminal crosses. These carvings, shown in Fig. 8.2, fall within a defined range of size and style and it appears - resemble the Argyll expanded terminal form. The most uniform set of Argyll carvings of this type, those from Iona itself, have been reproduced in Fig. 8.1 for comparison. Here we see exciting and suggestive links emerge between pre-Norse Western Scotland and Iceland.

In Fig. 8.2, the three crosses on the left were found in sheltered alcoves of the exposed cliff Heimaklettir, Vestmannaejjar (Westmen Islands). The largest cross, carved into its own alcove, is found alongside hand- and foot-holds cut into the soft rock. The Westmen Islands lie off the South Iceland coast, opposite the region in which the man-made caves are found. The two crosses on the right of Fig. 8.2 are cut into a soft sandstone wall of Skóihólsáhallir (The Cave of the Fox Hills) in mainland south Iceland. This cave is discussed by Árni Hjartarson and Hallgerður Gísladóttir (1983, 130).

Also of relevance to our discussion of the expanded terminal crosses so similar to those of Columban Argyll, are the additional cross-markings on a cave wall. Illustrated in Fig. 8.3, these crosses are of the simple cross-form discussed by Thomas (1971, 112-6), Henderson (1987, 46-8) and Campbell (1987, 106-7) and form an identifiable stage in the development of Early Christian decoration in North Britain and Ireland. However, these simplest of cross carvings were found in Iceland, not Scotland, Northern England or Ireland – thus I hesitate to make much of this particularly simple style.

As for the South Iceland man-made caves as a whole, they number among them some of ‘the oldest housebuildings in Iceland’ (Hjartarson & Gísladóttir 1983, 133). Many caves are listed in 1709 Land Registers (ibid), while the earliest known Icelandic reference is the late twelfth-century book of Bishop Thorlakur’s miracles. In this account, the collapse of a cattle cave is mentioned. This reference should
not, however, be seen as the earliest chronological limit for the construction of these
houses because, as Adolf Friðriksson points out, '... there are no Icelandic
writings earlier than the twelfth century' (1994, 25). Indeed it is worth remembering
Adam of Bremen's eleventh-century account that the people of Thule/Iceland '... dwell
in underground caves, glad to have roof and food and bed in common with
their cattle' (Tschan 1959, 217). Our limited evidence, then, allows the possibility
that some of these caves were early settlement sites for the Norse, or perhaps even
papar. The caves have not been dated but appear early in the documentary record.

As mentioned earlier, additional crosses are found upon several other cave walls.
Three of these, at Efri-Gegnishólur, led Anton Holt and Guðmundur Guðmundsson
to cautiously date the cross-forms from the sixth to tenth centuries (1980, 16-7).
With reservations, the expanded terminal crosses from Iceland might be related to a
small, short-lived, and perhaps even seasonal pre-Norse Gaelic settlement
of Iceland. This is far from certain, however, and a Gaelic or Gaelic-influenced
settlement within a Norse context is another possibility — though this interpretation
does present its own particular difficulties.

The Monastic Age in the North Atlantic

The idea of a Monastic Age for the northernmost North Atlantic is not new. An
Ionian identification for these North Atlantic communities has also previously been
put forward by Alfred P. Smyth (1984-74).

This is not the place for a proper survey of the impressive historical, place-name
and suggestive archaeological material relating to the papar, Islendingabók's 'Christian men'
of the North Atlantic islands (Benediktsson 1968, 5). Here I will follow Kristján Eldján
in seeing the Gaelic and Norse sources as '... historical evidence' for Irish people in Iceland in the ninth century ...'(cited in Friðriksson 1994, 30) and find it reasonable to follow Debes' and Smyth's outspoken belief in
Dícuíl's de mensura orbis terrae (Tierney 1967, 11-7, 72-7; Debes 1995, 459;
Smyth 1984, 167-8). Dícuíl's work is perhaps the most prominent Gaelic
documentary source for clerics in the Faroe Islands and Iceland — at least from
February to August c. AD 795. Dícuíl's account is consistent with the Ionan
community's seaward focus and the Columbian tradition of exploration and interest
in the Northern Isles, reflected in the Life of St Columba (Bourke 1983, 466;
Anderson & Anderson 1991). This interest is supported by the discovery of iron
hand-bells in Orkney, iron bells which may reflect the eighth- and ninth-century

There is also important evidence from the Faroe Islands including the interesting
but debated Faroese carved stones which are consistent with the early Gaelic
Christian tradition (Ian Fisher, pers com, CAR Radford 1962, 163; Kermode 1931,
373-8; Arge 1991, 104-5; and see Ian Fisher's discussion, in this volume, of the
Faroese Skúvoy crosses). We also have the much-discussed and tested palynological
work of Johannes Jóhansen and his evidence for seventh-century oat cultivation in
the Faroe Islands (Jóhansen 1979, 1985; Krogh 1986; Buckland 1990; Buckland &
Gina Hannon and Richard Bradshaw in Quaternary Research have recently
published the latest contribution to this debate. Hannon and Bradshaw suggest
cultivated oats and barley along with sheep or goat comfortably predate the
'íslendingabók' tephra layer (AD 854+/-2) but post-date AD 950 (Hannon &
Bradshaw 2000).

Bearing in mind all our evidence, then, it is sensible as a provisional measure to
follow the stylistic similarity between Campbell's expanded terminal cross-form and the
Icelandic examples. It appears reasonable, as a working hypothesis, to see
these pre-Norse papar as 'Christian men' related to the Columbian familia.
Acknowledging this, perhaps we should begin to reconsider the mechanics of the
Norse settlement of Iceland, Faroe, and the Scottish islands in terms of some real
contact with these papar.

Let us review the evidence from which a test for our hypothesis can be
formulated. First we have a tradition of man-made caves in southern Iceland, some
of which could date to at least the eleventh (Adam of Bremen) or twelfth (Biskupa sigur)
centuries and possibly earlier. A number of these caves have cross carvings.
A portion of these crosses are of a distinctive style which resembles carvings
associated with an early (pre-Viking Age) expansionist phase of the Columbian
religious tradition, based in Iona. This style is also found in the Outer Hebridies and
Shetland. Therefore the possibility exists that the earliest of the Icelandic caves
could be related to the pre-Viking Age Ionan tradition. A second possibility is that
these caves are associated with early Norse settlement but also related to the pre-
Viking Age Ionan tradition. This second possibility presents its own difficulties but
nevertheless remains a possibility.

Kverkarhelir and Seljaland

We can test such ideas by investigations at the cave site Kverkarhelir, traditionally
part of Seljalands-farm in Rangarvallasýsla, southern Iceland. The three main
objectives for testing our hypothesis and building a history of these Icelandic cross-
caves are first, to date the earliest construction of the site and possibly the
subsequent building phases; secondly, to archaeologically record and document the
cave and associated sites in the area; and thirdly, to put the structure into context —
to situate the site in its environmental and historical-archaeological contexts.

The purpose of our test is to create a history of cave occupation in southern
Iceland by specific investigation of Seljaland. Seeking to grasp the entire occupation
sequence into the modern period, emphasis lies upon understanding and locating the
easiest occupation of the site and confronting the questions: When were the
Seljalands caves constructed? Are they related to early Norse or papar settlement?
Dating Cave Construction

Returning to our first objective, namely dating the earliest construction phase, the cave is not a natural feature but has been carved out of the escarpment. Our aim is to locate the stone spill from this digging by test pitting. Fortunately, the geography of the site presents a defined and limited area within which the spill should be found. Thus success in finding this waste rock is likely.

By locating the construction waste stratigraphically, we should be able to use the well-established volcanic ash-fall sequence for dating. For our purpose, the most telling ash or tephra layer might be the landnám layer, deposited AD 871 +/- 2.

The immediate area of Kverkarhellir has been well studied by Andrew Dugmore and Camilla Erskine (1994). West of the glacier Eyjafjallajökull, Dugmore and Erskine noted a high rate of soil accumulation and a well-defined tephra sequence, including the landnám layer as well as seven other historic volcanic ash falls (Dugmore & Erskine 1994, 67). My own work with Kate T Smith of Edinburgh’s Department of Geography in June 2000, also provisionally located several tephra – including the landnám – in a geographic test pit near Kverkarhellir.

Once the construction waste has been located in a stratigraphically-defined context, we hope to be able to show whether the cave was built before or after the landnám tephra fell in AD 871. The first Norse settlement, it is generally accepted, began roughly about this time. Should the cave construction date to a significantly earlier period, then the simplest interpretation would be to follow the archaeological and historical evidence to suggest Kverkarhellir was home to a Scottish settlement of papar.

Recording Kverkarhellir and Other Sites at Seljaland

Hjartarson, Guðmundsson and Gisladóttir (1992, 243-4) provide a good brief description of Kverkarhellir. Figure 8.5 is an illustration of the cave as it survives at present.
Two phases of construction are suggested by distinctive tool markings and floor heights. The older phase appears to have included the outermost 2 metres, and had dimensions of 2m (height) x 2m (length) x 3m (width). A cross is carved into the eastern wall, with dimensions of 0.25m x 0.19m. At some later date, the cave was extended back 10m. Tool marks in the walls suggest a distinct construction style. This seems to be supported by the height of the younger phase floor. This younger phase floor is set significantly higher than the stone base of the older phase - but level with the sediment accumulation on the older stone floor. This sediment may have accumulated on the older phase floor over time and the younger phase simply used this as a surface, digging out the base of the new extension only to this level.

The surfaces and features in the entire cave will be cleaned and planned. Notable among these features is the cross carving in the eastern wall and the remains of a structure in the younger phase. Three test trenches are necessary to test and elaborate upon the preliminary chronology presented here: one trench in the older phase floor, another across the structure, and a third at the back of the cave.

Kverkarhellir does not exist in isolation. In order to properly understand the site, we will need to survey the surrounding area and record the caves Sejalandsfellshelli and Prasi, both also at Seljaland. Seljalandshelli, for instance, has 16 identified cross carvings, including some of the expanded terminal style discussed earlier (Hjartarson, Guðmundsson & Gísladóttir 1992, 244-8). Figure 8.6 illustrates these carvings.

Environmental Context

Because of its special strengths as a research area, significant environmental work has been done in southern Iceland and around Eyjafjallajökull in particular. The immediate area of Seljaland has been a focus for the work of several Icelandic, Scottish and English scholars. It is vital to synthesise this work and relate the environmental evidence to the occupation sequence to be revealed at Kverkarhellir.

Seljaland lies in one of the warmest and wettest areas of Iceland, with only light winter snow falls. Guðrun Sveinbjarnardóttir notes a more diverse fauna and flora than any other part of the island. Today, the region suffers from severe northern and eastern winds (Sveinbjarnardóttir 1992, 27). Sheltered from both these, the immediate area of Kverkarhellir forms a favourable microclimate - now host to a number of trees.

Dating Cave Construction

Test Pitting to locate Construction Waste in a Stratigraphic Context. Using Volcanic Ash Layers, should be able to show whether the Cave was built — for instance — before or after the Norse Settlement of Iceland.

Recording Kverkarhellir and Other Sites at Seljaland

Kverkarhellir
- Plan entire Cave and Cross.
- 3 Test Trenches:
 1. Older Phase
 2. Across Structure
 3. Back of Cave

Seljaland
- Survey Area
- Plan Caves of Sejalandsfellshelli and Prasi, including the 16 Cross Carvings at Sejalandsfellshelli.

Environmental Context

Historical-Anthropological Context

Comparisons to the Norwegian cave site on Selja
- Summary of Folklore + Fresh Collections

Fig 8.6

The Papers in the North Atlantic

114
In his study of the powerful glacial river dominating the region today, Hreinn Haraldsson outlines the significant changes which the watershed has been subject to. He finds that until roughly AD 1200, glacial outflow followed numerous slower channels, in many places forming reservoirs of fresh stagnant water. This implies a living marshy area of islands and streams which contrasts with the stark singular flow of the modern channel, the Markarfljót. Haraldsson's discoveries explain the seemingly enigmatic placename for the region: Landeyjar 'land-islands' or Eyjaveiti 'region of islands' (1981, 49-55).

