Utilising model systems and crop species to discover and characterise novel genes in plant disease resistance

Eleanor Marjorie Gilroy

Doctor of Philosophy

Institute of Cellular & Molecular Biology
The University of Edinburgh
and
Plant Pathogen Interactions Programme
Scottish Crop Research Institute

June 2005
For my parents
Declaration

I hereby declare that the work presented here is my own and has not been submitted in any form for any degree at this or other university.

Eleanor M Gilroy
Table of Contents

Declaration iii
Table of Contents iv
List of Figures viii
List of Tables x
Acknowledgements xi
Publications arising from this project xii
Abstract xiii
Abbreviations xiv

Title

1. Introduction
 1.1. Basic Overview of Plant Defence Responses 1
 1.2. Genetic Strategies for Crop Improvement 3
 1.3. Pathogen Recognition
 1.3.1. Resistance Genes 5
 1.3.2. Avirulence Genes 8
 1.3.3. R-AVR Molecular Interactions 9
 1.3.4. Non-specific Elicitor-Induced Resistance 9
 1.4. Early Signal Transduction Events
 1.4.1. Early Signalling Cascades 10
 1.4.1.1. NDR1 and EDS1 10
 1.4.1.2. RAR1, SGT1 and HSP90 12
 1.4.1.3. Mitogen-activated protein kinases 14
 1.4.2. Ion Fluxes 15
 1.4.2.1. Calcium 15
 1.4.2.2. Potassium 16
 1.4.2.3. Protons 17
 1.4.3. Oxidative Burst 18
 1.4.4. Nitric Oxide 22
 1.4.5. Interplay of ROI and NO 24
 1.5. Hypersensitive Response
 1.5.1. Role of Hypersensitive Response 25
 1.5.2. Conservation of Cell Death Regulators 27
 1.6. Salicylic Acid-dependent Pathway 31
 1.7. Jasmonate and Ethylene
 1.7.1. Jasmonate-dependent Signalling 34
 1.7.2. Ethylene-dependent Signalling 35
 1.8. Signalling-induced changes to the Transcriptome 37
 1.9. Potato and Potato Late Blight 40
 1.10. Project Aims
 1.10.1 Screen for gain-of-function susceptible Arabidopsis mutants 43
 1.10.2 Genes involved in P. infestans-induced HR in potato 44
2. Materials and Methods

2.1. Growth of Arabidopsis thaliana

2.2. Growth of Solanum tuberosum and Nicotiana Species

2.3. Culture of Plant Pathogens

2.3.1. Pseudomonas syringae pv tomato DC3000

2.3.2. Erwinia amylovora 1430 (Apple Fire Blight)

2.3.3. Phytophthora infestans simple/complex race

2.4. Disease Resistance Assays

2.4.1. Virulent and Avirulent P. syringae DC3000

2.4.2. E. amylovora 1430

2.4.3. P. infestans simple/complex race

2.5. Cloning of and Infection with Viral Vectors

2.5.1 Tobacco Rattle Virus (TRV) Constructs

2.5.2. Potato Virus X Constructs

2.5.3. Tobacco Mosaic Virus (TMV) Constructs

2.6. Treatments using Exogenous Signalling Molecules

2.6.1. 1-Aminocyclopropane-carboxylic acid (ACC)

2.6.2. Methyl jasmonate (Me-JA)

2.6.3. Salicylic acid (SA) analogue benzothiadiazole (BTH)

2.7. Histochemical Analyses and Microscopy

2.7.1. Trypan Blue Staining

2.7.2. DAB Staining

2.7.3. GFP Imaging with Scanning Laser Confocal Microscope

2.8. PCR-based Methods

2.8.1. General PCR Method

2.8.2. Thermal Asymmetric Interlaced (TAIL) PCR

2.8.3. Genotyping of NASC and ABRC T-DNA Knockout Mutants

2.8.4. Quantitative Real-Time Reverse Transcriptase PCR

2.8.5. Reverse Transcriptase PCR

2.9. BAC Library Construction

2.10. Southern Blot Analysis

2.10.1. DNA Extraction

2.10.2. DNA Probe Synthesis

2.10.3. Southern Blot

2.11. Northern Blot Analysis

2.11.1. RNA Extraction

2.11.2. Northern Hybridisation

2.11.3. Removal of strippable DNA probe

2.12. Western Blot Analysis

2.13. Cathepsin B Activity

2.13.1. Bradford Assay

2.13.2. Cathepsin B Substrate I - Colorimetric Assay

2.14. Quantification of Anthocyanin

2.15. Homology Searches and Sequence Analyses
3. Isolation and Gene Identification of Susceptible Activation Tagged *Arabidopsis* Mutants

3.1. The Model Plant: *Arabidopsis* 67
3.2. Development of Gain-of-Function Screens 67
3.3. Activation Tagging for Negative Regulators of Disease Resistance 69
3.4. Screen for Mutants Susceptible to Virulent Pst DC3000 70
3.4.1. Heritability of the Activation Tagging Vector 71
3.5. Characterisation of Pst Susceptibility in *ads* Mutants 73
3.5.1. Disease susceptibility to low inoculum of virulent Pst 73
3.5.2. Response of *ads* mutants to high inoculum of Pst DC3000 74
3.5.3. Response of *ads* mutants to avirulent Pst DC3000 (avrB) 75
3.5.4. Hydrogen peroxide accumulation and cell death in *ads* mutants 76
3.5.5. Anthocyanin accumulation in *ads2* mutant 79
3.5.6. Morphological phenotypes of *ads1* and *ads2* mutants 80
3.6. Defence Signalling Pathways in *ads* Mutants 82
3.6.1. SA analogue, Benzothiadiazole (BTH) treatment of *ads* mutants 83
3.6.2. Response of *ads* seedlings to 1-aminocyclopropane-carboxylic acid (ACC) 84
3.6.3. Response of *ads* seedlings to methyl jasmonate (Me-JA) 85
3.7. Inserted pSKI015 Location in *ads1* Mutant 87
3.7.1. Southern blot analysis of *ads1* genomic DNA 87
3.7.2. Screen of BAC library for clones possessing pSKI015 88
3.7.3. Sizing and screening of pSKI015 positive BAC clones 89
3.7.4. BAC-end Sequencing 90
3.7.5. Sub-cloning of BAC 40M10 92
3.8. Insert Location and Gene Identification in *ads2* Mutant 94
3.8.1. TAIL-PCR of homozygous *ads2* genomic DNA 94
3.8.2. Sequencing of TAIL-PCR products and BlastN results 95
3.8.3. Analysis of genomic region surrounding insertion site 96
3.8.4. Analysis of gene expression in pSKI015 insertion region 98
3.9. Discussion 100
3.10. Conclusions 107

4. Role of Cathepsins in the Hypersensitive Response 108
4.1. Role of Caspases in Mammalian PCD 108
4.2. Caspase-Independent PCD 108
4.3. Proteolytic Machinery in Plant HR 109
4.4. Potato Genes Identified in Resistance to *P. infestans* 111
4.4.1. Expression of *CYP1, ADR1* and *SGT1* in *S. tuberosum* cultivars 112
4.4.2. Expression of Cathepsin B in *S. tuberosum* cultivars 115
4.5. CathB and SGT1 Gene Silencing in *N. benthamiana* 117
4.5.1. Silencing and HR phenotype 118
4.5.2. Silencing and Viable Bacterial Numbers 119
4.5.3. Silencing of *SGT1* in *N. benthamiana* 122
4.5.4. Quantification of Cathepsin B Silencing 122
4.5.5. Protein Activity in Silenced Plants 124
4.6. Cathepsin B inhibitors in *N. benthamiana* 125
4.6.1. Inhibitors and HR phenotype 125
5. Development of a Virus-Induced Gene Silencing (VIGS) System for S. tuberosum

5.1. Introduction

5.1.1. Discovery of Gene-Silencing Technology

5.1.2. Mechanism of Gene Silencing

5.1.3. Properties of VIGS Vectors

5.2. Tobacco Rattle Virus (TRV) Vector

5.2.1. TRV Vector

5.2.2. TRV Silencing Symptoms

5.2.3. RT-PCR of TRV RNA2 Coat Protein

5.3. Potato Virus X (PVX) Vector

5.3.1. PVX Constructs

5.3.2. PVX Constructs in N. benthamiana

5.3.3. PVX Constructs in S. tuberosum

5.3.4. Quantification of PDS Transcripts

5.4. Silencing of HR-Related Genes in Potato

5.4.1. PVX Vectors Containing HR-Related Genes

5.4.2. Resistance to P. infestans

5.5. Discussion

5.6. Conclusions

6. General Discussion and Future Work

7. References

Appendix I

Appendix II

Appendix III
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3.1</td>
<td>Classification of R genes by protein domains</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Summary of the key early signal transduction events after R-AVR interaction</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Ion Fluxes at plasma membrane post-pathogen recognition</td>
</tr>
<tr>
<td>1.4.5</td>
<td>Synthesis of ROI and NO post-pathogen recognition</td>
</tr>
<tr>
<td>1.5.2</td>
<td>Basic overview of mammalian caspase cascades in PCD</td>
</tr>
<tr>
<td>1.7</td>
<td>SA-, ET- and JA- dependent defence responses</td>
</tr>
<tr>
<td>1.8</td>
<td>Microarray analysis of Arabidopsis genes induced by varying treatments</td>
</tr>
<tr>
<td>3.2</td>
<td>Activation tagging vector pSKI015 and two possible insertion events</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Growth of low OD suspension of Pst DC3000 in Col-0 and associated mutants</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Growth of high OD suspension of Pst DC3000 in Col-0 and associated mutants</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Growth of Pst DC3000 (avrB) in ads mutants and associated lines</td>
</tr>
<tr>
<td>3.5.4a</td>
<td>Hydrogen peroxide accumulation in whole leaves of ads mutants</td>
</tr>
<tr>
<td>3.5.4b</td>
<td>Microscopic images of hydrogen peroxide accumulation and cell death</td>
</tr>
<tr>
<td>3.5.5</td>
<td>Anthocyanin accumulation in ads2 mutant lines and Col-0</td>
</tr>
<tr>
<td>3.5.6a</td>
<td>Morphological phenotypes of ads1</td>
</tr>
<tr>
<td>3.5.6b</td>
<td>Morphological phenotypes of ads2</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Growth of Pst DC3000 in untreated Col-0 plants and ads mutants and associated lines after BTH treatment</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Root length in response to increasing concentrations of the ethylene donor, ACC</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Root length of ads mutants and Col-0 in response to increasing concentrations of Me-JA</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Southern blot of digested ads1 genomic DNA with 35S enhancer probe</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Screen of BAC library for clones possessing pSKI015 using 35S probe</td>
</tr>
<tr>
<td>3.7.3</td>
<td>Sizing of BAC inserts and Southern to confirm presence of pSKI015</td>
</tr>
<tr>
<td>3.7.4</td>
<td>Candidate pSKI015 containing regions in ads1 mutant</td>
</tr>
<tr>
<td>3.7.5</td>
<td>Regions of homology of 4 contigs with AGI BAC F21A14</td>
</tr>
<tr>
<td>3.8.1</td>
<td>TAIL-PCR derived fragments of the 3 specific 35S enhancer primers and degenerate primer, AD4</td>
</tr>
<tr>
<td>3.8.2</td>
<td>Sequence of TAIL-PCR products and BlastN results</td>
</tr>
<tr>
<td>3.8.3</td>
<td>Gene annotation of At3g05500 and 20 kb of the surrounding genome</td>
</tr>
<tr>
<td>3.8.4</td>
<td>RT-PCR of six genes in region surrounding pSKI015 insertion site</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Expression of candidate genes of interest in S. tuberosum cultivars during infection with P. infestans</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Expression of cathepsin B in compatible and incompatible potato-P. infestans interactions.</td>
</tr>
<tr>
<td>4.5</td>
<td>Regions of SGT1 and CathB coding sequences cloned in anti-sense into TRV RNA 2</td>
</tr>
<tr>
<td>4.5.1</td>
<td>HR phenotype in TRV::GFP, SGT1, and CathB in Nicotiana benthamiana</td>
</tr>
</tbody>
</table>
4.5.2a Pst DC3000 (avrB) and Eam colony counts in TRV::GFP and TRV::Sgt1ts plants

4.5.2b Pst DC3000 (avrB) and Eam colony counts in TRV::GFP and TRV::CathBas plants

4.5.2c Bacterial colony counts in TRV silenced plants 4 dpi

4.5.3 SGT1 protein in TRV::GFP and TRV::SGT1ts N. benthamiana

4.5.4 Quantification of NbCathB transcript levels in TRV::GFP and TRV::CathBts plants

4.5.5 Cathepsin B activity in TRV::GFP and TRV::CathBts N. benthamiana

4.6.1a Optimizing CFU/ml bacterial suspensions with 150 μM of cathepsin inhibitors

4.6.1b Cathepsin B inhibitor repression of HR induced by Eam (10^6 CFU/ml)

4.6.2 Effect of cathepsin B-specific inhibitors on in vivo and in vitro pathogen growth

4.6.3 Cathepsin B protein activity in inhibitor treated N. benthamiana 6 hpi with Eam

4.7 Cleavage of PARP with bovine cathepsin B, inhibitors and protein extracts

4.8 GFP::VirD2 localisation in Eam-induced HR in tobacco

4.9 Cathepsin B insertion lines from ABRC

4.9.1a Examples of genotyping products of PCR of SALK T-DNA insertion lines

4.9.1b Morphology of cathepsin insertion lines

4.9.2a Hydrogen peroxide and dead cell staining post-inoculation with Pst DC3000

4.9.2b Pst DC3000 colony counts in SALK T-DNA insertion lines 4 dpi

4.9.3a Hydrogen peroxide and dead cell staining post-inoculation with Pst DC3000 (avrB)

4.9.3b Pst DC3000 (avrB) colony counts in SALK T-DNA insertion lines 9 dpi

5.2.1 TRV RNA 2 constructs

5.2.2 Nicotiana plant symptoms 10 dpi with TRV RNA 2 constructs

5.2.3 Reverse transcriptase PCR of TRV RNA 2 Coat Protein

5.3.1a PVX vector constructs

5.3.1b PDS cDNA alignments and regions of high homology

5.3.2 Comparison between PVX::PDSas and PVX::PDSap in N. benthamiana

5.3.3 Progression of PDS silencing and PVX CP accumulation in Solanum hosts

5.3.4a Quantification of PDS expression in Stirling and Bintje

5.3.4b Photobleaching phenotype of PDS silencing in Solanum species

5.3.4c Quantification of PVX::PDSas triggered silencing in all hosts

5.4.1 Phenotype of PVX::SGT1ts and PVX::CathBts inoculated Stirling

5.4.2a Infection of silenced S. tuberosum cv Stirling with P. infestans

5.4.2b Infection of silenced S. tuberosum cv Bintje with P. infestans
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3.2</td>
<td>Examples of AVR proteins</td>
<td>8</td>
</tr>
<tr>
<td>1.4.3</td>
<td>Cellular location of ROI-producing enzymes</td>
<td>21</td>
</tr>
<tr>
<td>2.1</td>
<td>Arabidopsis wild type, transgenic and mutant lines</td>
<td>47</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Range and use of optical densities of Pseudomonas syringae</td>
<td>50</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Sequences and primers for TRV cloning</td>
<td>52</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Sequences and primers for pGR106 cloning</td>
<td>53</td>
</tr>
<tr>
<td>2.8.2</td>
<td>Primers used for TAIL-PCR of ads1 and ads2</td>
<td>56</td>
</tr>
<tr>
<td>2.8.3</td>
<td>Gene specific primers designed for T-DNA mutant genotyping</td>
<td>57</td>
</tr>
<tr>
<td>2.8.4</td>
<td>Primers used for Quantitative Real-Time RT-PCR</td>
<td>58</td>
</tr>
<tr>
<td>2.8.5</td>
<td>Primers used for RT-PCR</td>
<td>59</td>
</tr>
<tr>
<td>2.9.1</td>
<td>pSK1015 specific probes used to screen BAC library</td>
<td>60</td>
</tr>
<tr>
<td>2.9.2</td>
<td>pIndigoBAC-5 Sequencing primers (Cambio, Cambridge)</td>
<td>61</td>
</tr>
<tr>
<td>2.11.2</td>
<td>Primers used to synthesize Northern probes</td>
<td>63</td>
</tr>
<tr>
<td>2.15</td>
<td>Web-sites used for sequence search and analysis</td>
<td>66</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Initial segregation analysis on the T2 progeny of susceptible candidates for disease susceptibility to Pst DC3000 and Basta resistance</td>
<td>72</td>
</tr>
<tr>
<td>3.7.4</td>
<td>BlastN of ads1 BACs with AGI BAC database</td>
<td>91</td>
</tr>
<tr>
<td>3.7.5</td>
<td>BlastN of positive subclone contigs against AGI BAC database</td>
<td>93</td>
</tr>
<tr>
<td>3.7.6</td>
<td>Genes present on annotation unit F21A14</td>
<td>94</td>
</tr>
<tr>
<td>3.8.3</td>
<td>Description of protein domains encoded by genes surrounding pSK1015 insertion site in ads2</td>
<td>98</td>
</tr>
<tr>
<td>4.6</td>
<td>Cathepsin B inhibitors</td>
<td>125</td>
</tr>
<tr>
<td>4.9</td>
<td>Insertion loci, SALK seed line number and accession number of flanking sequence</td>
<td>135</td>
</tr>
</tbody>
</table>
Acknowledgements

First of all I would like to begin by thanking Claire Mills and Gary Loake for their encouragement and enthusiasm for plant pathology which inspired me during my undergraduate studies, helping me to decide to begin this PhD. I would also like to thank Gary Loake and Paul Birch for arranging this PhD project, finding the funding and to the BBSRC for providing the financial support. I would like to thank Gary Loake, my PhD supervisor at Edinburgh University, for his help, advice and optimism during the course of this project. A very special “thank you” to my friends and colleagues Angela, Lena, Pedro, Andrea, Hang, Eun Jung and Wook, for their endless emotional support, advice and invaluable assistance, all of which was always given profusely and graciously. All other members of the Loake group deserve thanks for having shown me great kindness, supplying valuable research skills and also making the lab a fun and welcoming place to work. I am very grateful to my supervisor at SCRI, Paul Birch, for his constant friendship, compassion, guidance and faith in my abilities that have greatly attributed to my achievements, built my confidence and kept me sane throughout this PhD. I would also like to thank my second supervisor at SCRI, Christophe Lacomme for his support, camaraderie and expertise without which this thesis would be a shadow of its current appearance. There are so many others that have helped me at SCRI, that I cannot mention each individually, but I am especially indebted to Ingo, Eddie, Katka, Fiona, Trudi, Kara, Stuart, Philip and Ruth for generosity with their time, skills and provisions, making this thesis possible. There are many others, too numerous to mention here, both in the ICMB and SCRI that I wish to thank for their kind assistance over the years. Outside the lab, there are many others, that again cannot all be mentioned, that have provided indispensable companionship, moral support, diversions and entertainment. Extra special thanks must be given to my parents, Alastair, Ingo, Simah, Karen, Lindsay, Leigh, Angela, Lena, Andrea, Pedro, Claudette, Kenny and Stephen. I simply could not have finished this thesis without you!
Publications Arising From This Work

Abstract

This project was a collaboration between groups within the *Arabidopsis* research community and the crop-based research community through which the best resources of both could be utilised to study aspects of resistance to biotrophic pathogens. An objective was to work towards transferring information between models and crop plant.

The model plant, *Arabidopsis* is most amenable for discovering novel genes involved in disease resistance through large-scale mutagenesis and functional screening. Activation tagged *Arabidopsis* lines were screened for disease susceptibility to *Pseudomonas syringae pv tomato* (DC3000). Two mutant lines, designated activated disease susceptibility (*ads*) 1 and *ads*2, were confirmed to be susceptible and candidate gene(s) affected by the activation tag were identified.

On the other hand, functional analysis of genes in crop species, which currently lack sequenced genomes, relies on post-transcriptional gene silencing (PTGS) approaches that require sequence information prior to experimentation. Suppression subtractive hybridisation isolated a cathepsin B EST from *Phytophthora infestans* challenged potato undergoing resistance gene-mediated hypersensitive response (HR). *Nicotiana benthamiana*, a model plant for studying the HR, is a close relative of potato and an established virus-induced gene silencing system. Therefore, *N. benthamiana* was utilised to investigate a potential role for cathepsin B in plant disease resistance. Silencing of cathepsin B resulted in suppression of the *Erwinia amylovora*-induced HR which was confirmed using mammalian cathepsin B inhibitors.

A final aim was the development of a PTGS system in *Solanum tuberosum* to allow functional investigation for current and future defence-related genes identified from models and crop plant species. A PVX-based VIGS system was successfully developed for cultivated, tetraploid potato cultivars and for wild diploid *Solanum* species.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 x 35S</td>
<td>tetramer of CaMV 35S enhancer element</td>
</tr>
<tr>
<td>ACC</td>
<td>1-aminocyclopropane-carboxylic acid</td>
</tr>
<tr>
<td>ADRI</td>
<td>acquired disease resistance</td>
</tr>
<tr>
<td>ads</td>
<td>activated disease susceptibility</td>
</tr>
<tr>
<td>At</td>
<td>Arabidopsis thaliana</td>
</tr>
<tr>
<td>AVR</td>
<td>avirulence</td>
</tr>
<tr>
<td>BAC</td>
<td>bacterial artificial chromosome</td>
</tr>
<tr>
<td>BAR</td>
<td>Basta resistance</td>
</tr>
<tr>
<td>bp</td>
<td>basepairs</td>
</tr>
<tr>
<td>BLAST</td>
<td>basic local alignment search tool</td>
</tr>
<tr>
<td>BTH</td>
<td>benzo(1,2,3) thiadiazole</td>
</tr>
<tr>
<td>CathB</td>
<td>cathepsin B</td>
</tr>
<tr>
<td>CC</td>
<td>coiled coil</td>
</tr>
<tr>
<td>CFU</td>
<td>colony forming units</td>
</tr>
<tr>
<td>CHEF-gel</td>
<td>contour-clamped homogenous electric field gel</td>
</tr>
<tr>
<td>cm</td>
<td>centimetre</td>
</tr>
<tr>
<td>Col-0</td>
<td>Arabidopsis ecotype Columbia</td>
</tr>
<tr>
<td>CP</td>
<td>coat protein</td>
</tr>
<tr>
<td>CYP1</td>
<td>cysteine protease (RD21-like)</td>
</tr>
<tr>
<td>DAB</td>
<td>3,3-diaminobenzidine</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>Eam</td>
<td>Erwinia amylovora</td>
</tr>
<tr>
<td>EST</td>
<td>expressed sequence tag</td>
</tr>
<tr>
<td>ET</td>
<td>ethylene</td>
</tr>
<tr>
<td>GFP</td>
<td>green fluorescent protein</td>
</tr>
<tr>
<td>GM</td>
<td>genetically modified</td>
</tr>
<tr>
<td>GST</td>
<td>glutathione S-transferase</td>
</tr>
<tr>
<td>hpi</td>
<td>hours post-inoculation</td>
</tr>
<tr>
<td>HMW</td>
<td>high molecular weight</td>
</tr>
<tr>
<td>H_{2}O_{2}</td>
<td>hydrogen peroxide</td>
</tr>
<tr>
<td>HR</td>
<td>hypersensitive response</td>
</tr>
<tr>
<td>HSP</td>
<td>heat shock protein</td>
</tr>
<tr>
<td>JA</td>
<td>jasmonic acid</td>
</tr>
<tr>
<td>kb</td>
<td>kilobase</td>
</tr>
<tr>
<td>KB</td>
<td>King's broth</td>
</tr>
<tr>
<td>kDa</td>
<td>kilodaltons</td>
</tr>
<tr>
<td>LRR</td>
<td>leucine rich repeats</td>
</tr>
<tr>
<td>LZ</td>
<td>leucine zipper</td>
</tr>
<tr>
<td>µg</td>
<td>micrograms</td>
</tr>
<tr>
<td>µl</td>
<td>microlitres</td>
</tr>
<tr>
<td>MAPK</td>
<td>mitogen activated protein kinase</td>
</tr>
<tr>
<td>Me-JA</td>
<td>methyl jasmonate</td>
</tr>
<tr>
<td>MES</td>
<td>2-[N-Morpholino]ethanesulfonic acid</td>
</tr>
<tr>
<td>MS</td>
<td>Murashige and Skoog media</td>
</tr>
<tr>
<td>nahG</td>
<td>salicylate hydroxylase gene</td>
</tr>
<tr>
<td>NB</td>
<td>Nicotiana benthamiana</td>
</tr>
</tbody>
</table>
NBS nucleotide binding site
nm nanometre
NO nitric oxide
OD optical density
PCD programmed cell death
PCR Polymerase Chain Reaction
PDS phytoene desaturase
PR pathogenesis-related
Pst DC3000 Pseudomonas syringae pv tomato
PTGS post transcriptional gene silencing
PVX potato virus X
QTL quantitative trait locus
R gene resistance gene
RD21 responsive to dehydration 21
REF rubber elongation factor
RNA ribonucleic acid
ROIs Reactive oxygen intermediates
rpm revolutions per minute
RT-PCR reverse transcription polymerase chain reaction
SA salicylic acid
SAR systemic acquired resistance
SDW sterile distilled water
SGS SGT1-specific
SGT1 suppressor of G2 allele of SKP1
SSH suppression subtractive hybridisation
St Solanum tuberosum
TAIL-PCR Thermal asymmetric interlaced PCR
TAIR The Arabidopsis Information Resource
TIR Toll/interleukin 1 receptor
TMV tobacco mosaic virus
TPR tetratricopeptide
TRV tobacco rattle virus
VIGS virus-induced gene silencing
1. Introduction

1.1. Basic Overview of Plant Defence Responses

One of the most aggressive and costly battles between agriculture and nature is the continuous arms race of pests and pathogens versus resistant plant varieties and new pesticides. This constant selective pressure perpetuates or increases the reliance of agriculture on intensely utilised and potentially damaging chemical treatments. Attempts to engineer durable resistance in crop plants have mainly failed due to the rate at which pathogens can evolve to escape recognition, complexity of the intersecting disease-resistance pathways and the sheer diversity of pathogen-host genotypic compatibility (Stuiver and Custers, 2001).

Many plant defences are pre-formed barriers that provide permanent protection against pathogen entry such as the cell wall, cuticle and root pericycle (Keen, 1992). Other plant defences are inducible and are only activated during pathogen infection e.g. enhanced strengthening of existing barriers, production of anti-fungal proteins and synthesis of anti-microbial agents (Delaney et al., 1994). Plants scan their inter- and intra-cellular environment using an early warning system that includes a large battery of extremely polymorphic resistance (R) gene products (Martin, 1999; Stahl et al., 1999). An invading plant pathogen can be detected by releasing avirulence (Avr) gene products, through a direct or indirect interaction with corresponding plant R gene products (Alvarez, 2000). Comparisons between known plant R gene products have revealed some widely conserved sequences, including leucine rich repeats (LRRs), nucleotide-binding sites (NBS) and serine-threonine kinase protein domains that are characteristic components of signalling pathways (Heath et al., 2000a). In spite of this, no links between structure of R genes and classes of pathogen for which they convey resistance have been uncovered (Heath et al., 2000a). However, this specific gene-for-gene interaction (Flor, 1956) between pathogen and host is associated with the induction of plant defence gene expression and activation of a genetically programmed cell death
mechanism known as the hypersensitive response (HR) at the site of infection (Lam et al., 2001).

A rapid HR is triggered in response to an almost immediate burst of signalling molecules such as reactive oxygen intermediates (ROIs), Nitric Oxide and Calcium in combination with ion fluxes across plasma membranes. A clearly defined area of cell death develops to restrict an avirulent biotrophic pathogen to the site of attempted infection by destroying its nutrient source before it has energy to proliferate (Dong, 1998). This key signalling event in response to non-host and avirulent pathogens normally concludes between 24 and 48 hours post-inoculation. Experimental data from genetically controlled cell suicide (apoptosis) in animal models has provided plant scientists with an indication of the types of genes likely to be involved in the plant HR e.g. cysteine proteases (del Pozo and Lam, 1998; D'Silva et al., 1998; Avrova et al., 1999) and reactive oxygen intermediate (ROIs) producing mammalian neutrophil NADPH oxidase, gp91-phox (Grant and Loake, 2000; Torres et al., 2002; Yoshioka et al., 2003). However, specific examples of functionally conserved genes in plant and animal programmed cell death (PCD) have been rare and many of the associated components of these conserved proteins have not been identified in plants.

Following induction of the HR, a secondary, uniform and persistent increase of basal defence levels is established and can be described as primed for future attacks by any pathogens. This type of resistance is referred to as systemic acquired resistance (SAR) and establishes around five days post-infection. This defence response is dependent on the signalling molecule, salicylic acid (SA) which is necessary to induced expression of a number of SAR marker genes known as pathogenesis-related (PR) genes. In this state, the plant may induce HR to otherwise virulent pathogens.

There are also SA- and therefore HR-independent pathways that are required to induce defence responses against necrotrophic pathogens and/or wounding. An HR response is not necessary or effective against wounding and HR is actually suppressed when the plant can recognize necrotrophs. These pathways are characterised by requirement of
Chapter 1

the signalling molecules jasmonic acid (JA) and ethylene (ET) and induced expression of an alternative subset of PR genes (Dong, 1998).

The plant therefore relies on early and informative pathogen recognition to tailor its most effective defence strategies to the type of pathogen encountered using a range of molecular and physiological processes; a number are shared with other eukaryotes but the majority are plant-specific. Scientists strive to understand this complex web of signals and proteins and I will attempt to explain and discuss the current knowledge of plant disease resistance in more detail throughout the following sections of this introduction.

1.2. Genetic Strategies for Crop Improvement

At present, consumers in the developed world are more aware of the damage caused to our environment through current agricultural approaches but remain suspicious of scientific advances targeted at alleviating these practices. The main concerns surrounding genetically modified (GM) crops include the toxicity of novel or natural defence gene products, the increased vigour and invasiveness of crops and the potential for gene flow from crops to native flora and fauna (Dale et al., 2002; Smyth et al., 2002). The true environmental impact of GM crops cannot be generalized as it varies depending on crop species, the engineered trait and the presence of sexually compatible relatives (Smyth et al., 2002). Since the "Green Revolution", plant-breeding programs have successfully produced crops with higher productivity and superior adaptations to the demands of their environment (Lee, 1998; Hoisington, 1999). Plant breeding shall remain an essential component of crop production systems in the future. However, disadvantages such as increasing genetic uniformity and decreasing genetic diversity in modern cultivars and hybrids threaten yields in the long term (Lee, 1998). Modifying specific gene targets in established crops, rather than selective plant breeding, can introduce traits of interest without associated detrimental inbreeding defects or linked inheritance of undesirable phenotypes (Cook, 1998). Once effective transgene containment strategies are broadly
applicable, genetic modification will provide a more efficient and accurate technique of engineering solutions to the demands of agriculture (Messing and Llaca, 1998; Daniell, 2002).

A direct or indirect interaction between the plant’s \(R \) gene product and the pathogen’s \(Avr \) gene product initially triggers the HR. Introgressing known \(R \) genes into crops to harness the vigour of the HR against the most common or devastating pathogens has lacked durability in the field as pathogens quickly evolve by accumulating mutations or shedding genes to escape recognition (Ellis et al., 2000). Although rare, durable \(R \) genes have been identified e.g. \(Xa21 \) in rice confers resistance to all isolates of \(Xanthomonas oryzae \) (Rommens and Kishore, 2000). Nevertheless, effective solutions may involve fine-tuning downstream branches of defence signal transduction pathways usually triggered by an R-AVR interaction i.e. systemic acquired resistance (SAR) that results in broad-spectrum resistance throughout the plant (Rommens and Kishore, 2000; Stuiver and Custers, 2001). Altering complex defence pathways can have positive and negative effects e.g. the natural mutant \(mlo \) in barley confers broad-spectrum resistance to powdery mildew (\(Blumeria graminis \) f.sp. \(hordei \)) but concomitantly increases susceptibility to another fungal pathogen, \(Magnaporthe grisea \) (Stuiver and Custers, 2001; Brown, 2002). In addition, activating large branches of normally inducible defence pathways to be constitutively active can have significantly detrimental effects e.g. application of the synthetic SAR elicitor benzothiadiazole (BTH) results in decreased plant vigour and grain yields (Heil and Baldwin, 2002; Heil and Bostock, 2002). To generate broad-spectrum resistance to the pathogen species that cause most harm, thorough dissection and comprehension of defence signalling networks is required to effectively manipulate key signalling regulators and the pathways they control.

1.3. Pathogen Recognition

The most common outcome of most plant-microbe interactions is incompatibility, inducing resistance which can be manifested at several stages of the interaction
(Peterhansel et al., 1997). Firstly, preformed structural barriers e.g. pectin (Rogers et al., 2000) or constitutively produced toxic compounds e.g. phytoanticipins (VanEtten et al., 1994) may prevent pathogen infection. Secondly, metabolites manufactured by the plant can be insufficient for supporting pathogen growth (Hammond-Kosack and Jones, 1996). The third and most common scenario is known as non-host resistance when an entire plant species conveys resistance, usually including an HR, to a specific pathogen (Kamoun, 2001; Mysore and Ryu, 2004). Finally, if foreign proteins are recognized by any one of the plethora of R proteins, the plant actively defends itself by deploying an inducible range of chemicals, proteins and physiological processes tailored to overcome the type of pathogen encountered (Heath, 2000a).

1.3.1. Resistance Genes

Since the first R gene was characterised ten years ago (Jones et al., 1994), many more genes that convey resistance to races within a pathogen species that possess a corresponding Avr gene have been characterised and classified to reveal six major classes (Figure 1.3.1). R gene classes are distinguished by the presence or absence of widely conserved sequences including leucine rich repeats (LRRs), nucleotide-binding sites (NBS) and serine-threonine kinase domains (Heath, 2000a). R genes are unevenly distributed throughout the plant genomes studied and family members are often found as clusters (Jones, 2001) and are thought to have resulted from gene duplication and diversifying selection (Holub, 2001). For example, resistance to *Peronospora parasitica* 4 ($RPP4$) maps to the resistance to *Peronospora parasitica* 5 ($RPP5$) locus where there are seven other $RPP5$ homologues (Dixon et al., 1998; van der Biezen, 2002). The $RPPI$ locus is another example, where three tightly linked NBS-LRRs, each with a unique N-terminus, convey resistance to different isolates of *P. parasitica* suggesting they recognise different avirulence determinants (Botella et al., 1998). In addition, quantitative (also referred to as field) resistance in potatoes has been mapped to R gene clusters suggesting that quantitative trait loci (QTL) responsible for polygenic resistance may encode R gene relatives (Gebhardt and Valkonen, 2001).
The leucine-rich repeats (LRR) domain is found in four classes of R genes and has been shown to be responsible for pathogen recognition synonymous with mammalian Toll/interleukin1 receptor (TIR)-LRR proteins which interact with specific ligands through protein-protein interactions at the LRR domain (Belkhadir et al., 2004). A clear example of plant LRR domain function is described in Bryan et al., (2000), when a single amino acid change in the LRR of rice R protein, Pi-ta, resulted in the loss of resistance to *Magnaporthe grisea* possessing Avr-Pita. The sub-cellular compartment in which the LRR is situated generally corresponds with the location targeted by the corresponding AVR protein (Bonas and Lahaye, 2002). The R proteins that detect Type III delivered AVR proteins typically possess cytoplasmic LRRs e.g. RPM1 (resistance to *P. syringae pv maculicola* 1) which recognises *P. syringae* AvrRpml (Grant et al., 2000). The LRR domains that detect non-invasive fungi are generally extracellular e.g. Tomato *Cladosporium fulvum* 9 (CF-9) perceives Avr9 released from *C. fulvum* (Jones et al., 1994; Hammond-Kasack et al., 1998).

The nucleotide binding site (NBS) domain possesses three conserved kinase motifs in common with animal ATP- and GTP-binding proteins and a C-terminal ARC domain (apoptosis, R gene products and CED-4) which, as the name suggests, is conserved in apoptosis regulators and could control similar functions as a protein-binding molecular switch (Figure 1.5.2) (Belkhadir et al., 2004, Li et al., 1997a). An alternative supposition is that the NBS may act as a phosphoprotein based on homology with prokaryotic His-Asp phosphoproteins and evidence that RPP5 interacts with At-RSH1 (RelA/SpoT homolog, involved in bacterial (p)ppGpp mediated stress signalling), in a yeast-2-hybrid screen (van der Biezen et al., 2000). The NBS-LRR proteins are subdivided into 2 groups according to N-terminal features, those with coiled coil (CC) domains and those with cytoplasmic Toll/interleukin1 receptor (TIR) domains (Bonas and Lahaye, 2002). The exact functions of CC and TIR domains remains unclear, although evidence suggests that these domains interact with signalling partners that cause conformational changes that positively or negatively regulate the NBS-LRR and subsequent defence pathways. For example, most CC-NBS-LRRs require NDR1 (non-race specific disease resistance) for signal transduction and RPM1’s coiled coil domain
was shown to bind the regulator protein, RIN4 (RPM1-interacting Protein 4) (Takahashi et al., 2003). RIN4 has been shown to positively regulate RPM1-mediated resistance on one hand yet also be a negative regulator of basal defence responses on the other (Mackey et al., 2002). The majority of TIR-NBS-LRRs are dependent on EDS1 (enhanced disease susceptibility 1) and PAD4 for downstream pathway induction (Falk et al., 1999; Jirage, 1999).

Two classes of \(R \) gene have neither NBS nor LRR domains. Nevertheless, evidence suggests that they utilise the same pathways as LRR-containing proteins (Fluhr, 2001). The protein kinase PTO is dependent on NBS-LRR protein PRF for \(R \)-gene signalling (Bogdanove and Martin, 2000) and, surprisingly, RPW8 (resistance to powdery mildew 8) protein (with elongated CC domains) is EDS1-dependent implying it has TIR-like function (Dangl and Jones, 2001). In spite the amount of experimental and sequence data, no links between structure of \(R \) gene products and classes of pathogen to which they convey resistance have been uncovered; highly homologous potato genes \(Rx \) and \(Gpa2 \), for example, convey virus and nematode resistances respectively (Van der Vossen et al., 2000).

Figure 1.3.1: Classification of \(R \) genes by protein domains.
Example of each and number in *A. thaliana* genome. LRR, Leucine-rich repeats; Kin, Protein kinase; eLRR, extracellular LRR; Pto, *Pseudomonas* tomato resistance 1; NBS, Nucleotide-binding site; TIR, Toll and Interleukin-1 receptor; CC, Coiled coil; SA:CC, signal anchored coiled coil. Adapted from Dangl and Jones (2001) and Jones (2001).
1.3.2. Avirulence Genes

By and large, plant pathogens require varying degrees of specialisation to avoid recognition and/or to elude inducible defence responses initiated against them by particular plant species, determining their host ranges. Whatever the infection strategy, pathogens secrete or deliver a diverse range of proteins evolved to evade or manipulate their preferred host’s defence responses (White et al., 2000). However, these proteins or products of their activities can act as bait for R proteins, branding them avirulence (AVR) proteins and consequently enforcing a tight restriction on each pathogen’s genotypic compatibility. In spite of this, pathogens maintain some Avr genes which trigger resistance in a wide range of potential hosts, indicating that these proteins may be essential for the infection process (e.g. Bean Dwarf Mosaic Virus nuclear shuttle protein, BV1) (Garrido-Ramirez et al., 2000) or substantially enhance virulence in susceptible plants (e.g. AvrBs2) (Wichmann and Bergelson et al., 2004). One exception to this rule is AvrBs1 which carries a fitness cost to Xanthomonas axonopodis pv. vesicatoria (Wichmann and Bergelson et al., 2004). AVR proteins are diverse in structure and often unlike any other proteins in databases, making elucidation of their molecular function more challenging. Table 1.3.2 includes some examples of AVR proteins with known functions.

Table 1.3.2: Examples of AVR proteins. Examples of AVR proteins from a range of plant pathogens and their role in pathogenicity. Adapted from Abramovitch and Martin, 2004

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Protein</th>
<th>Structure</th>
<th>Targets</th>
<th>Phenotype</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. syringae pv. tomato DC3000</td>
<td>AvrPtoB</td>
<td>Unknown</td>
<td>HR</td>
<td>Suppresses PCD in plants and yeast</td>
<td>Abramovitch et al., 2003</td>
</tr>
<tr>
<td></td>
<td>AvrPto</td>
<td>3 helix</td>
<td>Cell wall-based defence</td>
<td>Inhibits papillae formation; alters expression of cell wall-associated genes</td>
<td>Hauck et al., 2003</td>
</tr>
<tr>
<td></td>
<td>AvrRpt2</td>
<td>Cysteine protease</td>
<td>PR gene expression</td>
<td>Suppresses PR gene expression; susceptibility to Pst DC3000; RIN4 disappearance</td>
<td>Lim and Kunkel, 2004; Chen et al., 2004; Mackey et al., 2003</td>
</tr>
<tr>
<td>S. lycopersici</td>
<td>Tomatinase</td>
<td>Glycosyl Hydrolase</td>
<td>Preformed antimicrobials and HR</td>
<td>Degradates saponin causing HR suppression</td>
<td>Bouarab et al., 2002</td>
</tr>
<tr>
<td>P. sojae</td>
<td>Avrlb</td>
<td>secreted protein</td>
<td>unknown</td>
<td>unknown</td>
<td>Shan et al., 2004</td>
</tr>
<tr>
<td>Potato Virus Y</td>
<td>NlaPro</td>
<td>Nuclear inclusion protease</td>
<td>Process host protein target</td>
<td>Protease activity essential for triggering resistance</td>
<td>Mestre et al., 2003; Rouis et al., 2001</td>
</tr>
</tbody>
</table>
1.3.3. R-AVR Molecular Interactions

Since the acceptance of Flor's gene-for-gene hypothesis (Flor, 1971), the shortfall in the expected number of examples supporting direct R-AVR interactions, like AvrPto-Pto (Bogdanove and Martin, 2000), was originally thought disappointing. However, the majority of experimental evidence highlighted similar but more sophisticated molecular interactions, leading to the "Guard Hypothesis", which describes R proteins not only scanning for specific foreign proteins but also aberrant forms of the plant's own protein complexes (Dangi and Jones, 2001). These aberrant complexes are formed when AVR proteins attempt to modify key host housekeeping or signalling proteins for their own means (Marathe and Dinesh-Kumar, 2003). The most intensively studied example of this centres around the negative regulator, RIN4 (Mackey et al., 2002). It has been shown that some P. syringae Type III effectors target RIN4 for post-translational modification, possibly enhancing its ability to suppress basal defence responses (Mackey et al., 2002). The NBS-LRR proteins RPM1, directly, and RPS2, indirectly, interact with RIN4, thus detecting its phosphorylation or degradation by AvrRpm1, AvrRpt2 and AvrB (Mackey et al., 2003). In addition, the molecular chaperone HSP90 (heat-shock protein 90) has been shown to associate with and modulate RPM1 (Hubert et al., 2003) and to be essential for RPS2 (resistance to P. syringae 2)-mediated resistance, consequently linking an SGT1/RAR1/HSP90 complex and R gene-mediated resistance to P. syringae in Arabidopsis (Takahashi et al., 2003) (discussed in more detail in 1.4.1.2). If this level of complexity is assumed for most R-AVR molecular relationships, it may explain the frustrating speed at which other plant-pathogen interactions are being understood in terms of their interacting transcriptomes and proteosomes i.e. potato and P. infestans (Birch et al., 2003).

1.3.4. Non-specific Elicitor-Induced Resistance

The term elicitor is currently used to refer to pathogen-derived molecules which are either directly or indirectly released during an infection that induce any type of plant defence response, including phytoalexin accumulation (Keen, 1975; Keller et al., 1999). Non-specific elicitors can trigger a non-specific form of plant resistance (Reglinski et
al., 1994), which may encompass some of the R gene triggered resistance responses (Mysore and Ryu, 2004). For example, the ROI burst and subsequent HR are linked with both host and non-host resistance (although the timing differs) to various fungi and oomycetes (Able et al., 2003; Vleeshouwers et al., 2000; Kamoun et al., 1999). Elicitors can be divided into two main groups depending on whether the elicitors originate from the pathogen or the plant (Ebel, 1998). Exogenous elicitors are either pathogen-derived structural components, also known as pathogen-associated molecular patterns (PAMPs) (e.g. flagellin) or secreted proteins (e.g. harpins) released during colonisation of the plant (Zipfel et al., 2004; Mysore and Ryu, 2004). Endogenous compounds are plant-derived degradation products of pathogen enzymes e.g. pectic polysaccharides and oligogalacturonides (Cote and Hahn, 1994). These non-specific elicitors are thought to be major inducers of non-host resistance and unlikely to centre on any one, universal elicitor as the ultimate warning of pathogen invasion for all non-host species (Ebel, 1998). Nevertheless, elicitor-induced defence responses, sharing strong similarities with those elicited by R genes, allows the plant to act rapidly against colonisation by a pathogen (Kamoun et al., 1999).

1.4. Early Signal Transduction Events

The induction of the appropriate defence pathways is thought to be controlled, at least in part, by the structure of the R protein involved in pathogen recognition (Loake, 2001). Initially, however, a series of common cellular responses is rapidly triggered, including calcium influxes, alkalinization of extracellular space, protein kinase activation, generation of reactive oxygen intermediates (ROIs) and nitric oxide (NO) production (Numberger and Scheel, 2001). In spite of this, events that link pathogen recognition to defence gene expression are still poorly understood and therefore a general model cannot explain downstream signal transduction and resistance mechanisms for every plant-pathogen interaction. Nonetheless, despite the variety and intricacy of pathogen recognition events, many common plant responses have been identified and shall be discussed below.
1.4.1. Early Signalling Cascades

1.4.1.1. NDR1 and EDS1

Following recognition of biotrophic pathogens, there are at least two mutually exclusive parallel defence-signalling pathways in *Arabidopsis* that are activated by NBS-LRR genes distinguished by their TIR or CC domains (van der Biezen *et al.*, 2002). Mutations in *EDS1* block resistance mediated by TIR-NBS-LRR proteins e.g. RPP2 (resistance to *Peronospora parasitica*) and RPS4 but not CC-NBS-LRR proteins e.g. RPM1 (Aarts *et al.*, 1998). *EDS1* encodes a protein with sequence similarity to the catalytic domains of eukaryotic lipases that generate lipid signals (Loake, 2001). It is required for runaway cell death in *lds1* plants with a dysfunctional HR but not the associated ROI production (Rustérucci *et al.*, 2001). EDS1 is required for SA accumulation, although applications of SA cause up-regulation of *EDS1* mRNA transcripts placing it upstream of SA production in SAR and also part of SA’s potentiating feedback loop (Glazebrook, 2001). PAD4 (phytoalexin-deficient 4) is another lipase-like protein required for TIR-NBS-LRR mediated resistance, although a functional EDS1 protein is required for *PAD4* mRNA accumulation (Feys and Parker, 2000). Conversely a mutation in *PAD4* only partially compromises *EDS1* expression (Feys and Parker, 2000). In addition, EDS1 and PAD4 have been shown to directly interact in a yeast 2-hybrid screen in both healthy and challenged cells (Feys *et al.*, 2001). Although exact roles remain to be determined, EDS1 and PAD4 may hydrolyse lipids to pass the *R* gene-mediated signal onto the SA-dependent pathway (Feys *et al.*, 2001).

