A Thesis Entitled

Biogeochemical Controls on Productivity and Particle Flux in the Coastal Antarctic Sea Ice Environment

A Thesis Submitted for the Degree of Doctor of Philosophy

by

Damien Stuart Carson, BSc (Hons)

School of Geosciences
Faculty of Science and Engineering
The University of Edinburgh
2009
I certify that the work described in this thesis is my own, except where otherwise stated, and has not been previously submitted for any other degree at this, or any other university.

Damien Stuart Carson
Abstract
In order to trace modern processes in the ocean and reconstruct past oceanic conditions, reliable tracers of oceanic processes such as productivity, nutrient utilisation and export production need to be developed. This study therefore assessed a suite of geochemical proxies in the coastal Antarctic sea ice environment over two growing seasons (2004-2006). Time series measurements of productivity and export production were carried out over two contrasting growing seasons in Ryder Bay, a coastal embayment on the Western Antarctic Peninsula with a heavy sea ice influence. Ryder bay exhibits intense primary production during the short ice-free spring and summer months and particle export occurs as an intense period of sedimentation following surface water productivity, similar to many other coastal Antarctic environments. The two growing seasons were preceded by different sea ice regimes, with lighter sea ice cover during winter 04 and extended sea ice cover during winter 05. This resulted in a dynamic water column during the 04/05 growing season with frequent nutrient inputs to the surface, and a more stable, stratified water column during the 05/06 season with a few minor nutrient inputs to the surface. In response to these changes in the water column, higher mass fluxes occurred during the 04/05 season due to higher nutrient availability, with much lower fluxes occurring during the 05/06 season after the extended sea ice cover during the preceding winter.

Variability of δ^{13}C$_{POC}$ at this site is not caused by changes in $[CO_2(aq)]$ or δ^{13}C-CO$_2$, but appears to be affected by changes in diatom assemblages with different surface area to volume ratios and biochemical pathways for C fixation. Although the δ^{13}C$_{POC}$ signal in surface waters is transferred to depth, these findings preclude the use of δ^{13}C as a tracer of paleo-pCO$_2$ concentration. δ^{15}N, the proxy for nitrate utilisation in the Southern Ocean shows a predicted response to nutrient utilisation and the physical properties of the water column in each season, with each season displaying a different evolution of δ^{15}N over the course of spring and summer. However, this proxy for utilisation of nitrate does not reflect the absolute changes in C flux. It is
therefore necessary to consider this scenario when making connections between nitrate utilisation and changes in atmospheric CO₂ in sediment cores.

This study also better constrained the biogeochemical cycling of Ba in the coastal Antarctic sea ice environment. BaXS formation in surface waters appears related to productivity, but appears to peak during periods of early decay of phytoplankton when barite is formed. Standing stocks of BaXS in sea ice are consistently an order of magnitude higher than surface waters and display higher than average Ba:POC ratios than surface waters. The formation of barite in the water column appears to be linked to the decay of organic matter and precipitation of barite in supersaturated micro-environments. Finally, the flux of BaXS relative to carbon in the coastal Antarctic sea ice environment is consistent with algorithms published for the open ocean.

This study has successfully identified mechanisms that affect the attenuation of proxy signatures in coastal Antarctic sediments. However, extreme inter-annual variability also highlights the need for further long-term monitoring of elemental and isotopic tracers in the coastal Antarctic sea ice environment, in order to establish longer term trends and truly establish the effect of differences in sea ice extent.

In addition to the work in Ryder Bay, this thesis also includes a case study on the Antarctic sediment core MD03-2601 from Adélie Land, East Antarctica. This 40 m Holocene core has an exceptionally high sedimentation rate and is heavily influenced by sediment focusing. Using careful corrections to remove the influence of lateral input of material, and redox sensitive tracers to identify any anoxic sections of the core, paleoproductivity reconstructions were carried out using carbon, opal and Ba tracers of export production. The results are consistent with the climatic phases of the Holocene and present a valuable case study suggesting that these proxies are useful, either
quantitatively or qualitatively, for reconstructing paleoproductivity on a core heavily affected by focusing and containing periods of sedimentary oxygen deficiency.
Acknowledgements

Firstly, I would like to thank Dr. Raja Ganeshram for providing me with the opportunity to work towards a PhD, and for trusting me with such an exciting project which required significant time away in the field, unsupervised! His constant enthusiasm, geochemical prowess, and guidance, inspired me to prepare a thesis I am proud of. Thank you also to my co-supervisors, Dr. Bryne Ngwenya, Prof. Tim Jickells, Prof. Harry Elderfield, and my advisor Dr. Mary Elliot.

My sincerest gratitude is given also to the British Antarctic Survey and the staff of Rothera Research Station from 2004-2006. In particular, I would like to thank (in no particular order) Paul Mann, Andy Miller, Dan Smale, Matt Brown, John Withers, Kate Hendry, Joanna Coldron, Keith Weston, Andy Wilson, Bernard Meehan and Andy Barker. Not only do I appreciate your assistance with my work, but also your friendship during the long seasons on the frozen continent.

Completing the amount of laboratory analysis required for this project would not have been possible without the following people: Colin Chilcott (Edin), Amber Annett (Edin), Nic Odling (Edin), Tony Fallick (SUERC), Andrew Tait (SUERC), Julie Douggans (SUERC), Xavier Crosta (Bordeaux), Delphine Denis (Bordeaux), and Prof. Daniel Sigman (Princeton). Special thanks is also reserved for Jim Smith and Alan Pike, two of the most useful and undervalued members of the School of GeoSciences at the University of Edinburgh.

A big thank you to my partners in oceanographic crime: Elsa Arrelano-Torres, Laetitia Pichevin, Tom Russon, Amber Annett and Kevin Welsh. The office(s) wouldn't have been the same without you.

I would especially like to thank my mum, Lynda, and my dad, Gary, for guiding me safely to trainee adulthood. Finally, Fiona, your love and support made this thesis possible, and knowing you were always there, especially during my long seasons in Antarctica, kept me sane.
Table of Contents

Declaration..i

Abstract...ii

Acknowledgements..v

Table of Contents...vi

1 Introduction..1
 1.1 Overview..1
 1.2 Rationale and Motivation for this Study..1
 1.3 Sea Ice...3
 1.4 Coastal Antarctic Sea ice Environment..5
 1.5 Stable Isotopes of Carbon and Nitrogen...7
 1.6 $\delta^{13}C$ in the Southern Ocean...9
 1.7 $\delta^{15}N$ in the Southern Ocean...11
 1.8 Barium...13
 1.9 Thesis Outline..17
 1.10 References...18

2 Field Work..25
 2.1 Introduction..25
 2.2 Field Seasons...26
 2.3 Surface Water Sampling...26
 2.4 Sea Ice Sampling..27
 2.5 Measured Parameters...28
 2.6 Research Cruises Aboard the RRS James Clark Ross....................28
 2.7 Sediment Trap Mooring Arrays...28
 2.8 Box Coring..33
 2.9 References..34

3 Inter-Annual Variability of Productivity and Particle Flux in Ryder
 Bay, Antarctica..35
 3.1 Introduction...36
 3.2 Materials and Methods..37
 3.2.1 Sea Ice Sample Collection..38
 3.2.2 Surface Water Sample Collection..39
3.2.3 Sample Analysis ... 39
3.2.4 Sediment Trap Deployments.. 40
3.3 Results .. 41
 3.3.1 Sea Ice ... 43
 3.3.2 Surface Waters ... 44
3.4 Discussion ... 52
3.5 Conclusions .. 56
3.6 References ... 56

4 Factors Influencing δ^{13}C of suspended and sinking Organic
Matter in the Coastal Antarctic Sea Ice Environment 61
 4.1 Introduction .. 63
 4.2 Materials and Methods ... 64
 4.2.1 Study Area ... 64
 4.2.2 Sea ice Sampling .. 66
 4.2.3 Surface Water Sampling .. 67
 4.2.4 $[CO_2(aq)]$ Analysis ... 67
 4.2.5 δ^{13}C-CO$_2$ Determination 68
 4.2.6 POC, PON and δ^{13}C$_{POC}$ Analysis 68
 4.2.7 Diatom Census Counts .. 69
 4.2.8 Sediment Trap Deployments ... 69
 4.2.9 Sediment Organic Carbon and δ^{13}C$_{org}$ Analysis 70
 4.2.10 Sedimentary Diatom Census Counts 70
 4.3 Results .. 71
 4.3.1 Seasonal Sea Ice Cover and Productivity 71
 4.3.2 $[CO_2(aq)]$ and δ^{13}C-CO$_2$ 72
 4.3.3 Suspended Particulate Organic Carbon (POC) 73
 4.3.4 Surface water δ^{13}C$_{POC}$ and $[CO_2(aq)]$ 75
 4.3.5 Sinking Particulate Organic Carbon and δ^{13}C$_{org}$ 80
 4.3.6 Sediment Trap Diatom Assemblages 81
 4.4 Discussion ... 86
 4.4.1 δ^{13}C in Surface Waters and Sea Ice 86
 4.4.2 Sinking Particulate Carbon ... 91
4.4.3 Potential Implications for δ^{13}C-based pCO$_2$ Reconstructions in the Southern Ocean ... 93

4.5 Conclusions ... 94

4.6 References .. 95

5 δ^{15}N of Nutrients and Organic Matter as Proxies for Productivity and Export Production in the Coastal Antarctic Sea Ice Environment 100

5.1 Introduction ... 101

5.2 Materials and Methods .. 103
 5.2.1 Study Area ... 103
 5.2.2 Sea Ice Sampling .. 105
 5.2.3 Surface Water Sampling ... 105
 5.2.4 NO$_3$, NH$_4$ and pCO$_2$ Determination 106
 5.2.5 δ^{15}N-NO$_3$ Determination ... 107
 5.2.6 Bulk POC/PON and δ^{15}NPON Determination 108
 5.2.7 Sediment Trap Deployments .. 108
 5.2.8 Box Cores .. 109
 5.2.9 Sediment Organic Carbon Nitrogen and δ^{15}N$_{org}$ Determination .. 109

5.3 Results .. 110
 5.3.1 Growing Seasons 2004-2006 .. 110
 5.3.2 Sea Ice ... 111
 5.3.3 Surface Waters ... 112
 5.3.4 Sinking Particulate C/N and δ^{15}N 119

5.4 Discussion ... 124
 5.4.1 Sea Ice Nitrogen Isotope Biogeochemistry 125
 5.4.2 Surface Water Nitrogen Isotope Biogeochemistry 127
 5.4.3 Nutrient Sources ... 129
 5.4.4 NO$_3$ Utilisation and CO$_2$ Drawdown 130
 5.4.5 Sinking Particulate δ^{15}N and Export Fluxes 132
 5.4.6 Open versus Closed System δ^{15}N 133

5.5 Conclusions ... 136

5.6 References .. 136
6 Particulate Barium Transformations and Fluxes in the Continental Shelf Antarctic Sea Ice Environment .. 141
 6.1 Introduction .. 142
 6.2 Materials and Methods ... 145
 6.2.1 Dissolved Ba Determination .. 146
 6.2.2 Particulate Barium and Aluminium 147
 6.2.3 Sequential Leaching of Barium .. 147
 6.2.4 HF Digestion of Material .. 148
 6.2.5 Sediment Trap Material and Surface Sediments 148
 6.2.6 Analysis of Barium and Aluminium 149
 6.2.7 Ba$_{XS}$ Determination .. 149
 6.2.8 Suspended Particulate Organic Carbon 150
 6.3 Results .. 151
 6.3.1 Crustal Ba:Al Determination .. 151
 6.3.2 Surface Waters and Sea Ice ... 152
 6.3.3 Sediment Traps ... 162
 6.3.4 Box Cores ... 167
 6.4 Discussion .. 167
 6.4.1 Sea Ice Associated Particulate Ba$_{XS}$ 167
 6.4.2 Surface Water Barium Seasonality 170
 6.4.3 Sinking Particulate Ba$_{XS}$.. 172
 6.4.4 Conclusions .. 177
 6.5 References ... 177

7 Reconstructing paleoproductivity throughout the Holocene: A case study from Adélie Land, East Antarctica .. 182
 7.1 Introduction .. 183
 7.2 Proxies .. 184
 7.3 Materials and Methods ... 186
 7.3.1 Age Model .. 187
 7.3.2 Diatom Census Counts ... 187
 7.3.3 Organic Carbon and Biogenic Opal Measurements 187
 7.3.4 Elemental Analysis .. 188
7.3.5 Sediment fluxes normalisation .. 188
7.4 Results .. 191
7.5 Discussion ... 195
7.5.1 Biogenic Flux Reconstructions ... 195
7.5.2 Preservation Versus Export/Production Changes 199
7.5.3 Baxs Proxy Sensitivity ... 200
7.5.4 Opal:Corg Decoupling ... 201
7.6 Conclusions .. 202
7.7 References ... 203
8 Conclusions ... 211
8.1 Productivity and Particle Flux .. 211
8.2 Carbon and δ^{13}C in the Coastal Antarctic Sea Ice Environment 213
8.3 Nitrogen and δ^{15}N in the Coastal Antarctic Sea Ice Environment ... 214
8.4 Barium Biogeochemistry in the coastal Antarctic Sea Ice Environment 215
8.5 Summary of Proxy Findings in Ryder Bay 217
8.6 Reconstructing Paleoproductivity in Core MD03-2601 219
8.7 Future Considerations .. 220
9 Appendices ... 221
9.1 Appendix 1. Full list of sampling events during the 2004/2005 field season ... 221
9.2 Appendix 2. Full list of sampling events during the 2005/2006 field season ... 222
9.4 Appendix 4. List of Measured Parameters out with the RaTS programme measured for surface water and sea ice samples 224
9.5 Appendix 5. Sea ice time-series N data from the 04/05 and 05/06 growing season ... 225
9.6 Appendix 6. Surface water time series N data for the 04/05 growing season ... 226
9.7 Appendix 7. Surface water time-series N data for the 05/06 growing season ... 227
9.8 Appendix 8. Sediment Trap flux data and δ^{15}N$_{org}$ from the RaTS Site throughout the duration of this study .. 228
9.9 Appendix 9. Sediment Trap flux data and δ^{15}N$_{org}$ from the Deep Site throughout the duration of this study .. 229
1 Introduction

1.1 Overview
This thesis investigates the key biogeochemical mechanisms controlling productivity and particle flux in the coastal Antarctic sea ice environment. High resolution time series analysis of sea ice, surface waters and sediment traps over two growing seasons coupled with analysis of sediment cores, opened up the coastal sea ice environment to thorough geochemical inspection. Using the data sets the key mechanisms that control the stable isotope and elemental composition of organic matter were identified. The data have important implications regarding the interpretation of Southern Ocean sediment records and relating them to past surface water conditions, which are discussed in detail throughout the forthcoming chapters.

1.2 Rationale and Motivation for this Study
Understanding modern day cycling of nutrients, organic matter, stable isotopes and other elements in the ocean and how this information is transferred during sinking of suspended particles and sedimentation, has allowed us to develop an understanding of what the Southern Ocean was like during different periods of earth's history. Information locked up in sediment cores has the potential to give a quantitative and chronological insight into the conditions of the ocean in the past. The information provided by cores can relate to variables such as nutrient utilisation, export production, phytoplankton assemblages, ocean circulation, ocean temperature, and ocean alkalinity to give some examples. Paleoceanographic investigation of the Southern Ocean have uncovered vast quantities of data that are used to form hypotheses of how the Southern Ocean influenced, or was influenced by, glacial to interglacial cyclicity e.g.(Anderson, et al., 2002; Anderson, et al., 1998; Crosta, et al., 1998; Crosta, et al., 2002; De La Rocha, et al., 1998; Ellwood and Hunter, 2000; Falkowski, 1997; Francois and Altabet, 1992; Francois, et al., 1997; Kumar, et al., 1995; Rau, et al., 1991; Robinson, et al., 2004; Robinson, et al., 2005; Rosenthal, et al., 2000; Schneider-Mor, et al.,
2005; Sigman and Boyle, 2000; Sigman, et al., 2004). There are a variety of theories that attempt to explain how the Southern Ocean influenced atmospheric CO₂ during glacial/interglacial cycles, for example:

- An increase in Southern Ocean carbon export, resulting in more carbon dioxide being sequestered in sediments to help lower atmospheric CO₂, this may have been caused by iron fertilisation;
- Changes in stratification that resulted in the reduction of CO₂ outgassing from ocean to atmosphere through a decrease in vertical mixing;
- Increased sea ice cover, both spatially and temporally, reducing the area of Southern Ocean that could exchange with the atmosphere, again reducing CO₂ outgassing.

Paleoproductivity reconstructions of the Southern Ocean are hampered by contradictions between the different proxies. For example, the stable isotopic composition of nitrogen (Δ₁⁵Norg), a proxy for nitrate utilisation, suggests that a higher proportion of available nitrate was consumed during glacial periods (Francois and Altabet, 1992; Robinson, et al., 2005), consistent with the theory that higher nutrient utilisation promoted CO₂ drawdown and sequestered this carbon in sediments. However, studies applying other proxies inferred no change or a reduction in nutrient utilisation (De La Rocha, et al., 1998; Elderfield and Rickaby, 2000; Ellwood and Hunter, 2000). Francois et al., (1997) proposed the theory that Southern Ocean stratification was heightened during glacial periods, hypothesising that this was consistent with lowering of atmospheric CO₂ as the deeper waters rich in CO₂ were not exposed to the atmosphere. The stratification theory also implies the upper mixed layer of the glacial Southern Ocean would have a reduced supply of nutrients, thus explaining the high Δ₁⁵Norg of glacial Southern Ocean Sediments, as a higher proportion of the reduced nutrient supply would have been utilised. With the examples given above, more research is essential in order to develop new paleoceanographic proxies and to constrain exactly
how classic proxies, such as $\delta^{15}\text{N}$, applied to sediment cores should be interpreted.

Therefore this study was designed to test the validity of a suite of stable isotope and elemental proxies in the coastal Antarctic sea ice environment. Most proxy algorithms are based on open water conditions in the deep ocean, here we conduct a high resolution time-series analysis of biogeochemical cycling in sea ice and surface waters and monitor the export of these geochemical signals to depth and sedimentation. This was done with the hypothesis that proxy signals in the coastal sea ice environment are affected by different processes (extended sea ice cover, grazing, glacial melt, intra-seasonal variability, etc) than the rest of the Southern Ocean and therefore interpretation of sedimentary geochemical signals will not conform to broader scale open ocean relationships.

1.3 Sea Ice

Sea ice cover around Antarctica is one of the most seasonal geophysical parameters on the Earths surface, with coverage ranging from $18.8 \times 10^6 \text{ km}^2$ during austral winter to $3.6 \times 10^6 \text{ km}^2$ during austral summer (Comiso et al., 1998). Sea ice acts as a blanket, covering the ocean surface and affects the fluxes of heat and moisture across the ocean-atmosphere boundary (Wu et al., 1997). Sea ice presence also strongly increases the albedo of the Southern Ocean, acting as a reflector of heat (Ebert et al., 1995), especially during the spring and summer months. Rejection of brine (super saline water) during sea ice formation, and freshwater input to the ocean during sea ice melting are also considered to strongly affect thermohaline circulation (Keeling and Stevens, 2001). In addition to the physical affects, sea ice also strongly influences the timing, magnitude and species composition of primary production in Southern Ocean waters (Arrigo et al., 1998; Crosta et al., 2007; Kim et al., 2005; McMinn, 1996) as well as playing a major role in structuring the Antarctic food web (Ducklow et al., 2006; Eicken, 1992). The sea ice covered Southern Ocean promotes a stable surface water environment
during spring and summer growing seasons. Freshwater delivery to the ocean surface after sea ice melting stratifies the ocean surface and strongly favours diatoms as the main phytoplankton group growing in sea ice and surface waters (Wright and Van Der Enden, 2000). Diatoms within sea ice may also account for a significant proportion of Southern Ocean primary production (Arrigo et al., 1997), which may account for up to 5% of total Southern Ocean biogenic carbon production, and can account for up to 25% of total primary production in heavily ice covered areas (Arrigo et al., 1995).

Sea ice is strongly influenced by climate, and changes in sea ice are thought to have been significant during previous glacial to interglacial cycles (Crosta et al., 1998) and during the different climatic periods of the Holocene (Crosta et al., 2007).

Most geochemical proxies used to reconstruct productivity, nutrient utilisation and export production have been developed studying the open ocean (e.g. De La Rocha et al., 1998; Francois et al., 1992; Rau, 1994). It is therefore essential to understand how changes in sea ice cover may affect the geochemical composition of organic matter exported from the surface ocean in response to productivity.

Sea ice has the potential to affect the elemental and stable isotopic composition of organic matter produced in the surface ocean both directly and indirectly. Growth of phytoplankton within the sea ice matrix (mainly diatoms) often occurs within a closed or semi-closed system, which can lead to high levels of nutrient utilisation if phytoplankton growth is abundant. Previous studies have shown that increases in the stable isotopic composition of organic carbon (δ^{13}C) and nitrogen (δ^{15}N) of organic material within the sea ice matrix are a result of high nutrient utilisation (Fischer et al., 1991; Gibson, et al., 1999). In addition changes in the elemental composition of organic matter (C:N ratio) have also been observed in the ice matrix (Kennedy et al., 2002). If the composition of this material is faithfully
exported to the sea floor after sea ice decay and melting, this may have a notable influence on the composition of the seasonal flux compared to the open water produced material alone.

The seasonality of sea ice can also significantly affect the dominant phytoplankton species that compose the spring and summer growing season (e.g. Crosta et al., 2005; Crosta et al., 2007). Evolution of Southern Ocean diatom assemblages in response to sea ice change can lead to marked variations in the elemental composition of the exported flux, e.g. opal:C (Armand et al., 2008) and the δ^{13}C composition of organic matter (Burkhardt et al., 1999; Cassar et al., 2006; Popp et al., 1998).

One of the goals of this study is to identify the key mechanisms that give sea ice associated organic material such different geochemical characteristics that open water associated organic material, and whether the sea ice material significantly influences annual flux in the coastal Antarctic sea ice environment.

1.4 Coastal Antarctic Sea ice Environment

The Antarctic continental shelves are regions of intense biological activity and biogeochemical cycling, and constitute high levels of primary production (Arrigo et al., 1998; Vernet, et. al., in-press), drawdown of ρCO$_2$ (Arrigo et. al., 1999) and intense “pulses” of sedimentation (Ducklow et al., in-press). In addition the continental shelves surrounding Antarctica are one of the global oceans richest reservoirs of biogenic opal, due to high primary productivity that is dominated by diatoms (Broecker, 1982)

Ryder Bay, the main study area for this thesis, is located south of Alexander Island and west of the mainland on the Western Antarctic Peninsula (WAP) (Clarke et al., in-press). Ryder Bay is a coastal embayment adjoining Marguerite Bay and the main study site is situated in open water at a maximum depth of 520 m. The WAP is unusual compared with most regions of Antarctica because of it’s proximity to the Antarctic Circumpolar Current
Waters from the ACC can intrude directly onto the WAP continental shelf, with Circumpolar Deep Water (CDW), the water mass that occupies the mid-levels of the ACC being the most common. This is usually divided into Upper (shallower) and lower components (UCDW and LCDW respectively), with UCDW being characterised by a maximum in potential temperature and high nutrient content (Meredith et al., 2004). Incursions of UCDW, the most common water mass supplying heat and nutrients to the surface in the WAP continental shelf. UCDW floods large areas of the WAP, including Ryder Bay and Marguerite Bay almost every year, and appears to be a consistent feature of shelf oceanography in this region (Ducklow et al., 2007).

The uppermost waters over the continental shelf are typically very much colder and fresher than UCDW, because of interaction with the atmosphere and cryosphere. Traditionally termed Antarctic Surface Waters (AASW), they typically cool and gain salt from sea ice formation as summer moves to winter, then warm and freshen from winter to summer (Klinck 1998). The AASW is thus thermally highly variable and solar heating can lead to strong stratification with relatively warm surface layers in summer (Meredith et al., 2004). The creation of a relatively warm and fresh surface layer during summer leads to isolation of the remnant cold winter mixed layer from the atmosphere, termed Winter Water (WW). The coastal oceanography of this region is thus dominated by the AASW at depths down to 100 m, including WW at lower levels.

A second important factor in the oceanography of the WAP is annual sea ice retreat and its proximity to large quantities of glacial ice on land, and hence the influence of meltwater (Meredith et al., in-press). It is known that the seasonal variability in the volume and spatial extent of glacial meltwater plays a critical role in oceanic ecosystem processes, particularly primary production (Dierssen et al., 2002), and also that water column stability and a shallow mixed layer are essential to phytoplankton bloom development (Mitchell and
The addition of a thin lens of freshwater to the ocean surface will greatly increase its stability, thereby retaining phytoplankton within a favourable light environment by preventing mixing to depths where light is limiting.

Despite many years of investigation, most biological and biogeochemical studies of the Southern Ocean concerning productivity, CO₂ variations and export production, especially in continental shelf regions, have been limited to ice free seasons and very few studies go beyond a single year. Recently, there have been two very useful studies documenting long-term monitoring of regions of the Western Antarctic Peninsula (WAP) (Clarke et. al., in-press; Ducklow, et. al., in-press), but many observations remain without explanation, for example why the peak flux period in the WAP is now roughly 40 days later than in 1993. The WAP is a very important region of Antarctica to climate and ocean scientists, as it has experienced the highest rate of warming (3°C) over the last 50 years (Turner et. al., 2005), so understanding the mechanisms affecting sea ice seasonality, primary production and particle export are essential in order to understand how future warming or other aspects of climate change may affect this ecosystem.

The high inter-annual variability observed in the continental shelf, Antarctic sea ice environment makes generalisation about annual primary production and export production very difficult. More long-term monitoring programmes are required to identify the mechanisms affecting sea ice extent, changes in circulation and mixing of water masses, phytoplankton assemblages, primary production and export production.

1.5 Stable Isotopes of Carbon and Nitrogen

The stable isotope composition of carbon and nitrogen in organic and inorganic forms is a common technique used to trace processes occurring in the carbon and nitrogen cycle in the marine environment, such as nutrient utilisation. Carbon and nitrogen each have two stable isotopes, with ¹²C and ¹³C comprising 98.89 % and 1.11 % and ¹⁴N and ¹⁵N comprising 99.64 % and
0.36 % of the total natural abundance respectively (Faure et al., 1986). Because of the size of this abundance gap, the ratios of \(^{13}\text{C}\) to \(^{12}\text{C}\) and \(^{14}\text{N}\) to \(^{15}\text{N}\) in carbon or nitrogen compounds are expressed in the delta notation as per mil" (‰) differences relative to reference standards, where;

\[
\delta^{13}\text{C} = \left\{ \frac{(^{13}\text{C}/^{12}\text{C})_{\text{sample}} - (^{13}\text{C}/^{12}\text{C})_{\text{standard}}}{(^{13}\text{C}/^{12}\text{C})_{\text{standard}}} \right\} \times 1000; \text{ and }
\delta^{15}\text{N} = \left\{ \frac{(^{15}\text{N}/^{14}\text{N})_{\text{sample}} - (^{15}\text{N}/^{14}\text{N})_{\text{standard}}}{(^{15}\text{N}/^{14}\text{N})_{\text{standard}}} \right\} \times 1000
\]

In general, isotopic proxies of nutrient utilisation work on the principle that, in a reservoir of finite size, the preferential removal of one isotope over another result in an increasing enrichment of the remaining isotope as the reservoir is depleted, a process known as Rayleigh distillation. The interpretation of stable isotope values hinges on accurate measurements of kinetic isotope effects, where the isotopic composition of the product varies as a result of reaction rate. Rayleigh Distillation is calculated by;

\[
\frac{R_f}{R_0} = f(\alpha - 1)
\]

Where \(f\) is the fraction of remaining reactant, \(R_f\) is the del value of the reactant at an \(f\) value and \(R_0\) is the del value when \(f=1\) (i.e. prior to the removal of any reactant).

The marine carbon and nitrogen cycles are largely controlled by biological processes and are regulated by kinetic fractionations. Fractionation is caused by the slight physicochemical differences that exist amongst the isotopes of an element (\(^{12}\text{C}\) and \(^{13}\text{C}\), and \(^{14}\text{N}\) and \(^{15}\text{N}\)), the slight mass difference causes the activation energies of molecules and their chemical bonds to differ (Galimov, 1985). As a result, the chemical bonds in the lighter isotopes of an element react relatively faster, so phytoplankton preferentially uptake the lighter isotope of an element causing the products to become enriched in the lighter isotope and the remaining pool of reactants to become enriched in the heavier isotope (Wada and Hatori, 1978; Burkhardt et al, 1999).
The extent of isotopic fractionation is highly dependant on environmental variables including temperature, the size of the reservoirs of various compounds involved in the reactions and the number of intermediate steps in the reaction(s). Interpreting changes to the stable isotopic (C and N) composition of nutrients and organic matter relative to productivity in the marine environment is complicated by the effects of changes to the fractionation factor \((\epsilon_p)\) during both physical and biological processes. Understanding the mechanisms that may affect such changes in fractionation are essential in order to use stable isotopes as tracers of oceanic processes, and are discussed herein.

1.6 \(\delta^{13}C\) in the Southern Ocean

The stable carbon isotopic composition of sedimentary organic carbon \(\left(\delta^{13}C_{org}\right)\) was initially developed as a tracer for changes in \(pCO_2\) of surface waters (Rau et al, 1991; Rau et al., 1994) and was used to infer changes in atmospheric \(CO_2\) over glacial to interglacial cycles. Higher \(\delta^{13}C_{org}\) in low latitude ocean sediments during the last glacial maximum (LGM) was attributed to the lowering of atmospheric \(CO_2\) and the 1-2 \(\%\) change in \(\delta^{13}C_{org}\) was consistent with the 80 ppmv change in glacial atmospheric \(CO_2\) inferred from Antarctic ice cores (Barnola et al., 1987). The transition into the current interglacial period was then mirrored by an equivalent decrease in \(\delta^{13}C_{org}\) consistent with the increase in atmospheric \(CO_2\) observed during this transition. However, results from such paleo-observations in low latitude systems are not consistent with similar paleoceanographic studies in the Southern Ocean, with the Southern Ocean displaying different alterations in \(\delta^{13}C_{org}\) during glacial to interglacial cycles.

Paleoceanographic studies of the Southern Ocean observed that the glacial \(\delta^{13}C\) of diatom bound organic matter were lower than during interglacials and the Holocene (Crosta and Shemesh, 2002; Rosenthal, et al., 2000; Schneider-Mor, et al., 2005; Singer and Shemesh, 1995). The reasons for
these isotopic shifts remain unclear but suggested causes include higher concentrations of dissolved molecular carbon dioxide ([CO$_2$]$_{aq}$), lower growth rates and changes in diatom abundance or size effects. Documenting processes that decouple carbon isotopes from the classic δ^{13}C versus pCO$_2$ relationship used for paleo-CO$_2$ reconstructions is important in understanding the influence or response of the Southern Ocean in glacial-interglacial transitions in the earth's climate.

Indeed, recent lab and field studies highlight that the isotopic composition of suspended particulate organic carbon (δ^{13}C$_{POC}$) in phytoplankton can be affected by cell size or shape (Burkhardt, et al., 1999; Popp, et al., 1998; Trull and Armand, 2001), non diffusive carbon uptake through carbon concentration mechanisms (Cassar, et al., 2004; Rau, 2001) and other environmental and physiological factors such as CO$_2$ concentration, light levels and growth rates (Cassar, et al., 2006). These processes affect carbon isotopic fractionation (ε_p) and loosen the relationship between δ^{13}C$_{org}$ and [CO$_2$]$_{aq}$ and may account for the observed discrepancy between marine δ^{13}C$_{org}$ based pCO$_2$ reconstructed from low-latitude records and Vostok CO$_2$ (Kienast, et al., 2001).

In the Southern Ocean, [CO$_2$]$_{aq}$ is generally very high and growth rates are relatively low, so it is likely that Antarctic phytoplankton acquire their inorganic carbon by diffusion, negating the need for active carbon uptake. A recent paleo-study in Adelie Land, East Antarctica (Crosta, et al., 2005), also highlighted how past climate-driven changes in diatom assemblages affect the δ^{13}C$_{org}$ signature of Holocene sediments. Given that the size and shape of phytoplankton and the growth conditions are seemingly a very important factor in shaping the δ^{13}C$_{org}$ of Southern Ocean sediments, a detailed time-series of Antarctic phytoplankton species or groups and concurrent information on their effects on carbon isotopes fractionation is essential in order to make δ^{13}C$_{org}$ a reliable paleo-CO$_2$ proxy.
1.7 $\delta^{15}\text{N}$ in the Southern Ocean

The nitrogen stable isotope composition ($\delta^{15}\text{N}$) of organic matter in sediments has been used as a proxy for surface water nitrate utilisation in an attempt to understand the role of Southern Ocean in glacial/interglacial changes in atmospheric CO$_2$ (e.g. Francois and Altabet, 1992; Francois, et al., 1997; Sigman, et al., 1999). The High Nutrient Low Chlorophyll (HNLC) nature of the Southern Ocean leaves the majority of NO$_3$ and PO$_4$ in surface waters unutilised during the spring and summer months, believed to be due to iron limitation (Martin, et al., 1990; Timmermans, et al., 1998). Increased nutrient utilisation in the Southern Ocean has be linked to lower atmospheric CO$_2$ concentrations through changes in the efficiency of the biological pump (possibly as a result of increased iron fertilisation), or reduced nutrient (CO$_2$) supply to the ocean surface and release to the atmosphere (Francois, et al., 1997; Kumar, et al., 1995), perhaps due to increased stratification of surface waters. It is therefore essential to be able to understand the balance between changes in export production and the physical oceanographic processes affecting nutrient delivery to the surface to determine changes in the drawdown of CO$_2$.

Natural abundance measurements of $\delta^{15}\text{N}$ are useful as tracers of changes in nutrient utilisation in HNLC regions. Drawdown of NO$_3$ in surface waters results in increasing $\delta^{15}\text{N}$ of NO$_3$ ($\delta^{15}\text{N-NO}_3$) due to isotopic fractionation during utilisation by phytoplankton (Sigman, et al., 1999; Wada and Hattori, 1978; Wu, et al., 1997). Increasing $\delta^{15}\text{N-NO}_3$ is then transferred to the $\delta^{15}\text{N}$ of suspended particulate organic nitrogen ($\delta^{15}\text{N}_{\text{PON}}$), and subsequently sinking particulate organic nitrogen ($\delta^{15}\text{N}_{\text{org}}$) (Altabet, 1996; Altabet, et al., 1991; Wu, et al., 1999). Preservation of this isotopic signal in sediments facilitates the study of present and past changes in nutrient drawdown. High $\delta^{15}\text{N}$ in Antarctic sediments has thus been used to infer increased nutrient utilisation and drawdown of NO$_3$ and CO$_2$ from surface waters in a normally HNLC region, assuming that high $\delta^{15}\text{N}$ was pertinent to increased export production (e.g. Robinson, et al., 2005; Sigman, et al., 1999).
There are still, however, uncertainties regarding the use of $\delta^{15}N$ in sediments as a tracer of NO$_3$ utilisation in the Southern Ocean and whether high $\delta^{15}N$ in sediments can indeed be linked to increased carbon drawdown (Altabet and Francois, 2001; Crosta and Shemesh, 2002; Lourey et al., 2003). This uncertainty is linked to observations of higher $\delta^{15}N_{PON}$ and $\delta^{15}N_{org}$ during winter than the spring months, (Lourey et al., 2003), which has the potential to skew interpretation of sediment core records leading to overestimation of NO$_3$ utilisation. This is believed to be caused by a high residence time of dead or slow growing winter phytoplankton that are highly degraded, which increases their $\delta^{15}N_{PON}$ composition. Thus sinking $\delta^{15}N_{org}$ from this material may be significantly higher than material observed in the growing season and skew interpretation of sediment core records leading to overestimation of NO$_3$ utilisation.

Growth of phytoplankton in sea ice, which can reach high standing stocks comparable to open water may also display high $\delta^{15}N$ values compared to surface water phytoplankton. High levels of productivity in the closed or semi-closed sea ice matrix has the potential to exhaust nutrients and produce particulate organic material with anomalously high $\delta^{15}N$ composition (Fischer, et al., 2002; Gibson, et al., 1999; Kennedy, et al., 2002). Similar to winter surface water material, sinking material from sea ice with high $\delta^{15}N_{org}$ may also skew interpretation of sediment core records leading to overestimation of NO$_3$ utilisation.

Other studies have also suggested that the fractionation factor (ε_p) may change in response to phytoplankton assemblages (Needoba, et al., 2006) light levels (Difiore, et. al., 2006) or the concentration of iron in surface waters (Karsh et al., 2003), as a cause for changes in Southern Ocean sediment $\delta^{15}N$. Nitrogen ε_p in the Southern Ocean has been estimated to be between 4-8 $\%$ (Altabet and Francois, 2001; Difiore, et al., 2006; Sigman, et al., 1999) based on models used for a steady state system (continuous
nutrient supply) and a closed system (no nutrient supply), and this value may be even lower when physical mixing of water masses and remineralisation of nitrogen occur (Needoba, et al., 2006).

Making connections between high \(\delta^{15}N \) (nutrient utilisation) and CO\(_2\) drawdown may not be relevant in many scenarios as the C and N systems can be severely decoupled in surface waters (Crosta and Shemesh, 2002; Lourey et al, 2003). This may occur not only from sea ice and winter surface water material, but from the total cumulative levels of nutrients utilised in a single growing season. Seasonally integrated sediment \(\delta^{15}N \) may be comparable to the relative utilisation of NO\(_3\) in surface waters, but does not capture the amount of inorganic carbon and nitrogen that can be assimilated and exported over the duration of a growing season (Francois, et al., 1997).

1.8 Barium

Barite formation in the marine water column and its flux to the seafloor appear linked to surface productivity and carbon export (Bishop, 1988; Dehairs et al., 1992; Dehairs et al., 2000; McManus et al., 1998). Thus the reconstruction of carbon export based on barium content of sediments may provide quantitative information about past changes in primary production (Francois et al., 1997; Ganeshram and Pedersen, 1998; Ganeshram et al., 1995). A host of previous studies utilising sediment traps monitoring fluxes of carbon and barium have produced preliminary algorithms linking the flux of biogenic barium to carbon export production (Dymond et al., 1992; Francois et al., 1995; McManus et al., 2002; Nurnberg et al., 1997).

Barite crystals are common in the suspended matter of the water column (Dehairs et al, 1980) despite the fact that the water column is usually undersaturated with respect to barium (Monin et al, 1999). Studies of the global ocean based on water column profiles of dissolve barium have shown that barium is recycled like nutrients, with lower concentrations at the surface and enrichment at depth. This distribution results from the bio-intermediate
nature of barium, with formation of particulate barium at the surface with dissolution at depth, but the exact mechanism of this process is still debated (Bernstein and Byrne, 2004; Bertram and Cowen, 1997; Ganeshram et al., 2003). There is evidence supporting the idea that biogenic microenvironments in settling detritus provide favourable conditions for barite precipitation through supersaturation resulting from barium and sulphur release from decaying organic matter (Ganeshram et al., 2003; Monnin et al., 1999) and that processes such as trophic processing, faecal pellet packaging and particle aggregation may significantly enhance barite formation.

Biologically mediated barite formation has been demonstrated in culture experiments (Ganeshram et al, 2003). Using axenic and coastal plankton samples, barite precipitation in decaying phytoplankton was unambiguously demonstrated to increase with time. Further leaching experiments showed that a large proportion of the particulate barium in surface waters is very labile and readily released during decay. While most of this barium is released into the surrounding waters, a small fraction is converted to barite. These findings suggest the following mechanism for barite formation in seawater;

1. Biological uptake of dissolved Ba by plankton or abiotic adsorption onto organic matter, resulting in high particulate Ba concentration in surface waters that is mostly very labile
2. Rapid release of dissolved Ba from labile particulate Ba during the early stages of plankton decomposition either by cell lysis or decay of labile organic matter
3. Most of the released Ba is returned to the dissolved Ba pool in surrounding water, but a small fraction precipitates as barite in supersaturated microenvironments created as a result of rapid Ba release.
4. Barite and Ba bound to more refractory organic matter flux to the deep sea as sinking particles.
In laboratory experiments 2-4% of the barium pool was converted to barite (Ganeshram et al., 2003), it is very difficult to calculate or model this precipitation in open marine systems but it is feasible that a relatively small amount of barite is produced. As with stable isotopes, barium based productivity estimated are also affected by various physical, chemical and biological processes while sinking and upon deposition on the sea floor before preservation (e.g. Fagel et al., 1999; Cardinal et al., 2001; Schenau et al., 2001). For instance, the availability of this supersaturated microenvironment is believed to be the limiting factor for barite precipitation (Ganeshram et al., 2003) so processes such as fecal-pellet packaging marine snow aggregation, although not prerequisite may enhance barite formation. Studies have shown that the relationships between barium and carbon fluxes vary in different oceanic regions (Francois et al., 1995), especially between continental shelf seas, continental margin environments and the open oceans (Dehairs et al., 2000; Francois et al., 1995; McManus et al., 2002).

In the polar oceans, little attention has been paid to document the effects of seasonal sea ice cover on the relationship between barium and carbon fluxes. In these environments, ice cover can extend over large proportions of the year and controls the timing of the growing season (Eicken, 1992), often resulting in short, episodic spring blooms in association with the melting sea ice. It is unclear how spring blooms and flux of material occurring in episodic 'pulses' may affect the yield of barite per unit carbon in sinking organic matter, but it has been suggested that it may reduce barite fluxes as the organic matter export in these environments occurs too rapidly to allow barite precipitation to attain completion (McManus et al., 2002). Other reported cases where the excess Ba does not correlate with particulate organic carbon (e.g. Fagel et al., 1999) highlight that more research needs to be carried out to assess the environmental factors that may affect the quantitative relationship between the export of carbon and barite.
There are no published studies investigating the behaviour of barium in Antarctic sea ice to date, which is surprising considering the influence sea ice has over productivity and particle flux (Arrigo et al., 1997; Garrity et al., 2005; Kim et al., 2005) and the use barium as a paleoproductivity proxy in the Southern Ocean. Productivity within the sea ice matrix has the potential to produce a Ba:Corg relationship very different to that seen in surface waters. Primary production in sea ice often occurs in a closed or a semi-closed system within brine pockets and brine channels. This closed system effect can retain and degrade large quantities of organic matter produced within the ice matrix, a lot of which may be recycled for further production. Thus the relatively small brine channels and gap layers in sea ice are excellent candidates for barite formation, where barium and sulphur may reach levels high enough for barite precipitation during decay of organic matter. It is therefore essential to understand the biogeochemical cycling of barium in sea ice and monitor the release of barium from decaying and melting sea ice, bearing in mind that sea ice particle can account for a significant proportion of mass flux in the Southern Ocean (Arrigo et al., 1997).