In addition to helping us imagine the environment within which our cave-builders moved, other studies provide interesting clues to help consider the likelihood, nature and impact of an early human occupation at Seljalands. Amy Sveinbjörnsdóttir, for instance, extrapolates from her Greenland ice-core data to suggest Iceland may have enjoyed a significantly warmer period about AD 700, warmer than any later time (Sveinbjörnsdóttir 1999). Haraldsson, for his part, notes the birth of a birch forest around AD 400. This forest reaches its greatest extent and achieves thickest trunks in AD 700, only to suffer a sudden decline by AD 700-800 — in some places disappearing entirely. Haraldsson observes a recovery for the birch forest between AD 800-900 followed by decline with extinction in the lowlands by AD 950. He associates the final death of the birch forest with Norse settlement in Landeyjar (Haraldsson 1981, 41-2).

But Dugmore and Erskine present the most interesting study for our investigations at Seljalands. In their work near Kverkarhellir, they identified a clear and dramatic change in sediment accumulation related to the period of human settlement. Intriguingly, this change occurs in the early to mid-nineteenth century. They write:

The pre-historic sequence is dominated by tephra accounting for up to 40% of total accumulation. This is quite different above the Lánsdám layer of ca 900 A.D., where tephra accounts for less than 5% accumulation... In eight of the profiles at a depth ten to thirty millimetres below Landnámslag, a sharp contact marks the boundary between a lower, darker aeolian sediment and an upper lighter sediment, similar in colour to the historic sequence... This implies that distinct geomorphological change occurred at Krosshöll some decades before the deposition of Landnámslag. (Dugmore & Erskine 1994, 69-72).

Twining their results with Haraldsson's research, Dugmore and Erskine conclude that the stratigraphically sharp and geographically extensive nature of this change indicates an abrupt and major change in geomorphological processes (Dugmore & Erskine 1994, 73). The marginal uplands are identified as source areas for the sediment. These uplands shifted from a stable environment to one characterised by erosion and stripping of extensive areas (Dugmore & Erskine 1994, 74).

The Norse settlers are likely to have been responsible for the post-Lándnám erosion. Thus, we must consider whether the pre-Lándnám instability in the uplands is also the product of human action. Could we be witnessing the environmental degradation caused by grazing animals? Hannon and Bradshaw's recent evidence for sheep-goats in the Faroe islands unavoidably springs to mind (2000). The same is true for Dicuil's account of the Faroe islands being '... filled with countless sheep' (Tierney 1967, 77) and Ian Simpson's suggestion that we consider the possibility of papar as agricultural innovators (See Chapter 4 above). It is correct to let these suggestive elements guide our investigations. However, we must remember these suggestions need to be rigorously tested before they can be anything more than a possible interpretation of the evidence. Furthermore, if we are to test such suggestions of human action resulting in environmental degradation, we must remember the recent work of Simpson, Dugmore, Thomson and Væsteinsson on this very region of Iceland (2001). They show that the human role in environmental degradation is far more complex than previously believed — thus calling for more complex models of human behaviour.

Historical-Anthropological Context Some Preliminary Conclusions

As mentioned earlier, Seljalands does not and cannot exist in isolation. The investigations must place the site in its human context. This applies to the modern-day context as well as that of a thousand years ago. We must not ignore the role of the caves at Seljalands today or the effect and after-effect our work there would have. This includes awareness that we may be identifying a site of interest to local and international tourism. The site is very accessible, lying at the junction of the national Ring Road and the road to a major Icelandic and International wilderness area, Þórsmörk. It is vital to be sensitive to these regional and national concerns.

For all these reasons, then, we must consider the larger significance of Seljalands when building our history of cave use. This includes noting Alf Tore Hommedal's investigations of a cave on the island Selja in Western Norway (2000). Tradition links his site with early Gaelic (Celtic) Christianity in Norway. Interestingly, the island was the seat of the country's first bishopric, held by Bishop Berhard c. AD 1070 (Krag 1995, 113, 202-3, Hommedal 2000). The similarity between the placenames Selja and Seljalands is striking, but likely coincidental (Peder Gammeltoft, pers com).

Evaluating the Icelandic and local context is also vital. An extensive folklore of cave use exists and is an invaluable source for understanding the occupation sequence, especially the more recent use and role of such sites in the community. Much has been published and Kverkarhellir, for instance, is mentioned in Jón Árnason's mid-nineteenth-century collection (1856, 200-1). By working with the local community, we hope to combine the published accounts with fresh collection
of the modern folklore of these caves and papar traditions. Thus, we might note Kverkarhellir was the local parliament, or þingstæður, in the nineteenth century. Or perhaps that the cave was home to a ghost around 1900 (Hjartarson, Guðmundsdóttir & Gisladóttir 1992, 243-4).

In conclusion then, the investigations outlined for Seljaland offer special promise for resolving the problem of the papar, for refining interpretation of the early Icelandic literature's references to Christian Irish hermits. The evidence surveyed here suggests that the Icelandic papar should be equated with the Gaelic Christian communities of the Scottish islands. The southern Icelandic cross carving tradition furthermore suggests the possibility that cave sites like Kverkarhellir were associated with these Scottish communities. Fortunately, Seljaland and the greater region of Landeyjar has been a focus for significant environmental studies & Gisladóttir 1992, 243-4). For their assistance, I thank Alex Woolf and Professor William Gillies of the Department of Celtic and Scottish Studies at the University of Edinburgh. I also gratefully acknowledge the invaluable help of Andrew Dugmore and Kate T Smith of Edinburgh's Department of Geography.

Acknowledgements

For their assistance, I thank Alex Woolf and Professor William Gillies of the Department of Celtic and Scottish Studies at the University of Edinburgh. I also gratefully acknowledge the invaluable help of Andrew Dugmore and Kate T Smith of Edinburgh’s Department of Geography.

Department of Celtic and Scottish Studies
University of Edinburgh

Notes

1. Other articles on the subject of man-made caves, by Æm Hjartarson and Hallgrímur Gisladóttir also appeared in 1985 and 1993.

2. Bearing in mind that each carving will have a unique character because of rock hardness and composition, erosion, available tools, skill, effort and the individual sensibilities of the artist.

3. Fifty years ago, T. C. Lethbridge (1950, 84) described the largest of these in comparison with other Hebridean, Shetland and Argyll crosses.

The Papar in the North Atlantic

118

5. This Monastic Age is known as the Papsaill in the Faroe Islands (Debes 1989-90; 1995, 459).

7. These quadrangular iron bells are not to be confused with cast bronze bells, which were surely of a later date and spread across the North Atlantic Gaelic/Pictish/Norse culture area (Bourke 1983; Batey 1988; Graham-Campbell 1981).

9. Also see discussion in Crawford 1996, 24-6.

Appendix

FIELDWORK UPDATE 2001

Test trenches in front of Kverkarhellir-cave at Seljaland have located putative spoil from cave construction in aeolian soils and intercalated with volcanic ash layers or tephra. The local tephra deposits are well-known within an historical sequence comprising the following eruptions (accompanied by AD dates): Hekla 1947, Katla 1918, Eyjafallajökull 1921, Katla 1755, Katla 1721, Hekla 1510, Katla 1500, Hekla 1341, Katla ca. 920 and the landnam tephra ca. 870 – all ash layers being clearly separated by intercalated aeolian deposits. The putative cave construction waste material lies 10cm beneath the landnam tephra, before the conventional date of Norse settlement of Iceland. This is consistent with palaeoenvironmental evidence of change in the late eight/early ninth centuries (Dugmore & Erskine 1994, 69-73). Archaeological survey noted 30 structures and 106 cross carvings in two sets of caves at Seljaland: Kverkarhellir and Seljalandsheilur/Papahellir. Many of these carvings are best paralleled in the west of Scotland, where they pre-date the Viking Age (Atonson 2000). Place-names and folklore associate the Icelandic caves and crosses with the papar, the Gaelic Christian communities of the North.

In brief, test trenches (2m x 1.5m) placed in front of the cave mouth located fragmented palagonite rock debris within a stratified sequence of tephra which includes a pairing of volcanic ash layers which initial analysis identifies as the landnam tephra of AD 871 +/- 2 (Gronvald et al 1995) and the Katla R tephra of ca. AD 920 (Hallåson et al 1992). A detailed discussion of this analysis is in

Environment and History
preparation (Smith & Ahronson). Kverkarhellir is a man-made cave carved out of soft palagonite rock. By locating the debris from construction – sealed by tephra deposits of known age – we sought to date the earliest phase of cave construction. Palagonite debris was found only in the trench situated directly in front of the cave and lies 10cm beneath the volcanic ash layer identified as the AD 871 +/- 2 tephra. Only with difficulty can estimates be made on how long before AD 871 the putative construction spoil was deposited, though the palagonite debris lies clearly beneath the tephra in question. A late eighth- to early ninth-century date is a reasonable approximation, judging from local rates of sediment accumulation at that time.

Two limitations of the data need to be resolved by further work. Firstly, the identification of the AD 871 tephra must be confirmed. Preliminary analysis completed in March 2002 has identified the tephra layer in question as the landnam ash but further fieldwork and geochemical analysis is necessary. Secondly, the fragmented palagonite material needs to be firmly established as spoil from cave construction. Trial trenches away from the cave suggested the debris is not from cliff collapse, but further work is necessary, including analysis of the palagonite fragments and cave walls for toolmarks.

In conclusion, the initial results of the 2001 fieldwork are consistent with the idea of an eighth- or early ninth-century settlement at Seljaland in south Iceland. Kverkarhellir-cave appears to have been constructed before AD 871 +/- 2. Such an early date should be considered alongside Dugmore & Erskine’s evidence of palaeoenvironmental change in the late eighth/early ninth century.

The North-Atlantic Monastic Thalassocracy: Sailing to the Desert in Early Medieval Insular Spirituality

David N. Dumville

In her book Scandinavian Scotland Barbara Crawford wrote (1987, 11) that the Viking-Age Scandinavians:

introduced a very different political phenomenon into Dark Age Scotland, a thalassocracy, or naval state, which extended from a power base in the islands onto the neighbouring mainland coast.

The lines of communication [from north to south] were, however, too stretched and resources too few for this potential thalassocracy to become a permanent feature of the developing political structures in Scotland. . .

Reviewing Scandinavian Scotland, I summarised this by saying (1986-9, 467) that the history of the Viking-Age in Scotland is that of a ‘failed thalassocracy’. What is a ‘thalassocracy’? The word derives from a Classical Greek compound of ἡπλαστής (‘rule’, ‘power’) and -κατοκία (‘sea-power’). We may compare aristocracy, autocracy, bureaucracy, democracy, kleptocracy, and meritocracy. As so often it was the father of history, Herodotus, who first published the concept. A much missed contributor to our studies, Molly Miller (1971, 1), put it thus: ‘Thalassocracy . . . is at best a political entity, and at its most difficult is merely a historiographic creation’. In other words, unlike a colony, which includes a physical entity, it is difficult for either of its elements, the sea or the system of rule, to be penetrated by archaeology. The thalassocrat (‘master of the sea’: θαλάσσος-κράτος) and his thalassocratic ways are in these terms largely irrecoverable. Being no archaeologist, I shall not be deterred by this irrecoverability. Perhaps taking a leaf from the theoretical book of one of my Cambridge colleagues, I must make this an exercise in the archaeology of mind.

It is my purpose here not to present vikings as thalassocrats but to look at the period of North-British and North-Atlantic history which Scandinavian Viking-Age expansion and colonisation brought to an end. Five years ago, in my Whithorn

The Papar in the North Atlantic

Environment and History

138
The Papar in
the North Atlantic

142

The Papar in
the North Atlantic

142

Trelill, W., 1890 (communicated 1872), 'Results of excavations at the Brooch of Burlian, North Ronaldsay, Orkney, during the summers of 1870 and 1871', Archaeologia Scoitica, 5, pp. 341-64.

Turner, V., forthcoming, 'The partial excavation of the cemetery and "steeple kirk" at Gungstic, Norse'.