NDR1 (non-race specific disease resistance) is a small protein with 2 transmembrane domains that is necessary for signal transduction mediated by CC-NBS-LRR proteins e.g. RPM1 and regulation of HR (Aarts *et al.*, 1998). Superoxide also fails to accumulate in *P. syringae* challenged *ndr1* mutant plants (Loake, 2001). These mutants lose race-specific resistance to strains of *P. syringae* and *P. parasitica* but not resistance mediated through EDS1 (Feys and Parker, 2000). *R* genes have been identified that are independent of both EDS1 and NDR1 e.g. *RPP7*, *RPP8* and *RPP13*, indicating an additional pathway may exist (Glazebrook, 2001; Bittner-Eddy and Beynon, 2001). CC-
NBS-LRR proteins were initially found to require an additional protein, PBS2 (avrPphB susceptible 2) however, it is also required by the EDS1-dependent pathway, revealing a potential convergence point (van der Biezen et al., 2002). Positional cloning has since revealed this gene to be AtRAR1 (Arabidopsis required for Mla12 resistance) (Tornero et al., 2002).

1.4.1.2. RAR1, SGT1 and HSP90

The protein, RAR1 was identified in a barley mutant screen in which the mutant displayed an impaired ROI burst and HR when challenged with powdery mildew fungus (Freialdenhoven et al., 1994). Further studies of AtRAR1 in Arabidopsis have not shown it to be affiliated with any one R protein class or essential for EDS1-, PAD4- or NDR-dependent mechanisms (Muskett et al., 2002; Liu et al., 2002). RAR1, characterised by two Zn$^{2+}$ binding domains known as a CHORD (cysteine and histidine-rich domain), is predicted to be cytosolic (Shirasu et al., 1999) and possesses a CHORD and SGT1 specific (CS) domain (Muskett et al., 2002). Interestingly, loss of function mutations in RAR1 resulted in the loss of detectable NBS-LRR protein, RPM1 and may therefore be required for its stability (Tornero et al., 2002; Hubert et al., 2003).

The protein SGT1 (suppressor of G2 allele of SKP1) was originally identified in yeast as a SKP1 interacting protein which placed it in the SKP1/Cdc53/F-box protein (SCF) ubiquitin ligase complex (Kitagawa et al., 1999). SGT1 protein contains a tetratricopeptide repeats domain, two variable domains, CS domain and a SGT1-specific domain (Shirasu et al., 1999). In Arabidopsis, the SGT1 homologues, SGT1a and SGT1b, were identified as RAR1-interacting proteins using a yeast-2-hybrid system and can both complement yeast sgt1 mutants (Azevedo et al., 2002). This subsequently links components of the kinetochore assembly and ubiquitin ligase complex with disease resistance (Azevedo et al., 2002; Peart et al., 2002; Steensgaard et al., 2004). It was characterised further in several independent studies, utilising virus-induced gene silencing and Arabidopsis knock out mutants, highlighting SGT1 as a key molecular component of R gene-mediated and non-host resistance (Austin et al., 2002; Tör et al., 2002; Liu et al., 2002; Peart et al., 2002). Interestingly, silencing of Nicotiana SKP1
compromised \(N \) gene-mediated resistance to TMV (Liu et al., 2002). In addition, yeast SGT1 was found to interact with and to be phosphorylated by the calcium-binding protein, calcyclin, at its C-terminal domain which suggests that plant SGT1 activity may possibly be regulated by calcium signalling (Nowotny et al., 2003).

HSP90 is an ATP-dependent chaperone protein and is one of the most abundant proteins in eukaryotic cells (1-2 % in non-stressed conditions) (Sreedhar et al., 2004). From studies in mammalian systems, HSP90 has been demonstrated to interact with more than 100 proteins involved in cell proliferation, differentiation and apoptosis (Pratt et al., 2004) including tyrosine e.g. Weel (Aligue et al., 1994) and serine-threonine protein kinases e.g. MAPKs (Piatelli et al., 2002). In Arabidopsis, HSP90 interacts with many NBS-LRR proteins, including RPS2, RPM1 and N (Takahashi et al., 2003; Hubert et al., 2003; Liu et al., 2004b). Like RAR1, HSP90 also appears to have an important role in stabilizing some NBS-LRR proteins as shown for Rx (Lu et al., 2003). In addition, HSP90 mutations have been shown to affect different \(R \)-gene mediated pathways e.g. RPS2 and RPM1 and therefore HSP90's role in plant disease resistance has been predicted to be more than a general protein chaperone (Takahashi et al., 2003; Lu et al., 2003). HSP90 has also been implicated in pathogen signalling as demonstrated by its mRNA up-regulation in the pathogen \(P. \) infestans when \textit{in planta} (Avrova et al., 2003).

Interactions between these three proteins were confirmed when HSP90 was shown to interact with both RAR1 and SGT1 (Peart et al., 2002). SGT1 interacts directly with HSP90 through its Tetratricopeptide repeat (TPR) domain and RAR1 through its CHORD II domain (Takahashi et al., 2003). In addition, yeast-2-hybrid analysis highlighted a strong interaction between SGT1 and RAR1 (Azevedo et al., 2002) predicted to be through the CS domains that they both share (Shirasu and Schulze-Lefert, 2003). However, RAR1 and SGT1 are not dependent on each other for function in all cases (Shirasu and Schulze-Lefert, 2003), for example, SGT1 has a broader role in non-host disease resistance (Peart et al., 2002). Therefore, HSP90 is thought to stabilize \(R \) proteins, RAR1 is recruited in some cases and then SGT1 subsequently modulates downstream pathways (Takahashi et al., 2003).
1.4.1.3. Mitogen-activated protein kinases

Mitogen-activated protein kinases (MAPKs) are highly conserved proteins involved in sensing a wide array of external stimuli, subsequently activating the appropriate downstream molecular responses by controlling transcriptional events, regulating enzyme activities and phosphorylation of cytoskeleton elements (Champion et al., 2004). MAPKs are mostly arranged into cascades of at least three divisions, as the Arabidopsis genome reveals twenty MAPKs, ten MAPK kinases (MAPKKs) genes, eighty MAPKK kinases (MAPKKks) (AG!, 2000; Asai et al., 2002; Jonak et al., 2002).

In plant defence, MAPKs have shown to be activated by signalling molecules such as SA and NO (Xing et al., 2002). However, MAPK’s have also been shown to modify responses such as the oxidative burst (Grant et al., 2000), activation of PR gene transcription factors (Ekengren et al., 2003; Kroj et al., 2003), activation of the WRKY family of transcription factors (Kim and Zhang, 2004) and triggering cell death in susceptible P. syringae infection (del Pozo et al., 2004). MAPKs are thought to be convergent points of signalling downstream of widely varying triggers, supported by Nicotiana MAPKs, wound-inducible protein kinase (WIPK) and salicylic acid-induced protein kinase (SIPK), which are activated by oomycete elicitin and the race-specific interactions involving Avr9-Cf-9 and TMV-N (Romeis et al., 1999; Zhang and Klessig, 1998; Zhang et al., 1998). In addition, the Arabidopsis homologues MAPK3 and MAPK6 are activated by flagellin as part of the non-specific elicitor-induced cascade (Asai et al., 2002). Moreover, a tyrosine phosphatase, which is reversibly inactivated by H$_2$O$_2$, correlated with the activity of MAPK6, provides a link between the ubiquitous production of ROIs after elicitor recognition and the MAPK signalling cascade (Gupta and Luan, 2003). Conversely, the MAPKK, SIMKK, has been shown to bind and activate more than one MAPK, suggesting that MAPK cascades could also provide divergence points in signalling pathways (Cardinale et al., 2002). MAPK’s probable role in other defence pathways was highlighted by the mutant, AtMPK4 (Arabidopsis mitogen-activated protein kinase 4), as it was revealed to be deficient in JA-dependent gene induction and displayed increased resistance to susceptible pathogens and may therefore be a suppressor of early biotrophic defence responses (Petersen et al., 2000).
The complexity within MAPK cascades, the crosstalk with alternative signalling mechanisms, in combination with the extent of downstream functions they perform, has almost certainly provided scientists with a huge challenge for the future.

Figure 1.4.1: Summary of the key early signal transduction events after R-AVR interaction. AVR, Avirulent protein; TIR, TIR-NBS-LRR resistance protein; CC, CC-NBS-LRR resistance protein.

1.4.2. Ion Fluxes

1.4.2.1. Calcium

Influxes of extracellular calcium have been shown in response to biotic and abiotic stress (Pei *et al.*, 2000; Lee and Rudd, 2002). Production of ROIs, MAPK activation and defence gene activation have all been shown to be compromised when cytosolic Ca$^{2+}$ levels are artificially reduced (Scheel *et al.*, 1998). *Arabidopsis* encodes 34 calcium-dependent serine/threonine protein kinases (CDPKs) that are thought to be activated by phosphorylation which allows them to sense calcium influxes caused by a variety of stress-inducing conditions (Romeis, 2000). Almost instantaneously after R protein...
activation, plasma membrane calcium channels are activated, causing cytosolic calcium concentrations to increase in a biphasic manner (Gelli and Blumwald, 1997; Grant and Mansfield, 1999; Lecourieux et al., 2002). R proteins, such as RPM1 and Cf-9, are proposed to link pathogen recognition and activation of calcium channels due to their membrane association (Grant and Mansfield, 1999). Moreover, calcium signalling may also activate NADPH oxidase through binding to unique EF motifs in the N-terminal region of Arabidopsis gp91phox homologue (AtRBOHA) (Grant and Loake, 2000; Kadota et al., 2004).

CDPKs are one of the largest families of calcium binding proteins and are presumably involved in a diverse range of signalling roles, as the Arabidopsis genome contains thirty-four CDPKs (Lee and Rudd, 2002). The activation of the protein NtCDPK1 has been demonstrated upon non-race-specific elicitation with chitin fragments (Yoon et al., 1999). Moreover, the gene, NtCDPK2, is activated following Avr9 elicitation of Cf-9 carrying tobacco (Romeis et al., 2000) and, through studies of this interaction, some CDPKs have been shown to be activated by phosphorylation and crucial for induction of the HR (Romeis et al., 2000; Romeis et al., 2001). Many CDPKs are membrane-associated as predicted by their myristoylation motif e.g. NtCDPK2 and are thought to be activated by phosphorylation (Romeis et al., 2001). The investigation of the Arabidopsis orthologue of NtCdpk2 revealed its interaction with 14-3-3 proteins and activation of a tonoplast chloride channel, providing some evidence of downstream targets (Romeis et al., 2001). Current evidence suggests that CDPKs are predicted to signal together with, but are not dependent on, MAPKs for HR induction (Romeis, 2001). Nevertheless, many protein targets of calcium and CDPKs leave their roles in signalling cascades to be elucidated.

1.4.2.2. Potassium

Potassium (K⁺) channels have been identified in an assortment of subcellular membranes, most commonly in the vacuole, and are shown to be involved in a variety of mechanisms such as stomatal regulation and ion uptake (Czempinski et al., 2002). Interestingly, Huang et al., (1997) showed that inward K⁺ transport could be regulated
by structural changes of actin filaments in guard cells. In addition, the efflux of K^+ is shown to be necessary for progression of mammalian apoptosis (Bortner et al., 1997). A net loss of K^+ resulted from inhibition of inward K^+ channels after five minutes during the Avr9/Cf-9 interaction and increased activity of the outward K^+ channels in tobacco (Blatt et al., 1999). In addition, Avr9 induced K^+ channel activities could be blocked by inhibitors of serine/threonine kinases highlighting a role of protein phosphorylation in K^+-related signal transduction (Blatt et al., 1999).

1.4.2.3. Protons
Proton translocation across membranes, resulting in alkalisation of the apoplast, has been implicated in plant defence by a number of studies. Over-expression of an active form of bacterial H^+-ATPase resulted in spontaneous lesions and PR gene expression in unchallenged tobacco (Mittler et al., 1995; Pontier et al., 2002). In support of this observation, the activator of the plasma membrane H^+-ATPase, fusicoccin, increased the number of HR-cells in a compatible barley-powdery mildew interaction (Zhou et al., 2000). The opposite phenotype was observed using ion channel antagonists which prevented ROI production and defence gene activation in parsley cells (Jabs et al., 1997). In addition, 14-3-3 proteins, involved in signalling and protein import are associated with the membrane H^+-ATPase (Baunsgaard et al., 1998; Roberts, 2000). The resulting alkalisation of the apoplast of epidermal cells has been suggested to trigger production of H_2O_2 in mesophyll cells which subsequently induces cell death of the epidermal cells (Zhou et al., 2000).
1.4.3. Oxidative Burst

The rapid generation of ROIs in response to infection or pathogen elicitor treatment is known as the oxidative burst and is a key feature of inducible defence responses (Bolwell et al., 2002). Generation of ROIs was first observed during an incompatible P. infestans-potato interaction but not during a compatible interaction (Doke et al., 1983). The oxidative burst comprises a biphasic production of reactive oxygen intermediates (ROIs), such as superoxide (O$_2^-$), hydroxyl radical (OH$^-$) and hydrogen peroxide (H$_2$O$_2$) following (O$_2^-$) dismutation, at the site of attempted pathogen infection (Hammond-Kosack and Jones, 1996; Scheel, 1998; Grant and Loake, 2000). The first peak of ROI production occurs between five minutes and one hour after biotic or abiotic stress and, following pathogen recognition, a second larger and sustained race-specific burst (Shirasu and Schulze-Lefert, 2000). The rapidity of ROI production suggests that it is independent of transcription and most probably regulated by secondary messengers such as Ca$^{2+}$ and H$^+$/K$^+$ and by proteins such as kinases and G-proteins (Yang and Yang, 1997; Cessna and Low, 2001). During abiotic stress, studies of ROI generation have
been mainly concentrated on mitochondria, chloroplasts and peroxisomes, whereas studies of biotic stress have mainly focused on activities at the plasma membrane and cell wall (Robertson et al., 1995; Lamb and Dixon, 1997; Asada, 1999; del Rio et al., 2002). The general sources of ROI are summarised in Table 1.4.3. Initially, the cytotoxicity of ROIs were assumed to function by causing irreparable damage to DNA, proteins and lipids of the invading pathogen and the infected plant cells (del Rio, 2002). However, further research into the oxidative burst has revealed their more intriguing signalling properties (Overmyer et al., 2003).

Superoxide (O$_2^-$) is itself cytotoxic but has a short half-life and cannot cross membranes and therefore its major functions are thought to be as a signal for HR induction and as the substrate for other ROI generating reactions. The major source of superoxide is thought to be at the plasma membrane by an NADPH oxidase complex (O$_2$ + NADPH \rightarrow O$_2^-$ + NADP$^+$ + H$^+$) analogous to that of mammalian neutrophils (Grant and Loake, 2000). In the mammalian system, two of five complex components are membrane-bound (gp91phox, p22phox) and three are initially cytosolic (p47phox, p40phox and p67phox), which associate into the full complex after phosphorylation, aided by a small GTP-binding protein, p21nc2 (Lal et al., 1999; Diekmann et al., 1994). However, NADPH oxidase is only partially conserved in plants as homologues of the cytosolic components p47phox, p40phox and p67phox have not been identified in the Arabidopsis genome (AGI, 2000). Furthermore, the eight Arabidopsis gp91phox homologues contain two calcium binding domains (EFs), not present in mammalian NADPH oxidase, suggesting that cytoplasmic Ca$^{2+}$ is a potential regulator of the plant oxidative burst (AGI, 2000; Keller et al., 1998). However, a p21nc homologue has been identified in rice (OsRac1) that binds GTP and causes constitutive production of ROI and spontaneous lesions (Shirasu and Schulze-Lefert, 2000). In spite of the focus on NADPH oxidase, the presence of O$_2^-$-generating proteins in peroxisomes, cell-wall-bound H$_2$O$_2$-generating peroxidases and amine oxidases in the apoplast imply that there are multiple sources of ROI (Allan and Flur, 1997; del Rio et al., 2002; Kawano, 2003). In Arabidopsis and potato O$_2^-$ accumulation is detectable and has been directly related to cell death signalling (Jabs et al., 1996; Doke et al., 1996). However, in tobacco and tomato, there is no detectable
production of O_2^{-}, although the use of diphenylene iodonium (an inhibitor of O_2^{-} production) greatly reduced H_2O_2 accumulation and HR lesion development (Schraudner et al., 1998; Wohlgemuth et al., 2002). Nevertheless, whether O_2^{-} or H_2O_2 accumulation is most responsible for PCD signalling remains unclear (Overmyer et al., 2003).

Hydrogen peroxide (H_2O_2) is produced by the dismutation of O_2^{-} by the extracellular superoxide dismutase (SOD) (Scheel, 1998) and, unlike O_2^{-}, can diffuse into the cell through membranes and its transport from cell-to-cell may even be facilitated by water channels (Henzler and Steudle 2000). Although H_2O_2 is also directly toxic to pathogens, experimental evidence insinuates that it has more significant roles in triggering the HR (Dat et al., 2003), inducing gene expression (Vandenabeele et al., 2003; Hein et al., 2004) and initiating strengthening modifications to physical barriers (Grant and Loake, 2000; Neill et al., 2002). Analysis of *Arabidopsis* *AtRbohD* and *AtRbohF* knockouts confirmed that NADPH oxidase is required for H_2O_2 generation in the apoplast during incompatible interactions (Torres et al., 2002). In addition, blocking H_2O_2 production using SOD inhibitors was shown to compromise HR-related cell death (Beers and McDowell, 2001). However, treating *Arabidopsis* suspension cells with H_2O_2 increased subsequent H_2O_2 production by mitochondria (Tiwari et al., 2002). In another study, prolonged activation of MAPKs in *Arabidopsis* resulted in generation of intracellular H_2O_2 preceding cell death (Ren et al., 2002). In addition, a recently identified *Arabidopsis* serine/threonine kinase (OXII) has been shown to be activated by H_2O_2 and required for full activation of MAPK3 and MAPK6 after treatment with ROIs or elicitor (Rentel et al., 2004). It is therefore possible that increases in intracellular H_2O_2 concentrations may activate MAPKs that can stimulate the mitochondria to produce more H_2O_2 in order to amplify PCD (Neill et al., 2002). While Ca^{2+} binding domains were found within NADPH oxidase, there is also evidence that H_2O_2 activates Ca^{2+} channels in the plasma membrane (Neill et al., 2002) and therefore the chronological order of such transient signalling events is proving difficult to elucidate.
Tight control of these powerfully cytotoxic compounds is required to avoid unnecessary damage by ROI signalling and, therefore, plants possess a number of antioxidant mechanisms, both enzymatic and non-enzymatic, to remove ROI from the cell (Mittler, 2002). Plant cells require molecules that scavenge low levels of ROIs used for signalling and also proteins that can detoxify excess ROIs (Mittler, 2002). The H$_2$O$_2$ scavenging ascorbate peroxidase and glutathione peroxidase found in most subcellular compartments, together with the peroxisome-specific catalase, are thought to be the most important enzymes for controlling levels of ROIs (Mittler, 2002). In addition, antioxidants such as ascorbic acid and glutathione are fundamental in defence against ROIs and NO causing mutants deficient in their accumulation to be hypersensitive to stress-inducing conditions (Conklin et al., 1996; Creissen et al., 1999). Although high concentrations of H$_2$O$_2$ induce cell death and potentiate its own production, lower H$_2$O$_2$ concentrations have been shown to activate antioxidant enzymes e.g. glutathione S-transferase (GST), via a MAPK signalling cascade at low concentrations (Desikan et al., 1999; Baxter-Burrell et al., 2002). Dependence on concentration for downstream signalling may be responsible for the clear delineation of dead cells from healthy cells characteristic of HR. Many of the signalling pathways regulated by H$_2$O$_2$ production have also been shown to require nitric oxide (NO), especially for PCD (Delledonne et
There seems to be a delicate equilibrium between ROIs, NO and other intermediates which interact with each other and/or activate other signalling cascades for induction of the appropriate defence responses (Laloi et al., 2004). The literature reviewed in this section has been summarised below in Figure 1.4.3.

1.4.4. Nitric Oxide

Nitric oxide (NO) is a gas that has been well characterized as a mammalian signalling molecule with a range of physiological effects such as immune regulation (Wendehenne et al., 2001). NO production has been reported during plant growth and metabolism, biotic and abiotic stresses and shown to induce defence responses (Delledonne et al., 1998; Beligni and Lamattina, 2000). NO can be produced non-enzymatically from NO$_2^-$ by a reducing agents such as ascorbate under acidic conditions or by carotenoids in the presence of light (Wojtaszek, 2000). In addition, NO can be synthesised enzymatically by nitrate reductase (NR) which is a key enzyme that catalyses the reduction of nitrite to NO from the previous product of nitrogen assimilation also from NR (Dean and Harper, 1988). NO production, akin to ROI production, is biphasic, producing peaks of accumulation at 1-2 hrs and again 3-6 hrs post-inoculation with \textit{P. syringae} (Delledonne et al., 1998; Clarke et al., 2000). In mammals the main source of NO exists as three isoforms of NO synthase in different tissue types, neural (nNOS), endothelial (eNOS) and in macrophages (iNOS) (Bogdan et al., 2000). The activity of nNOS and eNOS has been shown to be regulated by the availability of intracellular free Ca$^{2+}$ (Nathan and Xie, 1994). The source of NO in plant defence responses has been debated for many years, accompanied by determined searches for plant orthologues of mammalian NOS sustained by experimental evidence which suggested that an NOS-like enzyme may exist. For example, the cryptogein-triggered NO burst in tobacco was shown to be sensitive to NOS inhibitors and an NOS-like enzyme was detected in the matrix of most plastids by antibodies raised to the mammalian NOS (del Rio et al., 2002). Recent identification of NOS-like enzymes in tobacco, tomato and \textit{Arabidopsis} reveal that plants, like animals, deploy enzymes with varied NO-producing roles (Chandok et al., 2003; Guo et al., 2003). Also, S-nitrosoglutathione (GSNO), which is central to signal
transduction and host defences, is thought to act as an NO reservoir which releases NO after reaction with Cu$^{2+}$ (Gorren et al., 1996; Mayer and Andrew, 1998; Liu et al., 2004a). In animals, GSNO has been shown to have a pro-apoptotic function depending on the concentration and cell type involved (Messmer et al., 1995). Glutathione-dependent formaldehyde dehydrogenase (GS-FDH) has high affinity for GSNO, regulating GSNO and subsequently NO levels in the cell (Liu et al., 2001).

The cellular concentration of NO in mammals, akin to H$_2$O$_2$, has differential effects on downstream signalling pathways, high concentrations being pro-apoptotic and low concentrations being anti-apoptotic (Bogdan et al., 2000). In mammals, NO protects against apoptosis by inhibiting the subfamily of cysteine proteases, caspases (Kim et al., 1997; Li et al., 1997b). In particular, NO was found to S-nitrosylate the active site of one of the major executing caspases, caspase-3 (Rossig, et al., 1999). In plants, there is accumulating evidence supporting presence of enzymes with caspase-like activity and the inhibition of NO-induced cell death by treatment of *Arabidopsis* with caspase-1 inhibitor (del Pozo and Lam, 1998; Clarke et al., 2000; Chichkova et al., 2004). In addition, NO has been found to strongly induce the expression of the *Arabidopsis* cysteine protease AtCYS1 consequently blocking PCD. This provides evidence for NO’s role as a cell death regulator rather than being directly cytotoxic (Beligni et al., 2002).

The pro-apoptotic effect of high concentrations of NO in mammalian macrophages has been well documented (Nathan et al., 1994; Messmer et al., 1996). In macrophages it is apparent that NO triggers cell death by inducing cytochrome C release from the mitochondrial membrane (Brookes et al., 2000) and also reversibly inhibits ATP-generating complexes at the mitochondrial membrane (Drapier et al., 1988). Interestingly, the treatment of carrot cells with SNP led to a reduction in respiration, a decrease in membrane potential and release of cytochrome C, signifying a similar role for NO in plants (Zottini et al., 2002). Like H$_2$O$_2$, NO activates a MAPK that transduces extracellular signals that modulate target gene expression through a signalling cascade, although blocking this MAPK with a specific inhibitor was not found to block NO-induced cell death (Clarke et al., 2000). Additionally, NO was found to increase in cGMP levels that may induce defence gene expression e.g. *PAL1* (Dumer et al., 1998).
However, cGMP treatment alone is not sufficient to induce HR (Wendehenne et al., 2001).

1.4.5. Interplay of ROI and NO

NO and ROIs appear to interact in cells to act in both synergy and antagonism. NO acts synergistically with ROI to potentiate PCD by their reacting together to produce the highly toxic peroxynitrite (ONOO'), a known mediator of cell injury in many animal cells e.g. macrophages (Lin et al., 1995). In addition, the treatment of Arabidopsis leaves with ONOO' scavenger was found to reduce HR triggered by avirulent P. syringae, suggesting that ONOO' is also required for PCD in plants (Alamillo and Garcia-Olmedo, 2001). However, exposure of soybean suspension cells to high concentrations of an ONOO' donor did not induce cell death (Delledonne et al., 2001). An alternative action of NO during plant PCD is its synergistic interaction with H2O2. In animals, NO's interaction with H2O2 has not be found to be directly cytotoxic thus far, although the hydroxyl radical and singlet oxygen products are both highly reactive and cytotoxic (Delledonne et al., 2003). Other experiments have provided evidence that high levels of NO are not toxic unless accompanied by high concentrations of H2O2, suggestive of PCD only being induced by the balanced presence of NO and H2O2 (Clarke et al., 2000; Delledonne et al., 2001). Conversely, NO production visualised using an NO stain appeared at approximately the same time as PCD in Pst DC3000 and therefore NO may not be required for cell death but could contribute to the HR cell-to-cell signal (Zhang et al., 2003). The literature discussed above is summarised in Figure 1.4.5

The correlation between inducible bursts of reactive oxygen and nitrogen species and the subsequent HR is evident, although their exact cellular functions and consequences of their interactions remain undefined. However, the conservation of many key mechanisms with the animal kingdom stimulates intense investigation in this area, which has been shown to be continuously fruitful.
Chapter 1

1.5. Hypersensitive Response

1.5.1. Role of Hypersensitive Response

The HR is almost entirely associated with R gene-triggered defence responses and is thought to restrict an avirulent biotrophic pathogen to the site of attempted infection by destroying its nutrient source before it has energy to proliferate (Zhang et al., 2004). The HR is commonly associated with downstream defence gene expression, distinguishing it from developmental and senescence-related PCD (Heath, 2000a). Nonetheless, an Arabidopsis defence, no death (dnd1) mutant, fails to establish an HR in response to avirulent P. syringae but retains downstream defence gene expression and restriction of avirulent pathogen growth (Yu et al., 1998; Clough et al., 2000). This suggests that the HR is a subsidiary form of protection against avirulent pathogens rather
than being sufficient or necessary (Yu et al., 1998). The HR maybe linked to avirulent pathogen recognition because it consists of bursts of cytotoxic signalling molecules that injure both host and pathogen cells causing a necrotic form of cell death. However, the HR has been shown to be a form of PCD which requires the cell to be metabolically and transcriptionally active to proceed and is therefore not a form of necrotic cell death (Greenberg and Yao, 2004). This is supported by the discovery of Arabidopsis mutants that possess a vigorous and falsely initiating HR, verifying that HR is genetically controlled (Delaney, 1997). These mutated genes are commonly classified as either lesion stimulating disease response (lsd) or accelerated cell death (acd) mutants (Weymann et al., 1995; Delaney, 1997). LSD1 has been shown to be required for the activation of CuZn superoxide dismutases in response to SA accumulation (Kliebenstein, et al., 1999). Thus the runaway cell death phenotype in isd1 may be manifested by accumulation of \(\mathrm{O}_2^- \) to a critical threshold concentration, due to a reduction in CuZnSOD activity.

The HR is generally associated with R gene-dependent resistance but is also triggered during non-specific resistance (Baker et al., 1997; Heath, 2000b; Dangl and Jones, 2001). HR in pathogen-specific elicitation is not rigorously linked to defence gene expression and typically HR-inducible defence responses can occur in the absence of PCD (Heath, 2000b). Rx-dependent resistance in potato, with Rx coding for a LZ-NBS-LRR type resistance gene against potato virus X (PVX) is one example of R gene-mediated resistance that is not associated with the HR and is referred to as extreme resistance (Shirasu and Schulze-Lefert, 2000). Barley plants, expressing Mlg-based resistance toward B. graminis f.sp hordei represents a second example for R gene-mediated resistance not dependent on HR to arrest the spread of the fungus (Görg et al., 1993). Contrary to abundant evidence demonstrating that the HR is a vital component in protection against biotrophic pathogens, recent data suggests that PCD may in fact enhance the ability of necrotrophic pathogens to colonise plant tissue. Growth of the necrotrophic fungal pathogen Botrytis cinerea increased when co-inoculated with an avirulent strain of the biotrophic bacterium P. syringae. This effect was not observed when the fungus was co-inoculated with hrp \(^*\) strains that are unable to elicit an HR
Moreover, *B. cinerea* growth was also suppressed in the HR-deficient *dndl* (Yu *et al.*, 1998), suggesting that cell death may be beneficial to necrotrophs that may molecularly encourage the HR because dead plant tissue is the preferred nutrient source (Govrin & Levine, 2000).

The HR also plays an early warning role for the rest of the plant by releasing signals such as H$_2$O$_2$ that prime adjacent cells to respond to pathogen elicitors, inducing an increase in antioxidant gene expression such as *GST1* and also through production of salicylic acid (SA) that activates systemic resistance (SAR) throughout the entire plant (Heath, 2000a,b).

1.5.2. Conservation of Cell Death Regulators

Mechanisms of animal PCD have been studied extensively for many years. However, the first connection between the PCD mechanism and the HR in plants was made relatively recently and only studied in greater detail upon the discovery of *Arabidopsis* lesion mimic mutants (Slusarenko and Longland, 1986; Dietrich *et al.*, 1994; Greenberg, 2005). Experimental evidence from mammalian PCD has provided an indication of the types of processes and proteins expected to be involved in the HR (Dickman *et al.*, 2001). Mitochondria are of particular importance during mammalian PCD (Lam *et al.*, 2001). An alternative oxidase (AOX) that produces ROIs from electron-transfer intermediates has been identified in plant mitochondria and transgenic plant cells lacking this protein have increased susceptibility to mitochondria-dependent and —independent PCD (Robson and Vanlerberghe, 2002). In both systems, DNA laddering, caspase-like proteolytic activity and cytochrome C release from the mitochondria have been described (Richberg *et al.*, 1998). However, HR is additionally associated with autofluorescence of cell walls and cell contents, halt in cytoplasmic streaming, loss of cortical microtubules and the appearance of particles in the vacuole (Heath, 2000a). In both systems, PCD is triggered by a variety of stress-inducing conditions or receptor activation events which induce production of death-promoting stimuli such as ROIs (Jabs, 1999). Whether ROIs are the primary trigger or secondary mediator of PCD, a cell’s commitment to apoptosis in both systems has been shown to depend on the extent...
of accumulation or inability to scavenge or detoxify ROIs (Levine et al., 1994; Verhaegen et al., 1995; Jabs et al., 1996). Phospholipase D (PLD) derived product, phosphatidic acid (PA) has been shown to activate the O_2^{-} generating neutrophil NADPH oxidase (Gomez-Cambronero and Keire, 1998). In parallel, depletion of the most prevalent isoform of PLD in *Arabidopsis* resulted in decreased levels of PA and O_2^{-} in leaf extracts (Sang et al., 2001). In addition, PLD has been identified in rice in response to fungal infection and has also been shown to be activated in tomato and potato (Dyer et al., 1996). Interestingly, phospholipase-like enzymes, EDS1 and PAD4, which are required for TIR-NBS-LRR-related activation of the oxidative burst, may modulate activity of NADPH oxidase (Yun et al., 2003).

In mammalian PCD, activation of "death receptors" such as the CED-4/Apaf-1 family activate pro-apoptotic members of the Bcl-2 protein family which contains both pro- and anti-apoptotic members (Cecconi, 1999). The anti-apoptotic protein, Bcl-2, was demonstrated to inhibit PCD via protection from oxidative stress and from necrotic cell death triggered by glutathione depletion (Kane et al., 1993). Anti-apoptotic members have also been shown to suppress Apaf-1 activity, stabilizing the permeability transition pores in the mitochondrial membrane preventing leakage of the cell death activator cytochrome C into the cytosol (Joza et al., 2002). As a general rule during mammalian apoptosis, cytochrome C leakage stimulates the formation of the mitochondrial "apoptosome" which consists of cytochrome C, APAF1 and the initiator caspase, caspase-9, inducing the cascade that activates downstream effector caspases (Joza et al., 2002) (Figure 1.5.2). Other mammalian initiator caspases (caspase-1, -4 and -5) have been linked to apoptosis although their prime function is the regulation of inflammation (Martinon and Tschopp, 2004). In plants, cytochrome C release from the mitochondria in to the cytoplasm has been connected to the HR and used as a marker of plant PCD (Gilroy et al., under submission; Greenberg and Yao, 2004). Intriguingly, transgenic tobacco plants expressing the anti-apoptotic human *Bcl-2* and *Bcl-xl*, nematode *CED-9* or baculovirus *Op-IAP* exhibit resistance to several necrotrrophic fungal pathogens (Dickman et al., 2001). In addition, Bax, a death-promoting member of the Bcl-2 family analogously triggers cell death in tobacco plants implying that there may be conserved
molecular interactors (Lacomme and Santa Cruz, 1999). Furthermore, *Arabidopsis* and barley homologs of the anti-apoptotic Bax inhibitor-1 (*BI-1*) have been identified and shown not only to impair the HR but also Bax-induced apoptosis in a human cell line (Kawai-Yamanda *et al.*, 2001; Huckelhoven *et al.*, 2003; Bolduc *et al.*, 2003). In *Arabidopsis* and tobacco, *BI-1* has been characterised further revealing its suppression of HR induced by endogenous plant signalling molecules, H$_2$O$_2$ and SA (Kawai-Yamada *et al.*, 2004).

Bcl-2 family members have been proposed to be the link between cell death receptors such as Apaf-1 and caspases that proteolytically dismantle the cell through the apoptosome (Newton and Strasser, 1998). Interestingly, Apaf-1 shares an NB-ARC domain with NBS-LRR proteins e.g. RPS2 and RPS5 (Shirasu and Schulze-Lefert, 2000). Although the C-terminus of Apaf-1 contains a caspase recruitment domain (CARD) in the region where the NBS-LRR CC or TIR domains are found, a particular CED-4/Apaf-1 family member, CARD4, also possesses a strikingly similar LRR domain in addition to the NB-ARC domain, strengthening the possibility of similar functions (Shirasu and Schulze-Lefert, 2000). Furthermore, a tomato cysteine protease (Rcr3) has been shown to be required for function of the R protein, Cf-2 (Rooney *et al.*, 2005; Krüger *et al.*, 2002). Fifteen caspases (C14 family of cysteine proteases) have been identified in mammals which, upon recruitment by pro-apoptotic Bcl-2 proteins, form a cell death initiation cascade. However, sequence homologues of caspases are not found in plants (Lam *et al.*, 2001). Nevertheless, the *Arabidopsis* genome contains 488 protease genes and so it seems inevitable that one or more could be responsible for the caspase-like activity that has been identified during the HR through biochemical analysis (van der Hoorn and Jones, 2004). In addition, caspase-like cleavage of the virD2 protein has been demonstrated during the HR to TMV in tobacco which could be blocked by a caspase inhibitor (Chichkova *et al.*, 2004). In tomato, cysteine proteases with distant homology to caspases, deemed metacaspases, have been identified and are rapidly up-regulated during necrotrophic fungal infection, although not during chemical-induced PCD (Hoeberichts *et al.*, 2003). However, there are two major classes of plant proteases that have been shown to be involved in the HR, subtilisin-like (S8) and papain-like (C1)
(Beers et al., 2004). For example, the serine protease inhibitor, AEBSF, has been shown to obstruct cell death in response to H₂O₂ (Levine et al., 1994) and cystatin (a cysteine protease inhibitor) impedes the HR in response to H₂O₂ and many avirulent Pst strains (D'Silva et al., 1998; Solomon et al., 1999). Furthermore, a cysteine protease, cathepsin B, involved in caspase-independent lysosomal cell death has been shown to be up-regulated early during HR induced by P. infestans in potato (Stoka et al., 2001; Avrova et al., 2004). It is also interesting to note that some biotrophic pathogens e.g. P. infestans and P. syringae have been shown to secrete serine and cysteine protease inhibitors highlighting the importance of proteases in defence and the evolutionary pressure for biotrophic pathogens to evade the HR (Tian et al., 2004; van der Hoorn and Jones, 2004).

Inhibiting cysteine proteases also affects downstream expression of specific protease inhibitor proteins that are also regulated by intracellular signals such as SA, ET and jasmonic acid (JA) (Rojo et al., 2004). In addition, mutants with perturbed HR are often unable to induce appropriate downstream defence gene expression. Moreover, the HR suppressing JA- and ET- pathways indicates that other signalling molecules are also intricately involved in defence activation (Solomon et al., 1999). The HR can therefore be summarized as a genetically controlled dismantling of the cell, dependent on an undetermined balance of R gene triggered signals, which vary between plant-parasite systems (Lam et al., 1999).
Figure 1.5.2: Basic overview of mammalian caspase cascades in PCD. The extrinsic pathway involves the sensing of ligands by death receptors, that subsequently activates initiator caspases-8 and -10 which then activate caspase-6, caspase-7 and caspase-8. Effector caspases activate or repress cellular target proteins which results in proteolytic dismantling of the cell. An intrinsic cell death pathway involves the Bax-induced release of cytochrome C from mitochondria, which activates APAF-1 which interacts with and activates initiator caspase-9. Caspase-9, like caspase-8 and caspase-10 activates the effector caspases which dismantle the cell. Lysosomal proteases, granzyme B and calpain have also been shown to activate Bax through Bid. Antiapoptotic protein Bcl-2 suppresses the activation of Bax. In addition, a parallel TNF-α-induced antiapoptotic pathway has been identified that involves NF-κB and is thought to exist in equilibrium with pro-apoptotic pathways. Perception of TNF-α by the cell is likened to a life-death switch that involves a plethora of interacting proteins which can tip the balance. Figure constructed as a summary of relevant literature summarised in 1.5.2 and 4.1.

1.6. Salicylic Acid-dependent Pathway

SA accumulation was originally measured long after the oxidative burst and presumed to be exclusively for induction of defence gene activation that is characteristic of SAR (Dempsey et al., 1999). However, a small transient rise in SA was observed in tobacco plants which overlapped with the second phase of the oxidative burst and occurred prior to the sustained increase in SA (Draper, 1997). Therefore, SA is hypothesised to amplify the oxidative burst, which in turn may drive further SA production in a feed-
back loop that may potentiate the HR in a manner termed the oxidative cell death (OCD) cycle (Draper, 1997; Van Camp et al., 1998). Intriguingly, depletion of SA causes a breakdown of \(R\) gene-dependent resistance, affecting the ability of the plant to induce an effective HR. Inoculation of \(nahG\) Arabidopsis (transgenic containing bacterial SA metabolising gene, salicylate hydroxylase, or \(nahG\)) with an incompatible isolate of \(P.\) parasitica, leads to the development of severe disease symptoms, whereas wild-type plants are unaffected (Delaney et al. 1994). In addition, SA has been shown to inhibit a catalase responsible for the metabolism of \(H_2O_2\), subsequently amplifying ROI-induced responses (Delaney, 1997; Lamb and Dixon, 1997). The treatment of soybean cells with 50 \(\mu M\) SA demonstrated further that SA may regulate accumulation of \(H_2O_2\), induce expression of HR marker genes phenylalanine ammonia-lyase (\(PAL\)) and glutathione S-transferase (\(GST\)), consequently amplifying HR-related cell death following infection by \(P.\) syringae pv glycinae (Shirasu et al., 1997).

Systemic acquired resistance (SAR) is an inducible defence response that induces the expression of characteristic defence genes (\(PR\) genes) in the immediate vicinity of the infection site to provide broad spectrum resistance. Concurrently, an unidentified systemic signal is released that establishes, via gene expression, the primed state of defence in uninfected tissues. The importance of SA in this pathway has been shown by studying the block in \(PR\) gene expression in transgenic \(NahG\) tobacco plants (Friedrich et al., 1995). However, grafting experiments have shown that SA is not the primary mobile signal exported to uninfected tissues to establish SAR (Vernooij et al., 1994). Dissection of genetic pathways establishing SAR has mainly relied on phenotypic and molecular analysis of Arabidopsis mutants (Buell, 1998). In addition to their proposed role in local, \(R\) gene-mediated resistance, the oxidative burst and cognate redox signalling may also play a pivotal function in the establishment of systemic acquired resistance (SAR). This was highlighted by an elegant series of experiments in transgenic tobacco plants which contained an anti-sense catalase gene (Chamnongpol et al., 1998). Exposure of these plants to high light levels for two days resulted in visible necrosis and induced PR proteins in light shielded local and systemic leaf tissues. In contrast, exposure to high light levels for 4 hours induced PR proteins in local light
shielded but not in systemic tissue, in the absence of necrosis. Thus the ROI-mediated activation of SAR genes could be uncoupled from cell death in local tissues. However, local ROI-mediated cell death was necessary for the accumulation of PR proteins in systemic tissue.

A large number of SA signalling mutants have been isolated and characterised to date (Lorrain et al., 2003). Among the initial mutants isolated, cpr1 (constitutive pathogen related) plants exhibited a dwarf phenotype, constitutive expression of several SA-inducible defence genes and enhanced disease resistance. However, the gene responsible has not been identified (Bowling et al., 1994).

Downstream of EDS1 and NDR1 (section 1.4.1.1), SID1 and SID2 (SA-induction deficient) genes control SA biosynthesis by encoding isochorismate synthase (ICS) that synthesises SA from chorismate (Wildermuth et al., 2001). In Arabidopsis, sid2 mutants could not induce SAR when challenged with an avirulent pathogen (Glazebrook, 2001). The nprl (non-exresser of PR genes) mutant was identified as a mutant in 1997 because it failed to express genes fused to an SA-sensitive promoter after SA treatment (Cao et al., 1997). Unusually, NPR1 is constitutively expressed and only increases two-fold upon treatment with SA (Dong, 2004). The Arabidopsis nprl mutant can accumulate SA, although it cannot establish SAR and is therefore unable to express PR genes and does not inhibit the growth of avirulent or virulent pathogen strains e.g. P. syringae. NPR1 has been shown to localise in the nucleus in response to elevated levels of SA (Glazebrook, 2001) and uses its ankyrin repeats to bind TGA transcription factors that, once activated, induce expression of genes containing GNT35 promoters such as GST and PR-1 (Niggeweg et al., 2000). NPR1 is therefore presumed to have a role in amplifying PR gene expression (Glazebrook, 2001). Mutant alleles of nprl (around 12) have been repeatedly isolated from independent loss-of-function Arabidopsis screens, indicating that additional genes responding to SA may be embryonic lethal or functionally redundant (Cao et al., 1997). NPR1 can be repressed indirectly by SNI1 (suppressor of NPR1 inducible) as homozygous sni1 nprl-1 double mutants display a nearly wild type phenotype, rescuing SA induction of PR-1 and resistance to biotrophic...
pathogens. This reveals the presence of other SA-inducible, NPR1-independent genes or pathways (Delaney, 2000). On the other hand, WRKY transcription factors, that bind W-boxes, have been shown to repress the SA-inducible gene PR-I (Lebel et al., 1998). However, overexpression of WRKY70 leads to constitutive expression of PR-I (Li et al., 2004). In addition, NPR1 has been associated with the inhibition of JA-induced responses as shown by repression of PDF1.2 transcription in plants over-expressing WRKY70 (Glazebrook et al., 2003). Conversely, NPR1 has been shown to function downstream of JA and ET in non-pathogenic rhizobacteria-mediated induced systemic resistance (ISR) (van Wees et al., 2000). Therefore, SAR and ISR pathways may activate a parallel set of signalling proteins. However, downstream induction of a variety of SA-dependent transcription factors can act synergistically with, but mostly antagonistically against, the JA- and ET-dependent induction of defence genes (Figure 1.7).

1.7. Jasmonate and Ethylene

1.7.1. Jasmonate-dependent Signalling

Jasmonic acid (JA) is a lipid-derived signalling molecule involved in growth inhibition, pollen and seed development, senescence, tuber formation and wound-inducible defences (Doares et al., 1995; Creelman and Mullet, 1997). The wound-inducible biosynthesis of JA has been shown to require lipid oxidation mediated by either ROIs or lipoxygenases (LOX) that catalyze the addition of molecular oxygen to polyunsaturated fatty acids to form volatile, short-chain aldehydes (Martin et al., 1999). Several inducible LOX isoforms have been identified that possess different tissue-specific expression and time course patterns, suggesting varying roles in JA synthesis (Royo et al., 1999). Genes involved in biosynthesis of JA have been identified, e.g. fatty acid desaturase triple mutants (fad3/fad7/fad8) that cannot produce linolenic acid (Kunkel and Brooks, 2002). Other genes important for JA signalling have been identified through mutant screens for jasmonate or coronatine insensitivity, coil (coronatine insensitive) and jar1 (jasmonic acid resistant) or for altered JA-regulated gene expression such as jasmonate underexpressing mutants (jue1, jue2 and jue3) (Feys et al.,
Chapter 1

1994; Staswick et al., 2002; Jensen et al., 2002). COII is an F-box protein that may inactivate negative regulators of JA-dependent defences or target proteins for ubiquitination (Glazebrook, 2001; Kunhel and Brooks, 2002). Mutations in JA-dependent genes increase susceptibility to necrotrophic pathogens e.g. *Alternaria brassicicola* or *B. cinerea* (Dong, 1998). Additional JA-induced genes, *MPK4* (Mitogen-activated protein kinase 4) and *SSI1-2* (suppressor of SA insensitivity), are shown to negatively regulate the SA-dependent pathways (Petersen et al., 2000; Shah et al., 1997). JA, like SA, also induces a subset of *PR* genes including *PR-3*, *PR-4* and *PDF1.2* (*PR-12*) (Thomma et al., 2001; Kunkel and Brooks, 2002). Comparisons between the potato *Pin2* and the soybean *VspB* genes have revealed a JA-inducible G-box element (TGACG-related) (Rouster et al., 1997). Intriguingly, a JA-regulated terpenoid indole alkaloid (TIA) biosynthesis gene which possesses a GCC-box element in its promoter is also recognised by the ET-related transcription factor, ERF1 (Menke et al., 1999). Induction of particular JA-inducible *PR* genes is associated with a form of broad spectrum, systemic resistance targeted more specifically for protection against insects and necrotrophic pathogens (Royo et al., 1999). Recently, a MYC transcription factor has been found in *Arabidopsis* that, when mutated, conveys insensitivity to JA and decreased expression of JA-responsive genes *AtVSP* and *JR1* (Boter et al., 2004). Interestingly, in addition to inducing expression of JA-responsive genes, this transcription factor may be involved in repressing genes induced by the combination of JA- and ET-dependent signalling (Boter et al., 2004) (Figure 1.7).