The method developed by Ganeshram, et al., (2003) is a useful sequential leaching method for monitoring the behaviour of barium in decaying phytodetritus. This method uses sequential extractions of dilute HNO₃ for labile particulate barium, 30 % HCl for barite and hot conc. HNO₃ for particulate barium associated with refractory organic matter. This method was applied to monitor barite growth and behaviour relative to other Ba phases in laboratory phytoplankton decay experiments. The results from the experiments revealed the presence of large pool of labile Ba in the fresh phytoplankton, which during decay was readily released and a proportion converted to barite (see Figure 2.1).
Figure 1.1. Sequential leaching data showing particulate Ba transformations during decay of phytodetritus, courtesy of Ganeshram et al., (2003). Panels show Ba phases in freshly collected coastal phytoplankton bloom (a) and after 8 weeks of decay in the dark (b). Note that most Ba resides in the labile fraction (Deionised water + Dilute HNO$_3$ extraction) in the bloom material but mainly in the barite (HCl) and refractory fraction (Hot HNO$_3$) after decay indicating the loss of labile Ba and the production of barite during the decay process.

This method can easily be transferred to time-series analysis of suspended particulate samples from sea ice and the surface ocean, to monitor the behaviour of barite and other particulate Ba phases over seasonal timescales. Using this method in the field may identify the transformations of particulate Ba in surface waters and sinking material in order to gain a more detailed understanding of the biogeochemical cycling of Ba in relation to productivity and particle flux.

1.9 Thesis Outline

This thesis is organised into 8 further chapters following this general introduction. The next chapter (chapter 2) gives a detailed account of the field work conducted in Antarctica, along with general information about sampling procedures, dates and locations. Detailed methodologies of sample analysis are not given in chapter 2, these are presented in the following data chapters. The following 6 chapters (chapters 3-8) present the data and intellectual arguments put forward as a result of the work and are organised in “paper format”, which have been or are soon to be submitted to peer reviewed
Carson, 2009

journals. The final chapter (chapter 8) summarises the thesis as a whole and
the implications of this work in the more general aspects of Southern Ocean
biogeochemistry and Paleoceanography.

The main body of this work, i.e. the 5 paper-chapters address some of the
key issues raised in sections 1.3 through to 1.7. The arguments put forward
not only complement the biological time series work of the British Antarctic
Survey but also give insight into biogeochemical processes that are poorly
constrained in the coastal Antarctic sea ice environment. This adds depth to
existing data sets and provides further insight into the application of stable
isotope and elemental proxies in the Souther Ocean.

In addition, the last data chapter of this thesis (chapter 7) documents a case
study on a sediment core from the continental shelf Antarctic sea ice
environment. This core covering the Holocene is quite unique in that it has
an average mass accumulation rate of 0.4 cm.yr\(^{-1}\) and was heavily influenced
by sediment focusing. I was invited to carry out some geochemical analysis
on this core by Dr. Xavier Crosta from Bordeaux University. The results were
used to assess the suitability of applying a suite of geochemical proxies (C,
N, opal and Ba) of paleoproductivity on this core. This involved correcting for
the effects of sediment focusing, and assessing the reliability of these proxies
to reconstruct past productivity and export production over the Holocene.

1.10 References

Anderson, R. F., et al. (1998), Late-Quaternary changes in productivity of the
Anderson, R. F., et al. (2002), The Southern Ocean's biological pump during
the Last Glacial Maximum, Deep-Sea Research Part Ii-Topical Studies in
Oceanography, 49, 1909-1938.
Armand, L. K., Cornet-Barthaux, V., Mosseri, J. and Queguiner, B. (2008)
Late summer diatom biomass and community structure on and around the

Francois, R., and M. A. Altabet (1992), Glacial to interglacial changes in surface nitrate utilisation in the Indian sector of the Southern Ocean as recorded by sediment d15N, Paleoceanography, 7, 589-606.

Kienast, M., et al. (2001), A critical review of marine sedimentary delta C-13(org)-pCO(2) estimates: New palaeorecords from the South China Sea and a revisit of other low-latitude delta C-13(org)-pCO(2) records, Global Biogeochemical Cycles, 15, 113-127.

Robinson, R. S., et al. (2005), Diatom-bound N-15/N-14: New support for enhanced nutrient consumption in the ice age subantarctic, Paleoceanography, 20.

2 Field Work

2.1 Introduction

This short chapter is designed to give a detailed description of events during field work conducted at Rothera Research Station to collect samples for this research project. The information presented details sampling events (e.g. dates, locations, sample types taken) and any analyses performed by the authors or The British Antarctic Survey that are considered general analyses (e.g. CTD casts, sea ice observations) that are used throughout this thesis.

The majority of samples for this project were taken at the Rothera Time Series Site (See Figure 2.1), or ‘RaTS site’ as it will be referred to herein for surface water samples.

![Figure 2.1. Location of sea ice sampling, RaTS site of time series water sampling and mooring deployment and mooring deployment at the deep site.](image)

The British Antarctic Survey has been conducting a year round oceanographic time series study at this site since 1997 (Clarke, et al., 2007).
The RaTS site is located in Ryder Bay, Antarctica (67°34.02'S, 68°14.02'W), although there is a site nearby, referred to as 'RaTS site 2' that is used whenever the RaTS site is unavailable due to ice cover. The RaTS programme frequently measures depth profiles of conductivity, temperature and depth as well as measurements of chlorophyll, nutrients and other biochemical components at 15 m. Sea ice samples were taken in the surrounding area of the RaTS site, but were limited to where the ice was deemed safe to walk on by the resident Field Assistants at Rothera Research Station.

2.2 Field Seasons
The 2004/2005 field season commenced in early December 2004 and ran until March 2005. Upon arrival at Rothera Research Station, most of the sea ice had retreated in Ryder Bay, with only areas of land-fast ice available to sample. The spring bloom was already underway, so the ice cover to open water transition was missed. A total of 5 sea ice brine samples and 22 surface water samples were taken during the 2004/2005 field season. The 2005/2006 field season commenced in early November 2005 and ran until March 2006. Upon arrival, the whole of Ryder Bay was still covered in sea ice and it remained until the 25th December, allowing a more detailed time series sampling of sea ice and surface waters during ice cover and the transition to open water spring bloom conditions. A total of 10 sea ice samples and 19 surface water samples were taken during the 2005/2006 field season.

2.3 Surface Water Sampling
Surface water sampling was conducted at 15 m depth at the RaTS site, the same depth as the RaTS programme. Sampling was conducted aboard an inflatable boat with a custom built CTD winch on board. CTD casts were taken to 500 m depth using a Sea Bird Electronics 19 Plus SEACAT CTD module. For measurements of conductivity, temperature and depth a Wet Labs Wetstar module was used. Water samples were taken using a 5 L Niskin bottle for chlorophyll analysis. Temperature at 15 m was measured using a Sensoren Instrumente Systeme GmbH reversible thermometer; the
thermometer was lowered to 15 m and left to equilibrate for 2 min before sending the messenger down to initiate temperature recording. For geochemical analysis, water was either collected using the 5 L Niskin bottle or was pumped from 15 m depth using a 12 V dolphin pump and silicon tubing into acid cleaned 10 L polypropylene carboys.

Water samples were stored in a cold room in the dark at 0°C until processed in the laboratory. Samples were never left for longer than 2 h after collection before processing. During the winter and early spring 2005 when sea ice was covering the bay, CTD casts and Niskin sampling were conducted at the RaTS site from a winch attached to a sledge, through a hole cut in the ice. Water samples for geochemical analysis were taken at the RaTS site below the ice during September and October 2005. Samples taken under the ice during November and December 2005 were located closer to the shore where the ice was deemed safe to walk on. Using dive holes, British Antarctic Survey divers took empty closed carboys under the ice and opened them immediately below the ice. Water samples were stored in a cold room in the dark at 0°C until processed in the laboratory. Samples were never left for longer than 2 h after collection before processing. Sampling frequency was aimed to occur twice weekly, but due to the weather this was not always possible. Refer to Appendix 1 for a full list of all sampling events during field season 2004/2005 and Appendix 2 for a full list of sampling events during field season 2005/2006.

2.4 Sea Ice Sampling

Sea ice sampling was conducted at three locations during both field seasons. During the first season where sparse land fast ice was remaining during December 2005, 5 sea ice samples were taken on ice floes attached to lagoon island (67° 35.6’ S, 68° 14.5’ W). During austral winter 2005 (September and October), 2 sea ice samples were taken at the RaTS site (67° S, 68° W). During early spring 2005 (November and December) a further 8 sea ice samples were taken at a near shore site (67° 33.85° S, 68° 07.52°
Sea ice sampling events were conducted using the same stepwise process each time. Thin sack holes were firstly drilled into the ice and allowed to fill with brine. Firstly, samples for dissolved gases (alkalinity and stable isotopes of dissolved inorganic carbon) were taken followed by measurements of temperature and conductivity using a YSI 85 multi-parameter. A larger hole was then drilled and samples for nutrients, particulates and dissolved constituents were taken. Sea ice brine was transferred from the sack hole to clean polypropylene carboys using an acid clean 500 ml HDPE beaker. Brine samples were stored in a cold room in the dark at 0°C until processed in the laboratory. Samples were never left for longer than 2 h after collection before processing. Refer to Appendix 3 for a list of sea ice sampling events during the 200/2005 and 2005/2006 field seasons.

2.5 Measured Parameters

For a list of parameters measured in surface waters and sea ice, refer to Appendix 4 (detailed methods of sampling and analysis for each parameter are given in subsequent chapters).

2.6 Research Cruises Aboard the RRS James Clark Ross

A total of 3 cruises aboard the RRS James Clark Ross were conducted during field work for this project (Brandon, 2005; Walker and Weston, 2006; Weston and Brandon, 2007). The purpose of these cruises were to deploy and/or retrieve sediment trap mooring arrays that were located at the RaTS site in Ryder Bay (67° S, 68° W) and a deeper site in Marguerite Bay (68° W, 68° S) (exact locations described for each deployment), to conduct CTD casts at each mooring site and a transect across the mouth of Marguerite Bay and to take box core samples below each mooring site.

2.7 Sediment Trap Mooring Arrays

Two sediment trap mooring arrays were deployed at the RaTS site and the deeper site in Marguerite Bay to catch sinking particles in concert with the time series water sampling programme. Each mooring consisted of two time-
series sediment traps, which were situated at 200 m and 500 m for the RaTS mooring and 123 m and 745 m for the deep site mooring. The moorings were also equipped with an ADCP at 200 m, current meters and CTD’s directly below each sediment trap and temperature loggers and CTD’s in between each sediment trap. For schematic diagrams of each mooring array, refer to Figures 2.2 and 2.3.
Figure 2.2. Schematic diagram of the RaTS mooring array showing the instruments and constructs and detailing depth and serial numbers. Diagram also shows topography of the deployment sites for both moorings. Diagram taken from Weston and Brandon, (2007).
Deep Mooring

8mm plastic coated
Wire Rope throughout

On station 0910Z deployed at 1051Z
17 February 2006, depth 835m.
Location 67° 55.41'S, 68° 24.11'W

200 metres depth
Ti Swivel
10m Wire Rope
Sed Trap s/n 11262-04
1m chain
RCM 7 with CTD
s/n 9603
500m (490+10)
Wire Rope
with loggers at
50m intervals
from rcm
6 X 17" benthos
Ti Swivel
10m Wire Rope
Sed Trap s/n 11262-07
Nortek s/nA6L1168
RCM 7 with CTD
s/n 11675
1m chain
Acoustic release
RT661 B2S
s/n 222
90m Wire Rope
5m chain
450Kg cast iron sinker

Figure 2.3. Schematic diagram of the deep mooring array showing the instruments and construct and detailing depth and serial numbers.
Each sediment trap was equipped with 21 rotating for cups, which were programmed to rotate at predefined intervals. The strategy employed for cup rotation utilised higher resolution cup turnover during periods of potential sea ice melt and the spring bloom with lower resolution cup rotation during the low flux winter periods. Mooring arrays were initially deployed during JCR cruise 112/113. The RaTS site mooring was deployed on the 25th January 2005 in 502 m water at 67°34.02'S, 68°14.02'W). The deep site mooring was deployed on the 24th January 2005 in 841 m water at 67°55.39'S, 68°24.15'W. For a table of sediment trap bottle rotations, refer to Table 2.1.

Table 2.1. Dates for sediment trap cup rotation during the first deployment between January 2005 and February 2006.

<table>
<thead>
<tr>
<th>Trap</th>
<th>Dates</th>
<th>Trap</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26/01/05 – 07/02/05</td>
<td>13</td>
<td>29/11/05 – 06/12/05</td>
</tr>
<tr>
<td>2</td>
<td>07/02/05 – 21/02/05</td>
<td>14</td>
<td>06/12/05 – 13/12/05</td>
</tr>
<tr>
<td>3</td>
<td>21/02/05 – 01/03/05</td>
<td>15</td>
<td>13/12/05 – 20/12/05</td>
</tr>
<tr>
<td>4</td>
<td>01/03/05 – 01/04/05</td>
<td>16</td>
<td>20/12/05 – 27/12/05</td>
</tr>
<tr>
<td>5</td>
<td>01/04/05 – 01/05/05</td>
<td>17</td>
<td>27/12/05 – 03/01/06</td>
</tr>
<tr>
<td>6</td>
<td>01/05/05 – 01/06/05</td>
<td>18</td>
<td>03/01/06 – 18/01/06</td>
</tr>
<tr>
<td>7</td>
<td>01/06/05 – 15/07/05</td>
<td>19</td>
<td>18/01/06 – 01/02/06</td>
</tr>
<tr>
<td>8</td>
<td>15/07/05 – 01/09/05</td>
<td>20</td>
<td>01/02/06 – 15/02/06</td>
</tr>
<tr>
<td>9</td>
<td>01/09/05 – 01/10/05</td>
<td>21</td>
<td>Not Used</td>
</tr>
<tr>
<td>10</td>
<td>01/10/05 – 01/11/05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>01/11/05 – 15/11/05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>15/11/05 – 29/11/05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Moorings were retrieved for the first time during JCR cruise 136/137. The RaTS mooring and deep mooring were recovered on the 15th February 2006 and the sediment trap bottles were removed and replaced with fresh ones. Both moorings were redeployed on the 17th February 2006. The RaTS mooring was redeployed at a water column depth of 522m at 67°34.00'S, 68°14.00'W. The deep mooring was redeployed at a water column depth of 835m at 67°55.41'S, 68°24.11'W. For a table of sediment trap bottle
rotations during the second deployment, refer to Table 2.2. The moorings were further recovered on 17th December 2006 aboard JCR Cruise 155. The RaTS mooring was successfully turned over, but unfortunately the deep mooring was lost. The same cup rotation dates in Table 2.2 were used after the RaTS mooring was redeployed in December 2006, so no further tables have been included for the third deployment. Final recovery of the RaTS mooring was conducted in April 2007 aboard JCR Cruise 174.

Table 2.2. Dates for sediment trap cup rotation during the second deployment between February and December 2006.

<table>
<thead>
<tr>
<th>Trap</th>
<th>Dates</th>
<th>Trap</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18/02/06 – 03/03/06</td>
<td>13</td>
<td>01/12/06 – 10/12/06</td>
</tr>
<tr>
<td>2</td>
<td>03/03/06 – 17/03/06</td>
<td>14</td>
<td>10/12/06 – 17/12/06</td>
</tr>
<tr>
<td>3</td>
<td>17/03/06 – 31/03/06</td>
<td>15</td>
<td>17/12/06 – 24/12/06</td>
</tr>
<tr>
<td>4</td>
<td>31/03/06 – 01/05/06</td>
<td>16</td>
<td>24/12/06 – 07/01/07</td>
</tr>
<tr>
<td>5</td>
<td>01/05/06 – 01/06/06</td>
<td>17</td>
<td>07/01/07 – 20/01/07</td>
</tr>
<tr>
<td>6</td>
<td>01/06/06 – 01/07/06</td>
<td>18</td>
<td>20/01/07 – 01/02/07</td>
</tr>
<tr>
<td>7</td>
<td>01/07/06 – 01/08/06</td>
<td>19</td>
<td>01/02/07 – 21/02/07</td>
</tr>
<tr>
<td>8</td>
<td>01/08/06 – 01/09/06</td>
<td>20</td>
<td>21/02/07 – 08/03/07</td>
</tr>
<tr>
<td>9</td>
<td>01/09/06 – 01/10/06</td>
<td>21</td>
<td>08/03/07 – 01/04/07</td>
</tr>
<tr>
<td>10</td>
<td>01/10/06 – 01/11/06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>01/11/06 – 15/11/06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>15/11/06 – 01/12/06</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.8 Box Coring

During JCR Cruise 155, box core samples were taken at both the RaTS site and the deep site. The box core at the RaTS site was retrieved on 15th December 2006 at 67'34.15oS, 68'13.44oW. A total of 4 sub-cores were taken from the box core by pushing plastic sleeves through the main core of sediment. The RaTS box core measured 31 cm in length and each was sectioned at 0.5 cm intervals for the first 2 cm, at 1 cm intervals between 2 and 10cm and at 2cm intervals between 10 and 30 cm. The box core at the deep site was retrieved on the 15th December 2006 at 67'55.28oW 68'24.34oW. A total of 4 sub-cores were taken from the box core by pushing
plastic sleeves through the main core of sediment. The deep site box core measured 29 cm in length and each was sectioned at 0.5 cm intervals for the first 2 cm, at 1 cm intervals between 2 and 10 cm and at 2 cm intervals between 10 and 28 cm.

2.9 References

3 Inter-Annual Variability of Productivity and Particle Flux in Ryder Bay, Antarctica

Abstract
This study reports time series measurements of productivity in sea ice and surface waters and export production over two contrasting growing seasons in Ryder Bay, Antarctica. Ryder Bay is a region of intense primary production during the short ice-free spring and summer months and particle export occurs as an intense period of sedimentation following surface water productivity. Standing stocks of organic C and N in sea ice are high and each season exhibited a spring bloom lasting 4 months and both showed a two peak profile of productivity, which is believed to be a result of intense grazing pressure and was accompanied by elevated concentrations of NH4. Primary production measurements also show that regenerated production levels were elevated during the latter stages of the 05/06 season after the mid-season decline in biomass. Differences in the sea ice regime over the two growing seasons had a major effect on the characteristics of each growing season, leading to a dynamic water column with several nutrient inputs during the 04/05 season and a more stable water column during the 05/06 season. Nutrient utilisation reached similar levels over each season, suggesting that there was more productivity during the 04/05 season. This was evident in the amount of sinking material being much lower in the 05/06 season compared to the 04/05 season. The stable water column during 05/06 would also have retained more material at the surface for recycling and regenerated production. Export efficiency estimates during 05/06 were very low (<10 %), consistent with other measurements in the region, and suggest a food web structure efficient at retention and recycling of the net community production. C:N ratios of surface water material was low (5.7), with the sinking material C:N ratio increasing to 6.3 at the sediment surface, values much lower than other studies in the region. These ratios do, however, suggest that recycling of material occurred from the increase of 0.6 from surface waters to the sediment surface.
3.1 Introduction

The Antarctic continental shelves are regions of intense biological activity and biogeochemical cycling, and constitute high levels of primary production (Arrigo et. al., 1998; Vernet, et. al., in-press), drawdown of pCO2 (Arrigo et. al., 1999) and intense "pulses" of sedimentation (Ducklow et al., in-press). In addition the continental shelves surrounding Antarctica are one of the global oceans richest reservoirs of biogenic opal, due to high primary productivity that is dominated by diatoms (Broecker, 1982)

Despite many years of investigation, most biological and biogeochemical studies of the Southern Ocean concerning productivity, CO₂ variations and export production, especially in continental shelf regions, have been limited to ice free seasons and very few studies go beyond a single year. Recently, there have been two very useful studies documenting long-term monitoring of regions of the Western Antarctic Peninsula (WAP) (Clarke et. al., in-press; Ducklow, et. al., in-press), but many observations remain without explanation, for example why the peak flux period in the WAP is now roughly 40 days later than in 1993. The WAP is a very important region of Antarctica to climate and ocean scientists, as it has experienced the highest rate of warming (3°C) over the last 50 years (Turner et. al., 2005), so understanding the mechanisms affecting sea ice seasonality, primary production and particle export are essential in order to understand how future warming or other aspects of climate change may affect this ecosystem.

The high inter-annual variability observed in the continental shelf, Antarctic sea ice environment makes generalisation about annual primary production and export production very difficult. More long-term monitoring programmes are required to identify the mechanisms affecting sea ice extent, changes in circulation and mixing of water masses, phytoplankton assemblages, primary production and export production.
In this study we compare two contrasting growing seasons in Ryder Bay Antarctica, the site of the Rothera Biological Time Series (RaTS), a long-term monitoring programme that has been running since 1997 (Clarke et al., in-press). The growing seasons presented have two very different sea ice regimes and subsequent hydrographic properties, primary productivity and export production.

3.2 Materials and Methods

This study was conducted between 2004 and 2006 in Ryder Bay and Marguerite Bay located south of Alexander Island and west of the mainland on the Western Antarctic Peninsula (see Figure 3.1). Ryder Bay is a coastal embayment adjoining Marguerite Bay and the study site is situated in open water at a depth of 520 m.

Sea ice brine was sampled when sea ice was present at three locations, with a total of 15 sea ice samples taken during this study. Sea ice had receded from Ryder Bay upon arrival at in December 2004, however there was still land fast ice located around Lagoon Island (see Figure 3.1 for Lagoon Island sampling site), with 5 samples taken at the Lagoon Island site during December 2004. A further 10 samples were taken during the 05/06 season. During winter 2005, two sea ice samples were taken in September and October at the RaTS site and during early spring 2005 (Nov-Dec), a further eight sea ice samples were taken at a site north of Rothera Point (See Figure 3.1). A high resolution time series of surface water samples were taken in Ryder Bay, at the Rothera Time Series study site at 67°34.02'S, 68°14.02'W (Clarke, et al., 2007) during austral spring and summer 2004/2005 and austral spring and summer 2005/2006 (Figure 3.1). All surface water samples were taken at 15 m. Two water samples were taken during September and October 2005 through a hole cut in the ice.
Figure 3.1. Map of Ryder Bay showing the RaTS site (white circle) and the two other sites used for sea ice sampling (black circles). Map courtesy of the British Antarctic Survey.

3.2.1 Sea Ice Sample Collection

Sea ice brine was sampled using a sack hole drilling method, with samples for $[\text{CO}_2(\text{aq})]$ taken first to minimise atmospheric contamination. Alkalinity samples for $[\text{CO}_2(\text{aq})]$ determination were taken by immersing a 250 ml BOD bottle in the sack hole and sealing the bottle with a plastic stopper ensuring no air bubbles were present. Salinity and temperature were measured using a YSI-500 multi-parameter meter.

For particulate carbon and nitrogen measurements, sea ice brine was transferred to acid-clean HDPE carbuoys and taken back to the laboratory for filtration. Sea ice brine samples were filtered through muffle-furnaced (400°C for 4 h) 47 mm GF/F filters, within 2 h of collection. The filters were then dried
at 50°C overnight, and stored frozen until analysis. Filtered water was transferred to 50 ml HDPE tubes and frozen at -20°C until analysis for major nutrients.

3.2.2 Surface Water Sample Collection

CTD casts were taken to 500 m depth using a Sea Bird Electronics 19 Plus SEACAT CTD module. For depth profile measurements of conductivity, temperature and depth a Wet Labs Wetstar module was used for mixed layer depth (MLD) determination. For measurement of temperature at 15 m, a Sensoren Instrumente Systeme GmbH reversible thermometer was lowered to 15 m, allowed to equilibrate for 2 min and a brass messenger was sent down to initiate temperature recording.

Surface water samples were taken using a 5 L Niskin bottle for chlorophyll a, and \([\text{CO}_2(\text{aq})]\) measurements. Alkalinity samples for \([\text{CO}_2(\text{aq})]\) determination were transferred from the Niskin straight into a 250 ml BOD bottle and sealing the bottle with a plastic stopper ensuring that no air bubbles were present.

Particulate samples were retrieved using a 12 V dolphin pump and 15 m of silicone tubing weighted down at the end. Water from 15 m was pumped into 10 L HDPE carbuoys for transfer back to the laboratory. Surface water samples were filtered through muffle-furnaced (400°C for 4 h) 47 mm GF/F filters. The filters were then dried at 50°C overnight and stored frozen until analysis. Filtered water was transferred to 50 ml HDPE tubes and frozen at -20°C until analysis.

3.2.3 Sample Analysis

Determination of \([\text{CO}_2(\text{aq})]\) was conducted utilising measurements of salinity, temperature, pH and alkalinity. Salinity measurements were taken from the CTD profiles, temperatures were measured using a Sensoren Instrumente Systeme GmbH reversible thermometer. Alkalinity was determined by titration with 0.05 M HCl and the Gran plot method (Almgren, et al., 1983).
[CO$_2$(aq)] was calculated using constants from (Dickson and Millero, 1987), (Hannson, 1973) and (Mehrbach, et al., 1973) with the CO2SYS programme (Lewis and Wallace, 1998). NO$_3^-$ concentrations were measured using a Skaler San $^+$ nutrient autoanalyser employing standard colorimetric techniques (Strickland and Parsons, 1972). Ammonium concentrations were measured on the filtered sea ice and surface water samples using the standard addition method described in Holmes, et al., (1999) on the day of sample collection. Bulk POC and PON analyses were conducted using a method similar to (Lourey, et al., 2004). Prior to analysis, the filters were decarbonated by wetting the filter with Milli-Q water and fuming with HCl for 48h and then drying at 50$^\circ$C. Filters were analysed for elemental POC and PON using a Carlo Erba NA 2500 elemental analyser.

3.2.4 Sediment Trap Deployments

Two sediment trap mooring arrays were deployed, with one at the RaTS site and the other at a deeper site in Marguerite Bay (67° 55.39' S, 68° 24.15' W) to catch sinking particles in concert with the time series water sampling programme. Each mooring consisted of two time-series sediment traps, which were situated at 200 m and 500 m for the RaTS mooring and 123 m and 745 m for the deep site mooring. Each sediment trap was equipped with 21 rotating for cups, which were programmed to rotate at predefined intervals, with higher resolution cup turnover during periods of potential sea ice melt and the spring bloom with lower resolution cup rotation during the low flux winter periods. Each cup was filled with filtered seawater spiked with an extra 5 \% NaCl to increase its density to above that of the surrounding seawater and also spiked with formaldehyde to have an overall concentration of 2 \% (v/v) to prevent bioturbation. After recovery, the solution in each cup was allowed to settle, the supernatant siphoned off and the swimmers were removed. Each sample cup was then split into 10 fractions using a rotary splitter at the National Oceanography Centre (NOC), Southampton, UK.

The RaTS site mooring was initially deployed on the 25th January 2005 in 502 m water at 67°34.02°S, 68° 14.02°W. The deep site mooring was
deployed on the 24th January 2005 in 841 m water at 67° 55.39'S, 68° 24.15° W. The RaTS mooring and deep mooring were recovered on the 15th February 2006 and the sediment trap bottles were removed and replaced with fresh ones. Both moorings were redeployed on the 17th February 2006. The RaTS mooring was redeployed at a water column depth of 522m at 67° 34.00'S, 68° 14.00°W. The deep mooring was redeployed at a water column depth of 835m at 67° 55.41'S, 68°24.11°W. The moorings were further recovered on 17th December 2006 aboard JCR Cruise 155. The RaTS mooring was successfully recovered, but unfortunately the deep mooring was lost. For full details of mooring deployment and sediment cup rotation, refer to Chapter 2. One sediment trap cup split and the surface sediment from the box core were freeze-dried and ground for analysis of particulate components. For POC and PON analysis, duplicate 10 mg aliquots of dried sediment were weighed into silver capsules and were acidified with 50% HCl to remove carbonates and dried at 60°C overnight. Decarbonated samples were then analysed for elemental POC/PON using a Carlo Erba NA 2500 elemental analyser. Opal analysis was conducted using the method described in Mortlock and Froelich (1989).

3.3 Results

The two growing seasons sampled during this study are summarised in Figure 3.2. Sea ice covered Ryder Bay from mid-June 2004 until it receded in November with the onset of the spring and summer growing season, which lasted for around 4 months until March 2005. During the autumn of 2005, sea ice began to form and was fully covering Ryder Bay again in June 2005. The sea ice persisted until late December 2005 with the onset of the growing season, which lasted 4 months until April 2006. During the 04/05 growing season, the growth of phytoplankton (chlorophyll a) did not start until the sea ice had almost fully receded in November, whereas growth began underneath the sea ice during the 05/06 season about 1 month before the ice disappeared. Each growing season (as well as many previous growing seasons samples in Ryder Bay since 1997 (Clarke, et. al., in-press) shows two peaks in chlorophyll a, with a mid-season decline in chlorophyll occurring
about 2 months into each 4 month growing season. Chlorophyll a concentrations peak at 30-35 mg/m3 during each growing season, which are very high concentrations for the Western Antarctic Peninsula region (Ducklow et. al., in press) and are likely a result of the shallow (500 m) coastal nature of Ryder Bay.

![Sea ice cover and Chl-a](image)

Figure 3.2. (a) Sea ice cover for the region (grey line) taken from the NOAA archive and daily observations of Ryder Bay (blue line), and (b) Chl-a (green line), 15m integrated salinity (black line) and MLD (grey shaded area).

The mixed layer depth (MLD) shows a typical seasonal cycle (Clarke, et. al., in-press), with a deep MLD of up to 65 m during winter, when sea ice is present and the water column is well mixed, to a shallow MLD during summer, as a result of the freshwater "lens" created by sea ice and glacier melt. This shallow MLD in summer protects the water column from wind induced mixing and stabilises the water column, promoting the growth of diatoms which dominate in Ryder Bay (Clarke et al., in-press; Garibotti, et. al., in-press).
There is a much more persistent shallow MLD during the 05/06 season compared to the 04/05 season, indicating that there was higher freshwater input to Ryder Bay during that season. The average salinity value in the upper 15 m of the water column also exhibits lower values during the 05/06 growing season, indicating higher freshwater input contributing to the consistently low MLD.

3.3.1 Sea Ice

Time series measurements of POC, \([\text{CO}_2(\text{aq})]\), PON and NO3 in sea ice are presented in Figure 3.3.

![Figure 3.3. Time series measurements of sea ice (a) particulate organic carbon (b) dissolved carbon dioxide (c) particulate organic nitrogen and (d) nitrate.](image)
Although both temporally and spatially sparse, these measurements indicate high standing stocks of phytoplankton in sea ice with POC concentrations reaching as high as 118 μmol.l⁻¹. For both the 04/05 and 05/06 season, levels of POC and PON were in decline, probably as a result of the rate of degradation exceeding the rate of production as the sea ice ages and starts to decay prior to breaking up and melting. Both [CO₂(aq)] and NO₃ concentrations are highly variable, but do show a general decreasing trend over time indicating utilisation. There is however evidence of nutrient injections during the 05/06 season, but this may just be an artefact of the high spatial and temporal variability of the sea ice matrix (Gleitz et. al., 1995; Kennedy et. al., 2002), and each sample was taken from a slightly different location, varying by up to 10m² at the sites chosen.

3.3.2 Surface Waters

Time series measurements of POC, [CO₂(aq)], PON, NO₃ and NH₄ from the RaTS site at 15 m over the two growing seasons show high seasonality and are presented in Figure 3.4. POC and PON profiles resemble that of chlorophyll, reaching maxima of 72 and 13 μmol.l⁻¹ respectively during the 04/05 season and 61 and 10 μmol.l⁻¹ respectively during the 05/06 season.

During winter, when sea ice was present, concentrations of POC and PON drops to around 1.4 and 0.2 μmol.l⁻¹ respectively. The time series profiles of [CO₂(aq)] and NO₃ indicate high levels of nutrient utilisation in Ryder Bay. [CO₂(aq)] reaches minimum values of 5.2 and 11.1 μmol during the 04/05 and 05/06 seasons respectively, and NO₃ reaches minimum values of 3.3 and 2.3 μmol during the 04/05 and 05/06 seasons respectively. Winter values of [CO₂(aq)] were not measured, but winter values of NO₃ were ~34 μmol as expected from the Upper Circumpolar Deep Water source for the region (Sigman et. al., 1999).
The NH$_4$ profile shows generally low concentrations during the growing season that elevate during events where biomass (POC, PON) declines during mid-season and end of season, reaching values as high as 4 µmol. Higher values and more peaks in NH$_4$ concentration were observed during the 04/05 season.
There are high amplitude variations in the POC, PON, [CO₂(aq)] and NO₃ profiles during the 04/05 season, showing significant declines in particulate organic material and increases in nutrient concentrations. This may be a product of vertical mixing of water masses, bringing nutrient rich water to the surface. The 05/06 season POC and PON profiles are much more stable, with nutrients also showing more of a monotonic decrease as they are utilised, with fewer and low magnitude inputs of nutrients occurring. This is consistent with the data in Figure 3.2 showing more stable water column characteristics during the 05/06 season, compared to 04/05.

The fluxes of organic carbon, organic nitrogen and biogenic opal exported from the surface waters to depth for Ryder Bay and nearby Marguerite Bay (Deep Site) are presented in Figure 3.5.

Although the initial flux from 2004 was not captured, we believe this occurred during December 2004, based on CTD fluorescence measurements that were taken at every sampling time point (Andy Clarke, pers. Comm.; Chapter 5). Biogenic fluxes show typical seasonality for the coastal Antarctic setting, with high fluxes occurring during the ice free spring and summer months, with very low fluxes during the ice covered autumn and winter.

Even though the initial flux from 2004 is unknown, based on the available data it is clear that there was a larger seasonal flux at the RaTS site during the 04/05 season compared to the 05/06 season, with the recorded fluxes at the Deep Marguerite Bay site being fairly similar. A summary of C and fluxes N for each growing season are presented in Table 3.1.

Figure 3.5. Sediment trap fluxes of (a) organic carbon (b) organic nitrogen and (c) biogenic opal for the RaTS 200m trap (closed circles), the RaTS 512m trap (open circles), the Deep Site 123 m trap (closed squares) and the Deep Site 745 m trap (open squares).

At the RaTS site, the data covering the latter part of the 04/05 season exhibit fluxes of 2.73 mmol C.m⁻².d⁻¹ and 0.35 mmol N. m⁻².d⁻¹ at 200 m and 1.42 mmol C.m⁻².d⁻¹ and 0.18 mmol N. m⁻².d⁻¹ at 512 m. The fluxes were much lower during the 05/06 season at 1.99 mmol C. m⁻².d⁻¹ and 0.28 mmol N. m⁻².d⁻¹ at 200 m and 0.45 mmol C. m⁻².d⁻¹ and 0.06 mmol N. m⁻².d⁻¹ at 512 m.

At the Deep Site in Marguerite Bay, the trap fluxes were a little more consistent between seasons, although it is difficult to make conclusions for this trap as the initial flux in 2004 and the latter season flux in 2005 were not collected. During the partial coverage of the latter period of the 04/05 season
there were fluxes of 0.90 mmol C. m$^{-2}$.d$^{-1}$ and 0.12 mmol N. m$^{-2}$.d$^{-1}$ at 123 m and 0.53 mmol C. m$^{-2}$.d$^{-1}$ and 0.07 mmol N. m$^{-2}$.d$^{-1}$ at 745 m. During the early part of the 05/06 season (as the mooring was lost after the redeployment) the fluxes were 1.32 mmol C. m$^{-2}$.d$^{-1}$ and 0.18 mmol N. m$^{-2}$.d$^{-1}$ at 123 m and 1.15 mmol C. m$^{-2}$.d$^{-1}$ and 0.16 mmol N. m$^{-2}$.d$^{-1}$ at 745 m.

Table 3.1. Summary of spring and summer fluxes during the sediment trap mooring deployments in Ryder Bay and Marguerite Bay (2005-2006).

<table>
<thead>
<tr>
<th>Sediment Trap</th>
<th>C Flux (mmol.m$^{-2}$.d$^{-1}$) 04/05</th>
<th>C Flux (mmol.m$^{-2}$.d$^{-1}$) 05/06</th>
<th>N Flux (mmol.m$^{-2}$.d$^{-1}$) 04/05</th>
<th>N Flux (mmol.m$^{-2}$.d$^{-1}$) 05/06</th>
</tr>
</thead>
<tbody>
<tr>
<td>RaTS 200 m</td>
<td>2.73*</td>
<td>1.99</td>
<td>0.35*</td>
<td>0.28</td>
</tr>
<tr>
<td>RaTS 500 m</td>
<td>1.42*</td>
<td>0.45</td>
<td>0.18*</td>
<td>0.06</td>
</tr>
<tr>
<td>Deep Site 123 m</td>
<td>0.90*</td>
<td>1.32*</td>
<td>0.12*</td>
<td>0.18*</td>
</tr>
<tr>
<td>Deep Site 745 m</td>
<td>0.53*</td>
<td>1.15*</td>
<td>0.07*</td>
<td>0.16*</td>
</tr>
</tbody>
</table>

* - Partial values for the season as the initial flux was not captured for 04/05 and the Deep Site mooring was lost after redeployment in Feb 06.

The annually integrated flux calculated from both sites from 26th January 05 until 26th January 06 are presented in Table 3.2. The fluxes were higher at the RaTS site, and at both the RaTS and Deep Site, the levels of flux decreased with depth.
Table 3.2. Annually integrated fluxes calculated for sediment trap mooring deployments in Ryder Bay and Marguerite Bay (2005-2006).

<table>
<thead>
<tr>
<th>Annually Integrated Flux</th>
<th>RaTS Site 200 m</th>
<th>RaTS Site 512 m</th>
<th>Deep Site 123 m</th>
<th>Deep Site 745 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>C Flux (mmol.m⁻²)</td>
<td>212.67</td>
<td>93.43</td>
<td>150.98</td>
<td>79.90</td>
</tr>
<tr>
<td>N Flux (mmol.m⁻²)</td>
<td>27.64</td>
<td>12.19</td>
<td>20.34</td>
<td>10.97</td>
</tr>
</tbody>
</table>

Linear regression plots used to determine POC:PON ratios of material collected in sea ice and surface waters is presented in Figure 3.6. In sea ice, there was high variability in POC:PON ratios and using linear regression the POC:PON ratio was calculated as 10.5, although there may be error in this calculation as the Y-intercept is at -9, if forcing the intercept to 0, the POC:PON ratio calculation is still high at 8.8.

![Linear regression plots](image)

Figure 3.6. Particulate organic carbon plotted against particulate organic nitrogen in (a) sea ice samples and (b) surface water samples.

In surface waters there is considerably less variability in POC:PON ratio, with the higher values occurring during winter. The calculated POC:PON ratio is 5.7. Both of these ratios differ from the classic Redfield Ratio of 6.6, with sea ice exhibiting a much higher value and surface waters a slightly lower value.
The C:N ratio of sinking particulate organic matter in sediment traps is presented in Figure 3.7. Calculated ratios using linear regression are presented for both the shallow and deeper traps at each site. There is considerable variation in the C:N ratios, with the shallower traps showing slightly higher values than the deeper ones, which would be unexpected considering that C:N is expected to increase with depth as a result of faster degradation of organic nitrogen.

These plots, however, may be misleading as there was no material for analysis in the deeper traps during the lower flux periods when the POC:PON ratios in surface waters were higher. The C:N ratio of surface sediments collected at each site in 2005 were 6.3 for the RaTS site and 6.4 for the deep site.

Figure 3.7. % organic carbon plotted against % organic nitrogen in (a) The RaTS 200 m trap (closed circles, black line) and the RaTS 512 m trap (open circles, grey line) and (b) The deep site 123 m trap (closed circles, black line) and the Deep Site 745 m trap (open circles, grey line).

Due to the limited number of opal measurements in the sediment traps, similar plots for the opal:carbon ratios were not made as they would not have been representative.

Time series measurements of the C:N ratio and opal:C ratio in sediment traps are presented in Figure 3.8 and show the seasonal progression of the
elemental composition of organic matter. The C:N ratios are fairly consistent during the growing seasons, but elevate to values as high as 9.1 during the winter when sea ice is present.

Although there is higher variability, there is a similar pattern observed in the opal:C ratios in sinking particles, reaching values as high as 7.6 during winter. There are also increases in the opal:C ratios observed with depth during the spring and summer months, when material was available for analysis, reaching values as high as 7.6 in the RaTS 512 m trap.

Figure 3.8. Time series C:N ratios and opal:C ratios for the RaTS 200 m trap (closed circles) and the RaTS 512 m trap (open circles) and (b) The deep site 123 m trap (closed squares) and the Deep Site 745 m trap (open squares).
3.4 Discussion

This study identifies some of the key controls on near shore Antarctic primary production and particle export, and potential mechanisms that may drive the high inter-annual variability in such ecosystems. Defining the root cause or any long term trend, however, is not in the scope of this paper as the study only lasted for two years.

The data emphasises the strong influence sea ice presence has on the timing of the spring bloom in coastal Antarctic environments, evident in previous studies (Clarke and Leakey, 1996; Ducklow et. al., In-press; Eicken, 1992; Villinski et. al., 2000; Wefer et. al., 1988). The data also provide evidence from discrete sea ice samples of the high standing stocks of organic matter that are released into the water column and may seed the phytoplankton bloom (Garrison et. al., 1983; Wilson et. al., 1986) and/or contribute to the annual export of organic material to depth (Arrigo et. al., 1997).

The two peak characteristics of chlorophyll profiles during both seasons studied are surprisingly similar in their timing and magnitude (Figure 3.4). Interestingly they are each accompanied by elevated concentrations of NH$_4$, which suggests significant phytoplankton decay. It is possible these declines in biomass are a product of intense grazing, followed by secondary production. However, considering the low levels of NH$_4$ and observed NO$_3$ utilisation, secondary production is not thought to have dominated over primary production. This hypothesis is supported by primary production data (Weston, et al., unpublished), showing that primary production remains dominant throughout most of the season, although levels of secondary production are elevated during latter periods of the growing season.

One of the significant findings of this study is the differences in the sea ice regime of the winter preceeding each growing season. During winter 2004 sea ice cover lasted for 5 months (June to November), and during winter
2005 lasted for 6 months, and was considerably thicker than in 2004 (Andy Clarke pers. comm.) There are many possible causes for this significant difference in sea ice coverage of Ryder Bay, but this paper is not intended to investigate such reasons, it is intended to identify the effects such differences in sea ice will have on seasonal primary production. This sea ice effect did not seem to alter the duration of spring phytoplankton growth (~4 months), with both seasons exhibiting similar bloom characteristics and standing stocks of chlorophyll and POC.

These differences in sea ice seemed, however, to significantly affect the stability of the water column and thus the frequency of nutrient inputs to the system. During the 04/05 season, there were several NO₃ injections to the system (Figure 3.4), believed to have occurred due to a less stable water column. During the 05/06 season, the water column was more stable (Figure 2) and tended towards a closed system with fewer, low magnitude nutrient inputs. These contrasting conditions had a major impact on the quantity of material exported to depth at the RaTS site. In the RaTS 200 m trap, 177 mmol C.m⁻² was exported during the partial coverage of spring and summer 04/05 and only 54 mmol C.m⁻² exported during the full coverage of spring and summer 05/06. In the RaTS 512 m trap 92 mmol C.m⁻² was exported during 04/05 and only 12 mmol C.m⁻² was exported during 05/06.