Advisory Board
for
Northern Studies,
The Journal of the Scottish Society for Northern Studies

Dr Paul Bibire, Honorary Fellow,
University of St Andrews

Professor Donald Meek,
University of Edinburgh

Professor Christopher D. Morris,
University of Glasgow

Professor Emeritus W.H.F. Nicolaisen,
University of Aberdeen

Mr David Sellar, Senior Lecturer,
University of Edinburgh

Professor Emeritus Bjarne Stoklund,
University of Copenhagen

Professor Henk van der Liet,
University of Amsterdam

Northern Studies

The Journal of the Scottish Society for Northern Studies

volume 37

Edited by
Arne Kruse &
Bjarne Thorup Thomsen
Contents

5 Hermann Pálsson (1921–2002) (Arné Kruse)
9 Thomas Munch-Pedersen
Colin Alexander Mackenzie: a British Agent at Tilsit?
17 Gareth Williams
The dabhach Reconsidered: pre-Norse or post-Norse?
33 Mary Jones
'Southward Ho!' (by way of the Arctic):
References to the Arctic and the promotion of Antarctic
exploration in Clements R. Marham’s anniversary
addresses as President of the Royal Geographical
Society, 1894–1905

Special Section
49 Atlantic Peoples Between Fire, Ice, River and Sea.
Past Environments in Southern Iceland
Collected and Co-edited by Kristján Árnason

53 Kristján Árnason
One North Atlantic Cave Settlement: Preliminary
Archaeological and Environmental Investigations at
Seljaland, Southern Iceland

71 Kate T. Smith and Kristján Árnason
Dating the Cave? The Preliminary Tephra Stratigraphy
at Kverkin, Seljaland

81 Donald I. Ashburn, Martin P. Kirkbride
and Andrew J. Dugmore
Post-Settlement Land Disturbance Indicated by
Magnetic Susceptibility of Aeolian Soils at Seljaland

95 Alan Macniven
Where are Eyjafjallajökull's Earliest Settlement Sites?
A Review of the Documentary Evidence.

105 References to Section ‘Atlantic Peoples’
Review Article

113 Peder Gammeltoft, The Place-name Element bóstaðr in the North Atlantic Area (Åse Kari Hansen Wagner)

Review Section

121 Andrew Wawn, The Victorians and the Vikings: Inventing the Old North in Nineteenth-century Britain (Peter Graves)

124 Steve Murdoch (ed.), Scotland and the Thirty Years' War, 1618-1648 (Ewen A. Cameron)

126 Gillian Fellows-Jensen (ed.), Denmark and Scotland: the Cultural and Environmental Resources of Small Nations (Ian Morrison)

130 Tom Schmidt, Norske gårdsnavn på -by og -bø med personnavnsforlødd (Doreen Waugh)

Contributors

Hermann Pálsson (1921-2002)

With the sudden death of Professor Hermann Pálsson Iceland and Scotland have lost an eminent scholar and the Scottish Society for Northern Studies has lost one of its founding fathers and a former President. He was a member of the Committee from 1968 to 1982 and a President of the Society from 1970 to 1971. Apart from his contribution to the administration of the Society Hermann has over the years given many talks to members of the Society as well as contributing frequently to Northern Studies with articles and reviews.

Hermann Pálsson was born as sixth of twelve children on a small landholding on the Hunafjörður in the north of Iceland and was soon set to work on the farm. His mind, however, was quite elsewhere. Since, at the age of three, he learned to read from his older siblings, books became his passion. With an obvious talent for and interest in language studies, the path was set for a career as a teacher or academic in Iceland. But, after his first degree in Icelandic Studies at Reykjavík in 1947, Hermann made the unusual step of seeking his second degree in Irish Studies in Dublin, where he graduated in 1950. With this move he followed in the footsteps of other important Scandinavian scholars with knowledge of both the Old Norse and Celtic languages and cultures, men like C.J. Borgström, and Hermann's good friend, Magne Oftedal. While a main interest of his predecessors was to investigate the Norse influence on Celtic, Hermann made the reverse movement of cultural influence one of his main interests. Throughout his life he was to pursue the influence of Celtic and the Celts on the Old Norse culture and on Iceland, as in two of his last books, Keittar Íslandi (1997) and Vinlandað göða (2001), as well as in his last article to Northern Studies, the masterly critical 'Vinland Revisited' (2000).

Hermann was appointed Lecturer in Icelandic in the Department of English Language at the University of Edinburgh in 1950. In 1982 he was given a personal chair. He managed to put the University of Edinburgh on the map as a centre of excellence in his field of teaching and research. One of the peaks of his career was when he initiated and
Selected bibliography

Clements R. Markham, The Threshold of the Unknown Region (London, 1873)
Clements R. Markham, The Lands of Silence: a History of Arctic and Antarctic Exploration (Cambridge, 1921)
Roland Huntford, Nansen: the Explorer as Hero (London, 1997)
Roland Huntford, Scott and Amundsen (London, 1979)

Atlantic Peoples between Fire, Ice, River and Sea. Past Environments in Southern Iceland.

Collected and Co-edited by

Kristján Ahronson

Collected Articles:

Kristján Ahronson, One North Atlantic Cave Settlement: Preliminary Archaeological and Environmental Investigations at Seljaland, Southern Iceland.

Kate T. Smith and Kristján Ahronson, Dating the Cave? The Preliminary Tephra Stratigraphy at Kverkin, Seljaland.

Donald I. Ashburn, Martin P. Kirkbride and Andrew J. Dugmore, Post-Settlement Land Disturbance Indicated by Magnetic Susceptibility of Aeolian Soils at Seljaland.

Atlantic Peoples outlines a fresh approach to first publication of research in Iceland. The ideal expressed here is of accessibility. New research is framed to highlight the potential of interdisciplinary approaches and the main text presents specialist data and discussions for the wider audience.

Emphasis is placed upon language that allows conversation between disciplines. Every paper is the first publication of new research and the main text presents specialist data and discussions for the wider audience.

As is readily seen, Atlantic Peoples advances the fresh approach of an innovative academic milieu for North Atlantic Peoples and provides a suitable context for discussion of the documentary, place-name, and environmental material. The island was transformed over these centuries: birch woodland was cleared, domesticated animals and crops overexploited, natural vegetation cover, stripped, and consequently the soils destabilised. Amanda Thomson describes modern-day Iceland's heavily eroded landscape as "Europe's worst environmental disaster".

In this instalment to the Northern Studies, vol. 37 series, it is the first time an outline of the tephra record for the North Atlantic coasts and islands, here focusing on the late prehistoric to late medieval periods - with special emphasis upon the early period AD 870. Alan Macniven focuses upon the documentary records for the settlement of the North Atlantic. Preliminary investigations allow for additional investigation of anomalous magnetic readings before AD 870.

Each article follows the same structure. An accessible preface while the introduction and conclusion summarise the relevance of the study. A product of an innovative academic milieu for North Atlantic Peoples, the collection is the first public publication of new research on the North Atlantic coasts and islands. Here focusing on the late prehistoric to late medieval periods with special emphasis upon the early period AD 870. Alan Macniven focuses upon the documentary records for the settlement of the North Atlantic. Preliminary investigations allow for additional investigation of anomalous magnetic readings before AD 870.
provide an excellent arena for study of human-environmental interactions, a human legacy of environmental mismanagement that has resulted in the highly eroded unstable soils of Iceland today. The sampling of North Atlantic research in this collection expresses the ideal of publishing work-in-progress: new data and preliminary interpretations are presented in order to encourage dialogue and inform discussion. The studies contained here owe a special debt to tephrochronology – this collection is inspired by the tephra work of Andrew J. Dugmore.

Kristján Ahronson

Edinburgh & Jesus College, Oxford

October 2002

Kristján Ahronson

One North Atlantic Cave Settlement: Preliminary Archaeological and Environmental Investigations at Seljaland, Southern Iceland

Abstract

The 2001 results of archaeological investigations in southern Iceland have the potential of challenging the generally accepted view of Viking Age settlement in the North Atlantic area. Scandinavian groups are believed to have settled the northern North Atlantic islands of Iceland and the Faroe Islands in the late ninth century of their own pioneering initiative. This may be too simple a scenario. Archaeological and environmental research in southern Iceland may date a cave site at Seljaland to earlier than AD 871. Such an early date is particularly interesting because the caves of Seljaland have features paralleled in early Christian western Scotland. Archaeological survey revealed human and animal house-structures as well as field boundaries. Unusual structures were also noted, including the caves Kverkarhellir, Seljalandsheilir, Þrasahellir and the Krosshöll 'chapel'. Holistic study of the Seljaland area presents unique possibilities for a multi-disciplinary approach to human exploitation of the natural environment and continuity of land use. A new method for environmental studies, the tephra contour, provided unexpected results. The results of the tephra contour need to be refined by further work but may suggest reduction of birch woodland before AD 871.

Introduction

In July and September 2001, preliminary investigations focused upon the artificial caves and environmental record of the
Seljalands area of southern Iceland.1 Impressive physical features mark this region of southern Iceland. To the east, the glaciers Eyjafjallajökull and Mýrdalsjökull as well as the active volcano Katla dominate the landscape. The escarpment that forms Seljalands is itself a landmark, looking west over the glacial river Markarfljót and the lowland coastal plain (sandur), as well as looking southwest to the nearby Westmen Islands. Archaeological and environmental fieldwork in 2001 concentrated along three lines: dating a construction phase of the artificial cave Kverkarhellir, archaeological survey of the Seljalands area, and development of a new ‘archaeological’ method for environmental studies – the tephra contour.

Test trenches in front of Kverkarhellir cave identified putative spoil from cave construction in soils within a dated sequence of volcanic ash layers, or tephra. Fractured soft volcanic rock lies 10 cm beneath an ash deposit which analysis suggests is the Landnám tephra. The Landnám tephra is the earliest historical deposit of volcanic ash, dated to AD 871±2. If a ‘pre-Norse’ date for Kverkarhellir cave is ultimately accepted, one could look to the Gaëlic communities of Iceland described in early Icelandic and Gaëlic documentary traditions as well as the surviving cross carvings at Seljalands. Many of Seljalands’ cross carvings are best paralleled in early Christian western Scotland. Further fieldwork is, however, necessary in order to maintain an early date for Kverkarhellir cave.

Context

Little is known about the 170 artificial caves of southern Iceland. The caves may form an aspect of the earliest settlement of the island and thus have important implications for the study of the Viking North. The Norse longhouse, a Viking Age house-type built of turf and found as far west as L’Anse-aux-Meadows in Newfoundland, is understood as one of the earliest medieval house-structures of Iceland. In contrast, while cave sites are thought to be old (Holt & Guðmundsson 1980:16-17), their origins and history enigmatic.

The Seljalands area, noted in Figure 1, forms part of the highland summer grazing grounds used by local farmers. The vegetation is characterised by low shrubs and grassland and is without tree cover, except in the sheltered kverk (small ‘corrie’). The kverk has been fenced off from livestock since 1981 and is now host to a number of well-established trees with thickly vegetated understorey. The Seljalands area forms part of an escarpment that the cave sites Kverkarhellir and Seljalandshellar/Papahellir lie at the foot of. The Seljalandsá (‘river of Seljalands’) runs east-west along the northern edge of the study area until it cascades off the escarpment onto the lowland sandur plain in a spectacular waterfall, Seljalandsfoss (‘waterfall of Seljalands’). The eastern boundary is marked by Hofsa/Veystri-Hofsa, a north-south running river. East of Hofsa, the land ascends steeply to higher mountainous ground. The southern boundary is delimited by the escarpment/lowland boundary, the western edge forming a natural border of cliffs within which the Kverkarhellir cave site is located, overlooking the heavily sedimented sandur plain. The escarpment rises gently to its highest and most exposed point, Krosshöll, where the remains of a small eroded structure survive. The derivation of Seljalands is best understood as ‘land of the shielings’ (Peder Gammeltoft pers. comm.) and could suggest a communal use of the area by the naming population, presumably early Norse settlers. Certainly, Kverkarhellir cave was used for communal purposes between 1872 and 1895, when the site served as pingstahúr, housing local parliamentary meetings (Tómasson 1997:151). This is not the first appearance of the cave in documentary records. Kverkarhellir also features in Jón Árnason’s collection of 19th-century folklore, where folk tradition describes the use of the cave for human habitation in the 1500s (Árnason 1856:200-202).

1 A memorial inscription at Kverkin describes the planting of woodland in 1981.
2 Papahellir, ‘cave of Papnr’, is an alternate place-name for Seljalandshellar, ‘caves of Seljalands’ (Halldóra Ás Hálfdanarson pers. comm.).
Figure 1: Location of Seljaland in southern Iceland. Adapted from Simpson et al 2001:178.