1.7.2. Ethylene-dependent Signalling

ET is an important signalling hormone during plant developmental processes, such as seed germination, root nodulation and hair development, flower senescence and fruit ripening (Johnson and Ecker, 1998). In addition, ET signalling has been linked with defence responses to pathogen attack, abiotic stresses including wounding, ozone, chilling and freezing (Thomma et al., 1999). ET production is initiated almost immediately following wounding, JA application or treatment with cell wall oligosaccharides (Dong, 1998). Several ethylene-resistant (*etr1* and *etr2*), ethylene
response sensor (*ers1* and *ers2*) and (ethylene insensitive) *ein1* and *ein2* *Arabidopsis* mutant genes have been identified as ethylene receptors due to their insensitivity to ethylene, linking these genes to ET-dependent signalling (Solano and Ecker, 1998). The first *Arabidopsis* gene cloned was *ETR1* which encodes a receptor associated with the endoplasmic reticulum (Hass *et al.*, 2004). Using ETR1 as bait in a yeast-2-hybrid assay, the Ser/Thr protein kinase from the RAF MAPKKK family, CTR1 was identified which also interacts with ERS1. In addition, CTR1 has been shown to act as a negative regulator of ET responses in a cascade including MPK6, highlighting a link between these ET receptors and MAPKs (Ouaked *et al.*, 2003). EIN2 is a membrane-associated protein with sequence similarities to the Nramp metal transporters and is thought to act downstream of the CTR1-regulated cascade (Dong, 1998). The *ein2* mutant displays increased susceptibility to necrotrophs e.g. *Erwinia carotovora* and decreased disease symptoms to biotrophs e.g. *Xanthomonas campestris* (Dong, 1998). There are two families of ethylene-dependent transcription factors, EIN3-like proteins and ethylene response element-binding proteins (EREBPs) (Guo and Ecker, 2004). Interestingly, EIN3-like transcription factors bind to a conserved cis-regulatory element present in the promoter of EREBP-encoding gene ethylene response factor 1 (ERF1) which in turn binds to secondary target genes of ET signalling (Solano and Ecker, 1998). In addition, ET appears to regulate a number of physiological and developmental processes that are also controlled by cytokinin indicating that ET is an important regulator in several pathways (Hass *et al.*, 2004) (Figure 1.7).
Even though SA-dependent and ET-JA-dependent signalling pathways induce expression of different PR genes and confer resistance against distinct pathogens, SA, JA and ET are not completely independent and many studies have found positive and negative interactions between the pathways (Feys and Parker, 2000; Wang et al., 2002; Ton et al., 2002). Microarray analysis of 2375 A. thaliana genes after pathogen, SA, Me-JA and ET treatment demonstrated that only a small number are solely regulated by one hormone and most respond to multiple pathways (Schenk et al., 2000) (Figure 1.8).

For example, expression and activation of the traditionally JA-associated PDFI.2 in response to necrotrophic pathogens was shown to require the synergistic interaction between JA and ET but not SA (Feys and Parker, 2000). In addition, inhibition of ET
production has detrimental effects on the JA pathway (Dong, 1998). Microarray analysis has revealed that around half of the genes induced by ET are also induced by JA (Kunkel and Brooks, 2002). Together ET and JA induce defences against the necrotrophic *Botrytis* and *Erwinia* species (Thomma, 2001). Defects in the SA-dependent pathway typically result in enhanced resistance to necrotrophs (Thomma, 2001). Results from microarray analyses have also revealed that SA and ET may function together to induce several defence-related genes (Kunkel and Brooks, 2002). The majority of *PR* genes associated with SAR do not require ET, although it has been reported to enhance inducible *PR-1* expression in *Arabidopsis* (Dong, 1998). The same study also revealed that ET has a negative effect on the basal level of *PR-1* expression by studying ein2 mutants (Dong, 1998).

The relationship between the SA- and JA-dependent pathways is generally antagonistic. SA appears to have an inhibitory effect on proteinase inhibitor genes that can be partially rescued by application of JA and ET (Dong, 1998). The mutants, *eds4* and *pad4* that cannot accumulate SA are more sensitive to JA. JA has been shown to repress SA signalling and expression of SA-dependent genes in tobacco (Kunkel and Brooks, 2002). *Arabidopsis* plants inoculated with the necrotroph *E. carotovora* resulted in inhibition of SA-dependent *PR* genes (Kunkel and Brooks, 2002). Studies involving the *Arabidopsis* mutants *mpk4* and *ssi2* showed that they possess a constitutively active SAR, constitutively expressing *PR-1*, *PR-2* and *PR-5* in a SA-dependent but NDR1-independent pathway. However, *ssil* plants also express defensin *PDF1.2*, which is independent of SA and NDR1, but requires JA-ET-signalling (Penninckx *et al.*, 1996). The *edr1* mutant confers enhanced resistance to *P. syringae* in a SA-dependent and JA-ET-independent pathway (Frye *et al.*, 2001). However, pre-treatment of *Arabidopsis* with ET in the *edr1* background resulted in high expression of *PR-1*, which is SA-dependent compared to untreated plants. It is therefore likely that EDR1 is a repressor for SA-inducible defence responses and might be active in a wide range of crops, as EDR1 has been identified in monocots such as rice and barley (Frye *et al.*, 2001). The mutant *coil* expresses SA-inducible responses more rapidly than the wild-type. However, it remains hypersensitive to *P. syringae* (Kunkel and Brooks, 2002).
Concurrent induction of both SA- and JA-dependent pathways has been shown in several lesion mimic mutants e.g. *cpr5*, that exhibit constitutively high expression of both *PR-1* and *PDF1.2* (Glazebrook, 2001).

Microarray analysis identified over 50 genes co-regulated by SA and JA (Kunkel and Brooks, 2002). The mutant *pad3* (phytoalexin deficient) cannot produce camalexin, displays enhanced sensitivity to the necrotroph *A. brassicicola* and retains wild type responses to *P. syringae* (Feys and Parker, 2000) *PAD3* is not regulated by JA, ET or SA, indicating that there may be more signalling pathways to decipher and many more genes to fit into this complex signalling network (Thomma, 2001). It is clear from this information that plants have overlapping mechanisms for inducing defence pathways to suit encountered pathogens and the cross-talk between them may complicate attempts to engineer resistance to the most problematic pathogens.

Figure 1.8: Microarray Analysis of Arabidopsis Genes Induced by Varying Treatments. Genes expressed and repressed during various treatments that activate the previously described defence pathways (Schenk et al., 2000). The P represents the necrotrophic pathogen *A. brassicicola*. This diagram highlights the extent of overlap between SA, JA (MJ) and ET-responsive genes and the possibility that current representations of these signalling pathways may not be accurate.
1.9. Potato and Potato Late Blight

One of the most important crops in the UK is the potato (*Solanum tuberosum* spp *tuberosum* L.) but it is also the fourth most important crop worldwide after rice, wheat and maize (Gebhardt and Valkonen, 2001). It has a genome of around 900 Mb, 9 times larger than the *Arabidopsis* genome (Gebhardt, personal communication), consisting of a tetraploid set of 12 chromosomes, making rigorous genetical analyses more difficult than in *Arabidopsis* (Gebhardt and Valkonen, 2001). Most potato varieties are susceptible to one of the most destructive and historically significant pathogens, *Phytophthora infestans*, which caused the infamous potato famines of the mid-19th century (Ballvora *et al.*, 2002). Ireland lost more than 2 million inhabitants to starvation and emigration as a direct consequence of late blight, making *P. infestans* one of the most widely documented plant pathogens (Birch and Whisson, 2001). *Phytophthora* (meaning "plant destroyer") as its Latin name suggests is an extremely aggressive pathogen that causes devastating necrotic disease symptoms. Little can be done to prevent its spread through certain *Solanaceous* species once it becomes established and it can only be controlled in a preventative manner through weather-dependent fungicide applications throughout the growing season (Birch and Whisson, 2001). In 1999, it was estimated that losses through damage by or controlling *P. infestans* exceeded $5 billion annually (Duncan, 1999).

Historically, *P. infestans* has been grouped taxonomically with fungi, such as ascomycetes and basidiomycetes, due to its filamentous structure. Nevertheless, metabolic and rRNA analyses have shown that oomycetes such as *P. infestans* are more closely related to diatoms and brown-algae (Pfyffer *et al.*, 1990; Forster and Coffey, 1990; Cooke *et al.*, 2000). It is hypothesised, from isozymic studies of *P. infestans* isolates that a single clonal line migrated from Mexico to Europe in 1845 and through seed potato export spread to Africa and Asia causing global problems. The previous detection of only one mating type of *P. infestans* world-wide (A1) alarmingly changed in the 1980's when the A2 mating type escaped Central Mexico causing increased virulence and genetic variation of blight in nearly all potato-growing regions of the
world (Fry et al., 1993; Goodwin et al., 1994; Sujkowski et al., 1994). The haploid A1 and A2 nuclei can fuse to develop into a thick walled oospore that can survive for many years in the soil and infect any tissues of the next potato crop that come into contact with the soil (Drenth et al., 1995). The most highly effective fungicides used to date are phenylamides, e.g. metalaxyl, which are also applied with another fungicides to combat the increase in currently evolving phenylamide-resistant biotypes (Schwinn and Morton, 1990). Worryingly, 45 % of isolates of *P. infestans* from commercial fields in the Netherlands were found to be metalaxyl-resistant (Fry et al., 1991). This has led to the ban of metalaxyl spraying in some seed producing countries in an attempt to limit the export of resistant biotypes. The combined appearance of this fungicide resistance and the A2 mating type has revived the serious international threat that this rapidly spreading and evolving pathogen poses to modern potato agricultural practices. Studies by Fry et al. (1993) and Fry and Goodwin (1997) confirm that *P. infestans* is highly variable and quickly adapts to distinct environments and hosts and the currently high frequency of unique biotypes resembles the genetic diversity that exists where A1 and A2 types coexist in Central Mexico (Fry et al., 1992).

P. infestans has a specific host range that primarily infects foliage and fruits. It spreads predominantly via air-borne or water-splashed asexual sporangia that release motile zoospores in cool (16-21°C), damp, cloudy conditions that rapidly encyst and produce a germ tube. An appressorium develops, from which an infection peg emerges with power to penetrate epidermal cells. After only 3 days, hyphae spread throughout the growing lesion and emerge through stomata, forming sporangiophores that release the next generation of sporangia. Underground tubers may also be infected by sporangia or zoospores dripping off diseased leaves during periods of wet weather (Sato, 1979). *Phytophthora* species can display strong chemotaxis towards and rapidly encyst when in close proximity to its preferred host, highlighting germination as a control point in host specificity dependent on specific chemical or physical signals (Tyler, 2002).

P. infestans has a genome of 250 Mb (more than twice the size of *Arabidopsis*) and the presence of countless biotypes world-wide rules out a quick and efficient genome
sequencing project like other well known pathogens e.g. *Erwinia carotovora* ssp. *atroseptica* (Bell *et al.*, 2004). The development of low-cost, high throughput DNA sequencing has allowed approximately 2000-3000 ESTs from both *P. infestans* (Kamoun *et al.*, 1999) and *P. sojae* (Qutob *et al.*, 2000) to be obtained and funding has been granted for sequencing a further 41,000 *P. sojae* and 14,000 *P. infestans* ESTs. This EST data is stored in the *Phytophthora* Genome Initiative (PGI) database (Waugh *et al.*, 2000; http://www.negr.org/pdi/index.html). The identification of molecules that trigger or are affected by host recognition shall be facilitated by this EST information and shall also be complemented by the current physical and genetic mapping of the organism (Tyler, 2001).

Breeding race-specific resistance into potato cultivars was considered an effective and environmentally friendly approach to controlling potato blight as sporulation does not occur on potato cultivars that possess race-specific resistance. Some resistant potato cultivars were developed through introgression of single dominant *R* genes to the various *P. infestans* races from wild potato relatives e.g. *S. demissum*, indigenous to Mexico (Ballvora *et al.*, 2002) and were initially highly successful. However, *Phytophthora*’s rapidly evolving nature has overcome all eleven *R* genes, foiling the scientists and breeders’ efforts (Ballvora *et al.*, 2002). Lipoxygenases are enzymes involved in the biosynthesis of oxylipins that play an important signalling role during wounding and necrotrophic pathogen attack (Gobel *et al.*, 2001). Cultured potato cells treated with a *P. infestans* elicitor accumulated transcripts encoding a linoleate 9-lipoxygenase and the linoleate 13-lipoxygenase (Gobel *et al.*, 2001). Conversely, studying the protein products of these transcripts reveals that 13-lipoxygenase activity and protein levels do not increase in response to elicitor treatment (Gobel *et al.*, 2001). Jasmonic acid (JA), an oxylipin derived from 13-lipoxygen, accumulates in potato leaves after *Pseudomonas syringae* pv. *maculicola* infection. Conversely, JA does not accumulate during *P. infestans* infection (Gebhardt and Valkonen, 2001).

Although *R* genes involved in *P. infestans* recognition have been genetically mapped or cloned, their molecular function and the downstream defence responses they trigger are
poorly understood. This highlights the extent of research required to fully understand this specific recognition event and the Quantitative (field) resistance, which is more stable, does not result in complete immunity, subsequently reducing selection pressure on *P. infestans* to evolve. Consequently, this type of resistance is of increasing interest to plant breeders as an alternative solution to the potato blight problem. Unfortunately, this type of resistance is difficult to engineer as it is conferred by many loci spread throughout the genome and its molecular mechanisms are not well characterised or understood. Nevertheless, through the use of DNA markers, nineteen single dominant *R* genes for resistance to viruses, nematodes and fungi have been situated on the molecular map of potato, fourteen of those are located in five quantitative trait loci (QTL) for resistance. Unfortunately, QTL to late blight, tuber rot caused by bacterium *Erwinia caratovora* spp *atroseptica* and to root cyst nematodes are dispersed on all 12 chromosomes making their combined effect next to impossible to breed by selection (Gebhardt and Valkonen, 2001). Quantitative resistance traits have also been identified in wild potato species and have been mapped to loci of several *R* gene clusters e.g. the QTL, *Grpl*, is located in the *R* gene cluster on potato chromosome V (Gebhardt and Valkonen, 2001).

1.10. Project Aims

A variety of techniques have been developed to isolate genomic and ESTs sequence information from potato and other crop species. Moreover, scientists studying the potato-late blight interaction can also benefit from the sequence information and functional data provided by analyses of the *Arabidopsis* genome. The sequenced model *Arabidopsis* is most amenable for forward genetics-based approaches to gene discovery through large-scale mutagenesis and functional screening.

1.10.1. Screen for gain-of-function susceptible *Arabidopsis* mutants

Arabidopsis thaliana, the model plant, had its entire genome sequenced (120 Mb) by 2000 to supply all scientists with the core sequence data that essentially builds a basic
representative of this kingdom (Arabidopsis Genome Initiative, 2000). The *Arabidopsis* genome sequence has revealed the extent of gene duplication and functional redundancy and therefore an alternative screening method, known as "activation tagging", has been developed (Weigel, 2000). Activation tagging has been devised to create gain-of-function mutations by taking advantage of the strong activating properties of the cauliflower mosaic virus (CaMV) 35S gene enhancer and the random integration of T-DNA (Weigel *et al.*, 2000). The activation tagging vector (pSKI015), containing four CaMV 35S enhancers and a BAR gene (conveys resistance to the herbicide glufosinate), was used to transform previously engineered *PR-1::Luciferase (LUC)* Arabidopsis (Col-0) plants. T-DNA vector inserts, in the coding region of a gene, cause a loss-of-function phenotype. Alternatively, if this vector inserts into a non-coding region of the genome then it should induce constitutive enhanced expression of immediately adjacent genes from a distance of around 10 Kb (Weigel *et al.*, 2000). Pools of T1 activation tagged *PR-1::LUC* plants were screened for disease resistance and susceptibility to *P. syringae pv tomato (Pst)* DC3000. The main aim was to identify *Pst*-susceptible mutants, caused by the over-expression of novel genes, that may repress SAR, activate the JA- and ET-dependent pathways and may be potential targets of biotrophic pathogens' virulence factors.

If any novel genes of interest were identified, the role of the genes in plant disease resistance was to be investigated in both *Arabidopsis* and in *Nicotiana* and *Solanum* species. The majority of systems utilised for functional analysis in *Nicotiana* and *Solanum* species relies on obtaining sequence information prior to functional analyses in a reverse genetics approach. The highly accessible and detailed information continuously published from studies into core defence signalling networks in *Arabidopsis* should facilitate the transfer of genetic information that should complement functional analysis of genes in crop species.

1.10.2. Genes involved in *P. infestans*-induced HR in potato

The HR appears to be fundamental to every type of resistance against oomycetes e.g. *Phytophthora infestans* on potato and *P. parasitica* on *Arabidopsis* (Birch and Whisson,
A suppression subtractive hybridisation (SSH) had been performed to create a cDNA library enriched for genes involved in the HR of potato plants against \textit{P. infestans} (Birch \textit{et al.}, 1999). Classes of genes identified are similar to those found in a variety of other cell signalling pathways e.g. transcription factors, protein kinases and cysteine proteases (Birch \textit{et al.}, 1999; Avrova \textit{et al.}, 1999; Solomon \textit{et al.}, 1999). Confirmation of candidate genes’ up-regulation during HR and functional characterisation of the most interesting genes was required. Genes confirmed to have a role in HR were carried forward for virus-induced gene silencing (VIGS) experiments (Baulcombe, 1999a; 1999b) that have been previously established in \textit{Nicotiana benthamiana}, a more malleable alternative experimental model (MacFarlane, 1996; Burton \textit{et al.}, 2000; MacFarlane and Popovich, 2000) and an assay was developed to screen for alterations to the HR phenotype following VIGS of candidate genes. However, the HR-related genes of interest were initially identified from potato-\textit{P. infestans} interaction SSHs and, therefore, VIGS in potatoes would be of greater relevance to their resistance role in this pathosystem. Therefore, an important aim of this project was also to develop a VIGS system for cultivated, tetraploid potatoes used for the original SSH libraries.

This project was a collaboration between the \textit{Arabidopsis} community and the crop-based community through which the best resources available to both could be utilised to study aspects of disease resistance. Novel \textit{Arabidopsis} mutants were isolated through an activation tagging approach designed to circumvent lethality and functional redundancy problems associated with classical mutagenesis systems (Chapter 3). Genes identified from \textit{S. tuberosum} were functionally analysed using an established post-transcriptional gene silencing technique in \textit{N. benthamiana} (Chapter 4). Genes of interest from both \textit{Arabidopsis} and \textit{S. tuberosum} were investigated in potato once a gene silencing system had been developed (Chapter 5).
Chapter 2

2. Materials and Methods

Unless otherwise stated, all chemicals were purchased from Sigma-Aldrich (Sigma-Aldrich Company Ltd, UK) or Merck (VWR International Ltd, UK).

2.1. Growth of Arabidopsis thaliana

Maximum of 0.4 g seeds were air-sterilised envelopes of Whatmans paper in desiccators containing 100 ml of bleach and 3 ml of hydrochloric acid. Seeds were then spread evenly over wet soil and left at 4 °C for 48 h in dark for stratification. During screening of T$_2$ generation of Activation tagged lines, pools of approximately 20,000 (0.4 g) seeds were evenly dispersed over each flat of wet, sterilised soil, vermiculite and sand (4 parts: 1 part: 1 part), covered and stratified. After cold stratification, flats and trays of pots were transferred to growth rooms in long day conditions (16 h light and 8 h of dark) at 18 °C and 42 % humidity and remained covered with clear lids until seeds germinated. Seedlings were then sprayed at least twice with selection herbicide Basta (150 μg.ml$^{-1}$). Seedlings of between 1-2 weeks were transplanted 6 per pot (12 cm x 8 cm), 12 pots per tray and watered by sub-irrigation twice weekly until 4 weeks old when most suitable for inoculation with pathogens. The Arabidopsis plants with varying genetic backgrounds used during project are displayed in Table 2.1.
Table 2.1: *Arabidopsis* wild type, transgenic and mutant lines

<table>
<thead>
<tr>
<th>Ecotype/Phenotype</th>
<th>Gene accession</th>
<th>Protein</th>
<th>Reference</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Col-0 wild-type</td>
<td>NCBI: X83926</td>
<td>Salicylate hydroxylase</td>
<td>AGI, 2000</td>
<td>NASC</td>
</tr>
<tr>
<td>nahG</td>
<td></td>
<td></td>
<td>Lawton et al., 1995</td>
<td>Novartis, USA</td>
</tr>
<tr>
<td>ndr1-2</td>
<td>At3g20600</td>
<td>membrane associated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>npr1-1</td>
<td>At1g64280</td>
<td>Ankirin Repeats bind TGA transcription factors</td>
<td>Cao et al., 1995</td>
<td>Dong, Duke University</td>
</tr>
<tr>
<td>eds1.2 (Ler)</td>
<td>At3g48090</td>
<td>Lipase-like protein</td>
<td>Parker et al., 1996</td>
<td>Parker, Max Planck Institute</td>
</tr>
<tr>
<td>ein2-1</td>
<td>At1g47240</td>
<td>membrane associated</td>
<td>Guzman & Ecker 1990</td>
<td>NASC</td>
</tr>
<tr>
<td>etr1-1</td>
<td>At1g66340</td>
<td>NRAMP metal ion transporter</td>
<td>Bleeker et al., 1988</td>
<td>NASC</td>
</tr>
<tr>
<td>coi1-1</td>
<td>At2g39940</td>
<td>F-box protein</td>
<td>Feys et al., 1994</td>
<td>Turner, University of East Anglia</td>
</tr>
<tr>
<td>cyp1</td>
<td>At1g47128</td>
<td>Cysteine Protease & Granulin domain</td>
<td>Alonso et al., 2003</td>
<td>NASC</td>
</tr>
<tr>
<td>cathB</td>
<td>At1g02300</td>
<td>Cysteine Protease Cathepsin B</td>
<td>Alonso et al., 2003</td>
<td>NASC</td>
</tr>
<tr>
<td>cathB</td>
<td>At1g02305</td>
<td>Cysteine Protease Cathepsin B</td>
<td>Alonso et al., 2003</td>
<td>NASC</td>
</tr>
<tr>
<td>ads1</td>
<td>At4g01610</td>
<td>Cysteine Protease Cathepsin B</td>
<td>Alonso et al., 2003</td>
<td>NASC</td>
</tr>
<tr>
<td>ads2</td>
<td>At1g05480</td>
<td>unknown</td>
<td>Tani et al., 2004</td>
<td>Loake, Edinburgh University</td>
</tr>
<tr>
<td></td>
<td>At1g05500</td>
<td></td>
<td>Tani et al., 2004</td>
<td>Loake, Edinburgh University</td>
</tr>
</tbody>
</table>

NASC (Nottingham Arabidopsis Stock Centre)

2.2. Growth of *Solanum tuberosum* and *Nicotiana* species

Apical 5 cm of young potato stems that contain 4-5 nodes were removed using sterile forceps and scalpel in laminar flow cabinet. Leaves were removed from petioles and then stems were divided into individual pieces each containing a node with an auxiliary bud. Six stem pieces were then planted per 60 ml glass jar containing 20 ml of MS30 medium (4.4 g/l of 1M Murashige and Skoog Medium (Murashige and Skoog, 1962), 30 g/l of Sucrose, 0.7 % Difco Bacto Agar, adjusted to pH 5.8 with NaOH) and covered with a suncap (autoclavable transparent polyethylene film with a built-in 0.02 μm filter,
Sigma, UK) and secured with elastic band. Due to the discontinuation of suncaps (Sigma, UK), potatoes were alternatively grown in Petri dishes with 20 ml MS30 medium, sealed with Nescofilm (Bando Chemical Ind., Japan). Plants were then grown at 22 °C with 16 h photoperiod and light intensity of 110 μE.m\(^{-2}\).s\(^{-1}\). Once in vitro potato plants were 3-4 weeks old, they were transferred to soil in controlled environment chambers with a 16 h photoperiod (22 °C, light intensity ranging from 400 to 1000 μE.m\(^{-2}\).s\(^{-1}\)). Nicotiana species were also kept in same chamber with identical conditions. SCRI glasshouse staff provided weekly supplies of Nicotiana species which were also maintained in identical chamber conditions.

2.3. Culture of Plant Pathogens

2.3.1. *Pseudomonas syringae pv tomato DC3000*

Pseudomonas syringae pv tomato (Pst) DC3000 (Whalen et al., 1991) with and without *avrB* was grown on petrie dishes containing King’s broth (KB) (King et al., 1954) supplemented with 6 mM MgSO\(_4\), 50 mg.l\(^{-1}\) rifampicin and an additional 50 mg.l\(^{-1}\) kanamycin for *PstDC300avrB* to select for *avrB* carrying plasmid. Liquid cultures were incubated at 30 °C and shaken at 120 rpm overnight. To test for possible contamination of virulent strain (no *avrB*) with an avirulent strain (resistant to kanamycin) during overnight culture, 10 μl of 25 mg/ml kanamycin was added to at least one vial of virulent *PstDC3000*. Bacterial suspensions were assumed suitable for plant inoculation if the kanamycin containing vial remained clear. The bacteria were pelleted and resuspended in an equal volume of filter sterilized 10 mM MgCl\(_2\), measuring the optical density at 600 nm and diluted accordingly. An OD\(_{600}\) equal to 0.2 is the equivalent of 10\(^8\) colony forming units per ml (CFU/ml).

2.3.2. *Erwinia amylovora 1430* (Apple Fire Blight)

Erwinia amylovora (Toth et al., 2003) was cultured in liquid King’s Broth supplemented with 6 mM MgSO\(_4\) inoculated from colonies plated from glycerol stocks kept at -80 °C.
Cultures were incubated at 30 °C at 120 rpm overnight and optical density read at 600 nm the following morning. Bacterial suspension of 0.002 (10^6 CFU/ml) was inoculated during majority of experiments.

2.3.3. *Phytophthora infestans* simple/complex race

Simple (15.5.1) and complex (99/23) strains of *P. infestans* were maintained by incubating previously infected young potato leaves on damp Kleenex tissue in Q-trays at 15 °C for 6-7 days. For immediate inoculation of aggressive *P. infestans*, leaves were washed in ice-cold SDW and spores counted using a haemocytometer and diluted to 5 x 10^4 spores per ml. Left in fridge for 30 min to allow trigger release of swimming zoospores and then solution sprayed evenly over potato plants at 4 weeks old. For longer term maintenance of *P. infestans* infected leave pieces were placed directly onto rifampicin (50 mg.l⁻¹) and pimaricin (250 μl.l⁻¹ of 2.5 % aqueous suspension) Rye A agar plates (60 g.l⁻¹ Rough Rye; 20 g.l⁻¹ Sucrose and 10 g.l⁻¹ Agar) and thereafter cut 1 cm² pieces of infected agar to inoculate fresh plates every 1-2 weeks at 18 °C.

2.4. Disease Resistance Assays

2.4.1. Virulent and Avirulent *P. syringae* DC3000

P. syringae pv *tomato* (*Pst*) DC3000 (Whalen *et al.*, 1991) was grown as described in 2.3.1. Four week old, plants were inoculated by pressure infiltration into the abaxial leaf surface with *Pseudomonas syringae* strains in a 10 mM MgCl₂ solution at optical densities described in Table 2.4.1(Cao *et al.*, 1994).

<table>
<thead>
<tr>
<th>Experiment</th>
<th>OD₆₀₀ Virulent Pst</th>
<th>OD₆₀₀ Avirulent Pst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Susceptibility screen of activation tagged Col-0</td>
<td>0.0003</td>
<td>n/a</td>
</tr>
<tr>
<td>Colony counts</td>
<td>0.0003/0.002</td>
<td>0.02</td>
</tr>
<tr>
<td>DAB staining</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>Trypan blue Staining</td>
<td>0.002</td>
<td>0.002</td>
</tr>
</tbody>
</table>
Before large-scale screening of six, 4-week-old susceptible *Arabidopsis* mutants *ndr1*, *eds1* and *NahG* and wild type Col-0, were pressure infiltrated with *vir Pst* DC3000 bacterial suspensions, OD$_{600}$ 0.002, 0.001 and 0.0005 to select a suitable OD which allowed disease in mutants but not in Col-0. Initially, the OD$_{600}$ 0.0005 was inoculated for screening purposes into Basta resistant, activation tagged mutants. The lower OD$_{600}$ 0.0003 was subsequently used reducing percentage of susceptible mutants to 3% of screened population. Known susceptible mutants and Col-0 plants were inoculated simultaneously with every screening event. Those susceptible plants that developed obvious chlorotic disease symptoms 4-5 days after inoculation were transplanted into individual pots, labelled and later retested with a bacterial solution with an OD$_{600}$ 0.0002 (equivalent of 10^5 CFU/ml). Plants that develop symptoms in majority of leaves inoculated were kept for seed collection.

For all other experiments, 4 week old, plants were inoculated by pressure infiltration with *P. syringae* strains as described in Table 2.4.1. For viable *Pst* DC3000 recovery colony counting experiments, leaves were harvested 4 days post-inoculation. Whole leaves or leaf segments of equivalent size were ground in 1 ml of 10 mM MgCl$_2$ using micropestles. Four subsequent serial dilutions of 100 µl sample in 900 µl of 10 mM MgCl$_2$ were performed then 100 µl of the 10^4 dilution spread on KB plates containing 50 mg l$^{-1}$ rifampicin and incubated at 30 °C for 48 hours.

2.4.2. *E. amylovora* 1430

E. amylovora is a bacterial pathogen of apples which induces a non-host HR in *Nicotiana* and *Solanum* species. *E. amylovora* was grown as mentioned above and resuspended at an OD$_{600} =$ 0.002 (equivalent of 10^6 CFU/ml) in sterile 10 mM MgCl$_2$ or 5 mM MES. The suspension was then pressure infiltrated into wild type and TRV::GFP, TRV::SgtI$_{as}$ and TRV::CathB$_{as}$ infected *N. benthamiana* (Cao *et al.*, 1994). Cathepsin B inhibitors were diluted from 100 mM stocks to 1 mM with 10^6 CFU/ml suspension in 5 mM MES (Cathepsin B, S and L inhibitor, Z-FGNHO-Bz; Cathepsin B inhibitor I, Z-FA.fmk; Cathepsin B inhibitor II, Ac-LVK-CHO and Cathepsin B Inhibitor IV, CA-074
Me) (Calbiochem®, Merck Biosciences, UK). These solutions were also pressure infiltrated into wild type *N. benthamiana* as above.

2.4.3. *P. infestans* simple/complex races

Assessment of foliage blight symptoms was performed according to scale published in Cruickshank *et al.* (1982). Briefly, scoring was as follows: 1= >90 % necrotic tissue, 2= 81–90 % necrotic, 3= 71–80 % necrotic, 4= 61–70 % necrotic, 5= 41–60 % necrotic, 6= 26–40 % necrotic, 7= 11–25 % necrotic and 8= <10% necrotic. Majority of scoring was performed by Ruth Solomon-Blackburn.

2.5. Cloning of and Infection with Viral Vectors

2.5.1. Tobacco Rattle Virus (TRV) Constructs

Initial TRV constructs pPNC96 (RNA1) and pPNC97 (RNA2) with and without the 2B nematode transmission protein were created and supplied by Dr S MacFarlane (*Liu et al.*, 2002; MacFarlane and Popovich, 2000; MacFarlane *et al.*, 1996) as RNA transcripts for potato *Pds* silencing experiment. The construct pPNC97 contained either tomato *Pds* (X59948) or transgenic GFP gene fragments. These constructs were transcribed using T7 RNA polymerase as described in MacFarlane *et al.*, 1996) mixed with RNA1 transcripts and inoculated on to *N. benthamiana* leaves using aluoxite as a slight abrasive. Around 2 μl of sap from infected *N. benthamiana* plants was used to inoculate 2 week old *N. benthamiana*, *N. tabacum* cv Samsun, *N. tabacum* cv Xanthi, *Solanum tuberosum* cultivars Spey, Stirling and Wilja, 10 plants per construct.

Subsequent silencing experiments were also performed utilising TRV vector (*Liu et al.*, 2002) using cloning sites AvrII and KpnI (see Table 2.5.2 for sequences and primers). Primers were designed using Sequence Navigator and Oligo software for Apple Mac. Fragments were cloned from *N. benthamiana* cDNA using Hi-Fidelity Taq Polymerase (Promega Ltd, UK) and cloned into pGemT-easy (Promega Ltd, UK). Plasmid preparation of bacterial DNA was performed using QIAprep plasmid DNA purification.
kit (Qiagen Ltd, UK). Positive pGemT Easy clones were checked by sequencing using BigDye sequencing kit (Applied Biosystems Ltd, UK) and used for subsequent cloning into TRV construct as used in Valentine et al., (2004). The restriction enzymes predominantly used were from NEB (New England Biolabs, USA) and Qiagen gel extraction kits (Qiagen Ltd, UK) used for purification of plasmid digestion products. Sepharose 6B (Sigma) was utilised for desalting products (Lehmann, 1970) from intermediate cloning steps which required changes of buffer. Transcription reactions of linearised plasmids were performed using Ambion mMessage mMach III kit (Ambion Inc, Austin, USA) according to manufacturer’s instructions using wherever possible baked apparatus. Transcripts (2 µl) were inoculated on to first two true leaves of 2-week-old Nicotiana species by lightly sprinkling abrasive powder, aluoxite, over leaves and stroking leaves gently twice. Plants were washed with cold water and left for 2-3 weeks (conditions mentioned in section 2.2) for silencing to develop.

<table>
<thead>
<tr>
<th>Table 2.5.1: Sequences and primers for TRV cloning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construct</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>TRV.SGT1as</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>TRV.CathBas</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>TRV.CYP1as</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>TRV.ADR1as</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

GGTACC = AvrII restriction site; CCTAGG = KpnI restriction site

2.5.2. Potato Virus X Constructs

Cloning of PDS and GFP into PVX as described in Faivre-Rampert et al. (2004). Briefly, cDNA was cloned into PVX vector (pGR106, Jones et al., 1999; Lu et al., 2003) obtained from David Baulcombe (Sainsbury Laboratory, Norwich, UK) using AscI and NotI restriction sites. Primers were designed using Sequence Navigator and Oligo software for Apple Mac. Gene fragments were amplified from S. tuberosum cDNA using Hi-Fidelity Taq Polymerase (Promega Ltd, UK) and initially cloned into pGemT-easy (Promega Ltd, UK), positive clones sequenced as in section 2.5.1. Plasmid DNA preparations as in section 2.5.1. Agrobacterium tumefaciens strain LB4404, carrying the
helper plasmid pSoup (Hellens et al., 2000) was transformed with PVX constructs. Agroinfiltration of *N. benthamiana* and *Solanum* species with PVX vector was performed as previously described (Lu et al., 2003).

Table 2.5.2: Sequences and primers for pGR106 cloning

<table>
<thead>
<tr>
<th>Construct</th>
<th>NCBI No.</th>
<th>Primer</th>
<th>Primer sequence (5'-3')</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVX.GFP</td>
<td>U62637</td>
<td>GFP3up</td>
<td>TTTAGCCGCGCGCATGCTAGCAAGGAG</td>
<td>723 bp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GFP3low</td>
<td>TATTCGGCCGCCGCTATTGGTAGAG</td>
<td></td>
</tr>
<tr>
<td>PVX.PDSas</td>
<td>AY48445</td>
<td>PDS3up</td>
<td>TTTGGCGGCCGTTGCACTCCAG</td>
<td>415 bp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PDS3low</td>
<td>TTTTGGCGGCCGCTGTGTTGAC</td>
<td></td>
</tr>
<tr>
<td>PVX.hpPDSbSt</td>
<td>AY48445/</td>
<td>HPNStup</td>
<td>AAAAGGCGCGCCACATGTAAGGAATATCACAAC</td>
<td>94 bp (47 bp loop)</td>
</tr>
<tr>
<td></td>
<td>I23876</td>
<td>HPNStlow</td>
<td>AAAAGGATCCACCATTCCAACATGAC</td>
<td></td>
</tr>
<tr>
<td>PVX.SGT1as</td>
<td>BG599125</td>
<td>PocSGT1For</td>
<td>TTTTGGCGGCCGCGAGGTGGTTATCATCG</td>
<td>584 bp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PocSGT1Rev</td>
<td>TTTTGGCGGCCGCGGCTATGCGCCT</td>
<td></td>
</tr>
<tr>
<td>PVX.CathBas</td>
<td>BG590588</td>
<td>PoCathBFor</td>
<td>TTTTGGCGGCCGCTAGGCGCTTCTGC</td>
<td>376 bp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PoCathBRev</td>
<td>TTTTGGCGGCCGCTAGGCGCTTCTGC</td>
<td></td>
</tr>
<tr>
<td>PVX.CYP1as</td>
<td>AJ245924</td>
<td>PoCathK3RFor</td>
<td>TTTTGGCGGCCGCTAGGCGCTTCTGC</td>
<td>248 bp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PoCathK3RRev</td>
<td>TTTTGGCGGCCGCTAGGCGCTTCTGC</td>
<td></td>
</tr>
<tr>
<td>PVX.ADR1as</td>
<td>BG596098</td>
<td>PoADRI3For</td>
<td>TTTTGGCGGCCGCTATGAGATATC</td>
<td>391 bp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PoADRI3Rev</td>
<td>TTTTGGCGGCCGCTATGAGATATC</td>
<td></td>
</tr>
</tbody>
</table>

GGCGCGCC = AscI restriction site; GCGGCGGC = NotI restriction site

2.5.3. Tobacco Mosaic Viral (TMV) Constructs

TMV VirD2::GFP fusion construct that displayed a hypersensitive response induced-and caspase-like cleavage and the negative control plasmid GFP::VirD2 as described in Chichkova et al., (2004) were received from Michael Taliansky. Linearised plasmids were transcribed using Ambion mMessage mMachine T7 kit (Ambion Inc., USA) according to manufacturer’s instructions using wherever possible baked apparatus. Previously prepared TMV strain U1 virion coat protein 10 mg.ml⁻¹ (8.75 μl) was mixed with 51.25 μl autoclaved assembly buffer (26.8 mM Na₂HPO₄ and 19.5 mM NaH₂PO₄, pH7) and incubated for 6 hours at 25 °C. Freshly prepared TMV transcripts (5 μl) were rapidly added to reassembling TMV coat protein without chilling on ice and incubated at 25 °C overnight. Transcript and coat protein reassemblies were immediately inoculated onto first two true leaves of 2-week-old *Nicotiana* species by lightly sprinkling abrasive powder, aluoxite, over leaves and stroking leaves gently twice. Plants were then washed
with cold water and incubated at either 33 °C (optimal) or 24 °C. Inoculated leaves were examined for nuclear localised GFP in viral growth foci 2 days post-inoculation.

2.6. **Treatments using Exogenous Signalling Molecules**

2.6.1. 1-Aminocyclopropane-carboxylic acid (ACC)

ACC (1-aminocyclopropane-carboxylic acid) plates were made using MS agar media (4.5 g.l\(^{-1}\) Murashii and Skoog, 1 % Sucrose 4 g.l\(^{-1}\) Agar and pH adjusted to 5.8 with 1 M Sodium hydroxide) cooled to 60 °C. Concentrations, conditions and examination 7 days later for triple response phenotype and root length measured as described in (Guzmain and Ecker, 1990). Wild type Col-0 and ein2.1 were used as controls.

2.6.2. Methyl jasmonate (MeJA)

Methyl jasmonate (MeJA) plates were made using MS media described above with a range of concentrations (0 µM - 150 µM) and examined for percent germination similar to that displayed by MeJA insensitive mutants and root length. Wild type *Arabidopsis* Col-0, coi-1 and/or jar1 were used as controls although had problems with the seed.

2.6.3. Salicylic acid (SA) and analogue benzothiadiazole (BTH)

The SA analogue Benzothiadiazole (BTH, Bion\(^{®}\), Norvartis, Frimley, UK) was used as a systemic acquired resistance inducer as a 1.2 mM solution made with SDW sprayed over 3-4 week old plants usually twice at least 4 days before inoculation with *Pst*.

2.7. **Histochemical Analyses and Microscopy**

2.7.1. Trypan Blue Staining

Trypan blue staining procedure was employed to identify dead plant cells in challenged leaves as used in Yun *et al.* (2003). Leaves were submerged in 5 ml of lactophenol trypan blue (1 part water with 1 mg.ml\(^{-1}\) trypan blue; 1 part Lactic acid; 1 part Phenol; 1
Chapter 2

part Glycerol) and boiled for 2-5 minutes. Solution was removed and leaves kept in destaining solution of 2.5 g.ml$^{-1}$ Chloral Hydrate for 48 hours. Leaves were mounted on glass slides with 60 % glycerol, covered with a coverslip and secured with nail varnish. Slides examined under a Nikon Eclipse E600 microscope with x 10 and x 20 objectives.

2.7.2. DAB Staining

Hydrogen peroxide production was visualised using 3, 3-diaminobenzidine (DAB) as described by Thordal-Christensen et al. (1997). 1 g.l$^{-1}$ of DAB was dissolved in boiling SDW. Leaves were submerged in 10 ml of cooled DAB solution and left overnight. Leaves were transferred to 10 ml of 96 % ethanol and boiled for 10 min. Leaves were rinsed twice in sterile distilled water and mounted on glass slides with 60 % glycerol under a coverslip and secured with nail varnish. Slides were examined under a Nikon Eclipse E600 microscope with x 10 and x 20 objectives.

2.7.3. GFP Imaging with Scanning Laser Confocal Microscope

Transgenic *Nicotiana tabacum*, CB9, carrying TMV movement protein were inoculated with 2 μl of TMV construct and coat protein reassemblies as mentioned in section 2.5.3. Two days post-inoculation, primary leaves were examined through a Leica SP2 scanning laser confocal microscope (Leica Microsystems Ltd, UK) for GFP localisation in the nuclei of upper epidermal cells using excitation wavelength of 488 nm and collecting emission wavelengths of 505-520 nm employing an Argon/HeNe laser. Viral growth foci displaying nuclear GFP localisation were infiltrated with either 10 mM MgCl$_2$, *E. amylovora* suspension of 10^6 cells per ml with or with out 1 mM Cathepsin B inhibitor II, Ac-LVK-CHO (Calbiochem®, UK) reconstituted in SDW. Hypersensitive response-related cleavage of nuclear localisation signal from fusion protein, VirD2::GFP, in upper epidermal cells was investigated in upper epidermal cells at 4 and 24 hours post-inoculation.
2.8. **PCR-based methods**

2.8.1. **General PCR method**

For general PCR amplification applications Taq Polymerase (Promega Ltd, UK) was used. Hi-Fidelity Taq Polymerase (Promega Ltd, UK) was used for amplification of fragments intended for cloning into silencing vectors.

2.8.2. **Thermal Asymmetric Interlaced (TAIL) PCR**

TAIL PCR was performed with both ads1 and ads2 homozygous mutant DNA extracted using Qiagen DNeasy® Plant mini Kit (Qiagen Ltd, UK) using protocol and PCR cycle settings as described in Liu *et al.* (1995). Primers used listed in Table 2.8.2 below.

<table>
<thead>
<tr>
<th>Primer Name</th>
<th>Sequence (5’-3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD 1</td>
<td>NTCGASTWTSGWGTTTS</td>
</tr>
<tr>
<td>AD 2</td>
<td>NGTCGASWGANAWGAA</td>
</tr>
<tr>
<td>AD 3</td>
<td>WGTGNAGWANCANAGA</td>
</tr>
<tr>
<td>AD 4</td>
<td>TGWGNAGSANCASAGA</td>
</tr>
<tr>
<td>AD 5</td>
<td>AGWGNAGWANCWAGG</td>
</tr>
<tr>
<td>AD 6</td>
<td>STTGNTASTNTNTGC</td>
</tr>
<tr>
<td>Right Border_21</td>
<td>ACGACACTCTCGTCTACTCCAAG</td>
</tr>
<tr>
<td>Right Border_53</td>
<td>AACAAACGGTAATATCGGAAAAC</td>
</tr>
<tr>
<td>Right Border_205</td>
<td>TAAAGGAAAGGCTATCGTTCAAG</td>
</tr>
</tbody>
</table>

AD=Arbitrary degenerate; N=any nt; S=[G/C]; W=[A/T]

2.8.3. **Genotyping of NASC and ABRC T-DNA Knockout mutant**

Seeds were obtained through the TAIR website (see section 2.15) through the functional genomics link which lists all T-DNA insert mutants available for any particular loci. The SIGnAL website (see Table 2.15 for address) was used to order suitable T-DNA insert mutants which arrive as progeny of a heterozygous parent and therefore T-DNA primer express website was used for design of gene specific primers based on gene loci and SALK description. Primers designed are shown in table 2.8.3. Plant DNA was extracted using cetyltrimethylammonium bromide (CTAB) extraction buffer (100 mM Tris HCl, pH 8; 1.4 M NaCl; 20 mM EDTA; 2 % CTAB and 0.2 % 2-Mercaptoethanol).
from at least 10 plants. DNA extraction as described in Doyle and Doyle (1990). Gene specific primers were used together with left border specific primer LBB1 in one PCR tube. The larger band represented the wild type allele whereas a shorter band around 400 bp represented the mutant allele. Seed was collected from plants homozygous for the insert.

Table 2.8.3: Gene specific primers designed for T-DNA mutant genotyping

<table>
<thead>
<tr>
<th>Gene Loci Description Code Primer name, Primer sequence (5'-3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>CathB, At1g02300 SALK_049118 (A1) N549118 CathbGenFor AGAACCGCTTGGTCACATTTGC</td>
</tr>
<tr>
<td>CathB, At1g02305 SALK_138261 N638261 CathbBbGenFor GAGGAACGAACGAATGTGGCA</td>
</tr>
<tr>
<td>CathB, At4g01610 SALK_019630 N519630 CathbCcGenFor GGT TTTGTTTTAGGGACATTTGG</td>
</tr>
<tr>
<td>CYPI, At1g47128 SALK_090550 N590505 CathbKGenFor AGAAATGGGGTTGGGTTATAC</td>
</tr>
</tbody>
</table>

2.8.4. Quantitative Real-Time Reverse Transcriptase PCR

Total RNA was extracted from frozen leaves using the Qiagen RNeasy Plant Mini kit (Qiagen, Crawley, UK), following the manufacturer’s instructions and quantified spectrophotometrically (Uvikon, Kontron Instruments, UK) using 1 A_{260} of ssRNA = 40 μg.ml^{-1} H_{2}O and also the ratio of A_{260}/A_{280} ≥ 2.0; the RNA was then stored at −80 °C until required. DNaseI treatment (Ambion Inc, USA) and first strand cDNA synthesised from 3 μg of RNA using Superscript II RNase H Reverse Transcriptase (Invitrogen, UK) were as previously described (Lacomme et al., 2003). For SYBR real-time RT-PCR (QuantiTect SYBR GreenPCR kit, Qiagen Ltd, UK) experiments, primer pairs were designed outside the region of cDNA targeted for silencing using the Primer Express software supplied with the ABI PRISM 7700 Sequence Detection System (Applied Biosystems Ltd, UK) following the manufacturer’s guidelines (see Table 2.8.4 for Taqman primers). The GenBank accession numbers for *N. benthamiana* PDS and ubiquitin cDNA are as previously mentioned (Lacomme et al., 2003). Primer concentrations giving the lowest threshold cycle (cT) value were selected for further
analysis. Detection of real-time RT-PCR products, calculations and statistical analysis were performed as previously described (Lacomme et al., 2003).