Annually integrated fluxes were determined from January 05 to January 06 (Table 3.2) and were similar to levels quoted by Ducklow, et. al., (in-press), for the open continental shelf on the Western Antarctic Peninsula. Although this approach splits the flux peak between two succeeding years, this was the only way to estimate annual flux during this study. In-situ determination of primary production measured from December 05 to March 06 at the RaTS site (Weston et. al., unpublished) compared to the calculated sedimentation for that period gives an export efficiency of about 10 % at 200 m. This is likely an overestimate, however, as the in-situ primary production measurements were only carried out from late December, whereas primary
production began in early December, so the real export efficiency is more likely to be considerably <10 %, consistent with the estimate of Ducklow et al., (in-press) of 3-6 %. This is very low compared to the BATS site or the North Atlantic. In addition, there are no primary production data for sea ice communities, which were assumed to be negligible for the purpose of export efficiency estimation. The low export efficiency in continental shelf ecosystems suggests that they are composed of planktonic systems with relatively high regeneration efficiency and low f-ratios, a characteristic observed in this study during the secondary peak of production after the mid-season decline during the 05/06 season where such data were available.

Without the relevant primary production data to compare export efficiency in 05/06 to the 04/05 season, it is unclear whether there was increased export efficiency during the 04/05 growing season where the surface water was not as stable, and the absolute quantity of available nutrients was higher. This type of data would be useful to identify whether surface water stability is a potential control on export efficiency in this environment.

In contrast to Ducklow et al., (in-press) the exported material in this study did not show highly elevated C:N:P ratios, with such elevated values attributed to efficient remineralisation of N and P (note there were no P measurements conducted during this study). Ducklow et. al., (in-press) measured C:N ratios of 7.81, whereas summer flux values in Ryder Bay tended to be closer to the Redfield ratio of 6.6, as was the surface sediment sample C:N ratio (6.3).

There was an increase in C:N ratio in this study, when comparing the surface water POC:PON ratio of 5.7 to the surface sediment C:N ratio of 6.3. This suggests that the efficiency organic matter recycling is perhaps not as great in Ryder Bay as it is further out on the continental shelf of the Western Antarctic Peninsula. In this study, we also observe elevated C:N ratios of sinking particles during winter (Figure 3.8), a trait observed elsewhere in the continental shelf Southern Ocean (Collier et. al., 2000) that is consistent with
the longer retention time of organic material in surface waters during the ice covered winter, and more efficient degradation of such particles (Lourey et. al., 2003).

The high variability of opal:C in sediment traps may also be influenced by diatom assemblages as diatoms dominate production in Ryder Bay and the neighbouring Marguerite Bay (Clarke, et. al., in-press; Garibotti et. al., 2003; Garibotti et. al., 2005). Without surface water biogenic silica data it is difficult to determine the exact cause of the increase in opal:carbon in sediment traps, but similarly to carbon, it may be due to the degradation of the diatomaceous organic matter. The smaller, pennate or needle like, diatom species that are abundant in the surface waters of this region are often prone to remineralisation before they are exported to depth, and tend to have a lower opal:carbon ration than the larger diatoms that have a more robust opal frustule and export more opal per unit carbon than the smaller diatoms (Armand et al., 2008). Therefore the increase in opal:carbon ratio with depth in this region may be a result of the larger diatoms being more efficiently exported to depth than smaller diatoms. During winter, the higher opal:carbon ratio is likely caused by more efficient remineralisation of suspended organic material (similar to C:N ratios). Higher retention time of diatoms during winter would lead to a more rapid recycling of carbon compared to opal, in a senescent population of diatoms possibly leaving many the diatom frustules empty (Queguiner et al., 1997). This would explain the vast increases in the opal:carbon ratio of organic material caught in sediment traps over winter in this study. Again, without surface water biogenic silica data to compare with carbon, it is difficult to determine the exact nature of the opal:carbon enrichment observed in these traps.
3.5 Conclusions
The following conclusions can be drawn from this study:

- Sea ice not only exerts control on the timing of the spring bloom, but in conjunction with glacier melt, the freshwater input appears to significantly affect the stability of the water column and the characteristics of the growing season (i.e. total production and export).
- The two peak characteristic of each growing season may be explained by grazing pressures during the mid-season decline in biomass and elevation of NH$_4$. This leads to elevated levels of regenerated production during the latter period of the growing season.
- Estimated export efficiency at this site is very low, consistent with other studies in this region.
- Seasonal progression of C:N ratios and opal:C ratios in sinking particles show an increase with depth and elevated levels during winter. This is a result of increased remineralisation of sinking diatoms with depth and increased retention time of particles in the surface water during winter leading to more efficient recycling of N relative to C and C relative to opal.

3.6 References

Garibotti, I. A., Vernet, M., Ferrario, M. E., Smith, R. C., Ross, R. S. and Quetin, L. B. (2003) Phytoplankton spatial distribution patterns along the
western Antarctic Peninsula (Southern Ocean). Marine Ecology Progress Series, 261, 21-39.
Mehrbach, C., et al. (1973), Measurement of the apparent dissociation constant of carbonic acid in seawater at atmospheric pressure, Limnology and Oceanography, 18, 897-907.

4 Factors Influencing $\delta^{13}C$ of suspended and sinking Organic Matter in the Coastal Antarctic Sea Ice Environment

A version of this chapter has been submitted to Deep Sea Research Part I and is currently under review.

Citation: Carson, DS, Annett, AL, Ganeshram, RS, Weston, K, Crosta, X, Tait, A, Dougans, J, Fallick AE and Clarke A (in review) Factors influencing $\delta^{13}C$ of suspended and sinking organic matter in the coastal Antarctic sea ice environment.

Abstract

This study presents the first high-resolution time series analysis of the $\delta^{13}C$ of dissolved inorganic carbon, suspended and sinking particulate organic carbon and diatom assemblages in the near shore Antarctic sea ice environment, Ryder Bay, Antarctica. The study spans a period of two growing seasons from 2004 to 2006. Our results show on average higher $\delta^{13}C$ in sea ice samples compared to surface waters, possibly brought on by post-production decomposition processes. In addition a very large $\sim\text{10}\%$ negative shift in surface water $\delta^{13}C_{\text{POC}}$ is observed during the growing seasons, which was not accompanied by a similar change in $[\text{CO}_2(\text{aq})]$ or $\delta^{13}C$-CO_2. Analysis of diatom assemblages shows that the negative shifts in $\delta^{13}C_{\text{POC}}$ are accompanied by distinct changes in diatom assemblages with a higher surface area to volume ratio (SA:V). Thus the higher fractionation factor associated with carbon fixation (ϵ_p) with increasing SA:V appears to be primary cause for the significant negative excursions in $\delta^{13}C_{\text{POC}}$. Other processes involving internal cell biochemistry may also have contributed to changes in ϵ_p, but these processes are not well constrained for most diatom species and cannot be fully assessed. $\delta^{13}C_{\text{org}}$ of particles collected in sediment traps in Ryder Bay show that the negative $\delta^{13}C$ shifts are transferred to the deep waters by sinking particles. These findings document the potential importance of diatom assemblage changes and sea ice-derived material in influencing sedimentary $\delta^{13}C_{\text{POC}}$ in Antarctic sea ice environments.
and highlights potential weaknesses in the utility of using diatom-based δ^{13}C in reconstructing paleo-pCO$_2$.
4.1 Introduction

Paleoceanographic studies of the Southern Ocean have observed that the glacial $\delta^{13}C$ of diatom bound organic matter were lower than during interglacials and the Holocene (Crosta and Shemesh, 2002; Rosenthal, et al., 2000; Schneider-Mor, et al., 2005; Singer and Shemesh, 1995). The reasons for these isotopic shifts remain unclear but suggested causes include higher concentrations of dissolved molecular carbon dioxide ([CO$_2$]$_{aq}$), lower growth rates and changes in diatom abundance or size effects. Documenting processes that decouple carbon isotopes from the classic $\delta^{13}C$ versus ρCO$_2$ relationship used for paleo-CO$_2$ reconstructions is important in understanding any influence the Southern Ocean may have had during glacial-interglacial climate transitions.

Indeed, recent lab and field studies highlight that the isotopic composition of suspended particulate organic carbon ($\delta^{13}C_{POC}$) in phytoplankton can be affected by cell size or shape (Burkhardt, et al., 1999; Popp, et al., 1998; Trull and Armand, 2001), non diffusive carbon uptake through carbon concentration mechanisms (Cassar, et al., 2004; Rau, 2001) and other environmental and physiological factors such as CO$_2$ concentration, light levels and growth rates (Cassar, et al., 2006). These processes affect carbon isotopic fractionation (ε_p) and loosen the relationship between $\delta^{13}C_{org}$ and [CO$_2$]$_{aq}$ and may account for the observed discrepancy between marine $\delta^{13}C_{org}$ based ρCO$_2$ reconstructed from low-latitude records and Vostok CO$_2$ (Kienast, et al., 2001).

In the Southern Ocean, [CO$_2$]$_{aq}$ is generally very high and growth rates are relatively low, so it is likely that Antarctic phytoplankton acquire their inorganic carbon by diffusion, negating the need for active carbon uptake. A recent paleo-study in Adelie Land, East Antarctica (Crosta, et al., 2005), also highlighted how past climate-driven changes in diatom assemblages affect the $\delta^{13}C_{org}$ signature of Holocene sediments. Given that the size and shape
of phytoplankton and the growth conditions are seemingly a very important factor in shaping the $\delta^{13}C_{\text{org}}$ of Southern Ocean sediments, a detailed time-series of Antarctic phytoplankton species or groups and concurrent information on their effects on carbon isotopes fractionation is essential in order to make $\delta^{13}C_{\text{org}}$ a reliable paleo-CO$_2$ proxy.

This study provides one of the first high resolution time-series measurements of geochemical parameters coupled with diatom assemblages in coastal Antarctic surface waters, covering two growing seasons and one full winter of sea ice cover. We present results from Ryder Bay, Antarctica; a coastal, seasonally sea ice covered Southern Ocean environment. Diatoms dominate the summer assemblages in this region, with biomass of other phytoplankton such as prymnesiophytes and cryptophytes more than an order of magnitude lower (Garibotti, et al., 2005). We compare levels of productivity biomass (chlorophyll and POC) in sea ice and surface waters with [CO$_2$(aq)], the stable carbon isotopic composition of dissolved inorganic carbon ($\delta^{13}C$-CO$_2$) of surface water and sea ice, diatom assemblages, the stable carbon isotope composition of suspended POC ($\delta^{13}C_{\text{POC}}$) and the stable carbon isotopic composition of sinking particulate organic carbon ($\delta^{13}C_{\text{org}}$) in an effort to understand the major factors that may control $\delta^{13}C_{\text{POC}}$ signatures in this environment on a seasonal timescale.

4.2 Materials and Methods

4.2.1 Study Area

This study was conducted between 2004 and 2006 in Ryder Bay and Marguerite Bay located south of Alexander Island and west of the mainland on the Western Antarctic Peninsula (see Figure 4.1). Ryder Bay is a coastal embayment adjoining Marguerite Bay and the study site is situated in open water at a depth of 520 m.

Sea ice brine was sampled when sea ice was present at three locations, with a total of 15 sea ice samples were taken during this study. Sea ice had
receded from Ryder Bay upon arrival at in December 2004, however there was still land fast ice located around Lagoon Island (see Figure 4.1 for Lagoon Island sampling site), with 5 samples taken at the Lagoon Island site during December 2004. A further 10 samples were taken during the 05/06 season. During winter 2005, two sea ice samples were taken in September and October at the RaTS site and during early spring 2005 (Nov-Dec), a further eight sea ice samples were taken at a site north of Rothera Point (See Figure 1).

Figure 4.1. Map of Ryder Bay showing the RaTS site (white circle) and the two other sites used for sea ice sampling (black circles). Map courtesy of the British Antarctic Survey.

A high resolution time series of surface water samples were taken in Ryder Bay, at the Rothera Time Series study site at 67°34.02'S, 68°14.02'W (Clarke, et al., 2007) during austral spring and summer 2004/2005 and austral spring and summer 2005/2006 (Figure 4.1). Low resolution time
series sampling was conducted during winter 2005. Sea ice brine and surface water samples at 15 m depth (the average depth of the chlorophyll maximum in Ryder Bay (Clarke, et al., 2007) were taken measuring: temperature, salinity, chlorophyll-a, [CO$_2$(aq)], δ^{13}C-CO$_2$, suspended POC, δ^{13}C$_{POC}$ and diatom assemblages. Routine CTD measurements were also taken at every surface water sampling event to monitor changes in the mixed layer depth (MLD). Sinking particulate δ^{13}C and associated diatom assemblages were collected in time-series sediment traps located at two depths at both the RaTS site and a deeper site in Marguerite Bay during the study (see section 4.8). Finally, surface sediments and shallow sediment box cores were taken at the RaTS site in January 2005 and December 2006 and the deep site in December 2006 (see section 3.2.9), and were analysed for both δ^{13}C and diatom assemblages.

4.2.2 Sea ice Sampling

Sea ice brine was sampled using a sack hole drilling method, with samples for δ^{13}C-CO$_2$ and [CO$_2$(aq)] taken first to minimise atmospheric contamination. Samples for δ^{13}C-CO$_2$ were taken using a 50 ml syringe and gently injected into a 12 ml glass exetainer vial preloaded with 50 µL of 35 g.L$^{-1}$ copper sulphate to suppress bacterial activity (Winslow, et al., 2001). Alkalinity samples for [CO$_2$(aq)] determination were taken by immersing a 250 ml BOD bottle in the sack hole and sealing the bottle with a plastic stopper ensuring no air bubbles were present. Salinity and temperature were measured using a YSI-500 multi-parameter meter. For particulate carbon measurements, sea ice brine was transferred to acid-clean HDPE carboys and taken back to the laboratory for filtration. Sea ice brine samples were filtered through muffle-furnaced (400°C for 4 h) 47 mm GF/F filters, within 2 h of collection. The filters were then dried at 50°C overnight, and stored frozen until analysis. For diatom census counts, sea ice brine was filtered through 37 mm polycarbonate filter (0.45 µm). Filters were dried overnight at 50°C and stored in clean plastic Petri-slides until analysis.
4.2.3 Surface Water Sampling

In surface waters, CTD casts were taken to 500 m depth using a Sea Bird Electronics 19 Plus SEACAT CTD module. For depth profile measurements of conductivity, temperature and depth a Wet Labs Wetstar module was used. For measurement of temperature at 15 m, a Sensoren Instrumente Systeme GmbH reversible thermometer was lowered to 15 m, allowed to equilibrate for 2 min and a brass messenger was sent down to initiate temperature recording. Surface water samples were taken using a 5 L Niskin bottle for chlorophyll a, δ^{13}C-CO$_2$ and [CO$_2$(aq)] measurements. For δ^{13}C-CO$_2$, water was drawn from the Niskin bottle using a 50 ml syringe and gently injected into a 12 ml glass exetainer vial preloaded with 50 μL of 35 g.L$^{-1}$ copper sulphate to suppress bacterial activity (Winslow, et al., 2001).

Alkalinity samples for [CO$_2$(aq)] determination were taken from the Niskin straight into a 250 ml BOD bottle and sealing the bottle with a plastic stopper ensuring that no air bubbles were present. Particulate samples were retrieved using a 12 V dolphin pump and 15 m of silicone tubing weighted down at the end. Water from 15 m was pumped into 10 L HDPE carbuoys for transfer back to the laboratory. Surface water samples were filtered through muffle-furnaced (400°C for 4 h) 47 mm GF/F filters. The filters were then dried at 50°C overnight and stored frozen until analysis. For diatom census counts, water was filtered through 37 mm polycarbonate filter (0.45 μm). Filters were dried overnight at 50°C and stored in clean plastic Petri-slides until analysis.

4.2.4 [CO$_2$(aq)] Analysis

Determination of [CO$_2$(aq)] was conducted utilising measurements of salinity, temperature, pH and alkalinity. Salinity measurements were taken from the CTD profiles, temperatures were measured using a Sensoren Instrumente Systeme GmbH reversible thermometer. Alkalinity was determined by titration with 0.05 M HCl and the Gran plot method (Almgren, et al., 1983). [CO$_2$(aq)] was calculated using constants from (Dickson and Millero, 1987),
(Hannson, 1973) and (Mehrbach, et al., 1973) with the CO2SYS programme (Lewis and Wallace, 1998).

4.2.5 δ^{13}C-CO$_2$ Determination

δ^{13}C-DIC analysis was conducted by GC-IRMS using a method similar to Assayag, et al., (2006). The 12 ml glass exetainer vial containing 12 ml of water sample spiked with CuSO$_4$ to suppress biological activity was split into two samples by inserting a closed syringe through the septum of the vial and injecting 6 ml of He into the sample vial using a separate needle and syringe. The 6 ml of sample extracted was then injected into a clean 12 ml exetainer vial that had been placed under vacuum for 30 min to remove all gases that were inside. Each sample was then injected with 0.6 ml of concentrated H$_3$PO$_4$ in order to convert the DIC into aqueous and gaseous CO$_2$ for analysis. Three sets of isotopic standards were prepared (MAB2, CaCO$_3$ and NaHCO$_3$) using a range of final DIC concentrations. The standards were weighed into 12 ml glass exetainer vials and then placed on a vacuum to remove all gases. 6 ml of 10 % H$_3$PO$_4$ was then injected into each standard vial to reproduce the same conditions in the sample vials. δ^{13}C-DIC was analysed using a custom built GC-IRMS system and raw δ^{13}C values were corrected using the isotopic standards, which also included any fractionation of the standards in the correction. Precision of δ^{13}C-DIC values was generally better than 0.2 %. The isotopic composition of CO$_2$(aq) (δ^{13}C-CO$_2$) was determined from δ^{13}C-DIC and absolute temperature (T_k in Kelvin) using the following equation from (Rau, et al., 1996):

$$\delta^{13}C-CO_2 = \delta^{13}C-DIC + 23.644 - 9701.5/T_k$$

4.2.6 POC, PON and δ^{13}C$_{POC}$ Analysis

Bulk POC, PON and δ^{13}C$_{org}$ analyses were conducted using a method similar to (Lourey, et al., 2004). Prior to analysis, the filters were decarbonated by wetting the filter with Milli-Q water and fuming with HCl for 48h and then drying at 50°C. Filters were analysed for elemental POC and δ^{13}C$_{POC}$ using a Carlo Erba NA 2500 elemental analyser in-line with a VG PRISM III isotope
ratio mass spectrometer. $\delta^{13}C_{org}$ results are presented in the delta notation versus PDB.

4.2.7 Diatom Census Counts

To count diatoms, a sub sample of the polycarbonate filter was coated in gold and analysed using secondary electron imaging on a Philips XL 30 CP scanning electron microscope. Thirty fields of view were counted at each magnification, 500X for large cells, and 1000X for small cells. Calculations of cell concentrations were adapted from the Ütermohl method (Ütermohl, 1958) using the volume of seawater filtered, and assuming even distribution of cells on the filter. Cell volumes and surface area were estimated from average measurements of 30 cells of each species where possible. Total volume contribution of each species was calculated using average cell volume. SA:V for collective diatom assemblages were calculated using a weighted average of the SA:V for each species and the proportion of the diatom assemblage the species made up at each time point.

4.2.8 Sediment Trap Deployments

Two sediment trap mooring arrays were deployed, with one at the RaTS site and the other at a deeper site in Marguerite Bay (67° 55.39°S, 68° 24.15° W) to catch sinking particles in concert with the time series water sampling programme. Each mooring consisted of two time-series sediment traps, which were situated at 200 m and 400 m for the RaTS mooring and 123 m and 745 m for the deep site mooring. Each sediment trap was equipped with 21 rotating for cups, which were programmed to rotate at predefined intervals. The strategy employed for cup rotation utilised higher resolution cup turnover during periods of potential sea ice melt and the spring bloom with lower resolution cup rotation during the low flux winter periods (see chapter 2 for exact dates of cup rotation). Each cup was filled with filtered seawater spiked with an extra 5 % NaCl to increase its density to above that of the surrounding seawater and finally spiked with formaldehyde to have an overall concentration of 2 % (v/v) to prevent bioturbation.
After recovery, the solution in each cup was allowed to settle, the supernatant siphoned off and the swimmers were removed. Each sample cup was then split into 10 fractions using a rotary splitter at the National Oceanography Centre (NOC), Southampton, UK. The RaTS site mooring was initially deployed on the 25th January 2005 in 502 m water at 67°34.02'S, 68°14.02'W. The deep site mooring was deployed on the 24th January 2005 in 841 m water at 67°55.39'S, 68°24.15'W. The RaTS mooring and deep mooring were recovered on the 15th February 2006 and the sediment trap bottles were removed and replaced with fresh ones. Both moorings were redeployed on the 17th February 2006. The RaTS mooring was redeployed at a water column depth of 522m at 67°34.00'S, 68°14.00'W. The deep mooring was redeployed at a water column depth of 835m at 67°55.41'S, 68°24.11'W. For a table of sediment trap bottle rotations during the second deployment, refer to Table 6. The moorings were further recovered on 17th December 2006 aboard JCR Cruise 155. The RaTS mooring was successfully recovered, but unfortunately the deep mooring was lost.

4.2.9 Sediment Organic Carbon and δ^{13}C$_{org}$ Analysis

One sediment trap cup split and sub-section of the box core were freeze-dried and ground for analysis of particulate components. For POC, PON and δ^{13}C$_{org}$ analysis, duplicate 10 mg aliquots of dried sediment were weighed into silver capsules and were acidified with 50 % HCl to remove carbonates and dried at 60°C overnight. Decarbonated samples were then analysed for elemental POC, PON and δ^{13}C$_{org}$ using a Carlo Erba NA 2500 elemental analyser in-line with a VG PRISM III isotope ratio mass spectrometer. δ^{13}C$_{org}$ results are presented in the delta notation versus PDB.

4.2.10 Sedimentary Diatom Census Counts

Diatoms were taxonomically identified in all sediment trap cups where enough material was available. Diatom analysis, sediment treatment and slide preparation followed a technique adapted from the one described by (Rathburn, et al., 1997). Diatom counts followed (Schrader and Gersonde, 1978) and (Laws, 1983). Roughly 350 diatom valves were counted in each
sample at a magnification of 1000 on a phase contrast Olympus BX51. Diatoms were identified to species or species group level, and the relative abundance of each was calculated as the fraction of diatom species against total diatom abundance in each sample. More detailed information about slide preparation, diatom identification and statistical treatment are given by (Crosta, et al., 2004)

4.3 Results

4.3.1 Seasonal Sea Ice Cover and Productivity

Sea ice cover, mixed layer depth (MLD) and chlorophyll a (chl-a) data from growing seasons (2004/2005 and 2005/2006) sampled during this study are presented in Figure 4.2.

Figure 4.2. Time-series profiles of (a) Sea ice cover with the grey line representing regional sea ice cover from NOAA satellite data and the blue line representing daily observations of Ryder Bay (b) Mixed layer depth and (c) chlorophyll-a concentrations spanning the growing seasons sampled during this study.
Total sea ice cover was variable between the two seasons at the RaTS site, occurring from 16th June to 1st November during winter 2004 and 10th June to 25th December during winter 2005. The mixed layer depth (MLD) data in Figure 4.2 show typical seasonality for Ryder Bay, with a deep winter mixed layer and a shallow surface layer in summer, influenced heavily by freshwater melt from sea ice and glaciers (Clarke, et al., 2007). The freshwater melt layer stabilises the surface waters and prevents wind-induced upwelling, providing a stable environment for diatom blooms to grow and promoting nutrient drawdown (Clarke, et al., 2007).

The presence and retreat of ice over this period and the physical aspects of the water column resulted in growing seasons that lasted ~4 months during both growing seasons. However, the growing season of 05/06 began and finished ~1 month later due to sea ice cover lasting one extra month during winter of 2005.

4.3.2 $[\text{CO}_2(\text{aq})]$ and $\delta^{13}\text{C}-\text{CO}_2$

The concentration of $[\text{CO}_2(\text{aq})]$ and $\delta^{13}\text{C}-\text{CO}_2$ in surface waters are presented in Figure 4.3 and show a general trend of $[\text{CO}_2(\text{aq})]$ decrease and ^{13}C enrichment during spring and summer, and appears to be largely controlled by biological uptake of carbon. $[\text{CO}_2(\text{aq})]$ concentrations decreased from values as high as 54.2 μmol to 5.1 μmol with $\delta^{13}\text{C}-\text{CO}_2$ values rising from -10.9 to -9.0 $\%$ during the 04/05 season. $[\text{CO}_2(\text{aq})]$ concentrations decreased from a high winter value of 33.7 μmol to 13.6 μmol with $\delta^{13}\text{C}-\text{CO}_2$ values rising from -10.9 to -9.2 $\%$ during the 05/06 season. $[\text{CO}_2(\text{aq})]$ and $\delta^{13}\text{C}-\text{CO}_2$ can be affected by air-sea carbon fluxes, upwelling of nutrient rich water, lateral input of surface water and organic carbon remineralisation.

The $[\text{CO}_2(\text{aq})]$ profile in Figure 4.3 shows that inputs of inorganic carbon occurred during both field season, albeit to a greater extent during the 04/05 season. These inputs of CO$_2$(aq) to the system resulted in small negative shifts in $\delta^{13}\text{C}-\text{CO}_2$ occurring mid-season, with values falling as low as -10.5 $\%$ during December 2004 and February 2006. The $\delta^{13}\text{C}-\text{CO}_2$ in sea ice is on
average higher than surface waters and with higher temporal variability, with values ranging from -10.7 to -4.8 ‰. CO$_2$(aq) concentrations in sea ice are very low, with a maximum of 10 µmol.kg$^{-1}$, and the subsequent higher δ13C-CO$_2$ in sea ice samples is consistent with DIC utilisation within a closed or semi-closed system. The observed high temporal and spatial variability within samples is common in sea ice, due to varying exchange with the atmosphere and underlying water (Gleitz, et al., 1995).

4.3.3 Suspended Particulate Organic Carbon (POC)

The surface water δ13C$_{POC}$ also presented in Figure 4.3 shows high interannual variability between the two growing seasons. During the 04/05 season, δ13C$_{POC}$ increases during the growing season from -21.2 to -17.9 ‰, with a small ~1‰ decrease in δ13C$_{POC}$ during late December 2004 when chl-a declined and [CO$_2$(aq)] increased due to injection of nutrients into the system. In February 2005, when chl-a began to decline at the end of the growing season, a large ~9 ‰ negative shift is observed in δ13C$_{POC}$ occurring in concert with an increase in CO$_2$(aq) of ~ 8 µmol and a decrease in δ13C-CO$_2$ of ~ 1.2 ‰. At the end of the growing season, δ13C$_{POC}$ returned to near winter values of ~ -25 ‰.

The 05/06 season δ13C$_{POC}$ profile spans winter 2005 (from September 2005) until the end of the growing season (March 2006). δ13C$_{POC}$ increases from a winter low of ~ -25 ‰ in September 2005 to a season high of -18.8 ‰ in December 2005 just prior to sea ice retreat. Once the open water spring phytoplankton bloom was underway, δ13C$_{POC}$ were around -21 ‰ until there was an injection of ~ 7 µmol [CO$_2$(aq)] into the system during late January resulting in a -0.7 ‰ decrease in δ13C-CO$_2$ and the δ13C$_{POC}$ dropping to 22 ‰. At the end of January and early February there was then a large negative shift in δ13C$_{POC}$ reaching values as low as -28.7 ‰ (Figure 4.3). This negative shift in δ13C$_{POC}$ occurred during the entirety of the second chl-a peak and once chlorophyll had declined at the end of the growing season, the δ13C$_{POC}$ returned to a typical winter value of ~ -25 ‰ towards the end of March 2006. The large isotopic transition period observed during the 05/06
season contributed significantly to the POC concentration weighted $\delta^{13}C_{POC}$ average of the season, with the 04/05 season average being -20.0 % and the 05/06 season average being -24.51 %.

Figure 4.3. Sea ice (open symbols) and surface water (closed symbols) time-series profiles of (a) Chlorophyll-a (b) $[CO_2(\text{aq})]$ (c) $\delta^{13}C$-CO$_2$ (d) POC and (e) $\delta^{13}C_{POC}$. Black bars indicate sea ice coverage.
The C:N ratios of particulates averaging at 5.7 indicates that suspended material is marine in origin, with few individual spikes observed at a C:N ratio of up to ~8 (see Figure 4.4). Therefore, the large decrease in $\delta^{13}C_{\text{POC}}$ (~10‰) cannot be due to significant input of terrestrial organic carbon to the system. Although highly variable, the C:N ratio of particulate matter is generally much higher in sea ice (Figure 4.4) and averages 8.0, compared to the average of 5.8 in surface waters.

![Figure 4.4. Sea Ice (open symbols) and surface waters (green closed symbols) POC:PON ratios over the study period. Black bars indicate sea ice coverage.](image)

4.3.4 Surface water $\delta^{13}C_{\text{POC}}$ and $[\text{CO}_2(\text{aq})]$

Concurrent $\delta^{13}C_{\text{POC}}$ and $[\text{CO}_2(\text{aq})]$ measurements are presented in Figure 4.5, to investigate the influence of changing $[\text{CO}_2(\text{aq})]$ on the isotopic composition of organic carbon. Good correlations have been observed between $\delta^{13}C_{\text{POC}}$ and $[\text{CO}_2(\text{aq})]$ and $\delta^{13}C_{\text{POC}}$ and $1/[\text{CO}_2(\text{aq})]$ in open-ocean studies in the Southern Ocean (Lourey, et al., 2004), but we see no clear correlation in either of these two comparisons for sea ice or surface waters. Although some of the more subtle changes in $\delta^{13}C_{\text{POC}}$ are consistent with minor changes to $[\text{CO}_2(\text{aq})]$ and $\delta^{13}C-\text{CO}_2$ during nutrient utilisation and nutrient injections as described in section 4.3.3. $[\text{CO}_2(\text{aq})]$ and $\delta^{13}C-\text{CO}_2$ do not account for the large change in $\delta^{13}C_{\text{POC}}$ during the 04/05 season and the more marked $\delta^{13}C_{\text{POC}}$ decrease during the 05/06 season. This suggests that factors other
than \([\text{CO}_2(\text{aq})]\) must be influencing the \(\delta^{13}\text{C}_{\text{POC}}\) in sea ice and surface waters in Ryder Bay.

![Graph](image)

Figure 4.5. Comparative plots of (a) \([\text{CO}_2(\text{aq})]\) versus \(\delta^{13}\text{C}_{\text{POC}}\) in sea ice (closed symbols) and surface waters (open symbols) and (b) \(1/[\text{CO}_2(\text{aq})]\) versus \(\delta^{13}\text{C}_{\text{POC}}\) in sea ice (closed symbols) and surface waters (open symbols).

Figure 4.6 presents diatom assemblages in sea ice and Figure 4.7 presents time series measurements of chlorophyll-\(a\), total diatom abundances and the % biomass of the major diatom groups that dominated the surface water diatom blooms and their average surface area to volume ratio. The diatom groups used for sea ice and surface water diatom assemblages are presented in Table 4.1.
Figure 4.6. Dominant diatom groups from sea ice samples that were analysed by SEM presented as the % of total biomass. Each colour represents the same sea ice sample for comparison.

Size fractionated chlorophyll (not presented) shows the >20 μM fraction dominates throughout the summer growing season, indicating that diatoms dominate over the smaller nanoplankton and picoplankton (Clarke, et al., 2007).

Diatom assemblages show distinct changes throughout the growing seasons, occurring in concert with the changes observed in δ^{13}C_{POC}. In sea ice samples the diatom biomass was dominated by the Banquesia group, the Chaetoceros group, Cylindrotheca closterium, the Fragilariopsis curta group, the Navicula group, Minidiscus chilensis and small, medium and large centric groups, presented in Figure 4.6.
Figure 4.7. (a-e) Diatom, Dinoflagellate and Chrysophyte abundances and species data from surface water samples at the RaTS site including the average SA:V (given in parentheses) of the species group and (f) δ^{13}CPOC of organic matter at the RaTS site during the study period. Black bars represent sea ice cover.

Surface water productivity can be categorised into different phases of the growing season, these phases consist of: growth under the ice, early bloom, isotopic transition periods and the late bloom. Diatom biomass under the ice
is dominated by the *F. curta* group, *M. chilensis* and the medium sized centric group. Early bloom conditions are dominated by the *Chaetoceros* group, *M. chilensis*, the *F. curta* group and medium sized centrics. The isotopic transition period observed in January 2005 covering one sampling event occurs with emergence of the chain-forming diatom *Dactyliosolen antarcticus*, composing ~30% of the biomass. The more pronounced isotopic transition period in January and February 2006 is mirrored by near total dominance of the pennate diatom, *Proboscia inermis*; a species only really seen at the end of the first season. *Proboscia inermis* was present throughout the 2005/2006 season after the retreat of the sea ice. The late bloom phases consist of diatom assemblages dominated by *Odontella weissflogii*, *D. antarctica*, *P. inermis*, and medium sized centrics during the 2004/2005 season and dominance of *P. inermis* during the last diatom counted sample from the 2005/2006 season.

Table 4.1. List of species associated with diatom groups used in this study.

<table>
<thead>
<tr>
<th>Group</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banquesia group</td>
<td>Banquesia belgicae, Berkleya rutilans, Haslea trompii, Amphiprora kufferathii, Membranesis challengeri.</td>
</tr>
<tr>
<td>Chaetoceros (sub-group Hyalochaeta)</td>
<td>C. neglectus, C. simplex, C. socialis</td>
</tr>
<tr>
<td>Fragilariopsis curta group</td>
<td>F. curta, F. cylindrus, F. vanheurkii.</td>
</tr>
<tr>
<td>Navicula group</td>
<td>N. directa, N. gelida, N. glaciei</td>
</tr>
<tr>
<td>Small Centrics (<20 μm)</td>
<td>Thalassiosira ambigua, Thalassiosira dichotomica, Thalassiosira frenguell, Thalassiosira gracilis, Thalassiosira gravida.</td>
</tr>
<tr>
<td>Medium Centrics (20 – 50 μm)</td>
<td>Actinocyclus actinochilus, Porosira glacialis, Porosira pseudodENTICULATA, Thalassiosira Antarctica.</td>
</tr>
<tr>
<td>Large Centrics (>50 μm)</td>
<td>Asteromphalus hookeri, Stellarima microtrias, Thalassiosira antarctica, Thalassiosira lentiginosa.</td>
</tr>
</tbody>
</table>
4.3.5 Sinking Particulate Organic Carbon and $\delta^{13}C_{org}$

Figure 4.8 presents $\delta^{13}C_{org}$ data from the time-series sediment traps deployed at the RaTS site in Ryder Bay and nearby at the deeper site in Marguerite Bay and Table 4.2 presents a summary of the trap flux data. Carbon fluxes were highly variable between traps and between seasons, during the 04/05 season, flux rates during the growing seasons were 2731 μmol C.m$^{-2}.d^{-1}$ in the 200 m RaTS trap, 1418 μmol C.m$^{-2}.d^{-1}$ in the RaTS 512 m trap, 899 μmol C.m$^{-2}.d^{-1}$ in the deep site 123 m trap and 532 μmol C.m$^{-2}.d^{-1}$ in the deep site 745 m trap. During the 05/06 season, flux rates during the growing season were 1993 μmol C.m$^{-2}.d^{-1}$ in the RaTS 200 m trap, 453 μmol C.m$^{-2}.d^{-1}$ in the RaTS 512 m trap, 1316 μmol C.m$^{-2}.d^{-1}$ in the deep site 123 m trap and 1155 μmol C.m$^{-2}.d^{-1}$ in the deep site 745 m trap.

Figure 4.8. Carbon fluxes in sediment traps at both the RaTS and deep site and $\delta^{13}C_{org}$ of organic matter in sediment traps.

Flux weighted average $\delta^{13}C_{org}$ values were fairly consistent between traps on the same mooring (Table 4.2). During the 04/05 growing season, flux weighted $\delta^{13}C_{org}$ values were -20.32 $\%$ in the RaTS 200 m trap, -20.35 $\%$ in
the RaTS 512 m trap, -19.06 % in the deep site 123 m trap and -19.12 % in the deep site 745 m trap. During the 05/06 season, flux weighted δ^{13}C$_{org}$ values were -23.32 % in the RaTS 200 m trap, -24.72 % in the RaTS 512 m trap, -20.46 % in the deep site 123 m trap and -19.12 % in the deep site 745 m trap. In all cases the flux weighted average δ^{13}C$_{org}$ value grew slightly higher with depth, probably as a product of degradation processes.

Table 4.2. Sediment trap carbon fluxes, the seasonal flux weighted average δ^{13}C$_{org}$ of organic matter (C flux is presented in μmol.g.m$^{-2}$.d$^{-1}$ dry weight and δ^{13}C$_{org}$ is presented in %o versus PDB).

<table>
<thead>
<tr>
<th>Trap</th>
<th>C flux (04/05)</th>
<th>C flux (05/06)</th>
<th>δ^{13}C$_{org}$ (04/05)</th>
<th>δ^{13}C$_{org}$ (05/06)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RaTS 200m</td>
<td>2731</td>
<td>1993</td>
<td>-20.32</td>
<td>-23.32</td>
</tr>
<tr>
<td>RaTS 512m</td>
<td>1418</td>
<td>453</td>
<td>-20.35</td>
<td>-24.72</td>
</tr>
<tr>
<td>Deep 123m</td>
<td>899</td>
<td>1316</td>
<td>-19.06</td>
<td>-20.46</td>
</tr>
<tr>
<td>Deep 745m</td>
<td>532</td>
<td>1155</td>
<td>-19.12</td>
<td>-22.28</td>
</tr>
</tbody>
</table>

4.3.6 Sediment Trap Diatom Assemblages

Diatom abundances and assemblages in the sediment trap samples for the RaTS site and deep site are presented in Figures 4.9 and 4.10 respectively. In the 200 m trap on the RaTS mooring, diatom abundances peaked at 216 million valves per g of sediment during the latter part of the 04/05 season and 55 million valves per g of sediment at the start of the 05/06 season (Figure 4.9). In the 512 m trap on the RaTS mooring, diatom abundances peaked at 212 million valves per g of sediment during the latter part of the 04/05 season and 120 million valves per g sediment at the start of the 05/06 season. In the 123 m trap on the deep site mooring, diatom abundances peaked at 494 million valves per g of sediment during the latter part of the 04/05 season and 868 million valves per g sediment at the start of the 05/06 season (Figure 4.10). In the 745 m on the deep site mooring, diatom abundances peaked at 466 million valves per g sediment during the latter part of the 04/05 season and 339 million valves per g sediment at the start of the 05/06 season.
Diatom assemblages also change on a seasonal timescale. Data from the RaTS mooring are presented in Figure 4.9.

Figure 4.9. RaTS mooring sediment trap abundances of diatom groups for the shallow 200 m trap (closed symbols) and the deep 500 m trap (open symbols). Black bars indicate sea ice cover.
Figure 4.10. Deep site mooring sediment trap abundances of diatom groups for the shallow 123 m trap (closed symbols) and the deep 745 m trap (open symbols). Black bars indicate sea ice cover.
During the late 04/05 season when the deployment started, diatom assemblages were dominated by *Chaetoceros* species and *F. curta* with the rest of the assemblages made up of a mixture of pennate and centric species groups. In the 200 m RaTS trap, *Chaetoceros* species composed between 31 % and 60 % of the assemblages and *F. curta* composed between 22 % and 32 % of the assemblage. Other groups such as *Thalassiosira antarctica*, *Thalassiosira gracilis*, pennate benthic, pennate needle and *Fragilariopsis obliquecostata* composed up to ~ 8 % of the assemblage. In the 512 m RaTS trap, *Chaetoceros* composed between 60 % and 74 % of the assemblages where *F. curta* composed between 9 and 17 % of the assemblages. Interestingly, this reduction in the proportion of *F. curta* in the deep trap is also seen in other small pennate species and the pennate benthic group and may indicate inefficiency in their export due to fragility of smaller, thinner cells. Due to the lack of material in the winter trap bottles at the RaTS site, it was not possible to analyse the material for diatom assemblages. After retreat of sea ice and initiation of the spring bloom during the 05/06 growing season, the 200 m RaTS trap was again dominated by flux of *Chaetoceros* and *F. curta* species. *Chaetoceros* species composed 49 % of the assemblages and *F. curta* composed 19 % of the assemblage. Other groups composed up to ~ 8 % of the assemblages. In the 512 m RaTS trap, *Chaetoceros*, *F. curta* and *T. antarctica* dominated the assemblage. *Chaetoceros* composed 49 % of the assemblage, *F. curta* composed 21 % of the assemblage and *T. antarctica* composed 12 % of the assemblage. Interestingly, there are higher abundances in the 512 m trap of the species groups *T. antarctica*, the pennate needle group, *F. curta* and *F. obliquecostata group*, species commonly associated with sea ice material, indicating that sea ice material may have accumulated in the deeper trap prior to the start of the open water spring bloom. This may not be accounted for in previous trap cups, where there was not enough material to conduct diatom assemblage analysis. There are also decreases in the proportion of *T. gracilis*, pennate benthic and *Proboscia* group in the deeper trap, which may also be due to inefficiency in their export due to fragility of smaller, thinner
cells, but may also be partly due to the flux recorded in the shallow trap having not reached 512 m at that time.

Data from the deep mooring are presented in Figure 4.10. During the late 04/05 season when the deployment started, diatom assemblages were generally dominated by Chaetoceros and F. curta with the rest of the assemblages made up of a mixture of pennate and centric species groups. In the 123 m deep site trap, Chaetoceros species composed between 13 % and 47 % of the assemblages and F. curta composed between 29 % and 50 % of the assemblage. Other groups composed up to ~ 11 % of the assemblage. In the 745 m deep site trap, Chaetoceros compose 83 % of the assemblages where F. curta composed only 7 % of the assemblages. The other diatom species groups composed up to ~ 5 % of the assemblage. The reduction in the proportion of F. curta in total diatom flux is also seen in other small pennate species groups such as pennate benthic, pennate needle, F. obliquecostata and F. kerguelensis and may also indicate inefficiency in their export due to fragility of smaller, thinner cells. In the 123 m trap from the deep mooring site, there was sufficient flux during winter to analyse diatom assemblages during the early period of winter sea ice cover (see Figure 9). During the early winter months when sea ice covered the region, the assemblages were dominated by T. gracilis, F. obliquecostata, and the Chaetoceros group. T. gracilis composed between 17 and 32 % of the assemblage, F. obliquecostata composed between 14 and 16 % of the assemblage and Chaetoceros composed between 17 and 28 % of the assemblage. The other individual diatom groups composed up to ~ 8 % of the total assemblage. After retreat of sea ice and initiation of the spring bloom during the 05/06 growing season, the 123 m deep site trap was dominated by flux of Chaetoceros, F. curta and the very start of the open water season, the T. antarctica species group was abundant. Chaetoceros species composed between 18 % and 34 % of the assemblages, F. curta composed between 33 % and 51 % of the assemblage and T. antarctica composed between 6 % and 27 %. The other individual species groups
composed up to ~ 6 % of the assemblages. In the 745 m deep site trap, *Chaetoceros* and *F. curta* dominated the assemblage. *Chaetoceros* composed 68 % of the assemblage and *F. curta* composed 13 % of the assemblage. The other individual species groups composed up to ~ 5 % of the assemblage.