Hjartarson et al (1991) published a survey of the numerous artificial caves of Iceland. This book, along with a series of articles (Hjartarson & Gisladóttir 1983, 1985, 1993) and Um Managera Hella á Sudurlandi (Holt & Guðmundsson 1980), was a significant advancement upon Matthias Jóhansson's 1931 study. Nonetheless, the origins of the caves and their role in Iceland's settlement archaeology remain poorly understood. This rare situation in Atlantic archaeology, of investigating a well-represented site type that is without a place in the settlement sequence, provided the impetus for investigations at Seljaland. Figure 2 illustrates the distribution of artificial caves across Iceland. Working in the Eyjafjallavatn region of southern Iceland, we are fortunate to be able to use tephrochronology so extensively. Tephrochronology, the study of volcanic ash layers, is a powerful dating tool that is particularly applicable to the excellent tephra sequence at Seljaland. Integrated archaeological and environmental research focuses upon a well-constrained study area that is characterised by substantial aboveground survival of the archaeological record (Ahronson & Jónsson in prep). The study area is a visually prominent point in the landscape where several ecological niches and consequent resources converge (highland, lowland plain, cliffs, river, marshland and sea) (Thomson in prep). From an environmentally determinist perspective, such a grouping of resources would probably have been consistently exploited by human populations from an early period – thus providing a rich archaeological sequence in which the cave sites of Seljaland can be situated. The Seljaland Project aims to formulate a model for artificial cave use in southern Iceland.

Figure 2: Artificial caves across Iceland. Adapted from Hjartarson et al (1991:12).

Hjartarson and Gisladóttir (1983:133) describe the southern Iceland caves as including a number of 'the oldest house buildings in Iceland'. Many caves are listed in 1709 land registers (ibid), while a late 12th-century description of Bishop Þórir's miracles mentions the collapse of a cattle cave. It

is noteworthy cave use is described at such an early date, for the 12th century is the period of the oldest Icelandic writing. From a north central European perspective, Adam of Bremen provides the earliest known depiction of Icelandic cave use. In an 11th-century account, Adam describes the people of Iceland\(^3\) as dwelling "... in subterraneis habitant speluncis, communitecto et strato gaudentes pecoribus suis / in underground caves, glad to have roof and food and bed in common with their cattle" (Schmeidler 1917:272, Tschann 1959:217).

A feature of numerous southern Iceland caves as well as some Westmen Island rock shelters are stylistically distinctive cross-carvings that, taken together, form a coherent body of data. These cross carvings have been discussed at length elsewhere (Ahronson 2000, 2002, forthcoming). On typological and contextual grounds, specific comparisons have been drawn to the Argyll expanded terminal type, a style linked to the Columban family of monastic houses of the seventh and eighth centuries (Campbell 1987, Ahronson 2000:119). A number of the Argyll expanded terminal crosses are found in caves, which Campbell (1987:108-9) suggests as "...retreats or deserta for anchorites or penitents." The stone carvings of Scotland's West Highlands and Islands have been subjected to academic attention for many years, the most recent contribution providing a sophisticated presentation of comparative data and analysis (Fisher 2001). Fisher (pers. comm.) consulted published drawings of a number of Seljaland cross carvings (Hjalmarson et al. 1991:248) and noted the possibility of several styles finding close parallels in early Christian western Scotland, though specialised illustrations are needed before further comment can be made.

Folklore and onomastics associate some of southern Iceland's artificial caves with Papar, a group Icelandic folk tradition and medieval texts believe inhabited the island previous to Scandinavian-led settlement in the late ninth-century. Seljalandshellar, for example, was known under the alternate 'child's name' of Papahellir, 'cave of Papar' (Hálfdan Ómar Hálfdanarson pers. comm.). Papar are described in the earliest documentary sources of the island as being present "Í þann tíð var Island viðr valit á midli fjalls ok fjørú / At that time when Iceland was covered with woods between mountains and shore" (IF 1968:5) or "Áðr Island byggði af Nóregi / before Iceland was built from Norway" (IF 1968:31). These Papar, or Vestmenn ('Westpeople'), find context within the northwards-looking monastic communities of western Scotland, related to the Columban familia, and appearing in Gaelic documentary traditions (Tierney 1967:72-7, Anderson & Anderson 1991, Morris 1991:65) as well as to a limited degree in the North Atlantic archaeological record (Bourke 1983:464-468, 1997:163-165, Ahronson 2000, Fisher 2001, Fisher 2002). The southern Iceland cross carvings and caves also fit into a context provided by place-names. Papa-, vestmanne-, and ʻira- place-names are found across the North Atlantic islands, a distribution well seen in papa-names found from the Hebrides to Iceland. The distribution of papa-names argues for a group known to the Norse as 'papar' having some role in the early Norse societies of the North Atlantic – at a time when the landscape was being appropriated and 'named' by the Norse.

Anecdotal use of modern folklore and place-names, however, cannot establish a connection between southern Iceland's artificial caves and Vestmenn communities without further archaeological investigations. The situation is such that an association may quite legitimately be proposed but not accepted – not without further data. The Seljaland Project seeks to provide a chronology of cave construction and occupation combined with a rich environmental record of land use. By looking at the caves of Seljaland (Kverkarhellir, Seljalandshellar, Prási/Prasahellir), investigations hope to construct a model for artificial cave use in southern Iceland – thus addressing this long ignored and very substantial body of housebuildings.

Excavation

Three lines of preliminary fieldwork were followed in July and September 2001 (Figure 5). Two test trenches were excavated near the mouth of the artificial cave Kverkarhellir, tephra contours were exposed approximately...
200 metres northwest of Krosshóll (at the same location as Figure 1:Profile 3 in Ashburn et al. this volume), and detailed archaeological survey of the study area was completed. The test trenches in front of Kverkarhellir identified fractured volcanic rock (palagonite) and palagonite gravels as putative waste material from cave construction. The palagonite material was noted to be of the same visual character as the artificial cave. It was found in aeolian soils and intercalated with a stratified sequence of tephra deposits. In this volume, Smith and Ahrnson analyse the stratified sequence to produce a preliminary tephra stratigraphy for the trenches. Tephra stratigraphy is a powerful dating tool and is used here to situate the putative spoil within a time-constrained context. Trench D1 was located 1.60 metres northeast of the cave mouth and included putative construction spoil. A control trench D3 was also excavated 14 metres along the cliff-base, east-southeast of trench D1. For trench D1, a 2 metre west-facing section and a 1 metre north-facing section were dug to a maximum depth of 2.2 metres. Layers were recorded according to a system of trench number (D1 or D3) and layer (A, B, C, D...). Thus D1G expresses trench D1 layer G. For each trench section, the sequence of sedimentary layers (contexts) was recorded by scale diagram, based on measurements and observations of grain size, colour, layer thickness, continuity of units and layer composition. For this preliminary report, the stratigraphic sequence of layers, or contexts, is illustrated in Figure 4 with Table 1 describing each context.
Table 1: Contexts from Trenches D1 and D3

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
<th>Layer</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1 A</td>
<td>very dark brown clay with sand, palagonite gravel and fractured stones</td>
<td>D3 A</td>
<td>grey coarse silty sand tephra (T)</td>
</tr>
<tr>
<td>D1 B</td>
<td>dark brown clayey silt with sand, palagonite gravel and fractured stones</td>
<td>D3 B</td>
<td>black coarse sand tephra</td>
</tr>
<tr>
<td>D1 C</td>
<td>intermittent grey silty sand with sand, palagonite gravel and fractured stones</td>
<td>D3 C</td>
<td>black brown silt with little sand</td>
</tr>
<tr>
<td>D1 D</td>
<td>brown silty clay with sand, palagonite gravel and fractured stones</td>
<td>D3 D</td>
<td>brown clayey silt with some sand</td>
</tr>
<tr>
<td>D1 E</td>
<td>black fine sand tephra (KR 9207)</td>
<td>D3 E</td>
<td>intermittent grey silty sand tephra</td>
</tr>
<tr>
<td>D1 F</td>
<td>light grey-brown very silty clay with sand, palagonite gravel and fractured stones</td>
<td>D3 F</td>
<td>black fine sand tephra (KR 9207) (possible tree cast)</td>
</tr>
<tr>
<td>D1 G</td>
<td>grey fine sandy silt (tephra V 8707)</td>
<td>D3 G</td>
<td>grey fine silty sand tephra (V 870)</td>
</tr>
<tr>
<td>D1 H</td>
<td>grey-brown silty sand with palagonite gravel (oldest putative construction spall)</td>
<td>D3 H</td>
<td>red brown silt</td>
</tr>
<tr>
<td>D1 I</td>
<td>grey pumaceous tephra (or pumice)</td>
<td>D3 I</td>
<td>intermittent black fine sand tephra</td>
</tr>
<tr>
<td>D1 J</td>
<td>light brown clay with sand, gravel and occasional fractured stones</td>
<td>D3 J</td>
<td>black fine sand tephra</td>
</tr>
<tr>
<td>D1 K</td>
<td>grey coarse pumice (U)</td>
<td>D3 K</td>
<td>brown silt</td>
</tr>
<tr>
<td>D1 L</td>
<td>very compact brown to grey sandy gravels</td>
<td>D3 L</td>
<td>intermittent black fine sand tephra</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D3 O</td>
<td>light brown silt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D3 P</td>
<td>black fine sand tephra</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D3 Q</td>
<td>brown sandy silt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D3 R</td>
<td>black fine silty sand tephra</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>brown silty clay</td>
</tr>
</tbody>
</table>
Kverkarhellir is an artificial cave excavated out of palagonite, a soft volcanic rock. By locating the debris from construction – sealed with tephra deposits of known age – we sought to date the earliest phase of cave construction. The local historical tephra sequence is well-studied (Dugmore 1987, Mairs in prep, Smith & Ahronson this volume), comprising fall-out from the following eruptions (accompanied by AD dates): Hekla 1947 (Pórarinsson 1954), Katla 1918 (Pórarinsson 1975), Eyjafallajökull 1821 (Larsen 1979), Katla 1755 (Pórarinsson 1975), Katla 1721 (Pórarinsson 1975), Hekla 1510 (Pórarinsson 1967), Katla 1500 (Larsen 1984), Hekla 1341 (Pórarinsson 1967), Eyjafallajökull 935 (Zielinski et al. 1995), Katla c. 920 (Hafldahson et al. 1992), and the Landnám tephra Veidivotn 871±2 (Grönvald et al. 1995). These tephra layers are centimetre-scale deposits and clearly separated by aeolian sediments.

Palagonite material was found only in trench D1, situated directly in front of the cave Kverkarhellir. The fractured palagonite and palagonite gravels lay within a stratified sequence of tephras which includes a pair of volcanic layers identified by initial analysis as the Landnám tephra (AD 871±2) and the Katla R tephra (c. AD 920). A detailed discussion of this analysis appears in this volume (Smith & Ahronson). The Landnám tephra is generally understood to separate the prehistoric sequence from the historic or Norse settlement archaeology of Iceland (Vésteinsson 1998:3-4). The oldest deposit of this fractured and gravel palagonite lies 10cm beneath the volcanic ash layer identified as the Landnám tephra. Only with difficulty can estimates be made on how long before AD 871 the putative construction spoil was deposited. A late eighth/early ninth-century date is a reasonable approximation, judging from local rates of sediment accumulation at that time (Dugmore & Erskine 1994).

Two limitations of the data need to be resolved by further work. Firstly, the identification of the AD 871 tephra must be confirmed. Preliminary analysis (Smith & Ahronson this volume) suggests the tephra layer D1G/D3G is the Landnám deposit, but further fieldwork and geochemical analyses are necessary. Secondly, the palagonite material needs to be
firmly established as spoil from cave construction. 14 metres along the cliff base from trench D1, trench D3 noted a comparable tephra and aeolian sequence of sediments, but without the palagonite material. This suggests the putative construction spoil is not from cliff collapse, but further work is necessary to support this interpretation, including analysis of the palagonite fragments and cave walls for tool marks.

If an early date for a construction phase at Kverkarhellir is maintained, these results complement the work of Dugmore and Erskine (1994:69-73) and Ashburn et al (this volume). Dugmore and Erskine noted a soil colour change at Seljaland as palaeoenvironmental evidence of change in the late eighth/early ninth centuries. Also working at Seljaland, Ashburn et al measured a magnetic susceptibility record of environmental change that may begin in the soils beneath the Landnám tephra, though this needs further study.

Tephra contours reveal the vegetated land surface during that short time when a layer of volcanic ash was deposited. By exposing these past land surfaces, the tephra contour seeks to identify a human impact upon the natural landscape. In 2001 preliminary investigations, density of woodland cover was investigated as an indicator of early human influence upon the environment.