Table 2.8.4: Primers used for Quantitative Real-Time RT-PCR

<table>
<thead>
<tr>
<th>Plant</th>
<th>Gene</th>
<th>Primer Name</th>
<th>Sequence (5’-3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solanum tuberosum</td>
<td>StUBI</td>
<td>StUBIfwd</td>
<td>ACACCATTGATAATGTCAAGGCTAAG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>StUBIrev</td>
<td>GCCATCCTCCAATTGCTTTC</td>
</tr>
<tr>
<td></td>
<td>StPDS</td>
<td>StPDSfwd</td>
<td>CCAAGACCAAGCTAGACAAATACAGT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>StPDSrev</td>
<td>CACCCCAACCTGCAG</td>
</tr>
<tr>
<td>Nicotiana benthamiana</td>
<td>NbPDS</td>
<td>NbPDStaqFw</td>
<td>TTCTTCAGGAGAAACATGGTCAA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NbPDStaqRv</td>
<td>TCCACAATCGGGCATGCAA</td>
</tr>
<tr>
<td></td>
<td>NbCathB</td>
<td>NbCathBtag2 For</td>
<td>CGAGCAAGGGAGGAAGACTATTGG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NbCathBtag2_Rev</td>
<td>GCTGAAGGCAATCCTGCAA</td>
</tr>
<tr>
<td>Le 25S</td>
<td>Tom25S For</td>
<td></td>
<td>CACGGACCAAGGAGCTTGACAT</td>
</tr>
<tr>
<td></td>
<td>Tom25S Rev</td>
<td></td>
<td>TCCCCACCAATCAGCTTCTTAC</td>
</tr>
</tbody>
</table>

2.8.5. Reverse Transcriptase PCR

First strand cDNA obtained as in section 2.8.4. For RT-PCR of TRV RNA2 coat protein primers were previously designed by Dr S MacFarlane (see Table 2.8.5). For RT-PCR analysis of silencing, primers that anneal outside the region of the cDNA cloned into the virus vectors were designed (see Table 2.8.5). In cases where semi-quantification of RT-PCR was not as important, Qiagen one step RT-PCR kit (Qiagen Ltd, UK) was used with primers previously used for Arabidopsis T-DNA insert genotyping (see section 2.8.3).
Table 2.8.5: Primers used for RT-PCR

<table>
<thead>
<tr>
<th>Species</th>
<th>Gene</th>
<th>Primer Name</th>
<th>Sequence (5'→3')</th>
<th>Expected Product (cDNA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tobacco Rattle Virus</td>
<td>Coat Protein</td>
<td>157</td>
<td>CGCGGTAGAAGACGTACTAT</td>
<td>1200 bp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>208</td>
<td>GTGTCTGTCAGGCACCTTC</td>
<td></td>
</tr>
<tr>
<td>Solanum tuberosum</td>
<td>STUBI</td>
<td>RTPoUBfor</td>
<td>GCAGTTGAGAGGAGGAC</td>
<td>266 bp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RTPoUBrev</td>
<td>GCCACATCTTCCAACCTTTC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SIPDS</td>
<td>RTPoPDSfor</td>
<td>CTGAGAGTCGTCCTCCTTGG</td>
<td>263 bp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RTPoPDSrev</td>
<td>GTTTAGTGGGGCGGTGGAAGA</td>
<td></td>
</tr>
<tr>
<td>Arabidopsis</td>
<td>At3g05480</td>
<td>For</td>
<td>CCTCTGATGCTGCAAGTGAA</td>
<td>308 bp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rev</td>
<td>TGCACTCAAAACTGGAGCTTG</td>
<td></td>
</tr>
<tr>
<td>ads2 pSKI015 Insert Region</td>
<td>At3g05490</td>
<td>For</td>
<td>ATTCACCGAAGAGTTTGGG</td>
<td>168 bp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rev</td>
<td>TCCCTGTCATCCAGAGAAA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>At3g05500</td>
<td>For</td>
<td>TCTTCAACGAAATCGCCTTT</td>
<td>347 bp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rev</td>
<td>GACGGTCAAGCTCAGTCACA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>At3g05510</td>
<td>For</td>
<td>GCCCTTTTATATCGCAGACAG</td>
<td>303 bp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rev</td>
<td>AGCGGTCACCCTCAAATTACGG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>At3g05520</td>
<td>For</td>
<td>GGTTTGGACGGATGAGGAG</td>
<td>360 bp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rev</td>
<td>GGACCTGGAGCCCTCATT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>At3g05530</td>
<td>For</td>
<td>TGTTACCTCATTCCGATTG</td>
<td>163 bp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rev</td>
<td>AGAATAGGTCCTATATACCATGAA</td>
<td></td>
</tr>
</tbody>
</table>

2.9. BAC Library Construction

Bacterial artificial chromosome (BAC) library construction was performed using high-molecular-weight (HMW) DNA extracted from homozygous ads1 Arabidopsis mutant based on technique used by Chalhoub et al., (2004) and described in Hein et al. (2005). Changes from the published protocol are as follows. The plIndigoBAC5 vector (Caltech UK Ltd, UK) came pre-digested with HindIII and was not purified on CsCl gradient. Nuclei extraction and preparation of HMW DNA was as described (Peterson et al., 2000) and partially digested using HindIII range between 0.5–80 units, incubated on ice for 1 hr to allow enzyme diffusion into plug pieces followed by 20 min at 37°C. Enzyme was heat denatured and plugs purified using 1 % standard agarose/ 0.25 x TBE gel using CHEF–Mapper XA pulsed field gel apparatus (Bio-Rad Laboratories, USA) as described in Hein et al. (2005). Standard 1 % agarose/ 0.25 x TBE gel was used for size fractionation and gel extraction of partially digested DNA population (50-250 Kb). Electro-elution, ligation, transformation and antibiotic selection as described in Hein et al., 2005). Genetix Qbot was utilised to pick 18,432 individual clones into 364 well plates (Genetix Ltd, UK) with Genetix robot, Qstack, used to fill plates with 60 μl of LB (supplemented with 25 μg.ml⁻¹ chloramphenicol) per well generating the BAC library.
Once positive clones were identified, plasmids were prepared using a method from Dr Glenn Bryan: 10 ml of liquid culture was grown overnight in LB supplemented with 12.5 \(\mu \)g.ml\(^{-1}\) chloramphenicol. The 4 ml of the liquid culture was pelleted in 2 in 2 ml eppendorf by centrifugation in an Eppendorf 5415 centrifuge (Eppendorf, UK) at full speed for 5 min. The pellet was resuspended in 200 \(\mu\)l of chilled Solution 1 (25 mM Tris-HCl, pH 8.0, 10 mM EDTA, 0.9 % Glucose) and placed on ice. 400 \(\mu\)l of freshly prepared Solution II (1 % SDS, 0.2 M NaOH) was added to each sample and mixed thoroughly by inversion and left on ice for 4 min. Next, 300 \(\mu\)l of Solution III (3 M KOAc, 11.5 % Glacial Acetic Acid) was added, mixed thoroughly by inversion and left on ice for 1 hr after which the BAC preps were centrifuged at full speed for 10 min. The supernatant was transferred to a fresh tube and mixed with an equal volume of cold isopropanol, mixed by inversion and spun immediately for 10 min at full speed. The pellet was then washed twice in 70 % ethanol, air dried and resuspended in 50 \(\mu\)l of SDW. The 7.5 \(\mu\)l of each positive BAC DNA was then digested with 1 unit of \(\text{NotI} \) to check insert size. These were separated on a 1 % Agarose/ 0.25 x TBE CHEF gel, Southern blotted using standard Sambrook method and probed with 35S enhanced probe mentioned in Table 2.9.2. The BACs were then end sequenced with the pIndigoBAC-5 sequencing primers shown in Table 2.9.2 using the ICAPB sequencing service (Kings’ Buildings, Edinburgh University, UK) using ½ reaction size of ABI-Prism® 7000 Sequencing Kit (Applied Biosystems Ltd, USA).

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Primer sequence (5'-3')</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>pIndigoBAC-5 Forward sequencing primer</td>
<td>GGATGTTGCTGCAAGCGATTAAGTTGG</td>
<td>230-256 bp</td>
</tr>
<tr>
<td>pIndigoBAC-5 Reverse sequencing primer</td>
<td>CTGGTATGTTGTTGGGAATTGAG</td>
<td>311-330 bp</td>
</tr>
</tbody>
</table>
2.10. **Southern Blot Analysis**

2.10.1. DNA extraction

DNA extraction for Southern Blot analysis using plant DNA was performed using a Qiagen DNeasy® Plant mini Kit (Qiagen Ltd, UK).

2.10.2. DNA Probe Synthesis

Probes were prepared by amplification of appropriate sequences using PCR and directly purified using a kit (Promega, UK) (Table 2.9.1 and Table 2.2). Sequences for the PCR primers and templates used for each probe are reported. Probes were labelled with α-32P-dCTP (Amersham, UK) by random priming using the Prime-a-Gene® labelling system (Promega, UK).

2.10.3. Southern Blot

E. coli containing the pIndigoBAC5 vector containing HindIII partially digested ads1 DNA (Caltech UK Ltd, UK) were spotted onto nylon membrane (Genetix, UK) using the Qbot according to the supplier’s instructions (see 2.9). Probes were labelled with α-32P-dCTP (Amersham, UK) by random priming using the Prime-a-Gene® labelling system (Promega, UK). Southern blotting, hybridisation and washing performed as described in (Sambrook *et al.* 1989).

2.11. **Northern Blot Analysis**

2.11.1. RNA Extraction

RNA was extracted from the frozen bulked leaf samples using the Qiagen RNeasy plant mini kit and procedure followed as advised by the manufacturer's instructions (Qiagen Ltd, Crawley, West Sussex, UK). The RNA was quantified as mentioned in 2.9.4. RNA samples were DNased using the Ambion (Ambion Inc, USA) DNA-free protocol as in section 2.9.4.
2.11.2. Northern Hybridization

RNA filters were prepared by separating 15 μg of denatured total RNA by gel electrophoresis following the Ambion Northern Max protocol (Ambion Northern Max system, Ambion Inc, USA) with modifications. Northern gel was prepared using 10x denaturing gel buffer (Northern Max System, Ambion Inc, USA) Samples were run using 1x MOPS gel running buffer (10x MOPS buffer: 200 mM 3 (N-morpholino) propanesulfonic acid (MOPS); 80 mM Sodium Acetate trihydrate; 10 mM EDTA in 0.1 % DEPC SDW). RNA samples (5 μg) were mixed with 3 volumes of formaldehyde load dye (Ambion Inc., USA). The RNA was then denatured by incubation at 65 °C for 15 min before loading onto gel and run at a low voltage overnight. The gel was then viewed and photographed using a transilluminator (Uvitec, Thistle Scientific, UK). Blotting was performed as in Sambrook et al. (1989) though using Ambion 1x transfer buffer (Ambion Inc., USA). The membrane was washed in 1 x running buffer, examined and photographed using the transilluminator (Thistle Scientific, UK). The membrane was crosslinked on the maximum setting using the spectrolinker XL-1500 UV crosslinker (Spectronics Corporation, USA). For membrane pre-hybridisation, the ULTRAhyb pre-hybridisation solution (Ambion Inc., USA) was pre-heated and used according manufacturer’s instructions. Probe was synthesised as in section 2.10.3 except using components of the Strip-EZ DNA kit (Ambion Inc): 2.5 μl 10x decamer solution, 5.0 μl 5x buffer –dATP/-dCTP, 2.5 μl 10x dCTP, 5.0 μl [α-32P]dATP (3000 Ci.mmol−1, 10 mCi ml−1), 1.0 μl exonuclease-free Klenow. Probes used for Northern blot analysis are shown in Table 2.11.2. Subsequent hybridisation and washing performed as in Sambrook et al. (1989). X-ray film (X-OMAT LS-1, Kodak, USA) was used in cassettes with intensifying screens for an appropriate length of time at −80 °C depending upon the final signal strength.

2.11.3. Removal of strippable DNA probe from the membrane

The membrane was stripped using the protocol and solutions provided with the Strip-EZ kit (Ambion Inc, USA) and the membrane sealed in a polythene bag and stored at −20 °C until required.
Table 2.11.2: Primers used to synthesize Northern probes

<table>
<thead>
<tr>
<th>Species</th>
<th>Gene</th>
<th>NCBI No.</th>
<th>Primer Name</th>
<th>Sequence (5'-3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solanum tuberosum</td>
<td>CYP1</td>
<td>AJ245924</td>
<td>pCATHK</td>
<td>GCAGCTCACAGCTCAACTCTC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pCATHK</td>
<td>CAAAGCGTAGTCCATAAGACC</td>
</tr>
<tr>
<td></td>
<td>ADR1</td>
<td>BG596098 &</td>
<td>pADR_1</td>
<td>ACAAACCTTTCCATGCAAGGAG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BG591972</td>
<td>pADR_4</td>
<td>CCAAAACGTAGAGCATGTT</td>
</tr>
<tr>
<td></td>
<td>SGT1</td>
<td>BG599125</td>
<td>pSGT_1</td>
<td>TGAGCCAAGAAACCTGGAA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pSGT_3</td>
<td>TAGGGCTAAAGAGGCGTTCA</td>
</tr>
<tr>
<td></td>
<td>SNF1</td>
<td>BI433152</td>
<td>pSNF_1</td>
<td>TGGATTGTTATTCCCCTTGA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pSNF_2</td>
<td>GATTTGAGACTGCCCATTTC</td>
</tr>
</tbody>
</table>

2.12. Western Blot Analysis

Protein extraction and western-blot analysis were as previously described (Lacomme and Santa Cruz, 1999) with the exception of extraction buffer which consisted of an equal mix of 50 mM Potassium phosphate monobasic (KH$_2$PO$_4$) and Potassium phosphate dibasic (K$_2$HPO$_4$). Buffer was adjusted to pH 6.8 by adding monobasic or dibasic solution as required. For PARP-1 western 160 ng or 80 ng of bovine PARP was incubated with either Bovine Cathepsin B (Sigma-Aldrich Company Ltd, UK) or crude protein extracts with or without 1 mM Cathepsin B Inhibitor I, Ac-LVK-CHO (Calbiochem®®, Merck Biosciences, UK) diluted from 100 mM stock dissolved in SDW, adapted from D’Silva et al., (1998). Pre-cast NuPAGE® Novex 4-12 % Bis-Tris gels (Invitrogen, UK). Mark12™ unstained Protein Marker was used and visualised using Ponceau’s stain (Sambrook et al., 1998). Membranes were probed with rabbit polyclonal antiserum, raised against the PVX CP as previously described (Santa Cruz et al., 1996) or polyclonal anti-PARP-1 as previously described in D’Silva et al., (1998). Secondary anti-rabbit antibody (IgG) utilised was raised in goat and fused to alkaline phosphatase. One Tetrazolium tablet was dissolved in 10 ml of SDW, added to membrane and shielded from light for 0 - 4 hr to visualise protein.
2.13. Cathepsin B Activity

Frozen material was finely ground using liquid Nitrogen and baked pestle and mortar. 300 µl of extraction buffer (50 mM Monobasic, 50 mM dibasic Potassium phosphate, pH6.8 and 1 mM DTT) was added and tissue homogenised. Protein samples were incubated on ice for 15 min before being spun at max speed for 15 min to pellet cell debris. Supernatent was transferred to fresh Eppendorf tube (Eppendorf Ltd, UK) and kept on ice or frozen at -70 °C. Assays performed using clear 96 well microtitre plates (Fisher Scientific, UK) and DIAS plate reader (Dynatech Laboratories, UK).

2.13.1. Bradford Assay

Bradford reagent (Bio-Rad, UK), was diluted 1:5 with SDW, aliquoted 199 µl to each well of 96 well microtitre plate and 1 µl of protein extract was subsequently added and gently mixed by pipetting. Reaction left for 30 min at room temperature and optical density measured at 595 nm. Protein concentration was calculated using formula derived from a Bovine serum albumin dilution series ranging from 0 – 6 µg (y= 0.2186x + 0.3304).

2.13.2. Cathepsin B Substrate I - Colorimetric Assay

Cathepsin B colorimetric substrate (Calbiochem®, Merck Biosciences, UK) was diluted to 1 mM in SDW. Assay buffer was prepared with SDW as recommended by Calbiochem® (46.3g/L Sodium acetate; 4 mM Disodium EDTA; 60 mM Acetic Acid and 8 mM DTT). Assay buffer and colorimetric substrate were mixed together as equal volumes then mixed well with 1.8 x volume of SDW. 140 µl of buffer/substrate solution was aliquoted into each well of 96 well microtitre plate and 10 µl of protein extract added, mixed and incubated at room temperature for 30 min. The optical density was read at 405 nm using DIAS plate reader. Protein activity was divided by total protein (mg/ml) in crude extracts calculated using Bradford Assay, reading optical density at 595 nm. Assay was repeated using Cathepsin B Inhibitors diluted to 1 mM from 100 mM stocks kept at -80 ºC (Cathepsin B, S and L inhibitor, Z-FGNHO-Bz; Cathepsin B
Chapter 2

inhibitor I, Z-FA.fmk; Cathepsin B inhibitor II, Ac-LVK-CHO and Cathepsin B Inhibitor IV, CA-074 Me) (Calbiochem®, Merck Biosciences, UK).

2.14. Quantification of Anthocyanin

Leaf samples (100 mg) from six individual plants per line were collected. The tissue samples were ground in 300 μl of acidified methanol (1 % HCl v/v) and incubated for 2 hr at 30 °C. Following centrifugation (10,000 x g for 10 min) the supernatant was transferred to a new tube. Two volumes of chloroform were then added and the samples vortexed before centrifugation (10,000 x g for 5 min). The supernatant (methanol phase) was carefully collected and transferred to a new tube. The chloroform step was repeated and the supernatant collected and added to 600 μl of water and vortexed. This fraction was read spectrophotometrically at 550 nm for anthocyanin.

2.15. Homology searches and sequence analyses

The bioinformatics tools from web-based databases presented in Table 2.15 were used for sequence searches and analysis. Homology searches in Arabidopsis were carried out using BLAST at the TAIR website. Searches which included sequences from Nicotiana, Lycopersicon and Solanum species were performed using the nucleotide and protein databases at the NCBI website. Alignments were performed using both Multialign website and the bl2seq (at NCBI website).
Table 2.15: Web-sites used for sequence search and analysis

<table>
<thead>
<tr>
<th>Name</th>
<th>Function</th>
<th>Web address</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLAST</td>
<td>Homology search in Arabidopsis</td>
<td>http://www.arabidopsis.org/Blast/</td>
</tr>
<tr>
<td>Multialign</td>
<td>Multiple alignment of nt/aa sequences</td>
<td>http://prodes.touloose.inra.fr/multialin.html</td>
</tr>
<tr>
<td>At R genes</td>
<td>Arabidopsis resistance Genes Database</td>
<td>http://nibrrs.ucdavis.edu/At_RGenes/</td>
</tr>
<tr>
<td>Salk Institute Genomic Analysis Laboratory (SIGnAL)</td>
<td>Sequence-Indexed Library of Insertion Mutations in the Arabidopsis Genome</td>
<td>http://signal.salk.edu/tabout.html</td>
</tr>
<tr>
<td>The European Cultivated Potato Database</td>
<td>A resource for potato breeders, scientists and farmers</td>
<td>http://www.europotato.org</td>
</tr>
</tbody>
</table>
3. Isolation and Gene Identification of Susceptible Activation Tagged *Arabidopsis* Mutants

3.1. *The Model Plant: Arabidopsis*

The flowering weed, *Arabidopsis*, was first used as a model organism by Luiback, in 1943, because of its small size, short life cycle (6 weeks) and large seed production (Meinke *et al.*, 1998; Dennis and Surrige, 2000). However, research using *Arabidopsis* for genetic analysis of disease resistance pathways was only established in the late 1990’s (Buell, 1998). The *Arabidopsis* Genome Initiative (AGI) was formed in 1996 to co-ordinate complete sequencing of the genome to provide plant scientists with a genetic blueprint for a simple model plant. The genome sequence was completed in 2000 and revealed that functional redundancy may be extremely common because around 70 % of genes have been duplicated (Walbot, 2000).

3.2. Development of Gain-of-Function Screens

Classical mutant screens have been used extensively as a means of dissecting genetic pathways and have traditionally utilised loss-of-function mutants generated by transposable elements, neutron particle bombardment, T-DNA tagging and ethyl methane sulfonate (EMS) mutagenesis. EMS and irradiation efficiently generate large numbers of mutations that effectively saturate the genome. However, identifying the mutated gene by map-based cloning can be arduous. On the other hand, T-DNA tagging and transposable elements provide a molecular anchor from which to determine the surrounding DNA sequence (Tani *et al.*, 2004). In addition, loss-of-function mutagenesis rarely identifies functionally redundant or essential genes. Due to the high degree of gene duplication in the *Arabidopsis* genome and therefore other plant genomes (Bevan *et al.*, 1998), a number of methods have been designed to promote identification of these redundant or essential gene families (Tani *et al.*, 2004). By identifying regions highly conserved (> 90 % identity) between all genes in a family, and cloning them into a silencing vector, the function of the gene family as a whole can be investigated. In
addition, virus-induced gene silencing in adult plants may circumvent potential lethality of given loss-of-function phenotypes at earlier developmental stages. However, this approach requires prior knowledge of the candidate gene and gene family to be investigated. Enhancing the expression of one gene family member is another method of investigating functionally redundant genes and has been previously shown to generate recognizable phenotypes e.g. MyoD in fibroblasts (Davis et al., 1987). Therefore a method of generating enhanced expression of random genes was required to identify gain-of-function mutants and concomitantly novel genes. A method known as “activation tagging” has subsequently been developed that takes advantage of the strong activating properties of the cauliflower mosaic virus (CaMV) 35S gene enhancer (Weigel et al., 2000). The pSKI015 T-DNA vector has been manipulated to contain four CaMV 35S enhancers and the BAR gene, a selectable marker which conveys resistance to the herbicide ammonium glufosinate (commonly known as Basta) (Figure 3.2, A). Insertion of this vector into the genome may cause a loss-of-function phenotype (Figure 3.2, B). However, the activation of genes adjacent to pSKI015 can occur at distances from 380 bp to 3.6 kb (Weigel et al., 2000) (Figure 3.2, B). An advantage of using the tagged pSKI015 vector is that many protocols have been developed to isolate adjacent genomic sequence. One PCR-based technique, known as thermal asymmetric interlaced (TAIL) PCR, uses nested primers specific for the 35S enhancers with degenerate primers which may anneal in the adjacent genomic DNA (Liu et al., 1995). In addition, a plasmid rescue procedure can also be performed to digest the T-DNA vector out of the genome with some adjacent genomic DNA (Ichikawa et al., 2003). There are a few drawbacks with T-DNA-based technologies, including: non-random vector insertion preventing complete genome saturation; and the presence of insulator sequences in the genome which may protect some genes from activation (Weigel et al., 2000; Jeong et al., 2002). This activation gain-of-function strategy has been utilised successfully in Arabidopsis and is now being applied to other plant species, particularly the second fully sequenced plant and model monocot, rice (Jeong et al., 2002).
3.3. Activation Tagging for Negative Regulators of Disease Resistance

Classical mutagenesis screens for loss-of-function mutants in race-specific disease resistance pathways have predominantly identified mutant alleles of the cognate R gene e.g. RPM1 (Bisgrove et al., 1994) and only a few additional genes. Similarly, loss-of-function screens undertaken in a number of laboratories for insensitivity to SA have only uncovered npr1/nim/sail/eds16 (Cao et al., 1997; Ryals et al., 1997; Shah et al., 1997). Therefore, many defence signalling components may be encoded by either redundant or essential genes. Hence, activation represents an attractive research strategy. In this

Figure 3.2: Activation tagging vector pSK1015 and two possible insertion events. A, Map of pSK1015 vector (Accession no. AF187951), including BAR gene for herbicide resistance and 4 x 35S CaMV enhancers (adapted from Weigel et al., 2000). B, Insertion of vector into a gene may result in a loss-of-function phenotype and insertion adjacent to genes may result in a bi-directional activation of one or more genes resulting in a gain-of-function phenotype.
context, activation tagging has been successfully utilised to identify defence genes such as the cathepsin D-like CDR1 and the R gene-like ADR1 (Xia et al., 2004; Suzuki et al., 2004; Grant et al., 2003). Nearly all screens of Arabidopsis have focused on loss-of-function or gain-of-function mutations in genes required for disease resistance induced by avirulent, non-host or necrotrophic pathogens (Eckardt, 2002). Virulent pathogens grow aggressively in planta, which can lead to recognition of infection, inducing SA-dependent defence responses that are often too late to prevent disease (Crute and Pink et al., 1996). However, few screens have been developed to identify genes that could be involved in response to virulent pathogens and therefore many basal defence responses. Most R genes bred into commercial crops have not been durable in the field (Kearney and Staskawicz, 1990; Li et al., 2001). Therefore identifying genes involved in basal resistance could provide alternative targets for breeding durable resistance in crop species (Stuiver and Custers, 2001; Wichmann and Bergelson et al., 2004).

Despite the possible applications of these types of genes, screens identifying over-expressed suppressors of basal disease resistance have not been published thus far. A few papers describing enhanced disease susceptibility (eds) mutants caused by loss-of-gene function defining positive regulators of basal resistance have been described (Parker et al., 1996; Rogers and Ausubel, 1997; Volko et al., 1998; Reuber et al., 1998). Therefore, it was of interest to develop a screen for activated disease susceptibility. This strategy was designed to uncover novel genes encoding negative regulators of SA-dependent disease resistance.

3.4. Screen for Mutants Susceptible to Virulent Pst DC3000

Previously, Col-0 Arabidopsis plants were transformed with the activation tagging vector pSKI015 generating a T₀ population which were left to self-pollinate giving rise to approximately 20 million T₁ seeds (Tani et al., 2004) supported by Akadix Inc. (CA, USA). The T₁ transformed lines are heterozygous for the pSKI015 insert and lines that survived repeated spraying with the commercially available herbicide Basta must contain
at least one T-DNA insertion. Basta resistant lines were transferred from large flats to pots and left until plants of all genotypes were a suitable size for pathogen inoculation. Plants were then pressure infiltrated with *Pst* DC3000 in a bacterial suspension of OD$_{600} = 0.0003$ (10^5 CFU/ml). This inoculum does not induce disease symptoms in Col-0 plants but does induce chlorosis at 4-5 days post-inoculation (dpi) in the susceptible mutants *nahG* and *eds1* (Lawton *et al.*, 1995; Parker *et al.*, 1996). In order to check the aggressiveness of the bacteria used for every screening event, six Col-0, *nahG* and *eds1* Arabidopsis plants were pressure infiltrated with the inoculum used for screening. Putative susceptible candidates were selected if symptoms were comparable to inoculated *eds1* and *nahG* plants. Putative susceptible candidates were then labelled and left to set seed. The lines which did not show any increased susceptibility were left to flower and seed was collected as a pool per tray (70 plants) for future screens.

In addition, plants displaying abnormal morphological phenotypes were also kept for seed collection. Frequently, ectopic over-expression of ordinarily inducible defence pathways produce plants of reduced stature (Frye and Innes, 1998; Maleck *et al.*, 2002; Pilloff *et al.*, 2002). Overall, more than half of the T$_1$ seed, corresponding to about 1.8 million seeds and 6,000 individual T$_1$ tagged plants (transformation rate of approximately 0.3 %) were screened for disease susceptibility. Twelve individual candidate lines that conveyed disease susceptibility were identified for further analysis.

3.4.1. Heritability of the Activation Tagging Vector

The following generation (T$_2$) of all twelve susceptible mutants were analysed for the inheritance of the pSKI015 vector by Basta spraying. As progeny of a heterozygous mutant with a single pSKI015 insertion, Basta treatment should result in a segregation ratio of 3:1 for Basta resistance to sensitivity. Identifying the gene responsible for the disease susceptibility phenotype in a line with more than one insert would require generations of back-crossing with Col-0 to identify the insertion that links with the disease susceptibility phenotype. Table 3.4.1 reveals the segregation ratio of mutant candidates firstly inoculated with virulent *Pst* DC3000 and then sprayed with Basta.
Chapter 3

The putative susceptible candidate line L had a segregation for Basta resistance of $55/75 = 73\%$ (3:1) and $53/75 = 71\%$ (2.5:1) for disease susceptibility. N displayed $52/73 = 71\%$ (3:1) segregation for Basta resistance and $47/73 = 64\%$ (2:1) for disease susceptibility making them the most suitable lines for further investigation. Hereafter, susceptible candidate L will be referred to as activated disease susceptibility 1 ($ads1$) and N as activated disease susceptibility 2 ($ads2$). The ratios obtained from susceptibility screening and Basta resistance did not fit the perfect Mendelian ratio and could possibly be due to biased selection of seedlings at time of transplant, sensitivity of mutants to transplant procedure or inadequate $Pst\ DC3000$ inoculation of all plants, especially smaller homozygous mutants.

Table 3.4.1: Initial segregation analysis on the $T2$ progeny of susceptible candidates for disease susceptibility to $Pst\ DC3000$ and Basta resistance.

<table>
<thead>
<tr>
<th>Mutant</th>
<th>Total</th>
<th>Susceptible to Pst DC3000</th>
<th>Resistant to Pst DC3000</th>
<th>Ratio</th>
<th>Basta sensitive</th>
<th>Basta resistant</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>70</td>
<td>27</td>
<td>43</td>
<td>1:2</td>
<td>6</td>
<td>64</td>
<td>1:11</td>
</tr>
<tr>
<td>B</td>
<td>70</td>
<td>26</td>
<td>44</td>
<td>1:2</td>
<td>26</td>
<td>44</td>
<td>1:2</td>
</tr>
<tr>
<td>C</td>
<td>70</td>
<td>12</td>
<td>58</td>
<td>1:5</td>
<td>70</td>
<td>0</td>
<td>1:0</td>
</tr>
<tr>
<td>G</td>
<td>70</td>
<td>10</td>
<td>60</td>
<td>1:6</td>
<td>14</td>
<td>56</td>
<td>1:4</td>
</tr>
<tr>
<td>J</td>
<td>63</td>
<td>16</td>
<td>47</td>
<td>1:3</td>
<td>0</td>
<td>63</td>
<td>0:1</td>
</tr>
<tr>
<td>L</td>
<td>75</td>
<td>53</td>
<td>22</td>
<td>2.5:1</td>
<td>20</td>
<td>55</td>
<td>1:3</td>
</tr>
<tr>
<td>M</td>
<td>72</td>
<td>17</td>
<td>55</td>
<td>1:3</td>
<td>72</td>
<td>0</td>
<td>1:0</td>
</tr>
<tr>
<td>N</td>
<td>73</td>
<td>47</td>
<td>26</td>
<td>2:1</td>
<td>21</td>
<td>52</td>
<td>1:3</td>
</tr>
<tr>
<td>O</td>
<td>47</td>
<td>23</td>
<td>24</td>
<td>1:1</td>
<td>21</td>
<td>26</td>
<td>1:1</td>
</tr>
<tr>
<td>P</td>
<td>48</td>
<td>17</td>
<td>31</td>
<td>1:2</td>
<td>36</td>
<td>12</td>
<td>3:1</td>
</tr>
<tr>
<td>Q</td>
<td>48</td>
<td>23</td>
<td>25</td>
<td>1:1</td>
<td>32</td>
<td>16</td>
<td>2:1</td>
</tr>
<tr>
<td>R</td>
<td>48</td>
<td>17</td>
<td>31</td>
<td>1:2</td>
<td>6</td>
<td>42</td>
<td>1:7</td>
</tr>
</tbody>
</table>

In total, approximately 75\% (226/297) of the $T2$ progeny of $ads1$ retained the susceptible phenotype and Basta resistance. The sum of $ads2$ plants that retained the susceptibility phenotype and Basta resistance was approximately 73\% (166/228). All plants exhibiting a wild-type phenotype, about 25\% of $ads1$ (71/297) and 27\% (62/228) of $ads2$ were BASTA susceptible and did not show chlorotic symptoms post-inoculation with $Pst\ DC3000$ at 4 dpi. These results indicate that a single dominant mutation was responsible for each of these mutant disease susceptibility phenotypes.
3.5. Characterisation of Pst DC3000 Susceptibility in ads Mutants

3.5.1. Disease susceptibility to 10^5 CFU/ml inoculum of virulent Pst DC3000

Following determination of disease susceptibility to virulent Pst DC3000 co-segregating with Basta resistance, confirmation and quantification of the extent of susceptibility to virulent Pst was required. A bacterial suspension of 10^5 virulent Pst DC3000 was pressure infiltrated into Arabidopsis Col-0, nahG, eds1 and ads mutants. Bacterial colony counts were performed 4 dpi to provide an indication of whether ads mutants were more or less susceptible to virulent Pst DC3000. Unfortunately, dwarfed homozygous ads2 mutants were too small to inoculate adequately by pressure infiltration and therefore bacterial growth was evaluated from both heterozygous ads1 and ads2 plants. Due to time constraints, dipping or spraying of Pst DC3000 over Arabidopsis was not optimised or quantified. In addition, these mutants were originally identified during the susceptible screen as heterozygous mutants in the T1 and should therefore still possess a dominant susceptible phenotype. The resulting viable colony counts displayed in Figure 3.5.1 revealed that heterozygous ads1 and ads2 allowed 2-log greater virulent Pst growth but almost 1-log less than the well characterised transgenic plant nahG and the homozygous recessive mutant eds1. This experiment was repeated twice with similar results.
3.5.2. Response of ads mutants to 10^6 CFU/ml inoculum of Pst DC3000

The bacterial suspension of 10^5 CFU/ml used for screening T1 activation tagged population for susceptible mutants and inoculated to produce Figure 3.5.1 (shown above) does not produce disease symptoms in Col-0. Following this, it was examined whether the difference in resistance to Pst DC3000 in ads mutants and Col-0 would differ when using a greater inoculum strength of 10^6 CFU/ml (OD$_{600}$=0.002) which does causes disease symptoms in Col-0 (Figure 3.5.2). The susceptible control mutant nahG was only 10-fold more susceptible than Col-0 using a suspension of 10^6 CFU/ml Pst DC3000. The ads1 heterozygous mutant was 5-fold more susceptible to Pst whereas ads1 homozygous mutant was as susceptible to Pst DC3000 as nahG. In addition, ads2 was almost as susceptible to Pst DC3000 as nahG and ads1. Viable colony counts were performed twice with similar results.
3.5.3. Response of ads mutants to avirulent Pst DC3000 (avrB)

Although these mutants are susceptible to Pst DC3000, it was of interest to investigate whether these lines were also susceptible to Pst DC3000 (avrB). Therefore, the recovery of bacteria from inoculated leaves was performed and counted from ads mutants using 10^6 CFU/ml suspension of Pst (avrB). Figure 3.5.3 reveals that the nahG mutant is around 1.5-logs more susceptible to Pst DC3000 (avrB). Similarly, ads1 heterozygous mutant was shown to be almost 2-logs more susceptible and displayed extensive chlorosis. On the other hand, ads2 appeared to be as susceptible as Col-0 with the same inoculum although displayed a stronger HR. Therefore, ads1 is as susceptible to both virulent Pst DC3000 and avirulent Pst DC3000 (avrB) in a similar fashion to nahG plants. Interestingly, ads2 appears to be only perturbed in basal defence responses and reacts like Col-0 in response to avirulent Pst DC3000 (avrB). This experiment was repeated twice with similar results.
3.5.4. Hydrogen peroxide accumulation and cell death in \textit{ads} mutants

As discussed in Chapter 1, hydrogen peroxide (H$_2$O$_2$) is a signalling molecule involved in both inducing the HR and, to a lesser extent, in basal resistance (del Rio \textit{et al.}, 2002). Since both \textit{ads} mutants respond differently to \textit{Pst} DC3000 (\textit{avrB}) shown by examining resistance, it was proposed that early defence signalling such as H$_2$O$_2$ may be perturbed in these mutants. The stain, 3, 3-diaminobenzidine (DAB) is oxidised to produce an insoluble brown substrate by peroxidase which simultaneously reduces hydrogen peroxide (Thordal-Christensen \textit{et al.}, 1997). Therefore, DAB was used to examine H$_2$O$_2$ production in \textit{ads} mutants (Figure 3.5.4a). As expected, Col-0 does not accumulate H$_2$O$_2$ before inoculation, a small amount after inoculation with virulent \textit{Pst} DC3000 4 hpi and to a greater extent 4 hpi with avirulent \textit{Pst} DC3000. Transgenic \textit{nahG} \textit{plants} which has both perturbed basal and HR defences did not accumulate H$_2$O$_2$ after any treatments tested. Interestingly, \textit{ads1/ADS1} displayed significant accumulation of H$_2$O$_2$ in untreated plants, and massive accumulation after inoculation with both virulent \textit{Pst}
DC3000 and avirulent Pst DC3000 (avrB). The ads2/ADS2 mutant displayed more acute H$_2$O$_2$ accumulation at the site of inoculation in response to both Pst DC3000 (avrB) and, to a lesser extent, with virulent Pst DC3000.

Stained leaves were also examined under the microscope to observe the H$_2$O$_2$ accumulation at the cellular level (Figure 3.5.4b, A). Examination of DAB stained leaves at the cellular level revealed that ads1 mutant plants accumulate H$_2$O$_2$ extensively and uniformly throughout the leaf tissue, and production increases further in response to virulent and avirulent Pst DC3000. In Col-0 plants, H$_2$O$_2$ accumulation is more localised to sites of pathogen growth. In addition, ads2 plants display patchy H$_2$O$_2$ accumulation in response to Pst DC3000 (avrB). In addition to DAB staining, trypan blue staining was performed to visualise cell death in leaves at 12 hpi. Trypan blue is a stain that can distinguish viable cells from non-viable cells, but cannot distinguish...
between cells killed by disease or by the HR. Live, healthy cells appear round without absorbing the blue dye, whereas dead cells appear blue and, in later stages asymmetrical (Yun et al., 2003). After inoculation Col-0 responds to *Pst DC3000* (*avrB*) with an extensive HR by 12 hpi and with absent or limited cell death after virulent *Pst DC3000* infection (Figure 3.5.4b, B). The *nahG* mutant displays limited cell death in response to both virulent and avirulent *Pst*. The *ads1/ADS1* mutant shows more cell death than *nahG* in response to virulent *Pst DC3000* and *Pst DC3000* (*avrB*). The mutant *ads2/ADS2*, displayed similar responses to *Pst DC3000* and *Pst DC3000* (*avrB*) as *nahG*. In addition, *ads2/ADS2* displayed less cell death in the form of asymmetric cells as Col-0 in response to *Pst DC3000* (*avrB*).

A

<table>
<thead>
<tr>
<th></th>
<th>Col-0</th>
<th>nahG</th>
<th>ads1/ADS1</th>
<th>ads2/ADS2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pst DC3000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pst DC3000 (avrB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th></th>
<th>Pst DC3000</th>
<th>Pst DC3000 (avrB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pst DC3000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pst DC3000 (avrB)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3.5.4b: Microscopic images of hydrogen peroxide accumulation and cell death. A, DAB staining for H$_2$O$_2$ at 4 hpi with either virulent or avirulent *Pst DC3000*. B, Trypan blue staining for dead cells at 12 hpi with either virulent or avirulent *Pst DC3000*. Five leaves per time point were stained for each genotype and pathogen challenge. Experiment was repeated three times with similar results.
3.5.5. Anthocyanin accumulation in ads2 mutant

Closer inspection of the ads2 homozygous mutant revealed that anthocyanin was strongly accumulating in most leaves by 21 days old. Anthocyanins are antioxidant compounds produced by the stress-inducible flavanoid biosynthesis pathway that include the enzymes phenylalanine ammonia lyase (PAL) and chalcone synthase (CHS), which also produces antimicrobial phytoalexins (VanEtten et al., 1994; Abraham et al., 1999). Light-induced production of anthocyanin has been shown to decrease after fungal pathogen challenge which induces an increase in phytoalexins production (Lo and Nicholson, 1998). There has also been a report that anthocyanins have a strong inhibitory effect on nitric oxide production in macrophages (Wang and Mazza, 2002). Anthocyanin was extracted from 100 mg of leaf tissue from six individual Col-0 and ads2 homozygous and heterozygous mutants using acidified methanol, purified using chloroform and absorbance of the methanol phase was read at 537 nm and 650 nm. The difference between these two readings differentiates between anthocyanin and other flavanols. Figure 3.5.5 shows that both the untreated heterozygous and homozygous ads2 mutants accumulated more anthocyanin than Col-0 at the same age. The clear visible phenotype associated with anthocyanin accumulation in homozygous ads2 can be observed in the photographs also shown in Figure 3.5.5.
3.5.6. Morphological phenotypes of *ads1* and *ads2* candidates

Both *ads1* and *ads2* developed unusual morphological phenotypes that segregated with the Basta resistance phenotype, susceptibility to virulent *Pst* and therefore with the activation tag (Figures 3.5.6a and 3.5.6b). The co-dominant mutant, *ads1* displayed a loss-of-apical dominance phenotype which resulted in both heterozygous and homozygous mutants commencing flowering approximately two weeks before Col-0 in long day conditions (Figure 3.5.6a). The leaves and siliques of the heterozygous *ads1* mutants were smaller than wild type and exhibited a dwarfed stature with perturbed leaf architecture. In addition, florescences grew to a maximum height of 6 cm compared with Col-0 florescences (~20 cm). Homozygous *ads1* mutants exhibited a more severe dwarfed stature, normal leaf shape but smaller leaf size and similar leaf architecture as heterozygous plants. In addition, homozygous *ads1* mutants produced little or no seed, as normal silique development did not commence after flowering from 4 cm tall.
Interestingly, the majority of older leaves of both homozygous and heterozygous mutants had senesced by six weeks.

The co-dominant ads2 mutants also displayed a distinctive morphology. Heterozygous, ads2 mutant leaves possessed an undulating surface and short petioles although their size was only slightly smaller than Col-0 (3.5.6b). The heterozygous ads2 mutant was fertile although the siliques were smaller than Col-0. The homozygous ads2 mutant was also dwarfed in comparison with Col-0 (Figure 3.5.6a, A), possessed very small and narrow leaves that displayed a perceptible accumulation of anthocyanin from four weeks (Figure 3.5.6b, D). In addition, the homozygous ads2 mutant was infertile as flowers failed to open and senesced early (Figure 3.5.6b, E).
3.6. **Defence Signalling Pathways in ads Mutants**

SA, ET and JA have each been demonstrated to have a role in regulating basal resistance responses induced against different pathogens (Ton *et al.*, 2002). The SA-dependent pathway is associated characteristically with defence mechanisms induced against avirulent and virulent biotrophic pathogens, whereas ET- and JA-dependent pathways predominantly regulate defences against necrotrophic pathogens (Bent *et al.*, 1992, Lund *et al.*, 1998; Greenberg *et al.*, 2000). However, the *Arabidopsis* mutant, named constitutive expression of *Vsp1* (*cev1*), possesses enhanced resistance to a range of biotrophic powdery mildew fungi and constitutively active ET- and JA-dependent
pathways (Ellis and Turner, 2001). Evidence suggests that these parallel defence pathways can be mutually antagonistic but not mutually exclusive.

3.6.1. SA analogue, Benzothiadiazole (BTH) treatment of ads mutants

The ads mutants could possibly be susceptible to virulent Pst DC3000 due to a dysfunctional SA-dependent pathway, perturbed up-stream or down-stream of SA signalling. BTH spraying of the mutant nahG, which has a blocked SA-dependent pathway can rescue the pathway and induces SAR (Lawton et al., 1996). The response to Pst DC3000 of both ads mutants after BTH treatment was investigated to determine if these mutants could be rescued by application of exogenous SA. Both ads mutants plus Col-0, nahG and eds1 plants were sprayed twice with BTH, 2 and 1 week before inoculation of a 10^5 CFU/ml suspension of Pst DC3000. Figure 3.6.1 reveals that BTH treatment resulted in a 20-fold decrease in bacterial growth in Col-0 plants. BTH treatment of nahG resulted in restoration of resistance to virulent Pst DC3000 to a level observed in untreated Col-0 plants. EDS1 is required for SA-dependent signalling through TIR-NBS-LRR-mediated resistance (Falk et al., 1999). BTH treatment of eds1 plants partially restored its resistance to Pst DC3000 by 20-fold. Nevertheless, the eds1 mutant is still one log more susceptible to virulent Pst DC3000 than untreated Col-0 plants. In addition, both BTH treated ads mutants exhibited a reduction of Pst DC3000 growth of 2.5 logs compared to untreated plants in Figure 3.5.1. BTH appears to have partially restored basal resistance in both ads mutants to a level greater than untreated Col-0 plants but not to the extent of BTH-treated Col-0 plants. This suggests that both ads mutants are perturbed in signalling events upstream of SA accumulation and can be partially rescued by BTH treatment.
3.6.2. Response of ads seedlings to 1-aminocyclopropane-carboxylic acid (ACC)

Arabidopsis seedlings grown in the dark and in the presence of ET should develop radial swelling of the hypocotyls and inhibition of root and hypocotyls growth, known as the "triple-response phenotype". Screening for ET insensitive mutants has uncovered mutants that either do not develop the triple-response in the dark and presence of ET (e.g. ein2) or display a constitutive triple-response phenotype in the absence of ET (e.g. eto1) (Guzman and Ecker, 1990). Interestingly, the ein2 mutant also displays increased susceptibility to necrotrophs and decreased disease symptoms to biotrophs (Dong, 1998). In contrast, mutants perturbed in the SA-dependent pathway typically result in enhanced resistance to necrotrophs (Thomma, 2001). As the SA pathway in ads mutants could be partially restored upon application with BTH, it may be possible that increased biotrophic susceptibility may be caused by activity in the concomitant ET- and JA-dependent pathway (Solano and Ecker, 1998).
In order to investigate the response to ET in ads mutants, sensitivity to the ET donor, ACC was examined. Surface sterilised seeds were sown on 5 plates for each concentration of ACC in a range between (0-50 μM). The effect of each ACC concentration on root length was measured at 7 days (Figure 3.6.2). In the absence of ACC, ads1 and ads2 responded to the dark conditions like Col-0, indicating that ads mutants do not over-produce or are insensitive to ET as ein2 (which is both insensitive to ET and thus overproduces ET) (Guzman and Ecker, 1990). However, eto mutants have been shown to overproduce ET but are not insensitive to it and therefore ET measurements in ads mutants would be required to support this experiment (Chae et al., 2003).