The diatom assemblages in sediment traps are similar in composition to the surface waters, although the exact proportions of each species are somewhat different. Generally the smaller, fragile species exhibit a significantly lower composition in the traps than in the surface waters, suggesting that these species are not efficiently exported to depth compared to others.

4.4 Discussion

4.4.1 δ13C in Surface Waters and Sea Ice

One of the significant findings in this study are the large negative shifts in surface water δ13CPOC observed at the end of the 04/05 growing season and a more pronounced and prolonged negative shift during the latter stage of the 05/06 growing season (Figure 4.3). These negative isotopic shifts occur without a similar change in [CO2(aq)] or δ13C-CO2, but in parallel with changes in surface water diatom assemblages (Figure 4.7). Marine algae always display lower δ13CPOC than the inorganic carbon source they assimilate due to preferential assimilation of 12C during photosynthesis (Hayes, 1993). For the stable isotope composition of the inorganic carbon pool to strongly influence the product δ13CPOC, a significant shift in δ13C-CO2 would have to take place. In Figure 4.3, δ13C-CO2 only changes by 2.19 ‰ in surface waters but the δ13CPOC goes through a ~10 ‰ change. Changes in [CO2(aq)] can also affect δ13CPOC, independent of the initial δ13C-CO2 (Burkhardt, et al., 1999; Lourey, et al., 2004; Rau, et al., 1996), with increasing [CO2(aq)] resulting in a higher fractionation factor (εp) during inorganic carbon assimilation. If this were the primary mechanism, we would expect to see a negative correlation between [CO2(aq)] and δ13CPOC, but in Figure 4.5, no
negative correlation was observed. Although there is a small response in δ\(^{13}\)C-CO\(_2\) to injections of [CO\(_2(aq)\)] into surface waters (see section 3.3) causing subtle changes in δ\(^{13}\)C\(_{\text{POC}}\), it is clear from comparisons of [CO\(_2(aq)\)] and 1/[CO\(_2(aq)\)] with δ\(^{13}\)C\(_{\text{POC}}\) (see Figure 4.4) that variations in [CO\(_2(aq)\)] were not responsible for the large decreases in δ\(^{13}\)C\(_{\text{POC}}\) observed during the growing seasons.

In a coastal site such as the Ryder Bay, inputs of terrestrial organic carbon could potentially influence the δ\(^{13}\)C\(_{\text{POC}}\) in surface waters as terrestrial organic matter source from C\(_3\) plant remains are generally more depleted in \(^{13}\)C than marine organic matter (Fry and Sherr, 1984). C:N ratios can reach as high as ~20 for terrestrial organic matter and are generally <10 for marine phytoplankton. Therefore C:N ratios of suspended organic matter that average 5.83 over the two growing seasons (Figure 4.4) indicate a wholly marine origin, as no obvious changes were associated with negative shifts in δ\(^{13}\)C\(_{\text{POC}}\). Thus, we conclude that terrestrial organic inputs are not the mechanism driving the observed negative shifts in δ\(^{13}\)C\(_{\text{POC}}\).

δ\(^{13}\)C\(_{\text{POC}}\) in near shore, Antarctic surface waters appears to undergo significant changes on a seasonal timescale in response to changes in diatom assemblages (Figure 4.7). There are several possible mechanisms influencing the observed pattern in the isotope signal. Recent studies have shown that changes in cell size and geometry can affect the ε\(_p\) with cells displaying high Surface Area to Volume ratios (SA:V) exhibiting higher ε\(_p\) (Burkhardt, et al., 1999; Popp, et al., 1998).

In Figure 4.7 we show time series plots of % biomass and the average SA:V ratios of the major diatom species in surface waters and Figure 4.11 shows the estimated SA:V of the entire assemblage plotted against the calculated fractionation factor (ε\(_p\)). During the early season open water diatom bloom period, a diverse range of large and small celled species are abundant. During the negative isotopic shifts seen clearly in the second season but less
obviously in the first, the lower $\delta^{13}C_{org}$ values are accompanied by shifts in the diatom assemblages, most notably enrichment of *D. antarcticus* (SA:V of 0.08) in 2005 and near total dominance of *P. inermis* (SA:V of 0.3) in 2006. At the end of the growing season and transition to winter conditions, suspended particles became increasingly enriched in debris, probably due to the effects of grazing by heterotrophs and decomposition. Diatom assemblages then returned to a diverse assortment of large and small cells with an increase in the biomass of dinoflagellates.

Figure 4.11 shows the whole community SA:V ratio of diatom assemblages surface waters plotted against their corresponding ε_p value. There are positive correlations between SA:V and ε_p for surface waters ($R^2 = 0.46$), suggesting that increasing diatom assemblage SA:V increases ε_p, thus influencing the product $\delta^{13}C_{POC}$.

![Graph](image)

Figure 4.11. Comparative plots of the weighted SA:V ratio of diatom assemblages and the corresponding ε_p for sea ice (red squares) and surface water (blue diamonds) samples.

In the sea ice samples taken from the two field seasons, distinct differences in the diatom assemblages compared to surface waters are clearly observed
Sea ice diatom biomass was dominated by groups that generally display a higher SA:V ratio (i.e. smaller diatoms) than their open water counterparts (see Figures 4.6 and 4.11). These samples also show on average higher $\delta^{13}C$ than surface waters (Figure 3) and in Figure 11 sea ice diatom assemblage SA:V also show a positive correlation with ϵ_p. ($R^2=0.77$).

In previous work, higher $\delta^{13}C$ in sea ice has been attributed to a higher degree of $[CO_2(aq)]$ utilisation (Gibson et al., 1999; Villinski et al., 2000), but the lack of consistently higher $\delta^{13}C-CO_2$ (Figure 4.3) or a relationship between $[CO_2(aq)]$ and $\delta^{13}C_{POC}$ (Figure 5) in this study suggest that this is not the causative process. Instead the higher $\delta^{13}C_{POC}$ in sea ice is attributed to post production degradation processes, where the ^{12}C material is preferentially degraded, leaving the remaining organic carbon enriched in ^{13}C. A high rate of organic particle degradation in sea ice is consistent with the high C/N ratios (Figure 4); due to organic nitrogen being preferentially degraded over carbon bearing compounds (Ganeshram et al., 1999; Hedges et al., 1986; Rosenfeld, 1981).

The difference between the surface water and sea ice relationships in Figure 11 may be due to the effect of biodegradation processes in sea ice. As ϵ_p was calculated as the difference between $\delta^{13}C-CO_2$ and $\delta^{13}C_{POC}$, the material remaining in sea ice after degradation would be enriched in ^{13}C and thus be calculated as having a lower ϵ_p when compared to the surface water relationship. The differing slopes between the two relationships may also be an effect of biodegradation, where different sea ice samples had undergone different degrees of degradation.

The circled surface water samples outlying the correlated values in Figure 11 were taken from surface waters on 13th December 04, 7th January 05 and 23rd December 05. The similarity between these SA:V versus ϵ_p is consistent with these samples containing material from sea ice. While this explanation holds for the sample from 23rd December 05, as the sea ice was still covering
Ryder Bay at the time, not so for the earlier two samples. The low C:N ratios for these samples (5.4 to 5.9), does not suggest significant degradation, as would be expected from sea ice material. It remains unclear what mechanism caused these points to differ from the relationship observed for surface water samples. Other factors must therefore contribute to the δ^{13}C$_{POC}$ composition of organic matter in Ryder Bay. Other possible factors controlling ε_p include internal biochemical processes in different diatom species (Cassar, et. al, 2006), growth rates (Burkhardt, et al., 1999; Popp, et al., 1998; Rau, et al., 1996; Villinski et al., 2000) and the presence of the prymnesiophyte Phaeocystis antarctica (Villinski, et al., 2000).

A recent study has shown that diatom ε_p may not be a unique function of growth rate, CO$_2$ concentration or SA:V ratio and that other cellular biochemical processes may explain discrepancies in the reported effects of growth conditions on carbon fractionation (Cassar, et al., 2006). Currently, factors such as cell wall permeability, carbon fixation kinetics, carbon to volume content and active uptake of bicarbonate and CO$_2$ through the cell membrane are not sufficiently constrained for most diatom species, especially species from the Southern Ocean to pinpoint the causative processes affecting δ^{13}C$_{POC}$. Therefore further studies are requires to fully investigate the effects of the aforementioned processes.

Differences in phytoplankton growth rates may also alter the stable carbon isotope ε_p (Burkhardt, et al., 1999; Popp, et al., 1998; Rau, et al., 1996; Villinski et al., 2000), with lower growth rates generally associated with a higher ε_p and subsequently lower δ^{13}C$_{POC}$. Growth rates in the Southern Ocean are generally low, and in the two seasons covered by this study the diatom abundances are particularly low during isotopic transition periods (see Figure 4.7). Any effect this may have had on ε_p, however, remains speculative due to the lack of growth rate measurements and grazing data to ascertain if low diatom abundances are in fact due to changes in growth rate and not a result of grazing pressures.
Our results showing strong influence of diatoms cell sizes on δ^{13}C$_{POC}$ is in contrast to results from a previous study from the Ross Sea (another continental shelf, sea ice environment) where the prymnesiophyte *Phaeocystis antarctica* and dinoflagellates can dominate the biomass and cause shifts in δ^{13}C$_{POC}$ to values approaching -30 ‰ (Villinski, et al., 2000), as seen in this study. In Marguerite Bay diatoms dominate phytoplankton biomass in this area and *Phaeocystis* biomass is more than an order of magnitude lower than diatoms during spring blooms (Garibotti, et al., 2005). This contrast may reflect the difference in the dominant phytoplankton group in study areas. In surface waters of Ryder Bay diatom assemblage composition exhibits large changes on a seasonal timescale (Figures 4.6 and 4.7). It therefore appears that in Ryder Bay, species specific SA:V, and internal biochemical pathways associated with seasonal progression of diatom speciation have more of an influence on ε_p, than shifts in phytoplankton assemblages towards prymnesiophytes and/or dinoflagellates.

4.4.2 Sinking Particulate Carbon

The time-series δ^{13}C$_{org}$ of sinking particles presented in Figure 4.8, show similar features to the surface water time-series (Figure 4.3), suggesting that the changing ε_p and subsequent δ^{13}C$_{POC}$ produced in surface waters driven by succession of diatom assemblages, is transferred to depth. During the 04/05 growing season, δ^{13}C$_{POC}$ ranged between -21.2 ‰ to -17.5 ‰ when the transition period occurred in February and δ^{13}C$_{POC}$ dropped to -26.7 ‰ before returning to -23.0 ‰ after productivity ceased (Figure 4.3). Although the early season flux was missed by the sediment traps during the 04/05 season, we see a progressive increase in δ^{13}C$_{org}$ in the RaTS 200 m trap from -20.7 ‰ to -19.7 ‰ between late January and February 05, followed by a drop to -22.55 ‰ in March and April (Figure 4.8). Assessing this feature is not possible in the deep site trap as there are only two data points and we have no stable isotope or diatom data for surface waters at this site, but this lack of a similar response may be due to more subtle seasonal changes in
diatom assemblages in the more open ocean site that do not have the same effect on $\delta^{13}\text{C}_{\text{POC}}$ as the coastal site.

The 05/06 growing season shows very different stable carbon isotope characteristics. In surface waters during winter, $\delta^{13}\text{C}_{\text{POC}}$ is initially $\sim -25 \%$ and then increases to a maximum value of -18.8% as primary production begins as the sea ice begins to decay (Figure 4.3). During late January, February and early March, we see the isotopic transition period, where $\delta^{13}\text{C}_{\text{POC}}$ values reach as low as -28.7% and then rise to a winter value of $\sim -25 \%$ when productivity declines. The material in the sediment traps shows very similar features to the surface waters, with $\delta^{13}\text{C}$ shifting from -22.5% in February 06 to -28.7% in late February and early March in the 200m RaTS trap (Figure 4.8), consistent with the isotopic shift seen in surface water material. This is also seen in the 512m RaTS trap, where $\delta^{13}\text{C}_{\text{org}}$ changes from -21.8% in early February to -27.8% in late February and early March. As the deep site mooring was lost, we do not have coverage of the isotopic transition seen in 2006 at the deep site and thus can not comment on it. The diatom species counts in sediment traps show similar dominant species as in the surface waters (Figures 4.9 and 4.10). Species not observed in the traps that were present in surface waters are assumed to have been subject to grazing and remineralisation and therefore were not exported to depth. While this may have slightly altered the $\delta^{13}\text{C}$ of the material, this effect is thought to be negligible as the seasonal progressions of suspended particles and sinking particles $\delta^{13}\text{C}$ were very similar.

Thus the $\delta^{13}\text{C}_{\text{org}}$ of sinking material is highly variable in sediment traps and is directly related to changes in surface water $\delta^{13}\text{C}_{\text{POC}}$, which is mainly explained by the effects of carbon fixation by different species of diatoms. The flux weighted average of sediment trap material from each season is presented in Table 2 and is consistent with that observed in surface waters. The 04/05 season flux weighted average $\delta^{13}\text{C}_{\text{org}}$ is -20.3% for the RaTS 200 m trap and -20.4% for the RaTS 512 m trap and for the 05/06 season the
flux weighted average $\delta^{13}C_{\text{org}}$ is -23.3‰ for the RaTS 200 m trap and -24.7‰ for the RaTS 512 m trap. The deep site traps also exhibit lower flux weighted average $\delta^{13}C_{\text{org}}$ values for the 05/06 season, although not to the same degree. This may be due to a similar mechanism occurring at both sites, but with the changes in diatom assemblages and subsequent $\delta^{13}C_{\text{POC}}$ being more subtle at the deep site.

4.4.3 Potential Implications for $\delta^{13}C$-based pCO_2 Reconstructions in the Southern Ocean

Our results showing carbon isotope transition associated with seasonal changes in diatom assemblages influence in surface waters and conveyance of the signal to depth in sinking particles (Figure 4.7 and Table 4.3) have important implications for the interpretation of carbon isotope signatures in both coastal and open ocean Southern Ocean regions. $\delta^{13}C$ records in the Southern Ocean show depleted glacial values of up to 4‰ (Crosta and Shemesh, 2002; Rosenthal, et al., 2000; Schneider-Mor, et al., 2005; Singer and Shemesh, 1995), with various hypotheses put forward for the mechanism(s) controlling these changes in $\delta^{13}C$. The low $\delta^{13}C$ values of the glacial periods have been linked to higher $[CO_2 (aq)]$ resulting from widespread upwelling. Later studies, using other proxy records such as $\delta^{15}N$ & Ba/Al, indicate a stratified glacial Southern Ocean (Francois, et al., 1997) and lowered productivity, contradicting the upwelling theory. Therefore it was suspected that $\delta^{13}C$ in glacial periods could have been influenced by other factors such as growth rates and changes in diatom abundance or cell size and geometry (Rosenthal, et al., 2000). Crosta and Shemesh (2002) also proposed a scenario of reduced vertical mixing and extended sea ice cover to explain the anti-correlation of low $\delta^{13}C$ and high $\delta^{15}N$ in Southern Ocean sediment records. Reduced vertical mixing and extended sea ice cover were postulated to have kept $[CO_2 (aq)]$ at high concentrations inducing lower $\delta^{13}C$ of organic matter, with reduced vertical mixing lowering the NO$_3$ input into the photic zone, causing higher per cent NO$_3$ utilisation and subsequent $\delta^{15}N$ enrichment (Crosta and Shemesh, 2002). Our data suggest that in the coastal Antarctic sea ice environment, extended sea ice coverage and a
more stratified system can result in changes in diatom assemblages that contribute to large negative shifts in $\delta^{13}C_{POC}$. This process may have also contributed to the lighter carbon isotope signatures of the glacial Southern Ocean. Indeed diatom assemblages preserved in glacial Southern Ocean sediments show differences from modern open ocean assemblages reflecting much more extensive sea ice cover and highly stratified conditions as a result of more extensive fresh water contributions from sea ice and iceberg melt (Crosta, et al., 1998a; b; Francois, et al., 1997). Interestingly, the two growing seasons sampled during this study had very different sea ice regimes and hydrography, and very different phytoplankton assemblages. Nonetheless both display the shift to lower $\delta^{13}C_{POC}$, albeit to varying degrees, and were to some extent influenced by SA:V (Figure 4.11). This further loosens the relationship used in the application of a $\delta^{13}C$ versus pCO_2 relationship for reconstructing paleo-pCO_2 from sediment core $\delta^{13}C_{org}$ in this area.

4.5 Conclusions

This study presents a unique insight into the factors affecting the $\delta^{13}C$ of organic matter in the coastal Antarctic sea ice environment. The findings of this time-series investigation lead to the following conclusions:

1. Sea ice $\delta^{13}C_{POC}$ appears to be controlled more by post-production decomposition processes and not a high degree of nutrient utilisation as other studies may have inferred.
2. $[CO_2(\text{aq})]$ and $\delta^{13}C$-CO_2 are not major controlling factors on the $\delta^{13}C$ of suspended particulate organic carbon;
3. The $\sim 10 \%$ shifts seen in surface waters appear driven by seasonal shifts in diatom assemblages and the subsequent shift to lower SA:V ratios of the assemblages during the isotopic shifts, possibly exacerbated by changes to internal diatom biochemical pathways for carbon fixation and changing growth rates.
4. Although much of the surface suspended material (including certain diatom species) are not exported to depth, the δ¹³C composition of surface suspended organic carbon is transferred to depth.

5. Sediment δ¹³C is therefore not a reliable proxy for ρCO₂ due to the effects of seasonal changes in εₚ.

4.6 References

Rathburn, A. E., et al. (1997), Microfossil and stable-isotope evidence for changes in Late Holocene palaeoproduction and palaeoceanographic

5 δ^{15}N of Nutrients and Organic Matter as Proxies for Productivity and Export Production in the Coastal Antarctic Sea Ice Environment

Abstract
Higher utilisation of nutrients during the onset of glacial periods in the Southern Ocean, inferred from higher 15N in sediments, has been linked to the lowering of atmospheric CO$_2$ due to higher export of carbon to the seafloor. There are, however, still uncertainties regarding the seasonal progression of 15N throughout the water column, the usefulness of 15N as a proxy for increased nutrient utilisation in surface waters, and whether this tracer is directly linked to carbon export. This study comprises a high resolution time-series investigation of nitrogen biogeochemistry and export production, over a period of two growing seasons with significantly different hydrographical properties, largely controlled by sea ice and other freshwater inputs. The stability of the surface waters over the growing season plays a significant role in the seasonal evolution of surface water δ^{15}N$_{PON}$ and total export flux. Surface water δ^{15}N of nutrients and organic matter respond as expected to nutrient utilisation and inputs of nutrients from mixing of water masses, where as δ^{15}N in sea ice is primarily controlled by post-production decomposition processes rather than from high nutrient utilisation. The annually integrated δ^{15}N of sinking particulate matter is consistent with the “steady state” nitrate utilisation model during 04/05 and the “closed system” model during 05/06, reflecting the observed oceanographic characteristics of each season. This, however, does not reflect the changes in C flux of the two seasons. These findings therefore weaken the utility of making direct connections between nitrate utilisation and atmospheric CO$_2$ changes during paleoceanographic studies.
5.1 Introduction

The nitrogen stable isotope composition ($\delta^{15}N$) of organic matter in sediments has been used as a proxy for surface water nitrate utilisation in an attempt to understand the role of Southern Ocean in glacial/interglacial changes in atmospheric CO$_2$ (e.g Francois and Altabet, 1992; Francois, et al., 1997; Sigman, et al., 1999a). The High Nutrient Low Chlorophyll (HNLC) nature of the Southern Ocean leaves the majority of NO$_3$ and PO$_4$ in surface waters unutilised during the spring and summer months, believed to be due to iron limitation (Martin, et al., 1990; Timmermans, et al., 1998). Increased nutrient utilisation in the Southern Ocean has been linked to lower atmospheric CO$_2$ concentrations through changes in the efficiency of the biological pump (possibly as a result of increased iron fertilisation), or reduced nutrient (CO$_2$) supply to the ocean surface and release to the atmosphere (Francois, et al., 1997; Kumar, et al., 1995), perhaps due to increased stratification of surface waters. It is therefore essential to be able to understand the balance between changes in export production and the physical oceanographic processes affecting nutrient delivery to the surface to determine changes in the drawdown of CO$_2$.

Natural abundance measurements of $\delta^{15}N$ are useful as tracers of changes in nutrient utilisation in HNLC regions. Drawdown of NO$_3$ in surface waters results in increasing $\delta^{15}N$ of NO$_3$ ($\delta^{15}N$-NO$_3$) due to isotopic fractionation during utilisation by phytoplankton (Sigman, et al., 1999; Wada and Hattori, 1978; Wu, et al., 1997). Increasing $\delta^{15}N$-NO$_3$ is then transferred to the $\delta^{15}N$ of suspended particulate organic nitrogen ($\delta^{15}N_{PON}$), and subsequently sinking particulate organic nitrogen ($\delta^{15}N_{org}$) (Altabet, 1996; Altabet, et al., 1991; Wu, et al., 1999). Preservation of this isotopic signal in sediments facilitates the study of present and past changes in nutrient drawdown. High $\delta^{15}N$ in Antarctic sediments has thus been used to infer increased nutrient utilisation and drawdown of NO$_3$ and CO$_2$ from surface waters in a normally
HNLC region, assuming that high $\delta^{15}N$ was pertinent to increased export production (e.g. Robinson, et al., 2005; Sigman, et al., 1999).

There are still, however, uncertainties regarding the use of $\delta^{15}N$ in sediments as a tracer of NO$_3$ utilisation in the Southern Ocean and whether high $\delta^{15}N$ in sediments can indeed be linked to increased carbon drawdown (Altabet and Francois, 2001; Crosta and Shemesh, 2002; Lourey et al., 2003). This uncertainty is linked to observations of higher $\delta^{15}N_{PON}$ and $\delta^{15}N_{org}$ during winter than the spring months, (Lourey et al., 2003), which has the potential to skew interpretation of sediment core records leading to overestimation of NO$_3$ utilisation. This is believed to be caused by a high residence time of dead or slow growing winter phytoplankton that are highly degraded, which increases their $\delta^{15}N_{PON}$ composition. Thus sinking $\delta^{15}N_{org}$ from this material may be significantly higher than material observed in the growing season and skew interpretation of sediment core records leading to overestimation of NO$_3$ utilisation. It has been suggested that reduction of the growing season due to extended sea ice cover may have been a cause of the high $\delta^{15}N_{org}$ in sediments based on these winter observations (Lourey et al., 2003).

Growth of phytoplankton in sea ice, which can reach high standing stocks comparable to open water (Carson et, al., in-prep – Chapter 3) may also display high $\delta^{15}N$ values compared to surface water phytoplankton. High levels of productivity in the closed or semi-closed sea ice matrix has the potential to exhaust nutrients and produce particulate organic material with anomalously high $\delta^{15}N$ composition (Fischer, et al., 2002; Gibson, et al., 1999; Kennedy, et al., 2002). Similar to winter surface water material, sinking material from sea ice with high $\delta^{15}N_{org}$ may also skew interpretation of sediment core records leading to overestimation of NO$_3$ utilisation.

Other studies have also suggested that the fractionation factor (ε_p) may change in response to phytoplankton assemblages (Needoba, et al., 2006) light levels (Difiore, et. al., 2006) or the concentration of iron in surface
waters (Karsh et al., 2003), as a cause for changes in Southern Ocean sediment $\delta^{15}N$. Nitrogen ε_p in the Southern Ocean has been estimated to be between 4-8 % (Altabet and Francois, 2001; Difiore, et al., 2006; Sigman, et al., 1999b) based on models used for a steady state system (continuous nutrient supply) and a closed system (no nutrient supply), and this value may be even lower when physical mixing of water masses and remineralisation of nitrogen occur (Needoba, et al., 2006).

Making connections between high $\delta^{15}N$ (nutrient utilisation) and CO$_2$ drawdown may not be relevant in many scenarios as the C and N systems can be severely decoupled in surface waters (Crosta and Shemesh, 2002; Lourey et al, 2003). This may occur not only from sea ice and winter surface water material, but from the total cumulative levels of nutrients utilised in a single growing season. Seasonally integrated sediment $\delta^{15}N$ may be comparable to the relative utilisation of NO$_3$ in surface waters, but does not capture the amount of inorganic carbon and nitrogen that can be assimilated and exported over the duration of a growing season (Francois, et al., 1997).

To address these concerns regarding the $\delta^{15}N$ proxy, this study presents a high-resolution time series of nitrogen isotope measurements covering two austral growing seasons (2004-2006) coupled with measurements of carbon and nitrogen export. The goal is to understand nitrogen isotope biogeochemistry in a Southern Ocean sea ice environment (Ryder Bay, Western Antarctic Peninsula) and to test the reliability of using $\delta^{15}N$ as a proxy for nutrient utilisation and export production.

5.2 Materials and Methods

5.2.1 Study Area

This study took place from 2004 until 2006 and was located in Ryder Bay and Marguerite Bay, which lies south of Alexander Island and west of the mainland on the Western Antarctic Peninsula (see Figure 5.1). Ryder Bay is a coastal embayment adjoining Marguerite Bay and the study site is situated
in open water at a depth of 520 m. Sea ice brine was sampled when sea ice was present at three locations, with a total of 15 sea ice samples taken during this study. Sea ice had receded from Ryder Bay upon arrival in December 2004, however there was still land fast ice located around Lagoon Island (see Figure 5.1 for Lagoon Island sampling site), with 5 samples taken at the Lagoon Island site during December 2004. A further 10 samples were taken during the 05/06 season. During winter 2005, two sea ice samples were taken in September and October at the RaTS site and during early spring 2005 (Nov-Dec), a further eight sea ice samples were taken at a site north of Rothera Point (See Figure 5.1).

Figure 5.1. Map of Ryder Bay showing the RaTS site (white circle) and the two other sites used for sea ice sampling (black circles). Map courtesy of the British Antarctic Survey.
A high resolution time series of surface water samples were taken in Ryder Bay, at the Rothera Time Series study site at 67°34.02'S, 68°14.02'W (Clarke, et al., 2007) during austral spring and summer 2004/2005 and 2005/2006 (Figure 5.1). Low resolution time series sampling was conducted during winter 2005. Sea ice brine and surface water samples at 15 m depth were taken measuring: temperature, salinity, chlorophyll-a, NO₃, NH₄, the partial pressure of carbon dioxide (pCO₂), δ¹⁵N-NO₃, POC, PON, and δ¹⁵N_PON. Routine CTD measurements were also taken at every surface water sampling event to monitor changes in the mixed layer depth. Sinking POC, PON and δ¹⁵N_org were analysed from time-series sediment trap material located at two depths at both the RaTS site and a deeper site in Marguerite Bay during the study. Finally, shallow sediment box cores were taken at the RaTS site in January 2005, and were analysed for δ¹⁵N_org.

5.2.2 Sea Ice Sampling

Sea ice brine was sampled using a sack hole drilling method, with samples for pCO₂ taken first to minimise atmospheric contamination. Alkalinity samples for pCO₂ determination were taken by immersing a 250 ml BOD bottle in the sack hole and sealing the bottle with a plastic stopper ensuring no air bubbles were present. Salinity and temperature were measured using a YSI-500 multi-parameter meter. For particulate carbon and nitrogen measurements, sea ice brine was transferred to acid-clean HDPE carbuoys and taken back to the laboratory for filtration. Sea ice brine samples were filtered through muffle-furnaced (400°C for 4 h) 47 mm GF/F filters, always < 2 h after collection. Aliquots of filtrate from this process was transferred to 50 ml plastic centrifuge tubes and frozen at -20°C for NO₃ analysis and used immediately for NH₄ analysis. The filters containing particulate material were then dried at 50°C overnight, and stored frozen until analysis.

5.2.3 Surface Water Sampling

CTD casts were taken to ~500 m depth using a Sea Bird Electronics 19 Plus SEACAT CTD module. For depth profile measurements of conductivity, temperature and depth a Wet Labs Wetstar module was used. For
measurement of temperature at 15 m, a Sensoren Instrumente Systeme GmbH reversible thermometer was lowered to 15 m, allowed to equilibrate for 2 min before measurements were initiated. Surface water samples were taken using a 5 L Niskin bottle for chlorophyll and pCO_2 measurements. Alkalinity samples for pCO_2 determination were taken from the Niskin straight into a 250 ml BOD bottle and sealing the bottle with a plastic stopper ensuring that no air bubbles were present. Particulate samples were retrieved using a 12 V dolphin pump and 15 m of silicone tubing weighted down at the end. Water from 15 m was pumped into 10 L HDPE carbuoys for transfer back to the laboratory. Surface water samples were filtered through muffle-furnaced (400°C for 4 h) 47 mm GF/F filters. Aliquots of filtrate from this process was transferred to 50 ml plastic centrifuge tubes and frozen at -20°C for NO$_3$ analysis and used immediately for NH$_4$ analysis. The filters were then dried at 50°C overnight and stored frozen until analysis.

5.2.4 NO$_3$, NH$_4$ and pCO_2 Determination

Nitrate concentrations were measured in the UK using a Skaler San plus nutrient autoanalyser employing standard colorimetric techniques (Strickland and Parsons, 1972). Nutrient utilisation (u) was calculated using the seasonal change in surface NO$_3$ concentrations (Lourey and Trull, 2001). Ammonium concentrations were measured on the filtered sea ice and surface water samples using the standard addition method described in (Holmes, et al., 1999) on the day of sample collection. NO$_3$ and NH$_4$ concentrations in sea ice were normalised to 34.5 PSU, the average salinity of the surface waters during this study. Determination of pCO_2 was conducted utilising measurements of salinity, temperature, pH and alkalinity. Salinity measurements were taken from the CTD profiles and temperatures were measured using a Sensoren Instrumente Systeme GmbH reversible thermometer. Alkalinity was determined by titration with 0.05 M HCl and the Gran plot method (Almgren, et al., 1983). pCO_2 was calculated using constants from (Dickson and Millero, 1987), (Hannson, 1973) and (Mehrbach, et al., 1973) with the CO2SYS programme (Lewis and Wallace, 1998).
5.2.5 δ¹⁵N-NO₃ Determination

δ¹⁵N-NO₃ was measured using the bacterial denitrifier method (Casciotti, et al., 2002; Sigman, et al., 2001) during the 04/05 season. Strains of the denitrifying bacteria *Pseudomonas chlororaphis* were used to convert the NO₃ in sea ice and surface water samples to N₂O in order to measure their δ¹⁵N composition. Stock cultures of *P. chlororaphis* were maintained on tryptic soy agar amended with 10 mM potassium nitrate, and 1 mM ammonium sulphate. Working cultures for sample denitrification were cultured in tryptic soy broth amended with 10 mM potassium nitrate, 1 mM ammonium sulphate and 1 mL/L of an antifoaming agent. Prepared medium was decanted into 400 mL aliquots into 500 mL Duran bottles and autoclaved. A starter tube containing 5 mL of the amended tryptic soy broth was inoculated with an individual colony of cells taken from the stock culture and allowed to grow overnight on an orbital shaker. The 500 mL culture vessels containing 400 mL of amended tryptic soy broth were then inoculated from the starter tube and incubated for 6-11 days on an orbital shaker. On the day of sample preparation, the working culture was divided into 40 mL aliquots and centrifuged for 10 min at 7600 rpm. The supernatant was then decanted and the cells were resuspended in 6 mL of spent medium, resulting in a 7-fold concentration of cells. In order to mimic the matrix effect of seawater, 30 mL of synthetic seawater (33 % NaCl) was added to the 60 mL of cell culture liquid. Using 20 mL crimp lid sample vials, 3 mL of the concentrated bacteria were transferred into each vial. Crimp seal caps were then placed on each sample vial and sealed.

All the vials were degassed at 10 – 20 mL/min for 3 hours using helium (zero grade). The purging gas was introduced through a 26-gauge short needle, inserted through the septum to bubble the medium, and the gas was vented through a 25-gage needle inserted above the liquid level. Once purging was complete, sea ice and surface water samples were injected into the sample vials achieving a final concentration of 10 or 20 nmol N (5 or 10 nmol N₂O). For each run, a series of isotope standards (IAEA N3 and USGS-34) were
run throughout the sequence in order to correct raw ^{15}N data. After samples and standards were injected into the crimp sealed vials, the vials were incubated overnight to allow complete conversion of nitrate to N$_2$O. The following day, 0.1-0.2 ml of 10N NaOH solution was injected into each sample and standard vial to kill the bacteria. This step also immobilises the bulk of CO$_2$ gas in the sample as dissolved organic carbon. A further 3-4 drops of antifoam B were added to sample vials to prevent foaming during isotopic analysis.

The $\delta^{15}\text{N}$ composition of N$_2$O in the sample vials was then measured using an automated Gas Bench GC-IRMS system. Samples from the 2004/2005 field season were measured in the Sigman Laboratory, Princeton University, Princeton NJ, USA in 2006 (see Casciotti, et al., 2002; Sigman, et al., 2001).

5.2.6 Bulk POC/PON and $\delta^{15}\text{N}_{\text{PON}}$ Determination

Bulk POC, PON and $\delta^{15}\text{N}_{\text{PON}}$ analyses were conducted using a method similar to Lourey, et al., (2003). Sea ice brine and surface water samples were filtered through muffle-furnaced (440°C for 4 h) 47 mm GF/F filters. The filters were then dried at 50°C overnight and stored frozen until analysis. Prior to analysis, the filters were decarbonated by wetting the filter with Milli-Q water and fuming with HCl for 48h and then drying at 50°C. Filters were analysed for elemental PON and $\delta^{15}\text{N}_{\text{PON}}$ using a Carlo Erba NA 2500 elemental analyser in-line with a VG PRISM III isotope ratio mass spectrometer. Results are presented in the delta notation versus N$_2$ gas. The analytical precision for the isotopic measurements was 0.2 %.

5.2.7 Sediment Trap Deployments

Two sediment trap mooring arrays were deployed, with one at the RaTS site and the other at a deeper site in Marguerite Bay to catch sinking particles in concert with the time series water sampling programme. Each mooring consisted of two time-series sediment traps, which were situated at 200 m and 400 m for the RaTS mooring and 200 m and 750 m for the deep site mooring. Each sediment trap was equipped with 21 rotating cups.
programmed to rotate at predefined intervals. The strategy employed for cup rotation utilised higher resolution cup turnover during periods of potential sea ice melt and the spring bloom with lower resolution cup rotation during the low flux winter periods. The RaTS site mooring was initially deployed on the 25th January 2005 in 502 m water at 67°34.02°S, 68° 14.02°W. The deep site mooring was deployed on the 24th January 2005 in 841 m water at 67°55.39°S, 68° 24.15° W. The RaTS mooring and deep mooring were recovered on the 15th February 2006 and the sediment trap bottles were removed and replaced with fresh ones. Both moorings were redeployed on the 17th February 2006. The RaTS mooring was redeployed at a water column depth of 522m at 67° 34.00°S, 68° 14.00°W. The deep mooring was redeployed at a water column depth of 835m at 67°55.41°S, 68°24.11°W. For a table of sediment trap bottle rotations during the second deployment, refer to Table 6. The moorings were further recovered on 17th December 2006 aboard JCR Cruise 155. The RaTS mooring was successfully retrieved, but unfortunately the deep mooring was lost.

5.2.8 Box Cores
A box core was taken from Ryder Bay, nearby to the RaTS site during JCR cruise 112/113 (Brandon, 2005). BC-388 was retrieved at -67.57046°S, -68.22844°W on 24th January 2005 at 505 m water depth. The top 0.5 cm section was used for surface sediment analysis.

5.2.9 Sediment Organic Carbon Nitrogen and $\delta^{15}N_{org}$ Determination
One sediment trap cup split and sub-section of the box core were freeze-dried and ground for analysis of particulate components. For POC, PON and $\delta^{15}N_{org}$ analysis, duplicate ~10 mg aliquots of dried, ground sediment were weighed into silver capsules and were acidified with 50 % HCl to remove carbonates and dried at 60°C overnight. Decarbonated samples were then analysed for elemental POC, PON and $\delta^{15}N_{org}$ using a Carlo Erba NA 2500 elemental analyser in-line with a VG PRISM III isotope ratio mass spectrometer. $\delta^{15}N$ results are presented in the delta notation versus N$_2$ gas.
5.3 Results

This study presents high-resolution time series analyses of NO$_3$, δ^{15}N-NO$_3$ (04/05 only), NH$_4$, POC, PON and δ^{15}N$_{PON}$, in order to investigate factors influencing the seasonal progression of productivity and δ^{15}N$_{PON}$ prior to its export to depth. The transfer of this stable isotope signal to sediment traps and the seafloor along with the associated C and N fluxes is then investigated. The reliability of using δ^{15}N$_{org}$ as a proxy for nitrate utilisation and export production in the coastal Antarctic sea ice environment is then evaluated.

5.3.1 Growing Seasons 2004-2006

Sea ice cover, mixed layer depth (MLD), 15 m integrated salinity and chlorophyll a (chl-a) data from growing seasons (04/05 and 05/06) sampled during this study are presented in Figure 5.2. Sea ice cover was variable between the two seasons, occurring from 16th June to 1st November during winter 2004 and 10th June to 25th December during winter 2005. The MLD data in Figure 5.2 show typical seasonality for Ryder Bay, with a deep winter mixed layer and a shallow surface layer in summer, influenced by freshwater from sea ice and glacier melts (Clarke, et al., 2007). The freshwater melt layer stabilises the water column providing an environment favouring growth of diatoms and nutrient utilisation in the photic zone. The presence and retreat of ice during this period and the physical stability of the water column resulted in growing seasons that lasted ~4 months during both growing seasons, but the growing season began and finished ~1 month later during the 05/06 season relative to 04/05, due to extended sea ice cover.
Figure 5.2. Time series plot of (a) regional sea ice cover (grey line) and local sea ice cover in Ryder Bay based on daily observations (blue lines) and (b) Chl-a (green line), mixed layer depth (grey shaded area) and 15 m integrated salinity (black line) from June 2004 until October 2006.

5.3.2 Sea Ice

Sea ice data are summarised in Appendix 5 and Figure 5.3. PON in sea ice shows clear decreasing trends during each sampling season (Figure 3), similar to chlorophyll and nutrients, probably due to the combined effects of decreasing primary production, freshwater dilution from ice melt increasing the osmotic pressure on sea ice phytoplankton and rates of biodegradation of organic material exceeding that of growth rates. During Dec 2004, sea ice POC declined from 118 μM to 37 μM, during winter 2005 (Sep-Oct) POC ranged between 24 μM and 32 μM, then during Nov and Dec 2005 declined from 43 μM to 20 μM. PON showed similar characteristics with PON declining from 9 μM to 4 μM during Dec 2004, during winter 2005 (Sep-Oct) PON was ~ 4 μM and during Nov and Dec 2005 PON declined from 4 μM to 2 μM. δ^{15}N$_{PON}$ in sea ice showed an opposite trend to that of PON, with
\[\delta^{15}N_{\text{PON}} \] increasing from 6.82 to 8.82 \% during Dec 04 and from 2.80 \% to 9.67 \% between Sep and Dec 05.

Figure 5.3. Time-series plots (by event number) of (a) chl-a, nitrate (NO\(_3\)) and ammonium (NH\(_4\)) and (b) suspended particulate organic nitrogen (PON) and the nitrogen stable isotope composition of particulate organic nitrogen (\(\delta^{15}N\)). Shaded areas are indicative of the time periods over the course of the two seasons sampled.

5.3.3 Surface Waters

Surface water time series data exhibit typical pulsed growing seasons during the short sunlit, ice free conditions of austral spring and summer, with the time-series data presented in Appendices 6 and 7. As the sea ice covering the bay began to decay and recede, the spring bloom started (Figure 5.2). Chl-a concentrations reached a maximum concentration of 35.55 \(\mu g/L\) during the 04/05 season and maximum of 27.94 \(\mu g/L\) during the 05/06 season. Both seasons displayed similar characteristics in primary productivity; an initial chl-a peak in Nov 04 and Dec 05 during sea ice retreat, followed by a mid season decline, and then a second chl-a peak in summer before primary production ceases in mid-February 05 and late
March 06. The surface waters are stabilised by a freshwater lens in the top few m (Clarke, et. al., 2007) due to sea ice and glacier melt, resulting in a shallow Mixed Layer Depth (MLD). The average MLD was 11.36 m during the 04/05 season and 6.15 m during the 05/06 season (Table 5.1). This freshwater lens prevents wind induced vertical mixing. The salinity averaged over the top 15m (Figure 5.2) also displays the seasonal effect of freshwater dilution of the surface ocean, reaching its lowest value during Jan and Feb 2006, indicating higher freshwater input to the surface ocean during the 05/06 season.

Surface water NO$_3$ profiles (Figure 5.4) show a clear seasonal cycle with winter concentrations reaching ~35 μM and high nitrate utilisation is evident during the growing season with concentrations reaching as low as 2.26 μM. NO$_3$ concentrations in surface waters ranged from 3.33 to 26.30 μM during the 04/05 sampling season and from 2.26 to 33.70 μM during the 05/06 sampling season. The relative NO$_3$ utilisation (u) over the two growing seasons averaged 62 % and 69% and reached maxima of 90 % and 93 % during the 04/05 and 05/06 seasons respectively, and is summarised in Table 5.1 along with the above 15 m integrated salinity and MLD data. Despite the freshwater lens that stabilises the water column during the spring and summer (Clarke, et al., 2007), there were still episodic nutrient inputs to surface waters, inferred from increases in NO$_3$ concentrations (Figure 5.4) and occurred at a higher frequency during the 04/05 growing season compared to the 05/06 growing season.
Figure 5.4. Time series surface water measurements over the 04/05 and 05/06 growing seasons of (a) chl-a (b) NO$_3$ (open circles) and δ15N-NO$_3$ (blue closed circles) (c) NH$_4$ (d) PON and POC and (e) δ15N.
Table 5.1. Seasonal averages of salinity, mixed layer depth (MLD), NO₃ utilisation (u), δ¹⁵N-NO₃ and δ¹⁵N_PON.