Thomson's work (in prep) on the pre-Landnám vegetative environment of Eyjafjallajökull describes the following ecological environments for the Seljaland study area:

The sandur plain between the coast and the uplands at the time of Landnám is thought to have been covered by marshy grassland, with scattered patches of birch woodland on raised areas, as indicated by peat deposits and macro-fossils found throughout the region. Above the marshland, up to 300 m, birch woodland predominated, with a lush under storey composed of grasses and herbs.

This scenario of dense woodlands is also reflected in the tephra record. Working to the northeast of Seljaland, at Langanes, Mairs (in prep) noted ‘holes’ in the Landnám and older prehistoric tephra layers. She identified these as tree casts, evidence for forest cover. Furthermore, she recorded an undulating and discontinuous soil-TEPRA contact surface for the Landnám and prehistoric layers. Such undulating and discontinuous tephra deposits would be expected in birch woodland with lush under storey. This is to be contrasted with the continuous and well-defined bottom contact of the Katla c. AD 920 tephra at Langanes, which indicates largely deforested open grassland – suited to grazing animals. Mairs does not find any tree casts in the Katla c. AD 920 or younger tephras. From this data, one imagines extensive woodland in AD 870 rapidly reduced by AD 920 – this is the period of Norse settlement. Certainly, the Icelandic medieval legal code Gróðs describes forest clearance to create arable land (GG II 1852:448, Macniven this volume) while Ashburn et al (this volume) may have identified the magnetic signature of forest clearance by fire after AD 920 in the soils at Seljaland.

The single 1.5 metre x 1.5 metre tephra contour area at Seljaland presents clear statistical limitations to wider interpretations. Nevertheless, it is remarkable that the data from this contour stands in direct contrast to the scenario outlined for Langanes – a scenario reasonably extrapolated across the Eyjafjallajökull region. Tephra contours at Seljaland identified two 9 cm diameter tree casts, one in the Katla AD 1500 tephra and another in the Katla c. AD 920 tephra. In contrast, the Landnám contour revealed a continuous and well-defined surface consistent with open grassland: no tree casts were found. This could suggest natural or human processes cleared the birch forest before the AD 870 tephra was deposited. The tree casts in the AD 1500 and AD 920 tephras were unexpected and highlight the importance of excavating a statistically significant number of tephra contours over a larger area. The results from the tephra contour stand in contrast to the Langanes data and call for further contours to refine the environmental record of past land surfaces at Seljaland.

As mentioned earlier, a full presentation of the archaeological survey will be made elsewhere (Ahronson & Jónsson in prep). What follows is a brief discussion. At the edge of an escarpment overlooking the sandur plain, the Seljaland area forms a visually prominent point in southern Iceland. Bounded by rivers, cliffs and escarpment edge, this naturally bordered unit has a high concentration of the classic Icelandic assemblage of archaeological features, in addition to a number of exceptional structures. The typical assemblage of visible features relating to farming practices include many animal houses, such as a possible shieling site.
and a large L-shaped structure, probably a 19th- or 20th-century fjárhuís ('sheep house') for hay storage and to house sheep during the winter. The assemblage noted at Seljalands also includes a network of turf- and stone-walled field boundaries. These walls vary in size, style, material and most likely age as well. Re-use of older boundaries is a possibility as well as abandonment, demonstrated by heavily eroded examples. In contrast, other large distinct walls still stand as physical boundaries today. Exceptional sites include the cave sites Seljalandshellar/Papahellir, Kverkarhellir, and Írásk/Íráshellir. Seljalandshellar in particular is of interest, with its three distinct rooms, chimney and 105 cross carvings on the surviving walls. As noted earlier, a number of these carvings appear to be paralleled in early Christian western Scotland. Another exceptional feature is the small west-oriented subrectangular stone structure at the prominent and exposed point Krosshóll. Folklore describes this eroded structure as a catholic chapel (Tómasson 1997:152) and this is certainly one possibility, though difficult to assess. Thus the Seljalands archaeological survey reveals a good representation of the typical assemblage of human and animal house-structures as well as field boundaries, many of which relate to farming practices. This classic assemblage is made exceptional in that structure types (such as shielings, fjárhuís, field boundaries...) are well-represented and survive well as visible features – and occur in an area provided with a powerful dating tool: an enviable tephrochronological sequence (Dugmore 1987, Mairs in prep, Smith & Ahronson this volume). The unusual features such as the Krosshóll ‘chapel’ and the Seljalands caves warrant further investigation in their own right, as they are difficult to accommodate within the settlement sequence. Holistic study of the Seljalands area presents unique possibilities for a multi-disciplinary approach to human exploitation of the natural environment and continuity of land use.

Conclusions

Preliminary investigations in 2001 concentrated on a focused archaeological and environmental study at Seljalands. Initial results date a construction phase of the cave Kverkarhellir to c. AD 800. Though such a date is earlier than the Norse archaeology of Iceland, other palaeoenvironmental work at Seljalands noted a complementary record of environmental change in the late eighth/early ninth centuries (Dugmore & Erskine 1994:69-73, Ashburn et al. this volume). However, difficulties in identifying construction spoil and the Landnám tephra need to be overcome before this early dating can be accepted. Archaeological survey notes the special potential of the area to investigate human exploitation of the natural environment and continuity of land use. Survey also revealed several unusual features that warrant further investigation, such as the Krosshóll ‘chapel’ and the Seljalands caves. Intriguingly, preliminary environmental work hints the study area may have stood out in AD 871 as open grassland within a larger wooded landscape.

Several independent lines of archaeological and environmental investigation suggest parallel hypotheses. The cross sculpture styles, cave construction dates, land surface tephra contours, existing work of Dugmore and Erskine, and the new work of Ashburn et al are consistent with very early or Scotland-related settlement. However, these lines of investigation are in the preliminary stages and additional work is necessary to maintain and refine the early results. What does appear clear, however, is how well placed the Seljalands area is proving for collaborative inter- and multi-disciplinary work on early Iceland. Investigations at Seljalands confront a long ignored body of housebuildings in southern Iceland and have the potential of challenging the generally accepted view of Viking Age settlement in the North Atlantic area.

Acknowledgements

Limited archaeological investigations were undertaken in July and September 2001. July fieldwork was directed by Kristján Ahronson and inspired by Dr Andy Dugmore (University of...
Edinburgh) as well as assisted by Dr Thomas McGovern, Dr Sophia Perdikaris and their students from the City University of New York. An environmental tephra contour trench was opened in parallel with the work of Dr Martin Kirkbride and Donald Ashburn (this volume) from the University of Dundee. September fieldwork was directed by Kristján Ahronson and co-directed by Guðmundur Helgi Jónsson, formerly of the Þjóðminjasafn Islands (National Museum of Iceland). Florian Huber (Christian-Albrechts-Universität), Alan Macniven (University of Edinburgh) and Ray Geisli Meaney carried out this work. Dr Anthony Newton (University of Edinburgh) kindly assisted with field identifications. September fieldwork was undertaken alongside the University of Edinburgh Geography field school, including the work of Kerry-Anne Mairs (in prep). The Geography field school (directed by Nick Holton) helpfully supplied logistical support. Ragnheiður Tustadóttir and Guðmundur Ólafsson of Þjóðminjasafn Islands generously made available equipment for 2001 fieldwork. Hálínóra Jónsdóttir acted as Project Conservator. Post-exavation analyses of tephra stratigraphies and geochemical samples were completed by Kate T. Smith (Smith & Ahronson this volume) in consultation with Guðrún Larsen (Háskóli Islands/University of Iceland) and Dr Andy Dugmore. The crucial advice and assistance of Fraser Hunter (National Museums of Scotland), Professor William Gillies (University of Edinburgh), Alex Woolf (University of St Andrews), Professor Gíslí Pállsson (Háskóli Islands/University of Iceland), Páll Marvin Jónsson (Háskóli Islands í Vestmanneyju/University Field Station in the Westmen Islands), Hálínóra Ólafsdóttir and Póður Tómasson í Skógum is gratefully acknowledged. Early aspects of this work were fostered by the interest and support of Professor Ann Dooley (University of Toronto).

Kate T. Smith and Kristján Ahronson

Dating the Cave? The Preliminary Tephra Stratigraphy at Kverkin, Seljaland

Abstract

Analysis of the sequence of volcanic airfall layers (tephra stratigraphy) at Kverkin, southern Iceland, shows the potential for dating environmental change and construction of Kverkarhelli氷-cave. This analysis suggests that putative spoil from the construction of the cave may be older than the Landnám ash of c. AD 870. Stratigraphic evidence is presented for the identification of tephra from the Landnám (V870) and later Katla R (KR920) eruptions. In close proximity to the cave, initial geochemical analyses identify the chemically distinctive Landnám tephra paired with a Katla tephra. Further stratigraphic data and geochemical analyses are required to confirm the identification of these volcanic ash layers.

Introduction and Background

In order to establish a chronological framework for archaeological and environmental investigations at the Seljaland site in southern Iceland (Ahronson this volume), a number of tephra samples were taken in September 2001 and geochemically analysed over the following months. The initial analysis of this material is presented here.1 Tephrochronology is a dating technique that uses tephra layers within the sedimentary record as time-parallel marker horizons, horizontally continuous units that represent an instance in time within the sedimentary record of a region. By

1 Substantial tephrochronological fieldwork by the authors in 2002, after this article was submitted, has clarified the initial analysis presented here. The 2002 Seljaland Project field report (in prep) presents a new robust tephra stratigraphy for the site.
tracing these tephra layers across an area, a regional chronology can be developed. Using historical records, ice core data and radiometric dating techniques, independent ages can be obtained for these layers. This stratified sequence of dated tephra layers can then provide a chronological framework within which events recorded in the sedimentary record can be placed. Tephrochronology is a particularly useful chronological technique for studies of first Millennium AD environmental change in southern Iceland. In particular, the Seljaland region is well suited to the application of tephrochronology due to the very detailed and well-constrained record of tephra layers that has been developed for the region (Dugmore 1987, Larsen et al. 2001). Throughout the Holocene (approximately the last 10,000 years), a number of very active volcanic systems in close proximity to Seljaland have produced many visually and geochemically distinctive tephra layers. These layers are particularly suitable for stratigraphy-based tephrochronology.

Methods

Tephra layers were logged in two profiles from in front of Kverkarhellir-cave as part of the initial archaeological work carried out at this site (Ahrson this volume). Profile D1 was located 1.6 metres NE of the cave mouth and included putative construction spoil. A control trench, D3, was also excavated 14 metres ESE of D1 and a profile recorded. For trench D1, a 2 metre west-facing profile and a 1 metre north-facing profile were recorded to a maximum depth of 2 metres. For trench D3, a 1 metre north-facing profile was recorded to a depth of 2.2 metres. Layers were recorded according to the following system: trench number (D1 or D3) and layer (A, B, C, D, ...), thus D1G expresses trench D1 layer G.

For each profile, the sequence of sedimentary layers was recorded by scale diagram, based on measurements and observations of grain size, colour, layer thickness, continuity of units and layer composition. These scale diagrams have been summarised as a basic sedimentary log for comparison with reference profiles recorded at Seljaland by Dugmore (1987). This reference profile is a complete sequence of undisturbed tephra layers consistent with wider records in the Markarljóð, Seljaland and Sólheimar areas.

Preliminary geochemical analyses of samples of layers F and G were carried out by electron microprobe analysis using a Microscan V instrument, following procedures summarised in Dugmore et al (1992).

Preliminary tephra stratigraphy and geochemical analysis

Figure 1 shows the Kverkarhellir and Seljalandsheiði tephra stratigraphy. The Seljalandsheiði profile shows that in this area very few black Katla tephra layers have been recorded in the soils during historic time. The distinctive key historical layers are predominantly from Hekla: H1947 (coarse grey-brown pumice), H1510 (coarse grey-brown pumice) and H1341 (fine blue-grey tephra). K1500 is a relatively coarse black tephra layer from Katla. A pair of distinctive tephra layers is found near to the time of Norse settlement of the island (Landnám). The V870 tephra layer (Landnám ash), a greenish brown tephra with a small pale silica-rich component, is from the Veiðivötn system. The Landnám, or 'settlement', of Iceland by the Norse is dated by historic accounts to AD 870 (Grönvald et al. 1995). Approximately 50 years later Katla erupted producing the black Katla-R (Reykjavik) tephra in c. AD 920. Thick (often greater than 10 cm) coarse black tephra layers from the Katla volcano dominate the pre-settlement sequence, clearly distinguishable from the series of tephra deposits after Landnám.