![Graph showing root length in response to increasing concentrations of the ethylene donor, ACC.](image)

Figure 3.6.2: Root length in response to increasing concentrations of the ethylene donor, ACC. Surface sterilised ein2.1, Col-0 and the progeny of heterozygous ads mutants were sown on MS plates containing 0, 10 and 50 μM ACC. Root length measured at 5 days. Error bars represent SE from two biological replicates including 30 seeds per genotype.

3.6.3. Response of ads seedlings to methyl jasmonate (Me-JA)

Constitutive increased susceptibility in ads mutants may be caused by suppression of SA-dependent defences due to activation of the JA-dependent defence-pathways.
Jasmonate-induced genes such as *MPK4* and *SSI1* have been shown to suppress SA-dependent pathways (Petersen *et al.*, 2000). COI1 is an F-box protein that may negatively regulate the JA-dependent pathway and the recessive *Arabidopsis* loss-of-function mutant is insensitive to Me-JA and more susceptible to necrotrophic pathogens (Feys *et al.*, 1994; Dong, 1998). It has also been shown that the mutants *eds4* and *pad4*, which cannot accumulate SA, are more sensitive to jasmonate (Dong, 1998). To investigate the response of the *ads* mutants to Me-JA, surface sterilised seeds were subsequently sown on MS agar plates containing a range of Me-JA concentrations (0-150 μM). The effect of each Me-JA concentration on root growth was measured at 7 days (Figure 3.6.3.) Results revealed that *ads1* and *ads2* responded to increasing Me-JA concentrations in a similar manner as Col-0 seedlings. However, the root length of *ads2* seedlings at 150 μM Me-JA was 20 % of untreated seedlings while Col-0 and *ads1* plants were 30 % root length of untreated seedlings. This experiment provides an indication that there may be a difference in sensitivity to Me-JA between Col-0 and *ads2* seedlings.

![Figure 3.6.3: Root length of ads mutants and Col-0 in response to increasing concentrations of Me-JA.](image-url)

Surface sterilised Col-0 and the progeny of heterozygous *ads* mutants were sown on MS plates containing 0, 50, 100 and 150 μM of Me-JA. Root length was measured at 7 days. Error bars represent SE of one biological replicate involving 40 seedlings per genotype.
3.7. **Inserted pSKI015 Location in ads1 Mutant**

3.7.1. Southern blot analysis of ads1 genomic DNA

The co-dominant phenotype of ads1 co-segregated with Basta resistance, with a ratio of 3:1, indicative of a single copy pSKI015 insertion. However, this was confirmed by Southern blot analysis by probing restriction enzyme digested ads1 DNA with a 370 bp PCR product, corresponding to the 35S enhancer element at the right border of pSKI015 (Figure 3.7.1). Southern blotting revealed that only one specific band resulted from DNA digestion with the restriction enzymes utilised, thus confirming the presence of only one T-DNA insertion. Probing of the same filter with a 700 bp PCR product corresponding to the BAR gene was employed and confirmed the presence of a single and intact T-DNA insertion (data not shown).

![Picture of Southern blot analysis](image)

Figure 3.7.1: Southern blot of digested ads1 genomic DNA with 35S enhancer probe. Blot demonstrates that a single copy of the pSKI015 is present in ads1.

Subsequently, a TAIL-PCR procedure was employed to identify the genomic region in which the pSKI015 was located (Liu et al., 1995). TAIL-PCR utilises six possible
nested PCR primers specific for the 35S enhancer at the right border of pSK1015 or six primers specific for the left border in combination with six different degenerate primers which could anneal to adjacent genomic DNA (Liu et al., 1995). However, this method failed to produce PCR products. Subsequently, an inverse PCR procedure was employed but also failed (Yuanxin et al., 2003). In addition, a plasmid rescue method, repeated with the enzymes EcoRI, HindIII, KpnI, SpeI and TaqI also failed to uncover the genome location of the activation tag (Ichikawa et al., 2003). All these experiments were performed by Andrea Chini.

3.7.2. Screen of BAC library for clones possessing pSK1015

The nature of the genomic DNA surrounding the pSK1015 insert prevented attempts to identify the tag’s location utilising immediately adjacent sequences and therefore a vector that could clone larger genomic fragments was required. A bacterial artificial chromosome (BAC) genomic library was assumed to be the best method that should be utilised for identifying of the location of the activation tag in ads1. High-molecular-weight (HMW) DNA was extracted from the nuclei isolated from homozygous ads1 mutants using a protocol adapted from Chalhoub et al., (2004) by Ingo Hein (Hein et al., 2005). The HMW DNA was partially digested, cloned into pIndigoBAC5 vector to generate a BAC library of 18,432 transformed colonies. This was estimated to be an 8-fold coverage of the Arabidopsis genome. The library was arrayed onto several nylon membranes and then probed with the 35S enhancer sequence and the BAR gene specific probe, both used earlier in 3.7.1. The filter probed with the 35S enhancer sequence is shown in Figure 3.7.2. Only clones that were successfully identified by both probes were picked for further analysis, which resulted in 36 positive BAC clones.
Chapter 3

3.7.3. Sizing and screening of pSKI015 positive BAC clones

The resulting 36 positive clones were then picked from the library and grown in LB liquid media supplemented with chloramphenicol overnight. The BAC DNA was then extracted as described in 2.9, digested with HindIII and run on a contour-clamped
homogenous electric field (CHEF) gel to analyse the size of the inserts (Figure 3.7.3, A). The gel was then used for Southern blot analysis, again employing the $35S$ enhancer probe to reconfirm whether the pSKl015 insert was present (Figure 3.7.3, B). Ten BAC clones with the smallest inserts (Table 3.7.4), were selected for further sequence analysis.

![Image](image.png)

Figure 3.7.3: Sizing of BAC inserts and Southern to confirm presence of pSKl015. A. BAC clones, digested with HindIII and run on a CHEF gel for insert sizing. B. Southern blot of gel with $35S$ enhancer probe to re-confirm presence of pSKl015. 8/36 of BAC clones were shown to be false positives.

3.7.4. BAC-end Sequencing

Ten BACs were therefore grown in liquid culture, DNA extracted and sequenced using primers ordered from Cambio (Cambridge, UK). The forward primer successfully produced BAC-end sequences for six of the ten BACs selected (Table 3.7.4). BlastN analysis of the BAC-end sequences with the AGI BAC clone database hit multiple regions on two annotation unit, F21A14 and, with slightly less homology, F23H14. This could be explained by the centromeric or telomeric genome locations of the BACs
F21A14 and F23H14 (Table 3.7.4 and Figure 3.7.4). Therefore, one likely position of pSKI015 insertion is 77 kb either upstream or downstream of the identified regions on F21A14 annotation unit on chromosome 3 (Figure 3.7.4, A). The second possible position of the pSKI015 insert was identified on F23H14 which is at the very start of chromosome 2. This region has also been shown to consist of repetitive sequences and many retrotransposons.

Table 3.7.4: BlastN of ads1 BACs with AGI BAC database

<table>
<thead>
<tr>
<th>BAC</th>
<th>Size of ads1 BAC</th>
<th>BlastN BAC hit</th>
<th>AGI Position on BAC</th>
<th>E Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>7J22</td>
<td>90 kb</td>
<td>F21A14</td>
<td>71759-72033</td>
<td>e-124</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>61350-61624</td>
<td>e-122</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>71688-71884</td>
<td>3e-89</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>61279-61475</td>
<td>3e-89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F23H14</td>
<td>8750-8910</td>
<td>e-66</td>
</tr>
<tr>
<td>8M8</td>
<td>95 kb</td>
<td>F21A14</td>
<td>71850-72189</td>
<td>e-177</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>61441-61780</td>
<td>e-177</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>71753-71926</td>
<td>1e-80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F23H14</td>
<td>8750-8968</td>
<td>e-100</td>
</tr>
<tr>
<td>32K6</td>
<td>130 kb</td>
<td>F21A14</td>
<td>71850-72189</td>
<td>e-180</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>61441-61780</td>
<td>e-180</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>71753-71926</td>
<td>1e-80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F23H14</td>
<td>8750-8968</td>
<td>e-100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9095-9208</td>
<td>1e-42</td>
</tr>
<tr>
<td>32L1</td>
<td>150 kb</td>
<td>F21A14</td>
<td>71837-72302</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>61428-61893</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F23H14</td>
<td>8750-8968</td>
<td>1e-95</td>
</tr>
<tr>
<td>42P2</td>
<td>65 kb</td>
<td>F21A14</td>
<td>71850-72255</td>
<td>e-174</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>61441-61846</td>
<td>e-174</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F23H14</td>
<td>8750-8968</td>
<td>9e-090</td>
</tr>
<tr>
<td>40M10</td>
<td>75 kb</td>
<td>F21A14</td>
<td>71758-71269</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>61349-60870</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F23H14</td>
<td>8825-8339</td>
<td>0</td>
</tr>
</tbody>
</table>
Figure 3.7.4: Candidate pSK1015 containing genome regions in adsl mutant. A, The position of AGI BAC, F21A14, in the Arabidopsis genome is adjacent to the centromeric region on chr.3. The position of AGI BAC, F23H14 is close to the 5' telomere of chr. 2. Chromosome and BAC images are from the TAIR website. B, The ESTs annotated to BACs F21A14 and F23H14 and immediately adjacent BACs.

3.7.5. Sub-cloning of BAC 40M10

In order to be more confident about the location of the activation tag, the BAC 40M10, which provided the best quality BAC-end sequencing results and, as one of the smallest positive BACs, was chosen for sub-cloning. The annotation units of F21A14 and F21H14 were inserted into the restriction map analysis programme at the TAIR website. Restriction maps generated for all 6 base-pair cutters revealed that the sequence was indeed repetitive and the majority of restriction enzymes either completely digested or cut rarely, generating fragments larger than 10 kb. The restriction enzyme, PstI, was predicted to cut this region with the most regularity. Even so, at least two fragments of around 20 kb would be generated making this sequence difficult to subclone into smaller fragments using standard cloning vectors. The BAC 40M10 was therefore subjected to physical shearing by nebulisation which breaks DNA into regular fragments,
independent from the nature of the sequence. The nebulised DNA was then ligated in standard pGEM-T easy vector (Promega, UK) and transformed into E. coli by electroporation. Approximately 5000 white colonies were picked for a sub-clone library which was spotted onto a nylon filter as in Figure 3.7.2. The filter was initially probed with the 35S probe used previously which gave only one positive that contained just pSKI015 DNA. The library was then probed with a (300 bp) left border probe which identified 10 positive sub-clones. These sub-clones were sequenced using M13 forward and reverse primers and arranged into contigs (0.7-2 kb) using Sequencher software (all performed with Ingo Hein). BlastN analysis of the AGI BAC database revealed matches of higher identity and length of homology with F21A14 than F23H14, distinguishing between the two regions (Table 3.7.5). Figure 3.7.5 reveals the location of the contigs on AGI BAC F21A14.

Table 3.7.5: BlastN of positive 40M10 sub-clone contigs against AGI BAC database

<table>
<thead>
<tr>
<th>Contig</th>
<th>Length (bp)</th>
<th>BAC hit</th>
<th>E Value</th>
<th>% Identity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1765</td>
<td>F21A14</td>
<td>0.0</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F23H14</td>
<td>1e-87</td>
<td>97</td>
</tr>
<tr>
<td>2</td>
<td>2096</td>
<td>F21A14</td>
<td>0.0</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F23H14</td>
<td>0.0</td>
<td>99</td>
</tr>
<tr>
<td>3</td>
<td>1896</td>
<td>F21A14</td>
<td>0.0</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F23H14</td>
<td>0.0</td>
<td>97</td>
</tr>
<tr>
<td>4</td>
<td>1874</td>
<td>F21A14</td>
<td>0.0</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F23H14</td>
<td>0.0</td>
<td>97</td>
</tr>
</tbody>
</table>

Figure 3.7.5: Regions of homology of 4 contigs with AGI BAC F21A14. Different coloured arrows represent each contig (described in Table 3.7.5) complied from ten 40M10 sub-clones positive for the left border of pSKI015.
Annotation unit F21A14 contains only 9 genes, described as either pseudogenes or genes encoded by transposable elements in the first 40 kb of the BAC (Table 3.7.6). The pSK1015 vector is most probably located in the 60-77 kb region of F21A14 in which there are presently no genes annotated (Table 3.7.6). However, in 2003 there was an 18S rRNA which has more recently been removed from the TAIR annotation of F21A14 and the NCBI website declares that this BAC is still being completely sequenced. It is therefore possible that the pSK1015 insertion responsible for the ads1 phenotype has permitted expression of micro-RNA (miRNA) sequences or enhancer functions in regions of the chromosome usually suppressed by heterochromatin.

Table 3.7.6: Genes present on annotation unit F21A14

<table>
<thead>
<tr>
<th>Gene</th>
<th>Co-ordinates (bp)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>At3g34299</td>
<td>1007 - 2635</td>
<td>Mutator-like transposase family</td>
</tr>
<tr>
<td>At3g35707</td>
<td>4716 - 6198</td>
<td>pseudogene, hypothetical protein</td>
</tr>
<tr>
<td>At3g36411</td>
<td>9543 - 10091</td>
<td>gypsy-like retrotransposon family</td>
</tr>
<tr>
<td>At3g37820</td>
<td>14275 - 19163</td>
<td>gypsy-like retrotransposon family (Athila)</td>
</tr>
<tr>
<td>At3g38525</td>
<td>20282 - 22300</td>
<td>pseudogene, hypothetical protein</td>
</tr>
<tr>
<td>At3g39230</td>
<td>28754 - 31564</td>
<td>gypsy-like retrotransposon family</td>
</tr>
<tr>
<td>At3g39935</td>
<td>35123 - 36594</td>
<td>gypsy-like retrotransposon family (Athila) and isocitrate dehydrogenase (NADP+) activity</td>
</tr>
<tr>
<td>At3g40640</td>
<td>38200 - 38673</td>
<td>pseudogene, similar to putative AP endonuclease/reverse transcriptase</td>
</tr>
<tr>
<td>At3g41345</td>
<td>39484 - 40120</td>
<td>CACTA-like transposase family (Ptta/En/Spm)</td>
</tr>
<tr>
<td>At3g41763</td>
<td>65636-67443</td>
<td>18S rRNA (present in 2003)</td>
</tr>
</tbody>
</table>

3.8. **Insert Location and Gene Identification in ads2 Mutant**

3.8.1. **TAIL-PCR of homozygous ads2 genomic DNA**

The first method used to identify the position of the pSK1015 insert in ads2 was the TAIL-PCR procedure utilising three of the six possible nested PCR primers specific for the 35S enhancer elements in combination with the six different degenerate primers described (Liu et al., 1995). The 35S enhancer primers used in combination with degenerate primer 4 (AD 4) produced a PCR product which reduced by the appropriate size after each of the three rounds of PCR with one of the nested 35S enhancer primers (Figure 3.8.1).
Figure 3.8.1: TAIL-PCR derived fragments of the 3 specific 35S enhancers and degenerate primer, AD4. PCR product of 35S_21 (furthest from the right border) and AD 4 was around 1 kb. The secondary PCR using the product of 35S_21 and AD 4 as a template produced several bands. The tertiary PCR reaction using the template of the secondary PCR reaction with 35S_205 and AD 4 produced a product of around 700 bp.

3.8.2. Sequencing of TAIL-PCR products and BlastN results

The PCR products of 35S_21 and 35S_205 with AD 4 were purified by gel purification and sequenced using the enhancer specific primers that amplified them. These sequences, shown in Figure 3.8.2., A, were found to be homologous to each other (Figure 3.8.2., B). These sequences were then analysed using the TAIR BlastN programme and found to match a member of the rubber elongation factor family (At3g05500) with no other significant matches (Figure 3.8.2., C). This provides evidence for the genomic region in which the pSKI015 has inserted.
3.8.3. Analysis of genomic region surrounding insertion site

Pairwise alignments of the products of TAIL-PCR with the genomic sequence of At3g05500 revealed that the insertion site is in the middle of the last exon, at position 1080 out of 1262 bp of the open reading frame (ORF) (Figure 3.8.3., A). The majority of over-expressed genes have been found to be located within 3.5 kb, both upstream and downstream of the activation tagging vector pSK1015 (Weigel et al., 2000). However, one example of an over-expressed gene located more than 10 kb from the insertion site has been reported (Weigel et al., 2000). Therefore, genes located up to 10 kb upstream or downstream of At3g05500 were examined further (Figure 3.8.3., B). Six genes were identified, in the same orientation (At3g05480-At3g05530) and all have potential for producing a disease resistance-related phenotype (Table 3.8.3).
Gene Structure of At3g05500: Rubber Elongation Factor

<table>
<thead>
<tr>
<th>Type</th>
<th>Coordinates</th>
<th>Annotation Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORF</td>
<td>107-1369 AGI-TIGR</td>
<td></td>
</tr>
<tr>
<td>5' utr</td>
<td>1-106 AGI-TIGR</td>
<td></td>
</tr>
<tr>
<td>coding_region</td>
<td>107-148 AGI-TIGR</td>
<td></td>
</tr>
<tr>
<td>coding_region</td>
<td>422-646 AGI-TIGR</td>
<td></td>
</tr>
<tr>
<td>coding_region</td>
<td>896-1369 AGI-TIGR</td>
<td></td>
</tr>
<tr>
<td>exon</td>
<td>1-148 AGI-TIGR</td>
<td></td>
</tr>
<tr>
<td>intron</td>
<td>149-421 AGI-TIGR</td>
<td></td>
</tr>
<tr>
<td>exon</td>
<td>422-646 AGI-TIGR</td>
<td></td>
</tr>
<tr>
<td>intron</td>
<td>647-895 AGI-TIGR</td>
<td></td>
</tr>
<tr>
<td>exon</td>
<td>896-1582 AGI-TIGR</td>
<td></td>
</tr>
<tr>
<td>3' utr</td>
<td>1370-1582 AGI-TIGR</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3.8.3: Gene annotation of At3g05500 and 20 kb of the surrounding genome.

- **A.** Gene annotation of At3g05500 and the position of insert at 1080 bp.
- **B.** 20 kb region surrounding At3g05500 which contains five other annotated genes all in the same orientation, At3g05480, At3g05490, At3g05510, At3g05520 and At3g05530. At3g05525, is unlikely to be overexpressed as it is in reverse orientation and encodes tRNA-Glu (anticodon: TTC). Image of gene annotation from the TAIR website.
Table 3.8.3: Description of protein domains encoded by genes surrounding pSKI015 insertion site in ads2

<table>
<thead>
<tr>
<th>Loci</th>
<th>Encoded Protein Homology</th>
<th>Embl-EBI InterPro</th>
<th>Possible Related Function</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3g05480</td>
<td>Rad9</td>
<td>Rad9: IPR007268</td>
<td>Rad9 cleaved by Caspase-3 e.g. Pto kinase</td>
<td>Qi et al., 2000</td>
</tr>
<tr>
<td></td>
<td>N-myristoyltransferase</td>
<td>NMT: IPR000903</td>
<td>Addition of myristic acid to proteins of diverse function</td>
<td></td>
</tr>
<tr>
<td>A3g05490</td>
<td>Tobacco Rapid Alkalization Factor (RALF), RALK-like 22</td>
<td>none</td>
<td>Alkalization of apoplast during HR</td>
<td>Pearce et al., 2001; Olsen et al., 2002</td>
</tr>
<tr>
<td>A3g05500</td>
<td>Rubber Elongation Factor (REF) Domain</td>
<td>REF: IPR008802</td>
<td>Stress-related proteins induced by abiotic stress</td>
<td>Kim et al., 2003</td>
</tr>
<tr>
<td>A3g05510</td>
<td>Phospholipid/Glycerol-3-phosphate acyltransferase</td>
<td>ACP acyltransferase: IPR002123</td>
<td>Stress induced phospholipid signalling</td>
<td>Munnik et al., 2000</td>
</tr>
<tr>
<td></td>
<td>Tafazzin</td>
<td>Tafazzin: IPR000872</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3g05520</td>
<td>F-actin Capping Protein, alpha subunit</td>
<td>F-actin-cap-A: IPR002189</td>
<td>Involved in actin cytoskeleton function in resistance in Arabidopsis</td>
<td>Yun et al., 2003</td>
</tr>
<tr>
<td></td>
<td>ClpX, ATPase regulatory subunit</td>
<td>ClpX: IPR004487</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AAA-protein subdomain</td>
<td>AAA_sub: IPR003960</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AAA ATPase, central region</td>
<td>AAA_ATPase_centr: IPR003959</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26S proteasome subunit P45</td>
<td>26S_p45: IPR005937</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peptidase M41, FtsH</td>
<td>Pept_M41_FtsH: IPR005936</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sigma-54 factor, interaction region</td>
<td>Sig54_interact: IPR002078</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Holliday junction DNA helicase RuvB</td>
<td>RuvB: IPR004605</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.8.4. Analysis of gene expression in pSKI015 insertion region

RT-PCR was employed to investigate the expression of the six genes in close proximity to the activation tag insertion site. RNA was extracted from Col-0 and ads2 homozygous plants at 4 weeks old and quantified. Subsequently, cDNA was synthesised from 3 μg RNA from each sample using an oligodT primer. Therefore, gene-specific primers were designed on the coding sequence of all six genes to be used for RT-PCR and northern blot analysis. RT-PCR was performed using primers designed to amplify a 100 bp product from the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene as a control of cDNA amount in each sample. For each sample, 10 μl were loaded on to a gel to reveal if any obvious differences could be observed in the
expression of any of the genes in this region. Figure 3.8.4 reveals that three genes may have altered expression caused by the presence of the pSKI015 vector. At3g05480 and At3g05500 both appear to be overexpressed when compared with the Col-0 sample. In contrast, At3g05520 appears to be down regulated in ads2. There appears to be genomic DNA contamination in ads2 cDNA amplified with At3g05510 and At3g05520 producing an amplification product larger than that amplified from Col-0 or ads2 cDNA. Therefore At3g05480 and At3g05500 may be the genes activated by pSKI015 in this region.

Figure 3.8.4: RT-PCR of six genes in region surrounding pSKI015 insertion site. First two wells contain control amplification using GAPDH primers to examine amount of cDNA synthesised from each RNA sample. Then the genes as they appear in the genome first with Col-0 derived cDNA and then homozygous ads2 cDNA, At3g05480, At3g05490, At3g05500, At3g05510, At3g05520 and At3g05530. RT-PCR was repeated three times with the same RNA giving similar results.

3.9. Discussion

Activation tagging is a technique used to enhance the expression of random genes in Arabidopsis that consequently generate gain-of-function mutants. Screening of the T1 progeny of activation tagged Arabidopsis was performed to isolate novel genes that regulate resistance to virulent Pst DC3000 and to circumvent the identification of alleles from previously characterised loci. Two of the twelve ads mutants identified in the susceptibility screen were co-dominant for susceptibility to Pst DC3000 and morphological phenotypes and segregation of pSKI015 vector tested through Basta resistance. The near 3:1 ratio of Basta resistance and Pst provided an indication that a single gene has been disrupted. The segregation ratios calculated in Table 3.4.1 for N and L could be explained by biased seedling selection during transplanting. In addition, a small number of homozygous N seedlings would die shortly after transplanting and could have possibly disrupted the ratio of plants inoculation with Pst. The observed ratio for Pst susceptibility appeared further from the expected 75% than Basta resistance and could be explained by the difficulty in adequately inoculating all homozygous plants, especially homozygous mutants, in comparison with Basta spraying. The dominance of the gene affected in these mutants is suggested by the susceptibility phenotype identified in the T1 generation of activation tagged lines. Unfortunately, the homozygous ads1 and ads2 mutants were infertile and therefore analysis with a completely homozygous line was not possible. However, both mutants were identified as possessing a susceptibility phenotype to Pst DC3000 in the heterozygous T1 generation and therefore analysis was possible using the heterozygous plants.

The co-dominant ads1 mutant displayed an extreme loss-of-apical dominance, a dwarfed stature, premature leaf senescence and in the homozygous mutant reduced fertility (Figure 3.5.6a). The observed loss-of-apical dominance phenotype is similar to that commonly observed in Arabidopsis mutants with reduced gibberellin levels (Dill and Sun, 2001; Wen and Chang, 2002; Schomburg et al., 2003). The gene or genes perturbed by the activation tag must be affecting development of leaves, florescences and siliques.
To quantify the extent of susceptibility, inoculation of two suspensions of virulent *PstDC3000* (10^5 and 10^6 CFU/ml) revealed that *ads1* was more susceptible than Col-0 by 10-fold and comparable to the level of susceptibility exhibited by *nahG* plants (Figure 3.5.1 and Figure 3.5.2). In addition, *ads1* was also shown to be as susceptible to avirulent *Pst DC3000* (*avrB*) as *nahG* plants (Figure 3.5.3). This implies that *ads1* is perturbed in a gene involved in both basal and *R* gene mediated resistance to *Pst DC3000* although testing with pathogens containing other AVR proteins would be required to confirm this hypothesis. Intriguingly, DAB staining revealed that the *ads1* mutant accumulated H_2O_2 to highly elevated levels in comparison with Col-0 and *nahG*. This was surprising as H_2O_2 is thought to be a signalling molecule for inducing defences such as the HR and SAR and could be directly toxic to cell-invading pathogens. In fact, transgenic crop plants have been generated that accumulate H_2O_2 resulting in increased resistance to biotrophic pathogens (Wu *et al.*, 1995). The rapidity of ROI production triggered by avirulent pathogens to induce downstream pathways is independent of transcription and regulated by secondary messengers such as Ca^{2+} and H^+ and by proteins such as kinases and G-proteins (Yang *et al.*, 1997; Cessna and Low, 2001). In addition, a tightly regulated balance of NO and H_2O_2 production has been shown to be required for HR (Clarke *et al.*, 2000). The *ads1* mutant may therefore be deficient in one of these other early signalling molecules essential for inducing downstream defence responses. Alternatively, downstream responses may be suppressed by the activation of a negative regulator. Basal disease resistance has been shown to require an active SA-dependent pathway in many plant-pathogen interactions (Dong, 2004). Nevertheless, H_2O_2 production and induction of defence responses to virulent and avirulent *Pst DC3000*, in the *ads1* mutant appears to be uncoupled. Unfortunately, expression analysis of key marker genes of HR and SAR were not examined and therefore it cannot be determined whether downstream defence responses are being induced or not. The extent of cell death was examined using trypan blue staining. This revealed that at 12 hpi, cell death was occurring in *ads1* leaves inoculated with virulent *Pst DC3000*. Trypan blue staining can not differentiate between PCD and necrotic cell death; however
the biotrophic phase of virulent *Pst* DC3000 is between 1-3 days and therefore the dead cells are not likely to be the result of severe disease symptoms.

The susceptibility of *ads1* to *Pst* DC3000 may also be caused by a dysfunctional SA-dependent pathway. Therefore, BTH, a SA analogue, was sprayed onto *ads1* and associated *Arabidopsis* lines to investigate whether exogenous application of SA could rescue resistance against *Pst* DC3000. Figure 3.6.1 reveals that BTH spraying could induce a level of resistance to virulent *Pst* comparable with untreated Col-0. However, *ads1* allowed almost one and a half logs more bacterial growth than BTH treated Col-0. This suggests that *ads1* can respond to exogenously applied SA and that the SA pathway in *ads1* is functional downstream of SA production. The SA-dependent pathway may therefore be perturbed between H_2O_2 production and SA synthesis. Perhaps the pathway is perturbed by insensitivity to H_2O_2, by absence of another essential signalling molecules or by activation of negative regulators of the SA-independent signalling cascades downstream of H_2O_2 production e.g. MAPK kinase (Petersen *et al.*, 2000). Some repressor proteins of the SA-pathway are activated by the wounding and necrotrophic defence pathways regulated by ET and JA (Thomma, 2001). It is therefore possible that the *ads1* plants possess active ET- or JA-dependent pathways which subsequently suppress defence responses against biotrophic pathogens. Previously characterised mutants with constitutive ET-dependent pathways have been shown to be insensitive to ethylene and show unaffected root and hypocotyl growth e.g. *ein2* (Guzman and Ecker, 1990). To investigate whether *ads1* responds to ET differently to Col-0 plants, seedlings were grown on ACC plates (exogenous ethylene donor) in a method adapted from Guzman and Ecker (1990). Figure 3.6.2 reveals that *ads1* responds to ACC as Col-0, indicating that it is neither more nor less sensitive to ET. It is probable that even if a completely homozygous *ads1* mutant line was used for this experiment that it would not be revealed as being as dramatically insensitive to ACC as the *ein2* mutant (Guzman and Ecker, 1990). Me-JA has been shown to inhibit root growth and stimulate anthocyanin production of Col-0 plants but not the insensitive mutant, *coi1* (Feys *et al.*, 1990). Therefore the effect of Me-JA on the root growth of *ads1* was examined. Figure 3.6.3 reveals that *ads1* was no more or less sensitive to Me-
JA than Col-0. Expression analysis of marker genes \textit{GST1}, \textit{PRI} and \textit{PDF1.2} would be required to establish the active state of the HR, SA-dependent and the ET- and Me-JA-dependent pathways. Consequently, it is more likely that \textit{ads1} is insensitive to H$_2$O$_2$ or perturbed in the production of another signal essential for inducing basal and \textit{R} gene-mediated disease resistance.

Identifying the region of pSKI015 insertion was initially attempted by employing commonly utilized techniques, such as TAIL-PCR and plasmid rescue. Repeated attempts to identify the insertion region in these ways failed and so a genomic scale library was deemed necessary. Therefore, a BAC library of homozygous \textit{ads1} genomic DNA, partially digested to fragments of 50-250 kb, was constructed. Southern blot analysis of the BAC library with both a 35S enhancer probe and a \textit{BAR} gene-specific probe identified around 36 positive BAC clones (Figure 3.7.2). All 36 positive clones were sized by digestion with \textit{HindIII} and another Southern blot was performed with the 35S enhancer probe to confirm the presence of the pSKI015 vector (Figure 3.7.3). BAC-end sequencing revealed a sequence which is repeated many times in the \textit{Arabidopsis} genome, including the AGI BAC, F21A14 and F23H14 (Table 3.7.4). All six BAC end sequences matched F21A14 with higher significance than F23H14, suggesting that F21A14 may be the more probable region contained in these BACs. Subcloning and further sequencing supported BAC-end sequencing by matching F21A14 with longer sequences and higher identity (Table 3.7.5). The sequences from subcloning BAC 40M10 all aligned with the 3' end of F21A14 (60-77 kb) (Figure 3.7.5). However, there are no genes annotated on this BAC from 40 kb to 77 kb. This suggests that there may be a protein or regulatory element present in this region which has not been investigated or annotated yet. It still remains to be tested whether all the BACs identified from \textit{ads1} using 35S and \textit{BAR} probes contain this region. Activation tagging has facilitated the identification of a novel mutant. It is therefore possible that the pSKI015 insertion responsible for the \textit{ads1} phenotype has permitted expression of micro-RNA (miRNA) sequences or enhancer functions in regions of the chromosome usually suppressed by heterochromatin. Isolating the factor responsible for the susceptible phenotype may require expression analysis and genetic reconstitution experiments.
The co-dominant *ads2* mutant displayed an undulating leaf surface and in the homozygous mutant, observable anthocyanin accumulation, a dwarfed stature and failure to develop flowers into siliques (Figure 3.5.6b). Interestingly, increased anythocyanin production as found in *ads2* (Figure 3.5.5) has been associated with Me-JA treated plants (Feys *et al.*, 1994). Anthocyanins have antioxidant activity and have been shown to have an inhibitory effect on NO production in macrophages (Kong *et al.*, 2003). It is therefore possible that the high concentration of anthocyanins present scavenges free ROI in the leaves preventing defence gene induction. In addition, Lo and Nicholson (1998) have shown that anthocyanin production can be decreased by pathogen-induced production of antimicrobial phytoalexins. It may also be possible that the anthocyanin production in *ads2* prevents phytoalexins production, subsequently affecting basal resistance to *Pst* DC3000. To confirm the susceptibility of *ads2* to virulent *Pst* DC3000, inoculation of two suspensions of virulent *Pst* (10^5 and 10^6 CFU/ml) revealed that *ads2* was more susceptible than Col-0 by at least 1-log and to a comparable level exhibited by *nahG* plants (Figure 3.5.1 and Figure 3.5.2). On the other hand, *ads2* was shown to be as resistant to *Pst* DC3000 (*avrB*) as Col-0 (Figure 3.5.3). This suggests that the presence of the antioxidant, anthocyanin is not preventing the HR response required for resistance to *Pst* DC3000 (*avrB*) and therefore the gene or genes perturbed in the *ads2* mutant are only necessary for basal resistance responses. DAB staining revealed that the *ads2* mutant only accumulated \(\text{H}_2\text{O}_2 \) in response to *Pst* DC3000 (*avrB*) (Figure 3.5.4a and b). The presence of anthocyanin does not appear to affect the production of \(\text{H}_2\text{O}_2 \) associated with the oxidative burst. It may be possible that the strong and rapid induction of defence responses through \(R \) genes may over-ride the suppression of basal defences in *ads2*. This hypothesis was investigated by spraying mutant lines with BTH, an SA analogue, a week before challenge with virulent *Pst* DC3000. The induction of SAR by BTH treatment may reverse the suppression of basal defence responses which causes the susceptibility to *Pst* DC3000 displayed by *ads2*. Figure 3.6.1 reveals that BTH spraying could induce a level of resistance in *ads2* to virulent *Pst* DC3000, comparable with untreated Col-0. However, like *ads1*, BTH treatment of *ads2* did not induce a level of resistance as BTH-treated Col-0. This
suggests that the suppression of basal defences in ads2 can be reversed by R gene activation and induction of SAR by BTH treatment.

The susceptibility of ads2 to virulent Pst DC3000 may be due to activity in the ET- or JA-dependent pathways which can be overcome upon triggering of R gene mediated resistance. To investigate whether ads2 possess increased or decreased sensitivity to ET seedlings were grown on ACC plates (exogenous ethylene donor) in a method adapted from Guzman and Ecker (1990). Figure 3.6.2 reveals that ads2 behaves like wild type Arabidopsis in response to ACC. In addition, the effect of Me-JA on the root growth of ads2 was measured. Figure 3.6.3 reveals that ads2 roots were inhibited by 80% by 150 μM of Me-JA compared to 70% in ads1 and Col-0 plants. In consideration of the earlier described phenotypes of shorter roots and anthocyanin production it is possible that measurements of Me-JA or expression analysis of PDF1.2 may reveal that the ads2 mutant may have a modestly perturbed JA-dependent pathway.

TAIL-PCR of homozygous ads2 genomic DNA resulted in the production of a specific band that decreased in size with the use of nested primers specific for 35S enhancers at the right border of pSKI015. Sequencing of two of these PCR products revealed a fragment from the last exon of a rubber elongation factor gene (At3g05500). In the 20 kb region surrounding this gene, there are five other genes annotated in the same orientation and a tRNA in the opposite orientation. To identify an up-regulated gene or genes in ads2, RT-PCR analysis of gene expression was carried out in untreated Col-0 and ads2. Figure 3.8.4 reveals that two genes are expressed in ads2 that are not expressed in Col-0. At1g05480 encodes a protein that has a RAD9-like domain and an N-myristoylation transferase domain (Qi et al., 2000; Lee et al., 2003). RAD9 is a cell cycle check point protein that is cleaved by caspase-3 during apoptosis (Lee et al., 2003). The cleavage of RAD9 results in its translocation from the nucleus to the cytosol where it promotes apoptosis by interacting with Bcl-XL (Lee et al., 2003). N-myristoylation transferase is an enzyme responsible for the post-translational modification of the N-terminus of a diverse range of proteins by addition of myristic acid onto glycine residues (Qi et al., 2000). The N-myristoylation of proteins is thought
to promote their affinity with membranes (de Jonge et al., 2000). The post-translational N-myristoylation of caspase substrates have been shown to target cleavage products to mitochondria during apoptosis (Shrivastav et al., 2003). In addition, the pro-apoptotic protein BID is also proteolytically cleaved, post-translationally myristoylated and relocalized to the mitochondrial membrane, releasing cytochrome C and promoting PCD (Zha et al., 2000). In plants, many proteins possess predicted N-myristoylation motifs although few have been confirmed to be myristoylated experimentally. Putative N-myristoylation sites in kinases, Pto and Fen, may be associated with their R gene-related function by facilitating their plasma membrane localisation (Thompson and Okuyama, 2000). N-myristoylation has also been shown to be required for the response to salt-stress (Ishitani et al., 2000). At1g05500 encodes a rubber elongation factor (Kim et al., 2003) which is up-regulated in response to wounding in Ficus carica and in response to other abiotic stresses and that peroxidase activity has been associated with REF activity (Kim et al., 2003). Both these genes could have a role in disease resistance. In order to confirm which of these genes could be responsible for increased susceptibility to virulent Pst, each of these genes could be fused to a 35S CaMV promoter and over-expressed in Col-0 by stable transformation.

Unfortunately, the genes responsible for either of these mutants were not characterised in time for investigation in N. benthamiana and S. tuberosum. Therefore, a gene previously identified through activation tagging in Arabidopsis, ADR1, was selected for functional investigation during the other plant-pathogen interactions studied during this project (Grant et al., 2003; Chini et al., 2004). It was of interest to investigate whether ADR1 had a conserved function in other plant species.
3.10. Conclusions

Two *Arabidopsis* activation tagged (pSKI015) mutants with activated disease susceptibility (*ads*) were identified. Both mutants segregated 3:1 for the presence of the insert and appeared co-dominant for associated phenotypes. The *ads*1 mutant was shown to be susceptible to virulent and avirulent *Pst* DC3000, although large amounts of H$_2$O$_2$, an HR inducing molecule, constitutively accumulated. The genomic location of the activation tag in this mutant has been located to a genomic region adjacent to the centromere on chromosome III although it remains to be confirmed that all BAC clones contain the same region.

The *ads*2 mutant was shown to be susceptible to *Pst* DC3000 but possessed a functional *R* gene-mediated response to *Pst* DC3000 (*avrB*). The homozygous *ads*2 also accumulated discernable amounts of the stress-related pigment, anthocyanin. TAIL-PCR identified the location of pSKI015 in *ads*2 plants to gene At3g05500. Expression analysis of all six genes in this region revealed that two genes are overexpressed (At3g05480 and At3g05500).
4. Role of Cathepsins in the Hypersensitive Response

The HR is a rapid, inducible form of PCD that shares some conserved hallmarks, mechanisms and enzyme activities with mammalian apoptosis. However, the complex series of molecular interactions that lead to the HR are still poorly understood. The HR appears to be fundamental for resistance in countless plant interactions with biotrophic pathogens and most probably involved in necrotrophic disease development. Therefore there is intense interest in elucidating the major components that induce and regulate the HR.

4.1. Role of Caspases in Mammalian PCD

Mammalian apoptosis is associated with the cleavage of a specific subset of cellular polypeptides and degradation of chromosomal DNA (Chang and Yang, 2000). Cysteine-dependent aspartate-directed proteases (caspases) have been shown to be directly or indirectly responsible for many cleavage patterns that are hallmarks of apoptosis (Yuan et al., 1993; Earnshaw et al., 1999). Caspases are translated as zymogens, known as procaspases, and are predominantly processed by other caspases, forming an activation cascade (Earnshaw et al., 1999). Initiator caspases are activated following either the extrinsic activation of cell death receptors, e.g. procaspase-8 and -10, or intrinsically by release of cytochrome C from the mitochondria, e.g. procaspase-9 and -2 (Chang and Yang, 2000). However, recent research demonstrates that cleavage is not required or sufficient for initiator caspase activity and proposes they are active as obligate dimers (Stennicke et al., 1999; Boatright and Salvesen, 2003). Once activated, initiator caspases consequently process common downstream effector caspases that already exist as dimers (e.g. caspase-3, -6 and -7), which leads to PCD.

4.2. Caspase-Independent PCD

Early studies in the ced-3 C. elegans mutant provided the first indication that PCD could occur without caspases and was revealed to involve the proteases calpains and cathepsins
(Abraham and Shaham, 2004). In mammals also there is evidence supporting caspase-independent PCD, such as during autophagy, tumour necrosis factor (TNF)-mediated liver injury and during development of neurons and chondrocytes (Leist and Jäättelä, 2003). A range of research indicates many non-caspase proteases, such as cathepsins, calpains and serine proteases, play important roles during apoptosis but also trigger PCD in a caspase-independent manner (Abraham and Shaham, 2004). Calpains are calcium-dependent proteases involved in processing various enzymes and cytoskeletal components, thereby linking their activity to a variety of intracellular events (Johnson and Guttmann, 1997). Cathepsins are aspartate and cysteine proteases and thus far, cysteine cathepsins B and L and aspartate cathepsin D have been most clearly associated with PCD from studies in mammalian models. Cathepsin B deficient mice show increased resistance to apoptosis (Mathiasen and Jäättelä, 2002; Foghsgaard et al., 2001) and other experiments have shown that cathepsin B can activate caspases (Kingham et al., 2001; Vancompemolle et al., 1998). The serine protease, granzyme B, has also been demonstrated to be required for rapid caspase-mediated PCD and a slower caspase-independent necrosis-like PCD (Mathiasen and Jäättelä, 2002).

4.3. Proteolytic Machinery in Plant HR

Although plant PCD shares many morphological characteristics with caspase-dependent cell death in mammals, no direct caspase homologues have been identified thus far (Chichkova et al., 2004). Interestingly, several examples of caspase-like activities involved during the HR have been identified in oat, tobacco and Arabidopsis, however these activities do not correspond with the regulatory initiator caspase activities (del Pozo and Lam, 1998; Coffeen and Wolpert, 2004; Chichkova et al., 2004; Rojo et al., 2004). A caspase-like family of Arabidopsis proteases includes nine metacaspases and, although these proteins have significantly similar tertiary structure to caspases, there is no experimental evidence confirming a similar function (Woltering, 2004; Sanmartín et al., 2005). However, the expression of one tomato metacaspase, LeMCA1, has been shown to be up-regulated during infection with B. cinerea and another metacaspase may
be responsible for the VEIDase activity essential for PCD during plant embryogenesis (Hoeberichts et al., 2003; Bozhkov et al., 2004). In addition, vacuolar processing enzymes (VPEs) belong to the caspase-like protease family and may show similar protein folding (Kinoshita et al., 1999; Hayashi et al., 2001; Rojo et al., 2004).

Nevertheless, PCD regulation and caspase-like activities will most probably be associated with some of the 488 annotated protease genes in the Arabidopsis genome (van der Hoorn and Jones, 2004). In addition to the caspase-like proteins, larger protease families are associated with the HR: the papain-like, subtilisin-like and pepsin-like proteases (van der Hoorn and Jones, 2004). One papain-like protease from tomato, RCR3, has been shown to be required for resistance to C. fulvum, mediated through Cf-2 (Beers et al., 2000; Krüger et al., 2002; Rooney et al., 2005). In addition, the potato homologues of CYP1 and cathepsin B are also up-regulated in response to an incompatible isolate of P. infestans (Avrova et al., 1999; Avrova et al., 2004). Subtilisin-like proteases are the largest protease family in Arabidopsis, with varied roles, including defence responses, e.g. the potential PR protein, P69 (Tornero et al., 1997; Beers et al., 2004). In addition, some subtilisin-like proteases possess caspase-like activities (saspases) involved during victorin-induced PCD (Coffeen and Wolpert, 2004).

Fewer aspartic pepsin-like proteases have been characterised in comparison with the other plant protease families mentioned thus far. Nevertheless, the apoplastic aspartic protease, constitutive disease resistance 1 (CDRI) was discovered by screening activation-tagged Arabidopsis lines for resistance to virulent P. syringae, which shares regions of homology with human cathepsin D (Xia et al., 2004). CDRI/nahG crosses revealed that CDRI may function by cleaving endogenous targets in an SA-dependent manner (Xia et al., 2004). The large number of proteases likely to be involved during the HR has obscured the search for elusive major initiator proteases. However, the benefits from understanding the HR in plant-microbe interactions will continue to drive the search.
4.4. *Potato Genes Identified in Resistance to P. infestans*

The HR appears to be essential in potato for *R* gene-mediated and non-race-specific (quantitative or field) resistance against the oomycete, *Phytophthora infestans* (Birch and Whisson, 2001; Kamoun *et al.*, 1999). Elucidating the genes up-regulated in resistant potato cultivars in response to *P. infestans* is a key step towards understanding the subsequent complex signalling events and identification of possible targets for breeding durable disease resistance. Suppression subtractive hybridisation (SSH) is a technique used to enrich for ESTs in tester cDNA material not present in cDNA synthesised from driver RNA (Birch *et al.*, 1999). This technique was used to create a cDNA library enriched for genes from leaves of resistant potato cv Stirling (tester) 24 hpi with an avirulent strain of *P. infestans*, employing cDNA from infected leaves of the susceptible cv. Bintje (driver) to remove common sequences (Birch *et al.*, 1999). Several classes of genes identified encode proteins that are implicated in PCD in other organisms (Birch *et al.*, 1999; Avrova *et al.*, 1999), including a cysteine protease-encoding sequence (Accession number AJ245924) with significant homology to a tomato cysteine protease (*CYP1*) (Accession number AJ003137) at both the DNA and amino acid level (93.7 % and 95.7 %, respectively) (Avrova *et al.*, 1999). The protein sequence reveals two conserved domains; a cysteine protease domain conserved with all plant and cathepsin family of mammalian cysteine proteases. In addition, a C-terminal granulin-like domain is present on the potato cysteine protease which is not conserved with mammalian cathepsins. Interestingly granulins are a separate class of proteins involved in regulating cell growth in animals (Bateman and Bennett, 1998). Other cysteine proteases that contain granulin-like domains have only been identified in plants, such as oryzain α and β in rice (Avrova *et al.*, 1999). In addition, the potato *CYP1* gene is a likely homologue of the *Arabidopsis* gene *RD21* (At1g47128) which was shown to play a role in drought induced senescence (Yamada *et al.*, 2001).

Suppressor of G2 allele of SKP1 (*SGTI*) was a gene included as a control because in barley, *Arabidopsis* and *N. benthamiana* it is essential for *R* gene-mediated resistance.
Chapter 4

(Azevedo et al., 2002; Tor et al., 2002; Austin et al., 2002). Published work involving the silencing of SGT1 in *N. benthamiana* (Peart et al., 2002) made it an interesting gene to investigate during the potato-*P. infestans* interaction and to utilise as a positive control of VIGS for later silencing experiments in *N. benthamiana* and potato.

As part of the collaboration between SCRI and Edinburgh University, a novel gene discovered from an activation-tagging screen in *Arabidopsis* was to be included in the functional screens in potato and *N. benthamiana*. Genes responsible for activated mutant phenotype, as described in Chapter 3, had not been identified early enough for inclusion. A gene identified from an earlier activation-tagged mutant, acquired disease resistance 1 (*ADR1*) (At1g33560) has had its role in both biotic and abiotic stress well characterised (Chini et al., 2004; Grant et al., 2003). *ADR1* is a putative CC-NBS-LRR which possesses an additional but partial kinase domain. Constitutively over-expressing *ADR1* in *Arabidopsis* confers resistance to virulent pathogens including the oomycete, *Peronospora parastica* (Grant et al., 2003). It was therefore of interest to investigate whether a gene identified from the sequenced model plant could be involved in the potato-potato late blight interaction. The potato orthologue of *ADR1* (BG596098) was identified through TBLASTX analysis of the TAIR higher plant EST dataset.