<table>
<thead>
<tr>
<th>Season</th>
<th>15 m integrated salinity (PSU)</th>
<th>Average MLD (m)</th>
<th>Average u</th>
<th>Average δ¹⁵N-NO₃ (% vs air)</th>
<th>Flux Weighted Average δ¹⁵N_PON (% vs air)</th>
</tr>
</thead>
<tbody>
<tr>
<td>04/05</td>
<td>33.029</td>
<td>11.36</td>
<td>0.619</td>
<td>7.119</td>
<td>4.19</td>
</tr>
<tr>
<td>05/06</td>
<td>32.637</td>
<td>6.15</td>
<td>0.692</td>
<td>-</td>
<td>3.96</td>
</tr>
</tbody>
</table>

The δ¹⁵N-NO₃ of surface water samples is presented as a time-series profile in Figure 5.4 and as a function of NO₃ concentration (ln NO₃) in Figure 5.5. δ¹⁵N-NO₃ ranged from 4.35 % (winter value) to 11.37 % during the 04/05 season. The nitrogen stable isotope composition of NO₃ shows a clear seasonal response to productivity (Figure 5.4), and has negatively correlation with the ln of NO₃ concentration (Figure 5.5), with a slope of -2.061. This slope can be used to estimate the fractionation factor of NO₃ during N assimilation, but only if there is an assumption of a closed system (Sigman et al., 1999), however the time series profiles show that NO₃ uptake was not occurring in a closed system. The -2.061 slope of the correlation between ln NO₃ versus δ¹⁵N-NO₃ is much lower than the 6-8 % fractionation factor estimated by other studies in the Southern Ocean (Sigman et al., 1999; DiFiore, et al., 2006), and is a result of mixing of nitrate depleted surface waters and the nitrate rich UCDW below, reducing the slope of the δ¹⁵N-NO₃ versus ln NO₃ plot. Although the water column was more stable during the 05/06 season and displayed progressive NO₃ utilisation tending towards a closed system, there is no available δ¹⁵N-NO₃ data to estimate the fractionation factor of NO₃ during N assimilation. NH₄ concentrations in surface waters also show a seasonal pattern, with winter values as low as 0.24 µM and summer values reaching as high as 4.49 µM. High NH₄ concentrations occur during the mid-season decline in biomass likely a result of grazing and then peak again at the end of the season when the phytoplankton and zooplankton in the surface water die and begin to degrade, producing NH₄.
Figure 5.5. Plots of (a) The surface water ln of nitrate (ln NO₃) versus δ¹⁵N-NO₃ during the 04/05 growing season (open circles for replicates and closed circles for mean of replicates) (b) Sea ice ln NO₃ versus δ¹⁵N-NO₃ during the 04/05 growing season (open circles for replicates and closed circles for mean of replicates) (c) the fraction of nitrate utilisation (u) versus δ¹⁵N-NO₃ in surface waters and (d) u versus δ¹⁵N_PON).

Time-series POC and PON profiles are similar to that of the chlorophyll profiles (Figure 5.4). During the 04/05 season, although the start of the field season was missed, POC peaks with chlorophyll in Dec 04 reaching 64 μM and then in sync with chlorophyll, declines to 21 μM in Jan 05; the mid season decline. The second peak of POC then occurs with chlorophyll in late Jan and early Feb 05 reaching 72 μM, before declining to winter values in Mar 05. During the 05/06 season, winter POC values of ~ 1 μM are observed during Sep and Oct, before increasing with the onset of sea ice retreat in late December, before peaking at 61 μM in mid-Jan 05. The mid-season decline occurred during late Jan and early Feb 05, with POC dropping to 36 μM. The second productivity peak occurring during mid Feb until early March, with
POC peaking at 53 μM before productivity declined at the end of the growing season. PON, as expected, shows very similar characteristics in surface waters over the two growing seasons, peaking with chlorophyll in Dec 04 at 11μM and then in sync with chlorophyll, declines to 4 μM in Jan 05; the mid season decline. The second peak of PON then occurs with chlorophyll in late Jan and early Feb 05 reaching 13 μM, before declining to winter values in Mar 05. During the 05/06 season, winter PON values of ~ 0.2 μM are observed during Sep and Oct, before increasing with the onset of sea ice retreat in late December, before peaking at 10 μM in mid-Jan 05. The mid-season decline occurred during late Jan and early Feb 05, with PON dropping to 4 μM. The second productivity peak occurring during mid Feb until early March, with POC peaking at 9 μM before productivity declined at the end of the growing season. POC/PON ratios are plotted in Figure 5.6 and show that the C/N ratio of particulate organic matter was 5.8, slightly below the Redfield Ratio of 6.6.

Figure 5.6. Surface water suspended POC against PON for all samples taken during this study. The fitted linear regression indicates an average C:N ratio of 5.8.
\[\delta^{15}N_{PON} \] profiles for surface waters are also presented in Figure 5.4. \[\delta^{15}N_{PON} \] showed an increasing seasonal pattern during the 04/05 growing season, with high variability believed to be brought on by inputs of fresh NO\(_3\) into the surface water. When sampling began in Dec 04, the \[\delta^{15}N_{PON} \] was initially 1.8 \% and then increased to 6.5 \% in early Feb 2005. During this period, there is a 'saw-toothed' shape to the profile, where decreases in \[\delta^{15}N_{PON} \] occur at the same time as increases in NO\(_3\), where fresh nutrients enter the system from vertical or lateral sources and decrease the \[\delta^{15}N \] of the NO\(_3\) pool. The increases and decreases in \[\delta^{15}N_{PON} \] and NO\(_3\) during this period are consistent with unstable water column resulting in frequent inputs of nutrient rich water into the surface during phytoplankton growth and N-utilisation. At the end of the growing season, the \[\delta^{15}N_{PON} \] decreases to \(~0 \%\) when phytoplankton growth falls to winter levels. During the 05/06 season, sampling began in Sep 05 under the sea ice, where \[\delta^{15}N_{PON} \] was initially 5.1 \% and increased to \(~6 \%\) prior to the onset of sea ice decay and the start of phytoplankton growth in the surface waters in late November, when \[\delta^{15}N_{PON} \] decreased to 1.7 \% with the onset of the spring bloom before rising again to 5.9 \% prior to the mid-season decline in chlorophyll, POC and PON. During the mid-season decline, \[\delta^{15}N_{PON} \] dropped to a season low of 0 \% before increasing during the second productivity peak and reaching a season maximum of 6 \% in late Feb 06. As the 05/06 growing season began to decline in mid Mar 06, \[\delta^{15}N_{PON} \] began to decrease in sync with chlorophyll, POC and PON. Although there are subtle increases and decreases in \[\delta^{15}N_{PON} \] during the 05/06 growing season, they are nowhere near the same magnitude as the 04/05 season. Similarly, the NO\(_3\) profile shows a clearer progression of NO\(_3\) depletion, with fewer and more subtle inputs of NO\(_3\) into the surface waters. This is consistent with the more stable water column, as described in Section 5.3.1.

Figure 5.5 also presents NO\(_3\) utilisation (\(u\)) versus \[\delta^{15}N-NO_{3} \] and \[\delta^{15}N_{PON} \] (Figure 5c and 5d respectively). Although there is a positive relationship between \(u\) versus \[\delta^{15}N-NO_{3} \] for the 04/05 season, there is no strong positive
The lack of a strong positive relationship between \(u \) and \(\delta^{15}\text{N}_{\text{PON}} \) for either season is caused by the effects of post production degradation processes occurring as a result of grazing by zooplankton and bacteria. This is particularly evident in the samples taken under the sea ice prior to the start of the growing season, where organic matter has a high retention time in the water column for degradation to occur (Lourey, et al., 2003). A further influence may have come from a change in the fractionation factor during N assimilation, but this remains speculative as the main controls on the fractionation factor of N assimilation are poorly constrained (Karsh, et al., 2003; Difiore, et. al., 2006).

5.3.4 Sinking Particulate C/N and \(\delta^{15}\text{N} \)

Appendices 8 and 9 and Figure 5.7 presents time-series sediment trap mass fluxes, C and N fluxes and the sinking particulate \(\delta^{15}\text{N}_{\text{org}} \) from the RaTS site and Deep site sediment trap moorings. The sediment traps were deployed on the 16th January, so the initial flux for the 04/05 season can not be accurately quantified. However, from Figure 5.8, fluorescence profiles from the 20th, 21st and 22nd of December 04, there are major peaks in fluorescence at depths below the thermocline, which suggests that this is when the flux of organic matter from the initial productivity peak took place (Clarke et al., 2007). The flux during Dec 04 probably included a significant proportion of the total seasonal flux, as much of this occurs soon after ice break up (Ducklow, et. al., 2007; Garrity, et. al., 2005).

In the RaTS site 200 m and 512 m traps, there were significantly higher mass flux levels and subsequent fluxes of POC and PON during the 04/05 season when there was high levels of nutrient input compared to the 05/06 season where the water column was more stable. In the RaTS 200 m trap during the partial coverage of the 04/05 growing season, dry mass flux from 26th Jan 05 until 1st April 05 totalled 79.3 g.m\(^{-2}\), with POC flux totalling 177 mmol C.m\(^{-2}\) and PON flux totalling 23 mmol N.m\(^{-2}\). In the RaTS 512 m trap over the same period, mass fluxes totalled 42.5 g.m\(^{-2}\), with POC flux totalling 92 mmol C.m\(^{-2}\)
and PON flux totalling 12 mmol N.m2. During the full coverage of the 05/06 growing season, fluxes appear to be much lower than the previous season. In the RaTS 200 m trap, mass fluxes from 1st Feb 06 to 1st Mar 06 totalled 40.9 g.m2, with POC fluxes totalling 54 mmol C.m2 and PON fluxes totalling 8 mmol N.m2. In the RaTS 512 m trap over the same period, mass fluxes totalled 6.4 g.m2, with POC fluxes totalling 12 mmol C.m2 and PON fluxes totalling 2 mmol N.m2.
Figure 5.7. Time-series plots of sediment trap material of mass fluxes (grey shaded area), C flux (closed symbols) and N flux (open symbols) (a) RaTS 200 m trap, (d) RaTS 512 m trap (c) Deep Site 123 m trap (d) Deep Site 745 m trap and (d) the nitrogen stable isotope composition of organic matter (δ¹⁵Norg) for the RaTS 200 m trap (closed circles) the RaTS 512 m trap (open circles) the Deep Site 123 m trap (closed triangles) and the Deep Site 745 m trap (open triangles).
In the Deep site 123 m and 745 m traps, there was less of an obvious difference between the two traps from the available data, as there was only partial coverage of the 04/05 season and as the mooring was lost, there is no data for the 05/06 season after mid Feb 06. Without surface water data for this area, it is difficult to constrain the exact levels of productivity, although satellite data (National Ice Centre NOAA) used for this region do show a similar behaviour of sea ice, which exerts control on the timing of the start of the growing season. In the Deep Site 123 m trap during the partial coverage of the 04/05 growing season, mass flux from 26th Jan 05 until 1st April 05 totalled 11.7 g.m^{-3}, with POC flux totalling 58 mmol C.m^{-2} and PON flux totalling 8 mmol N.m^{-2}. In the Deep Site 745 m trap over the same period, mass fluxes totalled 7.6 g.m^{-2}, with POC flux totalling 35 mmol C.m^{-2} and PON flux totalling 5 mmol N.m^{-2}. It is worth noting that in the Deep Site 123 m trap, there is continuous coverage of material throughout winter, with POC
and PON flux values consistently low until late December when sea ice begins to decay and recede and the onset of the surface water spring bloom. During the available coverage of the 05/06 growing season, the Deep Site 123 m trap showed significant mass fluxes from 29th Nov 06 to 14th Feb 06, the last time period of available data. During this period, mass fluxes totalled 17 g.m\(^{-2}\), with POC fluxes totalling 57 mmol C.m\(^{-2}\) and PON fluxes totalling 8 mmol N.m\(^{-2}\). In the Deep Site 745 m trap over the same period, mass fluxes totalled 20 g.m\(^{-2}\), with POC fluxes totalling 50 mmol C.m\(^{-2}\) and PON fluxes totalling 7 mmol N.m\(^{-2}\). Average C:N ratios in the two moorings were 6.2 at the RaTS site and 6.9 for the Deep site, which were very close to the Redfield Ratio.

Sediment trap coverage of both seasons also exhibits seasonal patterns of \(\delta^{15}N_{\text{org}}\). \(\delta^{15}N_{\text{org}}\) is initially \(\sim 4.5\%\) in late Jan 05 and drops to \(\sim 4.1\%\) at the start of Apr 05 at the end of the growing season in the 200m RaTS trap. The material trapped at the start of winter 05 (1 Apr – 1 May) then becomes enriched in \(^{15}N\) with \(\delta^{15}N_{\text{org}}\) rising to 5.5 \%. In the RaTS 512 m trap during this period, stable isotope data is only available until 21st Feb 05 but shows similar characteristics to the 200 m trap with \(\delta^{15}N_{\text{org}}\) initially 4.4 \% in late Jan and early Feb 05 and falling to 4.0 \% in Mar 05. During the full coverage of the 05/06 growing season, there were only 2 data points for the RaTS 200 m and RaTS 512 m trap due to the significantly low amount of flux during that growing season. Nonetheless these trap samples display similar features to the latter stages of the 04/05 growing season. In the RaTS 200 m trap \(\delta^{15}N_{\text{org}}\) is initially 4.1 \% in early Feb 06 when the flux first reaches the sediment traps and becomes depleted in \(^{15}N\) in late Feb and early Mar 06 where \(\delta^{15}N_{\text{org}}\) falls to 3.0 \%. A very similar trend is seen in the RaTS 512 m trap with \(\delta^{15}N_{\text{org}}\) initially 3.5 \% in early Feb 06 and becomes depleted in \(^{15}N\) in late Feb and early Mar 06 where \(\delta^{15}N_{\text{org}}\) falls to 2.9 \%.

The Deep Site 123 m trap offers more comprehensive coverage of the two growing seasons as there is significant flux throughout winter for elemental
and isotopic analysis, whereas the 745 m trap from the Deep Site mooring offers one data point for each season. During the latter period of the 04/05 season, the 123 m trap shows similar δ¹⁵N_{org} characteristics with δ¹⁵N_{org} initially 4.7 %o in late Jan and early Feb 05 and falling to 4.1 %o in Mar 05. The small amounts of material trapped between Mar and Jul 05 are consistently ~4.3 %o until sea ice cover ensues, when the material under the ice becomes more enriched in ¹⁵N, reaching a maximum value of 6.4 %o in late Dec 05 as sea ice begins to decay and recede with the onset of the spring bloom. Then as productivity begins to increase, δ¹⁵N_{org} falls to 2.61 %o in late Jan 06 when the initial flux of fresh bloom material reaches the trap. The last data point for this trap, which spans the first half of Feb 06 has a slightly higher δ¹⁵N_{org} value of 3.3 %o, slightly lower than the same time point for the RaTS traps of 3.5 %o. The Deep Site 745 m trap exhibits δ¹⁵N_{org} values of 4.1 %o from the trap cup covering late Jan and early Feb 05, which is slightly lower than the other three traps and displays the highest value for early Feb 06 of 5.35 %o, similar to that of material observed in the 123 m trap in late Dec 05.

5.4 Discussion

This study presents the first time-series investigation of its kind; in an attempt to assess the major controls on the seasonal nitrogen stable isotope biogeochemistry of the coastal Antarctic sea ice environment. We then assess the reliability of the δ¹⁵N composition of organic matter at the ocean surface, and its subsequent transfer to depth as a tracer for NO₃ utilisation. Then link between NO₃ drawdown and CO₂ drawdown is also assessed to investigate whether increased δ¹⁵N_{org} in sediments can be linked to the lowering of atmospheric CO₂ concentrations during glacial cycles as carbon sequestration. Although it is not necessarily suitable to apply the findings here to the open Southern Ocean, where the majority of Antarctic CO₂ drawdown may have took place during the onset of glacial periods (Anderson, et al., 2002), they do give insight into the mechanisms that may have occurred and how they affect the δ¹⁵N of organic matter.
5.4.1 Sea Ice Nitrogen Isotope Biogeochemistry

The sea ice data presented in this study gives a good indication of the major controls on the composition of organic matter that is eventually released into the water column once sea ice begins to decay and melt. The gradual increase in sea ice δ^{15}N$_{PON}$ with declining PON at the end of each seasonal cycle of sea ice, coupled with higher C/N ratios (Chapter 4) are consistent with decomposing organic matter within the ice matrix, as δ^{15}N is known to rise with particle degradation and organic nitrogen is known to decay at a faster rate than carbon (Deniro and Epstein, 1981; Minagawa and Wada, 1984; Saino and Hattori, 1980; 1987). In Figure 5.3, it is clear from the time series profile that the organic matter in sea ice initially has a δ^{15}N value similar to new production from winter δ^{15}N values of NO$_3$ (Sigman, et al., 1999), but then grows increasingly enriched in δ^{15}N with time until the ice disappears. Figure 5.9 presents the concentration of PON plotted against δ^{15}N$_{PON}$ values for sea ice and surface waters.

It is clear that two very different relationships exist between the two environments, with a weak positive correlation in surface waters, the effect of increased nutrient utilisation and subsequent enrichment of δ^{15}N$_{PON}$, and a perhaps somewhat surprising negative correlation in sea ice. This negative correlation in sea ice is consistent with the rate of degradation being far greater than that of production of PON. The correlations observed in sea ice are stronger ($R^2=0.44$ during 2004 and $R^2=0.47$ during 2005) in comparison to the surface waters ($R^2=0.26$). This is likely due to the dynamic nature of the surface waters in Ryder Bay, where nutrient inputs, ammonium based production and grazing pressure would have affected the δ^{15}N-NO$_3$ and δ^{15}N$_{PON}$. There is no evidence of significant nutrient input into the sea ice from underlying water, inferred from the time series data based on NO$_3$ and salinity, which is not surprising considering the closed or semi-closed nature of the sea ice matrix. This leaves high rates of grazing by heterotrophs, bacteria, and possibly foraminifera as the likely source of high degradation.
rates and increasing $\delta^{15}N_{\text{PON}}$ (Deniro and Epstein, 1981; Minagawa and Wada, 1984; Saino and Hattori, 1980; 1987).

If high nutrient utilisation was the main cause of increased $\delta^{15}N_{\text{PON}}$ in sea ice, we would expect to see similar increases in $\delta^{15}N$-NO$_3$. Although NO$_3$ utilisation in sea ice reached up to 95 %, the $\delta^{15}N$-NO$_3$ values were not as high as would be expected from intense nutrient utilisation (Sigman, et al., 1999). The lower $\delta^{15}N$-NO$_3$ in sea ice may have come from a combination of cell lysis and subsequent nitrogen remineralisation within the ice matrix which would decouple the expected relationship between \ln NO$_3$ and $\delta^{15}N$-NO$_3$ in

Figure 5.9. Comparative plots of PON and $\delta^{15}N_{\text{PON}}$ for (a) sea ice samples (grey circles for 04/05 season and black circles for 05/06 season) and (b) surface water samples at 15 m (grey circles for 04/05 season and black circles for 05/06 season).
Figure 5.5. The high O₂ concentrations in sea ice (generally > 10 mg O₂/L) would support the process of nitrification (the oxidation of NH₄ to NO₂ and then to NO₃). High NH₄ concentrations were observed in sea ice samples (up to 5 μM) that would provide the necessary substrate for this stepwise oxidation to NO₃ and ammonium oxidising bacteria have been observed in sea ice assemblages (Priscu, et al., 1990). In addition, the activity of nitrifying organisms is enhanced if they are attached to surfaces, with sea ice providing surfaces such as ice crystals, polysaccharide gels and other organisms.

High δ¹⁵N_PON and high C:N ratios of organic matter in sea ice is therefore attributed to post-production degradation processes occurring in the ice matrix. However, the lack of a similar increase in δ¹⁵N-NO₃ means that the increase in δ¹⁵N_PON can not be simply attribute to NO₃ utilisation, and must be affected by other processes relating to remineralisation. Therefore the argument that the higher stable isotopic composition of organic matter is produced by higher utilisation of dissolved nutrients in a closed or semi-closed system (Gibson, et al., 1999; Kennedy, et al., 2002), does not appear to be the main factor in this study.

5.4.2 Surface Water Nitrogen Isotope Biogeochemistry

The seasonal evolution of surface water δ¹⁵N_PON over the two growing seasons highlights the influence that different sea ice regimes can have on the surface water stability and nitrogen stable isotope biogeochemistry in the coastal Southern Ocean. The physical surface water properties (salinity, MLD), nutrient utilisation (u) and the nitrogen stable isotope composition of NO₃ and PON are summarised in Table 5.1. The average salinity in the upper 15 m of the water column over the two growing seasons was 0.4 PSU lower during the 04/05 season, indicating there was more freshwater in the system during the heavier sea ice year, which is also consistent with the high frequency observations of brash ice coverage in the bay (Figure 5.2) from daily observations. The effect of this freshwater input into the system is also
seen in the seasonal average mixed layer depths (MLDs). MLD is generally very shallow in Ryder Bay due to a freshwater lens forming in the upper 10 m of the water column, thus stabilising the rest of the water column (Clarke et al., 2007). The average MLD over the 04/05 season was 11.36 m and over the 05/06 season was 6.15 m. The on average shallower mixed layer depth therefore indicates a more stable surface ocean, with very few incidences of a lowering of the MLD over the growing season due to vertical mixing. Surprisingly, the contrasting conditions in the 04/05 and 05/06 seasons had little impact on the relative and average NO₃ utilisation, which were 90 % and 93 % respectively for relative utilisation and 62 % and 69 % respectively for average utilisation.

Figure 5.4 clearly shows the effect frequent inputs of nitrate rich water, seen in the 04/05 season, can have on the δ¹⁵N_PON composition of organic matter, with the saw toothed nature of the time-series profile of δ¹⁵N_PON and NO₃, where the system is tending towards steady state dynamics. In contrast, the 05/06 season NO₃ profile reflects a more stable “closed system” effect where NO₃ becomes steadily more depleted at the ocean surface over time, with very few incidences of NO₃ input. The δ¹⁵N_PON profile also displays a more stable seasonal progression, consistent with the closed system model. The early season material underneath sea ice is enriched in δ¹⁵N, which in previous studies has been attributed to the effects of biodegradation of particles (Lourey et al., 2003) and then at the onset of the spring bloom δ¹⁵N_PON decreases as utilisation of the fresh UCDW NO₃ begins, with the ¹⁴N-NO₃ preferentially utilised. There is then progression of δ¹⁵N_PON towards higher values over the course of the season, interrupted by negative shifts in δ¹⁵N_PON when the low frequency NO₃ inputs occur. Although not a fully “closed system” the surface waters were definitely more stable during the 05/06 season, and there are of course other factors affecting δ¹⁵N_PON to consider such as grazing, N recycling (Deniro and Epstein, 1981; Minagawa and Wada, 1984; Needoba, et al., 2006 Saino and Hattori, 1980; 1987) and ammonium based production (Altabet, et. al., 1988).
5.4.3 Nutrient Sources

Nutrient utilisation and the seasonal evolution of $\delta^{15}\text{N-NO}_3$ and $\delta^{15}\text{N}_{\text{PON}}$ is relatively easy to predict based on the assumption of either a fully closed system or a steady state system where nutrient inputs are continuous, if variables such as nutrient utilisation (u) and the fractionation factor (ϵ_r) are well constrained (Altabet and Francois, 2001; Lourey, et al., 2003; Sigman, et al., 1999b). However, the system in Ryder Bay is more dynamic and thus differs from most of the open Southern Ocean in several ways. Productivity levels and nutrient utilisation are generally much higher in coastal Antarctic regions on the continental shelf (Smith et al., 1998). There are also episodic injections of nutrients into the surface throughout the growing seasons (Figure 5.4), occurring more frequently during the 04/05 growing season. In order to accurately constrain nitrogen isotope excursions in the surface water, it is essential to know the source of the nutrient rich deeper water that is periodically mixed to the surface.

It is believed that the nutrients of surface waters in Ryder Bay come from Upper Circumpolar Deep Water (UCDW). To test whether these are in fact episodic inputs of UCDW to the surface that mixes nutrient rich water with the partially utilised water already at the surface, a two end-member isotope mass balance model was applied. This model utilises concentrations of NO$_3$ and the $\delta^{15}\text{N-NO}_3$ of the two water masses to model $\delta^{15}\text{N-NO}_3$ of the new water mass after mixing:

$$\delta^{15}\text{N-NO}_3^{\text{PRED}} = f_0(\delta^{15}\text{N-NO}_3^0) + f_N(\delta^{15}\text{N-NO}_3^N)$$

Where f_0 and $\delta^{15}\text{N-NO}_3^0$ refer to the fraction of NO$_3$ and the nitrogen stable isotopic composition of NO$_3$ of the partially utilised water mass, and f_N and $\delta^{15}\text{N-NO}_3^N$ refer to the fraction of NO$_3$ and the nitrogen stable isotopic composition of NO$_3$ of the new UCDW mixing into the surface. The results of this mixing model are presented in Figure 5.10. This model is only applied when there is an increase in NO$_3$ concentration between two measured time.
points, and the results are consistent with mixing of UCDW with a δ^{15}N-NO$_3$ value of $\sim 4.3 \%$ into the surface waters.

The predicted values tend to have lower δ^{15}N-NO$_3$ values based on the relationship in Figure 5.10a, which may be due to the fact that the model does not incorporate the possibility that partially NO$_3$ utilised UCDW may be entering the system, and utilisation of NO$_3$ that may have occurred after the mixing but before the discrete measurement.

![Graph](image)

Figure 5.10. Results from the two end-member isotope mass balance mixing model when NO$_3$ was added to surface waters (a) Measured δ^{15}N-NO$_3$ versus predicted δ^{15}N-NO$_3$ from the model and (b) Time series profile of measured (grey) versus predicted (black) δ^{15}N-NO$_3$.

5.4.4 NO$_3$ Utilisation and CO$_2$ Drawdown

To test the reliability of using δ^{15}N$_{PON}$ as a tracer for nutrient utilisation in general, Figure 5.11 compares δ^{15}N$_{PON}$ to pCO_2, a common tracer of CO$_2$ utilisation and drawdown. A decrease in pCO_2 and an increase in δ^{15}N$_{PON}$
show nutrient utilisation, and thus the pCO_2 profile is plotted in reverse to aid comparison. Figure 5.11a presents a time series profile of $\delta^{15}N_{PON}$ and pCO_2, and during the 04/05 season although there are certain periods where similar features are observed between the two parameters, there is generally little agreement between the two profiles, and this is confirmed by the lack of a negative correlation in Figure 5.11b. During the 05/06 season however, the two time series curves show very similar features over the course of the growing season, but again there is no significant correlation observed between the two data sets in Figure 5.11b.

![Figure 5.11](image)

Figure 5.11. (a) Time-series plot of $\delta^{15}N_{PON}$ and pCO_2 in surface waters (b) $\delta^{15}N_{PON}$ versus pCO_2 in surface waters during 04/05 season (open circles) and the 05/06 season (closed triangles) and (c) $\delta^{15}N_{PON}$ versus $t\,pCO_2$ in sea ice

This decoupling of the two nutrient utilisation proxies is likely due to processes such as air-sea CO$_2$ exchange, where CO$_2$ diffuses from the ocean to atmosphere when surface water pCO_2 is high and from atmosphere
to ocean when pCO_2 is low. Air-sea exchange of inorganic nitrogen is not considered to have a significant effect on the marine nitrogen cycle. Post-production degradation of PON also decouples the relationship between $\delta^{15}N_{PON}$ and pCO_2, where $^{14}N_{PON}$ loss will leave the remaining PON pool enriched in ^{15}N through kinetic fractionation, resulting in any assessment of NO$_3$ utilisation from the $\delta^{15}N_{PON}$ composition of organic matter being overestimated. This fundamental decoupling of C and N tracers for utilisation leads to a major uncertainty regarding using $\delta^{15}N$ composition of sediments to infer any processes involving carbon utilisation or export.

5.4.5 Sinking Particulate $\delta^{15}N$ and Export Fluxes

The sediment trap time-series profile of $\delta^{15}N_{org}$ shows the same characteristics seen in surface water $\delta^{15}N_{PON}$ (Figures 5.4 and 5.6), albeit the sediment trap changes are lagging surface waters by \sim3 weeks. During the latter period of the 04/05 season when sediment trap coverage starts, the surface water $\delta^{15}N_{PON}$ and sediment trap $\delta^{15}N_{PON}$ both vary between 4 and 6 $\%\sigma$ until productivity and export cease at the end of Feb and March 05 respectively. During Sep until Dec 05, $\delta^{15}N$ values underneath the ice between 5 and 6 $\%\sigma$ are observed in both surface waters and sediment trap material. These high $\delta^{15}N$ values underneath the ice during winter and early spring are attributed to organic material with a high surface water residence time and are thus composed of heavily degraded PON. $\delta^{15}N_{PON}$ is known to rise with particle degradation (Deniro and Epstein, 1981; Minagawa and Wada, 1984; Saino and Hattori, 1980; 1987), and this effect has been observed in other sediment trap studies in the Southern Ocean (Altabet and Francois, 2001; Lourey et al., 2003). At the onset of the spring bloom in late Nov 05, the decrease in $\delta^{15}N_{PON}$ to between 2 and 3 $\%\sigma$ occurs as a result of utilisation of NO$_3$ rich water, and this isotopic shift is also seen in the sediment trap material between mid Dec 05 until early Jan 06. The suspended organic matter then grows enriched in ^{15}N once NO$_3$ depletion occurs and this is also seen in the sediment traps until the flux of material ceases at the end of Feb 06. The organic material in the surface waters
during March were not exported to depth, suggesting that this material was retained in the stable surface water and efficiently remineralised, a situation common to this marginal ice zone region (Ducklow et. al., in-press).

Flux weighted average δ^{15}N$_{org}$ is summarised in Table 5.2, and is consistent with the flux weighted average surface water δ^{15}N$_{PON}$ value (seasonal flux weighted average values in Table 5.1). These seasonally integrated values from surface waters, sediment traps and surface sediments at the RaTS site are within 0.5 % of one another during the 04/05 season. During the 05/06 season, the seasonally integrated values from surface waters, sediment traps and surface sediments at the RaTS site are within 1 % of one another, excluding the Deep Site 745 m trap of which the material had a δ^{15}N$_{org}$ value of 5.35 %. This trap data consisted of one cup that caught sinking material during January 2005, and considering how deep this trap was situated, the material was likely composed solely of high δ^{15}N material from underneath the ice.

Table 5.2. Flux weighted averages of δ^{15}N$_{org}$ from sediment traps and surface sediment δ^{15}N$_{org}$ of surface sediments from box cores taken during each season.

<table>
<thead>
<tr>
<th>Season</th>
<th>RaTS 200m</th>
<th>RaTS 512m</th>
<th>Deep 123m</th>
<th>Deep 745m</th>
<th>RaTS Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Trap δ^{15}N$_{org}$</td>
<td>Trap δ^{15}N$_{org}$</td>
<td>Trap δ^{15}N$_{org}$</td>
<td>Trap δ^{15}N$_{org}$</td>
<td>Sediment δ^{15}N$_{org}$</td>
</tr>
<tr>
<td></td>
<td>(% vs air)</td>
</tr>
<tr>
<td>04/05</td>
<td>4.18</td>
<td>4.22</td>
<td>4.54</td>
<td>4.11</td>
<td>4.64</td>
</tr>
<tr>
<td>05/06</td>
<td>3.89</td>
<td>3.18</td>
<td>4.11</td>
<td>5.35*</td>
<td>3.88</td>
</tr>
</tbody>
</table>

* - Material from one sediment trap cup believed to be composed of material from under sea ice

5.4.6 Open versus Closed System δ^{15}N

Figure 5.12 presents the relationship between $\Delta \delta^{15}$N and the fraction of nitrate removal (u). $\Delta \delta^{15}$N is the difference between the flux weighted average sinking particulate δ^{15}N and the initial δ^{15}N-NO$_3$ for which 4.8 %, a published value for UCDW was used (Sigman et. al., 1999).
Figure 5.12. $\Delta \delta^{15}$N of material collected in time series sediment traps (triangles) and surface sediment δ^{15}Norg values from box cores (Circles) from 04/05 season (open symbols) and 05/06 season (closed symbols). Model lines show open system (grey) and closed system (black) nitrate utilisation scenarios, with different fractionation factors published for the Southern Ocean (6-8%).

The theoretical relationships for both a closed system and a steady state system of nutrient re-supply for continuous fractionation factors were also modelled (Sigman et al., 1999b) for previously estimated fractionation factors in the Southern Ocean of 6-8% (Sigman et al., 1999b; Altabet and Francois, 2001). When comparing the modelled data to the sediment trap and surface sediment data for the RaTS site, the annual sediment data from each season is consistent with the model (i.e. closed system and steady state system) applicable to the hydrographic conditions observed during that season. Data from the 04/05 season, which tended towards the steady state model with high frequency nutrient injections, generally fitted the steady state system model. In contrast, sediment data from the more stratified and stable surface waters of the 05/06 season were consistent with the closed system model (Figure 5.12). Due to the high relative nutrient utilisation observed during
both seasons, it was not possible to make a distinction between the fractionation factors modelled, and it is unclear if these fractionation factors were truly accurate, but the principle of this approach to make the distinction between the two different systems that were operating (closed and steady state) is clear.

These findings show that the fundamental mechanism of the δ^{15}N proxy for NO$_3$ utilisation works in this environment (i.e. the surface water signal is transferred and preserved in the sediment) with the seasonally integrated values consistent with models of a steady state and closed system for respective seasons. However, it is not appropriate to use the data for inferring changes in carbon drawdown, as the absolute amount of particulate carbon and nitrogen produced for export is controlled by the cumulative amount of available inorganic nutrients over the course of the growing season. This is clearly documented in this study by the fluxes of carbon and nitrogen being significantly higher during the 04/05 season, where the system was approaching the "steady state" model, than the fluxes during the 05/06 season, when the water column was approaching the "closed system" model.

The mechanism controlling these different productivity and export regimes appears to be the extent of sea ice, delivering freshwater to the surface ocean and increasing the stability of the water column. The results from this study therefore weaken the argument that increased δ^{15}N in glacial Southern Ocean sediments are connected to increased carbon drawdown and lowering of atmospheric CO$_2$ concentrations (Francois and Altabet, 1992; Francois, et al., 1997; Sigman, et al., 1999a), but are consistent with the hypothesis of reduced nutrient delivery to the ocean surface in the glacial Southern Ocean (Francois, et al., 1997; Kumar, et al., 1995).
5.5 Conclusions

The following conclusions were drawn from this study:

- Enrichment of 15N in sea ice is controlled by post-production decomposition processes rather than the effect of high nutrient utilisation.
- The stability of the surface waters, controlled by sea ice and other sources of freshwater input (e.g. glaciers), plays a significant role in the seasonal evolution of surface water δ^{15}N$_{PON}$ and total C and N export fluxes.
- The seasonally integrated δ^{15}N values from sediment traps and surface sediments are consistent with the "steady-state" nitrate utilisation during 04/05 and the "closed system" model during 05/06, reflecting the observed oceanographic characteristics of each season.
- Although the δ^{15}N value in sediment is consistent with the surface water δ^{15}N from the models, the proxy for utilisation of nitrate does not reflect the absolute changes in C export fluxes. It is therefore necessary to consider this scenario when making connections between nitrate utilisation and changes in atmospheric CO$_2$.

5.6 References

in the coastal Antarctic Sea Ice Environment. For submission to *Deep Sea Research Part II: Oceanographic Research Papers*.

6 Particulate Barium Transformations and Fluxes in the Continental Shelf Antarctic Sea Ice Environment

Abstract
The relationship between excess barium and organic carbon flux to the seafloor has made the use of marine sedimentary excess barite a popular tracer for paleoproductivity in recent decades. There are still, however, large gaps in the understanding of seasonal controls on particulate barium and barite formation in surface waters and at mesopelagic depths. This study presents high-resolution time-series measurements of barium in sea ice, surface waters, sediment traps and surface sediments, to highlight the processes that govern the seasonal flux of excess particulate barium and carbon to the seafloor. High concentrations of excess particulate barium are seen in sea ice, brought on by the continuous recycling of organic matter in the sea ice matrix, which is then released into the water column during sea ice decay and melting. There is then a clear seasonal cycle in the surface water production of particulate barium, with the excess barium pool dominated by “labile” particulate barium during new production. It is during the decay of organic matter during mid-season lags in primary productivity and at the end of the season when production declines that the particulate barium pool becomes dominated by barite. Although this material is a relatively small proportion of the total flux of particulate barium, it does give insight to the processes that eventually lead to the high Ba:C ratio of sinking material, produced as a result of organic carbon degradation and barite supersaturation at mesopelagic depths. The overall flux of excess particulate barium and carbon in sediment traps in this study is consistent with preliminary algorithms produced in previous studies, but we are able to produce a detailed conceptual model of the seasonal progression of particulate barium formation and transformations in the Antarctic sea ice environment.
6.1 Introduction

Barite formation in the marine water column and its flux to the seafloor appear linked to surface productivity and carbon export (Bishop, 1988; Dehairs et al., 1992; Dehairs et al., 2000; McManus et al., 1998). Thus the reconstruction of carbon export based on barium content of sediments may provide quantitative information about past changes in primary production (Francois et al., 1997; Ganeshram and Pedersen, 1998; Ganeshram et al., 1995). A host of previous studies utilising sediment traps monitoring fluxes of carbon and barium have produced preliminary algorithms linking the flux of biogenic barium to carbon export production (Dymond et al., 1992; Francois et al., 1995; McManus et al., 2002; Nurnberg et al., 1997). Seasonal and geographic variations in the relationship between carbon and barium fluxes have identified that additional factors influence the flux of barium per unit carbon. Therefore identifying and quantifying these factors is essential to develop a truly reliable paleoproductivity proxy. Studies of the global ocean based on water column profiles of dissolve barium have shown that barium is recycled like nutrients, with lower concentrations at the surface and enrichment at depth. This distribution results from the bio-intermediate nature of barium, with formation of particulate barium at the surface with dissolution at depth, but the exact mechanism of this process is still debated (Bernstein and Byrne, 2004; Bertram and Cowen, 1997; Ganeshram et al., 2003). There is evidence supporting the idea that biogenic microenvironments in sinking detritus provide favourable conditions for barite precipitation through supersaturation resulting from barium and sulphur release from decaying organic matter (Ganeshram et al., 2003; Monnin et al., 1999) and that processes such as trophic processing, faecal pellet packaging and particle aggregation may significantly enhance barite formation. Studies have shown that the relationships between barium and carbon fluxes vary in different oceanic regions (Francois et al., 1995), especially between continental shelf seas, continental margin environments and the open oceans (Dehairs et al., 2000; Francois et al., 1995; McManus et al., 2002). In the polar oceans, little attention has been paid to document the effects of seasonal sea ice cover on
the relationship between barium and carbon fluxes in these environments, ice cover can extend over large portions of the year and controls the timing of the growing season (Eicken, 1992), often resulting in short, episodic spring blooms in association with the melting sea ice. It is unclear how spring blooms and flux of material occurring in episodic ‘pulses’ may affect the yield of barite per unit carbon in sinking organic matter, but it has been suggested that it may reduce barite fluxes as the organic matter export in these environments occurs too rapidly to allow barite precipitation to attain completion (McManus et al., 2002).

There are no published studies investigating the behaviour of barium in Antarctic sea ice to date, which is surprising considering the influence sea ice has over productivity and particle flux (Arrigo et al., 1997; Garrity et al., 2005; Kim et al., 2005) and the use of barium as a paleoproductivity proxy in the Southern Ocean. Productivity within the sea ice matrix has the potential to produce a Ba:Corg relationship very different to that seen in surface waters. Primary production in sea ice often occurs in a closed or a semi-closed system within brine pockets and brine channels. This closed system effect can retain and degrade large quantities of organic matter produced within the ice matrix, a lot of which may be recycled for further production. Thus the relatively small brine channels and gap layers in sea ice are excellent candidates for barite formation, where barium and sulphur may reach levels high enough for barite precipitation during decay of organic matter. It is therefore essential to understand the biogeochemical cycling of barium in sea ice and monitor the release of barium from decaying and melting sea ice, bearing in mind that sea ice particle can account for a significant proportion of mass flux in the Southern Ocean (Arrigo et al., 1997).

Ganeshram, et al., (2003) developed a useful sequential leaching method for monitoring the behaviour of barium in decaying phytodetritus. This method uses sequential extractions of dilute HNO₃ for labile particulate barium, 30 % HCl for barite and hot conc. HNO₃ for particulate barium associated with
refractory organic matter. This method was applied to monitor barite growth and behaviour relative to other Ba phases in laboratory phytoplankton decay experiments. The results from the experiments revealed the presence of large pool of labile Ba in the fresh phytoplankton, which during decay was readily released and a proportion converted to barite (see Figure 6.1).

![Figure 6.1. Sequential leaching data showing particulate Ba transformations during decay of phytodetritus, courtesy of Ganeshram et al., (2003). Panels show Ba phases in freshly collected coastal phytoplankton bloom (a) and after 8 weeks of decay in the dark (b). Note that most Ba resides in the labile fraction (Deionised water + Dilute HNO₃ extraction) in the bloom material but mainly in the barite (HCl) and refractory fraction (Hot HNO₃) after decay indicating the loss of labile Ba and the production of barite during the decay process.]

This method can easily be transferred to time-series analysis of suspended particulate samples from sea ice and the surface ocean, to monitor the behaviour of barite and other particulate Ba phases over seasonal timescales. This chapter presents a high-resolution study of sea ice and surface water productivity and barium transformations, coupled with time series sediment trap and box cores to monitor the flux and sedimentation of carbon and barium. This study shows that sea ice particulate Ba concentrations are much higher than surface waters and have a higher \(\text{Ba}_{\text{XS}}:\text{C}_{\text{org}} \) ratio. In surface waters, there is a seasonal transition of the particulate barium pool, initially dominated by labile Ba to one dominated by barite as productivity declines and degradation of organic material ensues. Sediment trap data for this region show that the flux of Ba and C are
consistent with previous algorithms produced for the open ocean (Francois et al., 1995; Nurnberg et al., 1997).

6.2 Materials and Methods
Field work was conducted from November 2004 until March 2006 based at Rothera Research Station. During the field seasons, samples of sea ice brine were taken around Ryder Bay when sea ice was present and high resolution time series surface water samples were taken in Ryder Bay at the RaTS site (67°34.02'S, 68°14.02'W) during the spring and summer months, (see Figure 6.2) Low resolution sampling occurred during winter 2005.

Figure 6.2. Location of the RaTS site (white circle) of water sampling and the other sites used for sea ice sampling during this study (black circles).
Mooring arrays containing time-series sediment traps were deployed at the RaTS site and at a nearby deeper site in Marguerite Bay (67°55.39'S, 68°24.15'W). Table 6.1 presents mooring site locations and sampling durations for the traps.

Table 6.1. Details of each sediment trap including, deployment duration, location, water depth and total mass flux.