Layers F and G refer to layers D3F and D3G from the control trench, D3. In the field, a common sedimentary stratigraphy was noted between trenches D1 and D3. Thus layers D1E and D3E were interpreted to be stratigraphically the same, as were layers D1G and D3G. Layer D1E is a tephra layer above the tephra layer D1G.

Tephra layers discussed in the text are referred to using a two-element system. The first element abbreviates the source volcanic system to one letter (H for Hekla, K for Katla, V for Veiðivötn), while the second element expresses the AD date (H 1947 for Hekla AD 1947).

The black Katla-R (Reykjavik) tephra of c. AD 920 is so-named because the ash from the eruption was blown towards Reykjavik (Hafliðason et al. 1992).
Field interpretation of the Kverkarhellir sequence suggested that both trenches share the same sedimentary and tephra stratigraphy with the exception of the putative construction material, found only in trench D1 at the cave mouth. Both profiles show a distinctive pair of tephra layers (F and G) provisionally identified from field observations and stratigraphy to be the KR920/V870 couplet. Layer F is a fine black tephra and Layer G is a grey-brown unit with pale grains. Below this pair of tephra layers, there are a number of thick coarse black tephras likely to have been deposited prior to c. AD 870, based on comparisons with Dugmore's (1987) Seljalandsheiði profile. This interpretation of the Kverkarhellir stratigraphy depends upon removal of the upper part of the profile, that above K1500.

From 1872 to 1895, Kverkarhellir served alternatively as seasonal sheep house and local parliament site or þingaður for the hreppur, or district. During this period, shovelling and removal of the accumulated sheep dung for the local parliamentary meeting is recorded (Teómasson 1997:151). Furthermore, folk tradition describes the use of Kverkarhellir for human habitation in the 1500s (Amason 1856:200-202). Additionally, the area of Kverkin, in which Kverkarhellir is found, was landscaped in the 1980s. This work included significant disturbance of the upper sediments for the laying of stone pathways and extensive tree planting (Hálfdan Ómar Hálfdansarson pers. comm.). As a consequence of this rich record of earth working at the site, removal or disturbance of the upper soil and tephra deposits above K1500 is easily envisaged.

The simplest stratigraphic interpretation correlates Kverkarhellir layers F and G with the KR920 and V870 couplet. This was tested by analysing the geochemistry of samples of these layers from both trenches (Tables 1 and 3). Initial geochemical analyses of layers F and G from trench D3 support the identification of the c. AD 920 Katla R and c. AD 870 Landnám tephras.

The tephra 'Layer F' in both trenches is attributed to an eruption within the caldera of the volcano Katla. This is based on comparisons of the Kverkarhellir geochemical data presented here (Table 1), with analyses of Katla R c. AD 920 from the nearby coastal plain of Landeyjar (Duncan writt.)
and a typical basaltic Katla tephra discussed by Larsen (2000) (see Table 2). However, the basaltic tephras produced during intra-caldera eruptions of Katla are difficult to differentiate between using analysis of major element chemistry (Larsen 2000). Katla has erupted approximately every 47 years during the historic period. This means that the identification of a basaltic Katla tephra from geochemical analyses alone cannot allow us to allocate a date to Layer F. It is necessary to stratigraphically relate this layer to a chemically distinctive layer that can be more firmly identified using geochemical analysis.

Layer G from trench D3 (Table 3) has strong geochemical similarities to Landeyjar tephra analyses from Landeyjar (Duncan, writ. comm.) and those published in Larsen et al. (1999) (see Table 4).

Table 1. Chemical analyses of Layer F in profiles D1 (selection from 14 analyses) and D3 (selection from 12 analyses) from Kverkjav, Seljalands. Total iron is expressed as FeO.

<table>
<thead>
<tr>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>FeO</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D1)</td>
<td>47.73</td>
<td>4.76</td>
<td>12.59</td>
<td>14.27</td>
<td>0.36</td>
<td>4.79</td>
<td>9.61</td>
<td>3.16</td>
<td>0.77</td>
</tr>
<tr>
<td>47.68</td>
<td>4.76</td>
<td>12.46</td>
<td>14.27</td>
<td>0.23</td>
<td>4.73</td>
<td>9.56</td>
<td>3.06</td>
<td>0.80</td>
<td>98.13</td>
</tr>
<tr>
<td>47.54</td>
<td>4.77</td>
<td>12.66</td>
<td>14.78</td>
<td>0.34</td>
<td>4.86</td>
<td>9.60</td>
<td>3.09</td>
<td>0.82</td>
<td>98.35</td>
</tr>
<tr>
<td>47.38</td>
<td>4.35</td>
<td>12.60</td>
<td>14.73</td>
<td>0.36</td>
<td>4.83</td>
<td>9.63</td>
<td>3.17</td>
<td>0.80</td>
<td>99.77</td>
</tr>
<tr>
<td>47.30</td>
<td>4.80</td>
<td>12.63</td>
<td>14.63</td>
<td>0.29</td>
<td>4.86</td>
<td>9.61</td>
<td>3.22</td>
<td>0.80</td>
<td>98.14</td>
</tr>
<tr>
<td>47.30</td>
<td>4.61</td>
<td>12.62</td>
<td>14.50</td>
<td>0.37</td>
<td>4.85</td>
<td>9.52</td>
<td>3.31</td>
<td>0.89</td>
<td>97.83</td>
</tr>
<tr>
<td>47.29</td>
<td>4.85</td>
<td>12.63</td>
<td>14.46</td>
<td>0.30</td>
<td>4.82</td>
<td>9.44</td>
<td>3.21</td>
<td>0.87</td>
<td>97.83</td>
</tr>
<tr>
<td>47.20</td>
<td>4.64</td>
<td>12.59</td>
<td>14.23</td>
<td>0.20</td>
<td>4.76</td>
<td>9.23</td>
<td>3.33</td>
<td>0.86</td>
<td>97.01</td>
</tr>
<tr>
<td>47.16</td>
<td>4.57</td>
<td>12.53</td>
<td>14.42</td>
<td>0.24</td>
<td>4.65</td>
<td>9.43</td>
<td>3.35</td>
<td>0.80</td>
<td>96.70</td>
</tr>
<tr>
<td>47.13</td>
<td>4.75</td>
<td>12.56</td>
<td>13.96</td>
<td>0.18</td>
<td>4.55</td>
<td>9.43</td>
<td>3.10</td>
<td>0.80</td>
<td>96.70</td>
</tr>
<tr>
<td>47.10</td>
<td>4.69</td>
<td>12.55</td>
<td>14.02</td>
<td>0.21</td>
<td>4.58</td>
<td>9.43</td>
<td>3.13</td>
<td>0.81</td>
<td>96.70</td>
</tr>
<tr>
<td>46.89</td>
<td>4.77</td>
<td>12.75</td>
<td>14.65</td>
<td>0.19</td>
<td>4.89</td>
<td>9.66</td>
<td>3.19</td>
<td>0.79</td>
<td>97.78</td>
</tr>
<tr>
<td>(D3)</td>
<td>47.21</td>
<td>4.69</td>
<td>12.62</td>
<td>14.50</td>
<td>0.15</td>
<td>4.44</td>
<td>9.67</td>
<td>3.18</td>
<td>0.81</td>
</tr>
<tr>
<td>47.53</td>
<td>4.64</td>
<td>12.57</td>
<td>14.50</td>
<td>0.11</td>
<td>4.77</td>
<td>9.74</td>
<td>3.20</td>
<td>0.79</td>
<td>97.50</td>
</tr>
<tr>
<td>47.31</td>
<td>4.75</td>
<td>12.50</td>
<td>14.60</td>
<td>0.23</td>
<td>4.63</td>
<td>9.38</td>
<td>3.15</td>
<td>0.81</td>
<td>97.29</td>
</tr>
<tr>
<td>47.28</td>
<td>4.53</td>
<td>12.46</td>
<td>14.37</td>
<td>0.32</td>
<td>4.75</td>
<td>9.35</td>
<td>3.21</td>
<td>0.83</td>
<td>97.11</td>
</tr>
<tr>
<td>47.24</td>
<td>4.59</td>
<td>12.46</td>
<td>14.56</td>
<td>0.35</td>
<td>4.75</td>
<td>9.36</td>
<td>3.28</td>
<td>0.78</td>
<td>97.22</td>
</tr>
<tr>
<td>47.20</td>
<td>4.60</td>
<td>12.52</td>
<td>14.51</td>
<td>0.30</td>
<td>4.75</td>
<td>9.26</td>
<td>3.10</td>
<td>0.84</td>
<td>96.98</td>
</tr>
<tr>
<td>47.19</td>
<td>4.51</td>
<td>12.49</td>
<td>14.54</td>
<td>0.37</td>
<td>4.76</td>
<td>9.45</td>
<td>3.20</td>
<td>0.82</td>
<td>96.96</td>
</tr>
<tr>
<td>47.17</td>
<td>4.49</td>
<td>12.47</td>
<td>14.28</td>
<td>0.16</td>
<td>4.66</td>
<td>9.41</td>
<td>3.17</td>
<td>0.77</td>
<td>96.64</td>
</tr>
<tr>
<td>47.09</td>
<td>4.65</td>
<td>12.52</td>
<td>14.61</td>
<td>0.13</td>
<td>4.83</td>
<td>9.31</td>
<td>3.29</td>
<td>0.81</td>
<td>96.44</td>
</tr>
<tr>
<td>47.08</td>
<td>4.53</td>
<td>12.35</td>
<td>14.32</td>
<td>0.22</td>
<td>4.71</td>
<td>9.36</td>
<td>3.22</td>
<td>0.79</td>
<td>96.57</td>
</tr>
<tr>
<td>46.96</td>
<td>4.52</td>
<td>12.27</td>
<td>14.25</td>
<td>0.21</td>
<td>4.75</td>
<td>9.31</td>
<td>3.19</td>
<td>0.80</td>
<td>96.90</td>
</tr>
<tr>
<td>(D3)</td>
<td>47.21</td>
<td>4.59</td>
<td>12.48</td>
<td>14.64</td>
<td>0.15</td>
<td>4.75</td>
<td>9.34</td>
<td>3.19</td>
<td>0.80</td>
</tr>
</tbody>
</table>

Table 2. Summary of published chemical analyses of basaltic tephra from Katla: (1) Katla R 920 analysis from SkóGávarkot, Landeyjar (selection from 13 analyses). Data from Duncan (writ. comm.); (2) Katla 1625 (mean of 7 analyses). Data from Larsen (2000/2). Total iron is expressed as FeO.

<table>
<thead>
<tr>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>FeO</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>71.81</td>
<td>0.27</td>
<td>14.78</td>
<td>2.72</td>
<td>0.10</td>
<td>0.24</td>
<td>4.46</td>
<td>4.67</td>
<td>99.96</td>
</tr>
<tr>
<td>71.06</td>
<td>0.29</td>
<td>13.34</td>
<td>3.94</td>
<td>0.16</td>
<td>0.18</td>
<td>4.31</td>
<td>3.95</td>
<td>99.86</td>
<td></td>
</tr>
<tr>
<td>71.07</td>
<td>0.24</td>
<td>12.77</td>
<td>3.55</td>
<td>0.16</td>
<td>0.12</td>
<td>4.17</td>
<td>4.00</td>
<td>99.77</td>
<td></td>
</tr>
<tr>
<td>69.89</td>
<td>0.44</td>
<td>14.43</td>
<td>2.97</td>
<td>0.10</td>
<td>0.42</td>
<td>4.36</td>
<td>4.44</td>
<td>99.07</td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>69.24</td>
<td>0.42</td>
<td>14.25</td>
<td>3.06</td>
<td>0.12</td>
<td>0.48</td>
<td>4.37</td>
<td>4.32</td>
<td>99.07</td>
</tr>
<tr>
<td>69.19</td>
<td>0.43</td>
<td>14.35</td>
<td>2.97</td>
<td>0.10</td>
<td>0.42</td>
<td>4.36</td>
<td>4.44</td>
<td>99.07</td>
<td></td>
</tr>
<tr>
<td>68.89</td>
<td>0.41</td>
<td>14.48</td>
<td>3.05</td>
<td>0.12</td>
<td>0.48</td>
<td>4.37</td>
<td>4.32</td>
<td>99.07</td>
<td></td>
</tr>
<tr>
<td>68.65</td>
<td>0.40</td>
<td>14.51</td>
<td>2.96</td>
<td>0.10</td>
<td>0.42</td>
<td>4.36</td>
<td>4.44</td>
<td>99.07</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Chemical analyses of (a) silicic part and (b) basaltic part of the D3C tephra layer from Kverkjav, Seljalands (selection from 21 analyses). Three sporadic grains, which may be xeno-glasses (i.e., glass acquired from the walls of the eruption conduit or contamination from surrounding tephra-rich soil, are shown at the base of the table. Total iron is expressed as FeO.
The Landnam tephra has two components, one basaltic and the other silicic. Basalt, with SiO₂ content around 49% and low K₂O levels around 0.2%, is the main component of the Landnam tephra layer in Eyjafjöll and the sole component farther east (Guðrún Larsen pers. comm.). The silicic component is characterised by high levels of K₂O, typically greater than 4% where SiO₂ content is greater than 70% (Larsen et al. 1999). These traits make the Landnam tephra chemically distinctive. D3G, although difficult to analyse with few silicic grains in the sample, shows similar chemical characteristics to this pattern. The analyses in Table 3 show a distinct basalt component, similar to the published data, and a number of silicic grains with SiO₂ above 70% and K₂O around or above 4%. It should be noted that FeO content of the silicic component appears somewhat higher than in previously published data, particularly that of Larsen et al. (1999). However, the similarities between this analysis of D3G and the data from Duncan (2001) and Larsen et al. (1999) suggest that this layer is likely to be the Landnam tephra (Guðrún Larsen pers. comm.).