4.4.1. Expression of *CYF1*, *ADR1* and *SGT1* in *S. tuberosum* cultivars

Initially, Northern blot analysis of potato plants treated with an incompatible race of *P. infestans* was performed to investigate the expression of genes, *StCYPJ*, *StADR1* and *StSGT1*, during potato responses to *P. infestans*. Cv Stirling possesses both race-specific and non-race-specific resistance to *P. infestans* whereas cv Bintje and Maris Piper possess little resistance. Both race-specific and non-race-specific resistance have been shown to involve the HR. Race-specific resistance is usually conveyed by a single *R* gene that rapidly induces HR at the site of attempted infection. However, non-race-specific resistance is hypothesised to be controlled by multiple but weak or partial *R* genes and others that are spread over many QTL which are much slower to trigger PCD resulting in a trailing HR behind the spreading of the pathogen (Avrova et al., 2004). To
genetically separate race-specific and non-race-specific resistances, Stirling was crossed
with the susceptible cv Maris Piper and, after extensive screening, a line with only race-
specific resistance (# 29) and another with only non-race-specific resistance (# 53) were
identified (Avrova et al., 2004). Subsequently, potato cvs Stirling, Bintje and the two
Maris Piper/Stirling progeny clones were sprayed with a race of *P. infestans* collected
from the field the year before, which was shown to be incompatible on Stirling. Leaves
were collected from uninfected plants (0) and plants 12, 24, 48 and 72 hpi. This provides
an overview of gene expression throughout the life cycle of *P. infestans*, which is
biotrophic until 36 hpi when it switches to a necrotrophic infection strategy. An HR
successfully induced during the first 36 hpi prevents potato blight disease spread and
therefore genes involved in defence against *P. infestans* should be up-regulated before
this time point in a resistant potato plant. Leaf samples had been previously collected by
a former PhD student, Nawsheen Taleb. RNA was extracted from these samples and 5
μg per sample was run on a gel for Northern blot analysis (Figure 4.4.1).

StCYP1 gene expression was found to be up-regulated within the first 36 hpi in Stirling
and clone # 29 both of which possess an *R* gene which recognises this strain of *P.
infestans*. Interestingly, although the HR is involved in non-race-specific resistance,
cathepsin-like expression was not detectable in the clone # 53, suggesting that *StCYP1* is
not involved in both defence responses. *StCYP1* was also slightly up-regulated by 24 hpi
in Bintje which may have been caused by the high titre of the *P. infestans* spore
suspension.

The expression of *StSGTIb* (BG599125) was expressed during the first 48 hr of the
incompatible interaction in Stirling and in the first 24 hpi in the *R* gene containing # 29.
However, in Bintje it also appears to be expressed during the first 48 hpi, although the
expression is induced to a lesser extent in comparison with Stirling. This suggests that
StSGTI expression is not specific to the incompatible interaction.

Gene expression of *StADR1* was present during the first 48 hpi of the incompatible
interaction in both Stirling, # 29 and Bintje suggesting that it may not have a role in *R*
gene-dependant resistance to *P. infestans* in potato. *StADR1* appeared to be only weakly
up-regulated in the non-race-specific interaction (# 53). Basal expression of \textit{StADRI} is higher in Stirling compared with clone # 29 and # 53 suggesting that unknown components of non-race-specific resistance, inherited by # 53, could be involved in regulating \textit{StADRI} expression.

The northern blot analyses above indicate that \textit{StCYP1} is differentially expressed between an incompatible and a compatible \textit{P. infestans}-potato interaction. These Northern show that the involvement of \textit{StADRI} and \textit{StSGTI} do not appear to be specific to the incompatible interaction. Northern blots would have to be repeated to demonstrate that \textit{StADRI} and \textit{StSGTI} function during a incompatible \textit{P. infestans}-potato interaction.

The expression analyses mentioned above were being performed simultaneously with an additional SSH library performed by other members of the group. The SSH was constructed using tester material from potato cv 1512 c(16), which possesses resistance gene \textit{R2}, collected 15 hpi with \textit{P. infestans} race containing the avirulence gene \textit{Avr2} (Avrova \textit{et al.}, 2004). This resulted in the identification of a further ten genes which maybe involved in the regulation of the HR (Avrova \textit{et al.}, 2004). One of these genes showed high homology at the nucleotide and amino acid level with a Cathepsin B-like protein from \textit{Nicotiana rustica} (Accession no. X81995). Cathepsin B proteins also appear highly conserved in all plant representatives present in databases and therefore potato cathepsin B was named \textit{StCathB} (AY450641) (Avrova \textit{et al.}, 2004). In addition, the full length amino acid sequence of potato \textit{StCathB} displayed 48 \% identity with human preprocathepsin B (Appendix I). As discussed in 4.2, cathepsin B has been linked directly with caspases and PCD in mammalian models and was therefore predicted to play a role during the HR (Kingham \textit{et al.}, 2001; Vancompernolle \textit{et al.}, 1998).
Figure 4.4.1: Expression of candidate genes of interest in *S. tuberosum* cultivars during infection with *P. infestans*. RNA was extracted from leaf samples collected 0, 12, 24, 48 and 72 hours post-inoculation. Stirling possess both race-specific and non-race-specific resistance to *P. infestans* whereas Bintje represents a compatible interaction. Maris Piper/Stirling cross # 29 possess just race-specific resistance and # 53 possesses just non-race-specific resistance. CYP1, Cathepsin-like candidate from SSH; SGTJ, positive example of a gene involved in the HR in other plant species; ADR1, gene identified from *Arabidopsis* mutant line through activation tagging and shown to convey resistance to oomycete pathogens when overexpressed. Barley 18S probe was used to reveal RNA loading.

4.4.2. Expression of Cathepsin B in *S. tuberosum* cultivars

Expression analysis of this gene was performed by I. Hein and V. Rokka using filters prepared for Figure 4.4.1. A potato cathepsin B gene (Accession no. BG590588) was found to be induced by 15 hpi during the incompatible interaction and by 48 hpi during the compatible interaction as with *StyCYP1* (Figure 4.4.2). The expression pattern of cathepsin B was consistent with all incompatible interactions using potato cvs Stirling, Maris Piper/ Stirling clone # 29 and 1512 c(16). The expression of cathepsin B in compatible interactions was also consistent in potato cvs Maris Piper, Bintje and with the field resistant clone # 53 (Avrova *et al.*, 2004).
Figure 4.4.2: Expression of cathepsin B in compatible and incompatible potato-\textit{P. infestans} interactions. A, Cathepsin B expression was up-regulated by 12 hpi in a race-specific incompatible interaction with Stirling, no. 29 and 1512 c (16). Maris Piper and Bintje time courses represent cathepsin B expression during a compatible interaction. The field resistant, No. 53 time-course reveals the expression of cathepsin B during non-race specific resistance. B, Shows cathepsin B expression at 12, 24 and 48 hpi. I, 1512 c(16) which carries the \(R2\) resistance gene and an incompatible race of \(P. infestans\) carrying \(Avr2\); C, Maris Piper with the same race of \(P. infestans\); U, represents untreated 1512 c(16) potato plants.
4.5. **CathB and SGT1 Gene Silencing in N. benthamiana**

N. benthamiana is a well established model for studying the HR and virus-induced gene silencing (VIGS). TRV VIGS vectors have been widely used to functionally analyse genes of interest and in this project a TRV vector (MacFarlane and Popovich, 2000) was used to clone genes of interest in anti-sense orientation. *Nicotiana* species are close relatives of potato and therefore homologues of the potato CYP1, CathB, ADRI and SGT1 genes could be easily sought in order to study the function through gene silencing whilst an additional VIGS system was being developed for potato (Chapter 5). HR in *N. benthamiana* can be triggered using the non-host bacterial pathogens, *Erwinia amylovora* (Eam) and *Pst DC3000* (avrB). The effect of silenced gene of interest could then be investigated in terms of HR phenotype, extent resistance is compromised, gene expression and protein activity. The differential expression patterns of *StCYP1, StCathB, StADRI* and *StSGT1* indicated that each of these genes are involved in R gene-mediated resistance against *P. infestans* in the potato cultivar Stirling. However, due to time constraints, *CathB* was prioritised for in depth functional analysis because of its PCD-related role in mammals. *SGT1* was used predominantly as a positive control of a HR-related gene well characterised by VIGS in *N. benthamiana* (Peart et al., 2002).

EST homologues of *StCathB* and *StSGT1* were identified from *N. benthamiana, N. tabacum*, *N. rustica*, and tomato (Appendix I: cDNA alignment of Cathepsin B). Blast tools and sequence alignments were used to highlight gene- or gene family-specific regions with relatively high conservation between the species. A 607 bp region of *NbSGT1* (Accession no. AF516181) was cloned into TRV vector in anti-sense using AvrII and KpnI restriction sites (Table 2.5.1 and Figure 4.5). A 376 bp region of *NbCathB* was amplified using *N. benthamiana* cDNA with primers designed from alignment of *N. tabacum, S. tuberosum* and *N. rustica* (AF359422, BG590588 and X81995 respectively). *NbCathB* fragment was then cloned in anti-sense orientation into TRV also using AvrII and KpnI restriction sites. *N. benthamiana* plants were inoculated at 2 weeks old with sap from a virus-infected *N. benthamiana* plant and left for a further 3-4 weeks for a silencing phenotype to develop. In addition, a previously constructed
TRV::GFP vector was inoculated with every experiment involving TRV::SGT1as and TRV::CathBas, as a control of *N. benthamiana* plants infected with a transgenic TRV vector.

![Figure 4.5: Regions of SGT1 and CathB coding sequences cloned in anti-sense into TRV RNA 2. Dark grey blocks represents region of 90% nt homology between Nicotiana ESTs and Arabidopsis coding DNA. Light grey blocks represents the region cloned into TRV. A, 609 bp region of NbSGT1 cloned into TRV in anti-sense including regions encoding the TPR and SOS domains. B, 376 bp region of CathB cloned into TRV including N-terminal region of papain-like protease domain.]

4.5.1. Silencing and HR Phenotype

In order to investigate the HR-related phenotype caused by silencing *NbSGT1* and *NbCathB*, *N. benthamiana* plants were inoculated with TRV::GFP, TRV::SGT1as or TRV::CathBas and left for 4 weeks for silencing to develop. TRV::GFP, TRV::SGT1as or TRV::CathBas *N. benthamiana* plants were then inoculated with two different bacterial pathogens: The avirulent bacterium *Pst* DC3000 (*avrB*), and the apple pathogen *E. amylovora* (*Eam*) which induces a strong non-host HR in *N. benthamiana*. Initially an optimal inoculum concentration had to be found and therefore VIGSed plants were inoculated with bacterial suspensions ranging between 10⁵ and 10⁸ CFU/ml in 10 mM MgCl₂. Suspension of both bacteria at 10⁶ CFU/ml was repeatedly found to be optimal as it produced the expected HR response in TRV::GFP plants and delayed or absent HR symptoms in TRV::SGT1as and TRV::CathBas infected plants (Figure 4.5.1). The
bacterial suspensions of 10^6 CFU/ml are in accordance with those used by Peart et al., 2002 to investigate SGT1. Therefore, the suspension of 10^6 CFU/ml was used for all further experiments involving TRV infected *N. benthamiana*.

![Image of leaf samples](image)

Figure 4.5.1: HR phenotype in TRV::GFP, SGT1_{as} and CathB_{as} *N. benthamiana*. Plants inoculated with bacterial suspensions 10^6 and 10^7 CFU/ml with *E. amylovora* on left hand side of the leaf and *P. syringae pv tomato* DC3000 (*avrB*) on the right. Inoculation buffer (10 mM MgCl₂) was inoculated at the bottom of the leaf on both sides of the vein as a control of any damage caused by the infiltration process. Photographs were taken 48 hpi.

4.5.2. Silencing and Viable Bacterial Numbers

The encouraging discovery that silencing of *NbSGT1* and *NbCathB* could delay and in some cases inhibit an HR induced by avirulent bacterial suspensions of 10^6 CFU/ml led to experiments to analyse the numbers of viable bacteria that could be recovered from the inoculated region. Leaf discs of $1\ cm^2$ were cut from leaves 4 dpi with both *Eam* and *Pst* DC3000 (*avrB*) at 10^6 CFU/ml, diluted to 10^4 and spread on LB plates. In Figure 4.5.2a, there was more than a log difference in *Pst* growth in SGT1_{as} *N. benthamiana* compared
with control GFP plants. Growth of *Eam* was one log greater in *SGT1*_{as} plants compared with GFP *N. benthamiana*. Figure 4.5.2b, displays the colony forming units of *Eam* and *Pst DC3000 (avrB)* recovered from TRV::GFP and TRV::CathB_{as} *N. benthamiana* leaves. Greater than 1-log more viable *Pst DC3000 (avrB)* were recovered from CathB_{as} plants than GFP plants and approximately 1-log greater *Eam* was recovery from CathB_{as} plants than GFP plants. Therefore, silencing of *CathB* allows greater avirulent and non-host pathogen growth than GFP and is comparable with *SGT1* silenced *N. benthamiana*.

Recovery of bacteria from inoculated leaves was repeated at least three times with *Eam* with similar results and the mean values are shown in Figure 4.5.2b. In TRV::GFP plants, 5×10^5 CFU/ml *Eam* were recovered compared with $25-30 \times 10^5$ CFU/ml from TRV::*SGT1*_{as} and TRV::CathB_{as} *N. benthamiana*.

![Figure 4.5.2a: *Pst DC3000 (avrB)* and *Eam* colony counts in TRV::GFP and TRV::*SGT1*_{as} plants. Comparison of colony forming units (CFU) recovered from TRV::GFP and TRV::*SGT1*_{as} *N. benthamiana*. Error bars represent standard error (SE) from experiment involving eight leaf discs from six different plants, each disc plated twice.](image-url)
Comparison of colony forming units (CFU) recovered from TRV::GFP and TRV::SGT1\textsubscript{N}. benthamiana. Error bars represent standard error (SE) from experiment involving eight leaf discs from six different plants, each disc plated twice.

Figure 4.5.2b: \textit{Pst} DC3000 (avrB) and \textit{Eam} colony counts in TRV::GFP and TRV::CathB\textsubscript{as} plants. Comparison of colony forming units (CFU) recovered from TRV::GFP and TRV::SGT1\textsubscript{N}. benthamiana. Error bars represent combined SE from three biological replicates.

Figure 4.5.2c: Bacterial colony counts in TRV silenced plants 4 dpi. Mean \textit{Eam} recovery CFU/cm2 of three biological replicates comparing CFU recovered from TRV::GFP, TRV::CathB\textsubscript{as} and TRV::SGT1\textsubscript{as} \textit{N. benthamiana}. Error bars represent combined SE from three biological replicates.
4.5.3. Silencing of SGT1 in *N. benthamiana*

TRV::SGT1_{as} plants displayed both a morphological and a delayed HR phenotype when compared to TRV::GFP (Figure 4.5.1) indicating that silencing of the *SGT1* transcript was occurring. However, to confirm that silencing was occurring in TRV::SGT1_{as} *N. benthamiana* western blot analysis was performed on these plants at four weeks post-inoculation with viral constructs. Proteins were extracted from three leaf layers (top, middle and lower) from three individual plants for both GFP and SGT1_{as} and one non-inoculated control plant. Rat polyclonal antibody, raised to the SGT1-specific (SGS) domain of *Arabidopsis* SGT1, was kindly provided by Ken Shirasu and used to probe *N. benthamiana* protein samples (Figure 4.5.3). The 48 kDa SGT1 protein was detectable in the non-inoculated and in the TRV::GFP plants but not in TRV::SGT1_{as} infected plants. This provides evidence of successful inhibition of SGT1 protein synthesis in the TRV::SGT1_{as}*N. benthamiana*.

![Figure 4.5.3: SGT1 protein in TRV::GFP and TRV::SGT1_{as} N. benthamiana.](image)

Lane 1 contains uninoculated *N. benthamiana*; 2-4 samples from 3 leaf layers of TRV::GFP; 5-10, 3 leaf layer samples extracted from TRV::SGT1_{as} plant in two separate experiments. 5, 7, 9 leaf layers from experiment 1 and 6,8,10 are leaf layers from experiment 2. L3, top; L2, middle and L1, oldest leaves 4 weeks post-inoculation with TRV (Western blot analysis performed with Christophe Lacomme).

4.5.4. Quantification of Cathepsin B Silencing

To confirm and quantify the silencing of *NbCathB* mRNA in TRV::CathK_{as} *N. benthamiana* plants, quantitative real-time RT-PCR was used as the most sensitive method of RNA detection. The levels of *NbCathB* mRNA were assessed relative to the levels of 25S rRNA present in each sample taken at 0, 6, 12 and 18 hpi with 10⁶ CFU/ml of *Eam*. RNA was extracted from leaf samples taken from at least one leaf disc from six individual plants. 25S was used as an endogenous control for constitutive gene
Chapter 4

expression. 25S RNA does not possess a poly-A tail and therefore cDNA was synthesised using random hexamers using leaf samples taken from two previously performed biological replicates. Taqman primers were designed to a region of the \textit{NbCathB} downstream of the sequence cloned into TRV. The levels of \textit{NbCathB} RNA were quantified and for each time point, samples were normalised to the \textit{NbCathB} mRNA leaves in the GFP 0 hpi time point (Figure 4.5.4). A 1.8-fold up-regulation of \textit{NbCathB} was observed as a peak at 6 hpi with TRV::GFP plants inoculated with \textit{Eam}. In TRV::CathB$_{as}$ \textit{N. benthamiana}, \textit{NbCathB} expression did increase slightly at 6 hpi with \textit{Eam} but 7-fold lower than that observed in TRV::GFP plants at 6 hpi. The silencing of \textit{NbCathB} was maintained through 6 and 12 hpi in comparison with \textit{NbCathB} expression in TRV::GFP plants. It can therefore be concluded that \textit{NbCathB} expression is being knocked-down to around 20\% of the equivalent GFP plants during the most critical early time-points following \textit{Eam} inoculation in TRV::CathB$_{as}$ \textit{N. benthamiana}.

![Figure 4.5.4: Quantification of NbCathB transcript levels in TRV::GFP and TRV::CathB$_{as}$ plants.](image)

Graph displays levels of \textit{NbCathB} transcript in TRV::GFP and TRV::CathB$_{as}$ plants between 0-18 hpi with 10^5 CFU/ml suspension of \textit{Eam}. Amount of cDNA in each sample was normalised using level of 25S transcript. Values represent mean of two biological replicates, each sample being performed in triplicate both times and shown relative to the GFP 0 hpi time-point, plus and minus SE. \textit{NbCathB} taqman primers were designed under the guidance of Ingo Hein. Random hexamer cDNA synthesis was performed by Eduard Venter and the RT-PCR by Ingo Hein.
4.5.5. Protein Activity in Silenced Plants

To further investigate the affect of silencing *NbCathB*, a cathepsin B colorimetric substrate (Z-Arg-Arg-pNA) was used to assay cathepsin B activity between 0 and 24 hpi with *Eam* bacterial suspension of 10^6 CFU/ml. Optimal procedure was based on additional information requested from Calbiochem (Merck Biosciences, UK). At least three leaves from three individual plants were collected for each time point. The concentration of total protein in each sample was measured using a standard Bradford assay and results obtained using the cathepsin B substrate were adjusted to mg/ml of total protein (Figure 4.5.5). In plants inoculated with TRV::GFP, a sharp increase in cathepsin B activity was observed at 6 hpi, mirroring the peak of expression measured in Figure 4.5.4. In contrast, the TRV::CathB as inoculated *N. benthamiana* showed no increase in cathepsin B activity at 6 hpi. The close association between cathepsin B activity and expression in TRV::GFP and TRV::CathB as *N. benthamiana* indicates that protein turnover of cathepsin B is most likely rapid. This experiment was repeated twice further and gave similar results.

![Figure 4.5.5: Cathepsin B activity in TRV::GFP and TRV::CathB as *N. benthamiana*. The graph displays mean values of pooled protein samples analysed in triplicate for both the Bradford assay and the Cathepsin B activity assay. Leaf samples were collected at 6 hr intervals post-inoculation with *Eam*. Values shown represent the mean and the error bars indicate the SE of triplicate readings for each sample.](image-url)
4.6. *Cathepsin B inhibitors in N. benthamiana*

4.6.1. Inhibitors and HR phenotype

To further investigate the involvement of cathepsin B during *Eam*-induced HR, a range of mammalian cathepsin B protein inhibitors were ordered from Calbiochem (Merck Biosciences, UK) (Table 4.6). As human cathepsin B and plant cathepsin B share 47% homology at the amino acid level, it was possible that these inhibitors would inhibit plant cathepsin B activity (Appendix I: Protein Alignment). Early experiments used *Z-FGNHO-Bz* and *Ac-LVK-CHO* inhibitors diluted to 1-150 μM with *Eam* bacteria suspensions of between 10^5-10^8 CFU/ml in MES or MgCl₂ buffer.

<table>
<thead>
<tr>
<th>Inhibitor</th>
<th>Full Name</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cathepsin B, S, L and Papain: Z-FGNHO-Bz</td>
<td>benzoyloxycarbonyl-Phe-Gly-hydroxylamine-benzoyl</td>
<td>Demuth et al., 1996</td>
</tr>
<tr>
<td>Cathepsin B I: z-FA.fmk</td>
<td>benzoyloxycarbonyl-Phe-Ala-fluoromethylketone</td>
<td>Schotte et al., 2001</td>
</tr>
<tr>
<td>Cathepsin B II: Ac-LVK-CHO</td>
<td>Acetyl-Leu-Val-lysinal</td>
<td>McConnell et al., 1993</td>
</tr>
<tr>
<td>Cathepsin B IV: CA-074 Me</td>
<td>[L-3-trans-(Propylcarbamoyl)oxirane-2-carbonyl]-L-isoleucyl-L-proline Methyl Ester</td>
<td>Foghsgaard et al., 2004</td>
</tr>
</tbody>
</table>

In accordance with the optimum bacterial suspension concentration found for VIGSed plants (4.5.1), 10^6 CFU/ml was found to consistently induce the HR (Figure 4.6.1a). The observed HR induction could be inhibited repeatedly with 150 μM of either cathepsin inhibitor in 5 mM MES and therefore 5 mM MES buffer was used for subsequent inoculations. Figure 4.6.1a shows the leaves inoculated with 10^6 CFU/ml of *Pst* DC3000 (*avrB*) with 150 μM inhibitor resulted in a patch of chlorosis, characteristic of disease symptoms caused by virulent *Pst*. In addition, HR symptoms in some leaves inoculated with 10^6 CFU/ml of *Eam* appeared reduced compared to control inoculation sites suggesting the inhibitors were delaying the HR. Henceforth, the concentration of inhibitors was increased to an optimal concentration of 1 mM. Inhibitor concentration of 1 mM reproducibly repressed the HR symptoms using all four inhibitors (Figure 4.6.1b). In this experiment, the volume inoculated was carefully inoculated so that the 10 μl of each suspension was pressure infiltrated as equally as possible.
Figure 4.6.1a: Optimizing CFU/ml bacterial suspensions with 150 μM of cathepsin inhibitors. A, Cathepsin B-specific Inhibitor II (Ac-LVK-CHO) and B, general cathepsin inhibitor (Z-FGNHO-Bz). *Eam* and *Pst* (*avrB*) bacterial suspensions at 10^5 and 10^6 CFU/ml inoculated with and without cathepsin B inhibitors.

A Ac-LVK-CHO

<table>
<thead>
<tr>
<th></th>
<th>MES</th>
<th>$10^5 + 150 \mu M$</th>
<th>$10^6 + 150 \mu M$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pst only</td>
<td></td>
<td>10^5</td>
<td>10^6</td>
</tr>
<tr>
<td>Eam only</td>
<td></td>
<td>10^5</td>
<td>10^6</td>
</tr>
</tbody>
</table>

B Z-FGNHO-Bz

<table>
<thead>
<tr>
<th></th>
<th>MES</th>
<th>$10^5 + 150 \mu M$</th>
<th>$10^6 + 150 \mu M$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pst only</td>
<td></td>
<td>10^5</td>
<td>10^6</td>
</tr>
<tr>
<td>Eam only</td>
<td></td>
<td>10^5</td>
<td>10^6</td>
</tr>
</tbody>
</table>
4.6.2. Inhibitors and Viable Bacteria Counts

Following visual observations that the cathepsin B inhibitors could repress the HR phenotypes, it was necessary to measure any difference in bacterial growth. Leaf discs were cut from the *Eam* (10^6 CFU/ml) inoculated plants with and without inhibitor. Recovery of viable *Eam* inoculated with each cathepsin B inhibitor was performed and revealed a 10-fold increase in bacteria numbers with Ac-LVK-CHO and CA-074 Me cathepsin inhibitors and 5-fold increase with z-FA.fmk (Figure 4.6.2, A). This implies a link between suppression of the HR phenotype and the number of HR-inducing bacteria that could be recovered from inoculated leaf discs. To investigate whether the inhibitors affected *Eam* growth, LB liquid cultures supplemented with 1 mM inhibitor were inoculated with *Eam* and grown overnight. The resulting optical densities of these overnight cultures are shown in Figure 4.6.2B which illustrates that these inhibitors are not toxic to the bacteria although does not reveal differences in growth rate over time. It
is therefore most likely that the suppression of cathepsin B activity was responsible for the repression of HR phenotypes in Figure 4.6.1B and not reduced bacterial viability.

Figure 4.6.2: Effect of cathepsin B-specific inhibitors on *in vivo* and *in vitro* pathogen growth. **A,** Fold increase in *Eam* CFU/cm² recovered from leaves co-inoculated with 1 mM cathepsin B-specific inhibitors compared with control inoculations with no inhibitor. Results are the mean of two biological replicates and error bars represent the combined SE. **B,** optical densities (OD₅₈₀) of 1 ml of overnight liquid cultures of *Eam* in LB broth at 30 °C in presence of 1 mM cathepsin B-specific inhibitors.
4.6.3. Inhibitors and Cathepsin B Activity

The next experiment was designed to investigate the effect the inhibitors had on endogenous cathepsin B activity. Therefore the activity of cathepsin was measured prior to infiltration and 6 hpi with 5 mM MES buffer, *Eam* suspension (10⁶ CFU/ml) and same bacterial suspension with 1 mM of Ac-LVK-CHO or z-FA.fmk cathepsin B-specific inhibitors Figure 4.6.3. In agreement with the results presented in Figure 4.5.5, an increase in cathepsin B activity was observed at 6 hpi with *Eam* but not induced in the MES inoculated control. This cathepsin B activity at 6 hpi was substantially blocked by both cathepsin B-specific inhibitors. This supports the hypothesis that cathepsin B protein activity at 6 hpi with the non-host pathogen *Eam* is necessary for successful HR development and that co-infiltrated inhibitors block the cathepsin B activity at 6 hpi.

![Figure 4.6.3: Cathepsin B protein activity in inhibitor treated *N. benthamiana* 6 hpi with *Eam*. Cathepsin B activity was measured using a colorimetric assay and made relative to mg/ml of total protein using Bradford Protein assay. Values represent the mean of two biological replicates, with samples of each treatment taken from 6 replicate plants. Error bars represent the combined SE from both experiments. Experiment was repeated many times although the data presented here were measured by Eduard Venter.](image-url)
4.7. **Cathepsin B and PARP Cleavage**

During mammalian apoptosis, a hallmark of PCD is the cleavage of poly (ADP-ribose) polymerase (PARP) (Boucher et al., 2001). PARP is a monomeric, 116 kDa protein with unusual zinc-fingers that are thought to recognise and be activated by DNA breaks. It modifies protein targets (e.g. histones and topoisomerase) (D’Amours et al., 1999). PARP possess 62 Asp residues, some of which have been shown to be cleavage sites for caspases (DXXD) (Duriez and Shah, 1997). Caspase-3 cleavage of PARP typically produces a 25 kDa N-terminal fragment and an 85 kDa fragment (Kaufmann et al., 1993). In addition, active lysosomal cathepsin B has also been shown to cleave PARP in the presence of broad spectrum caspase inhibitor, zVAD-fmk (Gobeil et al., 2001). Caspase-1 activity has been identified during the HR although it is not known to cleave PARP and the mammalian orthologue is involved in cytokine activation and is not an initiator or effector of apoptosis (Hatsugai et al., 2004; Chang and Yang, 2000). It is possible that plant cathepsin B may be responsible for the cleavage of PARP during the HR. D’Silva et al., (1998) used bovine PARP-1 to identify cysteine protease activity and describe the production of four cleavage products during the cowpea HR, with molecular masses of 77, 52, 47 and 45 kDa (Figure 4.7A). Furthermore, their research demonstrated that only a papain, cathepsin and calpain inhibitor E-64, could block formation of the 45 kDa, N-terminal PARP fragment.

Western blot analysis was performed using bovine cathepsin B, bovine PARP-1 and protein extracts based on methodology described in D’Silva et al., (1998). Firstly, the PARP-1 cleavage pattern produced by bovine cathepsin B was investigated with and without 1 mM Ac-LVK-CHO or z-FA.fmk. Following a 30 min incubation of bovine cathepsin B and bovine PARP-1, a band of 45 kDa was identified which must be the N-terminal DNA-binding domain recognised by the antibody. Cathepsin B inhibitor, Ac-LVK-CHO appeared to block the formation of this band and produced a pattern similar to undigested PARP-1. The inhibitor, z-FA.fmk, on the other hand, did not block the formation of the 45 kDa fragment. This suggests that the reaction rate of PARP-1 cleavage by bovine cathepsin B can be partially inhibited by z-FA.fmk and almost
completely inhibited by Ac-LVK CHO. Figure 4.7C, lane 2 was included as a negative control but reveals that endogenous plant PARP cross reacts with the bovine PARP antibody. However, formation of a 45 kDa PARP fragment in the total protein extracted from TRV::GFP at 6 hpi with *Eam* supports the presence of cathepsin B activity. Lane 3 reveals the same 45 kDa band produced by the bovine cathepsin B and bovine PARP. Lane 4, shows that 1 mM Ac-LVK-CHO can prevent formation of the 45 kDa band in a bovine cathepsin B and bovine PARP incubation. Lane 5 was designed to identify cathepsin B activity in the crude protein extract from TRV::GFP plants at 6 hpi. However as lane 2 has already revealed cross reaction between endogenous PARP and the antibody the activity of *N. benthamiana* cathepsin B on bovine PARP cannot be determined. The effect of Ac-LVK-CHO on cathepsin B activity in total protein extracts from TRV::GFP plants was investigated (lane 6). The inhibitor, Ac-LVK-CHO appears to have not prevented the formation of the 45 kDa fragment in this experiment. Interestingly, the incubation of TRV::CathB at 6 hpi total protein extract with bovine PARP reveals a massive degradation of the PARP and accumulation of 6 and 14.5 kDa fragments. Interestingly, the same fragments can be identified in lane 4, in which bovine cathepsin B and bovine PARP are incubated with 1 mM Ac-LVK-CHO, suggesting a similar loss of cathepsin B activity but perhaps and increase in activity of other proteases. However, the absence of 116 kDa fragment in lane 7 suggests that there is less protein loaded and that the PARP may be degraded in this sample. Since the bovine PARP-1 antibody cross reacts with endogenous plant PARP the activity of endogenous *N. benthamiana* cathepsin B cannot be properly investigated until it has been tagged, purified and investigated *in vitro*.
4.8. **Effect of Inhibitors on Caspase-like Activity**

As mentioned previously, several examples of caspase-like activity have been measured during the HR (del Pozo and Lam, 1998; Coffeen and Wolpert, 2004; Chichkova et al., 2004; Rojo et al., 2004) and during developmental PCD (Belenghi et al., 2003). In addition, studies of caspase-independent cell death in the mammalian system have
implicated some cysteine proteases as an alternative route to PCD (Abraham and Shaham, 2004). It was therefore interesting to examine whether cathepsin B functioned upstream or independently of the caspase-like activity measured by Chichkova et al., (2004) during HR induced by N-TMV interaction. Chichkova et al., 2004, utilised two caspase-3 cleavage sites present in the VirD2 protein (TATD and GEQD) to construct a fusion protein that localises to the nucleus until caspase-like activity cleaves the nuclear localisation signal (NLS) from VirD2 releasing GFP into the cytoplasm (Figure 4.8A). Linearised TMV GFP::VirD2 vector was transcribed and added to a TMV strain U1 coat protein for reassembly. TMV GFP::VirD2 was then inoculated into N. tabacum CB9 which contains a viral movement protein which helps the spread of the virus. Plants were incubated at 24 °C for 48 hr to allow viral lesions to develop. Lesions were examined under the scanning laser confocal microscope, location marked and then photographs taken before inoculation of Eam (10^6 CFU/ml) with and without 1 mM Ac-LVK-CHO inhibitor and TATD inhibitor. The same lesions were inspected every hour until cytoplasmic GFP was identified in the Eam inoculated lesions, followed by the Eam and inhibitor treated lesions (usually around 6 hpi) (Figure 4.8B). At 6 hpi with Eam suspension resulted in cleaved GFP::VirD2 re-localization to the cytoplasm of epidermal cells suggesting caspase activity was induced. Co-inoculation of Eam with the caspase-3 inhibitor, TATD, inhibited the cleavage and re-localisation of the GFP::VirD2 protein fusion. Unexpectedly, this result was also observed using the cathepsin B-specific inhibitor, Ac-LVK-CHO. Therefore, inhibition of cathepsin B activity at 6 hpi with Eam also causes inhibition or delay of caspase-3 activity during the plant HR. However, this is preliminary data and the experiment needs to be repeated to draw definite conclusions. In addition, the GFP::VirD2 construct could be used for Western blot analysis using purified cathepsin B, bovine cathepsin B and total protein extracts with an antibody raised to GFP to detect a size change caused by VirD2 cleavage.

Figure 4.8: GFP::VirD2 localisation in *Eam*-induced HR in tobacco. A. Map of TMV GFP::VirD2 construct and position of caspase cleavage sites. B. Each TMV GFP::VirD2 lesion was imaged before and 6 hpi after treatment. Water treatment, 0 hpi and 6 hpi; *Eam* 10^6 CFU/ml 0 hpi and 6 hpi; *Eam* $(10^6$ CFU/ml) co-inoculated with 1 mM caspase inhibitor, TATD 0 hpi and 6 hpi; *Eam* $(10^6$ CFU/ml) co-inoculated with 1 mM cathepsin B, Ac-LVK-CHO. Trudi Gillespie provided instruction on the scanning laser confocal microscope.

4.9. Arabidopsis Cathepsin T-DNA Insert Lines

To take advantage of the sequenced model *Arabidopsis* and the wealth of resources available to the research community, all three *Arabidopsis* cathepsin B gene homologues (At1g02300, At1g02305 and At4g01610) and one *CYPI* homologue, known as *RD2I*, (At1g47128) were identified. Insertion lines in these genes (as annotated at time of ordering) were obtained from Nottingham Arabidopsis Stock Centre (NASC) and Arabidopsis Biological Resource Centre (ABRC) through the SIGnAL website (Alonso *et al.*, 2003) (See Table 4.9 and 2.15).
Table 4.9: Insertion loci, SALK seed line number and accession number of flanking sequence

<table>
<thead>
<tr>
<th>Locus</th>
<th>SALK Insertion No.</th>
<th>Left Border Flanking Seq. Accession</th>
</tr>
</thead>
<tbody>
<tr>
<td>At1g02300</td>
<td>SALK_049118</td>
<td>BH755420</td>
</tr>
<tr>
<td>At1g02300/At1g02305</td>
<td>SALK_138261</td>
<td>BZ767041</td>
</tr>
<tr>
<td>At4g01610</td>
<td>SALK_019639</td>
<td>BH752998</td>
</tr>
<tr>
<td>At1g47128</td>
<td>SALK_090550</td>
<td>BZ762147</td>
</tr>
</tbody>
</table>

Figure 4.9: Cathepsin B insertion lines from ABRC. Grey areas represent 5’ and 3’ UTRs, black regions are exons and white regions are introns. The red triangle represents the pROK2 T-DNA vector and the location of its insertion within the gene found using left border flanking sequences.

4.9.1. Genotyping and expression analysis of mutant lines

The T-DNA insertion lines were sent as the progeny of a heterozygous insertion Col-0 Arabidopsis parent and therefore required genotyping to identify homozygous offspring. Homozygous plants were identified by a PCR reaction with three primers, two gene-specific primers that produce a PCR product of 800 bp and one primer (LBb1) that anneals to the pROK2 T-DNA insert (2.8.3). Gene-specific primers were designed through the SIGnAL website appropriate for each insertion site (See 2.8.3). When the insert was present, a PCR product of 400 bp was produced. By this means, insertion
lines were genotyped until a generation of completely homozygous progeny was identified. In order to confirm the knock out of gene expression in these mutants, primers were designed to the 3'UTR of the three cathepsin B homologues and could be used to distinguish their expression in the insertion lines.

![Genotyping products of PCR of SALK T-DNA insertion lines](image)

Figure 4.9.1a: Genotyping products of PCR of SALK T-DNA insertion lines. Combination of a gene-specific primer and a primer specific for the left border of the pROK2 produces a band of 400 bp. Two gene-specific primers are designed to produce a band of 800 bp. A, T₁ generation of SALK_049118, C represents Col-0, 1-6, numbered T₁ progeny of a homozygous mutant identified in the same manner. 1, 2 and 5 are homozygous for the T-DNA insert, 4 and 6 being homozygous wild-type. B, T₁ generation of SALK_138261. 1, 2, 4 and 6 are homozygous for the pROK2 insert. 3 is homozygous wild type and 5 is heterozygous for the insert. C, T₁ progeny of SALK_090550 all revealed to be homozygous for the insert.

Cathepsin B insertion lines SALK_049118 and SALK_138261 and the CYP1 (RD21) insertion line SALK_090550 did not display any morphological phenotypes. However, insertion line SALK_019630, which corresponds to the third cathepsin B locus, At4g01610 did display a growth phenotype (Figure 4.9.1b). Under long day conditions, used to grow all *Arabidopsis* plants, SALK_019630 mutants appeared to have the growth characteristics of plants responding to low red to far-red ratios typically experienced by plants situated in the shade (Fankhauser and Casal, 2004). The leaves were smaller and a
paler shade of green with longer petioles. Wild type *Arabidopsis* leaves generally lie parallel with the soil whereas the leaves of SALK_019630 pointed upwards, erect at almost 45° angles with the soil. This phenotype has been previously described in phytochrome B (*phyB*) mutants and referred to as a constitutive shade-avoidance phenotype (Reed *et al.*, 1993; Whitelam and Devlin, 1997).

![Figure 4.9.1b: Morphology of cathepsin insertion lines.](image)

SALK insertion lines displayed no obvious morphological phenotypes when compared to Col-0, except SALK_019630. This line displayed longer petioles, smaller, paler leaves which pointed upwards towards the light.

4.9.2. Cathepsin mutants response to virulent *Pst* DC3000

Wild type, *nahG* transgenic (with perturbed SA-dependent signalling pathway) and the cathepsin insertion line *Arabidopsis* plants were inoculated with 10^6 CFU/ml of *Pst* DC3000 to investigate whether any mutants were perturbed in basal defence responses. Histochemical analysis experiments were performed with at least 6 leaves from individual plants, representative of each plant genotype and from two biological replicates. Staining of hydrogen peroxide in virulent *Pst* DC3000 challenged plants revealed that SALK_019630 (light-sensing phenotype) accumulated the same minimal amount of H$_2$O$_2$ as Col-0 by 4 hpi (Figure 4.9.2a). However, staining leaves from the other cathepsin B insertion lines and the *CYP1* insertion line showed that these mutants did not accumulate the small amount of H$_2$O$_2$ as detected in Col-0 (Figure 4.9.2a). Dead cell staining at 12 hpi revealed that *Pst* DC3000 did not induce cell death in any of the *Arabidopsis* plants inoculated.
To quantify the numbers of virulent bacteria that could grow within these mutant lines, leaves were ground in buffer, diluted and spread on KB plates supplemented with rifampicin. Due to time constraints experiment could only be repeated twice with similar results. Preliminary colony counts revealed that cathepsin B insertion lines SALK_138261, SALK_019630 and SALK_49118 allowed more than 10-fold greater increase in virulent \textit{Pst} DC3000 growth, comparable with \textit{nahG} transgenic plant. \textit{CYP1} knockout line 090550 on the other hand displayed a similar level of growth as Col-0.
4.9.3. Cathepsin mutants response to \textit{Pst DC3000 (avrB)}

\textit{Pst DC3000 (avrB)} should be recognised by RPM1 triggering an HR in \textit{Arabidopsis}. Wild type, the \textit{nahG} transgenic and cathepsin insertion line \textit{Arabidopsis} plants were inoculated with 10^6 CFU/ml of \textit{Pst DC3000 (avrB)} to investigate whether any mutants were perturbed in RPM1-triggered defence responses. Histochemical analysis experiments were performed with at least 6 leaves from individual plants, representative of each plant genotype and from two biological replicates. Staining of hydrogen peroxide in \textit{Pst (avrB)} challenged plants revealed that SALK_019630 (light-sensing phenotype) accumulated more H$_2$O$_2$ than Col-0 by 4 hpi (Figure 4.9.3a). Staining leaves from the other cathepsin B insertion lines and the \textit{CYP1} insertion line showed that these mutants accumulate less H$_2$O$_2$ than Col-0 and similar amounts compared with \textit{nahG} transgenic (Figure 4.9.2a). Dead cell staining at 12 hpi revealed that \textit{Pst DC3000 (avrB)} did not induce extensive cell death in cathepsin B insertion mutants SALK_049118 and SALK_138261. In addition, the \textit{CYP1} insertion line and the third cathepsin B homologue (SALK_019630) showed moderate amounts of cell death. The H$_2$O$_2$ leaf
staining revealed that cathepsin B SALK_049118 and SALK_138261 lines and CYP1 SALK_090550 line show a phenotype similar to nahG suggesting that they are perturbed in CC-NBS-LRR triggered oxidative burst. The dead cell stain revealed that all mutants had fewer dead cells than Col-0 at 12 hpi. Leaves were also stained with trypan blue at 24 hpi with similar results (data not shown).

![Image of hydrogen peroxide and dead cell staining](image_url)

Figure 4.9.3a: Hydrogen peroxide and dead cell staining post-inoculation with Pst DC3000 (avrB). DAB staining for hydrogen peroxide was performed 4 hpi with 10⁶ CFU/ml suspension. Trypan blue staining for dead cells was performed at 12 hpi with Pst DC3000 (avrB).

To quantify the numbers of avirulent bacteria that could grow after CC-NBS-LRR triggered HR in these mutant lines, leaves were ground in buffer, diluted and spread on KB plates supplemented with rifampicin and kanamycin (Figure 4.9.3b). Due to time constraints, colony counts were performed twice but with similar results. Preliminary colony count data revealed a trend that cathepsin B insertion lines, SALK_138261 and SALK_019630, and CYP1 insertion line, SALK_090550 may have allowed 5-fold more Pst to proliferate by 9 dpi. However, taking into consideration the standard error, the difference between these insertion lines and Col-0 is not statistically robust. The nahG plants, that cannot accumulate SA-signalling and therefore cannot induce an effective
HR, showed 15-fold more avirulent \textit{Pst} growth compared with Col-0. Interestingly, cathepsin B insertion line 049118 was found to allow more than 20-fold greater bacterial growth in comparison with Col-0. This suggests that cathepsin B homologue, At1g02300, but not necessarily the other cathepsin B homologues are required for induction of the HR through RPM1.

Figure 4.9.3b: \textit{Pst} DC3000 (avrB) colony counts in SALK T-DNA insertion lines 9 dpi. Graph shows mean values of colony forming units recovered from leaves from 4 individual plants. Error bars represent SE of one biological replicate.

4.10. Discussion

Some cathepsins and other proteases have been shown to play a role in both caspase-dependent and caspase-independent PCD in mammalian systems (Abraham and Shaham, 2004). Although caspase-like activities have been identified in plants, initiator caspase genes or proteins responsible for those activities have not been identified thus far (Chichkova \textit{et al.}, 2004; Belenghi \textit{et al.}, 2004; Hatsugai \textit{et al.}, 2004; Sanmartin \textit{et al.}, 2005). The \textit{Arabidopsis} genome encodes 488 annotated protease genes, many of which will most probably be associated with PCD and defence (van der Hoorn and Jones, 2004). The discovery of two cysteine proteases up-regulated during the potato-\textit{P}.
interaction gave an indication that these genes may be involved in regulating the HR. A major aim of this project was therefore to elucidate whether either of these cathepsin-like genes could be a key regulator of the HR.

Northern blot analysis was used to provide an indication of the expression pattern of candidate genes in potato and also in *N. benthamiana* (data not shown). Two cathepsin genes of interest were up-regulated during the early stages of an incompatible potato-*P. infestans* interaction. The *CYPI* gene was also up-regulated rapidly following an INF1 elicitor treatment and *E. amylovora* infection in *N. benthamiana* which also made it a positive candidate for future gene silencing experiments (data not shown). However, the decision not to use this gene for imminent gene silencing studies during this project was based on evidence for its probable mode of activation. Previous research reveals that the *Arabidopsis* homolog, RD21 accumulates as an intermediate form (iRD21), that lacks the N-terminal propeptide (NTPP) form but still possesses the C-terminal granulin domain, in the endoplasmic reticulum (ER) bodies and vacuoles (Hayashi *et al.*, 2001; Yamada *et al.*, 2001). The mature and active RD21 protein (mRD21) was shown to be activated during senescence and lacked the C-terminal granulin domain. Further experiments by Yamada *et al.*, (2001) also showed that RD21 was not self-catalytically converted from proRD21 to iRD21 or from iRD21 to mRD21 and that αVPE and γVPE, responsible for maturing various vacuolar proteins within vacuoles (Yamada *et al.*, 1999), were not sufficient for its processing. This data suggests that *StCYPI* is most likely to be an effector protease that is matured as a down stream target of other regulatory proteases. On the other hand, cathepsin B is one of the best studied mammalian cysteine proteases (Muntener *et al.*, 2004). Cathepsin B knockout mice have been shown to be resistant to apoptosis (Gucciardi *et al.*, 2001; Zeiss, 2003). Cathepsin B has also been demonstrated to act both independently or directly upstream of caspases (Vancompernolle *et al.*, 1998; Foghsaard *et al.*, 2001; Kingham *et al.*, 2001). This data supports a possible role for cathepsin B as a key regulator protease in the plant HR and therefore cathepsin B was selected for further in depth functional analysis over *CYPI* due to insufficient time to study both genes in such detail.
N. benthamiana is a close relative of potato and a commonly utilised model system for studying the HR in which silencing of disease resistance genes has been well documented (Peart et al., 2002). TRV silencing vectors with SGTI and CathB gene fragments cloned in anti-sense were designed, constructed and inoculated as RNA transcripts into N. benthamiana plants. Four weeks after viral infection, silenced plants inoculated with 10^6 CFU/ml suspensions of the non-host apple bacterium E. amylovora (Eam) and P. syringae (Pst) DC3000 displayed a delay or even complete suppression of the HR symptoms compared with TRV::GFP plants. TRV::SGT1as silenced plants have previously been reported to have a delayed HR triggered by NBS-LRR R genes (Peart et al., 2002). It was therefore encouraging to observe a comparable or even more effective inhibition of the HR in TRV::CathBas plants (Figure 4.5.1). In order to quantify the effect the delayed HR had on growth of non-host bacteria, leaf discs were cut from inoculated regions of TRV infected N. benthamiana, ground in buffer, diluted and spread on plates. Viable Pst recovered from both TRV::SGT1as and TRV::CathBas plants was at least ten-fold greater than TRV::GFP control. Viable Eam recovered from the silenced plants was around ten-fold or slightly less than GFP controls. Therefore, silencing of CathB suppresses the HR allowing ordinarily incompatible bacterium to proliferate more successfully (Figure 4.5.2a, b and c).