<table>
<thead>
<tr>
<th>Sediment Trap</th>
<th>Days</th>
<th>Lat. (°S)</th>
<th>Long. (°W)</th>
<th>Water Depth (m)</th>
<th>Start Date</th>
<th>End Date</th>
<th>Total Flux (mg.m².d⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RaTS A</td>
<td>385</td>
<td>67.3</td>
<td>68.1</td>
<td>200</td>
<td>26/01/05</td>
<td>14/02/06</td>
<td>309.307</td>
</tr>
<tr>
<td>RaTS B</td>
<td>385</td>
<td>67.3</td>
<td>68.1</td>
<td>512</td>
<td>26/01/05</td>
<td>14/02/06</td>
<td>121.471</td>
</tr>
<tr>
<td>Deep A</td>
<td>385</td>
<td>67.5</td>
<td>68.2</td>
<td>123</td>
<td>26/01/05</td>
<td>14/02/06</td>
<td>123.992</td>
</tr>
<tr>
<td>Deep B</td>
<td>385</td>
<td>67.5</td>
<td>68.2</td>
<td>745</td>
<td>26/01/05</td>
<td>14/02/06</td>
<td>71.366</td>
</tr>
</tbody>
</table>

6.2.1 Dissolved Ba Determination

Dissolved barium (Ba_dissolved) samples were taken from sea ice brine and surface waters at 15m. From sack holes in the sea ice, brine was drawn into an acid clean syringe and transferred to a clean 60 ml HDPE bottle preloaded with 125μL of Romil ultra-pure HCl. Samples were stored at +4°C in the dark until analysis. To prepare for analysis, 10 ml of sample was pipetted into a clean 15 ml Savillex® vessel and dried down on a hotplate at 90°C. When dry, ~5ml of Romil ultra-pure HF and ~0.5ml of Romil ultra-pure 50% (v/v) HNO₃ were added to each vessel, the lids were closed and vessels left on a hotplate at 100°C overnight. The lids were then removed and the solutions dried on a hotplate at 90°C. Once dry, ~3ml of Romil ultra-pure 50% (v/v) HNO₃ was added to each Savillex® vessel, the lids were closed and left on a hotplate at 100°C for 3 hours. The lids were again removed and the solutions were dried on a hotplate at 90°C. Once dry, ~3ml of Romil ultra-pure 30% (v/v) HCl was added to each Savillex® vessel, the lids were closed and vessels left on a hotplate at 100°C for 3 hours. The lids were removed and the solution was dried on a hotplate at 90°C. Once dry, the dry sample was resuspended in 10 ml of Romil ultra-pure 5% (v/v) HNO₃ for analysis.
6.2.2 Particulate Barium and Aluminium

Samples for particulate barium and aluminium were taken from sea ice brine and surface waters at 15m. From sack holes in the sea ice, brine was transferred to clean 15 L polypropelene carboys using a clean HDPE 1 L beaker. The samples were transported back to the lab and between 10 and 15 L were filtered through a 142 mm polycarbonate filter with a pore size of 0.45 μM. Surface water samples were pumped from 15 m using a 12 v dolphin pump and 15 m of silicone tubing weighted at the end. The samples were transported back to the lab and between 10 and 15 L were filtered through a 142 mm polycarbonate filter with a pore size of 0.45 μM. After filtration, the filters were folded into quarters and dried in plastic Petri-dishes at 50°C overnight and stored frozen in plastic zip locked bags.

6.2.3 Sequential Leaching of Barium

Sequential leaching experiments on 142 mm polycarbonate filters were conducted using a method modified from Ganeshrarn, et al., (2003). Dry filters were weighed and placed in 60 ml Savillex© vessels. The filters (and filter blanks) were subjected to the following sequential leaching steps and the extracted Ba termed as below in the text:

1. Water: Deionised water was first used to rinse any Ba associated with residual seawater. This step also extracts weakly sorbed Ba and Ba in the cytoplasm released during cell lysis. This step was conducted immediately after sample filtration to remove salts but was not analysed.

2. Dilute nitric acid extraction: 10 % (v/v) Romil ultra-pure HNO₃ was added to Savillex© vessels and they were kept at room temperature for 5 min to remove readily exchangeable and easily hydrolysable organic-bound Ba. This called the ‘labile Ba’ fraction

3. Hot hydrochloric acid extraction: 30 % (v/v) Romil ultra-pure HCl was added to Savillex© vessels which were kept at 80°C overnight to dissolve barite. This is called the ‘barite Ba’ fraction
4. Hot nitric acid extraction: 50 % (v/v) *Romil ultra-pure* HNO₃ was added to Savillex® vessels which were kept at 80°C overnight to oxidise refractory organic matter and release the associated Ba. This is called the ‘refractory Ba’ fraction

After each treatment step, the leachate was centrifuged and transferred to a drying vessel (60ml Savillex® vessel) and the extraction vessel was rinsed with *Romil ultra-pure* 5% (v/v) HNO₃ with the rinse also transferred to the drying vessel. The leachate was dried at 90°C concurrent with the following leaching step. Once dry, the leachates were resuspended in 10ml of *Romil ultra-pure* 5% (v/v) HNO₃ for analysis.

6.2.4 HF Digestion of Material

In order to dissolve all the remaining material in the sample of crustal origin, the samples underwent digestion by HF after the leaching procedure. Immediately after step 4 of the leaching procedure, ~10 ml of *Romil ultra-pure* HF and ~1 ml of *Romil ultra-pure* 50 % (v/v) HNO₃ were added to each extraction vessel. The lids were closed and vessels left on a hotplate at 100°C overnight. The lids were then removed and the solutions dried on a hotplate at 90°C. Once dry, ~10ml of *Romil ultra-pure* 50% (v/v) HNO₃ was added to each Savillex® vessel, the lids were closed and left on a hotplate at 100°C for 3 hours. The lids were again removed and the solutions were dried on a hotplate at 90°C. Once dry, ~10ml of *Romil ultra-pure* 30% (v/v) HCl was added to each Savillex® vessel, the lids were closed and vessels left on a hotplate at 100°C for 3 hours. The lids were removed and the solution was dried on a hotplate at 90°C. Once dry, the dry sample was resuspended in 10 ml of *Romil ultra-pure* 5% (v/v) HNO₃ for analysis. Aliquots of the international standard BC03-1 were routinely digested alongside unknown samples to monitor the efficiency of the digestion procedure, which was better than 95 %.

6.2.5 Sediment Trap Material and Surface Sediments

Sediments were dried using a freeze-drier and then ground to a fine powder using a mortar and pestle. Aliquots of dry, ground sediment were weighed
into clean 15 ml Savillex® vessels and underwent the HF digestion protocol described in section 2.4, to completely digest all sedimentary material for analysis.

6.2.6 Analysis of Barium and Aluminium

For Ba\textsubscript{dissolved} samples, the resuspended solutions (5% HNO\textsubscript{3}) were analysed by inductively coupled plasma mass spectrometry (ICP-MS) at the Scottish Universities Envrionmental Research Centre (SUERC) using a Plasma Quad 2+ ICP-MS. The instrument was calibrated with standard solutions and indium was used as an internal standard added at a rate of 10 ppb. Certified lake water SLRS-4 (CNRC-Canada) was routinely run with seawater samples to cross check the accuracy of the measurements. Ba\textsubscript{dissolved} samples were diluted by a factor of 20 in Romil ultra-pure 5% (v/v) HNO\textsubscript{3} for analysis. The analytical precision for the measurements was generally better than ± 5 %.

The resuspended solutions (5% HNO\textsubscript{3}) from leaching and HF digestions of suspended particles and sediments were analysed by inductively coupled plasma optical emission spectroscopy (ICP-OES) in The School of Geosciences, The University of Edinburgh using a Vista Pro ICP-OES. The instrument was calibrated with standard solutions and indium was used as an internal standard at a rate of 1 ppm. Certified lake water SLRS-4 (CNRC-Canada) was routinely run with seawater samples to cross check the accuracy of the measurements. Leachates were diluted appropriately in Romil ultra-pure 5% (v/v) HNO\textsubscript{3} for analysis. The analytical precision for the measurements was generally better than ± 2 %.

6.2.7 Ba\textsubscript{XS} Determination

The following formula was used to determine the concentrations of Ba\textsubscript{XS} in suspended particles and sediments. This fraction is defined as Ba in excess of crustal abundance and expected to consist of organic and barite bound Ba

\[
Ba_{\text{XS}} = Ba_{\text{Total}} - (Ba:Al_{\text{Terrigenous}} \times Al_{\text{Total}})
\]
There Ba_{Total} is the total concentration of Ba in the sample, $Ba:Al$ is the crustal ratio of Ba:Al in the region and Al_{Total} is the total concentration of Al in the sample.

6.2.8 Suspended Particulate Organic Carbon

Bulk suspended particulate organic carbon (POC) was measured using a method similar to Lourey et al., (2004). Surface water samples were collected using a dolphin pump and silicone tubing from 15 m, water was pumped into acid cleaned HDPE carboys. All water samples were stored in the dark until reaching the lab where they were then processed (<2 h after sampling). Measured volumes of water were filtered through a 47 mm GF/F filter (Whatman 1825 047) using a positive pressure filtration rig custom built by The University of Edinburgh, the system was acid cleaned with HCl prior to each sampling event and was rinsed thoroughly with distilled water between filtrations in any one event. Filters containing particulate material were then dried overnight at 50°C in a clean oven. Once dry, filters were folded in half and stored in aluminium foil at -20°C until analysis. Duplicate filtrations were taken for each sample. To prepare for elemental analysis, filters were removed from the freezer, re-wet with a few drops of Milli-Q water and placed in a dessicator containing an open beaker of HCl for ~48 h to dissolve any carbonates present. The filters were then dried at 50°C for 4 h and cut in half, before excess GF/F filter was removed and the remaining halves of filter material were packed into tin cups for analysis.

POC was analysed using a Carlo Erba NA 2500 elemental analyser using acetonilide as a reference material. Analytical precision for these measurements was consistently better than ± 2 %. Analyses were conducted at the School of Geosciences, The University of Edinburgh.
6.3 Results

6.3.1 Crustal Ba:Al Determination

As many of the sediment trap and box core Ba:Al ratios were below the generally quoted global average crustal ratio of 0.0075, it is clear that this value is not appropriate for this region of the Western Antarctic Peninsula. Reitz et al. (2004) conducted a study of sediment samples from various sites around the global ocean and found many crustal values reported in the past were not necessarily accurate and quoted a global average Ba/Al of 0.0037. A Southern Ocean crustal Ba:Al ratio of 0.0067 was reported for the Weddell Sea (Nurnberg et al., 1997), but again this was significantly above many of the bulk Ba:Al ratios of sediments analysed in this study.

In order to estimate the maximum possible crustal Ba:Al ratio in the Ryder Bay and Marguerite Bay area, Ba was plotted against Al for all samples and linear regression was used to best fit the lowest Ba:Al ratios observed in all sediment samples, this is presented in Figure 6.3. A maximum crustal Ba:Al ratio of 0.0042 was estimated and used to calculate Bax_xs throughout this study.

To test the validity of this assumption and the efficiency of the leaching procedure, total leachable Ba from the leaching experiments plotted against the Bax_xs concentration calculated from bulk Ba and Al measurements and is also presented in Figure 6.3. A good correlation ($R^2 = 0.81$) is observed between the two concentrations with a slope of 1.28, which suggests that the efficiency of leaching experiments was acceptable and the Bax_xs mainly consist of organic and barite bound Ba.
Figure 6.3. (a) Plot of Al versus Ba to estimate the terrigenous Ba:Al ratio in the Ryder Bay Region. The Ba:Al ration was calculated using the slope of the line fitted to the lowest observed Ba:Al ratio (b) Plot of total leachable Ba from leaching experiments against Bio-Ba calculated from bulk Ba and Al concentrations. The linear regression line is set at an intercept of zero.

6.3.2 Surface Waters and Sea Ice

In Figure 6.4, time series profiles of chl-a and Ba_{XS} covering the duration of this study are presented, and surface water Ba and POC data from 15 m are presented in Table 6.2.
Figure 6.4. Time series profiles of surface water chlorophyll-a concentrations and biogenic barium (Ba_{XS}) over the two growing seasons sampled during this study. Grey bar indicates sea ice coverage.

Ba_{XS} concentrations in surface waters ranged from 0.71 to 8.59 µg/g during the 04/05 season and from 0.23 to 9.73 µg/g during the 05/06 field season.

Surface water (15 m) POC concentrations ranged from 1580 to 6609 µmol during the 04/05 field season and from 2101 to 5125 µM during the 05/06 field season. Ba_{XS} was produced in the surface waters during the highly productive, short growing season in Ryder Bay.

There is no positive correlation between levels of Ba_{XS} and POC, there is in fact a negative correlation when comparing Ba_{XS}:POC against POC, that is presented with a best fit polynomial curve in Figure 5.
<table>
<thead>
<tr>
<th>Date</th>
<th>Sample</th>
<th>Dissolved</th>
<th>Ba (ppb)</th>
<th>Ba (µg g⁻¹)</th>
<th>Al (µg g⁻¹)</th>
<th>Ba_XS (µg g⁻¹)</th>
<th>POC (µmol g⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>08/12/04</td>
<td>RaTS-002</td>
<td>10.14</td>
<td>3.44</td>
<td>123.47</td>
<td>3.75</td>
<td>4980.69</td>
<td></td>
</tr>
<tr>
<td>10/12/04</td>
<td>RaTS-003</td>
<td>8.56</td>
<td>4.86</td>
<td>137.04</td>
<td>5.20</td>
<td>2929.14</td>
<td></td>
</tr>
<tr>
<td>13/12/04</td>
<td>RaTS-004</td>
<td>9.76</td>
<td>3.40</td>
<td>43.88</td>
<td>3.51</td>
<td>4854.33</td>
<td></td>
</tr>
<tr>
<td>15/12/04</td>
<td>RaTS-005</td>
<td>9.72</td>
<td>2.14</td>
<td>41.40</td>
<td>2.25</td>
<td>5233.48</td>
<td></td>
</tr>
<tr>
<td>29/12/04</td>
<td>RaTS-008</td>
<td>10.17</td>
<td>2.44</td>
<td>71.37</td>
<td>2.62</td>
<td>5217.10</td>
<td></td>
</tr>
<tr>
<td>05/01/05</td>
<td>RaTS-010</td>
<td>8.38</td>
<td>2.65</td>
<td>160.98</td>
<td>3.06</td>
<td>2433.60</td>
<td></td>
</tr>
<tr>
<td>10/01/05</td>
<td>RaTS-012</td>
<td>8.78</td>
<td>0.71</td>
<td>26.55</td>
<td>0.77</td>
<td>4971.39</td>
<td></td>
</tr>
<tr>
<td>13/01/05</td>
<td>RaTS-013</td>
<td>10.79</td>
<td>1.74</td>
<td>103.88</td>
<td>2.00</td>
<td>2468.31</td>
<td></td>
</tr>
<tr>
<td>19/01/05</td>
<td>RaTS-015</td>
<td>9.82</td>
<td>6.59</td>
<td>311.66</td>
<td>7.37</td>
<td>4674.73</td>
<td></td>
</tr>
<tr>
<td>21/01/05</td>
<td>RaTS-016</td>
<td>8.74</td>
<td>1.84</td>
<td>83.16</td>
<td>2.05</td>
<td>6609.05</td>
<td></td>
</tr>
<tr>
<td>28/01/05</td>
<td>RaTS-017</td>
<td>8.18</td>
<td>2.82</td>
<td>523.47</td>
<td>4.13</td>
<td>3108.10</td>
<td></td>
</tr>
<tr>
<td>01/02/05</td>
<td>RaTS-018</td>
<td>8.96</td>
<td>2.06</td>
<td>216.00</td>
<td>2.60</td>
<td>6005.41</td>
<td></td>
</tr>
<tr>
<td>12/02/05</td>
<td>RaTS-019</td>
<td>8.67</td>
<td>5.14</td>
<td>81.57</td>
<td>5.35</td>
<td>1682.56</td>
<td></td>
</tr>
<tr>
<td>21/02/05</td>
<td>RaTS-020</td>
<td>7.85</td>
<td>3.53</td>
<td>469.85</td>
<td>4.70</td>
<td>2068.62</td>
<td></td>
</tr>
<tr>
<td>28/02/05</td>
<td>RaTS-021</td>
<td>8.92</td>
<td>3.44</td>
<td>408.90</td>
<td>4.46</td>
<td>1579.83</td>
<td></td>
</tr>
<tr>
<td>14/03/05</td>
<td>RaTS-022</td>
<td>8.67</td>
<td>8.59</td>
<td>808.67</td>
<td>10.61</td>
<td>2135.26</td>
<td></td>
</tr>
<tr>
<td>23/12/05</td>
<td>RaTS-027</td>
<td>8.11</td>
<td>1.24</td>
<td>159.29</td>
<td>1.64</td>
<td>2648.40</td>
<td></td>
</tr>
<tr>
<td>04/01/06</td>
<td>RaTS-029</td>
<td>8.71</td>
<td>0.84</td>
<td>111.86</td>
<td>1.12</td>
<td>2262.64</td>
<td></td>
</tr>
<tr>
<td>10/01/06</td>
<td>RaTS-031</td>
<td>8.84</td>
<td>0.23</td>
<td>92.59</td>
<td>0.46</td>
<td>4240.82</td>
<td></td>
</tr>
<tr>
<td>19/01/06</td>
<td>RaTS-033</td>
<td>8.76</td>
<td>1.02</td>
<td>129.20</td>
<td>1.34</td>
<td>5124.75</td>
<td></td>
</tr>
<tr>
<td>24/01/06</td>
<td>RaTS-034</td>
<td>8.68</td>
<td>2.84</td>
<td>219.83</td>
<td>3.39</td>
<td>4540.56</td>
<td></td>
</tr>
<tr>
<td>30/01/06</td>
<td>RaTS-035</td>
<td>8.97</td>
<td>4.84</td>
<td>729.75</td>
<td>6.66</td>
<td>2867.53</td>
<td></td>
</tr>
<tr>
<td>10/02/06</td>
<td>RaTS-037</td>
<td>8.69</td>
<td>2.77</td>
<td>303.39</td>
<td>3.53</td>
<td>2926.02</td>
<td></td>
</tr>
<tr>
<td>20/02/06</td>
<td>RaTS-039</td>
<td>8.73</td>
<td>1.65</td>
<td>1037.97</td>
<td>4.25</td>
<td>3652.66</td>
<td></td>
</tr>
<tr>
<td>27/02/06</td>
<td>RaTS-041</td>
<td>8.27</td>
<td>1.49</td>
<td>356.79</td>
<td>2.38</td>
<td>4274.16</td>
<td></td>
</tr>
<tr>
<td>04/03/06</td>
<td>RaTS-042</td>
<td>8.63</td>
<td>2.86</td>
<td>1036.29</td>
<td>5.45</td>
<td>2891.49</td>
<td></td>
</tr>
<tr>
<td>08/03/06</td>
<td>RaTS-043</td>
<td>8.88</td>
<td>7.69</td>
<td>1443.99</td>
<td>11.31</td>
<td>2274.85</td>
<td></td>
</tr>
<tr>
<td>13/03/06</td>
<td>RaTS-045</td>
<td>8.54</td>
<td>9.73</td>
<td>2056.54</td>
<td>14.87</td>
<td>2100.92</td>
<td></td>
</tr>
</tbody>
</table>
Sea ice Ba and POC data are presented in Table 6.3, Ba_{xs} concentrations ranged from 5.42 to a very high 64.33 µg/g, which is over 6 times greater than the maximum surface water Ba_{xs} concentration. Sea ice POC concentrations were also generally higher than surface water POC concentrations and ranged from 3522 to 17317 µmol/kg. Like the surface waters, there was a negative correlation between levels of Ba_{xs} and POC, also presented in Figure 6.5 with a best fit polynomial curve.

Table 6.3. Sea ice dissolved Ba, particulate Ba, particulate Al, Ba_{xs}, and POC data from sea ice in Ryder Bay.

<table>
<thead>
<tr>
<th>Date</th>
<th>Sample</th>
<th>Dissolved Ba (ppb)</th>
<th>Ba (µg.g$^{-1}$)</th>
<th>Al (µg.g$^{-1}$)</th>
<th>Ba_{xs} (µg.g$^{-1}$)</th>
<th>POC (µmol.g$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/12/04</td>
<td>SI-001</td>
<td>0.765</td>
<td>43.17</td>
<td>420.64</td>
<td>41.40</td>
<td>17316.54</td>
</tr>
<tr>
<td>15/12/04</td>
<td>SI-003</td>
<td>1.02</td>
<td>17.76</td>
<td>690.25</td>
<td>14.86</td>
<td>10167.26</td>
</tr>
<tr>
<td>17/12/04</td>
<td>SI-004</td>
<td>12.69</td>
<td>69.40</td>
<td>756.42</td>
<td>66.22</td>
<td>10556.79</td>
</tr>
<tr>
<td>19/12/04</td>
<td>SI-005</td>
<td>3.76</td>
<td>23.66</td>
<td>182.27</td>
<td>22.90</td>
<td>8718.51</td>
</tr>
<tr>
<td>24/11/05</td>
<td>SI-010</td>
<td>2.53</td>
<td>6.41</td>
<td>147.15</td>
<td>5.79</td>
<td>4356.47</td>
</tr>
<tr>
<td>28/11/05</td>
<td>SI-011</td>
<td>10.03</td>
<td>18.11</td>
<td>277.81</td>
<td>16.95</td>
<td>4298.39</td>
</tr>
<tr>
<td>06/12/05</td>
<td>SI-013</td>
<td>2.85</td>
<td>43.35</td>
<td>196.14</td>
<td>42.52</td>
<td>3522.34</td>
</tr>
<tr>
<td>20/12/05</td>
<td>SI-015</td>
<td>1.18</td>
<td>10.16</td>
<td>234.14</td>
<td>9.18</td>
<td>5060.28</td>
</tr>
</tbody>
</table>
Table 6.4 and Figure 6.6 present sequential leaching experiment data from the RaTS site at 15 m during the 04/05 season, 05/06 season and from sea ice samples used in this study. During the 04/05 season, sampling commenced during the mid-season decline in chl-a and POC, a feature also observed during the 05/06 season. Sequential leaching data from 8 Dec 04 until 5 Jan 05 during the decline of the chlorophyll peak, the barite fraction is higher than the labile fraction. Then from the 10 Jan 05 until 1 Feb 05, the labile Ba becomes the more dominant fraction in response to the second chlorophyll peak. Towards the end of the season when productivity declines, the period of 12 Feb 05 until the end of sampling for the 04/05 season (14 Mar 05), barite once again becomes the dominant fraction, reaching a maximum of 68 % of the leachable Ba pool. The Ba associated with refractory organic matter is generally much lower than that of labile Ba and barite, apart from the samples taken 10 Dec 04, and 13 Dec 04 where there is dominant enrichment of refractory Ba. Enrichment of refractory Ba also occurs at the end of the season when productivity declines and barite becomes the dominant fraction. During the 05/06 field season, sampling commenced while sea ice still covered Ryder Bay (see Figure 6.6b). The sequential leaching data show that in surface waters under sea ice and early after its retreat (23 Dec 05 until 4 Jan 06), barite is the dominant Ba fraction reaching 58 % of the leachable Ba pool. When the open water spring bloom begins, the labile Ba fraction generally becomes dominant from 10 Jan 06 until 4 Mar 06 in response to productivity, ranging from 45 to 75 % of the leachable Ba pool, apart from during mid-January when the mid-season decline in chlorophyll occurs and barite becomes the Ba phase at the highest concentration. After 04 Mar 06, the barite fraction begins to increase as productivity starts to decline and from 08 Mar 06 until the end of season sampling (13 Mar 06), barite becomes the dominant portion of total Ba\textsubscript{xs} reaching 56 % of the leachable Ba pool. The Ba associated with refractory organic matter is generally lower than that of labile Ba and barite, with enrichment of refractory Ba towards the end of the season when productivity declines and barite becomes the dominant fraction. Sequential leaching data
for sea ice samples, presented in Figure 6.6, show concentrations of total leachable Ba in sea ice are an order of magnitude higher than seen in the surface waters. The data also display high variability in the proportions of labile Ba and barite, with refractory Ba contributing a very small proportion of total Ba.
Table 6.4. Sequential leaching experiment data for surface water and sea ice samples.

<table>
<thead>
<tr>
<th>Date</th>
<th>Surface Waters</th>
<th>Sea Ice</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S1 (10 % HNO₃)</td>
<td>S2 (Hot 30 % HCl)</td>
</tr>
<tr>
<td></td>
<td>B₃AXS (µg.g⁻¹)</td>
<td>B₃AXS (µg.g⁻¹)</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>08/12/04</td>
<td>0.87</td>
<td>0.69</td>
</tr>
<tr>
<td>10/12/04</td>
<td>0.66</td>
<td>1.50</td>
</tr>
<tr>
<td>13/12/04</td>
<td>0.80</td>
<td>0.72</td>
</tr>
<tr>
<td>15/12/04</td>
<td>0.74</td>
<td>0.88</td>
</tr>
<tr>
<td>29/12/04</td>
<td>0.64</td>
<td>0.92</td>
</tr>
<tr>
<td>05/01/05</td>
<td>1.11</td>
<td>1.22</td>
</tr>
<tr>
<td>10/01/05</td>
<td>0.30</td>
<td>0.14</td>
</tr>
<tr>
<td>13/01/05</td>
<td>0.47</td>
<td>0.33</td>
</tr>
<tr>
<td>19/01/05</td>
<td>1.03</td>
<td>0.55</td>
</tr>
<tr>
<td>21/01/05</td>
<td>0.63</td>
<td>0.26</td>
</tr>
<tr>
<td>28/01/05</td>
<td>1.57</td>
<td>1.07</td>
</tr>
<tr>
<td>01/02/05</td>
<td>0.96</td>
<td>0.42</td>
</tr>
<tr>
<td>12/02/05</td>
<td>0.93</td>
<td>3.30</td>
</tr>
<tr>
<td>21/02/05</td>
<td>0.89</td>
<td>1.39</td>
</tr>
<tr>
<td>28/02/05</td>
<td>0.75</td>
<td>2.12</td>
</tr>
<tr>
<td>14/03/05</td>
<td>1.41</td>
<td>4.31</td>
</tr>
<tr>
<td>23/12/05</td>
<td>0.80</td>
<td>1.10</td>
</tr>
<tr>
<td>04/01/06</td>
<td>0.50</td>
<td>0.69</td>
</tr>
<tr>
<td>10/01/06</td>
<td>0.36</td>
<td>0.19</td>
</tr>
<tr>
<td>19/01/06</td>
<td>0.95</td>
<td>0.30</td>
</tr>
<tr>
<td>24/01/06</td>
<td>1.52</td>
<td>1.80</td>
</tr>
<tr>
<td>30/01/06</td>
<td>3.68</td>
<td>1.36</td>
</tr>
<tr>
<td>10/02/06</td>
<td>2.95</td>
<td>0.80</td>
</tr>
<tr>
<td>20/02/06</td>
<td>2.80</td>
<td>0.85</td>
</tr>
<tr>
<td>27/02/06</td>
<td>1.54</td>
<td>0.88</td>
</tr>
<tr>
<td>04/03/06</td>
<td>3.32</td>
<td>2.03</td>
</tr>
<tr>
<td>08/03/06</td>
<td>3.13</td>
<td>5.21</td>
</tr>
<tr>
<td>13/03/06</td>
<td>3.16</td>
<td>5.92</td>
</tr>
</tbody>
</table>
Figure 6.6. Data from sequential leaching experiments from (a) the 04/05 field season (b) the 05/06 field season, dashed lines represent NO₃ concentration (c-d)Data from sequential leaching of sea ice samples (black bars labile fraction, red bars barite and green bars refractory fraction)
Sea ice samples were collected mainly early in austral spring of the two sampling years when sea ice was still present (Table 6.3; Figure 6.6 black bars). In all but 2 of the sea ice samples (SI-003 and SI-010), the labile portion of Ba is the dominant fraction. In SI-003 and SI-010, barite enrichment is greater than that of labile Ba at 54 and 83 % barite respectively.

Figure 6.7 presents plots of the Ba\textsubscript{XS}:POC ratio and chl-a concentration for surface waters and sea ice. The trends show a decline in Ba\textsubscript{XS}:POC during increases in Chl-a and an increase in Ba\textsubscript{XS}:POC during Chl-a decline. During the 2004/2005 season, Ba\textsubscript{XS}:POC ratios range from 0.02 to 0.50. Ba\textsubscript{XS}:POC ratios stay relatively low during the growing season with subtle increases during periods where chl-a concentration declines. Interestingly the Ba\textsubscript{XS}:POC ratios reach their maximum values at the end of the season when biomass declines and reaches winter values (RaTS-019 to RaTS-022). During the 2005/2006 season, Ba\textsubscript{XS}:POC ratios range from 0.01 to 0.71, with similar features to the 2004/2005 field season. Ba\textsubscript{XS}:POC ratios stay relatively low when there are high standing stocks of chl-a, but increases during periods of biomass decline particularly towards the end of the season. In sea ice, the Ba\textsubscript{XS}:POC ratio ranges from 0.13 to 1.21, and lacks any clear relationship with Chl-a concentrations.

In Figure 6.5, The fitted exponential curves for sea ice and surface waters show that the reduction in POC leads to an increase in Ba\textsubscript{XS}:POC from the system. In addition, the high Baxs:POC samples often have barite as the dominant form of Ba\textsubscript{XS} and fall during periods of declining biomass in mid season or late in the season when productivity declines (Figure 6.7).

The increase in Ba\textsubscript{XS} and barite in low POC samples is associated with declining biomass and lends support to the idea of progressive barite enrichment during organic matter decay, so far only documented in laboratory phytoplankton decay experiments (Ganeshram et. al., 2003).
Figure 6.7. Time series plots of Ba$_{xs}$:POC ratio (grey area) and chl-a concentration (green line) to depict increases in Ba relative to POC during different periods of productivity during the study (a) 2004/2005 season (b) 2005/2006 season and (c) sea ice samples.
6.3.3 Sediment Traps

Time series mass fluxes and fluxes of Ba_{XS} are presented in Figure 6.8 and are summarised in Table 6.5. Mass fluxes exhibit typical high seasonality with high fluxes during austral summer when sea ice retreats and little or no flux during austral winter when productivity and particle flux almost ceases.

The shallow (123m) trap at the deep mooring site does however exhibit significant particle flux throughout winter, likely due to the trap being above the deep winter mixed layer, where the few biogenic particles that are present are not exported to depth. Mass fluxes and Ba_{XS} fluxes show similar trends over the deployment period, which is not surprising as the mass fluxes and carbon content of the sediment are tightly coupled to one another indicating that a high proportion of the material in the sediment cups is of biogenic origin. Mass fluxes in the deep traps are much lower than the fluxes in shallower traps (Table 6.1). This suggests there was no great influence of resuspended or laterally advected material in the deeper sediment traps to affect the signal of vertical flux at these sites.

It has been consistently observed that Ba_{XS} fluxes increase with depth in both sediment trap studies (Dymond et al., 1992) and surface sediment data (Schenau et al., 2001). Annual flux in Table 6.5 generally show the trends expected for change in carbon and Ba_{XS} flux with depth. Carbon fluxes decrease with depth due to loss of C_{org} from biodegradation while sinking. Ba_{XS} fluxes tend to increase with depth, due to barite precipitation in decaying organic matter during sinking, although this increase is not monotonic throughout the water column. There is a reduction in Ba fluxes in the RaTS 512 m trap compared to the deep site 123 m and RaTS 200 m trap. This relationship is also highlighted by the $\text{Ba}:\text{C}_{\text{org}}$ ratio of the traps (Table 6.5).
Figure 6.8. Time series profiles of sediment trap mass fluxes (grey area) and Ba$^{+}$S fluxes (circles) for (a) The RaTS site 200 m trap (b) RaTS site 512 m trap (c) The deep site 123 m trap and (d) The deep site 745 m trap.
Table 6.5. Annual fluxes in sediment traps used for this study. Annual fluxes are calculated from 26 January 2005 until 14 February 2006.

<table>
<thead>
<tr>
<th>Sediment Trap</th>
<th>C<sub>org</sub> Flux (μmol.g<sup>-1</sup>.m<sup>2</sup>.d<sup>-1</sup>)</th>
<th>Ba Flux (μg.m<sup>-2</sup>.d<sup>-1</sup>)</th>
<th>Al Flux (mg.m<sup>-2</sup>.d<sup>-1</sup>)</th>
<th>Ba<sub>XS</sub> Flux (μg.m<sup>-2</sup>.d<sup>-1</sup>)</th>
<th>Ba/C<sub>org</sub> x100 (μg.μmol<sup>-1</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RaTS Site 200m</td>
<td>6991.76</td>
<td>101.33</td>
<td>18.54</td>
<td>23.51</td>
<td>0.336</td>
</tr>
<tr>
<td>RaTS Site 512m</td>
<td>3071.62</td>
<td>37.96</td>
<td>6.64</td>
<td>10.09</td>
<td>0.328</td>
</tr>
<tr>
<td>Deep Site 123m</td>
<td>4963.80</td>
<td>28.44</td>
<td>3.33</td>
<td>14.45</td>
<td>0.291</td>
</tr>
<tr>
<td>Deep Site 745m</td>
<td>2626.70</td>
<td>35.59</td>
<td>2.73</td>
<td>24.14</td>
<td>0.919</td>
</tr>
</tbody>
</table>

Figure 6.9 presents the relationship between the flux of Ba_{XS} and the flux of organic carbon in individual trap cups for the shallow and deep traps. Both plots show an expected positive relationship, i.e. increasing Ba_{XS} yield with increasing carbon flux, although there is a high degree of scatter amongst the different traps. From these plots the data from individual cups show that the yield of Ba_{XS} per unit of carbon is higher for the deeper traps than that of the shallower traps. The lack of a tightly coupled Ba_{XS} flux versus C_{org} flux between traps suggests that water depth has an influence on Ba_{XS} yield. This data set, spanning the majority of two seasons, indicates that the Ba:C_{org} varies considerably over seasonal timescales. The main observations from the sediment trap data include; enrichment of Ba_{XS} relative to carbon with depth (Figures 6.9 and 6.10), high seasonality is observed with higher Ba_{XS}:C_{org} ratios occurring in the austral winter and early spring months (Figure 6.10) and the decrease in Ba:C_{org} during periods of very high carbon flux (Figure 6.11).
Figure 6.9. Sediment trap plots of organic carbon flux and BaxS for (a) The RaTS site 200 m trap and deep site 123 m trap (b) The RaTS site 512 m trap and deep site 745 m trap.

Although there is a fair amount of scatter in the C$_{org}$ flux versus BaxS flux (Figure 9), there is an average flux of 30.4×10^{-3} μg BaxS per μmol C (with a range of 5.8×10^{-3} to 186.6×10^{-3} μg BaxS per μmol C), whereas in the deeper traps there is an average of 71.4×10^{-3} μg BaxS per μmol C (with a range of 28.1×10^{-3} to 167.6×10^{-3} μg BaxS per μmol C). Although there is a >2 fold difference between the average C$_{org}$ flux versus BaxS flux in the shallow and deep traps, these still fit in with 'typical' global values of 20-50 $\times 10^{-3}$ μg BaxS per μmol C (Dymond and Collier, 1996).
Although there is generally an increase in $\text{Ba}_{\text{iS}}:\text{C}_{\text{org}}$ with depth (Figure 6.10) and differences approach an order of magnitude in some cases, this increase with depth is not always observed. For example, at the onset of sea ice retreat and the spring bloom at the RaTS site, there is a decrease in $\text{Ba}_{\text{iS}}:\text{C}_{\text{org}}$, whereas in all other sediment trap cups there is an increase with depth. The high seasonality observed in the sediment trap time series has implications for how the flux regime in a seasonally sea ice covered region like Ryder Bay and Marguerite Bay may affect the overall $\text{Ba}_{\text{iS}}:\text{C}_{\text{org}}$ ratio of sinking particles. These regions are typified by a short growing season where most of the flux of material occurs as a pulse soon after sea ice retreat (Clarke and Leakey, 1996; Clarke et al., 2007; Ducklow et al., 2007). These pulsed blooms are thought to reduce the yield of Ba_{iS} per unit carbon because fast sinking large diatoms or organic matter aggregates are removed from the water column too quickly for the complete formation of particulate barite (McManus et al., 2002). In Figure 6.11 the observation of a reduction in Ba_{iS} yield during high carbon flux is evident from the negative

Figure 6.10. Time series plots of sediment trap $\text{Ba}:\text{C}_{\text{org}}$ ratios for (a) The RaTS mooring sediment traps and (b) The deep site mooring sediment traps.
The relationship between Ba_{XS}:C_{org} and C flux, for both the shallow and deeper traps.

![Figure 6.11. Plot of organic carbon flux versus Ba_{XS}:C_{org} ratio in all sediment traps deployed during this study.](image)

6.3.4 Box Cores

Surface sediment from the RaTS site box core has a Ba_{XS}:C_{org} ratio of 0.0570 and from the box core at the deep mooring site the Ba_{XS}:C_{org} ratio is 0.3491, which are significant increases from the sediment trap Ba_{XS}:C_{org}.

6.4 Discussion

We present the first time series leaching experiments that monitor the transformations of particulate barium in sea ice and surface waters on a seasonal timescale. Our results show significantly higher standing stocks of Ba_{XS} in sea ice compared to surface waters, the growth of barite in surface waters in association with degrading phytodetritus and an expected increase in the flux of Ba_{XS} to depth with decreasing C_{org} that is consistent with previous published algorithms (Francois et al., 1995).

6.4.1 Sea Ice Associated Particulate Ba_{XS}

The concentrations of Ba_{XS} in the form of labile particulate Ba, barite and refractory bound Ba (Figures 6.4 and 6.6) in sea ice brine are the first
measurements of their kind and show concentrations an order of magnitude higher than surface waters. The data open up some interesting possibilities regarding the role of sea ice in the formation and flux of particulate barium on a seasonal timescale. This topic has received no attention in the Southern Ocean, which is surprising considering that in seasonally sea ice covered areas productivity associated with sea ice can account for up to 25% of total production (Arrigo et al., 1997). A recent laboratory experiment (Ganeshram et al., 2003) proved that barite formation occurs as a result of decaying phytoplankton by utilising time series sequential leaching measurements of phytoplankton in carboys. The conditions in this experiment are analogous to the processes that would occur in sea ice as a result of the growth and decay of diatom assemblages within the ice matrix. A continuous cycle of organic matter formation and degradation may partly explain why there is more Ba\textsubscript{XS} in sea ice compared to surface waters and the high Ba\textsubscript{XS}:C\textsubscript{org} ratio. Another possible factor influencing the high Ba\textsubscript{XS} content of sea ice is the effect of transparent exopolymer particles (TEP). Such TEP particles are formed from the coagulation and continuous aggregation of dissolved polysaccharide fibrillar precursors in the DOM pool and are known for promoting aggregation of organic matter and the formation of marine snow during the early stage of phytoplankton decay (Alldredge et al., 1993). Sea ice as a habitat exhibits conditions favourable for significant TEP formation and high concentrations have been measured in the interior of ice floes (Krembs and Engel, 2001; Meiners et al., 2003). It has been hypothesised that the TEP particles in decaying organic matter may provide ion-exchange sites for Ba and may be involved in the precipitation of barite in microenvironments supersaturated with Ba bound to TEP and sulphate released by decaying organic matter (Alldredge et al., 1993; Ganeshram et al., 2003).

Regardless of the mechanisms producing such high Ba\textsubscript{XS} concentrations in sea ice, the high Ba\textsubscript{XS}:C\textsubscript{org} ratios in sea ice along with the quantities of readily formed barite have the potential to influence the yield of Ba\textsubscript{XS} per unit carbon in sinking particles. This possibility, however, is very hard to identify in
sediment trap studies as most of the flux of organic matter from surface water phytoplankton blooms occur during or very shortly after sea ice retreat or melt (Clarke et al., 2007; Garrity et al., 2005), masking the compositional difference of sea ice material. There is evidence from the shallow trap (123m) at the deep mooring site that sea ice associated material may be having an effect on the Ba$_{\text{org}}$ composition of sinking particles. During late austral winter and early spring, sea ice can reach the percolation threshold allowing transfer of brine within the ice matrix and ice floes become more porous, resulting in exchange of water and materials between ice brine and the underlying surface water (Perovich et al., 2004). This effect would render the ice matrix as a semi-closed system, rather than a closed system and may permit the flux of material formed or altered in the sea ice to be exported to depth. The highest sediment trap Ba$_{\text{org}}$ ratios occur in the 123m deep site trap during late winter and early spring (Figure 6.10), at the time when the ice starts to deteriorate during the onset of spring. Although these high Ba$_{\text{org}}$ ratios could result from the effect of higher residence time of particles in the water column during low flux period where barite precipitation may be more efficient, it is also possible that sea ice material may be playing a role. More high resolution sampling of sea ice and underlying surface waters is needed to provide more information on the processes occurring here.

Another interesting possibility yet to be fully investigated, is that barite formation in sea ice may occur through abiotic precipitation of dissolved Ba and dissolved sulphate (SO$_4^{2-}$). Salinity of brine in sea ice can reach concentrations $>$100 PSU (Gleitz et al., 1995), which could result in brine pockets reaching concentrations of dissolved Ba and SO$_4^{2-}$ high enough to cause such precipitation. This hypothesis works on the same fundamental theory of supersaturation of dissolved Ba and SO$_4^{2-}$ being expelled from decaying organic matter. To test this hypothesis, future material from sea ice could be examined by scanning electron microscopy to observe the morphology of barite crystals present. It has been observed in the past that
abiotic barite crystals are larger, pointier and more irregular in shape compared to barite crystals of biogenic origin (Bertram and Cowen 1997).

6.4.2 Surface Water Barium Seasonality

The concentration of Ba_{XS} in the form of labile particulate Ba, barite and refractory bound Ba (Figures 6.4 and 6.6) in surface waters are the first measurements of their kind and show a clear seasonal cycle of Ba_{XS} formation and evolution of the different phases of Ba_{XS} associated with organic matter (Figures 6.4, 6.6 and 6.7). This time-series data set provides important information regarding the processes occurring is surface waters prior to the sinking of particles and formation of the sedimentary Ba_{XS} signature.

Ganeshram et al., (2003) concluded that transformations observed in Ba phases and the growth of barite crystals in decaying phytoplankton cultures, indicate that the decay of organic phytoplankton material is directly involved in the formation of barite. The data presented here from surface water time series leaching experiments is consistent with this mechanism of barite formation, with labile Ba associated with fresh organic matter formed during primary production and the growth of barite during periods where phytoplankton decay occurs. The effects of grazing by zooplankton such as krill and copepods may also enhance the formation of barite in surface waters prior to export. This would occur through processes such as faecal-pellet packaging, which would increase the availability of microenvironments for the retention of Ba and sulphate released during phytoplankton decay to facilitate barite precipitation (Ganeshram et al., 2003).