The pairing of Layers F and G in trench D3 geochronologically identified as a Katla tephra and the Landnam tephra confirms the stratigraphic interpretation that Kverkarhelli layers D3F and D3G correlate with the KR920 and V870 couplet. Turning to trench 1, analysis of Layer G proved inconclusive. The sample analysed lacked the characteristic basaltic component and FeO and Al₂O₃ contents differed from the published data on the Landnam tephra. However, the similarity of the stratigraphic sequence in the two trenches strongly suggests that Layer G is continuous between the two profiles and consistently paired with the Katla tephra, Layer F. Although the simplest interpretation of the stratigraphy suggests that the Kverkarhelli layers F and G correspond to the KR920 and V870 pair of tephras, the possibility remains that natural or human agents have reworked the primary airfall deposits, presenting a more complicated story than initially understood. Further work with re-sampling, wide-scale data collection and geochemical analyses is necessary for a conclusive identification.

Conclusion

Stratigraphic and geochemical evidence from trench D3 suggests that the putative construction spoil in trench D3, near the mouth of Kverkarhelli-cave, may have been deposited some time before AD 870. Thick, coarse black tephra layers below this pair of tephras and the lack of such layers above this couplet support the field identifications. Geochemical analyses present a good case for identification of the Landnam tephra (c. AD 870) paired with a Katla tephra in control trench D3. A limitation of the identification of the spoil...
deposit beneath the Landnám AD 870 tephra is that this interpretation depends upon initial fieldwork observations and interpretation of the tephra stratigraphy that need to be confirmed. This paper does not deal with the nature of the putative construction spoil. For discussion of this material, see Ahronson (this volume). Further data collection, sampling and conclusive geochemical evidence is required for a positive identification of these tephra layers and thus well-constrained dating of the sedimentary sequence at this location.

Acknowledgements

Thanks go to Florian Huber for assistance in the field and Anthony Newton for advice on field identification of tephra layers. Special thanks must go to Guðrún Larsen and Andy Dugmore for help with the interpretation of stratigraphic and geochemical data. The authors would also like to thank Hálfdán Ómar Hálfdanarson as well as Bóður Tómasson f Skógum for their assistance with outlining the recent historical disturbance around Kverkarhellir. Electron microprobe analyses were undertaken at the University of Edinburgh with the support of Peter Hill and Anthony Newton.

Donald Ashburn, Martin P. Kirkbride and Andrew J. Dugmore

Post-Settlement Land Disturbance Indicated by Magnetic Susceptibility of Aeolian Soils at Seljaland

Abstract

Magnetic susceptibility variation within aeolian (wind-blown) sediments shows consistent patterns between seven sites around Seljaland, southern Iceland. The period before c. AD 870 is characterised by low-fluctuating values of magnetic susceptibility. The Norse Landnám, or settlement of Iceland, is understood to have begun in the late ninth century. Layers of volcanic ash, or tephra, settled out on the land surface from the atmosphere at c. AD 870 (the Landnám tephra) and again c. AD 920 (the Katla R tephra). Magnetic susceptibility values during this period are typically lower, and then increase in all profiles before levelling out into generally higher, but fluctuating readings. The timing of the stabilisation at higher values varies from c. AD 1100 to c. AD 1500, and is later in more rapidly-accumulating soils. The remarkable consistency of lowered magnetic susceptibility in the AD 870 – AD 920 period suggests a human-induced cause: increased organic input from the faeces of newly introduced farm animals and from decaying vegetation is one possibility, as this would 'dissolve' the magnetic signal. The subsequent rise in magnetic susceptibility values may, speculatively, be related to the increased concentration of relatively young iron-rich tephra in the soil deposits. Such a concentration would occur when sediment is reworked in a newly burnt landscape, cleared for grazing animals.
References to Section ‘Atlantic Peoples’

Hin Íslands Bókmenntafélagi, Reykjavík.

Atlantic Peoples

VINLAND REVISITED: the Norse World at the Turn of the First Millennium
Selected Papers from the Viking Millennium International Symposium,
13-24 September 2000, Newfoundland and Labrador

Editor: Shannon Lewis-Simpson
Copyright: Historic Sites Association of Newfoundland and Labrador, Inc.
All rights reserved. No portion of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage or retrieval system, without permission in writing from the publisher.

Published by: Historic Sites Association of Newfoundland and Labrador, Inc.
Box 5142
St. John's, NL
A1C 5W4 Canada
www.historicsites.ca

Managing Editor: Catherine Dempsey
Cover Design: Ragged Harbour Design
Advisory Committee: James Hiller Aileen MacDonald
Przemyslaw Urbarczyk William Schipper
Birgitta Wallace
Images: credited throughout the text

The Historic Sites Association of Newfoundland and Labrador (HSA) is a charitable organization which works to preserve, promote and interpret the history and heritage of our province. The HSA partnered with the Labrador Strait Historical Development Corporation and the Committee on Medieval Studies, Memorial University to organise the Symposium. The Committee is proud to publish this selection from the papers presented at the Viking Millennium International Symposium, and thanks its financial supporters: The Canada Millennium Partnership Program, The Government of Newfoundland and Labrador, Parks Canada, and St. Anthony Basin Resources Inc.

Contents

Preface 9
Paul O'Neill

LIST OF FIGURES 11

LIST OF TABLES 14

LIST OF CONTRIBUTORS 15

Introduction: Approaches and Arguments 21
Shannon Lewis-Simpson

SECTION ONE: VOYAGE TO VINLAND
Scotland, Ireland and Iceland: Norwegian settlers in the ninth century 29
Peter Sawyer

Denmark, Vikings, Countrymen: raiding, conquering and settling in ninth- 37
and tenth-century England
R.A. Hall

Breaking the monolith: multi-cultural roots of the North Atlantic settlers 45
Przemyslaw Urbarczyk

Scandinavia in the Viking Age 51
Birgitta Wallace

The Islands of Scotland: their role in the Western Voyages 65
Colleen E. Bate

The Crosses of Columban Iceland: A Survey of Preliminary Research 75
Kristján Árnason

Vinland: the Ultimate Outpost 83
Magnus Magnusson

The Early Norse Farm Buildings in Western Greenland: 97
Archaeological evidence
Svend E. Albrethsen

Norse Greenland Archaeology: The Dialogue Between the Written and 111
the Archaeological Records
Jørn Arneberg

The Norse Settlements in Greenland from a Maritime Perspective 123
Marek E. Jasinski and Fredrik Sævde

Contents
Paleodemography of the Greenland Norse
Niels Lynnerup
133
Walrus ivory and other northern luxuries: their importance for Norse voyages and settlements in Greenland and America
Else Roedahl

SECTION TWO: SOCIETY, CULTURE AND SETTLEMENT
The Vikings—Saints or Sinners?
Magnus Magnusson

The later excavations at L'Anse aux Meadows
Birgitta Linderoth Wallace

L'Anse aux Meadows: Rediscovered and Revisited
Kevin McAleese

A Norseman's encounter in Vinland, a millennium later
Nicola Eckhoff

The "Viking Encampment" at L'Anse aux Meadows National Historic Site of Canada: Presenting the Past
Darrell Markewitz

"Wish you were here...": A Thumbnail Portrait of the Great Northern Peninsula AD 1000
Trevor Bell, Joyce B. Macpherson and M.A.P. Ramoff

Viking Art at the Millennium in the North Atlantic
James Graham-Campbell

Dressing the Dead: Gender, Identity, and Adornment in Viking-Age Iceland
Michèle Hayeur-Smith

Scandinavian Building Customs of the Viking Age: the North Atlantic Perspective
Steffen Samman Hanson

Games and Entertainments in Vinland
David Gardner

From pagan to Christian—on the Conversion of Scandinavia
Anne-Sofie Grønlund

The Archaeology of Seifr: Circumpolar Traditions in Viking Pre-Christian Religion
Heidi Price

Women in Viking-Age Scandinavia, or, who were the "shieldmaidens"?
Birgit Sawyer

Christians Vikings In The North Atlantic Region
Christopher D. Morris

Vinland or Vinland?
Magnus Støvringsson

Arguments Against the "Vinland Hypothesis"
Alan Crosser

SECTION THREE: EXPLORATION, NAVIGATION AND CULTURAL INTERACTION
Did the Vikings Reach North America without Discovering It?
The Greenland Norse and Juan Caboto in the Strait of Belle Isle
Peter Pope

Strandingor Abroad—Strandingar at Home?
Kevin McAleese

Humour, Irony, and Insight: The first European Accounts of Native North Americans
Kenneth Batisholtz

Vinland and the death of Órvaldr
Birgitta Wallace

The Vinland sagas and the actual characteristics of Eastern Canada: some comparisons with special attention to the accounts of the later explorers
Matt O. Larson

A Core Condensation of My Ideas Concerning the Locations of Sites
Mentioned in the Voyages of Leif Ericson, Órvaldr Eiríksson and Ósmund Karlsefni
George M. Shendlock

The Forests of Iceland at the Time of Settlement: their utilisation and eventual fate
Iðrótar Eystr możesz and Sigurður Blodul

A Mathematical Search for Viking Navigational Practices
Curt Roslund, Sverre Thorslund and Emilia Páeztor

The Unartoq "Bearing-Dial"—not an Instrument for Ocean Navigation?
Christian Keller and Órne Emil Christensen

The "Vinland Map": Facts, Facts, and Fables
Kirsten A. Seaver

Afterword: Where's Vinland?
Trond Woxen

INDEX
Colleen Batey

The Crosses of Columban Iceland:
A Survey of Preliminary Research
Kristjan Ahrason

S

candinavian groups are believed to have settled the northern North Atlantic islands of Iceland and the Faroe Islands in the late ninth century of their own pioneering initiative. Recent archaeological and environmental research in southern Iceland calls for a reassessment of this scenario. Several artificial caves and rock shelters in southern Iceland have features paralleled in early Christian western Scotland. Little is known about the 170 artificial caves of southern Iceland. These caves may be related to the earliest settlement of the island and thus have important implications for study of the Viking North. The Norse longhouse, a Viking Age house-type built of turf and found as far west as L'Anse-aux-Meadows in Newfoundland, is understood as one of the earliest medieval house-structures of Iceland. In contrast, while cave sites are thought to be old (Holt and Guðmundsson 1980, 16-17), the origins and history of these caves are enigmatic.

In 1991, Hjarðarson et al. published a survey of the numerous artificial caves of Iceland, carved out of the soft sandstone and volcanic rocks of eastern Ammassyl, Rangárvallasjála and in Myrdalur. This book, along with a series of articles (Hjarðarson and Glíadóttir 1983, 1985, 1993) and Um Mengergeta Hellu d Suburlandu (Holt and Guðmundsson 1980), is a significant step forward for the subject since Matthias Pétursson's 1931 study. Nonetheless, the origins of the caves and their role in Iceland's settlement archaeology remain poorly understood. This rare situation in Atlantic archaeology, of investigating a well-represented site-type that is without a place in the settlement sequence, provided the impetus for the investigations discussed here. Figure 1 illustrates the distribution of artificial caves across Iceland.