To confirm the extent of silencing, quantitative real-time RT-PCR was attempted through a time course. The difficulty in performing quantification in such a sensitive machine is that induction of normally utilised endogenous standards such as GAPDH and ubiquitin genes is detected. The normalised value therefore appears less or more than expected as calculations assume that the standard value is indicative of the total RNA in samples. Quantification of CathB transcript levels in Figure 4.5.3 revealed that expression in TRV::CathBas was knocked down to 20% of TRV::GFP in equivalent time points up to 12 hpi with Eam. TRV::SGT1as N. benthamiana plants in these experiments displayed the same shorter, more branched structure in addition to the delayed HR phenotype as previously described in Peart et al. (2002). Therefore, silencing of SGT1 in these plants was believed with some confidence to be occurring. Nevertheless, silencing of SGT1
was confirmed at the protein level by western blot analysis of TRV::GFP and TRV::SGT1 as leaf samples (Figure 4.5.4).

To investigate whether silencing affected cathepsin B protein activity following non-host pathogen inoculation, cathepsin B activity was examined in TRV::GFP and TRV::CathB as plants. Figure 4.5.5 revealed that silencing of CathB transcripts prevented the peak of cathepsin B activity observed at 6 hpi in TRV::GFP plants. Therefore induction of both CathB transcript levels and cathepsin B activity were successfully repressed in TRV::CathB as plants which subsequently delayed the HR allowing significantly increased non-host bacterial growth.

To further investigate cathepsin B activity and to support the silencing data, commercially available mammalian cathepsin B inhibitors were ordered (Table 4.6). As human cathepsin B and plant cathepsin B share 47% homology at the amino acid level, it was possible that these inhibitors may not inhibit plant cathepsin B activity. However, at 150 μM, cathepsin B inhibitors were shown to suppress the HR induced by bacterial suspensions of 10^5 CFU/ml and Ac-LVK-CHO was also shown to suppress the HR induced by 10^6 CFU/ml (Figure 4.6.1a). Once the optimal inhibitor concentration of 1 mM was utilised with 10^6 CFU/ml a reproducible suppression of the HR was observed with all inhibitors tested (Figure 4.6.1b). As with the CathB silenced plants, colony counts were used to quantify the delayed HR phenotype. Figure 4.6.2A revealed that 1 mM of cathepsin B specific inhibitors Ac-LVK-CHO and Ca-074 Me allowed 10-fold and z-FA.fmk allowed 5-fold more non-host bacterial growth. To evaluate whether the inhibitors may be toxic to the bacteria, overnight cultures were grown in LB with 1 mM inhibitor which did appear to have an effect on the growth of Eam although rate of growth was not examined (Figure 4.6.2B). Since more than one mammalian cathepsin B inhibitor appears to suppress cathepsin B activity in N. benthamiana it can be suggested that plant cathepsin B possesses similar active sites and therefore activity as mammalian cathepsin B.

Cathepsin B inhibitors were co-infiltrated into the extracellular spaces of the N. benthamiana leaves and whether or not they can diffuse into the cell has not been tested.
However, cathepsin B activity of protein extracts in leaf discs cut from the inoculated regions was measured to estimate their inhibitory effect in vivo. Figure 4.6.3 reveals that the peak in activity observed at 6 hpi in *Eam* (*10^6* CFU/ml) treated leaves was suppressed to the level of uninoculated and buffer inoculated samples by cathepsin B specific inhibitors Ac-LVK-CHO and z-FA.fmk. The suppression of cathepsin B activity agrees with the data presenting the observed delayed HR phenotype and increase in pathogen growth. In addition, cathepsin B inhibitors have suppressed the HR and cathepsin B activity to an almost identical extent as *CathB* silencing, supporting the role of cathepsin B as a regulator of the HR.

The cleavage of PARP is a commonly used marker of apoptotic cell death in mammalian apoptosis and interestingly lysosomal cathepsin B has been shown to cleave PARP, to produces a major fragment of 50 kDa (Boucher *et al.*, 2001; Gobeil *et al.*, 2001). Cleavage of the PARP DNA-binding domain to produce a C-terminal fragment of 45 kDa has been previously described during the HR (Figure 4.7A) (D'Silva *et al.*, 1998). Although the PARP cleaving activity of endogenous plant cathepsin B cannot be thoroughly tested without purified protein, the effect of cathepsin B-specific inhibitors on bovine cathepsin B activity and in the crude protein extract from leaf samples from TRV::GFP 6 hpi with *Eam* was investigated. Interestingly, the major cleavage product of PARP with bovine cathepsin B was a C-terminal fragment of 45 kDa in size, Figure 4.7B, revealed that that Ac-LVK-CHO could almost completely inhibit the cleavage of PARP after 30 min incubation with bovine cathepsin B. In addition, 1 mM z-FA.fmk could prevent the complete cleavage of PARP by bovine cathepsin B. It is therefore possible that plant cathepsin B cleaves PARP to produce this major cleavage product of 45 kDa *in vitro*. However, Figure 4.7C shows that an increase of incubation time (1 hr) of bovine cathepsin B, 1 mM cathepsin B-specific inhibitors and PARP decreases the observed extent of PARP cleavage inhibition by the inhibitors. In addition, crude protein extract from TRV::GFP 6 hpi was shown to cross react with the bovine PARP antibody and although a 45 kDa band was present, the major cleavage product in this sample was closer to 50 kDa in size. This larger band was also identified in the lane which included both PARP and TRV::GFP 6 hpi protein extract. This 50 kDa product corresponds with
the *in vivo* and *in vitro* experiments performed using lysosomal extracts and purified lysosomal cathepsin B (Gobeil *et al.*, 2001). Therefore, it remains unclear whether plant cathepsin B could be responsible for cleaving PARP to produce both a 45 kDa found by D'Silva *et al.* 2001 and the 50 kDa fragment produced by lysosomal cathepsin B (Gobeil *et al.*, 2001). Then again, from evidence described in current literature, the role of cathepsin B should be more akin to initiator caspases that activate downstream proteases rather than effector caspases which proteolytically dismantle the cell (Kingham *et al.*, 2001; Vancompernolle *et al.*, 1998). Therefore, the appearance of a larger PARP cleavage product in TRV::GFP 6 hpi protein samples maybe indicative of other protease activity present at this time point. Repetition of this experiment, including incubation of PARP with purified plant cathepsin B would help answer this question.

Caspase-3-like activity has been previously measured by Michael Taliansky who works at SCRI. He kindly provided his TMV vector containing GFP fused to VirD2 that has two caspase-3 cleavage sites (GEQD and TATD) (Chickova *et al.*, 2004). This allowed preliminary examination of whether cathepsin B inhibition could suppress the activation of the caspase-3 activity linked to the cleavage of the VirD2 nuclear localisation sequence. Therefore, TMV GFP::VirD2 lesions were inoculated with *Eam* (10^6 CFU/ml), *Eam* with 1 mM TATD inhibitor (caspase-3 inhibitor) and *Eam* with 1 mM Ac-LVK-CHO (cathepsin B inhibitor). Figure 4.8 shows preliminary data which suggests that plant cathepsin B activity maybe necessary for activating the previously described caspase-3-like activity identified by Chickova *et al.* (2004). However, it cannot be completely excluded that Ac-LVK-CHO may inhibit the activity of the caspase-3-like protein. The effect of cathepsin B-specific inhibitor Ac-LVK-CHO on the measured caspase-3-like activity could be performed once both proteins have been purified. The protein responsible for caspase-3 activity is presently being investigated by collaborators at Moscow State University.

Arabidopsis gene homologues of *CYP1* and cathepsin B were identified and availability of T-DNA insertion mutants in these genes at the SIGnAL website were checked. Fortunately, at the time of ordering there were T-DNA knockouts available in an exon or
UTR of all three cathepsin B genes. However, the annotation of At1g02300 and At1g02305 was revised a year later and consequently SALK_138261 insertion appears to lie at the end of At1g02300’s ORF. This suggests that this insertion line may not have affected the At1g02305 gene. Subsequent to this discovery, other T-DNA insertions had become available and ordered although the genotyping of these seeds could not be performed within the time frame of this project. Expression of all three cathepsin B genes in all three mutants would require careful primer design as all three genes are 80-90% identical at the nucleotide level.

Inoculation of the *Arabidopsis* insertion lines with virulent *Pst* DC3000 was performed to investigate whether the T-DNA inserts in these genes had perturbed basal defence responses. The transgenic *nahG* was used as a control, as the inhibition of SA accumulation in this plant has been well documented to affect basal defence responses, HR and SAR (Lawton *et al.*, 1995). Mutants with T-DNA inserts displayed no unusual \(\text{H}_2\text{O}_2 \) accumulation and production of dead cell in response to *Pst* DC3000 (Figure 4.9.2a). Recovery of *Pst* DC3000 4 dpi revealed that mutants with inserts in gene loci At1g02300 and At4g01610 allowed 10-fold greater growth than Col-0 and to a comparable level as *nahG* (Figure 4.9.2b). T-DNA insertions in these cathepsin B genes appear to have disrupted basal resistance implying that cathepsin B is involved in basal resistance. The data presented in Figure 4.9.2b suggests that the cathepsin B gene present at the At1g02305 locus does not play a role in basal resistance. Since re-annotation of this region has positioned the T-DNA insert out with the ORF and UTRs of At1g02305 it is possible that this line possesses a functional cathepsin B gene at the At1g02305 locus. The same experiment will have to be repeated with another *Arabidopsis* SALK line that possesses a T-DNA insert in the ORF of this locus to conclude whether or not At1g02305 has a role in basal resistance.

Cathepsin insertion lines were inoculated with avirulent *Pst* DC3000 (*avrB*) to investigate whether these lines could induce the HR characterised in Col-0 by a biphasic \(\text{H}_2\text{O}_2 \) burst between 1-6 hpi followed by PCD by 12 hpi (Shirasu and Schulze-Lefert, 2000; Grant and Loake, 2000). The transgenic *nahG*, which cannot accumulate SA,
cannot induce an HR to avirulent pathogens (Lawton et al., 1995). Staining Col-0, nahG and cathepsin insert lines revealed that all genes except At4g01610 may be required for the early H$_2$O$_2$ burst (Figure 4.9.3a). Trypan blue staining revealed that those mutants which could not accumulate H$_2$O$_2$ could subsequently not induce PCD by 12 hpi (Figure 4.9.3a) or by 24 hpi (data not shown). Recovery of Pst DC3000 (avrB) from the same plants at 9 dpi revealed that the Arabidopsis line with an insert in the ORF of At1g02300 allowed 20-fold greater Pst growth than Col-0. This suggests that one of three cathepsin B homologues in Arabidopsis is required for RPM1 triggered resistance to Pst DC3000 (avrB). Examination of the function of the cathepsin B at At1g02300 during resistance responses triggered by different R genes to other types of pathogens would reveal whether it is essential for HR or only for HR induced by avrB.

Evidence that the three cathepsin B genes have varying roles in Arabidopsis is also supported by the phenotype clearly linked with At4g01610 insertion line (SALK_019630). This cathepsin B knockout line appeared to have the growth characteristics of plants responding to low red to far-red ratios typically experienced in the shade (Frankhauser and Casal, 2004). This phenotype has been previously described in phytochrome B (phyB) mutants and referred to as a constitutive shade-avoidance phenotype (Reed et al., 1993; Devlin et al., 1997). Since active phyB (Pfr form) is required to limit growth of stems and petioles, in the absence of phyB, this growth is not suppressed by light (Fankhauser and Casal, 2004). It is therefore possible that the cathepsin B protein encoded by At4g01610 may be involved in proteolytic cleavage of phytochromes during light perception and signalling.

The role of the cathepsin B gene at locus At1g02305 cannot be determined until this knockout line has been shown to have no At1g02305 expression or experiments are repeated with an alternative homozygous T-DNA insertion line in the ORF. Nevertheless, the presence of T-DNA within At1g02300 affects the ability of this Arabidopsis plant to induce the HR which mirrors the silencing and inhibitor experiments performed in N. benthamiana. It will be interesting to observe how many cathepsin B genes will be revealed by the tomato sequencing project, which should
provide an indication of the number of cathepsin B genes present in *N. benthamiana* and *S. tuberosum* genomes.

4.11. Conclusions

The potato homologues of *CathB*, *CYP1*, *SGT1* and *ADR1* genes were shown to be upregulated early in the *P. infestans* incompatible interaction. *CathB* was selected for further investigation in the model plant, *N. benthamiana*, because there have been many reports of cathepsin B playing a role in mammalian PCD (Vancompernolle *et al.*, 1998; Mathiasen and Jäättelä, 2002; Foghsgaard *et al.*, 2001; Kingham and Pocock, 2001). *NbCathB* expression was shown to be approximately 80% reduced in TRV::CathB_{as} plants, preventing a peak of protein activity at 6 hpi in comparison with TRV::GFP plants. *NbCathB* silencing appears to have delayed the HR, consequently allowing 10-fold greater bacterial recovery of *Eam* and *Pst* DC3000 (*avrB*).

One general cathepsin inhibitor and three cathepsin B-specific inhibitors were used to confirm the gene silencing experiments. Two cathepsin B protein inhibitors prevented the peak of cathepsin B activity at 6 hpi, also suppressing the HR and allowing 10-fold greater bacteria to be recovered from inoculated area. This suggests that *N. benthamiana* cathepsin B has similar active sites as mammalian cathepsin B and that blocking this activity delays the HR. Cathepsin B may also play a role in PCD by cleaving PARP which is a commonly used marker of apoptosis. Preliminary data investigating cathepsin inhibitors on the cleavage of VirD2 during PCD suggests that cathepsin B may be upstream of or required for caspase-3-like activity.

The *Arabidopsis* genome contains three homologues of Cathepsin B. T-DNA insertion mutants were ordered from the NASC and genotyped until all progeny were homozygous for the insert. Early results indicate that only one of the three cathepsin B genes (At1g02300) is required for both basal and *Pst* DC3000 (*avrB*) induced HR.
5. Development of a Virus-Induced Gene Silencing (VIGS) System for *Solanum tuberosum*

5.1. Introduction

Many genes involved in crop disease resistance are identified through research into diseases caused by economically significant pathogens. Therefore it is important that effective reverse genetic techniques are developed for crop species (Osterlund and Paterson, 2002). Candidate HR-related genes were previously identified from SSH cDNA libraries in *S. tuberosum* cultivars resistant to *P. infestans*. It would therefore be most appropriate to study the function of these genes by VIGS in potato. However, no VIGS system had been developed for *Solanum* species and therefore part of this research was to develop a VIGS system for *S. tuberosum* cultivars resistant and susceptible to potato blight.

5.1.1. Discovery of Gene-Silencing Technology

Gene silencing was initially discovered serendipitously by three separate groups using transgenic over-expression constructs containing either chalcone synthase (*Chs*) or polygalacturonase (*Pg*) in plants (Napoli *et al.*, 1990; van der Krol *et al.*, 1990; Smith *et al.*, 1990). This phenomenon is also known as co-suppression or RNA interference (RNAi) (Lawrence and Pikaard, 2003). In *Arabidopsis*, stable transformation has become especially valuable for expressing RNA forms that trigger post-transcription gene-silencing (PTGS) for functional analysis of genes of interest (Cogoni and Macino, 2000). In addition, single-stranded anti-sense RNA and hairpin RNA forms of a candidate RNA transcript have also been shown to be sufficient for knocking down the expression of a gene of interest through PTGS (Lacomme *et al.*, 2003). Gene silencing was also found to be triggered by positive stranded RNA viruses. The high copy numbers of the positive strand form of the genome and/or by the dsRNA intermediates that putatively form while replicating their genome could possibly be the triggers of a PTGS-like defence mechanism that protects the plants against viruses and virus-like retrotransposons.
(Lindbo et al., 1993). By inserting an anti-sense copy of an endogenous plant gene into the genome of a positive strand RNA virus vector e.g. Tobacco rattle virus (TRV), the antiviral defence mechanism can be established against the endogenous copy of the gene. VIGS for phenotypic analysis was first used to manipulate the carotenoid biosynthetic pathway in *N. benthamiana* (Kumagai et al., 1995). The hybrid tobacco mosaic virus (TMV) vector contained elements from tomato mosaic virus (ToMV) and the plant phytoene desaturase (*PDS*) cDNA. Increased levels of the enzyme substrate, phytoene and systemic susceptibility to leaf photobleaching resulted as a consequence of the gene silencing. It was later shown using Tobacco Etch Virus (TEV) that the viral RNA, not the viral proteins, trigger gene silencing in host plants (Lindbo et al., 1993). Subsequently, VIGS triggered by cytoplasmic, autonomously replicating viruses have been successfully utilised to modify a range of metabolic pathways (Kumagai et al., 1995), including defence responses (Romeis et al., 2001; Ekengren et al., 2003; Yoshioka et al., 2003).

5.1.2. Mechanism of Gene Silencing

At present, the molecules responsible for sensing aberrant levels of positive, anti-sense or dsRNA transcripts leading to sequence-specific degradation of homologous transcripts in plants remain enigmatic, although may involve some widely conserved components (Voinnet, 2001). In *Drosophila*, aberrant RNA transcripts are cleaved by RNase III-like enzyme named Dicer into 21 bp RNA duplexes known as "short interfering" RNAs (siRNA). The siRNA duplexes are then incorporated into a multi-subunit endonuclease, the RNA-induced silencing complex (RISC), that cleaves all RNA sharing identity with the dsRNA (Voinnet, 2003). A plant homolog of the *Drosophila* Dicer, carpel factory dicer-like 1 (*AtCAF1*), has recently been demonstrated to bind dsRNA and generate siRNAs (Kurihara and Watanabe, 2004). The mammalian RNA-induced silencing complex (RISC) is composed of siRNAs and the Argonaute family of proteins. Argonaute proteins are thought to unwind the siRNA to provide a template for interactions with mRNA which leads to degradation of homologous transcripts (Susi et al., 2004). An *Arabidopsis* Argonaute 1 (AGO1) has been identified and may act within
the plant RNA-induced silencing complex (RISC) (Vaucheret et al., 2004). Gene silencing-associated low molecular weight RNAs were also first detected in plants by Smith et al. (1990).

5.1.3. Properties of VIGS Vectors

In higher plants, over 90% of plant viruses have ssRNA genomes that are replicated with a RNA-dependent RNA polymerase (RdRP) (Voinnet, 2001). The most efficient positive stranded viral vectors for VIGS are those that can accumulate to appropriately high levels within the plant. However, a replication threshold exists, above which silencing defences are induced to such an extent that recombinant viral infection is almost completely extinguished, allowing newly emerging tissue to become virus-free (Ratcliff et al., 1997). In addition, some viral genomes encode silencing suppressors, for example the HC-Pro proteins of TEV and potato virus Y (PVY) have been shown to prevent initiation and even revert transgene silencing of β-D-glucuronidase (GUS) and GFP (Marathe et al., 2000; Voinnet et al., 1999; Beclin et al., 1998). Moreover, the symptoms of some viral infections such as chlorosis, leaf distortion and necrosis may complicate the interpretation of silencing phenotypes (Ratcliff et al., 2001). One of the few disadvantages of VIGS is that virus infection and spread of the systemic silencing signal is unlikely to affect every cell's expression, leading to patchy silencing phenotypes (Ratcliff et al., 2001). Nonetheless, VIGS has become progressively more popular for loss-of-function studies because it is more rapid than traditional stable transformation techniques for the same plant species (Baulcome, 1999b,c).

5.2. Tobacco Rattle Virus (TRV) Vector

5.2.1. TRV vector

VIGS has been successfully employed using a small selection of viruses, e.g. TRV, in a restricted number of hosts, primarily Nicotiana species (Ratcliff et al., 2001). However, recent advances on other plant species such as tomato have indicated that TRV may have potential for developing gene silencing systems in other dicots (Dinesh-Kumar et al., 2003; Liu et al., 2002). TRV possesses a bipartite, positive sense single-stranded RNA genome
and can infect a wide number of hosts including potato where it is most commonly transmitted by nematodes (Visser et al., 1999). The major advantages of TRV are that the virus can infect active meristems and large patches of adjacent cells (Ratcliff et al., 2001). The TRV RNA 1 is known to encode genes essential for the infection and proliferation of the virus within a plant and can cause infection in the absence of RNA 2 (MacFarlane and Popovich, 2000). RNA 2 encodes the viral coat protein (CP) and 2b which is required for nematode transmission but may also be required for increased virulence (Valentine et al., 2004). RNA 2 has been successfully modified and utilized as a transgenic vector that can induce silencing in tobacco and Arabidopsis (MacFarlane and Popovich, 2000). RNA 2 vectors commonly have all non-essential genes removed to reduce the genetic load on recombinant viruses and to block possible nematode transmission of the virus (MacFarlane, 1996).

It was hypothesized here that the presence of TRV RNA 2-encoded 2b gene, known to be essential for nematode transmission, may aid the induction of gene silencing in potato where other commonly used TRV vectors have failed thus far (Valentine et al., 2004). The RNA 2 genome (AJ2504880) was engineered to contain just the non-essential viral gene 2b, TRV CP, the tomato phytoene desaturase (PDS) gene (X59948) or green fluorescent protein (GFP) (MacFarlane and Popovich, 2000; Baulcombe et al., 1995). TRV::GFP was included as a positive indicator of TRV genome replication and systemic spread. RNA 1 and the modified RNA 2 (Figure 5.2.1) of TRV were transcribed and inoculated into N. benthamiana to amplify the construct as described in MacFarlane (1996). Leaf sap from TRV infected plants was rubbed on to aluoxite dusted leaves of 2 week old N. benthamiana, N. tabacum cv Samsun, N. tabacum cv Xanthi and Solanum tuberosum L. cv Spey, Stirling and Wilja (See 2.5.1). Spey and Stirling are cultivars bred as SCRI with resistance to E. carotovora and P. infestans, respectively. Both would therefore be useful cultivars in which to utilise gene silencing for investigating plant disease resistance. Wilja is a cultivar which is noted for its ease of Agrobacterium-based transformation (Hugh Barker, personal communication) and may also be more amenable to virus infections and therefore potentially VIGS.
Figure 5.2.1: TRV RNA 2 Constructs. A, RNA 2 vector containing PDS cDNA, commonly utilized for gene silencing in *N. benthamiana*. B, RNA 2 vector with (phytoene desaturase) PDS cDNA with an additional TRV gene which is non-essential for VIGS, 2b. C, A control construct containing GFP (green fluorescent protein) visible 10-21 dpi in *N. benthamiana*. Cp, coat protein; 2b, non-essential RNA 2 encoded gene; sgP, sub-genomic coat protein promoter and PDS, phytoene desaturase.

5.2.2. TRV Silencing Symptoms

Plants were examined 5-10 dpi for the easily identifiable photobleaching phenotype or GFP fluorescence. All of the *Nicotiana* plants infected with RNA 2 constructs A and B displayed the photobleaching phenotype associated with PDS silencing by 10 dpi in systemic leaves (Photographs in Figure 5.2.2). Also, *Nicotiana* plants infected with the GFP encoding RNA 2 vector fluoresced in green patches on systemic leaves under UV light, revealing the infection pattern of the virus (Figure 5.2.2). Unfortunately, even after 21 dpi, no photobleaching or GFP fluorescence developed in potato plants (photographs not shown). VIGS in *S. tuberosum* may be challenging as a consequence of a tolerance to higher transcript levels due to the number of copies of each gene present in these tetraploid plants or possibly they possess a strong defence mechanism against TRV infection that rapidly inhibits viral proliferation and spread before silencing can occur.
5.2.3. RT-PCR of TRV RNA 2 Coat Protein

To test if viral proliferation and spread was inhibited in potato, the presence of the recombinant RNA 2 in the potato plants was tested using RT-PCR with primers designed to the coat protein (2.8.5). Four young systemic leaves were taken from a variety of potato and *Nicotiana* plants, RNA extracted and cDNA was synthesised. The cDNA was used in a PCR designed to amplify the 1.2 kb RNA 2 CP transcript (Figure 5.2.3). Infected *Nicotiana* plants, as expected, contained TRV RNA 2 in their systemic leaves, confirming the presence of the virus which was not amplified in uninfected *Nicotiana* plants. None of the potato plants revealed a 1.2 kb amplification product suggesting that RNA 2 did not spread effectively to systemic tissue or that it had been rapidly detected and destroyed by a virus-induced defence response. This could explain why TRV did not induce VIGS of *PDS* in *S. tuberosum*.
Figure 5.2.3: Reverse transcriptase PCR of TRV RNA2 Coat Protein. *N. benthamiana* negative control, TRV RNA2 vector (A) TRV RNA2 containing 2b (B). TRV RNA2 constructs A and B also in *N. tabacum* cv Xanthi and *N. tabacum* cv Samsun. The RNA2 CP RNA from constructs A and B did not accumulate in the *S. tuberosum* varieties Wilja, Spey and Stirling.

5.3. *Potato Virus X (PVX) Vector*

5.3.1. PVX Constructs

Since TRV RNA 2 could not replicate or accumulate *in planta* efficiently enough to induce VIGS in potato, it was considered that the next virus tested should accumulate well in Solanaceous species. Potato Virus X (PVX) is a member of the potexvirus group and possesses a monopartite, single-stranded positive sense RNA genome (Chapman *et al.*, 1992). A PVX-based binary expression vector carrying large inserted sequences has been shown to accumulate effectively enough to over-express genes of interest in potato and *Nicotiana* species (Jones *et al.*, 1999; Chapman *et al.*, 1992). It was hypothesised that if PVX could accumulate effectively for efficient gene expression it may function as a silencing vector if potato sequences were cloned in anti-sense or as inverted repeats (Wang and Waterhouse, 2002; Lacomme *et al.*, 2003). In addition, PVX RNA has been shown to induce gene silencing in *Nicotiana* species (Angell and Baulcombe, 1997). Fortunately, a PVX vector (pGR106) had been previously supplied from D. Baulcombe for over-expressing genes from *P. infestans* in a variety of potato cultivars. PVX was
therefore deemed the most suitable virus to test the ability to induce VIGS in *S. tuberosum*. As described previously with TRV, a *GFP* gene was cloned into pGR106 to test the infection symptoms of a transgenic PVX vector in potato and to investigate its infectivity (Figure 5.3.1A). As VIGS depends on high homology between a transgene in the viral vector and the endogenous transcript, a potato *PDS* cDNA (AY484445) fragment was cloned into PVX in anti-sense orientation (section 2.5.2). The cDNA fragment shares 91 % sequence identity with *N. benthamiana PDS* cDNA (including stretches of 26, 33 and 47 nt of 100 % identity) (Figure 5.3.1B). This should allow testing of PVX::PDS_{as} as a silencing vector in *Solanum* species and *N. benthamiana* in parallel.

![Figure 5.3.1a: PVX Vector Constructs. Construct maps of three pGR106 vector, A, with GFP; B, with *StPDS_{as}*; C, with hairpin *SttPDS*. See Fairvre-Rampant et al., (2004) for *PDS* region used for hp and as fragments. (For exact details of fragment location, see Appendix II).](image-url)
5.3.2. PVX Constructs in *N. benthamiana*

Initial tests involved both stab inoculation and agroinfiltration of *N. benthamiana* to determine whether the PVX constructs could replicate efficiently and silence *PDS* successfully in this more receptive model (Takken *et al.*, 2000). Agroinfiltration of PVX appeared to be marginally more effective and therefore this method of PVX delivery was subsequently utilised. In addition, comparisons were drawn between *PDS* silencing induced by construct B (**PVX::PDS_{as}**) and construct C (**PVX::PDS_{hp}**) to evaluate whether construct C exhibited significantly stronger silencing, justifying the more complex and time-consuming cloning steps necessary to construct hairpin vectors. **PVX::PDS_{hp}** did not induce silencing to the extent of **PVX::PDS_{as}** after a series of inoculations (Figure 5.3.2). However, the hairpin was generated from the largest region of 100% homology shared between *S. tuberosum* and *N. benthamiana* *PDS* (47 bp) and it is possible that a hairpin of 60 bp may have induced a stronger silencing phenotype as in Lacomme *et al.*
Larger hairpins (e.g. 200 bp) are thought to have such strong secondary structures that interfere with virus genome replication and commonly recombinant viruses do not replicate well or recombine out the insert containing the hairpin (Lacomme et al., 2003).

Figure 5.3.2: Comparison between PVX::PDS$_{as}$ and PVX.PDS$_{hp}$ in *N. benthamiana*. A, PVX::GFP, used as control of viral infection symptoms; B, PVX::PDS$_{as}$; C, PVX::PDS$_{hp}$. Photographs taken 10 dpi. *N. benthamiana* infected with construct B display larger areas of photobleaching than those infected with construct C.

5.3.3. PVX Constructs in *S. tuberosum*

Following confirmation of the integrity of PVX::PDS constructs B and C in *N. benthamiana*, PDS silencing was subsequently investigated in *S. tuberosum* L. cv Stirling and Bintje. Both cultivars are of interest for investigating resistance to *P. infestans* and lack the *Rx* gene that promotes extreme resistance to PVX (Bendahmane et al., 1995). PVX constructs, B and C, were both stab inoculated and agroinfiltrated to determine
whether either method or construct could induce PDS silencing in potato. At 11 dpi, symptoms of PDS silencing appeared on the systemic leaves of PVX::PDS$_{as}$ agroinfiltrated Stirling and Bintje (Figure 5.3.3A). No corresponding symptoms appeared on PVX::GFP or PVX::PDS$_{hp}$ indicating that the spots are not symptoms of PVX infection. PVX::PDS$_{hp}$ was apparently ineffective at triggering silencing in potato or potato cvs used in this experiment are less permissive for PVX::PDS$_{hp}$. Once again, this could be due to the small sequence length of the hairpin and could be tested by generating a longer inverted repeat (~100 bp) or by utilising a more permissive host (Lacomme et al., 2003). By 18 dpi, systemic PDS silencing had developed although significantly more patchy than silencing found in $N. benthamiana$ (Figure 5.3.3).

Since PVX::PDS$_{as}$ induced PDS silencing in Stirling and Bintje, $S. tuberosum$ L. cv Desiree and the diploid potato $S. bulbocastanum$ were included in subsequent silencing experiments. Desiree was selected because of the relative ease of stable transformation; it is the most common cv used to develop transgenic potatoes and therefore, gene silencing in Desiree was of independent scientific interest. $S. bulbocastanum$ is a diploid wild $Solanum$ species and was chosen to investigate the effect of ploidy on PVX-induced gene silencing. Fifteen days post-agroinfiltration of all previously mentioned hosts with PVX::GFP, infiltrated and systemic leaves were tested for viral accumulation by immunodetection of viral PVX CP using western blot analysis (Figure 5.3.3B). PVX CP accumulation was shown to be more pronounced in both the local and systemic leaves of $N. benthamiana$ and the diploid potato compared to the three tetraploid potato cultivars. However, the overall result reveals that all plants tested can tolerate considerable PVX accumulation. It appears, in terms of CP accumulation, that potato is less permissive to PVX accumulation than $N. benthamiana$.
5.3.4. Quantification of *PDS* Transcripts

Initial *PDS* silencing experiments involving Stirling and Bintje highlighted the potential of PVX as a silencing vector. Even up to 3 months post-agroinfiltration the *pds* silencing
was observed in these tetraploid potato cultivars (photographs not shown). Quantification of the extent of *PDS* silencing was therefore not only of interest in plants 21 dpi but also in the newly emerging leaves of the potatoes at 70 dpi. Therefore, quantitative real-time reverse transcriptase PCR (Taqman, ABI PRISM 7700 Sequence detection system) was performed on 3 leaf layers to determine whether the potato was in the process of PVX “recovery” (Ratcliff *et al.*, 1997). Newly emerging leaves (average of 5 leaflets per leaf) from independent PVX::PDS_{as} and PVX::GFP Stirling and Bintje plants were collected 70 dpi and named Layer 1 (L1). Leaves collected from the middle of plants infected with PVX::PDS_{as} and PVX::GFP 70 dpi were named Layer 2 (L2) and leaves collected from middle of PVX::PDS_{as} and PVX::GFP plants 21 dpi were named Layer 3 (L3). RNA was then extracted from PVX::GFP and PVX::PDS_{as} leaf layers, RNA quantified and equal µg used for cDNA synthesis as described in 2.8.4. Taqman primers were designed to the region of *S. tuberosum* *PDS* lying outwith the region cloned into PVX, therefore not confusing the source of *PDS* RNA transcripts.

Quantification of *PDS* transcript was normalised using endogenous control ubiquitin transcript. The level of *PDS* transcript was then made relative to that present in the appropriate GFP control plants. Quantification of the transcripts, in two biological experiments (Figure 5.3.4a, A and B), revealed that *PDS* expression was reduced to around 20 % in PVX::PDS_{as} plants compared with PVX.GFP for both cultivars which is comparable to other VIGS systems (Lacomme *et al.*, 2003). The layer of leaves from which the RNA was extracted did not appear to affect the extent of silencing with one exception in Figure 5.3.4aB, Bintje L1, which did appear to have around 60 % expression, revealing that in some cases the silencing may weaken by 70 dpi. However, it is important that silencing is induced effectively at 21 dpi rather than 70 dpi as potato plants are beginning to flower and would not be useful for further experimentation. A semi-quantitative RT PCR was also performed on the same cDNA samples and the results for Bintje PVX::PDS_{as} and PVX::GFP at 30 cycles are shown in Figure 5.3.4aC. This RT-PCR highlights the lower amounts of *PDS* PCR product in PVX::PDS_{as} Bintje when compared to PVX::GFP and the equal amplification of ubiquitin from both samples.
PVX::PDS_{as} silencing in <i>N. benthamiana</i> (Figure 5.3.2) appeared to generate a more extensive photobleaching phenotype than in <i>S. tuberosum</i> (Figure 5.3.3). It was therefore
of interest to quantify PDS silencing induced by PVX::PDS as in all host plants to investigate whether the extent of photobleaching correlated with PDS transcript levels. Taqman primers for $N.\ benthamiana$ PDS were designed, again in a region outwith PVX::PDS as (2.8.4). Photographs were taken of PVX::PDS as induced silencing of all host plants at 21 dpi (Figure 5.3.4b). Quantitative real-time RT-PCR was performed for $N.\ benthamiana$, $S.\ bulbocastanum$ and $S.\ tuberosum$ cv Desiree so that the extent of silencing could be compared to that previously measured in Bintje and Stirling (Figure 5.3.4c). In all hosts inoculated with PVX::PDS as PDS expression was reduced to 20% of the PVX::GFP control plants. This demonstrates that the observed extent of photobleaching does not always correlate with PDS mRNA levels, suggesting that although potato is a less permissive host for PVX, the silencing response induced against PDS was comparable with $N.\ benthamiana$ (Ratcliff et al., 2001; Lacomme et al., 2003).

Figure 5.3.4b: Photobleaching phenotype of Pds silencing in $Solanum$ species. Photobleaching phenotypes observed by 21 dpi. a and b, tetraploid $S.\ tuberosum$ cv Bintje; e, PVX::GFP control d, diploid $S.\ bulbocastanum$. Close-up on photobleached leaves: f, $S.\ tuberosum$ cvs Bintje; g, Stirling; h, Desiree; j, $S.\ bulbocastanum$; l, $N.\ benthamiana$. Symptomless PVX::GFP infected leaf: e, cv Bintje; f, $S.\ bulbocastanum$; i, and uninfected $N.\ benthamiana$ leaf (k) (Faivre-Rampant et al., 2004).
5.4. Silencing of HR-Related Genes in Potato

PVX was shown to efficiently silence the reporter gene PDS in diploid and tetraploid potato. Genes involved in disease resistance were the next targets of PVX-induced gene silencing in S. tuberosum cvs Bintje and Stirling. Stirling possesses R gene and quantitative resistance to P. infestans which both rely on an effectively induced HR. However the genes responsible for these types of resistance are poorly understood. Bintje is a commercially grown variety which is highly susceptible to P. infestans and is used as a control of compatible potato-blight interactions.

5.4.1. PVX Vectors Containing HR-Related genes

Fragments of candidate genes from potato SSH, CathB and Cyp1 (Avrova et al., 2003; Avrova et al., 2001) were both cloned in anti-sense into PVX (see 2.5.2). In addition,
potato homologues of *Arabidopsis* SAR-inducing R gene-like *ADR1* (Grant *et al.*, 2003) and *SGTI*, a gene documented to be required for R gene-triggered resistance in other plant-pathogen interactions (See 1.4.1.2), were identified and also cloned in anti-sense into PVX. Stirling and Bintje were agroinfiltrated with PVX defence gene constructs as well as PVX::GFP as control and left for 4 weeks for silencing to develop.

Silencing of two of the four defence genes resulted in morphological phenotypes by 21 dpi with the PVX constructs (Figure 5.4.1). PVX::SGT1_{as} plants displayed a stunted and more branched growth phenotype in comparison with PVX::GFP which is previously described in *SGTI* silenced *N. benthamiana* (Peart *et al.*, 2002). Interestingly, the leaflets also developed a lobed morphology with yellowing around the edges suggesting that silencing of *SGTI* affects aspects of leaf development. PVX::CathB_{as} developed a more elongated and sparse stature with chlorotic foliage compared with PVX::GFP. Interestingly, this phenotype was also displayed in the *CathB* (At4g01610) *Arabidopsis* knock out mutant which is currently under investigation (See Chapter 4). Silencing of *ADR1* and *CYP1* in potato did not result in any obvious morphological phenotypes.

![Figure 5.4.1: Phenotype of PVX::SGT1_{as} and PVX::CathB_{as} inoculated Stirling.](image-url)

Stirling inoculated with PVX::SGT1_{as} displayed a stunted and more branched phenotype also documented in *SGTI* silenced *N. benthamiana* (Peart *et al.*, 2002) however leaflets also developed a lobed shape with yellow edges. PVX::CathB_{as}, Stirling developed an elongated shape in combination with paler foliage.
5.4.2. Resistance to \textit{P. infestans}

Spore suspensions of a simple (15.5.1) and a complex race (99/23) of \textit{P. infestans} were evenly sprayed over potatoes and kept in almost 100 % humidity overnight. The simple race (1,4) of \textit{P. infestans} is known to overcome \textit{RI-} and \textit{R4-}gene-mediated resistance in potato and is recognised by an unknown \textit{R} gene in Stirling potato plants. The complex race (1,2,3,4, 6 and 7) of \textit{P. infestans} overcomes resistance conveyed by \textit{R1, R2, R3, R4, R6,} and \textit{R7} and its AVR proteins are not recognised by the \textit{R} protein in Stirling plants. The development of disease symptoms was monitored and recorded between 5-7dpi (Figure 5.4.2). PVX::CYP1\textsubscript{as} Stirling plants did show increased susceptibility to the complex race of \textit{P. infestans} (99/23). Thus the screen revealed that CathK may be important for resistance in Stirling against complex race 99/23. However, there was no apparent effect of PVX-induced silencing in Stirling challenged with the simple race. Silencing of HR-related genes in Bintje produced a more varied range of results which were not statistically significant. However, PVX.CYP1\textsubscript{as} Bintje plants appeared slightly more susceptible to the simple race of \textit{P. infestans}. This suggests that spraying \textit{P. infestans} on probably patchy patterns of silencing in these potatoes was not a suitable screen for investigating these genes in potatoes.
Figure 5.4.2a: Infection of silenced *S. tuberosum* cv Stirling with *P. infestans*. Resistant cultivar Stirling infected with control construct PVX::GFP and 4 HR-related PVX::SGT1as, PVX::CathBas, PVX::CYP1as, PVX::ADR1as were sprayed with the simple race (15.5.1) and the complex race (99/23) of *P. infestans*.

Briefly, scoring was as follows: 1 = >90 % necrotic tissue, 2 = 81-90 % necrotic, 3 = 71-80 % necrotic, 4 = 61-70 % necrotic, 5 = 41-60 % necrotic, 6 = 26-40 % necrotic, 7 = 11-25 % necrotic and 8 = <10% necrotic. Bars represent standard error of one experiment using five plants per silencing construct.

Figure 5.4.2b: Infection of silenced *S. tuberosum* cv Bintje with *P. infestans*. Bintje infected with the same PVX constructs as Stirling and infected with both simple and complex races of *P. infestans*. Briefly, scoring was as follows: 1 = >90 % necrotic tissue, 2 = 81-90 % necrotic, 3 = 71-80 % necrotic, 4 = 61-70 % necrotic, 5 = 41-60 % necrotic, 6 = 26-40 % necrotic, 7 = 11-25 % necrotic and 8 = <10% necrotic. Bars represent standard error of one experiment using five plants per silencing construct.
5.5. Discussion

HR-related genes had been identified from a SSH performed in tetraploid potato cultivars and the candidate gene, CathB has been investigated by TRV-Induced gene silencing in the model system, \textit{N. benthamiana} (See Chapter 4). However, in order to study defence responses in potato to \textit{P. infestans} (and other economically important pathogens of potato) the development of a gene-silencing system was necessary. Gene-silencing in the cultivars from which they were identified would be very useful for studying the functions of these genes. TRV, one of the most commonly utilised silencing vectors, was tested initially for its silencing capabilities in three tetraploid potato cultivars, Wilja, Spey and Stirling. Although TRV vectors efficiently silenced \textit{PDS} in \textit{Nicotiana} species, no accumulation of the transgenic RNA 2 could be detected in the potato cultivars. Since RNA 2 is not essential for TRV virus replication and systemic spread within the plant, it is most likely that there is no selection pressure that necessitates TRV to replicate its RNA 2, especially if it carries a large insert that hinders its replication. It is commonly observed that recombination can occur at subgenomic promoters in viral vectors, especially if present at either side of a transgene (Chapman \textit{et al.}, 1992). However, if the TRV RNA 2 in potato was losing its \textit{PDS} transgene through recombination then the coat protein of the wild-type RNA 2 would still have been detected in the RT-PCR (5.2.3). It is also possible that a sequence of higher homology rather than the tomato \textit{PDS} would have induced silencing (Ryu \textit{et al.}, 2004). Interestingly, a couple of months after the publication of PVX work in this chapter, Brigneti \textit{et al.} (2004) published the use of bipartite TRV RNA 1 and RNA 2 vectors (Liu \textit{et al.}, 2002) for gene silencing in potato diploids \textit{S. bulbocastanum}, \textit{S. okadae} and tetraploid \textit{S. tuberosum} cvs Cara and Pentland Ivory. Brigneti \textit{et al.} (2004) report the balance between RNA 1 and RNA 2 in potato plants was critically important for inducing sufficient gene-silencing, that TRV-induced gene silencing failed in vegetatively propagated potatoes and success was only achieved by using potato cvs grown from seed. Micropropagation is the most efficient method of multiplying potatoes for research purposes and was used to generate potatoes for all work.
mentioned in this chapter and most probably the reason for results presented in Figure 5.2.3.

The PVX-based expression vector has one major advantage over TRV when utilising it as an expression or silencing vector in potato. The coat protein, corresponding subgenomic promoters and transgene cloning site are adjacent to genes essential for replication on a single plasmid. This means that the transgene will automatically be replicated as recombinant PVX replicates its positive strand RNA genome. It is still possible that the transgene could be lost through recombination at the subgenomic promoters. Therefore, gene fragments cloned into PVX in this study were kept below 700 bp, limiting the genetic load of the PVX genome to reduce the risk of PVX losing an insert through recombination while replicating in planta (Thomas et al., 2001).

It was apparent that the hairpin construct used in this study did not improve the silencing of PDS in Nicotiana species and did not silence in Solanum tuberosum cvs Bintje and Stirling (Figure 5.3.2). However, later quantification of PDS silencing in a variety of hosts was shown not to correlate with extent of photobleaching (Figure 5.3.4b). Quantification of the PDS transcript in PVX::PDS_{as} and PVX.PDS_{hp} N. benthamiana and potato was not performed during these early experiments. It is therefore possible that the hairpin may have silenced PDS transcript to a comparable level with the antisense construct. Nevertheless, subcloning of hairpin constructs was also time-consuming providing an additional reason for not pursuing their use during this project. Although previous experimentation using hairpins in other viral systems have successfully utilised hairpins of 40-60 bp (Lacomme et al., 2003) it is possible that the hairpin PDS fragment was not sufficiently long to induce effective silencing. Although hairpins ranging from 98-853 bp have been reported to induce effective silencing by Wesley et al., (2001), it is common opinion that hairpins over 100 bp are unstable in viral vectors and would most probably fail to replicate adequately. It is possible that the same hairpin vector in a more permissive host could have induced gene silencing (Lacomme et al., 2003).

The PVX::PDS_{as} induced varying extents of foliar photobleaching in different host species. The photobleaching was significantly more extensive in diploids N.
benthamiana and S. bulbocastanum (Figure 5.3.4b). This could also be correlated with a greater accumulation of PVX CP in these diploids through western blot analysis (Figure 5.3.3). However, when PDS transcript levels in PVX::PDS\textsubscript{as} plants were normalised relative to PVX::GFP controls, the reduction of the PDS transcript was consistently found to be around 20\% (Figure 5.3.4). Therefore, there is little correlation between observed foliar phenotypes and the degree of silencing of the transcript. Although tetraploid potatoes are less permissive to PVX replication than N. benthamiana and diploid potato cvs, the extent of silencing was comparable between all species tested. S. tuberosum could therefore possess a more efficient silencing machinery to promote comparable gene silencing to N. benthamiana with less virus accumulating or possibly the virus is less selected against by the machinery allowing a more prolonged silencing response. The later hypothesis is supported by Figure 5.3.4a, in which potatoes of 70 dpi still possessed a comparable extent of PDS silencing as those 21 dpi. Also, N. benthamiana inoculated with the same PVX::PDS\textsubscript{as} construct had almost completely recovered from PVX infection. The hypothesis that tetraploid potato cvs possess a more efficient silencing response to PVX in comparison with N. benthamiana and diploid Solanum species cannot be confirmed from the data presented here and would require further experimentation. In addition, the photobleaching phenotype is a secondary response to silencing of PDS and is dependent on the amount of photo-protective carotenoids present in the leaves of each species and the strength of light the plant is exposed to. Therefore the lesser extent of photobleaching in potato cultivars may also be due to additional photo-protective pigments derived from a PDS-independent pathway. Nevertheless, the finding that PVX could efficiently induce PDS silencing in cultivated potatoes was the first published example of a successful VIGS system for tetraploid S. tuberosum (Faivre-Rampant et al., 2004).