The seasonal formation of labile Ba during early season primary production and barite formation at the end of the season appears to be influenced by processes associated with sea ice retreat and mixing of water masses. During the 05/06 season the water column was enriched with barite relative to labile Ba (Figure 6.6b) prior to and just after sea ice retreat. This was likely associated with either degradation of fresh phytoplankton material
underneath the ice or with the release of barite rich material from sea ice. It is unlikely that the material underneath the ice was enriched in barite as there was a significant amount of new primary production occurring underneath the ice at this time (Figure 6.4), so that pool of Ba was probably dominated by labile Ba, we therefore attribute the barite enrichment in surface waters early in the season to release of barite enriched material from sea ice. A different situation is observed at the start of sampling during December 2004 during the 04/05 field season. Although sea ice had retreated and the growing season was underway, sampling commenced during a reduction in chlorophyll following the first productivity peak that occurred during November 2004 (Figure 6.5 and 6.7). This may explain why barite was the dominant Ba_{XS} fraction during this period as the recession in chlorophyll may be associated with degradation of phytoplankton providing suitable microenvironments for barite precipitation. It is likely that the observed drops in chlorophyll from both seasons are facilitated by grazing, with such trophic processing enhancing barite formation, but this possibility remains speculative due to lack of grazing data.

The mixing of water masses through upwelling and/or lateral transport also appears to affect the seasonal progression of a Ba_{XS} pool dominated by labile Ba to one dominated by barite. This process can be traced by the behaviour of nutrients such as nitrate. In Figure 7, periods of nutrient utilisation tends to be accompanied by enrichment of labile Ba, indicating biological uptake or abiotic adsorption of Ba onto organic matter followed by degradation of this matter (possibly accelerated by grazing) and growth of the barite fraction. However, the mixing of water masses and resulting nutrient inputs, observed as spikes in the nitrate profiles, suggest that this step-wise process is altered by new material entering the system that is composed of different proportions of the leachable Ba fractions.
6.4.3 Sinking Particulate Ba$_{XS}$

An expected enrichment in Ba$_{XS}$ with depth occurs in Ryder Bay and Marguerite Bay (Figure 6.12), consistent with observations seen in many other studies in the open ocean as well as continental shelf or margin environments (Dehairs et al., 1992; Dehairs et al., 2000; Dehairs et al., 1997; Dehairs et al., 1991; Dymond and Collier, 1996; Dymond et al., 1992; Fagel et al., 1999; Fagel et al., 2004; Francois et al., 1995; Jacquet et al., 2006; McManus et al., 1998). However, due to the relatively short deployment period and sediment traps at only two locations, it is difficult to assess the reproducibility of Ba$_{XS}$ flux relative to carbon over longer timescales where sea ice cover and export fluxes can be highly variable (Ducklow et al., 2007; Ducklow et al., 2006), such interannual variability in carbon flux has been implicated in decoupling the Ba$_{XS}$ flux versus carbon flux relationship in other coastal Antarctic environments such as the Ross Sea (McManus et al., 2002).

![Figure 6.12. Annual C$_{org}$:Ba$_{XS}$ ratios from sediment traps in this study.](image)
The key issue surrounding the use of Baxs in sediments is to be able to confidently relate Baxs fluxes to organic carbon fluxes, a process that is poorly constrained in continental shelf regions and margins (Fagel et al., 2004; McManus et al., 2002) in contrast to the open ocean (Dymond and Collier, 1996; Francois et al., 1995). Although a high degree of scatter is observed in the Baxs flux versus Cor fluxes in individual trap cups (Figure 6.9), plotting the annual flux of Cor and Baxs in the traps alongside preliminary algorithms published by Francois et al. (1995) and Nurnberg et al. (1997) show that the flux of Baxs and Cor in this region are consistent with these algorithms (Figure 6.13).

It appears then, that the algorithms published for the open ocean are indeed suitable for the continental shelf, Antarctic sea ice environment, to reconstruct C flux based on sedimentary Baxs concentration. However, these results should be treated with caution as other similar environments, such as the Ross Sea (McManus et al., 2002), do not exhibit such a coherent relationship.

![Figure 6.13. Correlations between sediment trap Baxs export and carbon export from this study (RaTS 200 m trap red square; RaTS 512 m trap red circle; deep site 123 m trap blue square; deep site 745 m trap blue circle), compared to algorithms from Francois et. al., (1995) (solid line), Nurnberg et. al., (1997) for the open ocean and Dehairs et. al., (1992) for margin algorithm. Insert at top right shows an enlargement of where the data points from this study lie.](image-url)
More time series studies in continental shelf Southern Ocean regions are needed to better constrain factors affecting the flux of C and Ba$_{XS}$. Based on our findings, we present a conceptual model of the biogeochemical cycling of Ba in the coastal, Antarctic sea ice environment, which is presented in Figure 6.14 (overleaf).
<table>
<thead>
<tr>
<th>(a) Winter</th>
<th>(b) Late Winter</th>
<th>(c) Spring</th>
<th>(d) Summer/Autumn</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 6.14. Conceptual model of Ba Cycling in coastal Antarctic sea ice environment.
The conceptual model presented in Figure 6.14 describes the following processes occurring in the Ba cycle in the coastal Antarctic sea ice environment:

Winter - Low levels of fresh production in sea ice matrix (green) with low $\text{Ba}_{\text{XS}}:\text{C}_{\text{org}}$ composed mainly of labile Ba. A small amount of particulate material is held in the deep winter mixed layer that has a high $\text{Ba}_{\text{XS}}:\text{C}_{\text{org}}$ ratio from efficient biodegradation of organic material (brown) forming barite through precipitation.

Late Winter - During late winter, the biogenic material in sea ice goes through rapid degradation and production cycles, resulting in high standing stocks of Ba_{XS}, barite and refractory bound Ba. Primary production starts in surface waters below, where the material has a low $\text{Ba}_{\text{XS}}:\text{C}_{\text{org}}$ and is composed mainly of labile Ba.

Spring - During early spring, the summer shallow mixed layer forms, sea ice retreat seeds highly degraded organic material containing high Ba_{XS}, barite and refractory bound Ba to surface waters. This mixes with fresh organic material produced by the spring bloom, which has a low $\text{Ba}_{\text{XS}}:\text{C}_{\text{org}}$ ratio and is composed mainly of labile Ba. This is the time of high standing stocks of phytoplankton in the shallow mixed layer, and the highest period of export flux where fresh surface water organic material degrades while sinking, forming larger aggregates, and an increase of $\text{Ba}_{\text{XS}}:\text{C}_{\text{org}}$ with depth occurs due to barite precipitation during organic matter degradation. During the highly productive spring bloom, barite can also be formed in surface waters by degrading organic matter and barite precipitation during periods of grazing and hiatuses in production, resulting in the Ba pool becoming enriched in barite and refractory bound Ba. This period can also be influenced by upwelling of nutrient rich water which can “reset” the step wise process of labile Ba formation and barite precipitation in the euphotic zone.
Summer/Autumn - During summer and autumn, production declines and the organic material in surface waters becomes highly degrading resulting in an increase in $\text{Ba}_{\text{XS}}:\text{C}_{\text{org}}$ and the Ba pool to become dominated by barite through precipitation and enriched in refractory bound Ba.

6.4.4 Conclusions

The main conclusions drawn from this study are as follows:

- Ba_{XS} formation in surface waters appears related to productivity, but appears to peak during periods of early decay of phytoplankton when barite is formed.
- Standing stocks of Ba_{XS} in sea ice are consistently an order of magnitude higher than surface waters and display higher than average Ba:POC ratios than surface waters.
- The formation of barite in the water column appears to be linked to the decay of organic matter and precipitation of barite in supersaturated micro-environments.
- The flux of Ba_{XS} relative to carbon in the coastal Antarctic sea ice environment is consistent with algorithms published for the open ocean.
- The conceptual model described in this chapter provides detail on particulate Ba transformations and fluxes in response to sea ice cover and productivity over a full seasonal cycle.

6.5 References

Ducklow, H.W., Erickson, M., Kelly, J., Smith, R.C., Stammerjohn, S.E., Vernet, M., Karl, D.M., 2007. Particle flux from the upper ocean over the continental shelf of the Western Antarctic Peninsula: A long term record,

7 Reconstructing paleoproductivity throughout the Holocene: A case study from Adélie Land, East Antarctica

Abstract
Marine sediment cores with high accumulation rates are attractive to ocean and climate scientists, as they present an opportunity to study changes in paleoproductivity, ocean circulation, sea ice extent and seasonality at very high resolution. Piston core MD03-2601, retrieved from a depression in the Dumont D'Urville Trough in East Antarctica presents a 40 m long Holocene core with an average sedimentation rate of 0.4 cm yr\(^{-1}\). However, this core was severely influenced by sediment focusing (\(\psi\)). Therefore, to be able to accurately quantify mass fluxes in this region, careful correction using \(^{230}\)Th normalisation was carried out. Using the corrected preserved fluxes, carbon, opal and excess Ba (\(\text{Ba}_{\text{XS}}\)) flux reconstructions were carried out to test the validity of using such proxies on a core heavily affected by \(\psi\). In addition, \(\text{Mo}_{\text{auth}}\) and \(\text{U}_{\text{auth}}\) were used to monitor the redox conditions in the sediment, to identify where the \(\text{Ba}_{\text{XS}}\) record may have been compromised as preservation of the \(\text{Ba}_{\text{XS}}\) signal in reducing sediments is highly variable and can decouple from the actual carbon flux this tracer is supposed to record. The results show increased levels of productivity and export production during the mid-Holocene warm period based on the carbon and opal fluxes, with sedimentary conditions becoming periodically reducing during these high flux periods, although the increasing paleo-oxygenation of deep waters during this period probably helped to prevent full anoxia ensuing. The reducing conditions, however, precluded the use of the \(\text{Ba}_{\text{XS}}\) proxy as a quantitative tracer of carbon flux, although it did appear to trace some of the changes in carbon flux over the Holocene. In addition, we observe decoupling of the carbon and opal proxies, with increased opal:carbon ratios during the mid-Holocene warm period occurring as the larger diatoms such as \(F. \text{kerguelensis}\) dominating during this warmer period of reduced sea ice extent. This study therefore highlights how sediment cores heavily affected by \(\psi\) can be useful for tracing changes in paleoproductivity at high resolution.
7.1 Introduction

Reconstructing past productivity regimes in the Southern Ocean is of great importance in order to understand how it influenced or responded to changes in climate, for example during the different climatic periods of the Holocene (Hodell, et al., 2001; Nielsen, et al., 2004) or on glacial to interglacial timescales (Anderson, et al., 2002; Sigman and Boyle, 2000). A wide variety of elemental and isotopic tracers have been developed and used on the many sediment cores taken in the Southern Ocean to detect changes in various ocean processes including: productivity, nutrient utilisation, sea ice extent, vertical mixing and macronutrient and micronutrient availability (Anderson et al., 1998; Bentaleb et al., 1996; Crosta et al., 2005a; Crosta et al., 1998; Crosta and Shemesh 2002; Crosta et al., 2004; De La Rocha et al., 1998; Elderfield and Rickaby, 2000; Ellwood and Hunter, 2000; Francois and Altatabet, 1992; Francois et al., 1997; Kumar et al., 1995; Nurnberg et al., 1997; Robinson et al., 2005; Rosenthal et al., 2000; Wolff et al., 2006).

Core MD03-2601 taken from the Dumont d’Urville trough, East Antarctica, is a 40 m long sequence of laminated diatom ooze that covers the Holocene period and has an exceptionally high sedimentation rate. The goal of this study was to study a suite of paleoproxies on this core in an attempt to accurately constrain paleoproductivity during the different climatic periods of the Holocene. The Holocene period in this region is divided into four general climatic phases: an early Holocene warm period (8.5-11 cal ka BP), an early Holocene cool event (7-8.5 cal ka B.P.), a mid-Holocene warm period (3.5-7 cal ka B.P.), and a late Holocene Neoglacial (1.0-3.5 cal ka B.P), (Crosta et al., 2007).

Cores with a high sedimentation rates are attractive to paleoceanographers as they provide the chance to study sediment records at very high resolution, thus providing the chance to better constrain the interactions between Antarctic atmosphere, oceans, sea ice and glaciers, deep ocean circulation and teleconnections between high and low latitudes. Unfortunately, such
cores are more often than not affected by processes such as sediment focusing that may significantly interfere with reconstructing vertical accumulation rates and subsequent estimations of carbon and opal export and lead to problems constructing an accurate age model. This is a case study to assess the validity of elemental based export flux reconstructions in core MD03-2601.

7.2 Proxies
The following proxies for productivity and redox sensitive elements were used for the multi-proxy assessment of this core.

The carbon content of sediment cores has been widely used as a paleoproductivity proxy in the global ocean (Chase et al., 2003; Crosta et al., 2005b; Crosta et al., 2002; Ganeshram et al., 1995). This proxy works on the assumption that the preserved carbon in the sediment can be used in conjunction with the mass accumulation rate (MAR) to calculate the export of carbon to the deep ocean, although great care must be taken when determining the mass accumulation rates (Francois et al., 2004). The carbon proxy should be used carefully as it is use as a paleoproductivity tracer assumes a consistent level of preservation over time, with variable preservation limiting the quantitative value of such reconstructions.

The opal content of sediment cores has also been a popular tool for paleoproductivity reconstructions in the global ocean (Chase et al., 2003; Bareille et al., 1998; Ganeshram and Pedersen, 1998). This proxy works on the same calculation principle as carbon, and is a useful additional tool for studying regions dominated by diatoms to assess the export of silicate from the surface ocean. Once again, care should be taken with this tracer of paleoproductivity as the reconstruction assumes a consistent level of preservation over time though some attempts have been made to correct for differential preservation (Dézileau et al., 2000).
Barite formation in the marine water column and its flux to the seafloor appear linked to surface productivity and carbon export (Bishop 1988; Dehairs et al., 1992; Dehairs et al., 2000; McManus et al., 1998). Thus the reconstruction of carbon export based on barium content of sediments may provide quantitative information about past changes in primary production (Francois et al., 1997; Ganeshram and Pedersen, 1998; Ganeshram et al., 1995). A host of previous studies utilising sediment traps monitoring fluxes of carbon and excess Ba (barium of biogenic origin – BaxS) have produced preliminary algorithms linking the flux of biogenic barium to carbon export production (Dymond et al., 1992; Francois et al., 1995; McManus et al., 2002; Nurnberg et al., 1997). Although relationships between Ba flux and organic carbon flux are poorly constrained in near shore areas (Dehairs et al., 2000; Fagel et al., 1999; Francois et al., 1995), a recent sediment trap study in the Western Antarctic Peninsula (Carson et al., in-prep) has identified that BaxS and carbon flux show relationships that are consistent with the previously published preliminary algorithms (Dymond and Collier, 1996; Francois et al., 1995). This study therefore uses sedimentary BaxS as a tracer for changes in carbon flux to the sea floor.

Both Authigenic molybdenum (Mo_{auth}) and authigenic uranium (U_{auth}) enrichments are associated with the delivery of carbon to the seafloor and dissolved oxygen content at the sediment water interface (McManus, et al., 2006; Morford et, al., 1999; Morford, et al., 2005). When low sedimentary dissolved oxygen leads to reducing conditions, soluble U (VI) is reduced into insoluble U(IV), resulting in U_{auth} precipitation (McManus, et al., 2006). Similarly, Mo_{auth} in reducing sediments is precipitated in the presence of sulphur (Calvert and Pedersen, 1993) where soluble Mo is converted to a more particle reactive thiomolybdate (Erickson and Helz, 2000; Zheng et al., 2000) which are scavenged from sulphur containing organic material, or reacts in association with Fe-S phases (Erickson and Helz 2000; Helz, et al., 1996). In highly reducing and carbon rich sediments, the degree of Mo_{auth} enrichment compared to carbon delivery to the seafloor has been observed
to be much higher than that of U_{auth} (McManus et al., 2006), thought to be as a result of increased sulphur cycling and removal of Mo from pore waters with no change in reduction of $U(VI)$. These redox sensitive elements are therefore used in to trace any changes in redox conditions in core MD03-2601.

7.3 Materials and Methods

Piston Core MD03-2601 was retrieved from the Dumont D'Urville Trough, Adélie Land East Antarctica during the Images X cruise in February 2003. The core was retrieved aboard the Marion Dufresne II at 66°03.07'S, 138°33.43'E at a water depth of 746 m (Figure 7.1).

![Figure 7.1](image_url)

Figure 7.1. Location of core MD03-2601, limit of summer sea ice, location of glaciers and ice streams, detail of oceanographic currents and different water masses. DDU Dumont d'Urville Base; ACC, Antarctic Circumpolar Current; MCDW, Modified Circumpolar Deep Water, HSSW, High Salinity Shelf Water. Winter sea ice covers the whole oceanic area encompassed by the map.

The Dumont d'Urville Trough is composed of a number of small depressions reaching a maximum depth of 1000 m (De Santis et al., 2003) that each act
as “funnels” for sinking organic material produced in the area, which improves preservation of phytoplankton cells, that are here mainly composed of diatoms (Wright and van den Enden, 2000). Core MD03-2601 is composed of diatom ooze that alternated between structureless green ooze and green to dark green laminations of millimetre to centimetre thickness (Denis et al., 2006).

7.3.1 Age Model
We use the same age model described in Denis et al., (submitted), that used the Calib 5.0 software, the marine calibration Marine04 and a reservoir age of 1300 years as advised for this region. Core MD03-2601 records the last 11-1 cal ka BP period with an average sedimentation rate of 0.4 cm.yr\(^{-1}\).

7.3.2 Diatom Census Counts
Diatoms were identified every 4 to 8 cm providing a 10 to 20 year resolution (Crosta et al., 2007). Diatom counts followed Schrader and Gersonde (1978) and Laws (1983). More details about slide preparation, diatom identification and are found in Crosta et al., (2004). Around 350 diatom valves were counted in each sample and the relative abundance of each was determined as the fraction of diatom species against total diatom abundance in the sample, here the *Fragilariopsis kerguelensis* are extracted from the total diatom counts.

7.3.3 Organic Carbon and Biogenic Opal Measurements
Organic carbon measurements were conducted every 4 cm to 8 cm. The method is described in (Crosta et al., 2005a). Organic carbon content was measured using a Carlo Erba 2500 elemental analyser. Results were checked for internal consistency using calibrated laboratory standards such as Acetanilide, Glycine and Casein. The mean standard deviation of the carbon content is ±0.03%.

Biogenic opal measurements were conducted every 32 cm. Biogenic opal measurements follow a protocol slightly modified from Mortlock and Froelich,
(1989) in which biogenic opal was dissolved in a 0.5 M NaOH solution. Absorbance of the samples was measured each hour for 5 hours to build a dissolution curve (Muller and Schneider, 1993) and then calibrated using five standards of increasing silica concentration and a blank. More details can be found in Crosta et al. (2005a).

7.3.4 Elemental Analysis

Elemental analyses were determined using the methods described in (Fitton, et al., 1998) at 32 cm resolution for aluminium (Al), molybdenum (Mo) and barium (Ba). Standard deviations are 0.05 % for Al, 5.8 % for Mo, and 5 ppm for Ba. Although it should be noted that major element precision is governed more by reproducibility in making the glass disc than by counting statistics.

Excess barium, or Ba_{XS} (also known as biogenic barium) was calculated using the following formula (Francois, et al., 1995),

$$\text{Ba}_{\text{XS}} = \text{Ba}_{\text{total}} - (\text{Ba}/\text{Al}_{\text{terrestrial}} \times \text{Al}_{\text{total}})$$

Where Ba_{total} is the total barium content of sediment, $\text{Ba}/\text{Al}_{\text{terrestrial}}$ is 0.0067 for the Southern Ocean (Nurnberg, et al., 1997) and Al_{total} is the total aluminium content of sediment.

Authigenic Mo (Mo_{auth}) was calculated using the following formula (Morford and Emerson 1999),

$$\text{Mo}_{\text{auth}} = \text{Mo}_{\text{total}} - (\text{Mo}/\text{Al}_{\text{terrestrial}} \times \text{Al}_{\text{total}})$$

7.3.5 Sediment fluxes normalisation

Regions of high sedimentation are often areas that are affected by lateral input of sediment, termed “sediment focusing”, and this effect is often intensified by deep water currents (Francois et. al, 2004). In order to reconstructed unbiased biogenic fluxes deposited, we use high-resolution
measurements of 230Th (n= 60; Denis et al., submitted) to normalize the opal, carbon and barium percentage contents, following the method developed by Bacon (1984). This method is based on the "assumption that the flux of scavenged 230Th reaching the seafloor is know and equal to the rate of 230Th production from the decay of 234U in the overlying water column" (Francois et al., 2004). Thereby, the normalization of biogenic contents by instantaneous ratio of water column scavenged 230Th flux allows an estimation of the mass flux deposition, unbiased by lateral sediment contribution and variations of one component on another, and less impacted by chronological errors (Bacon, 1984; Suman and Bacon; 1989; Francois et al., 2004; Adkins et al., 2006). Thereby, the 230Th normalised fluxes resituate the "preserved" vertical fluxes ($^{PR}F_v$) i.e. the material that remained after diagenetic alteration, following:

$$P^{PR}F_v = \frac{FW}{(^{230}Th_{xs})_o}$$

Where FW is the rate of 230Th_{xs} production in the water column, and therefore its flux to the seafloor, and $(^{230}Th_{xs})_o$ is the measure of 230Th_{xs} in the sediment sample.

The preserved vertical rain rate for each sedimentary component was determined using:

$$F_v = P^{PR}F_v \times fi$$

where fi is the measured weight fraction of the constituent of interest in the sediment (here : opal, organic carbon and biogenic barium).

The application of this approach on active hydrodynamic shallow shelves close to a sea ice system like our study zone can implicate some precaution for using the 230Th normalization. The boundary scavenging effect, defined by Spencer et al. (1981), leads to an advection of the 230Th radioelement from
low flux zone to high flux zone, inducing an overestimating of radioisotopes inventoried in the sediments underlying high productive areas. Such mechanism can occur in our area from low productive zones as northward to Polar Frontal Zone as well as southward to Marginal Ice Zone, which can scavenge 230Th via MCDW (Rutgers van der Loeff and Berger, 1993) and/or HSSW (Henderson et al., 1999). Nevertheless, in regions of deep bottom water formation, the renewal of deep waters is more rapid than the residence time of 230Th (e.g. 40 years), as demonstrated in our area (Rintoul, 1998; Rintoul et al., 1999; Tanhua et al, 2004), leading to loss of 230Th by northward advection. Therefore, an excess of 230Th supply by boundary scavenging can be compensate by a loss of 230Th by high waters renewal, as previously illustrated in the Pacific sector (Chase et al., 2003).

Differential efficiency scavenging of Th has been highlighted in function to rain rate and particles type in several studies (Chase and Anderson, 2004 and references herein). Nevertheless, on the core MD03-2601, the fluxes based on 14C dates not show variations exceeding a factor 3 and the lithogenic/biogenic ratio differs only by a maximum factor of 1.5 (data not shown). These variations cannot explain the 230Th changes observed here because one order of magnitude fluxes changes is necessary to affect the scavenging of 230Th (Francois et al., 1990; Yu, 1994), and any relationships between 230Th content and different sediment components (opal, C_{org}, N_{org} and lithogenic content) are displayed ($r^2 < 0.2$) (data not shown). The position of core MD03-2601 in a shallow environment implicate great detrital and authigenic contributions (respectively, 20 to 55 % and 1 to 23 % of the total 230Th) in comparison to the scavenged part of 230Th. Therefore the absolute values of Ψ and of normalized flux reconstructions should be treated with some caution (see error bar on Figure 7.2).

In conclusion, we believe that the 230Th normalization can be confidently used to document the relative changes of biogenic fluxes over the core site during the Holocene.
7.4 Results

Sediment focusing factors (Ψ), classical mass accumulation rates (MAR), 230Th excess normalised fluxes and diatom abundances are presented in Figure 7.2. The MAR range from 50 to 175 mg/cm2/yr and follow the variations of sediment focusing, whereas the 230Th normalised MAR show an opposite pattern with much lower values of 2 to 9 mg/cm2/yr. Total diatom abundances follow the same pattern as 230Th normalised vertical flux, with values ranging from 112 – 2041 x 106 valves per gram of sediment.

Figure 7.2. Down-Core profiles of (a) Sediment Focusing (b) Mass accumulation rate, (c) 230Th normalised mass accumulation rate and (d) Diatom abundances.
Boxes at the top of the figure represent the different climatic periods of the Holocene (Denis et al., submitted)

Carbon and opal data are presented in Figure 7.3. Carbon and opal percentages are plotted alongside 230Th normalised vertical flux reconstructions. Carbon and opal percentages show slightly different patterns throughout the Holocene that disappear when they are converted in fluxes by the 230Th normalisation. Vertical flux reconstructions of carbon and opal show relatively low values during the early Holocene warm period (11 – 9 cal ka BP), ranging from 0.03 – 0.06 mg/cm²/yr and 0.9 – 2.0 mg/cm²/yr for carbon and opal, respectively. During the cool event (8.5 – 7 cal ka BP), the fluxes of carbon and opal show an increasing trend reaching 0.04 mg/cm²/yr and 1.4 mg/m²·yr for carbon and opal, respectively.
Figure 7.3. Down-Core profiles of (a) 230Th normalised carbon flux and % C content of sediment, (b) 230Th normalised opal flux and % opal content of the sediment, (c) 230Th normalised Ba$_{xs}$ flux and Ba$_{xs}$ concentration of sediment, (d) opal:C ratios and (e) % *F. kerguelensis* of the total diatom community and *F. kerguelensis* abundances.
The mid-Holocene warm period (7 – 3.5 cal ka BP) generally show much higher vertical fluxes of carbon and opal ranging from 0.03 – 0.07 mg/cm2/yr and 1.0 – 2.6 mg/cm2/yr, respectively, with two distinct peaks. The late Holocene Neoglacial (3.5 – 1 cal ka BP) are characterised by reduced fluxes as low as 0.03 mg/cm2/yr for carbon and 1.0 mg/cm2/yr BP for opal. There were, however, two flux peaks during the Neoglacial centred at 1.5 and 2.3 cal ka BP, reaching 0.09 mg/cm2/yr for carbon and 3.2 mg/cm2/yr for opal.

BaXS data are also presented in Figure 7.3 with BaXS plotted alongside 230Th normalised vertical flux reconstructions of BaXS. Normalised BaXS fluxes range from 0.002 – 0.8 µg/cm2/yr and display different patterns to the carbon and opal reconstructions. In addition to high amplitude variation throughout the core, significant BaXS flux minima occur at 8.7 during the early Holocene warm period (11-8.5 cal ka BP), 8.2, 8.0 and 7.4 cal ka BP during the cool event (8.5 – 7 cal ka BP), at 6.7, 6.6, 6.5, 6.4, 6.3, 6.2, 6.0, 5.8, 5.3, 4.8, 4.7, 4.6, 4.3 and 3.7 cal ka BP during the mid-Holocene warm period (7 – 3.5 cal ka BP), and at 2.2, 1.6 and 1.2 cal ka BP during the late Holocene Neoglacial (3.5-1 cal ka BP).

Opal:Carbon ratios in Figure 7.3 show maximum values during the mid-Holocene warm period, and generally lower values during the early Holocene warm period and late Holocene Neoglacial. The overall pattern of opal:carbon is similar to the abundances and % of F. kerguelensis, also presented in Figure 3.

Figure 7.4 presents the 230Th normalised vertical flux reconstructions of BaXS, Moauth, Uauth and the Corg:BaXS ratio of sediment. The Moauth and Uauth show large variation throughout the Holocene, with each plot displaying a decreasing trend during the mid-Holocene warm period. The Corg:BaXS plot displays a fairly consistent flat pattern, apart from distinct peak values occurring in concert with the lows in BaXS vertical flux reconstructions.
Figure 7.4. Down-Core profiles of (a) 230Th normalised Ba$_{xs}$ fluxes, (b) Mo$_{auth}$, (c) U$_{auth}$, and (d) C$_{org}$:Ba ratio of sediment. Lines show increasing Ba$_{xs}$ fluxes and decreasing U$_{auth}$ and Mo$_{auth}$ during the mid-Holocene warm period.

7.5 Discussion

7.5.1 Biogenic Flux Reconstructions

Core MD03-2601 has an exceptionally high sedimentation rate (average of 0.4 cm.yr$^{-1}$), implying that it would be an excellent candidate for studying changes in Holocene paleoproductivity at high resolution. However, closer inspection using the 230Th tracer (Denis et al., submitted) reveals that the
extent of focusing far outweighs the vertical sedimentary fluxes at the core site (Figure 7.2), a common occurrence in such margin systems. This required normalisation by 230Th in order to reconstruct the vertical fluxes. The reconstructions of vertical carbon and opal fluxes (Figure 7.3) show good agreement with down-core abundances of diatoms, the major phytoplankton group in this region (Figure 7.2). These records therefore appear to be good indicators of paleoproductivity in the Dumont D’Urville Trough during the Holocene. Despite the uncertainty associated to our quantitative estimations of the vertical biogenic fluxes buried, they agree well with modern studies (Table 7.1). This method of normalisation guarantees the reconstruction of preserved material in the core, but not the total export flux (François et al., 2004). Indeed, modern studies on the continental shelf of Antarctica show that less than 0.2% and 6% of organic carbon and opal, respectively, produced by phytoplankton is permanently buried in the sea bed (Nelson et al., 1996).

The ratios between our buried fluxes of organic carbon and opal with surface production estimated in our area by remote sensing (Arrigo et al., 2003) and water sampling (Beucher et al., 2004) are consistent with the other overall preservation efficiency data (OPE) observed in the coastal and continental shelf zones (CCSZ). The OPE of organic carbon and biogenic silica are relatively high (~0.8% and ~5.5% respectively) but the Si/C ratio in buried sediment (~7 and ~30 as mass and molar ratios, respectively) agrees well with previous studies in the area (Nelson et al., 1996).

The reconstructed Ba_{Xs} fluxes do show similar patterns to the opal and carbon profile, but exhibit more variation than the carbon and opal record, and frequent occurrences of Ba_{Xs} minima concentrated during the early Holocene cool period and mid-Holocene warm period. The decoupling of the carbon and opal proxies from the Ba_{Xs} proxy is thought to be caused by changes to redox conditions in the sediment, that were traced using the redox sensitive elements Mo_{auth} and U_{auth}, with enrichment of these elements.
linked to organic carbon delivery to the seafloor and reducing conditions in the sediment (McManus et al., 2006).
| Location | Study | Production | \(^{230}\)Th-normalised
accumulation | Overall Preservation
Efficiency | Production | \(^{230}\)Th-normalised
accumulation | Overall Preservation
Efficiency |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Indian Sector</td>
<td>Pondaven et al., 2000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.43</td>
<td>0.075</td>
<td>3.1</td>
</tr>
<tr>
<td>Indian Sector</td>
<td>Pondaven et al., 2000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.34</td>
<td>0.21</td>
<td>6.3</td>
</tr>
<tr>
<td>Indian Sector</td>
<td>Pondaven et al., 2000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.62</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pacific Sector</td>
<td>Nelson et al., 2002</td>
<td>6.9</td>
<td>0.0012</td>
<td>0.017391304</td>
<td>0.35</td>
<td>0.016</td>
<td>4.57</td>
</tr>
<tr>
<td>Pacific Sector</td>
<td>Nelson et al., 2002</td>
<td>8.5</td>
<td>0.0017</td>
<td>0.020</td>
<td>0.95</td>
<td>0.048</td>
<td>5.05</td>
</tr>
<tr>
<td>Pacific Sector</td>
<td>Nelson et al., 2002</td>
<td>8.7</td>
<td>0.0062</td>
<td>0.071</td>
<td>2.4</td>
<td>0.16</td>
<td>6.67</td>
</tr>
<tr>
<td>Ross Sea</td>
<td>Nelson et al., 1996</td>
<td>11.87</td>
<td>0.02*</td>
<td>0.18</td>
<td>2.02</td>
<td>0.12*</td>
<td>5.75</td>
</tr>
<tr>
<td>DDU - CCSZ</td>
<td>Beucher et al., 2004 + this study</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.184</td>
<td>0.275</td>
<td>5.30</td>
</tr>
<tr>
<td>DDU - CCSZ</td>
<td>Arrigo and Van Dijken, 2003 + this study</td>
<td>4.64/-1.15</td>
<td>0.473</td>
<td>0.85</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
7.5.2 Preservation Versus Export/Production Changes

M_{auth} and U_{auth} profiles in core MD03-2601 display high variation during the Holocene, but both exhibit a general decreasing trend, especially during the mid-Holocene warm period (Figure 7.4). M_{auth} and U_{auth} in core MD03-2601 are affected by both changes to the delivery of carbon to the seafloor and changes to the intensity of deep water currents. Increased export of carbon is evident during the mid-Holocene warm period (Figure 7.3), as is increasing deep water formation reconstructed from sortable silt (Denis et al., submitted), showing an abrupt weakening of deep water formation and bottom water oxygenation at ~7.5 cal ka BP, followed by a steady increase up until 1 cal ka BP. Focusing on the 7.5-4.0 cal ka BP period, the redox proxy data from this study are in agreement with the reconstructed paleo-oxygenation of bottom waters. The long term millennial trends of both M_{auth} and U_{auth} show a decreasing trend during this period (Figure 7.4). Therefore, at the Holocene scale, the variations of paleoproduction evidenced here by 230Th normalised biogenic fluxes reflect certainly changes of water column processes (i.e. production/remineralisation/export) than differential preservation at the sediment/water interface.

However, on shorter centennial time-scales there are episodic enrichments of both M_{auth} and U_{auth} that were likely caused by higher delivery of organic material to the seafloor, resulting in reducing conditions irrespective of active deep water ventilation. When organic sediment loads to the seafloor drive conditions towards anoxia, the enrichment of M_{auth} relative to carbon can increase by up to 5 times compared to oxic conditions thought to be as a result of more intense sulphur cycling, where little or no change is observed in U_{auth} (McManus et al., 2006). This is consistent with many of the sharp peaks in M_{auth} in core MD03-2601, especially during the mid-Holocene warm period, not occurring in concert with peaks in U_{auth}. It should be noted that the sortable silt proxy from Denis et al (submitted) and U_{auth} were measured at lower resolution than the M_{auth}, so the M_{auth} may capture
higher resolution changes in sediment redox chemistry but does not allow direct comparison with SS and U_{auth}.

7.5.3 Ba_{xs} Proxy Sensitivity

Reducing conditions severely compromise the preservation of barite in marine sediments (McManus et al., 1998; Schenau et al., 2001) and such conditions appear to have affected the Ba_{xs} proxy in this core. This precludes the assumption made with the Ba_{xs} proxy that preservation in the sediment record is predictable or consistent. Preservation in oxic sediments is usually very good as pore waters are generally considered to be saturated with dissolved Ba, resulting in low barite dissolution (Dymond et al., 1992). However in reducing sediments, sulphate reduction during the oxidation of organic matter will reduce sulphate concentrations in sediments to a value that promotes remobilisation of Ba through dissolution of barite ($BaSO_4$), resulting in increased dissolved Ba concentrations in sediment pore waters (McManus et al., 1998; Schenau et al., 2001). This can also lead to re-precipitation of barite below the sulphate reduction layer, which may skew both sections (sulphate reducing and oxic sediment below) for latter day reconstruction.

Although the Mo_{auth} and U_{auth} data are consistent with periods of reducing conditions during the Holocene, thus precluding a quantitative reconstruction of paleoproductivity using the Ba_{xs} proxy, there is still some qualitative value in the data. During the early Holocene cool event and mid-Holocene warm period there is a general increasing trend in the reconstructed flux of Ba_{xs}, when the redox sensitive proxies Mo_{auth} and U_{auth} show a general decreasing trend. This observation is consistent with an increase in deep water currents and ALBW formation (Denis et al., submitted), and suggests that preservation of barium improved in the presence of better oxygenation of sediments. In Figure 4, the C_{org}:Ba ratio shows distinct peaks when the Ba_{xs} fluxes display minima and the Mo_{auth} display maxima. These peaks in C_{org}:Ba agree are consistent with reduced preservation of Ba during periods of sub-oxic diagenesis and sulphate reduction and lend support to the interpretation
of the redox sensitive proxies. Any interpretation based on Baxs, however, should therefore be treated with caution due to the lack of constraint on the variable preservation of Baxs in sediments as a result of sedimentary oxygen deficiencies.

7.5.4 Opal:C\textsubscript{org} Decoupling

The opal:carbon ratio in Figure 3 highlights how opal and carbon decouple from one another as export proxies during the Holocene in the Dumont D'Urville Trough. The concave shape of the down-core profile shows that the opal:carbon ratio significantly increased during the early Holocene cool event, reached peak values during the mid-Holocene warm period, and then declined towards the onset of the late-Holocene Neoglacial. Opal:carbon ratios in diatoms can be affected by diatom species (Abelmann, et al., 2006; Smetacek, et al., 2004), growth rates (Assmy et al., 2006; Assmy et al., 2007), and iron availability (Armand et al., 2008; Hutchins and Bruland 1998; Mosseri et al., 2008; Takeda, 1998). The high productivity and particle flux suggest that iron was not limited, and iron sources are not thought to have limited productivity during the Holocene (Vaillancourt et al., 2003), at least early on in the growing season, with sources including Aeolian transport, melting ice, coastal sediments and transport of Upper Circumpolar Deep Water (UCDW) across the shelf (Sambrotto et al., 2003). Larger diatom species such as \textit{F. kerguelensis} (Figure 7.3) display an almost identical pattern to the down-core variations in opal:carbon ratios. This shift in diatoms is a result of the climate driven shortening of sea ice coverage in early spring and lengthening of the phytoplankton growing season (Crosta et al., 2005) leading to \textit{F. kerguelensis} out-competing the sea ice associated \textit{Fragilariopsis curta} as the dominant diatom species. The \textit{F. kerguelensis} profile is similar to other large diatom species but \textit{F. kerguelensis} is presented here as it is the dominant larger diatom species during the mid-Holocene warm period (Crosta et al., 2007). \textit{Fragilariopsis kerguelensis} is considered a slow growing species (Assmy, et al., 2006; Assmy, et al., 2007) and it's robust structure compared to the more fragile, pennate or needle-like diatom species gives it a higher opal:carbon ratio (Armand et al., 2008).
addition, field studies in the Southern Ocean observed the highest recorded opal:carbon ratio in diatom blooms heavily dominated by *F. kerguelensis* (Queguiner et al., 1997). In addition to the longer growing seasons of the mid-Holocene warm period giving rise to dominance of *F. kerguelensis*, the slower and but longer period of diatom growth resulted in higher silicification of *Fragilariopsis* species and *Corethron pennatum* (Denis et al., 2006), perhaps exacerbating the effect on the opal:carbon ratios than just a change in diatom community composition.

Although we can not rule out differential preservation in this core based on the inferred differences in redox conditions, it is not suspected that the opal or carbon content of core MD03-2601 was significantly affected by variable preservation along the Holocene. Strong changes in degradation would have affected the opal:carbon ratios, with opal preferentially degrading over carbon (DeMaster et al., 1996) as opal is well preserved in diatom dominated environments of rapid export. However, the opal:carbon ratio appears to be principally affected by changes to diatom species (see above) and shows no variation consistent with the redox (Mo_{auth} and U_{auth}) or deep water ventilation proxies (Denis et al., submitted). Similarly, the carbon:nitrogen ratio is around 7-8 all core long (data not shown). Heavier degradation of organic material would have increased the carbon:nitrogen ratio when preferential degradation of organic nitrogen during diagenesis occurred (Ganeshram et al., 1999; Hedges et al., 1986; Rosenfeld, 1981).

7.6 Conclusions

This study of core MD03-2601 was a useful case to identify how useful paleoproductivity proxies are for reconstructing export flux in regions of high sediment focusing.

Normalisation of the traditional mass accumulation rate calculations with ^{230}Th provides more the estimation of the preserved vertical fluxes. In despite of error bars associated to the ^{230}Th normalisation method, the reconstructed biogenic fluxes are in agreement with modern studies.
After ruling out changes in preservation affecting the carbon and opal flux reconstructions, we believe that the variations of preserved fluxes are representative of produced/exported biogenic flux variations in the Dumont D'Urville trough. Our data show higher fluxes of carbon and opal during the mid-Holocene warm period, and during the late Holocene Neoglacial period.

Although the down core BaXs profile traces some of the changes in carbon flux, this paleoproductivity proxy fails as a quantitative indicator of carbon export due to changes in the redox conditions of the sediment that were inferred using the redox sensitive elemental proxies Mo and U.

The increase in opal:carbon ratios during the mid-Holocene optimum is linked to changes in the diatom assemblages towards larger diatom species, such as *F. kerguelensis* that export more opal per unit carbon. These species dominated due to the extended open water conditions during this climatic period.

7.7 References

Crosta, X., et al. (2004), Late Quaternary sea ice history in the Indian sector of the Southern Ocean as recorded by diatom assemblages, Marine Micropaleontology, 50, 209-223.

Denis, D., et al. (2008), Glacier and deep current dynamics and their imprints on Holocene sedimentary record, Adelie Land, East Antarctica Margin, Submitted to Quaternary Science Reviews..
Denis, D., et al. (2006), Seasonal and subseasonal climate changes recorded in laminated diatom ooze sediments, Adelie Land, East Antarctica, The Holocene, 16, 1137-1147.
Fagel, N., et al. (1999), Advective excess Ba transport as shown from sediment and trap geochemical signatures, Geochimica et Cosmochimica Acta, 63, 2353-2367.
Francois, R., and M. A. Altabet (1992), Glacial to interglacial changes in surface nitrate utilisation in the Indian sector of the Southern Ocean as recorded by sediment d15N, Paleoceanography, 7, 589-606.

Nurnberg, C. C., et al. (1997), Barium accumulation in the Atlantic sector of the Southern Ocean: Results from 190,000-year records, Paleoceanography, 12, 594-603.

Robinson, R. S., et al. (2005), Diatom-bound N-15/N-14: New support for enhanced nutrient consumption in the ice age subantarctic, Paleoceanography, 20.

Wright, S. W., and R. L. van den Enden (2000), Phytoplankton community structure and stocks in the East Antarctic marginal ice zone (BROKE survey,

8 Conclusions

The results of this study have identified some of the key mechanisms controlling present day biogeochemical processes that affect productivity and export production in the coastal Antarctic sea ice environment. Understanding more about such processes in sea ice, surface waters and the sediment surface that affect geochemical signatures that are preserved in sediments, lead us towards developing more accurate reconstructions of the past surface ocean (productivity, export production, sea ice cover, etc) based on isotopic and elemental inspection of Southern Ocean sediment cores. Understanding such mechanisms may also lead to an understanding of how reduced sea ice extent in the future, a result of the warming Western Antarctic Peninsula, may effect the seasonality of this environment.

In addition to the work in Ryder Bay and Marguerite Bay, the validity of carbon, opal, and Ba$_{XS}$ proxies as tracers of changes in productivity in a continental shelf Antarctic sediment core heavily affected by sediment focusing was carried out. This investigation showed that using careful correction of lateral inputs of material (230Th), and applying redox sensitive element proxies (Mo$_{auth}$ and U$_{auth}$), changes in Holocene productivity and export production could be confidently reconstructed, and the results are consistent with the regional climatic phases known to have existed during the last 12,000 years.