Hjarðarson and Glíadóttir (1983, 133) describe the southern Iceland caves as including a number of 'the oldest housebuildings in Iceland'. Many caves are listed in 1709 land registers (Hjarðarson and Glíadóttir 1983, 133), while the description of Bishop Pétursson's miracles in the late twelfth-century Bishopskrónur mentions the collapse of a castle cave (cited in Friðriksson 1994, 25). It is noteworthy that cave use is described as an early date, for the twelfth century is the period of the oldest Icelandic writing. From a north-central European perspective, Adam of Bremen provides the earliest known depiction of Icelandic cave use. In an eleventh-century account, Adam describes the people of Iceland (Thule) thus,

in subterraneis architectura, conventis arcum et cruceg gaudentes ovem pecorum auxi
{They live in underground caves, glad to have roof and food and bed in common with their cattle} (Schramm 1917, 272; Tolkien 1939, 217).

A feature of numerous southern Iceland caves as well as some Westmen Island rock shelters are stylistically distinctive cross carvings that, taken together, form a coherent body of data. Figure 2 illustrates a small selection of this cross sculpture, sculpture discussed more fully elsewhere (Ahrason 2000, 2002).

In figure 2, the three crosses on the left were found in sheltered alcoves of the exposed cliff Heimaklettir, Vestmannaeyjar (Westmen Islands). The largest cross, carved into its own alcove, is found alongside hand- and foot-holds cut into the soft rock. The Westmen Islands lie off the southern Iceland coast, opposite the region in which the artificial caves are found. The two crosses on the right of figure 2 are cut into a soft sandstone wall of Skólahólsfellir...
in mainland southern Iceland. The cave is discussed by Hjartarson and Gísladóttir (1983, 130). Simple incised crosses also decorate the walls of Skollhólahellir and are illustrated in figure 3. On a comparable note, Holt and Guðmundsson (1980, 16-17) studied the cross carvings in the cave Efri-Gegnishöll and cautiously dated the cross forms to the sixth to tenth centuries.

On typological and contextual grounds, specific comparisons have been drawn between the Icelandic expanded terminal crosses and the Argyll expanded terminal type, a style linked to the Columban familia of monastic houses of the seventh and eighth centuries (Campbell 1987, Ahronson 2000, 119). Rock-cut early Christian crosses (Fisher 2001, 12-13), including a number of the Argyll expanded terminal crosses, are found in caves. sites which Campbell (1987, 108-9) suggests as "recreations or respite for anchorites or penitents". Figure 4 illustrates a selection of the comparable expanded terminal crosses from Iona.

The stone carvings of Scotland's West Highlands and Islands have been subjected to academic attention for many years, the most recent contribution providing a sophisticated presentation of comparative data and analysis (Fisher 2001). Fisher (pers. comm.) consulted published drawings of a number of southern Iceland crosses (Hjartarson et al. 1991, 248) and noted the possibility of several styles finding close parallels in early Christian West Scotland, though specialised illustrations are needed before further comment can be made.

It has long been recognised that expanded terminal crosses, incised into stone, were characteristic of the early Church in western Scotland and Ireland (Fisher 2001, 12-13). But
The Crosses of Columban Iceland

The expanded terminal cross finds its home at the earlier end of the period (1987, 112). This dating is consistent with Thomas’s general simple cross-form dates for northern Britain and Henderson’s Class IV Monument dates for Picardie, both mentioned earlier. It is then reasonable, on geographic and temporal grounds, to link this cross form with the Columban family of monastic houses specifically of the seventh and eighth centuries.

As for the general distribution of the form, it appears largely exclusive to Iceland (like the coastal west), western Scotland and both the Western and Northern Isles (Hamlin 1982, 289-93; Campbell 1987, 111). This dating is consistent with a broad terminal cross found on St Ninian’s Isle, Shetland, and dating to c. AD 700 (Thomas 1973, 23) as well as an expanded terminal cross from Papil, Shetland, dated to the mid-eighth century (Thomas 1973, 29).

Folklore and onomastics associate some of southern Iceland’s artificial caves with Papi, Icelandic folk tradition and medieval texts hold that early North Atlantic Christian Gaels, called papar by the Norse, inhabited Iceland previous to Scandinavian-led settlement in the late ninth century. The cave Seljalandshelleir (West Eyjafjarda-district), for example, was known under the alternate ‘child’s name’ of Papathellir, ‘cave of the Papar’ (Halfdanarson, pers. comm.). Papar are described in the earliest documentary sources of the island as being present: ‘liminn vörð var míni á mikið fins ok fær’ (At that time when Iceland was covered with woods between mountains and shore) (IF 1968, 5), or dar Island byggðist of Nõregi [before Iceland was built from Norway] (IF 1968, 31). These Papar, or Vestmenn (‘Westpeople’), find context within the northwards-looking monastic communities of western Scotland, related to the Columban family, and appearing in Gaelic documentary traditions (Tierney 1967, 72-7; Anderson and Anderson 1991; Morris 1991, 65) as well as to a limited degree in the North Atlantic archaeological record (Bourke 1983, 464-468, 1997a, 163-165; Ahronson 2000; Fisher 2001; 2002). The cross sculpture of the Northern and Western Isles of Scotland preserve a record of early Christianity before the Norse presence in the Scottish Islands. Comparable early Christian Faroese carved stones have recently been reassessed by Fisher (2002; forthcoming) and previously discussed by Radford (1962, 165), Kermodc (1931, 373-378), and Arge (1991, 104-105). The southern Iceland cross carvings and caves may be related to the papar, vestmenn, and tró-place names found across the North Atlantic islands from the Hebrides to Iceland. The distribution of papa-names argues for a group known among the Norse as ‘papa’ having some role in the early Norse North Atlantic—at a time when the landscape was being appropriated and ‘named’ by the Norse. Modern folklore and place-names, however, cannot establish a connection between southern Iceland’s artificial caves and Vestmenn communities without further archaeological investigations.

Research at Seljaland (Ahronson 2002, forthcoming a; Smith and Ahronson forthcoming), in the West Eyjafjarda-district, may test this hypothesis by providing a chronology of cave construction and occupation combined with a rich environmental record of land use. By looking at the cross-marked caves of Seljaland (Kverkarhellir and Seljalandshellaier), investigations hope to construct a model for artificial cave use in southern Iceland—thus addressing this long ignored and very substantial body of housebuildings. Initial results are surprising and may date a construction phase of the cave Kverkarhellir to c. AD 800—many decades before the Norse colonisation of Iceland. Preliminary archaeological and environmental fieldwork in 2001 (Ahronson forthcoming a) concentrated along three lines of investigation: initial attempts at dating a construction phase of the cave Kverkarhellir, archaeological survey and development of a new technique for environmental research—the tephrad contour. Fieldwork from 2002 (in prep) also followed three lines: further investigation of cave construction at Kverkarhellir, recording 19 of the larger cross sculptures in the cave group Seljalandshellaier, and refinement of the tephra contour technique. Investigations attempt to answer three questions: When was the cave Kverkarhellir constructed? How did
early human populations interact with the environment?; and Where is the cross sculpture in the cave group Seljalandsheidi best preserved?

Working in the Eyjafjalla district of southern Iceland, we are fortunate to be able to use tephrochronology so extensively. Tephrochronology, the study of volcanic ash deposits, is a powerful dating technique that is particularly applicable to the excellent tephra sequence at Seljalandsheidi. Tephrochronology has been used to support a model of late ninth-century Icelandic settlement: when present, a volcanic ash deposit dated to AD 871±2 lies beneath virtually all early Norse sites in Iceland. 50 cm below the AD 871±2 tephra, excavations in 2002 identified a c. AD 800 deposit of gravelly and fractured palagonite 50-75 cm in thickness. This c. AD 800 deposit is concentrated immediately outside of and slightly downslope from the Kverkfjöllcave mouth. This gravel and fractured palagonite deposit was column sampled and processed in the field as well as in the laboratory and is currently under analysis in Edinburgh and Oxford.

Seljalandsheidi investigations seek to identify a human interaction with the environment. When a deposit of volcanic ash (tephra) falls upon a landscape, it 'photographs' that land surface. The tephra contour exposes volcanic ash deposits of known age to reveal forest and vegetation covers. In 2002, the tephra contour technique was applied to three soil horizons from AD 1500 to AD 871 and revealed surfaces consistent with heavily forested, ungrazed opening land (c. AD 1500), yellowish woodland with slender 5-9 cm trunks and heavy understorey (c. AD 920), as well as an AD 871±2 surface consistent with open grassland. A parallel study by Ashburn et al., of magnetic susceptibility at Seljalandsheidi, confirmed a localized environmental change c. AD 800 first noted by Dugmore and Erskine (1994, 69-73). The magnetic susceptibility readings of this deposit are suggested as a record of the introduction of grazing animals in the post-AD 871 period. Highlighting its potential for study, Ashburn et al. call for further investigation of the AD 800-871 deposit. Ashburn et al. also identified a susceptibility 'spike' which they propose records burning of woodland after AD 920—this is a burning of the young woodland the tephra contour technique 'photographs'.

For this article, a relevant aim of Seljalandsheidi investigations in 2002 was to document with precision the 19 larger crosses of the Seljalandsheidi cave group. High quality photographs, scale drawings and wax rubbings recorded this sculpture in the field. Publication illustrations are currently being prepared by Ian Fisher (formerly of the RCAHMS) and have begun to be studied by Ian Fisher. This work is in progress: the Seljalandsheidi crosses appear to have parallel features with early Christian crosses in Scotland—though conservatism of style in late Scandinavian cross traditions is also a possibility. A further complicating factor is the Gaelic origin of many Scandinavian-influenced settlers in Iceland, well documented by place-names and documentary accounts.

Bearing in mind all our evidence, then, it may be sensible as a provisional measure to follow the stylistic similarity between Campbell's 'Columban' cross-form and the Icelandic examples. Realising this, then, perhaps we should begin to rethink the mechanics of the Norse settlement of Iceland, Faroe, Shetland and Orkney in terms of real contact with early Gaelic Christianity. Consider the example of Bishop Patrick of the Viking-Age Hebridian Church. According to Landnámabók, this bishop, in whose honour Paratískjófur in the Icelandic westfjords is named, gave the late ninth-century Norse settler Órðrughur directions to Esja, near Reykjavik. Upon arrival, Órðrughur kept a promise to Bishop Patrick and erected a church to St Columba (Bf 168-53, Smyth 1984, 163, 171-2; Anderson 1922, 340 n.1, 343-4 n.1). Perhaps the ideas discussed here, coupled with future work, will put this Patrick into a context which we can comfortably understand.
Certainly, in the Norse language the term vikingr always used in the Icelandic meaning a camp or a fortified trading place, so that a viking might mean an armed bay, either for certain ing a 'bay' or a 'creek', so that a viking may have meant someone who kept his ship in a of the period from the end of the eighth century to the end of the eleventh. misleading impression indeed.

Grønlanders, Icelanders, Norwegians, Swedes. It may be all right as a geographical sense—that that it was essentially an intellectual concept, not a place on the map, and furthermore that, if it did exist, we are celebrating it in the wrong year, and under the wrong title: the Viking Millennium International Symposium. 'Millennium International Symposium' it certainly is, but—and I say this with all due difference—'Viking Millennium International Symposium' it is not.

Why should I just like me to go away now, before I get into any worse trouble?! No! All right—but having dug a hole for myself, I shall ignore all the conventional advice, and carry on digging!

So why do I dare to suggest that 'Viking Millennium' is a misnomer? Perhaps I just have a bone in my bonnet about it but, when you think about it, the word 'viking' is all too often misused as a generic term for all Scandinavians—Danes, Faroese, Finns, Greenlanders, Icelanders, Norwegians, Swedes. It may be all right as a means of selling large or cruise holidays, but it is not all right as a serious descriptive term for the northlands of the period from the end of the eighth century to the end of the eleventh. It gives a very misleading impression indeed.

It's little wonder that the term 'viking' is misused—after all, we do not even know for certain what it means! The Old Norse word vikingr may be related to the word vik, meaning a 'bay' or a 'creek', so that a viking may have meant someone who kept his ship in a bay, either for trading or for raiding. I have always found this rather far-fetched, I have to admit. Or it may be related to the Old English word wic, borrowed from the Latin vicus, meaning a camp or a fortified trading place, so that a viking might mean an armed trader. Certainly, in the Norse language the term vikingr came to denote a pirate—that is how it is always used in the Icelandic saga. To the peoples of the rest of Europe of that period, a