Following PDS silencing in S. tuberosum cultivars Bintje and Stirling, partial cDNA fragments of candidate HR-related genes were cloned in antisense into PVX vector pGR106. Three weeks post-inoculation, PVX::SGT\textsubscript{1as} and PVX::CathB\textsubscript{as} Stirling and Bintje had developed distinct morphological phenotypes. Silencing of SGT\textsubscript{1} resulted in a
branched and stunted phenotype that has been previously described in SGT1 silenced N. benthamiana by Peart *et al.*, (2002). This gave an encouraging indication that the silencing of SGT1 had been triggered to a similar extent in these potato cultivars. However, in addition PVX::SGT1_{as} inoculated potatoes also developed a lobed leaf morphology and yellowing of the leaf edges which has not been previously reported. Similar leaf morphologies have been described in response to over-expression of cytokinin synthesising or meristematic homeodomain proteins (Miltos Tsiantis, personal communication). Unfortunately, within the constraints of this project there was no time to investigate this phenomenon further. Nevertheless, the lobing phenotype suggests that SGT1, in addition to its role in defence, may play a role in the regulation of leaf shape during development. Interestingly, PVX::CathB_{as} potatoes developed a sparse and elongated stature, almost the complete converse of PVX::Sgt1_{as} plants. In addition, the foliage appeared to be chlorotic in comparison with PVX::GFP. Again, this was an encouraging indication of CathB silencing as one of the *Arabidopsis CathB KO* mutants (At4g01610) also displayed an elongated and chlorotic phenotype. The other PVX vectors did not produce any distinguishable morphological phenotypes at 21 dpi.

At 21 dpi, the PVX-inoculated cultivars Bintje and Stirling were evenly sprayed with 2 different races of *P. infestans* that should trigger a HR in Stirling either through triggering an *R* gene or through activating quantitative resistance. The only clear trend from these experiments was that PVX::CYP1_{as} inoculated Stirling did show a small but significant increase in disease symptoms in response to race 99/23. It seems likely that the fine spray of spores over the entire plant in combination with possibly patchy foliar silencing may not be an optimal system to test for loss of resistance. If time had allowed, a detached leaf assay would have been performed as described in Vleeshouwers *et al.* (1999) and/or inoculation with a defined concentration of non-host bacterium such as *E. amylovora* as in Chapter 4. However, early results indicate that PVX-induced silencing of HR-related genes could be a useful tool in the dissection of genes involved in potato disease resistance.
5.6. **Conclusions**

The main findings of this chapter are published in Faivre-Rampant *et al.* (2004), which concludes that PVX expression vector, pGR106 silences *PDS* transcript levels effectively in potato in comparison with other published reports of VIGS. The presence of the *PDS* transcript was reduced by 80% of control plants in *N. benthamiana*, wild diploid potato *S. bulbocastanum* and cultivated tetraploid *S. tuberosum* cv Bintje, Stirling and Desiree. In addition, PVX-induced silencing of HR-related genes reproduced gene-silencing or gene knockout phenotypes published or observed in other plant species indicating that the silencing of genes other than *PDS* may be sufficient to study gene function (Peart *et al.*, 2002; and Chapter 4 of this thesis). Development of a functional screen for the HR-related role of genes silenced in Stirling and Bintje, using *P. infestans*, was still in progress at the end of this project. Nevertheless, initial results gave an encouraging indication that if more time was available to investigate other screening methods, PVX-based silencing could be used for the investigation of disease resistance gene functions in potato.
6. General Conclusions and Future Work

This project was a collaboration between the Arabidopsis community and the crop-based community through which the best resources available to both could be utilised to study aspects of disease resistance. It was hypothesised that candidate genes of interest from both models and crops could be studied simultaneously and the most interesting candidate genes investigated as far as possible in all systems.

The sequenced model Arabidopsis is most amenable for forward genetics-based approaches to gene discovery through large-scale mutagenesis and functional screening. Classical mutant screens have been used extensively as a means of dissecting genetic pathways and have traditionally utilised loss-of-function mutants. However, loss-of-function mutagenesis rarely identifies functionally redundant or essential genes. For example, screens for loss-of-function mutants in race-specific disease resistance pathways have predominantly identified mutant alleles of the cognate R gene e.g. RPM1 (Bisgrove et al., 1994). Similarly, loss-of-function screens undertaken in a number of laboratories for insensitivity to SA have uncovered alleles (npr1/nim/sai1/eds16) at the same gene locus (Cao et al., 1997; Ryals et al., 1997; Shah et al., 1997). The activation tagging approach was used in this project to circumvent lethality and functional redundancy problems associated with classical mutagenesis systems. Activation tagging should therefore generate gain-of-function mutations using the strong activating properties of the CaMV 35S gene enhancer and the random integration of T-DNA (Tani et al., 2004; Weigel et al., 2000). Activation tagging has led to the previously identified ADR1 gene (Grant et al., 2003) and two ads mutants during this project. Identification of genes responsible for the susceptibility phenotype in the ads mutants cannot be confirmed at this stage and subsequently whether these mutations are gain- or loss-of-function. However, the regions in which the pSKI015 insertion lies in the ads1 and ads2 genomes have been identified, facilitating sequence-dependent techniques such as silencing or genetic reconstitution for further investigation.
In addition to the relatively novel approach of activation tagging to generate gain-of-function Arabidopsis mutants, few increased susceptibility screens have been developed to identify genes that could be involved in response to virulent pathogens (Volko et al., 1998). The majority of mutant screens have focused on genes required for disease resistance induced by avirulent, non-host or necrotrophic pathogens (Eckardt, 2002). In this project it was hypothesised that by identifying and studying mutants susceptible to virulent Pst DC3000, components of inducible defence responses manipulated by the pathogen or required by the host plant could be identified. For example, Pst DC3000 has been shown to synthesis coronatine, a jasmonic acid analogue, stimulating the JA-dependent pathway, using the plant’s own wound signalling to suppress the SA-dependent pathway. The Arabidopsis mutant coil, which cannot sense JA, has recently been shown to be more resistant to virulent Pst as its defence signalling cannot be manipulated through coronatine production (Cui et al., 2005).

Isolating and studying the ads1 mutant may have highlighted a region of genomic DNA that contains an element involved in activating genes in the JA-dependent or suppressing genes in the SA-dependent pathway. The gene(s) affected by the activation tag in ads1 led to the constitutive production of high levels of H$_2$O$_2$, a response associated with induction of the HR and resistance to avirulent pathogens; it appears to be susceptible to avirulent Pst DC3000 (avrB). Currently, H$_2$O$_2$ is thought to induce the HR and defence gene expression leading to SAR that should subsequently lead to resistance to both virulent and avirulent pathogens (Wu et al., 1995). However, it is possible that constitutive production of H$_2$O$_2$ causes a high degree of cellular stress and/or constitutive activation of H$_2$O$_2$-detoxifying mechanisms, perturbing basal defence responses to virulent or avirulent Pst DC3000. Furthermore, it appears that treating ads1 with BTH could induce a level of resistance to virulent Pst DC3000, comparable with untreated Col-0. This indicates that ads1 can induce SAR, once an analogue of SA is applied and that SA-dependent pathway is perturbed before, rather than after, SA production. Analysing the expression of genes associated with the HR (GST1), SAR (PR-1) and the JA-dependent pathway (PDF1.2), before and after Pst DC3000 inoculation, would provide further insights into whether an active JA pathway or a perturbed SA pathway is
responsible for increased susceptibility to \textit{Pst DC3000}. If data presented here is correct, the insertion site of pSKI015 in \textit{ads1} lies in a region where no genes have been annotated within 10 kb. Interestingly, this may lead towards identification of an unknown regulatory element or novel gene that again verifies the use of activation tagging for investigating complex phenotypes such as disease susceptibility.

The \textit{ads2} mutant accumulated the stress-associated pigment anthocyanin which is associated with production of other antimicrobials such as phytoalexins and could be caused by over-expression of a stress-related protein (VanEtten \textit{et al.}, 1994). The accumulation of anthocyanin could be indicative of an active stress-induced pathway which could involve both up-regulation of At1g05480, causing increased N-myristoylation/RAD9 activity by over-expression of At1g05500, which has been demonstrated to be responsive to abiotic stress. However, it could be predicted that \textit{ads2} would possess a greater resistance to virulent pathogens due to the presence of phytoalexins or constitutive induction of abiotic and biotic stress pathways. It would be informative to analyse the expression of genes associated with HR, SAR and JA-dependent pathways before and after \textit{Pst DC3000} inoculation. Investigation of \textit{ads2} resistance response induced through other R proteins in \textit{Arabidopsis} may also prove to be helpful. These experiments would allow detection of which major inducible defence pathways are perturbed in \textit{ads2} mutant.

It is possible that At3g05500, encoding a stress-related protein, also known as a rubber elongation factor (REF), is responsible for increased susceptibility (Kim \textit{et al.}, 2003). REF is up-regulated in response to wounding in \textit{Ficus carica}, in response to other abiotic stresses and peroxidase activity has been associated with REF activity (Kim \textit{et al.}, 2003). Tomato and \textit{Arabidopsis} metacaspases are referred to as latex-abundant proteins and there could be a connection between metacaspases and REF. Interestingly, the gene(s) overexpressed in \textit{ads2} enhanced the resistance response to avirulent pathogens suggesting that induction of defence responses through a gene-for-gene interaction could overcome the apparently perturbed basal defence responses. Augmented resistance to avirulent \textit{Pst DC3000} could also be explained by elevated
peroxidase activity associated with an increase in REF activity. However, DAB staining could not reveal any significant difference in H$_2$O$_2$ production in $ads2$ mutants compared with Col-0 demonstrating that peroxidase activity appeared unaffected by activation tag.

The gene up-regulated at the At3g05480 locus, in the $ads2$ mutant was a RAD9-like protein with an N-myristoylation transferase domain. RAD9 is a cell cycle protein associated with caspase-3 cleavage during apoptosis and the N-myristoylation of proteins which promotes their affinity with membranes (de Jonge et al., 2000; Qi et al., 2000; Li et al., 2003). Increased expression and protein activity of a RAD9-like protein could be responsible for the enhanced resistance to Pst DC3000 ($avrB$) by amplifying the activation of the proteolytic cascade as part of the HR. Measuring and comparing any caspase-3 like activities in $ads2$ and Col-0 plants, using colorimetric substrates and inhibitors, may confirm whether At3g05480 is responsible for both increased $RPS2$-dependent resistance and decreased basal resistance.

Therefore, it is impossible to predict at present whether up-regulation of both genes together or one gene alone is responsible for the observed $ads2$ mutant phenotypes associated. Both genes could be cloned behind a 35S promoter and transformed into Col-0 plants or T-DNA insertion mutants could be ordered to investigate the phenotypic affects on resistance. Analysing the expression of key marker genes in both biotic and abiotic pathways would also be useful to investigate whether JA-dependent or stress-related pathways are constitutively active in $ads2$. Ultimately, overexpression of genes at loci At3g05480 and At3g05500, could be responsible for susceptibility to Pst DC3000 in $ads2$, neither of which have been functionally analysed in the $Arabidopsis$ literature to date, validating the use of activation tagging for identifying possible functions of novel genes in disease resistance.

Genetic screens in $Arabidopsis$ have facilitated the discovery of many components of core defence signalling networks and the research community as a whole has generated highly accessible databases of detailed sequence and functional information. The availability and range of information in these databases has undoubtedly promoted the
transfer of genetic information from *Arabidopsis* to complement functional analysis of genes in crop species.

Resistance to invading avirulent biotrophic pathogens in crop species, such as barley, rice and potato, has been shown to require the HR. Therefore, signalling components and key regulators of the HR can be investigated in model plants and crop plants to compare and contrast the similarities. Fortunately, homologues of genes identified from *Arabidopsis* can be identified in crop species, using data from the sequencing projects under way on many members of the Solanaceae, such as EST sequencing of *Nicotiana benthamiana*, *N. tabacum* and *N. rustica*, a full genome project for tomato and anticipated potato genome project. Nevertheless, methods of identifying novel genes involved in plant disease resistance in crop plants have been successfully established and provide alternative routes to gene discovery since reverse genetic type screens are not economical with crop plants. One approach used for gene discovery in potato was used prior to the start of this project, known as suppression subtraction hybridisation (SSH) to isolate genes up-regulated early during an HR. The HR is of particular importance because it appears to be fundamental to every type of resistance against oomycetes e.g. *Phytophthora infestans* on potato and *P. parasitica* on *Arabidopsis* (Birch *et al.*, 1999; Birch and Whisson, 2001).

Classes of genes identified in the SSH library were similar to those found in a variety of other cell signalling pathways e.g. transcription factors, protein kinases and cysteine proteases (Birch *et al.*, 1999; Avrova *et al.*, 1999; Solomon *et al.*, 1999). Cysteine protease genes from the SSH (*CYP1* and *CathB*) and a gene involved in resistance to *P. parasitica* in *Arabidopsis* (*ADR1*) (Grant *et al.*, 2003) were selected for further analysis. A gene required for the powdery mildew-induced HR in barley (*SGT1*) which has been successfully studied in other plant species was selected as a control (Peart *et al.*, 2002). Expression analysis of these genes in potato during an incompatible reaction with *P. infestans* revealed that *CYP1* and *CathB* were up-regulated preceding and during the HR but only provided an indication that *ADR1* and *SGT1* are expressed preceding the HR. However, the role of these genes could not initially be investigated in *S. tuberosum* due
to the lack of a successful method of inducing gene silencing. Therefore, an established VIGS system was used to investigate the roles of equivalent genes in *N. benthamiana*, a close relative of potato and an experimental model of the HR (Burton *et al.*, 2000; MacFarlane and Popovich, 2000). As with *Arabidopsis* mutants, functional characterisation of VIGS phenotypes cause a bottle-neck in the speed of analysis and therefore one gene had to be prioritised for focused functional analysis. Cathepsin B was selected for further investigation because of the number of proteases already shown to be necessary for the HR and evidence of cathepsin B activity during PCD from studies in mammalian models. For example, cathepsin B deficient mice show increased resistance to apoptosis (Mathiasen and Jäättelä, 2002; Foghsgaard *et al.*, 200). It was therefore hypothesised that cathepsin B could be a component of the protease cascade regulating or effecting the HR.

In Chapter 4, it was shown that silencing cathepsin B in *N. benthamiana* plants caused *NbCathB* expression to be reduced by approximately 80 %, preventing a peak of protein activity at 6 hpi in comparison with TRV::GFP plants and consequently allowing 10-fold greater recovery of viable *Eam* and *Pst* DC3000 (*avrB*). In order to confirm the gene-silencing experiments, one general cathepsin inhibitor and three cathepsin B-specific inhibitors were used to confirm the gene silencing experiments. Two cathepsin B protein inhibitors prevented the peak of cathepsin B activity at 6 hpi, also suppressing the HR and allowing 10-fold greater bacteria to be recovered from inoculated area. This suggests that *N. benthamiana* cathepsin B has similar active sites as mammalian cathepsin B and that blocking this activity suppresses the HR. Cathepsin B may also play a role in PCD by cleaving PARP which is a commonly used marker of apoptosis although it would be useful to investigate other markers such as DNA laddering and cytochrome C release from the mitochondria. Preliminary data investigating the effect of cathepsin inhibitors on the cleavage of VirD2 during PCD *in planta* suggests that cathepsin B may be upstream of or required for caspase-3-like activity.

It is tempting to speculate that plant proteases involved in the execution of the HR are arranged in a proteolytic cascade, similar to that observed during mammalian PCD,
including cysteine, serine and aspartic proteases, some of which may possess caspase-like activities. For example, an animal analogue of the plant vacuolar processing enzyme (VPE) processes cathepsin B (Shirahama-Noda et al., 2003; Hatsugai et al., 2004). In turn cathepsin B has been demonstrated to act both independently or directly upstream of caspases, the major effectors and executioners of mammalian apoptosis (Vancompernolle et al., 1998; Foghsgaard et al., 2001; Kingham et al., 2001). Interestingly, caspase-1 and -3 like activities have been measured during the HR, although no plant orthologues of caspase genes or proteins have been found (Chichkova et al., 2004; Belenghi et al., 2004; Hatsugai et al., 2004). To investigate the manner in which cathepsin B may interact with other proteases activated during the HR, the effect of caspase-1 and -3 inhibitors (DEVD; YVAD; TATD) and VPE inhibitor (ESEN) on in planta cathepsin B activity could be investigated. In addition, purification of N. benthamiana, S. tuberosum and Arabidopsis cathepsin B proteins would allow the range of cellular substrates to be investigated using substrates of other proteases and the other proteases themselves as controls. Furthermore, purification of plant cathepsin B would allow repetition of experiments included in this thesis, such as PARP1 cleavage westerns and the effect of inhibitors during the cathepsin B colorimetric assay.

Attempts to engineer durable resistance in crop plants have mainly failed due to the complexity of disease resistance pathways and the diversity of pathogen systems (Stuiver and Custers, 2001). Highly specific interactions occur between a diverse range of pathogens and AVR gene products with the host R gene products and components responsible for orchestrating the HR. While novel genes are constantly being discovered in the model plant Arabidopsis, it must be considered that it has no specialised organs of economic value and small genome in comparison with other crop plants. Ultimately, Arabidopsis cannot mimic potato. In addition, although N. benthamiana is a close relative of potato it cannot mimic potato either and is not a host of P. infestans. Therefore, it was important that a system for functionally analysing candidate defence genes during potato-P. infestans interactions could be developed. On top of this, it was important that the HR-related genes identified from potato-P. infestans SSHs could be analysed in potato where it would be of greater relevance to their resistance role in this
pathosystem. The most successful method of gene silencing in other crop species has been VIGS triggered by cytoplasmic, autonomously replicating viruses have been successfully utilised to modify a range of metabolic pathways (Kumagai et al., 1995), including defence responses (Romeis et al., 2001; Ekengren et al., 2003; Yoshioka et al., 2003). Therefore, an important aim of this project was also to develop a VIGS system for cultivated, tetraploid potatoes used for the original SSH libraries.

VIGS has been successfully employed using a small selection of viruses, e.g. TRV, in a restricted number of hosts, primarily Nicotiana species (Ratcliff et al., 2001). However, recent advances on other plant species such as tomato have indicated that TRV may have potential for developing gene silencing systems in other dicots (Dinesh-Kumar et al., 2003; Liu et al., 2002). Therefore TRV was initially tested on micropropagated tetraploid potato cultivars as described in MacFarlane (1996). RT-PCR of the CP on the RNA 2 genome showed that it was not replicating in any of the potato cultivars investigated. Therefore, PVX was tested because it should accumulate to appropriate levels within potato which triggers silencing defence mechanisms without extinguishing viral replication altogether (Ratcliff et al., 1997). PVX expression vector pGR106 was demonstrated to silence PDS transcript levels effectively in potato in comparison with other published reports of VIGS. The presence of the PDS transcript was reduced by 80% of control plants in N. benthamiana, wild diploid potato S. bulbocastanum and cultivated tetraploid S. tuberosum cv Bintje, Stirling and Desiree (Faivre-Rampant et al. 2004). In addition, PVX-induced silencing of HR-related genes reproduced gene-silencing or gene knockout phenotypes published or observed in other plant species indicating that the silencing of genes other than PDS may be sufficient to study gene function. Following PDS silencing in S. tuberosum cultivars Bintje and Stirling, partial cDNA fragments of candidate HR-related genes were cloned in antisense into PVX vector. Silencing of SGT1 resulted in a branched and stunted phenotype that has been previously described in SGT1 silenced N. benthamiana by Peart et al. (2002). PVX::CathB as potatoes developed a sparse and elongated stature, almost the complete converse of PVX::Sgt1 as plants and phenotype was mirrored in one of the Arabidopsis CathB KO mutants (At4g01610). However, after spraying P. infestans oospores over
these silenced plants a significant effect on disease phenotypes was not measured. Future work would involve a detached leaf assay that would be performed as described in Vleeshouwers et al., (2000), and/or inoculation of a defined concentration of non-host bacterium such as *E. amylovora* as in Chapter 4 in *N. benthamiana*.

This project allowed the focused functional characterisation of genes of interest in model systems using forward and reverse genetics approaches. Two novel *Arabidopsis* mutants are partially characterised and further research will generate fascinating insights into activated disease susceptibility. The SSH identified many appealing genes that could have been investigated in more detail by developing a high throughput VIGS in *N. benthamiana*. However, in depth analyses of the most interesting genes requires focusing of efforts and resources. Therefore, cathepsin B was found to be the most interesting defence-related gene identified and was investigated successfully in all plant host systems utilised within this collaboration. The requirement for cathepsin B in the HR revealed a structurally conserved cysteine protease in an ancient PCD mechanism shared by plants and animals.
Chapter 7

7. References

Chapter 7

Cell, 15, 545-559.

Chapter 7

Chapter 7

Kliebenstein, D.J., Dietrich, R.A., Martin, A.C., Last, R.L. and Dangl, J.L. (1999) LSD1 regulates

Li, P., Nijhawan, D., Budihardjo, I., Srivivasula, S.M., Ahmad, M., Alnemri, E.S. and Wang, X. (1997a) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an
Chapter 7

Chapter 7

serine protease inhibitor from *Phytophthora infestans* targets the tomato pathogenesis-related protease P69B. *J Biol Chem*, 279, 26370-26377.

Appendix 1: Cathepsin B Alignments

A. cDNA alignments: BG590588, *S. tuberosum*; X81995, *N. rustica*; AF359422, *N. tabacum*
B. Protein alignment (Boxed region represents peptidase domain)
Appendix

Appendix II

S. tuberosum *PDS* gene and fragment cloned into PVX

>gi|42495021|gb|AY484445.1| Solanum tuberosum phytoene desaturase (pds) mRNA, partial cds; nuclear gene for chloroplast product

TTTCCAGTAAAATGGCCTAAATTGGACTTTCTGTCTTGAATTTGGAGATGATAGTTCCAGCTTAT
CTTGAGAGCTGCAGTGGACTTTCTGTCTTGAATTTGGAGATGATAGTTCCAGCTTAT
GTTTGGACTTTATTCAGTGGAGATGATAGTTCCAGCTTAT

Grey = *PdS* as fragment, Black = *PDS*
Appendix

Appendix III

Potato VIGS paper from Chapter 5
The recent completion of the Arabidopsis genome (Arabidopsis Genome Initiative, 2000; Yamada et al., 2003) has provided a platform to significantly expedite the rate of knowledge acquisition. To fully exploit this sequence information, however, high throughput screens are required to accurately ascribe gene function. In model species such as Arabidopsis, efficient tools for forward and reverse genetics have been developed (Krysan et al., 1999; Springer, 2000; Tani et al., 2004). Furthermore, insertional mutagenesis programs based on T-DNA or transposon tagging have provided valuable resources for the analysis of gene function (Sessions et al., 2002; Pan et al., 2003).

In Arabidopsis and especially other model plant systems such programs suffer from a number of possible limitations, including: lack of genome-wide coverage, gene target bias, lethality, and functional redundancy (Jeong et al. 2002; Gidoni et al., 2003; Kumar and Fladung, 2003). Additionally, for polyploid crop species such as potato (Solanum tuberosum), mutagenesis programs are complicated and resource-intensive. Other approaches, such as dsRNA-mediated suppression of gene expression, have also proved successful in Arabidopsis, although these approaches rely on the generation of large numbers of transgenic lines (Chuang and Meyerowitz, 2000; Smith et al., 2000; Wesley et al., 2001; Harmon and Kay, 2003; Zhao et al., 2003). For many crop species the efficiency of transformation is low and prevents high throughput analysis using this approach.

Virus induced gene silencing (VIGS) is increasingly being used to generate transient loss-of-function assays to assess gene function, as a more rapid alternative to stable transformation (Baulcombe, 1999; Lu et al., 2003a). VIGS triggers an RNA-mediated defense mechanism directly targeting the integrity of the invading viral genome. This sequence-specific phenomenon lowers the titer of the invading virus through an endogenous RNAase-inducible mechanism leading to viral RNA degradation (Baulcombe, 1999; Ratcliff et al., 1999; Goldbach et al., 2003). By introducing host cDNA fragments within the viral genome, it is possible to redirect this mechanism to corresponding endogenous host mRNAs, therefore providing a means to down-regulate host gene expression.

VIGS vectors such as potato virus X (PVX), tobacco rattle virus (TRV) or tomato golden mosaic virus (TGMV) have been optimized in the permissive host Nicotiana benthamiana (Kjemtrup et al., 1998; Ratcliff et al., 2001). Recent examples show that VIGS can be extended to model plants such as Arabidopsis using the bipartite geminivirus cabbage leaf curl virus (CbLCV; Turnage et al., 2002), crop species such as tomato using a previously characterized TRV VIGS

1 This work was supported by a Marie Curie Individual Fellowship and by the Biological Sciences Research Council (BBSRC) CASE studentship (grant nos. MCFI-2001-01048 to O.F-R. and 01-A1-D-07154 to E.M.G.). The Scottish Crop Research Institute (BBSRC) CASE studentship (grant nos. MCFI-2001--01048 to E.M.G.). Programmes of Cell-to-Cell Communication (E.M.G., K.H., C.L.), Quality, Health and Nutrition (O.F-R., M.T.), Genome Dynamics (I.H.), Gene Expression (S.M.), and Plant-Pathogen Interaction (E.M.G., P.B.), Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom; and Institute of Cellular and Molecular Biology, Edinburgh University, Edinburgh EH9 3JR, United Kingdom (E.M.G., G.J.L.)
Systemic Virus Induced Gene Silencing in Potato

RESULTS AND DISCUSSION

PVX Infects Both Diploid and Tetraploid Solanum Species

A susceptible host is a prerequisite for the development of an efficient VIGS system, as viral replication and in planta accumulation of the virus condition the generation of dsRNA molecules that initiate silencing (Voinnet, 2001). Some plant viruses such as PVX have a relatively broad host-range, including several Solanaceous species (Brunt et al., 1996). In this study, a previously described binary PVX-expression vector (Jones et al., 1999; Lu et al., 2003b) was tested for its capacity to infect both wild diploid and cultivated tetraploid Solanum species. Cultivars were selected due either to their ability to be stably transformed and propagated in vitro (Solanum tuberosum L. cv Desiree), or the differential interactions occurring between either susceptible or resistant cultivars (S. tuberosum L. cvs Bintje and Stirling, respectively; Birch et al., 1999) to Phytophthora infestans, or as a potential source of novel resistance genes to P. infestans (Solanum bulbocastanum; Song et al., 2003).

Infectivity of PVX in these Solanum hosts was investigated using a PVX construct carrying a GFP insert (PVX.GFP construct, Fig. 1a). Following agroinoculation of young source leaves of potato plantlets, both infiltrated and systemic upper-uninoculated leaves were harvested. Virus accumulation was monitored by immunodetection of viral PVX coat protein (CP) by western blotting (Fig. 1b).

On the basis of semiquantitative western analysis, more PVX CP was detected in both inoculated and upper-uninoculated (systemic) leaves in S. bulbocastanum than in S. tuberosum L. cvs Desiree, Stirling, or Bintje (Fig. 1b, lower and upper sections). In S. bulbocastanum PVX accumulation was comparable to that observed in N. benthamiana at the same time postinoculation on both inoculated and systemic leaves (Fig. 1b). In all Solanum species and cultivars that were tested, PVX-CP was also detected in systemic leaves by 14 dpi (Fig. 1b, upper section). Therefore, all plants tested tolerate substantial PVX accumulation.

The PVX Vector Triggers VIGS of Endogenous pds in Foliar Tissues in Solanum Species

The silencing effectiveness of the binary PVX vector was assessed by its ability to silence an endogenous pds gene in these different Solanum species. Down-regulation of endogenous pds gene expression leads to a characteristic photobleaching phenotype, therefore providing an indication of gene silencing (Kumagai et al., 1995; Ratcliffe et al., 2001). As RNA silencing is homology-dependant, a potato pds cDNA fragment was subcloned into PVX. The cDNA fragment selected was a region showing sequence identity of 91% with an N. benthamiana pds cDNA (including stretches of 24, 26, 33 and 47 nucleotides of 100% identity between both cDNAs, Fig. 1c). This would allow silencing of the corresponding genes in both species to compare the relative VIGS. The cDNA region was subcloned in antisense orientation into the PVX vector (construct PVX.PDSAS, Fig. 1a). Following challenge with PVX.PDSAS, photobleaching was observed on all N. benthamiana plants by 12 to 15 d postinoculation, suggestive of pds silencing (Fig. 2l). When the Solanum species and cultivars were infected with PVX.PDSAS, white patches of photobleached tissues were observed by 3 weeks post-inoculation in all infected plants (S. bulbocastanum, Fig. 2, d and j; S. tuberosum L. cvs Bintje, Fig. 2, a, b, and f; Stirling, Fig. 2g; and Desiree, Fig. 2h) as opposed to plants infected with PVX.GFP where no symptoms of PVX infection were visible (S. bulbocastanum, Fig. 2c and S. tuberosum L. cv Bintje, Fig. 2e). In silenced plants, the degree of photobleaching varied, however, from covering most of the leaf surface for...
levels ranging from $70\% \pm 17\%$ to $84\% \pm 5\%$ was detected in silenced tissues of *S. tuberosum* cv L. Desiree and *S. bulbocastanum* (Fig. 3b) when compared with PVX.GFP-infected control leaves. A comparable decrease in normalized *pds* mRNA was detected between leaves of diploid *S. bulbocastanum* and tetraploid *S. tuberosum* L. cv Bintje, Stirling, and Desiree (respectively $84\% \pm 5\%$, $78\% \pm 17\%$, $84\% \pm 15\%$, and $70\% \pm 17\%$). This decrease in *pds* mRNA was similar to that observed during PVX.PDSAS VIGS in *N. benthamiana* (78% ± 10%, Fig. 3b), although the extent of photobleaching appeared greater than that observed with Solanum leaves (Fig. 2). This corroborates the fact that in these experiments and as previously reported (Ratcliff et al., 2001; Lacomme et al., 2003), the extent of photobleaching does not always correlate with differences in *pds* mRNA levels.

To further characterize the bleached phenotype in potato following *pds* silencing, the levels of phytoene were quantified by reverse-phase HPLC in extracts from both *N. benthamiana* and potato leaves challenged with either PVX.GFP or PVX.PDSAS VIGS constructs. An increase in the level of phytoene, the substrate for
Systemic Virus Induced Gene Silencing in Potato

PDS, is known to occur during VIGS of the
\(pds \) gene (Kumagai et al., 1995). Phytoene also accumulates to high levels in leaves treated with the herbicide norflurazon, a chemical inhibitor of PDS activity (Kumagai et al., 1995). The peaks in the HPLC chromatogram corresponding to cis- and trans-phytoene were identified by comparison between norflurazon-treated and untreated plants and the characteristic absorption spectra of those peaks (Fraser et al., 2000; data not shown). Increase in phytoene accumulation was quantified as the number of area units under phytoene peaks on the HPLC chromatogram (Holzberg et al., 2002).

Typical HPLC chromatograms are presented in Figure 3c. In both silenced PVX.PDSas infected \(N. \) benthamiana and \(S. \) tuberosum plants an increase in 15 cis- and trans-phytoene levels was observed (Fig. 3c, lower left and right sections, respectively) in comparison to PVX.GFP control plants. (Fig. 3c, upper section). In silenced \(N. \) benthamiana leaves, phytoene levels increased by 5- to 10-fold in comparison to PVX.GFP control plants (Fig. 3d). A comparable result was obtained for all \(Solanum \) species and cultivars tested (Fig. 3d). Although \(N. \) benthamiana displayed the strongest photobleaching, the increase in phytoene accumulation was lower than that observed in \(Solanum \) species and cultivars. Moreover, although \(S. \) bulbocastanum displayed the strongest photobleaching phenotype among the \(Solanum \) genotypes, similar levels of phytoene accumulation were observed in \(S. \) tuberosum L cv Desiree and Stirling, and these were lower than that observed in cv Bintje (Fig. 3d). This indicates that the increase in phytoene level may vary from 5- to 10-fold in \(Solanum \) silenced leaf tissue despite comparable decreases in \(pds \) mRNA levels. We thus propose that a similar, if not stronger, VIGS of \(pds \) in \(Solanum \) species and cultivars triggers a milder photobleaching phenotype than observed in \(N. \) benthamiana and this indicates that leaf photobleaching is not quantitatively coupled to the degree of \(pds \) silencing between different species.

Systemic VIGS of \(pds \) in Potato Tubers and In Vitro Generated Microtubers

We evaluated the potential of a VIGS-based approach for in vitro grown potato species by down-regulation of \(pds \) in \(S. \) tuberosum L cv Desiree micropropagated plants. In vitro material provides a means to substantially reduce glasshouse space requirements for high throughput functional studies. Stab-agroinoculation (Takken et al., 2000; Lu et al., 2003a) of leaves of in vitro grown plants with plated Agrobacteria transformed with either PVX.GFP or PVX.PDSas constructs was an effective method to generate reproducible PVX infections. By 4 weeks postinoculation, development of systemic photobleached areas on leaves was clearly visible on PVX.PDSas inoculated plants (Fig. 4a, middle and right section) in comparison with PVX.GFP controls (Fig. 4a, left section). Micropropagation of nodal cuttings from silenced plants led to regenerated Potato plants displaying a comparable photobleaching phenotype within 3 to 4 weeks (Fig. 4b; data not shown). To determine whether this photobleached phenotype was maintained through several cycles of subculture, micropropagation of the original PVX.PDSas challenged plant was repeated, and a sustained photobleaching was still observed even after the
Faivre-Rampant et al.

Figure 3. Molecular and biochemical characterization of pds VIGS in diploid and tetraploid Solanum species. a, RT-PCR of *S. tuberosum* cv Bintje pds-silenced and control plants in response to challenge with PVX constructs. Both RT-PCR products corresponding to endogenous pds and ubiquitin mRNAs have been assessed. PCR conditions ranging from 20 to 50 amplification cycles were tested in both cases. Presented here are 30 cycles corresponding to the log-linear phase of amplified PCR product in nonsilenced tissues (challenged PVX.GFP construct). NTC, nontemplate control; replicates are leaves from three different challenged plants. b, Real-time RT-PCR determination of normalized relative amounts of pds mRNA levels in silenced and control plants challenged with PVX.PDSAS or PVX.GFP constructs (21 dpi). Sampled leaves were cut in half for either RNA extraction (real-time RT-PCR) or phytoene isolation (HPLC analysis). Values are expressed in percentage of normalized pds mRNA related to PVX.GFP control. Values represent the means of at least three leaves from different plants per construct per experiment ±sr. For each sample, real-time RT-PCR was carried out in triplicate. c, HPLC analysis of phytoene accumulation induced by PVX.PDSAS VIGS vector. Typical HPLC profile from *S. tuberosum* cv Bintje and *N. benthamiana* is presented here. As before, silenced leaves from plant challenged with PVX.PDSAS and corresponding leaves from PVX.GFP plants were sampled at 21 dpi. Arrows indicate peaks for both 15 cis-phytoene and all trans-phytoene. d, Quantification of phytoene accumulation in silenced and control Solanum species and *N. benthamiana*. Values for 15 -cis-phytoene and trans-phytoene are HPLC area units (arbitrary units) and represent the means of at least three leaves from different plants per construct per experiment (sr < 20%).

Fifth consecutive subculture (data not shown). The three first subcultures of in vitro grown plants challenged by either PVX.GFP or PVX.PDSAS (subculture 1 and subculture 3) were analyzed using real time RT-PCR. A significant decrease in pds mRNA was observed in both subculture 1 and subculture 3 (Fig. 4c; respectively, 70% ± 7% and 63% ± 11%), the latter representing 12 weeks of in vitro propagation. Phytoene accumulation was measured in these in vitro silenced and control plants. Norflurazon-treated in vitro plants developed comparable photobleaching to that observed with glasshouse grown plants, and the chromatogram peak for phytoene was identified as before (data not shown). A similar increase in 15
cis- and trans-phytoene was observed in both norflurazon-treated and PVX.\textit{PDS}_{\text{AS}} silenced plants (Fig. 4d), ranging from 3-fold (trans-phytoene) to 8-fold (15 cis-phytoene) in comparison with control plants challenged with PVX.GFP (Fig. 4d) after 3 cycles of micropropagation. This indicates that \textit{pds} VIGS characteristics are similar both in glasshouse and in vitro conditions and confirmed the relative stability of the VIGS phenotype observed with in vitro grown plants.

Although VIGS proved effective in potato leaves, much research in potato is directed at investigating the tuber life-cycle, improving storage organ quality and resistance to phytopathogens. Therefore, it was important to determine whether gene silencing was observed in tubers. However, a major drawback is the
variability in tuberization time, and the glasshouse space required in making such reverse genetics approach. In vitro grown potato offers an interesting alternative, as in vitro microtuberization is synchronized and controlled (Fig. 4b; Xu et al., 1998). Indeed, fully developed microtubers were obtained by 9 weeks of culture (“Materials and Methods,” Fig. 4b), whereas in glasshouse conditions, fully developed tubers were obtained by 12 to 15 weeks post-sowing.

The systemic nature of the VIGS phenotype in tuber tissues from both glasshouse-grown plants and in vitro generated microtubers was investigated. Fully developed tubers from glasshouse plants were obtained by 3 months post-challenge with either PVX.GFP or PVX.PDS AS. Similarly, mature in vitro generated microtubers derived from in vitro control and silenced plants challenged by PVX.GFP or PVX.PDS AS were collected and analyzed by HPLC to monitor the extent of accumulation of phytoene in these organs. HPLC phytoene profiles from tubers harvested from S. tuberosum cv. Desiree and Stirling plants challenged with PVX.PDS AS indicated, respectively, up to a 2- to 5-fold increase in phytoene accumulation in comparison to control PVX.GFP infected plants (Fig. 4e). In contrast, PVX.PDS AS challenged microtubers showed an accumulation of up to 20-fold more phytoene than control microtubers infected by PVX.GFP (Fig. 4f). A more marginal but significant difference (2-fold) in phytoene increase was still detected in the next generation of subcultured microtubers (subculture 2), indicating a less sustained VIGS phenotype in these tissues and experimental conditions (Fig. 4f) than observed in foliar tissues of in vitro micropropagated plants. These results indicate that systemic silencing of endogenous genes in potato, exemplified here by pds, does not only extend to foliar tissues but potentially spreads through the whole plant, including tubers. This silencing state can be transmitted and detected for several generations through vegetative propagation.

This study represents the first demonstration of VIGS-mediated down-regulation of gene expression in both diploid and tetraploid Solanum species. Here we report that the carotenoid biosynthetic pathway, where PDS is one of the early steps, can be manipulated by the microtuberization system, in conjunction with VIGS. Microtubers develop rapidly in a relatively synchronous manner under controlled tissue-culture conditions. This should enable easier identification of tuber phenotype alterations, making it more amenable for characterization of gene function.

The effectiveness of VIGS in potato tubers opens the way for high throughput analysis of gene function to identify genes involved in important traits such as tuber development, metabolism, and pathogen resistance. Furthermore, this reverse genetic VIGS-approach should be particularly powerful in combination with analyses of the transcriptome and metabolome.

MATERIALS AND METHODS

Construction of PVX-Derived Vectors

The PVX vector (pGR106, Jones et al., 1999; Lu et al., 2003b) used in this study was obtained from David Baulcombe (Sainsbury Laboratory, Norwich, UK). PVX.GFP was generated by cloning a PCR fragment amplified from a gfp cDNA template (GenBank accession number U62637; Crameri et al., 1996) using specific oligonucleotide primers incorporating Ascl and Ncol restrictions sites respectively at the 5′- and 3′-termini for cloning into pGR106. The construct PVX.PDS AS was generated by cloning in antisense orientation into pGR106 a Ncol-Ascl 1412-bp pds cDNA fragment, corresponding to nucleotides 1,133 to 1,529 from Solanum tuberosum pds cDNA (GenBank accession number AY484445).

Agrobacterium Infection of Plants

Agrobacterium tumefaciens strain LB4404, carrying the helper plasmid pSoup (Hellens et al., 2000) was transformed with constructs PVX.GFP or PVX.PDS AS. Agroinfiltration of Nicotiana benthamiana and Solanum species with PVX vector was performed as previously described (Lu et al., 2003a). For in vitro agroinoculation, plated individual agrobacteria transformed with PVX.GFP or PVX.PDS AS constructs were picked with a sterile tip and punched onto a leaf of a 2-week old potato plant (Takken et al., 2000).

RNA Extraction and cDNA Synthesis

Total RNA was extracted from frozen control and silenced leaves using the Qiagen RNasy Plant Mini kit (Qiagen, Valencia, CA), following the manufacturer’s instructions. DNAseI treatment and first strand cDNA synthesis were as previously described (Lacomme et al., 2003).

Immunoblot Analysis

Protein extraction and western-blot analysis were as previously described (Lacomme and Santa Cruz, 1999). Membranes were probed with rabbit polyclonal antiserum, raised against the PVX CP as previously described (Santa Cruz et al., 1996).

RT-PCR and SYBR Real-Time RT-PCR Experiments

For RT-PCR analysis, primers that anneal outside the region of the pds cDNA cloned into the virus vectors to trigger silencing (nucleotides 1,126–1,516) were used to ensure that only the endogenous pds mRNA is reverse-transcribed as indicated in Figure 1a. Potato ubiquitin cDNA (GenBank accession no. BQ045862) was used as an internal constitutively expressed control. First-strand cDNA product was used as a template for PCR amplification through 20, 25, 30, 40, and 50 cycles. As 30 cycles of amplification was within the log-linear phase of pds cDNA product amplification in the nonsilenced control samples (data not shown), these conditions were selected for comparison of relative accumulation of both pds and ubiquitin mRNAs in all samples. The following primers were used: RTPoPDSSor (5′-CTC GAG GTC GTC TTC TTT GG-3′); RTPoPDS

rev (5′-GTT TAG TTG GGC CTT GAG AA-3′); RTPoUBisor (5′-GCA GTG GGA

GenBank data libraries under accession number AY484445.

Similarly, for SYBR real-time RT-PCR (QuantiTect SYBR Green PCR kit, Qiagen, Crawley, UK) experiments, primer pairs were designed outside the region of the S. tuberosum pds cDNA to amplify the targeted silencing region and the internal control ubiquitin cDNA using the Primer Express software supplied with the ABI PRISM 7700 Sequence Detection System (Applied Biosystems, Foster City, CA) following the manufacturer’s guideline for primer design. The following primers were used: SPPdswd (5'-CCA AGA CCA GCT AGA TTC AGC-3') and SPPdrev (5'-CCC CCC AAG CCT GCA-3'); SUbubFw (5'-ACA CCC TTG ATA ATG TCA AGG AGA-3') and SUbubrev (5'-GCC ATC CCA TTG CTT CTC-3').

The GenBank accession numbers for N. benthamiana pds and ubiquitin cDNA are as previously mentioned (Lacomme et al., 2003). Primer concentrations giving the lowest threshold cycle (Ct) value were selected for further analysis. Detection of real-time RT-PCR products, calculations and statistical analysis were performed as previously described (Lacomme et al., 2003).

Plant Material and Growth Conditions

All work involving virus-infected material was carried out in containment glasshouses under SEERAD licence GM/180/2003. Potato cultivars Stirling, Bitje, and Desiree were micropropagated in sterile conditions by removing 5 cm of young potato stems from virus-tested potato plants from the Scottish Agricultural Science Agency (SASA, Edinburgh), removing leaves and dividing the stem into individual pieces, each containing a node with an axillary bud. Six stem pieces were cultivated per petri dish containing 20 mL of Murashige and Skoog medium (Murashige and Skoog, 1962) supplemented with 20% Suc, 0.8% bacto agar (DIFCO), CCC and BAP were added aseptically after autoclaving by filter sterilizing. Fifteen nodes were placed in each dish and the dishes were sealed with Nescofilm (Bando Chemical, Kobe, Japan). Plants were then grown at 22°C with 16 h photoperiod and 110 µE m⁻² s⁻¹. The pH was adjusted to pH 5.8, sealed with Nescofilm (Bando Chemical, Kobe, Japan). Plants were then grown at 22°C with 16 h photoperiod and 110 µE m⁻² s⁻¹. When potato plants were 3 to 4 weeks old, they were then transferred to soil in controlled environment chambers with a 16 h photoperiod (22°C, light intensity ranging 80 µE m⁻² s⁻¹) at 10°C for 7 d prior to a total darkness at the same temperature for a further 28 d. The microtubers were then harvested and frozen for further analyses.

In Vitro Microtuberation

After 28 d culture, potato plants were divided into single nodes and placed on Murashige and Skoog medium supplemented with 60% Suc, 7 ms chlorocholine chloride (CCC), 8 µm b Dimitrillaminopurine (BAP), and 0.8% agar (DIFCO). CCC and BAP were added aseptically after autoclaving by filter sterilizing. Fifteen nodes were placed in each dish and the dishes were sealed with Nescofilm. The cultures were then placed in an incubator in an 8 h photoperiod at 80 µE m⁻² s⁻¹ at 18°C for 7 d prior to a total darkness at the same temperature for a further 28 d. The microtubers were then harvested and frozen for further analyses.

Extraction and HPLC Analysis of Phytoene from Transfected Plants

Phytoene was extracted from infected leaves, tubers and microtubers. The method used was as described in Holzberg et al. (2002). A total of 50 mg of freeze-dried leaves (3 leaves from different plants), 100 mg of freeze-dried tubers (representing at least 10 mature tubers), or 100 mg of freeze-dried in vitro grown microtubers (representing 15-20 microtubers deriving from at least 4 independent in vitro grown plants) were extracted in 100 µL of methanol. The samples were then centrifuged for 5 min at 4,000 rpm at 4°C. The supernatants were dried under a stream of nitrogen. Residues were redissolved in 500 µL of 100% methanol and 10 µL were separated by HPLC (Surveyor system, Thermo Finnigan, Benfleet, PA) with a Phenomenex 2 × 250 mm C-18 column using acetonitrile/methanol/2-propanol (85:10:5, v/v) at a flow rate of 300 µL min⁻¹. Phytoene was detected with a photodiode array detector using UV absorption at 285 nm and identified by comparing peak retention times with norflurazon-treated and untreated potato plants (Fraser et al., 2000; Holzberg et al., 2002).

Sequence data from this article have been deposited with the EMBL/Genbank data libraries under accession number AY484445.

ACKNOWLEDGMENTS

We gratefully acknowledge Prof. David Baulcombe for the gift of pGR106 vector.

Systemic Virus Induced Silencing in Potato

LITERATURE CITED

Birch PRJ, Avrova AO, Lyon GD, Duncan JM, Toth RI (1999) Isolation of potato genes that are induced during an early stage of the hypersensitive response to Phytophthora infestans. Mol Plant Microbe Interact 12: 356-361

Brigneti G, Voinnet O, Li WX, Ji LH, Ding SW, Baulcombe D (1998) Viral pathogenicity determinants are suppressor of transgene silencing in Nicotiana benthamiana. EMBO J 17: 6739-6746

Lacomme C, Santa Cruz S (1999) Bax-induced cell death in tobacco is similar to the hypersensitive response. Proc Natl Acad Sci USA 96: 7956-7961