8.1 Productivity and Particle Flux

The two growing seasons had certain similar characteristics:

- A ~4 month duration
- A two peak chlorophyll, POC and PON characteristic
- High levels of nutrient utilisation

However, there were also significant differences between the two seasons:

- Extended sea ice cover caused the growing season to start \geq1 month later for the 05/06 season compared to the 04/05 season;
More freshwater delivered to the surface during the 05/06 season resulted in a more stratified water column;

Significantly lower particle flux occurred during the 05/06 growing season.

Gaps in available data have precluded a full comparison between the two seasons, but nonetheless several conclusions may still be drawn from this study.

High standing stocks of POC and PON in sea ice suggest that organic matter from sea ice may contribute to not only the seeding of the spring bloom in this region, but may also contribute to the particle flux in this environment. Sea ice not only exerts control on the timing of the spring bloom, but in conjunction with glacier melt, the freshwater input appears to significantly affect the stability of the water column and the characteristics of the growing season. More freshwater input appears to reduce the delivery of nutrients to the surface water, resulting in cumulatively less nutrients being available for utilisation over the course of the season. This therefore reduces the total amount of production and export over the growing season, reducing the drawdown of major nutrients such as CO₂, NO₃ and PO₄.

The two peak characteristic of each growing season may be explained by grazing pressures during the mid-season decline in biomass and elevation of NH₄. This appears to lead to elevated levels of regenerated production during the latter period of the growing season. Estimated export efficiency at this site is very low, consistent with other studies in this region. This is as a result of efficient grazing on new primary production, and the relatively long retention time of material in the stratified water column, that leads to increased remineralisation and regenerated production during the latter stages of the growing season.
Seasonal progression of carbon:nitrogen ratios and opal:carbon ratios in sinking particles show increases with depth and elevated levels during winter. The increasing carbon:nitrogen ratios with depth and during winter are related to degradation and remineralisation of organic matter, as organic nitrogen is preferentially degraded over organic carbon.

The elevated opal:carbon ratios with depth may be affected in a similar way by degradation, but also may be due to the smaller diatom species (e.g. *Corethron pennatum*), that have a lower opal:carbon ratio not being exported as efficiently as larger diatoms that have a higher opal:carbon ratio. The higher opal:carbon ratios in winter, however, are likely a result of efficient degradation of carbon, compared to opal, of the slow growing, convalescing, diatom communities that exist under sea ice.

8.2 Carbon and δ^{13}C in the Coastal Antarctic Sea Ice Environment

δ^{13}C, although classically used as a proxy for surface water ρCO$_2$, shows extreme variability over the course of a season in both sea ice and surface waters, with the amplitude of changes \sim10 ‰, almost the entire marine range of δ^{13}C seen in the global ocean.

Sea ice δ^{13}C$_{POC}$ appears to be controlled more by post-production decomposition processes and not a high degree of nutrient utilisation as other studies may have inferred and there is no evidence of this material contributing to the seasonal flux of material in sediment traps.

$[\text{CO}_2(\text{aq})]$ and δ^{13}C-CO$_2$ do not appear to influence δ^{13}C$_{org}$, instead the \sim10 ‰ shifts seen in surface waters appear driven by seasonal shifts in diatom assemblages and the subsequent shift to lower SA:V ratios of the assemblages during the isotopic shifts, possibly exacerbated by changes to internal diatom biochemical pathways for carbon fixation and changing growth rates.
Although much of the surface suspended material (including certain diatom species) are not exported to depth, the $\delta^{13}C$ composition of surface suspended organic carbon is faithfully transferred to depth.

Sediment $\delta^{13}C$ is therefore not a reliable proxy for ρCO_2, unless changes in diatom assemblages, documented in sediments or sediment cores, can be used to assess the subsequent changes in ε_p during surface water productivity. This would require a large programme of laboratory and field work to accurately document ε_p based on each diatom species or group.

8.3 Nitrogen and $\delta^{15}N$ in the Coastal Antarctic Sea Ice Environment

This study documents that although sinking $\delta^{15}N_{\text{org}}$ can be used to reconstruct the degree of NO$_3$ utilisation in surface waters, it is not appropriate to directly link this proxy to the quantity of carbon exported from surface waters. In addition, the enrichment of ^{15}N in sea ice is controlled by post-production decomposition processes rather than the effect of high nutrient utilisation, but there is no evidence from the $\delta^{15}N$ of sediment trap material that this heavily influenced the composition of the seasonal flux.

The two contrasting growing seasons observed in this study led to significantly different amounts of organic carbon and nitrogen to be exported from the euphotic zone, but each season displayed similar levels of $\%$ nutrient utilisation. It was the stability of the surface waters, controlled by sea ice and other sources of freshwater input (e.g. glaciers) that played the major role in the seasonal evolution of surface water $\delta^{15}N_{\text{PON}}$ and total C and N export fluxes. During the 04/05 seaons, the dynamic nature of the surface waters resulted in high frequency inputs of nutrients to the surface as a result of delivery of UCDW through upwelling or vertical mixing providing more nutrients for conversion into organic matter and subsequent export. The 05/06 season, in contrast, consisted of a more stable water column with very few small inputs of nutrients to the surface and material was retained at the surface for longer.
These apparently "steady state" dynamics (04/05 season) and "closed system dynamics" (05/06) season were then tested using the $\Delta \delta^{15}\text{N}$ predictive model. The seasonally integrated $\delta^{15}\text{N}$ values from sediment traps and surface sediments are consistent with the "steady-state" nitrate utilisation during 04/05 and the "closed system" model during 05/06, reflecting the observed oceanographic characteristics of each season.

Although the $\delta^{15}\text{N}$ value in sediment is consistent with the surface water $\delta^{15}\text{N}$ and nutrient utilisation from the models, the proxy for utilisation of nitrate does not reflect the absolute changes in C export fluxes. It is therefore necessary to consider this scenario when making connections between nitrate utilisation and changes in atmospheric CO$_2$.

8.4 Barium Biogeochemistry in the coastal Antarctic Sea Ice Environment

The results from this investigation into the biogeochemical cycling of Ba in the coastal Antarctic sea ice environment provides important information on the seasonal evolution of the different pools of Ba_{XS} (the labile fraction, barite, and Ba_{XS} associated with refractory organic matter) in response to productivity in sea ice, surface waters and during export of material to depth.

Standing stocks of Ba_{XS} in sea ice are consistently an order of magnitude higher than surface waters and display higher than average Ba:POC ratios than surface waters. Although there is no direct evidence to link this to material exported in sediment traps, it is hard to ignore such high amounts of Ba_{XS} that may affect the Ba_{XS} versus C flux algorithm used to reconstruct carbon export. Shallower sediment traps placed underneath sea ice may aid our understanding of the fate of this material, but it is very difficult to successfully deploy shallow sediment traps in this environment due to the frequency of icebergs that may collide with such equipment.
Ba\textsubscript{XS} formation in surface waters definitely appears related to productivity, but appears to peak during periods of early decay of phytoplankton when barite is formed and becomes the dominant pool of Ba\textsubscript{XS}. This is observed during the mid-growing season declines in biomass (associated with grazing) and at the end of the season when productivity ceases and the remaining material in surface waters is degraded. These observations give us a good understanding of the seasonal cycle of surface water Ba and C, the precursor material that then sinks and becomes further enriched in Ba\textsubscript{XS} and depleted in carbon before settling on the sediment surface.

This study therefore provides compelling evidence that the formation of barite in the water column is a result of decaying organic matter and precipitation of barite in supersaturated micro-environments, as described in earlier works.

Although previous studies on the continental shelf of Antarctica and continental margin environments have failed to observe relationships between Ba\textsubscript{XS} and C flux, this study provides data showing that the flux of Ba\textsubscript{XS} relative to carbon in the coastal Antarctic sea ice environment is consistent with algorithms published for the open ocean.

Based on this data, a conceptual model for the biogeochemical cycling of Ba on a seasonal timescale was developed and consists of the following:

(a) **Winter** - Low levels of fresh production in sea ice matrix (green) with low Ba\textsubscript{XS}:C\textsubscript{org} composed mainly of labile Ba. A small amount of particulate material is held in the deep winter mixed layer that has a high Ba\textsubscript{XS}:C\textsubscript{org} ratio from efficient biodegradation of organic material (brown) forming barite through precipitation.

(b) **Late Winter** - During late winter, the biogenic material in sea ice goes through rapid degradation and production cycles, resulting in high standing stocks of Ba\textsubscript{XS}, barite and refractory bound Ba. Primary
production starts in surface waters below, where the material has a low \(\text{Ba}_{\text{XS}}: \text{C}_{\text{org}} \) and is composed mainly of labile Ba.

(c) **Spring** - During early spring, the summer shallow mixed layer forms, sea ice retreat seeds highly degraded organic material containing high \(\text{Ba}_{\text{XS}} \), barite and refractory bound Ba to surface waters. This mixes with fresh organic material produced by the spring bloom, which has a low \(\text{Ba}_{\text{XS}}: \text{C}_{\text{org}} \) ratio and is composed mainly of labile Ba. This is the time of high standing stocks of phytoplankton in the shallow mixed layer, and the highest period of export flux where fresh surface water organic material degrades while sinking, forming larger aggregates, and an increase of \(\text{Ba}_{\text{XS}}: \text{C}_{\text{org}} \) with depth occurs due to barite precipitation during organic matter degradation. During the highly productive spring bloom, barite can also be formed in surface waters by degrading organic matter and barite precipitation during periods of grazing and hiatuses in production, resulting in the Ba pool becoming enriched in barite and refractory bound Ba. This period can also be influenced by upwelling of nutrient rich water which can “reset” the step wise process of labile Ba formation and barite precipitation in the euphotic zone.

(d) **Summer/Autumn** - During summer and autumn, production declines and the organic material in surface waters becomes highly degrading resulting in an increase in \(\text{Ba}_{\text{XS}}: \text{C}_{\text{org}} \) and the Ba pool to become dominated by barite through precipitation and enriched in refractory bound Ba.

8.5 Summary of Proxy Findings in Ryder Bay

The application of \(\delta^{13}\text{C} \), \(\delta^{15}\text{N} \) and barium in the coastal Antarctic sea ice environment has opened this environment up to thorough geochemical inspection. The findings however, do question the validity of some of these proxies for paleo-\(p\text{CO}_2 \) concentrations (\(\delta^{13}\text{C} \)), nutrient utilisation (\(\delta^{15}\text{N} \)) and carbon export (Ba) both on the continental shelf of Antarctica and the open Southern Ocean.
In this environment shifts in diatom assemblages on a seasonal timescale affect the fractionation factor of carbon fixation so that the δ^{13}C of freshly produced and sinking organic matter, does not relate to the concentration of CO$_2$ in the surface ocean, the fundamental relationship that this proxy is based on. This raises the question as to whether historical changes in δ^{13}C in Southern Ocean sediments was in fact a shift in dissolved CO$_2$, or perhaps subtle changes in diatom assemblages as a response to environmental factors.

In addition, the δ^{15}N of organic matter does trace the relative utilisation of NO$_3$ on a seasonal timescale, when the surface ocean is in either a closed system or open system in terms of nutrient dynamics. However, the δ^{15}N fails to recognise the significant differences in absolute quantities of exported organic matter (i.e. nutrient drawdown) that has similar δ^{15}N values. This weakens the argument connecting nutrient utilisation and CO$_2$ drawdown during glacial to interglacial cycles that is often used in paleoceanographic papers on the Southern Ocean to explain changes in atmospheric CO$_2$ concentrations.

Ba, however, does seem to work as a proxy for organic carbon export, when data from this study are applied to the classic correlations used to produce the current preliminary algorithm for using Ba to estimate C export (Figure 6.13). This study also enhances our knowledge of Ba cycling in surface waters, the precursor to intense barite formation in sinking organic matter, on a seasonal timescale. The Ba data also open up the possibility that barite is formed by abiotic precipitation in sea ice brine channels, although this remains speculative without further data on barite crystal morphology.

Further studies in Ryder Bay, to prolong the time-series presented in this work, should provide more robust conclusions for the arguments raised throughout this thesis.
8.6 Reconstructing Paleoproductivity in Core MD03-2601

The study of core MD03-2601 was a useful case to identify how useful paleoproductivity proxies are for reconstructing export flux in regions of high sediment focusing.

Normalisation of the traditional mass accumulation rate calculations with 230Th provides more the estimation of the preserved vertical fluxes. After ruling out changes in preservation affecting the carbon and opal flux reconstructions, it is believed that the variations of preserved fluxes are representative of produced/exported biogenic flux variations in the Dumont D'Urville trough. The data show higher fluxes of carbon and opal during the mid-Holocene warm period, and during the late Holocene Neoglacial period.

Although the down core Baxs profile traces some of the changes in carbon flux, this paleoproductivity proxy fails as a quantitative indicator of carbon export due to changes in the redox conditions of the sediment that were inferred using the redox sensitive elemental proxies Mo$^\text{auth}$ and U$^\text{auth}$.

The increase in opal:carbon ratios during the mid-Holocene optimum is linked to changes in the diatom assemblages towards larger diatom species, such as *F. kerguelensis* that export more opal per unit carbon. These species dominated due to the extended open water conditions during this climatic period.

It therefore seems that high accumulation rate sediment cores can be useful for studying past paleoproductivity changes at high resolution, as long as the effects of sediment focusing can be constrained and removed from any reconstructions. In addition, high flux environments may be subject to reducing conditions perpetuating at the sediment surface, so it is essential to also apply proxies that identify this process, especially when using redox sensitive tracers such as Ba.
8.7 Future Considerations

Although this project has provided useful information on the biogeochemical cycling of elemental and isotopic tracers of productivity and particle flux, the study only lasted for two growing seasons. The coastal Antarctic sea ice environment is characteristically subject to high inter-annual variability, as documented in the RaTS biological programme and the Palmer LTER programme (referenced throughout this thesis). Therefore, in order to fully constrain the effects that the physical, biological and chemical characteristics of a growing season have on the geochemical proxies investigated here, a longer time-series is essential. Over time this should dilute the effect of inter-annual variability and confirm or disprove some of the conclusions drawn from this two year study on the elemental and isotopic biogeochemical cycling in this dynamic environment. Funding has been granted to continue the sea ice, surface water and sediment trap time series for the next 3 years. This will allow the generation of further data similar to that presented in this project to improve our understanding of how the biogeochemical cycling of carbon, nitrogen, opal and barium responds to growing seasons that are controlled by factors such as sea ice, water column properties, grazing and future climate change.
9 Appendices

9.1 Appendix 1. Full list of sampling events during the 2004/2005 field season.

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
<th>Location and Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>RaTS-001</td>
<td>05/12/2004</td>
<td>RaTS Site – 15m</td>
</tr>
<tr>
<td>RaTS-002</td>
<td>08/12/2004</td>
<td>RaTS Site – 15m</td>
</tr>
<tr>
<td>RaTS-003</td>
<td>10/12/2004</td>
<td>RaTS Site – 15m</td>
</tr>
<tr>
<td>RaTS-004</td>
<td>13/12/2004</td>
<td>RaTS Site – 15m</td>
</tr>
<tr>
<td>RaTS-005</td>
<td>15/12/2004</td>
<td>RaTS Site – 15m</td>
</tr>
<tr>
<td>RaTS-006</td>
<td>20/12/2004</td>
<td>RaTS Site – 15m</td>
</tr>
<tr>
<td>RaTS-007</td>
<td>22/12/2004</td>
<td>RaTS Site – 15m</td>
</tr>
<tr>
<td>RaTS-008</td>
<td>29/12/2004</td>
<td>RaTS Site – 15m</td>
</tr>
<tr>
<td>RaTS-009</td>
<td>31/12/2004</td>
<td>RaTS Site – 15m</td>
</tr>
<tr>
<td>RaTS-010</td>
<td>05/01/2005</td>
<td>RaTS Site – 15m</td>
</tr>
<tr>
<td>RaTS-011</td>
<td>07/01/2005</td>
<td>RaTS Site – 15m</td>
</tr>
<tr>
<td>RaTS-012</td>
<td>10/01/2005</td>
<td>RaTS Site – 15m</td>
</tr>
<tr>
<td>RaTS-013</td>
<td>13/01/2005</td>
<td>RaTS Site – 15m</td>
</tr>
<tr>
<td>RaTS-014</td>
<td>17/01/2005</td>
<td>RaTS Site – 15m</td>
</tr>
<tr>
<td>RaTS-015</td>
<td>19/01/2005</td>
<td>RaTS Site – 15m</td>
</tr>
<tr>
<td>RaTS-016</td>
<td>21/01/2005</td>
<td>RaTS Site – 15m</td>
</tr>
<tr>
<td>RaTS-017</td>
<td>28/01/2005</td>
<td>RaTS Site – 15m</td>
</tr>
<tr>
<td>RaTS-018</td>
<td>01/02/2005</td>
<td>RaTS Site – 15m</td>
</tr>
<tr>
<td>RaTS-019</td>
<td>12/02/2005</td>
<td>RaTS Site – 15m</td>
</tr>
<tr>
<td>RaTS-020</td>
<td>21/02/2005</td>
<td>RaTS Site – 15m</td>
</tr>
<tr>
<td>RaTS-021</td>
<td>28/02/2005</td>
<td>RaTS Site – 15m</td>
</tr>
<tr>
<td>RaTS-022</td>
<td>14/03/2005</td>
<td>RaTS Site – 15m</td>
</tr>
</tbody>
</table>
9.2 Appendix 2. Full list of sampling events during the 2005/2006 field season.

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
<th>Location and Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>RaTS-023</td>
<td>17/09/2005</td>
<td>RaTS Site – 15m</td>
</tr>
<tr>
<td>RaTS-024</td>
<td>13/10/2005</td>
<td>RaTS Site – 15m</td>
</tr>
<tr>
<td>RaTS-025</td>
<td>21/11/2005</td>
<td>~1m underneath sea ice sampling site</td>
</tr>
<tr>
<td>RaTS-026</td>
<td>23/11/2005</td>
<td>~1m underneath sea ice sampling site</td>
</tr>
<tr>
<td>RaTS-027</td>
<td>23/12/2005</td>
<td>~1m underneath sea ice sampling site</td>
</tr>
<tr>
<td>RaTS-028</td>
<td>28/12/2005</td>
<td>RaTS site 2 – 15m</td>
</tr>
<tr>
<td>RaTS-029</td>
<td>04/01/2006</td>
<td>RaTS site 2 – 15m</td>
</tr>
<tr>
<td>RaTS-030</td>
<td>06/01/2006</td>
<td>RaTS site 2 – 15m</td>
</tr>
<tr>
<td>RaTS-031</td>
<td>10/01/2006</td>
<td>RaTS site 2 – 15m</td>
</tr>
<tr>
<td>RaTS-032</td>
<td>13/01/2006</td>
<td>RaTS site – 15m</td>
</tr>
<tr>
<td>RaTS-033</td>
<td>19/01/2006</td>
<td>RaTS site – 15m</td>
</tr>
<tr>
<td>RaTS-034</td>
<td>24/01/2006</td>
<td>RaTS site – 15m</td>
</tr>
<tr>
<td>RaTS-035</td>
<td>30/01/2006</td>
<td>RaTS site – 15m</td>
</tr>
<tr>
<td>RaTS-036</td>
<td>02/02/2006</td>
<td>RaTS site – 15m</td>
</tr>
<tr>
<td>RaTS-037</td>
<td>10/02/2006</td>
<td>RaTS site – 15m</td>
</tr>
<tr>
<td>RaTS-038</td>
<td>13/02/2006</td>
<td>RaTS site – 15m</td>
</tr>
<tr>
<td>RaTS-039</td>
<td>20/02/2006</td>
<td>RaTS site 2 – 15m</td>
</tr>
<tr>
<td>RaTS-040</td>
<td>23/02/2006</td>
<td>RaTS site – 15m</td>
</tr>
<tr>
<td>RaTS-041</td>
<td>27/02/2006</td>
<td>RaTS site – 15m</td>
</tr>
<tr>
<td>RaTS-042</td>
<td>04/03/2006</td>
<td>RaTS site – 15m</td>
</tr>
<tr>
<td>RaTS-043</td>
<td>08/03/2006</td>
<td>RaTS site – 15m</td>
</tr>
<tr>
<td>RaTS-044</td>
<td>13/03/2006</td>
<td>RaTS site 2 – 15m</td>
</tr>
<tr>
<td>RaTS-045</td>
<td>23/03/2006</td>
<td>RaTS site – 15m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SI-001</td>
<td>10/12/2004</td>
<td>SI-006</td>
<td>17/09/2005</td>
</tr>
<tr>
<td>SI-002</td>
<td>13/12/2004</td>
<td>SI-007</td>
<td>13/10/2005</td>
</tr>
<tr>
<td>SI-003</td>
<td>15/12/2004</td>
<td>SI-008</td>
<td>21/11/2005</td>
</tr>
<tr>
<td>SI-005</td>
<td>19/12/2004</td>
<td>SI-010</td>
<td>24/11/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SI-011</td>
<td>28/11/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SI-012</td>
<td>01/12/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SI-013</td>
<td>06/12/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SI-014</td>
<td>09/12/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SI-015</td>
<td>20/12/2005</td>
</tr>
</tbody>
</table>
9.4 Appendix 4. List of Measured Parameters out with the RaTS programme measured for surface water and sea ice samples.

<table>
<thead>
<tr>
<th>Measured Parameters in Surface Waters and Sea Ice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductivity, temperature and Depth</td>
</tr>
<tr>
<td>Chlorophyll a and pheopigment</td>
</tr>
<tr>
<td>Dissolved inorganic carbon (DIC and pCO_2)</td>
</tr>
<tr>
<td>Stable isotopic composition of DIC ($\delta^{13}C$-DIC)</td>
</tr>
<tr>
<td>Bulk particulate organic carbon (POC)</td>
</tr>
<tr>
<td>Stable isotopic composition of POC ($\delta^{13}C_{org}$)</td>
</tr>
<tr>
<td>Dissolved organic carbon (DOC)</td>
</tr>
<tr>
<td>Dissolved inorganic nitrogen (NO$_3$, NO$_2$, NH$_4$)</td>
</tr>
<tr>
<td>Stable isotopic composition of NO$_3$ ($\delta^{15}N$-NO$_3$, $\delta^{18}O$-NO$_3$)</td>
</tr>
<tr>
<td>Stable isotopic composition of NH$_4$ ($\delta^{15}N$-NH$_4$)</td>
</tr>
<tr>
<td>Bulk particulate organic nitrogen (PON)</td>
</tr>
<tr>
<td>Stable isotopic composition of PON ($\delta^{15}N_{org}$)</td>
</tr>
<tr>
<td>Dissolved inorganic nitrogen (DON)</td>
</tr>
<tr>
<td>Major Particulate Elements</td>
</tr>
<tr>
<td>Minor Particulate Elements</td>
</tr>
<tr>
<td>Dissolved Barium (Dissolved Ba)</td>
</tr>
<tr>
<td>Particulate Barium (Particulate Ba)</td>
</tr>
</tbody>
</table>
9.5 Appendix 5. Sea ice time-series N data from the 04/05 and 05/06 growing season.

<table>
<thead>
<tr>
<th>Sea Ice Event (Date)</th>
<th>NO₃ (μmol)</th>
<th>δ¹⁵N-NO₃ (% vs air)</th>
<th>NH₄ (μmol)</th>
<th>Chl-a (mg.m⁻³)</th>
<th>PON (μmol.g⁻¹)</th>
<th>δ¹⁵N_PON (% vs air)</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>3.90</td>
<td>5.92</td>
<td>2.08</td>
<td>0.07</td>
<td>9.35</td>
<td>6.82</td>
</tr>
<tr>
<td>002</td>
<td>1.62</td>
<td>2.85</td>
<td>1.21</td>
<td>0.01</td>
<td>9.00</td>
<td>7.31</td>
</tr>
<tr>
<td>003</td>
<td>5.77</td>
<td>3.62</td>
<td>1.72</td>
<td>1.54</td>
<td>6.55</td>
<td>7.44</td>
</tr>
<tr>
<td>004</td>
<td>2.63</td>
<td>4.39</td>
<td>4.66</td>
<td>0.47</td>
<td>6.93</td>
<td>8.82</td>
</tr>
<tr>
<td>005</td>
<td>2.29</td>
<td>4.34</td>
<td>1.72</td>
<td>0.26</td>
<td>4.07</td>
<td>6.40</td>
</tr>
<tr>
<td>006</td>
<td>13.47</td>
<td>-</td>
<td>-</td>
<td>4.53</td>
<td>4.60</td>
<td>2.80</td>
</tr>
<tr>
<td>007</td>
<td>1.70</td>
<td>-</td>
<td>-</td>
<td>0.64</td>
<td>3.55</td>
<td>4.53</td>
</tr>
<tr>
<td>008</td>
<td>2.15</td>
<td>-</td>
<td>1.43</td>
<td>2.77</td>
<td>2.96</td>
<td>5.54</td>
</tr>
<tr>
<td>009</td>
<td>9.08</td>
<td>-</td>
<td>0.51</td>
<td>1.66</td>
<td>2.68</td>
<td>6.29</td>
</tr>
<tr>
<td>010</td>
<td>1.43</td>
<td>-</td>
<td>-</td>
<td>1.04</td>
<td>3.92</td>
<td>5.01</td>
</tr>
<tr>
<td>011</td>
<td>-</td>
<td>-</td>
<td>0.37</td>
<td>1.33</td>
<td>2.97</td>
<td>5.21</td>
</tr>
<tr>
<td>012</td>
<td>3.79</td>
<td>-</td>
<td>0.82</td>
<td>1.02</td>
<td>3.30</td>
<td>7.39</td>
</tr>
<tr>
<td>013</td>
<td>1.06</td>
<td>-</td>
<td>0.19</td>
<td>1.17</td>
<td>3.01</td>
<td>7.53</td>
</tr>
<tr>
<td>014</td>
<td>0.98</td>
<td>-</td>
<td>0.13</td>
<td>0.91</td>
<td>2.14</td>
<td>5.97</td>
</tr>
<tr>
<td>015</td>
<td>1.14</td>
<td>-</td>
<td>0.16</td>
<td>1.77</td>
<td>2.45</td>
<td>9.67</td>
</tr>
</tbody>
</table>
9.6 Appendix 6. Surface water time series N data for the 04/05 growing season.

<table>
<thead>
<tr>
<th>Date</th>
<th>NO$_3$</th>
<th>δ^{15}N-NO$_3$</th>
<th>NH$_4$</th>
<th>Chl-a</th>
<th>PON</th>
<th>δ^{15}N$_{PON}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(µmol)</td>
<td>(% vs air)</td>
<td>(µmol)</td>
<td>(mg.m$^{-3}$)</td>
<td>(µmol.g$^{-1}$)</td>
<td>(% vs air)</td>
</tr>
<tr>
<td>05/12/2004</td>
<td>22.13</td>
<td>6.88</td>
<td>0.51</td>
<td>20.03</td>
<td>7.31</td>
<td>1.75</td>
</tr>
<tr>
<td>08/12/2004</td>
<td>12.33</td>
<td>7.52</td>
<td>3.66</td>
<td>16.84</td>
<td>11.41</td>
<td>6.46</td>
</tr>
<tr>
<td>10/12/2004</td>
<td>20.57</td>
<td>5.72</td>
<td>1.35</td>
<td>10.24</td>
<td>4.94</td>
<td>2.13</td>
</tr>
<tr>
<td>13/12/2004</td>
<td>8.52</td>
<td>8.36</td>
<td>2.33</td>
<td>24.75</td>
<td>9.83</td>
<td>3.20</td>
</tr>
<tr>
<td>15/12/2004</td>
<td>12.06</td>
<td>8.65</td>
<td>2.17</td>
<td>14.30</td>
<td>10.91</td>
<td>3.81</td>
</tr>
<tr>
<td>20/12/2004</td>
<td>12.09</td>
<td>6.62</td>
<td>0.66</td>
<td>12.05</td>
<td>7.39</td>
<td>2.84</td>
</tr>
<tr>
<td>22/12/2004</td>
<td>11.61</td>
<td>6.90</td>
<td></td>
<td>13.16</td>
<td>7.39</td>
<td>3.03</td>
</tr>
<tr>
<td>29/12/2004</td>
<td>5.40</td>
<td>10.10</td>
<td>0.79</td>
<td>2.44</td>
<td>11.45</td>
<td>5.04</td>
</tr>
<tr>
<td>31/12/2004</td>
<td>15.25</td>
<td>6.64</td>
<td>4.49</td>
<td>10.73</td>
<td>6.71</td>
<td>4.07</td>
</tr>
<tr>
<td>05/01/2005</td>
<td>26.30</td>
<td>4.85</td>
<td>3.66</td>
<td>4.10</td>
<td>3.66</td>
<td>3.18</td>
</tr>
<tr>
<td>07/01/2005</td>
<td>14.25</td>
<td>5.89</td>
<td>0.31</td>
<td>10.67</td>
<td>7.47</td>
<td>3.62</td>
</tr>
<tr>
<td>10/01/2005</td>
<td>5.48</td>
<td>11.37</td>
<td>0.30</td>
<td>23.42</td>
<td>11.16</td>
<td>5.71</td>
</tr>
<tr>
<td>13/01/2005</td>
<td>18.25</td>
<td>5.76</td>
<td>2.89</td>
<td>5.44</td>
<td>5.19</td>
<td>5.07</td>
</tr>
<tr>
<td>17/01/2005</td>
<td>7.35</td>
<td>7.51</td>
<td></td>
<td>16.88</td>
<td>11.10</td>
<td>4.30</td>
</tr>
<tr>
<td>19/01/2005</td>
<td>19.40</td>
<td>5.13</td>
<td>1.49</td>
<td>24.16</td>
<td>7.77</td>
<td>3.97</td>
</tr>
<tr>
<td>21/01/2005</td>
<td>3.85</td>
<td>8.13</td>
<td></td>
<td>35.55</td>
<td>12.84</td>
<td>5.43</td>
</tr>
<tr>
<td>28/01/2005</td>
<td>13.98</td>
<td>6.16</td>
<td>1.01</td>
<td>15.01</td>
<td>5.80</td>
<td>3.68</td>
</tr>
<tr>
<td>01/02/2005</td>
<td>3.33</td>
<td>7.98</td>
<td>0.70</td>
<td>15.88</td>
<td>7.80</td>
<td>6.52</td>
</tr>
<tr>
<td>12/02/2005</td>
<td>22.96</td>
<td>5.48</td>
<td>2.62</td>
<td>2.58</td>
<td>2.07</td>
<td>0.10</td>
</tr>
<tr>
<td>21/02/2005</td>
<td>12.52</td>
<td>5.44</td>
<td>2.80</td>
<td>2.95</td>
<td>1.87</td>
<td>3.07</td>
</tr>
<tr>
<td>28/02/2005</td>
<td>9.25</td>
<td>5.51</td>
<td>3.10</td>
<td>1.38</td>
<td>1.57</td>
<td>1.99</td>
</tr>
<tr>
<td>14/03/2005</td>
<td>16.25</td>
<td>4.36</td>
<td>3.80</td>
<td>1.25</td>
<td>1.10</td>
<td>0.04</td>
</tr>
</tbody>
</table>
9.7 Appendix 7. Surface water time-series N data for the 05/06 growing season.

<table>
<thead>
<tr>
<th>Date</th>
<th>NO(_3) (µmol)</th>
<th>NH(_4) (µmol)</th>
<th>Chl-(a) (mg.m(^{-3}))</th>
<th>PON (µmol.g(^{-1}))</th>
<th>(\delta^{15}N_{\text{PON}}) (% vs air)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17/09/2005</td>
<td>23.54</td>
<td>0.40</td>
<td>0.12</td>
<td>0.23</td>
<td>5.10</td>
</tr>
<tr>
<td>13/10/2005</td>
<td>22.58</td>
<td>0.24</td>
<td>0.14</td>
<td>0.19</td>
<td>5.08</td>
</tr>
<tr>
<td>21/11/2005</td>
<td>33.70</td>
<td>0.81</td>
<td>0.50</td>
<td>0.67</td>
<td>5.98</td>
</tr>
<tr>
<td>23/11/2005</td>
<td>22.57</td>
<td></td>
<td>0.60</td>
<td>0.92</td>
<td>4.95</td>
</tr>
<tr>
<td>23/12/2005</td>
<td>10.00</td>
<td>0.35</td>
<td>10.24</td>
<td>4.84</td>
<td>3.39</td>
</tr>
<tr>
<td>28/12/2005</td>
<td>15.32</td>
<td>0.27</td>
<td>13.07</td>
<td>4.89</td>
<td>2.25</td>
</tr>
<tr>
<td>04/01/2006</td>
<td>20.75</td>
<td>0.84</td>
<td>14.13</td>
<td>4.88</td>
<td>1.69</td>
</tr>
<tr>
<td>06/01/2006</td>
<td>14.27</td>
<td>0.30</td>
<td>25.74</td>
<td>9.17</td>
<td>5.89</td>
</tr>
<tr>
<td>10/01/2006</td>
<td>9.87</td>
<td>0.83</td>
<td>20.51</td>
<td>9.63</td>
<td>3.52</td>
</tr>
<tr>
<td>13/01/2006</td>
<td>10.23</td>
<td>0.88</td>
<td>22.16</td>
<td>10.02</td>
<td>5.54</td>
</tr>
<tr>
<td>19/01/2006</td>
<td>9.65</td>
<td>0.38</td>
<td>20.95</td>
<td>10.01</td>
<td>0.00</td>
</tr>
<tr>
<td>24/01/2006</td>
<td>11.73</td>
<td>1.11</td>
<td>16.39</td>
<td>7.36</td>
<td>4.30</td>
</tr>
<tr>
<td>30/01/2006</td>
<td>12.73</td>
<td>2.54</td>
<td>11.92</td>
<td>5.39</td>
<td>3.67</td>
</tr>
<tr>
<td>02/02/2006</td>
<td>12.59</td>
<td>2.28</td>
<td>13.48</td>
<td>4.23</td>
<td>3.11</td>
</tr>
<tr>
<td>10/02/2006</td>
<td>11.45</td>
<td>1.20</td>
<td>18.79</td>
<td>6.87</td>
<td>3.53</td>
</tr>
<tr>
<td>13/02/2006</td>
<td>10.97</td>
<td>1.36</td>
<td>17.09</td>
<td>6.36</td>
<td>3.76</td>
</tr>
<tr>
<td>20/02/2006</td>
<td>7.90</td>
<td>0.45</td>
<td>16.21</td>
<td>5.04</td>
<td>3.67</td>
</tr>
<tr>
<td>23/02/2006</td>
<td>7.07</td>
<td>0.95</td>
<td>20.07</td>
<td>7.42</td>
<td>4.89</td>
</tr>
<tr>
<td>27/02/2006</td>
<td>3.78</td>
<td>0.66</td>
<td>27.94</td>
<td>8.81</td>
<td>6.00</td>
</tr>
<tr>
<td>04/03/2006</td>
<td>10.91</td>
<td>2.37</td>
<td>12.21</td>
<td>4.56</td>
<td>5.24</td>
</tr>
<tr>
<td>08/03/2006</td>
<td>9.90</td>
<td>2.28</td>
<td>14.61</td>
<td>5.42</td>
<td>5.31</td>
</tr>
<tr>
<td>13/03/2006</td>
<td>2.26</td>
<td>0.93</td>
<td>11.49</td>
<td>4.89</td>
<td>4.83</td>
</tr>
<tr>
<td>23/03/2006</td>
<td>12.96</td>
<td>2.93</td>
<td>5.79</td>
<td>3.49</td>
<td>3.53</td>
</tr>
</tbody>
</table>
9.8 Appendix 8. Sediment Trap flux data and δ^{15}N_{org} from the RaTS Site throughout the duration of this study.

<table>
<thead>
<tr>
<th>Cup Opening Flux</th>
<th>Mass (mg·m^2/d)</th>
<th>Flux (μmol·m^-2/d)</th>
<th>POC (μmol·m^-2/d)</th>
<th>PON (μmol·m^-2/d)</th>
<th>δ^{15}N_{org} (% vs air)</th>
<th>Cup Opening Flux</th>
<th>Mass (mg·m^2/d)</th>
<th>Flux (μmol·m^-2/d)</th>
<th>POC (μmol·m^-2/d)</th>
<th>PON (μmol·m^-2/d)</th>
<th>δ^{15}N_{org} (% vs air)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200m</td>
<td>200m</td>
<td>200m</td>
<td></td>
<td></td>
<td></td>
<td>512m</td>
<td>512m</td>
<td>512m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>(% vs 512m)</td>
</tr>
<tr>
<td>26/1/05</td>
<td>1296.38</td>
<td>3430.39</td>
<td>394.19</td>
<td>4.46</td>
<td>1637.47</td>
<td>3564.67</td>
<td>457.58</td>
<td>4.40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/2/05</td>
<td>1581.77</td>
<td>3845.11</td>
<td>503.55</td>
<td>4.12</td>
<td>1628.48</td>
<td>3524.76</td>
<td>465.53</td>
<td>4.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21/2/05</td>
<td>1244.37</td>
<td>3214.52</td>
<td>410.79</td>
<td>4.02</td>
<td>2.13</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/3/05</td>
<td>1020.72</td>
<td>1826.84</td>
<td>246.98</td>
<td>4.12</td>
<td>0.84</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4/05</td>
<td>21.58</td>
<td>31.41</td>
<td>4.65</td>
<td>5.47</td>
<td>0.13</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/5/05</td>
<td>0.10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.19</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/6/05</td>
<td>0.02</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.06</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/7/05</td>
<td>0.30</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.32</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/9/05</td>
<td>0.23</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.40</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/10/05</td>
<td>0.07</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/11/05</td>
<td>0.23</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.19</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15/11/05</td>
<td>0.23</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.17</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29/11/05</td>
<td>0.45</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.34</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/12/05</td>
<td>0.70</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.17</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13/12/05</td>
<td>2.17</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.81</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20/12/05</td>
<td>1.20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.61</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27/12/05</td>
<td>1.33</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.79</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/1/06</td>
<td>0.32</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18/1/06</td>
<td>0.58</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-0.02</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2/06</td>
<td>2789.23</td>
<td>3341.96</td>
<td>457.90</td>
<td>4.12</td>
<td>294.93</td>
<td>453.08</td>
<td>60.00</td>
<td>3.55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18/2/06</td>
<td>140.39</td>
<td>537.00</td>
<td>84.97</td>
<td>2.95</td>
<td>174.89</td>
<td>438.47</td>
<td>65.66</td>
<td>2.92</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9.9 Appendix 9. Sediment Trap flux data and δ^{15}N$_{org}$ from the Deep Site throughout the duration of this study.

<table>
<thead>
<tr>
<th>Cup</th>
<th>Mass Flux (mg.m$^{-2}$/d)</th>
<th>POC Flux (μmol.m$^{-2}$/d)</th>
<th>PON Flux (μmol.m$^{-2}$/d)</th>
<th>Mass Flux (mg.m$^{-2}$/d)</th>
<th>POC Flux (μmol.m$^{-2}$/d)</th>
<th>PON Flux (μmol.m$^{-2}$/d)</th>
<th>δ^{15}N$_{org}$ (‰ vs air)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opening</td>
<td>Flux (mg.m$^{-2}$/d)</td>
<td>Flux (μmol.m$^{-2}$/d)</td>
<td>Flux (μmol.m$^{-2}$/d)</td>
<td>123m</td>
<td>123m</td>
<td>123m</td>
<td>745m</td>
</tr>
<tr>
<td>Date</td>
<td></td>
<td></td>
<td></td>
<td>(‰ vs 745m)</td>
<td>745m</td>
<td>745m</td>
<td>745m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Mass</th>
<th>POC</th>
<th>PON</th>
<th>δ^{15}N$_{org}$</th>
<th>Mass</th>
<th>POC</th>
<th>PON</th>
<th>δ^{15}N$_{org}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>26/1/05</td>
<td>419.00</td>
<td>2612.19</td>
<td>338.10</td>
<td>4.71</td>
<td>614.22</td>
<td>2880.83</td>
<td>388.43</td>
<td>4.11</td>
</tr>
<tr>
<td>7/2/05</td>
<td>115.15</td>
<td>645.11</td>
<td>85.07</td>
<td>4.45</td>
<td>12.47</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>21/2/05</td>
<td>241.91</td>
<td>775.87</td>
<td>104.03</td>
<td>4.10</td>
<td>4.25</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1/3/05</td>
<td>100.35</td>
<td>380.76</td>
<td>52.61</td>
<td>4.47</td>
<td>0.46</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1/4/05</td>
<td>109.27</td>
<td>238.48</td>
<td>33.93</td>
<td>4.28</td>
<td>0.30</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1/5/05</td>
<td>154.41</td>
<td>335.63</td>
<td>48.05</td>
<td>4.24</td>
<td>0.36</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1/6/05</td>
<td>78.83</td>
<td>166.59</td>
<td>23.44</td>
<td>4.29</td>
<td>0.11</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15/7/05</td>
<td>43.18</td>
<td>93.75</td>
<td>13.62</td>
<td>5.56</td>
<td>0.11</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1/9/05</td>
<td>34.17</td>
<td>48.43</td>
<td>8.40</td>
<td>5.37</td>
<td>0.13</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1/10/05</td>
<td>55.59</td>
<td>193.49</td>
<td>20.10</td>
<td>5.62</td>
<td>0.05</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1/11/05</td>
<td>117.64</td>
<td>220.43</td>
<td>29.35</td>
<td>4.94</td>
<td>0.29</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15/11/05</td>
<td>69.63</td>
<td>144.10</td>
<td>18.41</td>
<td>5.33</td>
<td>0.29</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>29/11/05</td>
<td>71.93</td>
<td>141.85</td>
<td>17.99</td>
<td>5.40</td>
<td>0.39</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6/12/05</td>
<td>77.29</td>
<td>177.17</td>
<td>21.68</td>
<td>5.27</td>
<td>0.70</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13/12/05</td>
<td>172.87</td>
<td>579.64</td>
<td>68.36</td>
<td>6.43</td>
<td>1.54</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>20/12/05</td>
<td>88.55</td>
<td>699.69</td>
<td>65.92</td>
<td>5.69</td>
<td>1.76</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>27/12/05</td>
<td>174.90</td>
<td>776.65</td>
<td>103.49</td>
<td>4.83</td>
<td>1.18</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3/1/06</td>
<td>302.03</td>
<td>1309.09</td>
<td>187.45</td>
<td>2.88</td>
<td>0.54</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>18/1/06</td>
<td>360.64</td>
<td>1587.73</td>
<td>213.14</td>
<td>2.61</td>
<td>0.31</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1/2/06</td>
<td>242.59</td>
<td>1049.52</td>
<td>136.88</td>
<td>3.31</td>
<td>1413.38</td>
<td>3545.23</td>
<td>493.32</td>
<td>5.35</td>
</tr>
</tbody>
</table>